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Problem Definition

E. Marczewski proved that every graph can be
represented by a list of sets where each vertex
corresponds to a set and the edges to nonempty

intersections of sets. It is natural to ask what sort
of graphs would be most likely to arise if the list
of sets is generated randomly.

Consider the model of random graphs where
each vertex chooses randomly from a universal
set the members of its corresponding set, each
independently of the others. The probability
space that is created is the space of random inter-
section graphs, Gn;m;p , where n is the number of
vertices, m is the cardinality of a universal set of
elements and p is the probability for each vertex
to choose an element of the universal set. The
model of random intersection graphs was first
introduced by M. Karońsky, E. Scheinerman, and
K. Singer-Cohen in [4]. A rigorous definition
of the model of random intersection graphs
follows:

Definition 1 Let n, m be positive integers and
0 � p � 1. The random intersection graph
Gn;m;p is a probability space over the set of
graphs on the vertex set f1; : : : ; ng where each
vertex is assigned a random subset from a fixed
set of m elements. An edge arises between two
vertices when their sets have at least a common
element. Each random subset assigned to a vertex
is determined by

Pr Œvertex i chooses element j � D p

with these events mutually independent.

A common question for a graph is whether it has
a cycle, a set of edges that form a path so that the

© Springer Science+Business Media New York 2016
M.-Y. Kao (ed.), Encyclopedia of Algorithms,
DOI 10.1007/978-1-4939-2864-4



892 Hamilton Cycles in Random Intersection Graphs

first and the last vertex is the same, that visits all
the vertices of the graph exactly once. We call this
kind of cycle the Hamilton cycle and the graph
that contains such a cycle is called a Hamiltonian
graph.

Definition 2 Consider an undirected graph
G D .V; E/ where V is the set of vertices and E
the set of edges. This graph contains a Hamilton
cycle if and only if there is a simple cycle that
contains each vertex in V.

Consider an instance of Gn;m;p , for specific val-
ues of its parameters n, m, and p, what is the prob-
ability of that instance to be Hamiltonian? Taking
the parameter p, of the model, to be a function
of n and m, in [2], a threshold function P.n; m/

has been found for the graph property “Contains
a Hamilton cycle”; i.e., a function P.n; m/ is
derived such that

if p.n; m/ � P.n; m/

lim
n;m!1

Pr
�
Gn;m;pContains Hamilton cycle

�
D 0

if p.n; m/ � P.n; m/

lim
n;m!1

Pr
�
Gn;m;pContains Hamilton cycle

�
D 1

When a graph property, such as “Contains
a Hamilton cycle,” holds with probability that
tends to 1 (or 0) as n, m tend to infinity, then it
is said that this property holds (does not hold),
“almost surely” or “almost certainly.”

If in Gn;m;p the parameter m is very small
compared to n, the model is not particularly in-
teresting and when m is exceedingly large (com-
pared to n) the behavior of Gn;m;p is essentially
the same as the Erdös–Rényi model of random
graphs (see [3]). If someone takes m D dn˛e, for
fixed real ˛ > 0, then there is some deviation
from the standard models, while allowing for
a natural progression from sparse to dense graphs.
Thus, the parameter m is assumed to be of the
form m D dn˛e for some fixed positive real ’.

The proof of existence of a Hamilton cy-
cle in Gn;m;p is mainly based on the estab-
lishment of a stochastic order relation between

the model Gn;m;p and the Erdös–Rényi random
graph model Gn; Op .

Definition 3 Let n be a positive integer,
0 � Op � 1. The random graph G.n; Op/ is
a probability space over the set of graphs on
the vertex set f1; : : : ; ng determined by

Pr Œi; j � D Op

with these events mutually independent.

The stochastic order relation between the two
models of random graphs is established in the
sense that if A is an increasing graph property,
then it holds that

Pr
�
Gn; Op 2 A

�
� Pr

�
Gn;m;p 2 A

�

where Op D f .p/. A graph property A is in-
creasing if and only if given that A holds for
a graph G.V; E/ then A holds for any G.V; E 0/:
E 0 � E.

Key Results

Theorem 1 Let m D dn˛e, where ˛ is a fixed
real positive, and C1; C2 be sufficiently large
constants. If

p � C1

log n

m
for 0 < ˛ < 1 or

p � C2

r
log n

nm
for ˛ > 1

then almost all Gn;m;p are Hamiltonian. Our
bounds are asymptotically tight.

Note that the theorem above says nothing
when m D n, i.e., ˛ D 1.

Applications

The Erdös–Rényi model of random graphs, Gn;p ,
is exhaustively studied in computer science
because it provides a framework for studying
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practical problems such as “reliable network
computing” or it provides a “typical instance”
of a graph and thus it is used for average
case analysis of graph algorithms. However,
the simplicity of Gn;p means it is not able to
capture satisfactorily many practical problems
in computer science. Basically, this is because
of the fact that in many problems independent
edge-events are not well justified. For example,
consider a graph whose vertices represent a set
of objects that either are placed or move in a
specific geographical region, and the edges are
radio communication links. In such a graph,
we expect that, any two vertices u, w are more
likely to be adjacent to each other, than any
other, arbitrary, pair of vertices, if both are
adjecent to a third vertex v. Even epidemiological
phenomena (like the spread of disease) tend to
be more accurately captured by this proximity-
sensitive random intersection graph model. Other
applications may include oblivious resource
sharing in a distributive setting, interaction of
mobile agents traversing the web etc.

The model of random intersection graphs
Gn;m;p was first introduced by M. Karońsky,
E. Scheinerman, and K. Singer-Cohen in [4]
where they explored the evolution of random
intersection graphs by studying the thresholds
for the appearance and disappearance of
small induced subgraphs. Also, J.A. Fill, E.R.
Scheinerman, andK. Singer Cohen in [3] proved
an equivalence theorem relating the evolution of
Gn;m;p and Gn;p , in particular they proved that
when m D n˛ where ˛ > 6, the total variation
distance between the graph random variables
has limit 0. S. Nikoletseas, C. Raptopoulos, and
P. Spirakis in [8] studied the existence and the
efficient algorithmic construction of close to
optimal independent sets in random intersection
graphs. D. Stark in [11] studied the degree of
the vertices of the random intersection graphs.
However, after [2], Spirakis and Raptopoulos,
in [10], provide algorithms that construct
Hamilton cycles in instances of Gn;m;p , for
p above the Hamiltonicity threshold. Finally,
Nikoletseas et al. in [7] study the mixing time and
cover time as the parameter p of the model varies.

Open Problems

As in many other random structures, e.g., Gn;p

and random formulae, properties of random in-
tersection graphs also appear to have threshold
behavior. So far threshold behavior has been
studied for the induced subgraph appearance and
hamiltonicity.

Other fields of research for random intersec-
tion graphs may include the study of connectivity
behavior, of the model i.e., the path formation,
the formation of giant components. Additionally,
a very interesting research question is how cover
and mixing times vary with the parameter p, of
the model.
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Problem Definition

In many diploid organisms like humans, chro-
mosomes come in pairs. Genetic variation oc-
curs in some “positions” along the chromosomes.
These genetic variations are commonly modelled
in the form of single nucleotide polymorphisms

(SNPs) [5], which are the nucleotide sites where
more than one nucleotide can occur. A hap-
lotype is the sequence of linked SNP genetic
markers (small segments of DNA) on a single
chromosome. However, experiments often yield
genotypes, which is a blend of the two haplotypes
of the chromosome pair. It is more useful to
have information on the haplotypes, thus giving
rise to the computational problem of inferring
haplotypes from genotypes.

The physical position of a marker on a chro-
mosome is called a locus and its state is called
an allele. SNP are often biallelic, i.e., the allele
can take on two different states, corresponding
to two different nucleotides. In the language of
computer science, the allele of a biallelic SNP
can be denoted by 0 and 1, and a haplotype
with m loci is represented as a length-m string
in f0; 1gm and a genotype as a length-m string
in f0; 1; 2gm. Consider a haplotype pair hh1, h2i

and a corresponding genotype g. For each locus,
if both haplotypes show a 0, then the geno-
type must also be 0, and if both haplotypes
show a 1, the genotype must also be 1. These
loci are called homozygous. If however one of
the haplotypes shows a 0 and the other a 1,
the genotype shows a 2 and the locus is called
heterozygous. This is called SNP consistency.
For example, considering a single individual, the
genotype g D 012212 has four SNP-consistent
haplotype pairs: {h011111, 010010i, h011110,
010011i, h011011, 010110i, h011010, 010111i}.
In general, if a genotype has s heterozygous
loci, it can have 2s�1 SNP-consistent haplotype
solutions.

Haplotypes are passed down from an indi-
vidual to its descendants. Mendelian consistency
requires that, in the absence of recombinations
or mutations, each child inherits one haplotype
from one of the two haplotypes of the father
and inherits the other haplotype from the mother
similarly. This gives us more information to in-
fer haplotypes when we are given a pedigree.
The computational problem is therefore, given
a pedigree with n individuals where each indi-
vidual is associated with a genotype of length
m, find an assignment of a pair of haplotypes
to each individual such that SNP consistency
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Haplotype Inference on Pedigrees Without Recom-
binations, Fig. 1 (a) Example of a pedigree with four
nodes. (b) The graph G with 12 vertices, 6 red edges,

and 4 brown edges. Each vector is a vertex in G. Vector
pairs enclosed by rounded rectangles belong to the same
individual

and Mendelian consistency are obeyed for each
individual. In rare cases (especially for humans)
[3], the pedigree may contain mating loops: a
mating loop is formed when, for example, there
is a marriage between descendants of a common
ancestor.

As a simple example, consider the pedigree in
Fig. 1a for a family of four individuals and their
genotypes. Due to SNP consistency, mother M’s
haplotypes must be h0000; 1000i (the order does
not matter). Similarly, daughter D’s haplotypes
must be h1000; 1100i. Now we apply Mendelian
consistency to deduce that D must obtain the
1000 haplotype from M since neither of father
F’s haplotypes can be 1000 (considering locus
2). Therefore, D obtains 1100 from F, and F’s
haplotypes must be h0101; 1100i. With F’s and
M’s haplotypes known, the only solution for the
haplotypes of son S that is consistent with his
genotype 2202 is h0101; 1000i.

Key Results

While this kind of deduction might appear to
be enough to resolve all haplotype values, it
is not the case. As we will shortly see, there
are “long-distance” constraints that need to be
considered. These constraints can be represented
by a system of linear equations in GF(2) and
solved using Gaussian elimination. This gives a
O.m3n3/ time algorithm [3]. Subsequent papers
try to capture or solve the constraints more eco-
nomically. The time complexity was improved
in [6] to O.mn2 C n3 log2 n log log n/ by elimi-
nating redundant equations and using low-stretch
spanning trees. A different approach was used

in [1], representing the constraints by the parity
of edge labels of some auxiliary graphs and
finding solutions of these constraints using graph
traversal without (directly) solving a system of
linear equations. This gives a linear O.mn/ time
algorithm, although it only works for the case
with no mating loops and only produces one
particular solution even when the pedigree admits
more than one solution. Later algorithms include
[4] which returns the full set of solutions in
optimal time (again without mating loops) and
[2] which can handle mating loops and runs in
O.kmn C k2m/ time where k is the number of
mating loops.

In the following we sketch the idea behind
the linear time algorithm in [1]. Each individual
only has a pair of haplotypes, but the algorithm
first produces a number of vector pairs for each
individual, one vector pair for each trio (a father-
mother-child triplet) that this individual belongs
to. Each vector pair represents the information
about the two haplotypes of this individual that
can be derived by considering this trio only.
These vector pairs will eventually be “unified” to
become a single pair.

For the pedigree in Fig. 1a, the algorithm
first produces the graph G in Fig. 1b, which has
two connected components for the two trios F-
M-S and F-M-D. The rule for enforcing SNP
consistency (Mendelian consistency) is that the
unresolved loci values, i.e., the ? values, must
be different (same) at opposite ends of a red
(brown) edge. There is only one way to unify the
vector pairs of F consistently (due to locus 4):
?101 must correspond to 0101. We add an edge
between these two vectors to represent the fact
that they should be identical. Then all ? values
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Haplotype Inference on Pedigrees Without Recombi-
nations, Fig. 2 An example showing how constraints are
represented by labeled edges in another graph. (a) The

pedigree. (b) The local graph G. (c) The parity constraint
graph J . Three constraints are added

can be resolved by traversing the now-connected
graph and applying the aforementioned rules for
enforcing consistency.

However, consider another pedigree in Fig. 2a.
The previous steps can only produce Fig. 2b,
which has four connected components and un-
resolved loci. We need to decide for A and B

whether A D 00‹ should connect to B D‹‹0

or its complement ??1 and similarly for B 0 and
C , etc. Observe that a path between A and C

must go through an odd number of red edges
since locus 1 changes from 0 to 1. To capture this
type of long-distance constraints, we construct a
parity constraint graph J where the edge labels
represent the parity constraints; see Fig. 2c. In
effect, J represents a set of linear equations in
GF(2); in Fig. 2c, the equations are xAB CxB0C D

1; xB0C CxC 0D D 0, and xABCxB0C CxC 0D D 0.
Finally, we can traverse J along the unique

path between any two nodes; the parity of this
path tells us how to merge the vector pairs in G.
For example, the parity between A and B should
be 0, indicating 00? in A should connect to ??0 in
B (so both become 000), while the parity between
B 0 and C is 1, so B 0 and C should be 000 and
111, respectively.
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Problem Definition

The work of Pitt and Valiant [18] deals with
learning Boolean functions in the Probably Ap-
proximately Correct (PAC) learning model intro-
duced by Valiant [19]. A learning algorithm in
Valiant’s original model is given random exam-
ples of a function f W f0; 1gn ! f0; 1g from a
representation class F and produces a hypothesis
h 2 F that closely approximates f . Here, a
representation class is a set of functions and a
language for describing the functions in the set.
The authors give examples of natural represen-
tation classes that are NP-hard to learn in this
model, whereas they can be learned if the learn-
ing algorithm is allowed to produce hypotheses
from a richer representation class H. Such an
algorithm is said to learn F by H; learning F by
F is called proper learning.

The results of Pitt and Valiant were the first
to demonstrate that the choice of representation
of hypotheses can have a dramatic impact on the
computational complexity of a learning problem.

Their specific reductions from NP-hard problems
are the basis of several other follow-up works on
the hardness of proper learning [1, 3, 7].

Notation
Learning in the PAC model is based on the as-
sumption that the unknown function (or concept)
belongs to a certain class of concepts C. In order
to discuss algorithms that learn and output func-
tions, one needs to define how these functions
are represented. Informally, a representation for
a concept class C is a way to describe concepts
from C that defines a procedure to evaluate a con-
cept in C on any input. For example, one can rep-
resent a conjunction of input variables by listing
the variables in the conjunction. More formally, a
representation class can be defined as follows.

Definition 1 A representation class F is a pair
.L;R/ where

• L is a language over some fixed finite alphabet
(e.g., f0; 1g);

• R is an algorithm that for � 2 L, on input
.�; 1n/ returns a Boolean circuit over f0; 1gn.

In the context of efficient learning, only ef-
ficient representations are considered, or, rep-
resentations for which R is a polynomial-time
algorithm. The concept class represented by F is
the set of functions over f0; 1gn defined by the
circuits in fR.�; 1n/ j � 2 Lg. For a Boolean
function f , “f 2 F” means that f belongs to
the concept class represented by F and that there
is a � 2 L whose associated Boolean circuit com-
putes f: For most of the representations discussed
in the context of learning, it is straightforward
to construct a language L and the corresponding
translating function R, and therefore, they are not
specified explicitly.

Associated with each representation is the
complexity of describing a Boolean function
using this representation. More formally, for a
Boolean function f 2 C, F-size.f / is the
length of the shortest way to represent f using
F , or minfj� j j � 2 L; R.�; 1n/ � f g.

We consider Valiant’s PAC model of learning
[19], as generalized by Pitt and Valiant [18].
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In this model, for a function f and a distribu-
tion D over X , an example oracle EX.f;D/

is an oracle that, when invoked, returns an ex-
ample hx; f .x/i, where x is chosen randomly
with respect to D, independently of any previous
examples. For � � 0, we say that function
g �-approximates a function f with respect to
distribution D if PrDŒf .x/ ¤ g.x/� � �.

Definition 2 A representation class F is PAC
learnable by representation class H if there exists
an algorithm that for every � > 0, ı > 0, n,
f 2 F , and distribution D over X , given �, ı,
and access to EX.f;D/, runs in time polynomial
in n; s D F-size.c/; 1=� and 1=ı, and outputs,
with probability at least 1�ı, a hypothesis h 2 H
that �-approximates f .

A DNF expression is defined as an OR of
ANDs of literals, where a literal is a possibly
negated input variable. We refer to the ANDs of a
DNF formula as its terms. Let DNF.k/ denote the
representation class of k-term DNF expressions.
Similarly, a CNF expression is an OR of ANDs
of literals. Let k-CNF denote the representation
class of CNF expressions with each AND having
at most k literals.

For a real-valued vector c 2 R
n and � 2 R, a

linear threshold function (also called a halfspace)
Tc;� .x/ is the function that equals 1 if and only
if
P

i�n ci xi � � . The representation class of
Boolean threshold functions consists of all linear
threshold functions with c 2 f0; 1gn and � an
integer.

Key Results

Theorem 1 ([18]) For every k � 2, the repre-
sentation class of DNF.k/ is not properly learn-
able unless RP D NP.

More specifically, Pitt and Valiant show that
learning DNF.k/ by DNF.`/ is at least as hard as
coloring a k-colorable graph using ` colors. For
the case k D 2, they obtain the result by reducing
from Set Splitting (see [9] for details on the
problems). Theorem 1 is in sharp contrast with
the fact that DNF.k/ is learnable by k-CNF [19].

Theorem 2 ([18]) The representation class of
Boolean threshold functions is not properly
learnable unless RP D NP.

This result is obtained via a reduction from
the NP-complete Zero-One Integer Programming
problem (see [9] (p.245) for details on the prob-
lem). The result is contrasted by the fact that gen-
eral linear thresholds are properly learnable [4].

These results show that using a specific repre-
sentation of hypotheses forces the learning algo-
rithm to solve a combinatorial problem that can
be NP-hard. In most machine learning applica-
tions it is not important which representation of
hypotheses is used as long as the value of the
unknown function is predicted correctly. There-
fore, learning in the PAC model is now defined
without any restrictions on the output hypothesis
(other than it being efficiently evaluatable). Hard-
ness results in this setting are usually based on
cryptographic assumptions (cf. [15]).

Hardness results for proper learning based on
assumption NP ¤ RP are now known for several
other representation classes and for other vari-
ants and extensions of the PAC learning model.
Blum and Rivest show that for any k � 3,
unions of k halfspaces are not properly learn-
able [3]. Hancock et al. prove that decision trees
(cf. [16] for the definition of this representation)
are not learnable by decision trees of somewhat
larger size [11]. This result was strengthened
by Alekhnovich et al. who also proved that in-
tersections of two halfspaces are not learnable by
intersections of k halfspaces for any constant
k, general DNF expressions are not learnable
by unions of halfspaces (and in particular are not
properly learnable) and k-juntas are not properly
learnable [1]. Further, DNF expressions remain
NP-hard to learn properly even if membership
queries, or the ability to query the unknown func-
tion at any point, are allowed [7]. Khot and Saket
show that the problem of learning intersections
of two halfspaces remains NP-hard even if a
hypothesis with any constant error smaller than
1=2 is required [17]. No efficient algorithms or
hardness results are known for any of the above
learning problems if no restriction is placed on
the representation of hypotheses.
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The choice of representation is important even
in powerful learning models. Feldman proved
that nc-term DNF are not properly learnable for
any constant c even when the distribution of
examples is assumed to be uniform and member-
ship queries are available [7]. This contrasts with
Jackson’s celebrated algorithm for learning DNF
in this setting [13], which is not proper.

In the agnostic learning model of Haussler
[12] and Kearns et al. [14], even the representa-
tion classes of conjunctions, decision lists, halfs-
paces, and parity functions are NP-hard to learn
properly (cf. [2, 6, 8, 10] and references therein).
Here again the status of these problems in the
representation-independent setting is largely un-
known.

Applications

A large number of practical algorithms use repre-
sentations for which hardness results are known
(most notably decision trees, halfspaces, and neu-
ral networks). Hardness of learning F by H
implies that an algorithm that uses H to represent
its hypotheses will not be able to learn F in
the PAC sense. Therefore such hardness results
elucidate the limitations of algorithms used in
practice. In particular, the reduction from an NP-
hard problem used to prove the hardness of learn-
ing F by H can be used to generate hard instances
of the learning problem.

Open Problems

A number of problems related to proper
learning in the PAC model and its extensions
are open. Almost all hardness of proper
learning results are for learning with respect
to unrestricted distributions. For most of the
problems mentioned in section “Key Results”
it is unknown whether the result is true if the
distribution is restricted to belong to some
natural class of distributions (e.g., product
distributions). It is unknown whether decision
trees are learnable properly in the PAC model

or in the PAC model with membership queries.
This question is open even in the PAC model
restricted to the uniform distribution only. Note
that decision trees are learnable (non-properly)
if membership queries are available [5] and are
learnable properly in time O.nlog s/, where s is
the number of leaves in the decision tree [1].

An even more interesting direction of research
would be to obtain hardness results for learning
by richer representation classes, such as AC0 cir-
cuits, classes of neural networks and, ultimately,
unrestricted circuits.
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Problem Definition

One of the goals of the design of the harmonic
algorithm (or class of algorithms) was to provide
an online algorithm for the classic bin pack-
ing problem that performs well with respect to

the asymptotic competitive ratio, which is the
standard measure for online algorithms for bin
packing type problems. The competitive ratio for
a given input is the ratio between the costs of
the algorithm and of an optimal off-line solution.
The asymptotic competitive ratio is the worst-
case competitive ratio of inputs for which the
optimal cost is sufficiently large. In the online
(standard) bin packing problem, items of rational
sizes in .0; 1� are presented one by one. The
algorithm must pack each item into a bin before
the following item is presented. The total size of
items packed into a bin cannot exceed 1, and the
goal is to use the minimum number of bins, where
a bin is used if at least one item was packed into
it. All items must be packed, and the supply of
bins is unlimited.

When an algorithm acts on an input, it can
decide to close some of its bins and never use
them again. A bin is called closed in such a case,
while otherwise a used bin (which already has at
least one item) is called open. The motivation for
closing bins is to obtain fast running times per
item (so that the algorithm will pack it into a
bin selected out of a small number of options).
Simple algorithms such as First Fit (FF), Best
Fit (BF), and Worst Fit (WF) have worst-case
running times of O.log N / per item, where N

is the number of items at the time of assignment
of the new item. On the other hand, the simple
algorithm Next Fit (NF), which keeps at most of
open bin and closes it when a new item cannot
be packed there (before it uses a new bin for the
new item), has a worst-case running time of O.1/

per item. Algorithms that keep a constant number
of open bins are called bounded space. In many
practical applications, this property is desirable,
since the number of candidate bins for a new item
is small and it does not increase with the input
size.

Algorithm HARMk (for an integer k � 3)
was defined by Lee and Lee [7]. The fundamental
and natural idea of “harmonic-based” algorithms
is classify each item by size first (for online
algorithms, the classification of an item must be
done immediately upon arrival) and then pack it
according to its class (instead of letting the exact
size influence packing decisions). For the classifi-
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cation of items, HARMk splits the interval .0; 1�

into subintervals. There are k � 1 subintervals
of the form . 1

iC1
; 1

i
� for i D 1; : : : ; k � 1 and

one final subinterval .0; 1
k

�. Each bin will contain
only items from one subinterval (type). Every
type is packed independently into its own bins
using NF. Thus, there are at most k � 1 open
bins at each time (since for items of sizes above
1
2

, two items cannot share a bin, and any bin can
be closed once it receives an item). Moreover, for
i < k, as the items of type i have sizes no larger
than 1

i
but larger than 1

iC1
, every closed bin of

this type will have exactly i items. For type k, a
closed bin will contain at least k items, but it may
contain many more items. This defines a class of
algorithms (containing one algorithm for any k �

3). The term the harmonic algorithm (or simply
HARM) refers to HARMk for a sufficiently large
value of k, and its asymptotic competitive ratio
is the infimum value that can be achieved as the
asymptotic competitive ratio of any algorithm of
this class.

Key Results

It was shown in paper [7] that for k tending to
infinity, the asymptotic ratio of HARM is a sum
of series denoted by ˘1 (see below), and it is
equal to approximately 1:69103. Moreover, this is
the best possible asymptotic competitive ratio of
any online bounded space algorithm for standard
bin packing.

The crucial item sizes are of the form 1
`

C ",
where " > 0 is small and ` is an integer. These
are items of type ` � 1, and bins consisting of
such items contain ` � 1 items (except for the last
bin used for this type that may contain a smaller
number of items). However, a bin (of an off-line
solution) that already contains an item of size
1
2

C"1 and an item of size 1
3

C"2 (for some small
"1; "2 > 0) cannot contain also an item whose
size is slightly above 1

4
. The largest item of this

form would be slightly larger than 1
7

. Thus, the
following sequence was defined [7]. Let �1 D 1

and, for j > 1, �j D �j�1.�j�1 C 1/ (note that
�j 0 is divisible by any �j for j < j 0). It turns out

that the crucial item sizes are just above 1
�jC1

.

The series
P1

jD1
1

�j
give the asymptotic compet-

itive ratio of the HARM, ˘1. For a long time the
best lower bound on the asymptotic competitive
ratio of (unbounded space) online algorithms was
the one by van Vliet [8, 13], proved using this
sequence (but the current best lower bound was
proved using another set of inputs [1]).

In order to prove the upper bound ˘1 on the
competitive ratio, weights were used [12]. In this
case weights are defined (for a specific value of k)
quite easily such that all bins (except for the bins
that remain open when the algorithm terminates)
have total weights of at least 1. The weight of an
item of type i < k is 1

i
. The bins of type k are

almost full for sufficiently large values of k (a bin
can be closed only if the total size of its items
exceeds 1 � 1

k
). Assigning such an item a weight

that is k
k�1

times its size will allow one to show
that all bins except for a constant number of bins
(at most k�1 bins) have total weights of at least 1.
It is possible to show that the total weight of any
packed bin is sufficiently close to ˘1 for large
values of k. As both HARMk and an optimal
solution pack the same items, the competitive
ratio is implied. To show the upper bound on the
total weight of any packed bin, it is required to
show that the worst-case bin contains exactly one
item of size just above 1

�jC1
for �j � k � 1

(and the remaining space can only contain items
of type k). Roughly speaking, this holds as once
it was proved that the bin contains the largest
such items, the largest possible additional weight
can be obtained only by adding the next such
item.

Proving that no better bounded space algo-
rithms exist can be done as follows. Let j 0 be
a fixed integer. Let N be a large integer and
consider a sequence containing N items of each
size 1

�j
C ı for a sufficiently small ı > 0,

for any j D j 0; j 0 � 1; 	 	 	 ; 1. If ı is chosen
appropriately, we have

Pj 0

jD1
1

�jC1
C j 0ı < 1,

so the items can be packed (off-line) into N

bins. However, if items are presented in this order
(sorted by nondecreasing size), after all items of
one size have been presented, only a constant
number of bins can receive larger items, and
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thus the items of each size are packed almost
independently.

Related Results

The space of a bounded space algorithm is the
number of open bins that it can have. The space of
NF is 1, while the space of harmonic algorithms
increases with k. A bounded space algorithm
with space 2 and the same asymptotic competitive
ratio as FF and BF have been designed [3] (for
comparison, HARM3 has an asymptotic compet-
itive ratio of 7

4
). A modification where smaller

space is used to obtain the same competitive
ratios of harmonic algorithms (or alternatively,
smaller competitive ratios were obtained using
the same space) was designed by Woeginger [15].
Thus, there exists another sequence of bounded
space algorithms, with an increasing sequence of
open bins, where their sequence of competitive
ratios tends to ˘1 such that the space required
for every competitive ratio is much smaller than
that of [7].

One drawback of the model above is that an
off-line algorithm can rearrange the items and
does not have to process them as a sequence. The
variant where it must process them in the same
order as an online algorithm was studied as well
[2]. Algorithms that are based on partitioning into
classes and have smaller asymptotic competitive
ratios (but they are obviously not bounded space)
were designed [7, 9, 11].

Generalizations have been studied too, in par-
ticular, bounded space bin packing with cardi-
nality constraints (where an item cannot receive
more than t items for a fixed integer t � 2)
[5], parametric bin packing (where there is an
upper bound strictly smaller than 1 on item sizes)
[14], bin packing with rejection (where an item i

has a rejection penalty ri associated with it, and
it can be either packed, or rejected for the cost
ri ) [6], variable-sized bin packing (where bins of
multiple sizes are available for packing) [10], and
bin packing with resource augmentation (where
the online algorithm can use bins of size b > 1

for a fixed rational number b, while an off-line

algorithm still uses bins of size 1) [4]. In this last
variant, the sequences of critical item sizes were
redefined as a function of b, while variable-sized
bin packing required a more careful partition into
intervals.
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Problem Definition

The general idea of hierarchical self-assembly
(a.k.a., multiple tile [2], polyomino [8, 10], two-
handed [3, 5, 6]) is to model self-assembly of
tiles in which attachment of two multi-tile assem-
blies is allowed, as opposed to all attachments
being that of a single tile onto a larger assembly.
Several problems concern comparing hierarchical
self-assembly to its single-tile-attachment variant
(called the “seeded” model of self-assembly),
so we define both models here. The model of
hierarchical self-assembly was first defined (in
a slightly different form that restricted the size
of assemblies that could attach) by Aggarwal,
Cheng, Goldwasser, Kao, Moisset de Espanes,
and Schweller [2]. Several generalizations of the
model exist that incorporated staged mixing of
test tubes, “dissolvable” tiles, active signaling
across tiles, etc., but here we restrict attention
to the model closest to the seeded model of

Supported by NSF grants CCF-1219274, CCF-1162589,
and 1317694.

Winfree [9], different from that model only in
the absence of a seed and the ability of two large
assemblies to attach.

Definitions
A tile type is a unit square with four sides, each
consisting of a glue label (often represented as a
finite string) and a nonnegative integer strength.
We assume a finite set T of tile types, but an
infinite number of copies of each tile type, each
copy referred to as a tile. An assembly is a
positioning of tiles on the integer lattice Z

2, i.e.,
a partial function ˛ W Z

2 Ü T . We write
j˛j to denote jdom ˛j. Write ˛ v ˇ to denote
that ˛ is a subassembly of ˇ, which means that
dom ˛ 
 dom ˇ and ˛.p/ D ˇ.p/ for all points
p 2 dom ˛. We abuse notation and take a tile
type t to be equivalent to the single-tile assembly
containing only t (at the origin if not otherwise
specified). Two adjacent tiles in an assembly in-
teract if the glue labels on their abutting sides are
equal and have positive strength. Each assembly
induces a binding graph, a grid graph whose
vertices are tiles, with an edge between two tiles
if they interact. The assembly is � -stable if every
cut of its binding graph has strength at least � ,
where the weight of an edge is the strength of
the glue it represents. That is, the assembly is
stable if at least energy � is required to separate
the assembly into two parts.

We now define both the seeded and hierarchi-
cal variants of the tile assembly model. A seeded
tile system is a triple T D .T; �; �/, where T is
a finite set of tile types, � W Z2 Ü T is a finite,
� -stable seed assembly, and � is the temperature.
If T has a single seed tile s 2 T (i.e., �.0; 0/ D s

for some s 2 T and is undefined elsewhere),
then we write T D .T; s; �/: Let jT j denote jT j.
An assembly ˛ is producible if either ˛ D �

or if ˇ is a producible assembly and ˛ can be
obtained from ˇ by the stable binding of a single
tile. In this case, write ˇ !1 ˛ (˛ is producible
from ˇ by the attachment of one tile), and write
ˇ ! ˛ if ˇ !�1 ˛ (˛ is producible from ˇ by the
attachment of zero or more tiles). An assembly is
terminal if no tile can be � -stably attached to it.

A hierarchical tile system is a pair T D .T; �/,
where T is a finite set of tile types and � 2 N
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is the temperature. An assembly is producible if
either it is a single tile from T or it is the � -stable
result of translating two producible assemblies
without overlap. Therefore, if an assembly ˛ is
producible, then it is produced via an assembly
tree, a full binary tree whose root is labeled with
˛, whose j˛j leaves are labeled with tile types,
and each internal node is a producible assembly
formed by the stable attachment of its two child
assemblies. An assembly ˛ is terminal if for
every producible assembly ˇ, ˛ and ˇ cannot be
� -stably attached. If ˛ can grow into ˇ by the
attachment of zero or more assemblies, then we
write ˛ ! ˇ.

In either model, let AŒT � be the set of pro-
ducible assemblies of T , and let A�ŒT � 
 AŒT �

be the set of producible, terminal assemblies of
T . A TAS T is directed (a.k.a., deterministic,
confluent) if jA�ŒT �j D 1. If T is directed with
unique producible terminal assembly ˛, we say
that T uniquely produces ˛. It is easy to check
that in the seeded aTAM, T uniquely produces
˛ if and only if every producible assembly ˇ v

˛. In the hierarchical model, a similar condition
holds, although it is more complex since hierar-
chical assemblies, unlike seeded assemblies, do
not have a “canonical translation” defined by the
seed position. T uniquely produces ˛ if and only
if for every producible assembly ˇ, there is a
translation ˇ0 of ˇ such that ˇ0 v ˛. In particular,
if there is a producible assembly ˇ ¤ ˛ such
that dom ˛ D dom ˇ, then ˛ is not uniquely
produced. Since dom ˇ D dom ˛, every nonzero
translation of ˇ has some tiled position outside
of dom ˛, whence no such translation can be a
subassembly of ˛, implying ˛ is not uniquely
produced.

Power of Hierarchical Assembly Compared
to Seeded
One sense in which we can conclude that one
model of computation M is at least as powerful as
another model of computation M 0 is to show that
any machine defined by M 0 can be “simulated
efficiently” by a machine defined by M . In self-
assembly, there is a natural definition of what it
means for one tile system S to “simulate” another
T . We now discuss intuitively how to define such

a notion. There are several intricacies to the full
formal definition that are discussed in further
detail in [3, 5].

First, we require that there is a constant k 2

Z
C (the “resolution loss”) such that each tile type

t in T is “represented” by one or more k � k

blocks ˇ of tiles in S . In this case, we write
r.ˇ/ D t , where ˇ W f1; : : : ; kg2 Ü S and S

is the tile set of S . Then ˇ represents a k � k

block of such tiles, possibly with empty positions
at points x where ˇ.x/ is undefined. We call
such a k � k block in S a “macrotile.” We can
extend r to a function R that, given an assembly
˛S partitioned into k � k macrotiles, outputs an
assembly ˛T of T such that, for each macrotile
ˇ of ˛S , r.ˇ/ D t , where t is the tile type at the
corresponding position in ˛T .

Given such a representation function R indi-
cating how to interpret assemblies of S as repre-
senting assemblies of T , we now define what it
means to say that S simulates T . For each pro-
ducible assembly ˛T of T , there is a producible
assembly ˛S of S such that R.˛S/ D T , and
furthermore, for every producible assembly ˛S , if
R.˛S/ D T , then T is producible in T . Finally,
we require that R respects the “single attach-
ment” dynamics of T : there is a single tile that
can be attached to ˛T to result in ˛0T if and only if
there is some sequence of attachments to ˛S that
results in assembly ˛0S such that R.˛0S/ D ˛0T .

With such an idea in mind, we can ask, “Is
the hierarchical model at least as powerful as the
seeded model?”

Problem 1 For every seeded tile system T , de-
sign a hierarchical tile system S that simulates T .

Another interpretation of a solution to Prob-
lem 1 is that, to the extent that the hierarchical
model is more realistic than the seeded model by
incorporating the reality that tiles may aggregate
even in the absence of a seed, such a solution
shows how to enforce seeded growth even in
such an unfriendly environment that permits non-
seeded growth.

Assembly Time
We now define time complexity for hierarchi-
cal systems (this definition first appeared in [4],
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where it is explained in more detail). We treat
each assembly as a single molecule. If two assem-
blies ˛ and ˇ can attach to create an assembly
� , then we model this as a chemical reaction
˛Cˇ ! � , in which the rate constant is assumed
to be equal for all reactions (and normalized to
1). In particular, if ˛ and ˇ can be attached
in two different ways, this is modeled as two
different reactions, even if both result in the same
assembly.

At an intuitive level, the model we define can
be explained as follows. We imagine dumping
all tiles into solution at once, and at the same
time, we grab one particular tile and dip it into
the solution as well, pulling it out of the solution
when it has assembled into a terminal assem-
bly. Under the seeded model, the tile we grab
will be a seed, assumed to be the only copy
in solution (thus requiring that it appears only
once in any terminal assembly). In the seeded
model, no reactions occur other than the attach-
ment of individual tiles to the assembly we are
holding. In the hierarchical model, other reac-
tions are allowed to occur in the background
(we model this using the standard mass-action
model of chemical kinetics [7]), but only those
reactions with the assembly we are holding move
it “closer” to completion. The other background

reactions merely change concentrations of other
assemblies (although these indirectly affect the
time it will take our chosen assembly to complete,
by changing the rate of reactions with our chosen
assembly).

More formally, let T D .T; �/ be a hierarchi-
cal TAS, and let 	 W T ! Œ0; 1� be a concentra-
tions function, giving the initial concentration of
each tile type (we require that

P
t2T 	.t/ D 1,

a condition known as the “finite density con-
straint”). Let RC D Œ0; 1/, and let t 2 R

C: For
˛ 2 AŒT �, let Œ˛��.t/ (abbreviated Œ˛�.t/ when 	

is clear from context) denote the concentration of
˛ at time t with respect to initial concentrations
	, defined as follows. Given two assemblies ˛ and
ˇ that can attach to form � , we model this event
as a chemical reaction R W ˛ C ˇ ! � . Say that
a reaction ˛ C ˇ ! � is symmetric if ˛ D ˇ.
Define the propensity (a.k.a., reaction rate) of R

at time t 2 R
C to be 	R.t/ D Œ˛�.t/ 	 Œˇ�.t/ if R

is not symmetric and 	R.t/ D 1
2

	 Œ˛�.t/2 if R is
symmetric.

If ˛ is consumed in reactions ˛ C ˇ1 !

�1; : : : ; ˛ C ˇn ! �n and produced in asymmet-
ric reactions ˇ01 C � 01 ! ˛; : : : ; ˇ0m C � 0m ! ˛

and symmetric reactions ˇ001 Cˇ001 ! ˛; : : : ; ˇ00p C

ˇ00p ! ˛, then the concentration Œ˛�.t/ of ˛ at
time t is described by the differential equation:

dŒ˛�.t/

dt
D

mX

iD1

Œˇ0i �.t/ 	 Œ� 0i �.t/ C

pX

iD1

1

2
	 Œˇ00i �.t/2 �

nX

iD1

Œ˛�.t/ 	 Œˇi �.t/; (1)

with boundary conditions Œ˛�.0/ D 	.r/ if ˛

is an assembly consisting of a single tile r and
Œ˛�.0/ D 0 otherwise. In other words, the propen-
sities of the various reactions involving ˛ de-
termine its rate of change, negatively if ˛ is
consumed and positively if ˛ is produced.

This completes the definition of the dynamic
evolution of concentrations of producible assem-
blies; it remains to define the time complexity
of assembling a terminal assembly. Although we
have distinguished between seeded and hierarchi-
cal systems, for the purpose of defining a model

of time complexity in hierarchical systems and
comparing them to the seeded system time com-
plexity model of [1], it is convenient to introduce
a seedlike “timekeeper tile” into the hierarchical
system, in order to stochastically analyze the
growth of this tile when it reacts in a solution
that is itself evolving according to the continu-
ous model described above. The seed does not
have the purpose of nucleating growth but is
introduced merely to focus attention on a single
molecule that has not yet assembled anything, in
order to ask how long it will take to assemble
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into a terminal assembly. The choice of which tile
type to pick will be a parameter of the definition,
so that a system may have different assembly
times depending on the choice of timekeeper tile.

Fix a copy of a tile type s to designate as
a “timekeeper seed.” The assembly of s into
some terminal assembly Ǫ is described as a time-
dependent continuous-time Markov process in
which each state represents a producible assem-
bly containing s, and the initial state is the size-
1 assembly with only s. For each state ˛ rep-
resenting a producible assembly with s at the
origin, and for each pair of producible assemblies
ˇ; � such that ˛ C ˇ ! � (with the translation
assumed to happen only to ˇ so that ˛ stays
“fixed” in position), there is a transition in the
Markov process from state ˛ to state � with
transition rate Œˇ�.t/.

We define TT ;�;s to be the random variable
representing the time taken for the copy of s

to assemble into a terminal assembly via some
sequence of reactions as defined above. We define
the time complexity of a directed hierarchical
TAS T with concentrations 	 and timekeeper s

to be T.T ; 	; s/ D E
�
TT ;�;s

�
.

For a shape S � Z
2 (finite and connected),

define the diameter of S to be diam.S/ D

max
u;v2S

ku � vk1; where kwk1 is the L1 norm of w.

Problem 2 Design a hierarchical tile system
T D .T; �/ such that every producible terminal
assembly Ǫ has the same shape S , and for
some s 2 T and concentrations function
	 W T ! Œ0; 1�, T.T ; 	; s/ D o.diam.S//.

It is provably impossible to achieve this with
the seeded model [1, 4], since all assemblies in
that model require expected time at least propor-
tional to their diameter.

Key Results

Power of Hierarchical Assembly Compared
to Seeded
Cannon, Demaine, Demaine, Eisenstat, Patitz,
Schweller, Summers, and Winslow [3] showed a
solution to Problem 1. (They also showed sev-

eral other ways in which the hierarchical model
is more powerful than the seeded model, but
we restrict attention to simulation here.) For the
most part, temperature 2 seeded systems are as
powerful as those at higher temperatures, but the
simulation results of [3] hold for higher temper-
atures as well. In particular, they showed that
every seeded temperature �4 tile system T can
be simulated by a hierarchical temperature 4 tile
system (as well as showing it is possible for tem-
perature � hierarchical tile systems to simulate
temperature � seeded tile systems for � 2 f2; 3g,
using similar logic to the higher-temperature con-
struction). The definition of simulation has a
parameter k indicating the resolution loss of the
simulation. In fact, the simulation described in [3]
requires only resolution loss k D 5.

Figure 1 shows an example of S simulating
T . The construction enforces the “simulation of
dynamics” constraint that if and only if a single
tile can attach in T , and then a 5 � 5 macrotile
representing it in S can assemble. It is critical
that each tile type in T is represented by more
than one type of macrotile in S: each different
type of macrotile represents a different subset
of sides that can cooperate to allow the tile to
bind. To achieve this, each macrotile consists of a
central “brick” (itself a 3�3 block composed of 9
unique tile types with held together with strength-
4 glues) surrounded by “mortar” (forming a ring
around the central brick). Figure 1 shows “mortar
rectangles” but, similarly to the brick, these are
just 3 � 1 assemblies of 3 individual tile types
with strength-4 glues. The logic of the system
is such that if a brick B designed for a subset
of cooperating sides C 
 fN; S; E; Wg, then
only if the mortar for all sides in C is present
can B attach. Its attachment is required to fill
in the remaining mortar representing the other
sides in fN; S; E; WgnC that may not be present.
Finally, those tiles enable the assembly of mortar
in adjacent 5 � 5 blocks, to be ready for possible
cooperation to bind bricks in those blocks.

Assembly Time
Chen and Doty [4] showed a solution to Prob-
lem 2, by proving that for infinitely many n 2

N, there is a (non-directed) hierarchical TAS
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Macrotile

Mortar tile

Mortar rectangle

Brick

Simulated aTAM, τ = 4

Hierarchical Self-Assembly, Fig. 1 Simulation of a
seeded tile system T of temperature �4 by a hierarchical
tile system S of temperature 4 (Figure taken from [3]).
Filled arrows represent glues of strength 2, and unfilled

arrows represent glues of strength 1. In the seeded tile
system, the number of dashes on the side of a tile represent
its strength

T D .T; 2/ that strictly self-assembles an n � n0

rectangle S , where n0 D o.n/ (hence diam.S/ D


.n/), such that jT j D O.log n/ and there is a
tile type s 2 T and concentrations function 	 W

T ! Œ0; 1� such that T.T ; 	; s/ D O.n4=5 log n/.
The construction consists of m D n1=5 stages

shown in Fig. 2, where each stage consists of the
attachment of two “horizontal bars” to a single
“vertical bar” as shown in Fig. 3. The vertical
bar of the next stage then attaches to the right
of the two horizontal bars, which cooperate to
allow the binding because they each have a single
strength 1 glue. All vertical bars are identical
when they attach, but attachment triggers the
growth of some tiles (shown in orange in Figs. 2
and 3) that make the attachment sites on the right
side different from their locations in the previous
stage, which is how the stages “count down” from
m to 1.

The bars themselves are assembled in a “stan-
dard” way that requires time linear in the diame-

ter of the bar, which is w D n4=5 for a horizontal
bar and mk2 D n3=5 (where k is a parameter
that we set to be n1=5) for a vertical bar. The
speedup comes from the fact that each horizontal
bar can attach to one of k different binding sites
on a vertical bar, so the expected time for this
to happen is factor k lower than if there were
only a single binding site. The vertical “arm” on
the left of each horizontal bar has the purpose of
preventing any other horizontal bars from binding
near it. Each stage also requires filler tiles to fill
in the gap regions, but the time required for this
is negligible compared to the time for all vertical
and horizontal bars to attach.

Note that this construction is not directed:
although every producible terminal assembly has
the shape of an n � n0 rectangle, there are many
such terminal assemblies. Chen and Doty [4]
also showed that for a class of directed systems
called “partial order tile systems,” no solution to
Problem 2 exists: provably any such tile system
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Hierarchical
Self-Assembly, Fig. 2
High-level overview of
interaction of “vertical
bars” and “horizontal bars”
to create the rectangle in
the solution to Problem 2
that assembles in time
sublinear in its diameter.
Filler tiles fill in the empty
regions. If glues overlap
two regions then represent
a formed bond. If glues
overlap one region but not
another, they are glues
from the former region but
are mismatched (and thus
“covered and protected”)
by the latter region

stage 1

stage 2

stage 3

k identical pairs of glues
spaced O (1) apart;
"group A glues"

horizontal bar type A

width = w

height =
O(mk2)

vertical bar after "post-
binding processing" to
place stage-specific
right-side glues

mk identical glues
spaced O(k ) apart

k identical pairs of glues
(different glues from top)
spaced O(k ) apart; "group
B glues"

horizontal bar type B

vertical bar as it
appears before
binding

previous stage lower
horizontal bar attached
to one of these k glues

partial vertical
bar (will
complete after
binding to two
horizontal bars)

Hierarchical Self-Assembly, Fig. 3 “Vertical bars” for
the construction of a fast-assembling square, and their
interaction with horizontal bars, as shown for a single

stage of Fig. 2. “Type B” horizontal bars have a longer
vertical arm than “Type A” since the glues they must block
are farther apart
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assembling a shape of diameter d requires ex-
pected time ˝.d/.

Open Problems

It is known [2] that the tile complexity of assem-
bling an n � k rectangle in the seeded aTAM, if
k <

log n
log log n�log log log n

, is asymptotically lower

bounded by ˝
�

n1=k

k

�
and upper bounded by

O.n1=k/. For the hierarchical model, the up-
per bound holds as well [2], but the strongest
known lower bound is the information-theoretic
˝
�

log n
log log n

�
:

Question 1 What is the tile complexity of assem-
bling an n�k rectangle in the hierarchical model,
when k <

log n
log log n�log log log n

?
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Problem Definition

Many algorithmic problems on spatial data can
be solved efficiently if a suitable decomposition
of the ambient space is available. Two desirable
properties of the decomposition are that its cells
have a nice shape – convex and/or of constant
complexity – and that each cell intersects only a
few objects from the given data set. Another de-
sirable property is that the decomposition is hier-
archical, meaning that the space is partitioned in a
recursive manner. Popular hierarchical space de-
compositions include quadtrees and binary space
partitions.

When the objects in the given data set are
nonpoint objects, they can be fragmented by
the partitioning process. This fragmentation has
a negative impact on the storage requirements
of the decomposition and on the efficiency of
algorithms operating on it. Hence, it is desirable
to minimize fragmentation. In this chapter, we
describe methods to construct linear-size com-
pressed quadtrees and binary space partitions
for so-called low-density sets. To simplify the
presentation, we describe the constructions in the
plane. We use S to denote the set of n objects
for which we want to construct a space decompo-
sition and assume for simplicity that the objects
in S are disjoint, convex, and of nonzero area.

Binary Space Partitions
A binary space partition for a set S of n objects
in the plane is a recursive decomposition of the
plane by lines, typically such that each cell in
the final decomposition intersects only a few
objects from S . The tree structure modeling this
decomposition is called a binary space partition
tree, or BSP tree for short – see Fig. 1 for an
illustration. Thus, a BSP tree T for S can be
defined as follows.

• If a predefined stopping criterion is met –
often this is when jS j is sufficiently small –
then T consists of a single leaf where the set
S is stored.

• Otherwise the root node v of T stores a
suitably chosen splitting line `. Let `� and
`C denote the half-planes lying to the left

and to the right of `, respectively (or, if ` is
horizontal, below and above `).
– The left subtree of v is a BSP tree for

S� WD fo \ `� W o 2 Sg, the set of object
fragments lying in the half-plane `�.

– The right subtree of v is a BSP tree for
SC WD fo \ `C W o 2 Sg, the set of object
fragments lying in the half-plane `C.

The size of a BSP tree is the total number of object
fragments stored in the tree.

Compressed Quadtrees
Let U D Œ0; 1�2 be the unit square. We say that
a square � 
 U is a canonical square if there
is an integer k > 0 such that � is a cell of the
regular subdivision of U into 2k � 2k squares.
A donut is the set-theoretic difference �out n �in

of a canonical square �out and a canonical square
�in � �out. A compressed quadtree T for a set P

of points inside a canonical square � defined as
follows; see also Fig. 2 (middle).

• If a predefined stopping criterion is met –
usually this is when jP j is sufficiently small
– then T consists of a single leaf storing the
set P .

• If the stopping criterion is not met, then T is
defined as follows. Let �NE denote the north-
east quadrant of � and let PNE WD P \ �NE.
Define �SE, �SW, �NW and PSE, PSW, PNW sim-
ilarly for the other three quadrants. (Here we
should make sure that points on the boundary
between quadrants are assigned to quadrants
in a consistent manner.) Now T consists of
a root node v with four or two children,
depending on how many of the sets PNE, PSE,
PSW, PNW are nonempty:
– If at least two of the sets PNE, PSE, PSW,

PNW are nonempty, then v has four children
vNE, vSE, vSW, vNW. The child vNE is the
root of a compressed quadtree for the set
PNE inside the square �NW; the other three
children are defined similarly for the point
sets inside the other quadrants.

– If only one of PNE, PSE, PSW, PNW is
nonempty, then v has two children vin

and vout. The child vin is the root of a
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Hierarchical Space Decompositions for Low-Density Scenes, Fig. 1 A binary space partition for a set of polygons
(left) and the corresponding BSP tree (right)

Hierarchical Space Decompositions for Low-Density
Scenes, Fig. 2 Construction of a compressed quadtree
for a set of disks: take the bounding-box vertices (left),

construct a compressed quadtree for the vertices (middle),
and put the disks back in (right)

compressed quadtree for P inside �in,
where �in is the smallest canonical square
containing all points from P . The other
child is a leaf corresponding to the donut
� n �in.

A compressed quadtree for a set of n points has
size O.n/.

Above we defined compressed quadtrees for
point sets. In this chapter, we are interested
in compressed quadtrees for nonpoint objects.
These are defined similarly: each internal node
corresponds to a canonical square, and each leaf
is a canonical square or a donut. This time donuts
need not be empty, but may intersect objects
(although not too many). The right picture in
Fig. 2 shows a compressed quadtree for a set of

disks. The size of a compressed quadtree for a set
of nonpoint objects is defined as the total number
of object fragments stored in the tree. Because
nonpoint objects may be split into fragments
during the subdivision process, a compressed
quadtree for nonpoint objects is not guaranteed
to have linear size.

Low-Density Scenes
The main question we are interested in is the
following: given a set S of n objects, can we
construct a compressed quadtree or BSP tree
with O.n/ leaves such that each leaf region
intersects O.1/ objects? In general, the answer to
this question is no. For compressed quadtrees,
this can be seen by considering a set S of
slanted parallel segments that are very close
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together. A linear-size BSP tree cannot be
guaranteed either: there are sets of n disjoint
segments in the plane for which any BSP tree has
size ˝.n log n= log log n/ [7]. In R

3 the situation
is even worse: there are sets of n disjoint triangles
for which any BSP tree has size ˝.n2/ [5].
(Both bounds are tight: there are algorithms that
guarantee a BSP tree of size O.n log n= log log n/

in the plane [8] and of size O.n2/ in R
3 [6].)

Fortunately, in practice, the objects for which we
want to construct a space decomposition are often
distributed nicely, which allows us to construct
much smaller decompositions than for the worst-
case examples mentioned above. To formalize
this, we define the concept of density of a set of
objects in R

d .

Definition 1 The density of a set S of objects in
R

d , denoted density.S/, is defined as the smallest
number � such that the following holds: any ball
b � R

d intersects at most � objects o 2 S such
that diam.o/ > diam.b/, where diam.	/ denotes
the diameter of an object.

As illustrated in Fig. 3(i), a set of n parallel
segments can have density n if the segments are
very close together. In most practical situations,
however, the input objects are distributed nicely
and the density will be small. For many classes
of objects, one can even prove that the density
is O.1/. For example, a set of disjoint disks in
the plane has density at most 5. More generally,
any set of disjoint objects that are fat – exam-
ples of fat objects are disks, squares, triangles
whose minimum angle is lower bounded – has
density O.1/ [3]. The main question now is: Is

low density sufficient to guarantee a hierarchical
space decomposition of linear size? The answer
is yes, and constructing the space decomposition
is surprisingly easy.

Key Results

The construction of space decompositions for
low-density sets is based on the following lemma.
In the lemma, the square � is considered to be
open, that is, � does not include its boundary. Let
bb.o/ denote the axis-aligned bounding box of an
object o.

Lemma 1 Let S be a set of n objects in the plane
and let BS denote the set of 4n vertices of the
bounding boxes bb.o/ of the objects o 2 S . Let
� be any square region in the plane. Then the
number of objects in S intersecting � is at most
k C 4�, where k is the number of bounding-box
vertices inside � and � WD density.S/.

With Lemma 1 in hand, it is surprisingly simple
to construct BSP trees or compressed quadtrees
of small size for any given set S whose density is
small.

Binary Space Partitions
For BSP trees we proceed as follows. Let BS be
the set of vertices of the bounding boxes of the
objects in S . In a generic step in the recursive
construction of T , we are given a square � and
the set of points BS .�/ WD BS \ � . Initially �

is a square containing all points of BS . When
BS D ;, then T consists of a single leaf and the

(i) (ii)

b

b

Hierarchical Space Decompositions for Low-Density
Scenes, Fig. 3 (i) The ball b intersects all n segments
and the segments have diameter larger than diam.b/, so
the density of the set of segments is n. (ii) Any ball b, no

matter where it is placed or what its size is, intersects at
most three triangles with diameter at least diam.b/, so the
density of the set of triangles is 3
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Hierarchical Space Decompositions for Low-Density Scenes, Fig. 4 Two cases in the construction of the BSP tree

recursion ends; otherwise we proceed as follows.
Let �NE, �SE, �SW, and �NW denote the four quad-
rants of � . We now have two cases, illustrated in
Fig. 4.

Case (i): all points in BS .�/ lie in the same
quadrant. Let � 0 be the smallest square shar-
ing a corner with � and containing all points
from BS .�/ in its interior or on its boundary.
Split � into three regions using a vertical
and a horizontal splitting line such that � 0 is
one of those regions; see Fig. 4(i). Recursively
construct a BSP tree for the square � 0 with
respect to the set BS .� 0/ of points lying in the
interior of � 0.

Case (ii): not all points in BS .�/ lie in the same
quadrant. Split � into four quadrants using a
vertical and two horizontal splitting lines; see
Fig. 4(ii). Recursively construct a BSP tree for
each quadrant with respect to the points lying
in its interior.

The construction produces a subdivision of the
initial square into O.n/ leaf regions, which are
squares or rectangles and which do not contain
points from BS in their interior. Using Lemma 1,
one can argue that each leaf region intersects
O.�/ objects.

Compressed Quadtrees
The construction of a compressed quadtree for
a low-density set S is also based on the set
BS of bounding-box vertices: we construct a
compressed quadtree for BS , where we stop the
recursive construction when a square contains
bounding-box vertices from at most one object in
S or when all bounding-box vertices inside the

square coincide. Figure 2 illustrates the process.
The resulting compressed quadtree has O.n/ leaf
regions, which are canonical squares or donuts.
Again using Lemma 1, one can argue that each
leaf region intersects O.�/ objects.

Improvements and Generalizations
The constructions above guarantee that each re-
gion in the space decomposition is intersected
by O.�/ objects and that the number of regions
is O.n/. Hence, the total number of the object
fragments is O.�n/. The main idea behind the
introduction of the density � is that in prac-
tice � is often a small constant. Nevertheless,
it is (at least from a theoretical point of view)
desirable to get rid of the dependency on �

in the number of fragments. This is possible
by reducing the number of regions in the de-
composition to .n=�/. To this end, we allow
leaf regions to contain up to O.�/ bounding-
box vertices. Note that Lemma 1 implies that a
square with O.�/ bounding-box vertices inside
intersects O.�/ objects. If implemented correctly,
this idea leads to decompositions with O.n=�/

regions each of which intersects O.�/ objects,
both for binary space partitions [2, Section 12.5]
and for compressed quadtrees [4]. The results can
also be generalized to higher dimensions, giving
the following theorem.

Theorem 1 Let S be a set of n objects in R
d

and let � WD density.S/. There is a binary space
partition for S consisting of O.n=�/ leaf regions,
each intersecting O.�/ objects. Similarly, there is
a compressed quadtree with O.n=�/ leaf regions,
each intersecting O.�/ objects.
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Problem Definition

Algorithm engineering refers to the process
required to transform a pencil-and-paper
algorithm into a robust, efficient, well tested,
and easily usable implementation. Thus it
encompasses a number of topics, from modeling
cache behavior to the principles of good
software engineering; its main focus, however,
is experimentation. In that sense, it may be
viewed as a recent outgrowth of Experimental
Algorithmics [14], which is specifically devoted
to the development of methods, tools, and
practices for assessing and refining algorithms
through experimentation. The ACM Journal of
Experimental Algorithmics (JEA), at URL www.
jea.acm.org, is devoted to this area.

High-performance algorithm engineering [2]
focuses on one of the many facets of algorithm
engineering: speed. The high-performance aspect
does not immediately imply parallelism; in fact,
in any highly parallel task, most of the impact of
high-performance algorithm engineering tends to
come from refining the serial part of the code.

The term algorithm engineering was first used
with specificity in 1997, with the organization
of the first Workshop on Algorithm Engineering
(WAE 97). Since then, this workshop has taken
place every summer in Europe. The 1998 Work-
shop on Algorithms and Experiments (ALEX98)
was held in Italy and provided a discussion forum
for researchers and practitioners interested in the
design, analyzes and experimental testing of ex-
act and heuristic algorithms. A sibling workshop
was started in the Unites States in 1999, the Work-
shop on Algorithm Engineering and Experiments
(ALENEX99), which has taken place every win-
ter, colocated with the ACM/SIAM Symposium on
Discrete Algorithms (SODA).

Key Results

Parallel computing has two closely related main
uses. First, with more memory and storage
resources than available on a single workstation,
a parallel computer can solve correspondingly
larger instances of the same problems. This

http://dx.doi.org/10.1007/978-1-4939-2864-4_511
http://dx.doi.org/10.1007/978-1-4939-2864-4_585
www.jea.acm.org
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increase in size can translate into running higher-
fidelity simulations, handling higher volumes
of information in data-intensive applications,
and answering larger numbers of queries and
datamining requests in corporate databases.
Secondly, with more processors and larger
aggregate memory subsystems than available
on a single workstation, a parallel computer
can often solve problems faster. This increase
in speed can also translate into all of the
advantages listed above, but perhaps its crucial
advantage is in turnaround time. When the
computation is part of a real-time system, such
as weather forecasting, financial investment
decision-making, or tracking and guidance
systems, turnaround time is obviously the critical
issue. A less obvious benefit of shortened
turnaround time is higher-quality work: when
a computational experiment takes less than an
hour, the researcher can afford the luxury of
exploration – running several different scenarios
in order to gain a better understanding of the
phenomena being studied.

In algorithm engineering, the aim is to present
repeatable results through experiments that apply
to a broader class of computers than the specific
make of computer system used during the experi-
ment. For sequential computing, empirical results
are often fairly machine-independent. While ma-
chine characteristics such as word size, cache and
main memory sizes, and processor and bus speeds
differ, comparisons across different uniprocessor
machines show the same trends. In particular,
the number of memory accesses and proces-
sor operations remains fairly constant (or within
a small constant factor). In high-performance al-
gorithm engineering with parallel computers, on
the other hand, this portability is usually absent:
each machine and environment is its own special
case. One obvious reason is major differences
in hardware that affect the balance of commu-
nication and computation costs – a true shared-
memory machine exhibits very different behav-
ior from that of a cluster based on commodity
networks.

Another reason is that the communication
libraries and parallel programming environments
(e.g., MPI [12], OpenMP [16], and High-

Performance Fortran [10]), as well as the
parallel algorithm packages (e.g., fast Fourier
transforms using FFTW [6] or parallelized
linear algebra routines in ScaLAPACK [4]),
often exhibit differing performance on different
types of parallel platforms. When multiple
library packages exist for the same task, a user
may observe different running times for each
library version even on the same platform.
Thus a running-time analysis should clearly
separate the time spent in the user code from
that spent in various library calls. Indeed, if
particular library calls contribute significantly
to the running time, the number of such calls
and running time for each call should be
recorded and used in the analysis, thereby
helping library developers focus on the most cost-
effective improvements. For example, in a simple
message-passing program, one can characterize
the work done by keeping track of sequential
work, communication volume, and number
of communications. A more general program
using the collective communication routines of
MPI could also count the number of calls to
these routines. Several packages are available to
instrument MPI codes in order to capture such
data (e.g., MPICH’s nupshot [8], Pablo [17],
and Vampir [15]). The SKaMPI benchmark [18]
allows running-time predictions based on such
measurements even if the target machine is not
available for program development. SKaMPI was
designed for robustness, accuracy, portability,
and efficiency; For example, SKaMPI adaptively
controls how often measurements are repeated,
adaptively refines message-length and step-width
at “interesting” points, recovers from crashes,
and automatically generates reports.

Applications

The following are several examples of algorithm
engineering studies for high-performance and
parallelcomputing.

1. Bader’s prior publications (see [2] and http://
www.cc.gatech.edu/~bader) contain many
empirical studies of parallel algorithms for

http://www.cc.gatech.edu/~bader
http://www.cc.gatech.edu/~bader
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combinatorial problems like sorting, selection,
graph algorithms, and image processing.

2. In a recent demonstration of the power of
high-performance algorithm engineering,
a million-fold speed-up was achieved through
a combination of a 2,000-fold speedup
in the serial execution of the code and
a 512-fold speedup due to parallelism
(a speed-up, however, that will scale to any
number of processors) [13]. (In a further
demonstration of algorithm engineering,
additional refinements in the search and
bounding strategies have added another
speedup to the serial part of about 1,000,
for an overall speedup in excess of 2 billion)

3. JáJá and Helman conducted empirical studies
for prefix computations, sorting, and list-
ranking, on symmetric multiprocessors. The
sorting research (see [9]) extends Vitter’s
external Parallel Disk Model to the internal
memory hierarchy of SMPs and uses this new
computational model to analyze a general-
purpose sample sort that operates efficiently in
shared-memory. The performance evaluation
uses nine well-defined benchmarks. The
benchmarks include input distributions
commonly used for sorting benchmarks (such
as keys selected uniformly and at random),
but also benchmarks designed to challenge the
implementation through load imbalance and
memory contention and to circumvent algo-
rithmic design choices based on specific input
properties (such as data distribution, presence
of duplicate keys, pre-sorted inputs, etc.).

4. In [3] Blelloch et al. compare through analysis
and implementation three sorting algorithms
on the Thinking Machines CM-2. Despite the
use of an outdated (and no longer available)
platform, this paper is a gem and should be
required reading for every parallel algorithm
designer. In one of the first studies of its kind,
the authors estimate running times of four
of the machine’s primitives, then analyze the
steps of the three sorting algorithms in terms
of these parameters. The experimental studies
of the performance are normalized to provide
clear comparison of how the algorithms
scale with input size on a 32K-processor
CM-2.

5. Vitter et al. provide the canonical theoretic
foundation for I/O-intensive experimental
algorithmics using external parallel disks (e.g.,
see [1, 19, 20]). Examples from sorting, FFT,
permuting, and matrix transposition problems
are used to demonstrate the parallel disk
model.

6. Juurlink and Wijshoff [11] perform one of
the first detailed experimental accounts on the
preciseness of several parallel computation
models on five parallel platforms. The authors
discuss the predictive capabilities of the
models, compare the models to find out which
allows for the design of the most efficient
parallel algorithms, and experimentally
compare the performance of algorithms
designed with the model versus those designed
with machine-specific characteristics in mind.
The authors derive model parameters for each
platform, analyses for a variety of algorithms
(matrix multiplication, bitonic sort, sample
sort, all-pairs shortest path), and detailed
performance comparisons.

7. The LogP model of Culler et al. [5] provides
a realistic model for designing parallel
algorithms for message-passing platforms. Its
use is demonstrated for a number of problems,
including sorting.

8. Several research groups have performed
extensive algorithm engineering for high-
performance numerical computing. One of the
most prominent efforts is that led by Dongarra
for ScaLAPACK [4], a scalable linear algebra
library for parallel computers. ScaLAPACK
encapsulates much of the high-performance
algorithm engineering with significant impact
to its users who require efficient parallel
versions of matrix–matrix linear algebra
routines. New approaches for automatically
tuning the sequential library (e.g., LAPACK)
are now available as the ATLAS package [21].

Open Problems

All of the tools and techniques developed over
the last several years for algorithm engineer-
ing are applicable to high-performance algorithm
engineering. However, many of these tools need
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further refinement. For example, cache-efficient
programming is a key to performance but it is not
yet well understood, mainly because of complex
machine-dependent issues like limited associativ-
ity, virtual address translation, and increasingly
deep hierarchies of high-performance machines.
A key question is whether one can find simple
models as a basis for algorithm development.
For example, cache-oblivious algorithms [7] are
efficient at all levels of the memory hierarchy in
theory, but so far only few work well in practice.
As another example, profiling a running program
offers serious challenges in a serial environment
(any profiling tool affects the behavior of what
is being observed), but these challenges pale
in comparison with those arising in a parallel
or distributed environment (for instance, mea-
suring communication bottlenecks may require
hardware assistance from the network switches
or at least reprogramming them, which is sure
to affect their behavior). Designing efficient and
portable algorithms for commodity multicore and
manycore processors is an open challenge.
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Problem Definition

The framework of Holant problems is intended
to capture a class of sum-of-product computa-
tions in a more refined way than counting CSP

problems and is inspired by Valiant’s holographic
algorithms [12] (also cf. entry �Holographic Al-
gorithms). A constraint function f , or signature,
is a mapping from Œ��n to C, representing a local
contribution to a global sum. Here, Œ�� is a finite
domain set, and n is the arity of f . The range
is usually taken to be C, but it can be replaced
by any commutative semiring. A Holant problem
Holant.F/ is parameterized by a set of constraint
functions F . We usually focus on the Boolean
domain, namely, � D 2. For consideration of
models of computation, we restrict function val-
ues to be complex algebraic numbers.

We allow multigraphs, namely, graphs with
self-loops and parallel edges. A signature grid
˝ D .G; �/ of Holant.F/ consists of a graph
G D .V; E/, where � assigns each vertex v 2

V and its incident edges with some fv 2 F
and its input variables. We say ˝ is a planar
signature grid if G is planar. The Holant problem
on instance ˝ is to evaluate

Holant.˝IF/ D
X

�

Y

v2V

fv.� jE.v//;

a sum over all edge labelings � W E ! Œ��, where
E.v/ denotes the incident edges of v and � jE.v/

denotes the restriction of � to E.v/. This is also
known as the partition function in the statistical
physics literature.

Formally, a set of signatures F defines the
following Holant problem:

Name Holant.F/

Instance A signature grid ˝ D .G; �/

Output Holant.˝IF/

The problem Pl-Holant.F/ is defined similarly
using a planar signature grid.

A function fv can be represented by listing
its values in lexicographical order as in a truth
table, which is a vector in C

�deg.v/
or as a tensor

in .C�/˝ deg.v/. Special focus has been put on
symmetric signatures, which are functions in-
variant under any permutation of the input. An
example is the EQUALITY signature Dn of arity
n. A Boolean symmetric function f of arity n

can be listed as Œf0; f1; : : : ; fn�, where fw is the
function value of f when the input has Hamming

www.netlib.org/utk/people/JackDongarra/PAPERS/atlas-sc98.ps
www.netlib.org/utk/people/JackDongarra/PAPERS/atlas-sc98.ps
http://dx.doi.org/10.1007/978-1-4939-2864-4_746
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weight w. Using this notation, an EQUALITY sig-
nature is Œ1; 0; : : : ; 0; 1�. Another example is the
EXACTONE signature Œ0; 1; 0; : : : ; 0�. Clearly, the
Holant problem defined by this signature counts
the number of perfect matchings.

The set F is allowed to be an infinite set. For
Holant.F/ to be tractable, the problem must be
computable in polynomial time even when the
description of the signatures in the input ˝ is
included in the input size. In contrast, we say
Holant.F/ is #P-hard if there exists a finite subset
of F for which the problem is #P-hard.

The Holant framework is a generalization and
refinement of both counting graph homomor-
phisms and counting constraint satisfaction prob-
lems (see entry �Complexity Dichotomies for
Counting Graph Homomorphisms for more de-
tails and results).

Key Results

The Holant problem was introduced by Cai, Lu,
and Xia [3], which also contains a dichotomy of
Holant� for symmetric Boolean complex func-
tions. The notation Holant� means that all unary
functions are assumed to be available. This re-
striction is later weakened to only allow two
constant functions that pin a variable to 0 or 1.
This framework is called Holantc . In [5], a di-
chotomy of Holantc is obtained. The need to
assume some freely available functions is fi-
nally avoided in [10]. In this paper, Huang and
Lu proved a dichotomy for Holant but with the
caveat that the functions must be real weighted.
This result was later improved by Cai, Guo, and
Williams [6], who proved a dichotomy for Holant
parameterized by any set of symmetric Boolean
complex functions.

We will give some necessary definitions and
then state the dichotomy from [6]. First are
several tractable families of functions over the
Boolean domain.

Definition 1 A signature f of arity n is degen-
erate if there exist unary signatures uj 2 C

2

(1 � j � n) such that f D u1 ˝ 	 	 	 ˝ un.

A symmetric degenerate signature has the form
u˝n.

Definition 2 A k-ary function f .x1; : : : ; xk/ is
of affine type if it has the form

�AxD0 	
p

�1

Pn
j D1h˛j ;xi

;

where � 2 C, x D .x1; x2; : : : ; xk ; 1/T, A is a
matrix over F2, ˛j is a vector over F2, and 

is a 0–1 indicator function such that AxD0 is 1
iff Ax D 0. Note that the dot product h˛j ; xi is
calculated over F2, while the summation

Pn
jD1

on the exponent of i D
p

�1 is evaluated as a
sum mod 4 of 0–1 terms. We use A to denote the
set of all affine-type functions.

An alternative but equivalent form for an

affine-type function is �AxD0	
p

�1
Q.x1;x2;:::;xk/

where Q.	/ is a quadratic form with integer
coefficients that are even for every cross
term.

Definition 3 A function is of product type if it
can be expressed as a product of unary functions,
binary equality functions .Œ1; 0; 1�/, and binary
disequality functions .Œ0; 1; 0�/, each applied to
some of its variables. We use P to denote the set
of product-type functions.

Definition 4 A function f is called vanishing if
the value Holant.˝I ff g/ is 0 for every signature
grid ˝. We use V to denote the set of vanishing
functions.

For vanishing signatures, we need some more
definitions.

Definition 5 An arity n symmetric signature of
the form f D Œf0; f1; : : : ; fn� is in RCt for
a nonnegative integer t � 0 if t > n or for
any 0 � k � n � t , fk ; : : : ; fkCt satisfy the
recurrence relation

 
t

t

!

i t fkCt

C

 
t

t � 1

!

i t�1fkCt�1 C 	 	 	 C

 
t

0

!

i0fk D 0:

(1)
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We define R�t similarly but with �i in place of i

in (1).

With R˙t , one can define the recurrence degree of
a function f .

Definition 6 For a nonzero symmetric signature
f of arity n, it is of positive (resp. negative)
recurrence degree t � n, denoted by rdC.f / D t

(resp. rd�.f / D t ), if and only if f 2 RCtC1 �

RCt (resp. f 2 R�tC1 � R�t ). If f is the all-zero
signature, we define rdC.f / D rd�.f / D �1.

In [6], it is shown that f 2 V if and only if for
either � D C or �, we have 2rd� .f / < arity.f /.
Accordingly, we split the set V of vanishing
signatures in two.

Definition 7 We define V � for � 2 fC; �g as

V � D ff j 2rd� .f / < arity.f /g:

To state the dichotomy, we also need the no-
tion of F-transformable. For a matrix T 2 C

2�2,
and a signature set F , define TF D fg j 9f 2

F of arity n; g D T˝nf g. Here, we view
the signatures as column vectors. Let D2 be the
equality function of arity 2.

Definition 8 A signature set F 0 is F-transformable
if there exists a non-singular matrix T 2 C

2�2

such that F 0 
 TF and .D2/T˝2 2 F .

If a set of functions F 0 is F-transformable and F
is a tractable set, then Holant.F 0/ is tractable as
well.

The dichotomy of Holant problems over sym-
metric Boolean complex functions is stated as
follows.

Theorem 1 ([6]) Let F be any set of symmetric,
complex-valued signatures in Boolean variables.
Then, Holant.F/ is #P-hard unless F satisfies
one of the following conditions, in which case the
problem is in P:

1. All nondegenerate signatures in F are of arity
at most 2;

2. F is A-transformable;
3. F is P-transformable;
4. F 
 V � [ ff 2 R�

2 j arity.f / D 2g for
some � 2 fC; �g;

5. All nondegenerate signatures in F are in R �
2

for some � 2 fC; �g.

Theorem 1 is about Holant problems parame-
terized by symmetric Boolean complex functions
over general graphs. Holant problems are studied
in other settings as well. For planar graphs, [2]
contains a dichotomy for Holantc with real sym-
metric functions. There are signature sets that are
#P-hard over general graphs but tractable over
planar graphs. The algorithms for such sets are
due to Valiant’s holographic algorithms and the
theory of matchgates [1, 12].

Another generalization looks at a broader
range of functions. One may consider asymmetric
functions as in [4], which contains a dichotomy
for Holant� problems defined by asymmetric
Boolean complex functions. One can also
consider functions of larger domain size. For
domain size 3, [7] contains a dichotomy for a
single arity 3 symmetric complex function in
the Holant� setting. For any constant domain
size, [8] contains a dichotomy for a single arity 3

complex weighted function that satisfies a strong
symmetry property.

One can consider constraint functions with a
range other than C. Replacing C by some finite
field Fp for some prime p defines counting prob-
lems modulo p. The case p D 2 is called parity
Holant problems. It is of special interest because
computing the permanent modulo 2 is tractable,
which implies a family of tractable matchgate
functions even over general graphs. For parity
Holant problems, a complete dichotomy for sym-
metric functions is obtained by Guo, Lu, and
Valiant [9].

Open Problems

Unlike the progress in the general graph setting,
the strongest known dichotomy results for pla-
nar Holant problems are rather limited. These
planar dichotomies showed that newly tractable
problems over planar graphs are captured by
holographic algorithms with matchgates, but with
restrictions like symmetric functions or regular
graphs. The theory of holographic algorithms
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with matchgates can be applied to planar graphs
and asymmetric signatures. A true test of its
power would be to obtain an asymmetric complex
weighted dichotomy of planar Holant problems.
The situation is similarly limited for higher do-
main sizes, where things seem considerably more
complicated. A reasonable first step in this direc-
tion would be to consider some restricted (yet still
powerful) family of functions.

Despite the success for F2, little is known
about the complexity of Holant problems over
other finite fields or semirings. As Valiant showed
in [11], counting problems modulo some finite
modulus include some interesting and surprising
phenomena. It deserves further research.
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Problem Definition

Holographic algorithm, introduced by L. Valiant
[11], is an algorithm design technique rather than
a single algorithm for a particular problem. In
essence, these algorithms are reductions to the
FKT algorithm [7–9] to count the number of
perfect matchings in a planar graph in polyno-
mial time. Computation in these algorithms is
expressed and interpreted through a choice of lin-
ear basis vectors in an exponential “holographic”
mix, and then it is carried out by the FKT method
via the Holant Theorem. This methodology has
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produced polynomial time algorithms for a va-
riety of problems ranging from restrictive ver-
sions of satisfiability, vertex cover, to other graph
problems such as edge orientation and node/edge
deletion. No polynomial time algorithms were
known for these problems, and some minor varia-
tions are known to be NP-hard (or even #P-hard).

Let G D .V; E; W / be a weighted undirected
planar graph, where V; E, and W are sets of
vertices, edges, and edge weights, respectively.
A matchgate is a tuple .G; X/ where X 
 V

is a set of external nodes on the outer face. A
matchgate is considered a generator or a recog-
nizer matchgate when the external nodes are con-
sidered output or input nodes, respectively. They
differ mainly in the way they are transformed.
The external nodes are ordered clockwise on the
external face. � is called an odd (resp. even)
matchgate if it has an odd (resp. even) number
of nodes.

Each matchgate is assigned a signature tensor.
A generator � with m output nodes is assigned
a contravariant tensor G 2 V m

0 of type
�

m
0

�
,

where V m
0 is the tensor space spanned by the m-

fold tensor products of the standard basis b D

Œb0; b1� D

�	
1

0



;

	
0

1


�
. The tensor G under the

standard basis b has the form

X
Gi1i2:::imbi1 ˝ bi2 ˝ 	 	 	 ˝ bim ;

where

Gi1i2:::im D PerfMatch.G � Z/:

Here Z is the subset of the output nodes of
� having the characteristic sequence Z D

i1i2 : : : im 2 f0; 1gm, PerfMatch.G � Z/ DP
M

Q
.i;j /2M wij is a sum over all perfect

matchings M in the graph G � Z obtained from
G by removing Z and its incident edges, and
wij is the weight of the edge .i; j /. Similarly a
recognizer � 0 with underlying graph G0 having m

input nodes is assigned a covariant tensor R 2 V 0
m

of type
�

0
m

�
. This tensor under the standard (dual)

basis b� has the form

X
Ri1i2:::imbi1 ˝ bi2 ˝ 	 	 	 ˝ bim ;

where

Ri1i2:::im D PerfMatch.G0 � Z/;

and Z is the subset of the input nodes of � 0 hav-
ing the characteristic sequence Z D i1i2 : : : im.

As a contravariant tensor, G transforms as
follows. Under a basis transformation ˇj DP

i bi t
i
j ,

.G0/j1j2:::jm D
X

Gi1i2:::im Qt
j1

i1
Qt
j2

i2
: : : Qt

jm

im
;

where .Qt
j
i / is the inverse matrix of .t i

j /. Similarly,
R transforms as a covariant tensor, namely,

.R0/j1j2:::jm
D
X

Ri1i2:::im t
i1
j1

t
i2
j2

: : : t
im
jm

:

A signature is symmetric if each entry only
depends on the Hamming weight of the index
i1i2 : : : im. This notion is invariant under a basis
transformation. A symmetric signature is denoted
by Œ�0; �1; : : : ; �m�, where �i denotes the value
of a signature entry whose Hamming weight of
its index is i .

A matchgrid ˝ D .A; B; C / is a weighted
planar graph consisting of a disjoint union of: a
set of g generators A D .A1; : : : ; Ag/, a set of
r recognizers B D .B1; : : : ; Br /, and a set of
f connecting edges C D .C1; : : : ; Cf /, where
each Ci edge has weight 1 and joins an output
node of a generator with an input node of a
recognizer, so that every input and output node in
every constituent matchgate has exactly one such
incident connecting edge.

Let G D
Ng

iD1 G.Ai / be the tensor product
of all the generator signatures, and let R DNr

jD1 R.Bj / be the tensor product of all the
recognizer signatures. Then Holant˝ is defined
to be the contraction of the two product tensors,
under some basis ˇ, where the corresponding
indices match up according to the f connecting
edges Ck :
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Holant˝ D hR; Gi D
X

x2ˇ
˝f

˚
Œ˘1�i�gG.Ai ; xjAi

/� 	 Œ˘1�j�r R.Bj ; x�jBj
/�
�

: (1)

If we write the covariant tensor R as a row
vector of dimension 2f , write the contravariant
tensor G as a column vector of dimension 2f ,
both indexed by some common ordering of the
connecting edges, then Holant˝ is just the dot
product of these two vectors. Valiant’s beautiful
Holant Theorem is as follows:

Theorem 1 (Valiant) For any matchgrid ˝ over
any basis ˇ, let G be its underlying weighted
graph, then

Holant˝ D PerfMatch.G/:

The FKT algorithm can compute the perfect
matching polynomial PerfMatch.G/ for a
planar graph in polynomial time. This gives
a polynomial time algorithm to compute
Holant˝ .

Key Results

To design a holographic algorithm for a given
problem, the creative part is to formalize the
given problem as a Holant problem. The theory
of holographic algorithms is trying to answer the
second question: given a Holant problem, can we
find a basis transformation so that all the signa-
tures in the Holant problem can be realized by
some matchgates on that basis? More formally,
we want to solve the following simultaneous
realizability problem (SRP).

Definition 1 Simultaneous Realizability Prob-
lem (SRP):

Input: A set of constraint functions for genera-
tors and recognizers.

Output: A common basis under which these
functions can be simultaneously realized by

matchgate signatures, if any exists; “NO” if
they are not simultaneously realizable.

The theory of matchgates and holographic
algorithms provides a systematic understanding
of which constraint functions can be realized
by matchgates, the structure for the bases,
and finally solve the simultaneous realizability
problem.

Matchgate Identities
There is a set of algebraic identities [1, 6] which
completely characterizes signatures directly re-
alizable without basis transformation by match-
gates for any number of inputs and outputs. These
identities are derived from Grassmann-Plücker
identities for Pfaffians.

Patterns ˛; ˇ are m-bit strings, i.e., ˛; ˇ 2

f0; 1gm. A position vector P D fpi g; i 2 Œl � is
a subsequence of f1; 2; : : : ; mg, i.e., pi 2 Œm�

and p1 < p2 < 	 	 	 < pl . We also use p to
denote the m-bit string, whose .p1; p2; : : : ; pl /-
th bits are 1 and others are 0. Let ei 2 f0; 1gm be
the pattern with 1 in the i -th bit and 0 elsewhere.
Let ˛; ˇ 2 f0; 1gm be any pattern, and let P D

fpi g D ˛ C ˇ, i 2 Œl � be their bit-wise XOR
as a position vector. Then, we have the following
identity:

lX

iD1

.�1/i G˛Cepi GˇCepi D 0: (2)

A tensor G D .Gi1;:::;im/ is realizable as the
signature, without basis transformation, of some
planar matchgate iff it satisfies the matchgate
identities (2) for all ˛ and ˇ.

Basis Collapse
When we consider basis transformations for
holographic algorithms, we mainly focus on
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invertible transformations, and these are bases
of dimension 2. However, in a paper called
“accidental algorithm” [10], Valiant showed
that a basis of dimension 4 can be used to
solve in P an interesting (restrictive SAT)
counting problem mod 7. In a later paper [4],
we have shown, among other things, that for
this particular problem, this use of bases of size
2 is unnecessary. Then, in a sequence of two
papers [2, 3], we completely resolve the problem
of the power of higher dimensional bases. We
prove that 2-dimensional bases are universal
for holographic algorithms in the Boolean
domain.

Theorem 2 (Basis Collapse Theorem) Any
holographic algorithm on a basis of any
dimension which employs at least one nondegen-
erate generator can be efficiently transformed
to a holographic algorithm in a basis of
dimension 2. More precisely, if generators
G1; G2; : : : ; Gs and recognizers R1; R2; : : : ; Rt

are simultaneously realizable on a basis T of any
dimension, and not all generators are degenerate,
then all the generators and recognizers are
simultaneously realizable in a basis OT of
dimension 2.

From Art to Science
Based on the characterization for matchgate sig-
natures and basis transformations, we can solve
the simultaneous realizability problem [5]. In
order to investigate the realizability of signatures,
it is useful to introduce a basis manifold M,
which is defined to be the set of all possible
bases modulo an equivalence relation. One can

characterize in terms of M all realizable symmet-
ric signatures under basis transformations. This
structural understanding gives: (i) a uniform ac-
count of all the previous successes of holographic
algorithms using symmetric signatures [10, 11];
(ii) generalizations to solve other problems, when
this is possible; and (iii) a proof when this is not
possible.

Applications

In this section, we list a few problems which can
be solved by holographic algorithms.
#PL-3-NAE-ICE

INPUT: A planar graph G D .V; E/ of maximum
degree 3.

OUTPUT: The number of orientations such that
no node has all incident edges directed toward
it or all incident edges directed away from it.

Hence, #PL-3-NAE-ICE counts the number of
no-sink-no-source orientations. A node of degree
one will preclude such an orientation. We assume
every node has degree 2 or 3. To solve this prob-
lem by a holographic algorithm with matchgates,
we design a signature grid based on G as follows:
We attach to each node of degree 3 a generator
with signature Œ0; 1; 1; 0�. This represents a NOT-
ALL-EQUAL or NAE gate of arity 3. For any
node of degree 2, we use a generator with the bi-
nary NAE (i.e., a binary DISEQUALITY) signature
. 6D2/ D Œ0; 1; 0�. For each edge in E, we use
a recognizer with signature . 6D2/, which stands
for an orientation from one node to the other. (To
express such a problem, it is completely arbitrary

Holographic Algorithms,
Fig. 1 Some matchgates
used in #PL-3-NAE-ICE
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to label one side as generators and the other side
as recognizers.) From the given planar graph G,
we obtain a signature grid ˝, where the underly-
ing graph G0 is the edge-vertex incidence graph
of G. By definition, Holant˝ is an exponential
sum where each term is a product of appropriate
entries of the signatures. Each term is indexed
by a 0–1 assignment on all edges of G0; it has
a value of 0 or 1, and it has a value of 1 iff
it corresponds to an orientation of G such that
at every vertex of G the local NAE constraint

is satisfied. Therefore, Holant˝ is precisely the
number of valid orientations required by #PL-3-
NAE-ICE.

Note that the signature Œ0; 1; 1; 0� is not the
signature of any matchgate. A simple reason for
this is that a matchgate signature, being defined in
terms of perfect matchings, cannot have nonzero
values for inputs of both odd and even Hamming
weights.

However, under a holographic transformation

using H D
h

1 1
1 �1

i
,

H˝3Œ0; 1; 1; 0� D H˝3

h
1
1

i˝3

�
h

1
0

i˝3

�
h

0
1

i˝3
�

D Œ6; 0; �2; 0�;

H˝2Œ0; 1; 0� D H˝2

h
1
1

i˝2

�
h

1
0

i˝2

�
h

0
1

i˝2
�

D Œ2; 0; �2�;

and

Œ0; 1; 0�.H�1/˝2 D
1

2
Œ1; 0; �1�:

These signatures are all realizable as matchgate
signatures by verifying all the matchgate identi-
ties. More concretely, we can exhibit the requisite
three matchgates in Fig. 1.

Hence, #PL-3-NAE-ICE is precisely the fol-
lowing Holant problem on planar graphs:

Holant.Œ0; 1; 0� j Œ0; 1; 0�; Œ0; 1; 1; 0�/

�T Holant. 1
2
Œ1; 0; �1� j Œ2; 0; �2�; Œ6; 0; �2; 0�/:

Now we may replace each signature 1
2
Œ1; 0; �1�,

Œ2; 0; �2�, and Œ6; 0; �2; 0� in ˝ by their corre-
sponding matchgates, and then we can compute
Holant˝ in polynomial time by Kasteleyn’s algo-
rithm.

The next problem is a satisfiability problem.
#PL-3-NAE-SAT

INPUT: A planar formula ˚ consisting of a con-
junction of NAE clauses each of size 3.

OUTPUT: The number of satisfying assignments
of ˚ .

This is a variant of 3SAT. A Boolean for-
mula is planar if it can be represented by a
planar graph where vertices represent variables
and clauses, and there is an edge iff the vari-
able or its negation appears in that clause. The
SAT problem is when the gate for each clause
is the Boolean OR. When SAT is restricted to
planar formulae, it is still NP-complete, and its
corresponding counting problem is #P-complete.
Moreover, for many connectives other than NAE

(e.g., EXACTLY ONE), the unrestricted or the
planar decision problems are still NP-complete,
and the corresponding counting problems are #P-
complete.

We design a signature grid as follows: To each
NAE clause, we assign a generator with signature
Œ0; 1; 1; 0�. To each Boolean variable, we assign
a generator with signature .Dk/ where k is the
number of clauses the variable appears, either
negated or unnegated. Further, if a variable oc-
currence is negated, we have a recognizer Œ0; 1; 0�

along the edge that joins the variable generator
and the NAE generator, and if the variable oc-
currence is unnegated, then we use a recognizer
Œ1; 0; 1� instead. Under a holographic transforma-
tion using H , .Dk/ is transformed to
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H˝k

h
1
0

i˝k

C
h

0
1

i˝k
�

D
h

1
1

i˝k

C
h

1
�1

i˝k

D 2Œ1; 0; 1; 0; : : :�:

It can be verified that all the signatures used
satisfy all matchgate identities and thus can be
realized by matchgates under the holographic
transformation.
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Problem Definition

An instance I of the Hospitals/Residents problem
(HR) [6, 7, 18] involves a set R D fr1; : : : ; rng

of residents and a set H D fh1; : : : ; hmg of
hospitals. Each hospital hj 2 H has a posi-
tive integral capacity, denoted by cj . Also, each
resident ri 2 R has a preference list in which
he ranks in strict order a subset of H . A pair
.ri ; hj / 2 R � H is said to be acceptable if
hj appears in ri ’s preference list; in this case
ri is said to find hj acceptable. Similarly each
hospital hj 2 H has a preference list in which
it ranks in strict order those residents who find
hj acceptable. Given any three agents x; y; ´ 2

R [ H , x is said to prefer y to ´ if x finds each
of y and ´ acceptable, and y precedes ´ on x’s
preference list. Let C D

P
hj2H cj .

Let A denote the set of acceptable pairs in I ,
and let L D jAj. An assignment M is a subset
of A. If .ri ; hj / 2 M , ri is said to be assigned
to hj , and hj is assigned ri . For each q 2 R [

H , the set of assignees of q in M is denoted by
M.q/. If ri 2 R and M.ri / D ;, ri is said to be
unassigned; otherwise ri is assigned. Similarly,
any hospital hj 2 H is under-subscribed, full,
or over-subscribed according as jM.hj /j is less
than, equal to, or greater than cj , respectively.

A matching M is an assignment such that
jM.ri /j � 1 for each ri 2 R and jM.hj /j � cj

for each hj 2 H (i.e., no resident is assigned
to an unacceptable hospital, each resident is as-
signed to at most one hospital, and no hospital
is over-subscribed). For notational convenience,
given a matching M and a resident ri 2 R such

http://dx.doi.org/10.1109/FOCS.2006.7
http://dx.doi.org/10.1109/FOCS.2006.7
http://dx.doi.org/10.1137/070682575
http://dx.doi.org/10.1137/070682575
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that M.ri / ¤ ;, where there is no ambiguity, the
notation M.ri / is also used to refer to the single
member of M.ri /.

A pair .ri ; hj / 2 AnM blocks a matching
M or is a blocking pair for M , if the following
conditions are satisfied relative to M :

1. ri is unassigned or prefers hj to M.ri /;
2. hj is under-subscribed or prefers ri to at least

one member of M.hj / (or both).

A matching M is said to be stable if it admits
no blocking pair. Given an instance I of HR, the
problem is to find a stable matching in I .

Key Results

HR was first defined by Gale and Shapley [6]
under the name “College Admissions Problem.”
In their seminal paper, the authors’ primary
consideration is the classical Stable Marriage
problem (SM; see Entries � Stable Marriage and
�Optimal Stable Marriage), which is a special
case of HR in which n D m, A D R � H ,
and cj D 1 for all hj 2 H – in this case,
the residents and hospitals are more commonly
referred to as the men and women, respectively.
Gale and Shapley showed that every instance
I of HR admits at least one stable matching.
Their proof of this result is constructive, i.e., an
algorithm for finding a stable matching in I is
described. This algorithm has become known as
the Gale/Shapley algorithm.

An extended version of the Gale/Shapley
algorithm for HR is shown in Fig. 1. The
algorithm involves a sequence of apply and delete
operations. At each iteration of the while loop,
some unassigned resident ri with a nonempty
preference list applies to the first hospital hj

on his list and becomes provisionally assigned
to hj (this assignment could subsequently be
broken). If hj becomes over-subscribed as a
result of this assignment, then hj rejects its
worst assigned resident rk . Next, if hj is full
(irrespective of whether hj was over-subscribed
earlier in the same loop iteration), then for each
resident rl that hj finds less desirable than its
worst assigned resident rk , the algorithm deletes

the pair .rl ; hj /, which comprises deleting hj

from rl ’s preference list and vice versa.
Given that the above algorithm involves resi-

dents applying to hospitals, it has become known
as the Resident-oriented Gale/Shapley algorithm,
or RGS algorithm for short [7, Section 1.6.3]. The
RGS algorithm terminates with a stable match-
ing, given an instance of HR [6] [7, Theorem
1.6.2]. Using a suitable choice of data structures
(extending those described in [7, Section 1.2.3]),
the RGS algorithm can be implemented to run in
O.L/ time. This algorithm produces the unique
stable matching that is simultaneously best possi-
ble for all residents [6] [7, Theorem 1.6.2]. These
observations may be summarized as follows:

Theorem 1 Given an instance of HR, the RGS
algorithm constructs, in O.L/ time, the unique
stable matching in which each assigned resident
obtains the best hospital that he could obtain
in any stable matching, while each unassigned
resident is unassigned in every stable matching.

A counterpart of the RGS algorithm, known as
the Hospital-oriented Gale/Shapley algorithm, or
HGS algorithm for short [7, Section 1.6.2], gives
the unique stable matching that similarly satisfies
an optimality property for the hospitals [7, Theo-
rem 1.6.1].

Although there may be many stable matchings
for a given instance I of HR, some key structural
properties hold regarding unassigned residents
and under-subscribed hospitals with respect to all
stable matchings in I , as follows.

Theorem 2 For a given instance of HR:

• The same residents are assigned in all stable
matchings;

• Each hospital is assigned the same number of
residents in all stable matchings;

• Any hospital that is under-subscribed in one
stable matching is assigned exactly the same
set of residents in all stable matchings.

These results are collectively known as the “Rural
Hospitals Theorem” (see [7, Section 1.6.4] for
further details). Furthermore, the set of stable
matchings in I forms a distributive lattice under
a natural dominance relation [7, Section 1.6.5].

http://dx.doi.org/10.1007/978-1-4939-2864-4_393
http://dx.doi.org/10.1007/978-1-4939-2864-4_271
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M WD ;;
while (some resident ri is unassigned and ri has a nonempty list) {

hj := first hospital on ri ’s list;
/* ri applies to hj */
M WDM [ f.ri ; hj /g;
if (hj is over-subscribed) {

rk := worst resident in M.hj / according to hj ’s list;
M WDMnf.rk; hj /g;

}
if (hj is full) {

rk := worst resident in M.hj / according to hj ’s list;
for (each successor rl of rk on hj ’s list)

delete the pair .rl ; hj /;
}

}

Hospitals/Residents Problem, Fig. 1 Gale/Shapley algorithm for HR

Applications

Practical applications of HR are widespread,
most notably arising in the context of centralized
automated matching schemes that assign
applicants to posts (e.g., medical students to
hospitals, school leavers to universities, and
primary school pupils to secondary schools).
Perhaps the largest and best-known example
of such a scheme is the National Resident
Matching Program (NRMP) in the USA [8],
which annually assigns around 31,000 graduating
medical students (known as residents) to their
first hospital posts, taking into account the
preferences of residents over hospitals and vice
versa and the hospital capacities. Counterparts of
the NRMP are in existence in other countries,
including Canada [9] and Japan [10]. These
matching schemes essentially employ extensions
of the RGS algorithm for HR.

Centralized matching schemes based largely
on HR also occur in other practical contexts, such
as school placement in New York [1], university
faculty recruitment in France [3], and university
admission in Spain [16]. Further applications are
described in [15, Section 1.3.7].

Indeed, the Nobel Prize in Economic Sci-
ences was awarded in 2012 to Alvin Roth and
Lloyd Shapley, partly for their theoretical work
on HR and its variants [6, 18] and partly for
their contribution to the widespread deployment

of algorithms for HR in practical settings such as
junior doctor allocation as noted above.

Extensions of HR

One key extension of HR that has considerable
practical importance arises when an instance may
involve a set of couples, each of which submits
a joint preference list over pairs of hospitals
(typically in order that the members of the cou-
ple can be located geographically close to one
another). The extension of HR in which couples
may be involved is denoted by HRC; the stability
definition in HRC is a natural extension of that in
HR (see [15, Section 5.3] for a formal definition
of HRC). It is known that an instance of HRC
need not admit a stable matching (see [4]). More-
over, the problem of deciding whether an HRC
instance admits a stable matching is NP-complete
[17].

HR may be regarded as a many-one general-
ization of SM. A further generalization of SM
is to a many-many stable matching problem,
in which both residents and hospitals may be
multiply assigned subject to capacity constraints.
In this case, residents and hospitals are more
commonly referred to as workers and firms, re-
spectively. There are two basic variations of the
many-many stable matching problem according
to whether workers rank (i) individual acceptable
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firms in order of preference and vice versa or (ii)
acceptable subsets of firms in order of preference
and vice versa. Previous work relating to both
models is surveyed in [15, Section 5.4].

Other variants of HR may be obtained if pref-
erence lists include ties. This extension is again
important from a practical perspective, since it
may be unrealistic to expect a popular hospital to
rank a large number of applicants in strict order,
particularly if it is indifferent among groups of
applicants. The extension of HR in which pref-
erence lists may include ties is denoted by HRT.
In this context three natural stability definitions
arise, the so-called weak stability, strong stability,
and super-stability (see [15, Section 1.3.5] for
formal definitions of these concepts). Given an
instance I of HRT, it is known that weakly
stable matchings may have different sizes, and
the problem of finding a maximum cardinality
weakly stable matching is NP-hard (see entry
� Stable Marriage with Ties and Incomplete Lists
for further details). On the other hand, in contrast
to the case for weak stability, a super-stable
matching in I need not exist, though there is an
O.L/ algorithm to find such a matching if one
does [11]. Analogous results hold in the case of
strong stability – in this case, an O.L2/ algo-
rithm [13] was improved by an O.CL/ algorithm
[14] and extended to the many-many case [5].
Furthermore, counterparts of the Rural Hospitals
Theorem hold for HRT under each of the super-
stability and strong stability criteria [11, 19].

A further generalization of HR arises when
each hospital may be split into several depart-
ments, where each department has a capacity,
and residents rank individual departments in or-
der of preference. This variant is modeled by
the Student-Project Allocation problem [15, Sec-
tion 5.5]. Finally, the Hospitals/Residents prob-
lem under Social Stability [2] is an extension
of HR in which an instance is augmented by
a social network graph G (a bipartite graph
whose vertices correspond to residents and hos-
pitals and whose edges form a subset of A) such
that a blocking pair must additionally satisfy the
property that it forms an edge of G. Edges in
G correspond to resident–hospital pairs that are

acquainted with one another and therefore more
likely to block a matching in practice.

Open Problems

As noted in Section “Applications,” ties in the
hospitals’ preference lists may arise naturally in
practical applications. In an HRT instance, weak
stability is the most commonly-studied stability
criterion, due to the guaranteed existence of such
a matching. Attempting to match as many resi-
dents as possible motivates the search for large
weakly stable matchings. Several approximation
algorithms for finding a maximum cardinality
weakly stable matching have been formulated
(see � Stable Marriage with Ties and Incomplete
Lists and [15, Section 3.2.6] for further details).
It remains open to find tighter upper and lower
bounds for the approximability of this problem.

URL to Code

Ada implementations of the RGS and HGS
algorithms for HR may be found via the
following URL: http://www.dcs.gla.ac.uk/
research/algorithms/stable.
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Problem Definition

The Hospitals/Residents (HR) problem is the
many-to-one version of the stable marriage prob-
lem introduced by Gale and Shapley. In this prob-
lem, a bipartite graph G D .R [ H; E/ is given.
Each vertex in H represents a hospital and each
vertex in R a resident. Each vertex has a prefer-
ence over its neighboring vertices. Each hospital
h has an upper quota u.h/ specifying the maxi-
mum number of residents it can take in a match-
ing. The goal is to find a stable matching while
respecting the upper quotas of the hospitals.

The original HR has been well studied in the
past decades. A recent trend is to assume that
each hospital h also comes with a lower quota
l.h/. In this context, it is required (if possible)
that a matching satisfies both the upper and the
lower quotas of each hospital. The introduction

http://www.nrmp.org
http://www.carms.ca
http://www.jrmp.jp
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of such lower quotas is to enforce some policy
in hiring or to make the outcome more fair. It
is well-known that hospitals in some rural areas
suffer from the shortage of doctors.

With the lower quotas, the definition of sta-
bility in HR and the objective of the problem
depend on the applications. Below we summarize
three variants that have been considered in the
literature.

Minimizing the Number of Blocking Pairs
In this variant, a matching M is feasible if, for
each hospital h, l.h/ � jM.h/j � u.h/. Given
a feasible matching, a resident r and a hospital
h form a blocking pair if the following condition
holds. (i) .r; h/ 2 EnM , (ii) r is unassigned in
M or r prefers h to his assignment M.r/, and
(iii) jM.h/j < u.h/ or h prefers r to one of its
assigned residents. A matching is stable if the
number of blocking pairs is 0. It is straightfor-
ward to check whether a stable matching exists.
We assume that the given instance has no stable
matching and the objective is to find a matching
with the minimum number of blocking pairs. We
call this problem Min-BP HR. An alternative
objective is to minimize the number of residents
that are part of a blocking pair in a matching. We
call this problem Min-BR HR.

HR with the Option of Closing a Hospital
The following variation of HR is motivated by
the higher education system in Hungary. Instead
of requiring all hospitals to have enough residents
to meet their lower quotas, it is allowed that a
hospital be closed as long as there is not too much
demand for it.

Precisely, in this variant, a matching M is fea-
sible if, for each hospital h, jM.h/j D 0 or l.h/ �

jM.h/j � u.h/. In the former case, a hospital
is closed; in the latter case, a hospital is opened.
Given a feasible matching M , it is stable if

1. There is no opened hospital h and resident r

so that (i) .h; r/ 2 EnM , (ii) r is unassigned
in M or r prefers h to his assignment M.r/,
and (iii) jM.h/j < u.h/ or h prefers r to one
of its assigned residents;

2. There is no closed hospital h and a set R 
 R
of residents so that (i) jRj � jl.h/j, (ii) for
each r 2 R, .r; h/ 2 EnM , and (iii) each
resident r 2 R is either unassigned or prefers
h to his assigned hospital M.r/.

With the above definition of stability, we refer
to the question of the existence of a stable match-
ing as HR woCH.

Classified HR
Motivated by the practice in academic hiring,
Huang introduced a more generalized variant of
HR. In this variant, a hospital h has a classifica-
tion hC over its neighboring residents. Each class
C 2 hC comes with a upper quota u.C / and a
lower quota l.C /. A matching M is feasible if,
for each hospital h and for each of its classes
c 2 hC , l.C / � jM.h/j � u.C /. A feasible
matching M is stable if the following condition
holds: there is no hospital h such that

1. There exists a resident r so that .r; h/ 2 EnM ,
and r is either unassigned in M or r prefers h

to his assignment M.r/;
2. For every class C 2 hC , l.C / � jM.h/ [

frgj � u.C /, or there exists another resident
r 0 2 M.h/ so that h prefers r to r 0 and
for every class C 2 hC , l.C / � jM.h/ [

frgnfr 0gj � u.C /.

With the above definition of stability, we refer
to the question of the existence of a stable match-
ing as CHR.

Key Results

For the first variant where the objective is to
minimize the number of blocking pairs, Hamada
et al. showed the following tight results.

Theorem 1 ([3]) For any positive constant � >

0, there is no polynomial-time .jRj C jHj/1��-
approximation algorithm for Min-BP HR unless
P=NP. This holds true even if the given bipartite
graph is complete and all upper quotas are 1 and
all lower quotas are 0 or 1.



932 Hub Labeling (2-Hop Labeling)

Theorem 2 ([3]) There is a polynomial-time
.jRj C jHj/-approximation algorithm for Min-
BP HR.

In the case that the objective is to minimize the
number of residents involved in blocking pairs,
Hamada et al. showed the following.

Theorem 3 ([3]) Min-BR HR is NP-hard. This
holds true even if the given bipartite graph is
complete and all hospitals have the same prefer-
ence over the residents.

Theorem 4 ([3]) There is a polynomial-timep
jRj-approximation algorithm for Min-BR HR.

For the second variant, where a hospital is
allowed to be closed, Biró et al. showed the
following.

Theorem 5 ([1]) The problem HR woCH is NP-
complete. This holds true even if all upper quotas
are at most 3.

For the last variant where each hospital is
allowed to classify the neighboring residents and
sets the upper and lower quotas for each of its
classes, Huang showed that if all classifications
of the hospitals are laminar families, the problem
is in P. Fleiner and Kamiyama later proved the
same result by a significantly simpler matroid-
based technique.

Theorem 6 ([2,4]) In CHR, if all classifications
of the hospitals are laminar families, then one
find a stable matching or detect its absence in
the given instance in O.nm/ time, where n D

jR [ Hj and m D jEj.
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Problem Definition

Given a directed graph G D .V; A/ (with n D

jV j and m D jAj) with a length function ` W A !

RC and a pair of vertices s; t , a distance oracle
returns the distance dist.s; t/ from s to t . A label-
ing algorithm [18] implements distance oracles
in two stages. The preprocessing stage computes
a label for each vertex of the input graph. Then,
given s and t , the query stage computes dist.s; t/

using only the labels of s and t ; the query does
not explicitly use G and `.

Hub labeling (HL) (or 2-hop labeling) is a
special kind of labeling algorithm. The label
L.v/ of a vertex v consists of two parts: the
forward label Lf .v/ is a collection of vertices w
with their distances dist.v; w/ from v, while the
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s t

Hub Labeling (2-Hop Labeling), Fig. 1 Example of a
hub labeling. The hubs of s are circles; the hubs of t are
crosses (Taken from [3])

backward label Lb.v/ is a collection of vertices u
with their distances dist.u; v/ to v. (If the graph is
undirected, a single label per vertex suffices.) The
vertices in v’s label are the hubs of v. The labels
must obey the cover property: for any two ver-
tices s and t , the set Lf .s/ \ Lb.t/ must contain
at least one hub that is on the shortest s � t path.
Given the labels, HL queries are straightforward:
to find dist.s; t/, simply find the hub x 2 Lf .s/\

Lb.t/ that minimizes dist.s; x/ C dist.x; t/ (see
Fig. 1 for an example). If the hubs in each label
are sorted by ID, queries consist of a simple linear
sweep over the labels, as in mergesort.

The size of a forward (backward) label,
jLf .v/j (jLb.v/j), is the number of hubs it con-
tains. The size of a labeling L is the sum of the
average label sizes, .Lf .v/ C Lb.v//=2, over all
vertices. The memory footprint of the algorithm
is proportional to the size of the labeling, while
query times are determined by the maximum
label size. Queries themselves are trivial; the
hard part is an efficient implementation of a
preprocessing algorithm that, given G and `,
computes a small hub labeling.

Key Results

We describe an approximation algorithm for find-
ing labelings of size within O.log n/ of the op-
timal [9], as well as its generalization to other
objectives, including the maximum label size [6].
Although polynomial, these approximation al-
gorithms do not scale to large networks. For
more practical alternatives, we discuss hierar-
chical hub labelings (HHLS), a subclass of HL.
We show that HHLs are closely related to ver-

tex orderings and present efficient algorithms
for computing the minimal HHL for a given
ordering, as well as heuristics for finding vertex
orderings that lead to small labels. In particular,
the RXL algorithm uses sampling to efficiently
approximate a greedy vertex order, leading to em-
pirically small labels. RXL can handle large prob-
lems from several application domains. We then
discuss representations of hub labels that allow
various trade-offs between space and query time.

General Hub Labelings
The time and space efficiency of the distance ora-
cles we discuss depend on the label size. If labels
are big, HL is impractical. Gavoille et al. [15]
show that there exist graphs for which general la-
belings must have size Q
.n2/. For planar graphs,
they give an Q̋ .n4=3/ lower and QO.n3=2/ up-
per bound. They also show that graphs with k-
separators have hub labelings of size QO.nk/.
Abraham et al. [1] show that graphs with small
highway dimension (which they conjecture in-
clude road networks) have small hub labelings.

Given a particular graph, computing a labeling
with the smallest size is NP-hard. Cohen et al. [9]
developed an O.log n/-approximation algorithm
for the problem. Next we discuss this general HL
(GHL) algorithm.

A partial labeling is a labeling that does not
necessarily satisfy the cover property. Given a
partial labeling L D .Lf ; Lb/, we say that a
vertex pair Œu; w� is covered if Lf .u/ \ Lb.w/

contains a vertex on a shortest path from u to
w and uncovered otherwise. GHL maintains a
partial labeling L (initially empty) and the cor-
responding set U of uncovered vertex pairs. Each
iteration of the algorithm selects a vertex v and
two subsets X 0; Y 0 
 V , adds .v; dist.x; v// to
Lf .x/ for all x 2 X 0, and adds .y; dist.v; y//

to Lb.y/ for all y 2 Y 0. Then, GHL deletes
from U the set U.v; X 0; Y 0/ of vertex pairs that
become covered by this augmentation. Among all
v 2 V and X 0; Y 0 
 V , the triple .v; X 0; Y 0/

picked in each iteration is one that maximizes
jU.v; X 0; Y 0/j=.jX 0j C jY 0j/, i.e., the ratio of the
number of paths covered over the increase in label
size.
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Cohen et al.’s efficient implementation of
GHL uses the notion of center graphs. Given a
set U of vertex pairs and a vertex v, the center
graph Gv D .X; Y; Av/ is a bipartite graph with
X D Y D V such that an arc .u; w/ 2 Av

if Œu; w� 2 U and some shortest path from
u to w in G go through v. If U is the set of
uncovered vertex pairs, then, for a fixed vertex v,
maximizing jU.v; X 0; Y 0/j=.jX 0j C jY 0j/ over
all X 0; Y 0 
 V is (by definition) the same
as finding the vertex induced-subgraph of Gv

with maximum density (defined as its number
of arcs divided by its number of vertices). This
maximum density subgraph (MDS) problem can
be solved in polynomial time using parametric
flows (see e.g., [14]). To maximize the ratio
over all triples .v; X 0; Y 0/, GHL solves an
MDS problem for center graphs Gv and picks
the densest of the n resulting subgraphs. It
then adds the corresponding vertex v� to the
labels of the vertices given by the sides of the
MDS. Arcs corresponding to newly covered
pairs are removed from center graphs between
iterations.

Cohen et al. show that GHL is a special case
of the greedy set cover algorithm [8] and thus
gives an O.log n/-optimal labeling. They also
show that the same guarantee holds if one uses
a constant-factor approximation to the MDS. We
refer to a k approximation of MDS as a k-
AMDS. Using a linear-time 2-AMDS algorithm
by Kortsarz and Peleg [17], each GHL iteration is
dominated by n AMDS computations on graphs
with O.n2/ arcs. Since each iteration increases
the size of the labeling, the number of iterations
is at most O.n2/. The total running time of GHL
is thus O.n5/.

Delling et al. [11] improve the time bound
for GHL to O.n3 log n/ using eager and lazy
evaluation. Intuitively, eager evaluation finds an
AMDS G0 of G such that deleting G0 reduces
the MDS value of G by a constant factor. More
precisely, given a graph G, an upper bound �

on the MDS value of G and a parameter ˛ >

1, ˛-eager evaluation attempts to find a .2˛/-
AMDS G0 of G such that the MDS value of G

with the arcs of G0 deleted is at most �=˛. If
the evaluation fails to find such G0, the MDS

value of G is at most �=˛. Lazy evaluation was
introduced by Cohen et al. [9] to speed up their
implementation of GHL and refined by Stengel
et al. [20]. It is based on the observation that the
MDS value of a center graph does not increase as
the algorithm adds vertices to labels and removes
arcs from center graphs.

The eager-lazy algorithm maintains upper
bounds on the center subgraph densities �v

computed in previous iterations. These values
are computed during initialization and updated in
a lazy fashion as follows. In each iteration, the
algorithm picks the maximum �v and applies
˛-eager evaluation to Gv . If the evaluation
succeeds, the labels are updated. Regardless of
whether the evaluation succeeds or not, �v=˛ is
a valid upper bound on the density of Gv at the
end of the iteration. This can be used to show that
each vertex is selected by O.n log n/ iterations,
each taking O.n2/ time.

Babenko et al. [6] generalize the definition of
a labeling size as follows. Suppose vertex IDs are
1; 2; : : : ; n. Define a .2n/-dimensional vector L
by L2i�1 D jLf .i/j and L2i D jLb.i/j. The p-
norm of L is defined as kLkp D .

P2n�1
iD0 Lp

i /1=p ,
where p is a natural number and kLk1 D

maxLi . Note that kLk1=2 is the total size
of the labeling and kLk1 is the maximum
label size. Babenko et al. [6] generalize the
algorithm of Cohen et al. to obtain an O.log n/-
approximation algorithm for this more general
problem in O.n5/ time. Delling et al. [11] show
that the eager-lazy approach yields an O.log n/-
approximation algorithm running in time
O.n3 log n min.p; log n//.

Hierarchical Hub Labelings
Even with the performance improvements men-
tioned above, GHL requires too much time and
space to work on large networks. To overcome
this problem, one may use heuristics that have
no known theoretical guarantees on the label size
but produce small labels for large instances from
a wide variety of domains. The most successful
current heuristics use a restricted class of label-
ings called hierarchical hub labeling (HHL) [4].
Hierarchical labels have the cover property and
implement exact distance oracles.
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Given a labeling, let v . w if w is a hub
of L.v/. HL is hierarchical if . is a partial order.
(Intuitively, v . w if w is “more important”
than v.) We say that an HHL respects a given
(total) order on the vertices if the partial order
. induced by the HHL is consistent with the
order.

Consider an order defined by a permutation
rank, with rank.v/ < rank.w/ if v appears
before (is less important than) w. The canonical
labeling L for rank is defined as follows [4].
Vertex v belongs to Lf .u/ if and only if there
exists w such that v is the highest-ranked vertex
that hits Œu; w�. Similarly, v belongs to Lb.w/

if and only if there exists u such that v is the
highest-ranked vertex that hits Œu; w�.

Abraham et al. [4] prove that the canonical
labeling for a given vertex order rank is the
minimum-sized labeling that respects rank. This
suggests a two-stage approach for finding a small
hierarchical hub labeling: first, find a “good”
vertex order, and then compute its corresponding
canonical labeling. We first discuss the latter step
and then the former.

From Orderings to Labelings
We first consider how, given an order rank, one
can compute the canonical hierarchical labeling
L that respects rank.

The straightforward way is to just apply the
definition: for every pair Œu; w� of vertices, find
the maximum-ranked vertex on any shortest u–
w path, and then add it to Lf .u/ and Lb.w/.
Although polynomial, this algorithm is too slow
in practice.

A faster (but still natural) algorithm is as
follows [4]. Start with an empty (partial) labeling
L, and process vertices from the most to least
important. When processing v, for every uncov-
ered pair Œu; w� that v covers, add v to Lf .u/

and Lb.w/. (In other words, add v to the labels
of all end points of arcs in the center graph Gv .)
Abraham et al. [4] show how to implement this in
O.mn log n/ time and 
.n2/ space, which is still
impractical for large instances.

When labels are not too large, a much more
efficient solution is the pruned labeling (PL)
algorithm by Akiba et al. [5]. Starting from empty

labels, PL also processes vertices from the most
to least important, with the iteration that pro-
cesses vertex v, adding v to all relevant labels.
The crucial observation is that, when processing
v, one only needs to look at uncovered pairs
containing v itself; if Œu; v� is not covered, PL
adds v to Lf .u/; if Œv; w� is not covered, it adds v

to Lb.w/. This is enough because of the subpath
optimality property of the shortest paths.

To process v efficiently, PL runs two pruned
Dijkstra searches [13] from v. The first search
works on the forward graph (out of v) as
follows. Before scanning a vertex w (with
distance label d.w/ within the Dijkstra search),
it computes a v–w distance estimate q by
performing an HL query with the current
partial labels. (If the labels do not intersect,
set q D 1.) If q � d.w/, the Œv; w� pair is
already covered by previous hubs, so PL prunes
the search (ignores w). Otherwise (if q > d.w/),
PL adds .v; dist.v; w// to Lb.w/ and scans w
as usual. The second Dijkstra search uses
the reverse graph and is pruned similarly; it
adds .v; dist.w; v// to Lf .w/ for all scanned
vertices w. Note that the number of Dijkstra
scans equals the size of the labeling. Since
each visited vertex requires an HL query
using partial labels, the running time can
be quadratic in the average label size. It
is easy to see that PL produces canonical
labelings.

The final algorithm we discuss, due to Abra-
ham et al. [4], computes a hierarchical hub la-
beling from a vertex ordering recursively. Its
basic building block is the shortcut operation (see
e.g., [16]). To shortcut a vertex v, the operation
deletes v from the graph and adds arcs to ensure
that the distances between the remaining vertices
remain unchanged. For every pair consisting of
an incoming arc .u; v/ and an outgoing arc .v; w/,
the algorithm checks if .u; v/ 	 .v; w/ is the only
shortest u–w path (by running a partial Dijkstra
search from u or w) and, if so, adds a new arc
.u; w/ with length `.u; w/ D `.u; v/ C `.v; w/.

The recursive algorithm computes one label at
a time, from the bottom up (from the least to the
most important vertex). It starts by shortcutting
the least important vertex v from G to get a graph



936 Hub Labeling (2-Hop Labeling)

G0 (same as G, but without v and its incident arcs
and with the added shortcuts). It then recursively
finds a labeling for G0, which gives correct dis-
tances (in G) for all pairs of vertices not contain-
ing v. Then, the algorithm computes the label of v

from the labels of its neighbors. We describe how
to compute Lf .v/; Lb.v/ is computed similarly.
The crucial observation is that any nontrivial
shortest path starting at v must go through one of
its neighbors. Accordingly, we initialize Lf .v/

with entry .v; 0/ (to cover the trivial path from v

to itself), and then, for every neighbor w of v in
G and every entry .x; dist.w; x// 2 Lf .w/, add
.x; `.v; w/ C dist.w; x// to Lf .v/. If x already
is a hub of v, we only keep the smallest entry
for x. Finally, we prune from Lf .v/ the entries
.x; `.v; w/ C dist.w; x// for which `.v; w/ C

dist.w; x/ > dist.v; x/. (This can happen if
the shortest path from v to x through another
neighbor w0 of v is shorter than the one through
w.) Note that dist.v; x/ can be computed using
the labels of v and x. In general, the shortcut
operation can make the graph dense, limiting the
efficiency of the bottom-up approach. On some
network classes, such as road networks, the graph
remains sparse and the approach scales to large
problems.

Vertex Ordering Heuristics
As mentioned above, the size of the labeling is
determined by the ordering. The most natural
approach to capture the notion of importance is
attributed to Abraham et al. [4], whose greedy
ordering algorithm obtains good orderings on a
wide class of problems. It orders vertices from the
most to least important using a greedy selection
rule. In each iteration, it selects as the next most
important hub the vertex v that hits the most
vertex pairs not covered by previously selected
vertices.

When the shortest paths are unique, this can
be implemented relatively efficiently. The algo-
rithm maintains (initially full) the shortest-path
trees from each vertex in the graph. The tree Ts

rooted at s implicitly represents all shortest paths
starting at s. The total number of descendants of a
vertex v (in aggregate over all trees) is exactly the
number of paths it covers. Once such a vertex v

is picked as the next hub, we restore this invariant
for the remaining paths by removing all of v’s
descendants (including v itself) from all trees.
Abraham et al. [4] show how the entire greedy
order can be found in O.nm log n/ time. An
alternative algorithm (in the same spirit) works
even if the shortest paths are not unique, but takes
O.n3/ time [12].

The weighted greedy ordering algorithm is
similar but selects v so as to maximize the ratio
of the number of uncovered paths that v covers
to the increase in the label size if v is selected
next. This gives slightly better results and can
be implemented in the same time bounds as
the greedy ordering algorithm [4, 12]. Although
faster than GHL, none of these greedy variants
scale to large graphs.

To cope with this problem, Delling et al. [12]
developed RXL (Robust eXact Labeling), which
can be seen as a sampling version of the greedy
ordering algorithm. In each iteration, RXL finds
a vertex v that approximately maximizes the
number of pairs covered. Rather than maintaining
n shortest-path trees, RXL maintains shortest-
path trees from a small number of roots picked
uniformly at random. It estimates the coverage
of v based on how many descendants it has in
these trees. To reduce the bias in this estimation,
the algorithm discards outliers before taking the
average number of descendants. Moreover, as the
original trees shrink (because some of its subtrees
become covered), new subtrees (from other roots)
are added. These new trees are not full, however;
they are pruned from the start (using PL), ensur-
ing the total space (and time) usage remains under
control.

For certain graph classes, simpler ordering
techniques can be used. Akiba et al. [5] show that
ordering by degree works well on a subclass of
complex networks. Abraham et al. [2,4] show that
the order induced by the contraction hierarchies
(CH) algorithm [16] works well on road networks
and other sparse inputs. CH order vertices from
the bottom up: using only local information, it
determines the least important vertex, shortcuts
it, and repeats the process in the remaining graph.
The most relevant signals to estimate the im-
portance of v are the arc difference (of number
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of arcs removed and added if v were shortcut)
and how many neighbors of v have already been
shortcut.

Label Representation and Queries
Given a source s and a target t , one can compute
the minimum of dist.s; v/ C dist.v; t/ over all
v 2 Lf .s/\Lb.t/ in O.jLf .s/jCjLf .t/j/ time.
If vertex labels are represented as arrays sorted
by hub IDs, one can compute Lf .s/ \ Lb.t/ by
a coordinated sweep of the corresponding arrays,
as in mergesort. This is very cache efficient and
works well when the two labels have similar
sizes.

In some applications, label sizes can be very
different. Assuming (without loss of general-
ity) that jLf .s/j � jLf .t/j, one can compute
Lf .s/\Lb.t/ in time O.jLf .s/jClog.jLb.t/j//

by performing a binary search for each hub v 2

Lf .s/ to determine if v is in Lb.t/. In fact,
this set intersection problem can be solved even
faster, in O.min.jLf .s/j; jLb.t/j// time [19].

As each label can be stored in a contiguous
memory block, HL queries are well suited for an
external memory (or even distributed) implemen-
tations, including relational databases [3] or key-
value stores. In such cases, query times depend
on the time to fetch two blocks of data.

For in-memory implementations of HL, stor-
age may be a bottleneck. One can trade space for
time using label compression, which interprets
each label as a tree and stores common subtrees
only once; this reduces space consumption by an
order of magnitude, but queries become much
less cache efficient [10,12]. Another technique to
reduce the space consumption is to store vertices
and a constant number of their neighbors as
superhubs in the labels [5]; on unweighted and
undirected graphs, distances from a vertex v to
all elements of a superhub can be represented
compactly in difference form. This works well on
some social and communication networks [5].

HL has efficient extensions to problems
beyond point-to-point shortest paths, including
one-to-many and via-point queries. These are
important for applications in road networks, such
as finding the closest points of interest, ride
sharing, and path prediction [3].

Experimental Results

Even for very small (constant) sample sizes, the
labels produced by RXL are typically no more
than about 10 % bigger [12] than those pro-
duced by the full greedy hierarchical algorithms,
which in turn are not much worse than those
produced by GHL [11]. Scalability is much dif-
ferent, however. In a few hours in a modern CPU,
GHL can only handle graphs with about 10,000
vertices [11]; for the greedy hierarchical algo-
rithms, the practical limit is about 100,000 [4].
In contrast, as long as labels remain small, RXL
scales to problems with millions of vertices [12]
from a wide variety of graph classes, including
meshes, grids, random geometric graphs (sensor
networks), road networks, social networks, col-
laboration networks, and web graphs. For exam-
ple, for a web graph with 18.5 million vertices
and almost 300 million arcs, one can find labels
with fewer than 300 hubs on average in about half
a day [12]; queries then take less than 2 μs.

For some graph classes, other methods have
faster preprocessing. For continental road net-
works with tens of millions of vertices, a hybrid
approach combining weighted greedy (for the
top few thousand vertices) with the CH order
(for all other vertices) provides the best trade-off
between preprocessing times and label size [2,4].
On a benchmark data set representing Western
Europe (about 18 million vertices, 42.5 million
arcs), it takes roughly an hour to compute la-
bels with about 70 hubs on average, leading
to average query times of about 0.5 μs, roughly
the time of ten random memory accesses. With
additional improvements, one can further reduce
query times (but not the label sizes) by half [2],
making it the fastest algorithm for this applica-
tion [7]. For some unweighted and undirected
complex (social, communication, and collabora-
tion) networks, simply sorting vertices by de-
gree [5] produces labels that are not much bigger
than those computed by a more sophisticated
ordering technique.

Overall, RXL is the most robust method. For
all instances tested in the literature, its prepro-
cessing is never much slower than any other
methods (and often much faster), and query times
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are similar. In particular, CH-based ordering is
too costly for large complex networks (as con-
traction tends to create dense graphs), and the
degree-based order leads to prohibitively large
labels for road networks and web graphs.
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Problem Definition

A sequence of n positive weights or frequencies
is given, hwi > 0 j 0 � i < ni, together with an
output radix r , with r D 2 in the case of binary
output strings.

Objective To determine a sequence of integral
codeword lengths h`i j 0 � i < ni such that:
(a)

Pn�1
iD0 r�`i � 1, and (b) C D

Pn�1
iD0 `i 	 wi

is minimized. Any sequence of codeword lengths
h`i i that satisfies these two properties describes a
minimum-redundancy code for the weights hwi i.
Once a set of minimum-redundancy codeword
lengths h`i i has been identified, a prefix-free r-
ary code in which symbol i is assigned a code-
word of length `i can always be constructed.

Constraints

1. Long messages. In one application, each
weight wi is the frequency of symbol i in a
message M of length m D jM j D

Pn�1
iD0 wi ,

and C is the number of symbols required by
a compressed representation of M . In this
application it is usual to assume that m � n.

2. Entropy-based limit. Define W D
Pn�1

iD0 wi

to be the sum of the weights and pi D wi =W

to be the corresponding probability of symbol
i . Define H0 D �

Pn�1
iD0.pi log2 pi / to be the

zero-order entropy of the distribution. Then
when r D 2, dnH0e � C � ndlog2 ne.

Key Results

A minimum-redundancy code can be identified in
O.n/ time if the weights wi are nondecreasing
and in O.n log n/ time if the weights must be
sorted first.

Example Weights
The n D 10 weights h1; 1; 1; 1; 3; 4; 4; 7; 9; 9i

with W D 40 are used as an example.

Huffman’s Algorithm
In 1952 David Huffman [3] described a process
for calculating minimum-redundancy codes, de-

veloped in response to a term-paper challenge
set the year before by his MIT class instructor,
Robert Fano, a problem that Fano and his col-
laborator Claude Shannon had already tackled
unsuccessfully [7]. In his solution Huffman cre-
ated a classic algorithm that is taught to most
undergraduate computing students as part of al-
gorithms classes. Initially the sequence of input
weights hwi i is regarded as being the leaves of
a tree, with no internal nodes, and each leaf
the root of its own subtree. The two subtrees
(whether singleton leaves or internal nodes) with
the smallest root nodes are then combined by
making both of them children of a new parent,
with an assigned weight calculated as the sum
of the two original nodes. The pool of subtrees
decreases by one at each cycle of this process;
after n�1 iterations a total of n�1 internal nodes
has been added, and all of the original nodes must
be leaves in a single tree and descendants of that
tree’s root node.

Figure 1 shows an example of codeword
length computation, with the original weights
across the top. Each iteration takes the two least-
weight elements (leaf or internal) and combines
them to make a new internal node; note that
the internal nodes are created in nondecreasing
weight order. Once the Huffman tree has been
constructed, the sequence h`i i can be read from
it, by computing the depth of each corresponding
leaf node. In Fig. 1, for example, one of the
elements of weight 4 is at depth three in the tree,
and one is at depth four from the root, hence
`5 D 4 and `6 D 3. A set of codewords can
be assigned at the same time as the depths are
being computed; one possible assignment of
codewords that satisfies the computed sequence
h`i i is shown in the second row in the lower
box. Decoding throughput is considerably faster
if codewords are assigned systematically based
on codeword length in the manner shown, rather
than by strictly following the edge labeling of the
Huffman tree from which the codeword lengths
were extracted [6].

Because ties can occur and can be broken
arbitrarily, different codes are also possible. The
sequence h`i i D h6; 6; 6; 6; 4; 3; 3; 3; 2; 2i has the
same cost of C D 117 bits as the one shown
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5:

74:21: 22:

43: 146:

177: 238:

409:

1 1 1 1 3 4 4 7 9

8

5 5 5 5 4 4 3 3 2 2
1100001 00010 00011 0010 0011 010 011 1000000

Huffman Coding, Fig. 1 Example of (binary) codeword
lengths calculated using Huffman’s algorithm, showing
the order in which internal nodes are formed, and their
weights. The input weights in the top section are used

to compute the corresponding codeword lengths in the
bottom box. A valid assignment of prefix-free codewords
is also shown

in the figure. For the example weights, H0 D

2:8853 bits per symbol, providing a lower bound
of d115:41e D 116 bits on the total cost C for
the input weights. In this case, the minimum-
redundancy codes listed are just 1 bit inferior to
the entropy-based lower limit.

Implementing Huffman’s Algorithm
Huffman’s algorithm is often used in algorithms
textbooks as an example of a process that requires
a dynamic priority queue. If a heap is used, for
example, the n initial and n � 2 subsequent insert
operations, take a total of O.n log n/ time, as do
the 2.n � 1/ extract-min operations.

A simpler approach is to first sort the n

weights into increasing order and then apply an
O.n/-time algorithm due to van Leeuwen [10].
Two sorted lists are maintained: a static one of
original weights, representing the leaves of the
Huffman tree, and a dynamic queue of internal
nodes that is initially empty, to which new
internal nodes are appended as they are created.
Each iteration compares front-of-list elements
from the two lists and combines the two that have
the least weight and then adds the new internal
node at the tail of the queue. The algorithm stops

when the queue contains only one node; it is the
last item that was added and is the root of the
Huffman tree.

If the input weights are provided in an array
wi D AŒi j 0 � i < n� of sorted integers,
that array can be processed in situ into an output
array `i D AŒi� in O.n/ time by van Leeuwen’s
technique using an implementation described by
Moffat and Katajainen [5]. Each array element
takes on values that are, variously, input weight,
internal node weight, parent pointer, and then,
finally, codeword length. Algorithm 1 is taken
from Moffat and Katajainen [5] and describes
this process in detail. There are three phases
of operation. In the first phase, in steps 2–2,
leaf weights in AŒleaf : : : n � 1� are combined
with a queue of internal node weights in
AŒroot : : : next � 1� to form a list of parent
pointers in AŒ0 : : : root � 1�. At the end of this
phase, AŒ0 : : : n � 3� is a list of parents, AŒn � 2�

is the sum of the weights, and AŒn � 1� is unused.
In phase 2 (steps 12–3), the set of parent

pointers of internal nodes is converted to a set
of internal node depths. This mapping is done by
processing the tree from the root down, making
the depth of each node one greater than the depth
of its parent.
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Algorithm 1 Compute Huffman codeword lengths
0: function calc_huff_lens(A; n) F Input: AŒi � 1� � AŒi� for 0 < i < n
1: // Phase 1
2: set leaf  0 and root 0
3: for next 0 to n� 2 do
4: if leaf � n or (root < next and AŒroot� < AŒleaf �/ then
5: set AŒnext� AŒroot� and AŒroot� next and root rootC 1 F Use internal node
6: else
7: set AŒnext� AŒleaf � and leaf  leaf C 1 F Use leaf node
8: end if
9: repeat steps 1–8, but adding to AŒnext� rather than assigning to it F Find second child

10: end for
11: // Phase 2
12: set AŒn� 2� 0
13: for next n� 3 downto 0 do
14: set AŒnext� AŒAŒnext��C 1 F Compute depths of internal nodes
15: end for
16: // Phase 3
17: set avail 1 and used 0 and depth 0 and root n� 2 and next n� 1
18: while avail > 0 do
19: while root � 0 and AŒroot� D depth do

F Count internal nodes used at depth depth
20: set used usedC 1 and root root � 1
21: end while
22: while avail > used do F Assign as leaves any nodes that are not internal
23: set AŒnext� d and next next � 1 and avail avail� 1
24: end while
25: set avail 2 � used and depth depthC 1 and used 0 FMove to next depth
26: end while
27: return A F Output: AŒi� is the length `i of the i th codeword
28: end function

Phase 3 (steps 17–4) then processes those
internal node depths and converts them to a list
of leaf depths. At each depth, some total number
avail of nodes exist, being twice the number of
internal nodes at the previous depth. Some num-
ber used of those are internal nodes; the balance
must thus be leaf nodes at this depth and can be
assigned as codeword lengths. Initially there is
one node available at depth D 0, representing the
root of the whole Huffman tree. Table 1 shows
several snapshots of the Moffat and Katajainen
code construction process when applied to the
example sequence of weights.

Nonbinary Output Alphabets
The example Huffman tree developed in Fig. 1
and the process shown in Algorithm 1 assume
that the output alphabet is binary. Huffman noted
in his original paper that for r-ary alphabets
all that is required is to add additional dummy
symbols of weight zero, so as to bring the total

number of symbols to be one more than a multi-
ple of .r � 1/. Each merging step then combines
r leaf or internal nodes to form a new root node
and decreases the number of items by r � 1.

Dynamic Huffman Coding
Another assumption made by the processes
described so far is that the symbol weights
are known in advance and that the code that is
computed can be static. This assumption can
be satisfied, for example, by making a first
pass over the message that is to be encoded.
In a dynamic coding system, symbols must be
coded on the fly, as soon as they are received
by the encoder. To achieve this, the code must
be adaptive, so that it can be altered after each
symbol. Vitter [11] summarizes earlier work
by Gallager [2], Knuth [4], and Cormack and
Horspool [1] and describes a mechanism in
which the total encoding cost, including the
cost of keeping the code tree up to date, is
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Huffman Coding, Table 1 Sequence of values com-
puted by Algorithm 1 for the example weights. The first
row shows the initial state of the array, with AŒi� D wi .
Values “-2-” indicate parent pointers of internal nodes

that have already been merged; italic values “7” indicate
weights of internal nodes before being merged; values
“(4)” indicate depths of internal nodes; bold values “5”
indicate depths of leaves; and values “–” are unused

i

0 1 2 3 4 5 6 7 8 9

Initial arrangement, AŒi� D wi 1 1 1 1 3 4 4 7 9 9

Phase 1, root D 3; next D 5; leaf D 7 -2- -2- -4- 7 8 – – 7 9 9

Phase 1, finished, root D 8 -2- -2- -4- -5- -6- -7- -8- -8- 40 –

Phase 2, next D 4 -2- -2- -4- -5- -6- (2) (1) (1) (0) –

Phase 2, finished (4) (4) (3) (3) (2) (2) (1) (1) (0) –

Phase 3, next D 5; avail D 4 (4) (4) (3) (3) (2) (2) 3 3 2 2

Final arrangement, AŒi� D `i 5 5 5 5 4 4 3 3 2 2

O.1/ per output bit. Turpin and Moffat [9]
describe an alternative approximate algorithm
that reduces the time required by a constant
factor, by collecting the frequency updates into
batches and allowing controlled inefficiency in
the length of the coded output sequence. Their
“GEO” Coding method is faster than dynamic
Huffman Coding and also faster than dynamic
Arithmetic Coding, which is comparable in
speed to dynamic Huffman Coding, but uses less
space for the dynamic frequency-counting data
structure.

Applications

Minimum-redundancy codes have widespread
use in data compression systems. The sequences
of weights are usually conditioned according
to a model, rather than taken as plain symbol
frequency counts in the source message. The
use of multiple conditioning contexts, and hence
multiple codes, one per context, allows improved
compression when symbols are not independent
in the message, as is the case in natural
language data. However, when the contexts are
sufficiently specific that highly biased probability
distributions arise, Arithmetic Coding will yield
superior compression effectiveness.

Turpin and Moffat [8] consider several ancil-
lary components of Huffman Coding, including
methods for transmitting the description of the
code to the decoder.
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