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Problem Definition

Given two strings S D s1s2 : : : sn and R D
r1r2 : : : rm (wlog let n � m) over an alphabet
� D f�1; �2; : : : �`g, the standard edit distance
between S and R, denoted ED(S, R) is the min-
imum number of single character edits, specif-
ically insertions, deletions and replacements, to
transform S into R (equivalently R into S).

If the input strings S and R are permutations
of the alphabet ¢ (so that jS j D jRj D j� j) then
an analogous permutation edit distance between
S and R, denoted PED(S, R) can be defined as the

minimum number of single character moves, to
transform S into R (or vice versa).

A generalization of the standard edit distance
is edit distance with moves, which, for input
strings S and R is denoted EDM(S, R), and is de-
fined as the minimum number of character edits
and substring (block) moves to transform one of
the strings into the other. A move of block s[j,
k] to position h transforms S D s1s2 : : : sn into
S 0 D s1 : : : sj�1 skC1skC2 : : : sh�1sj : : : sksh
: : : sn [4].

If the input strings S and R are permutations
of the alphabet ¢ (so that jS j D jRj D j� j)
then EDM(S, R) is also called as the transposition
distance and is denoted TED(S, R) [1].

Perhaps the most general form of the standard
edit distance that involves edit operations on
blocks/substrings is the block edit distance,
denoted BED(S, R). It is defined as the
minimum number of single character edits,
block moves, as well as block copies and
block uncopies to transform one of the strings
into the other. Copying of a block s[j, k] to
position h transforms S D s1s2 : : : sn into S 0 D
s1 : : : sj sjC1 : : : sk : : : sh�1sj : : : sksh : : : sn.
A block uncopy is the inverse of a block
copy: it deletes a block s[j, k] provided there
exists sŒj 0; k0� D sŒj; k� which does not
overlap with s[j, k] and transforms S into
S 0 D s1 : : : sj�1skC1 : : : sn.

Throughout this discussion all edit operations
have unit cost and they may overlap; i.e., a char-
acter can be edited on multiple times.
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Key Results

There are exact and approximate solutions to
computing the edit distances described above
with varying performance guarantees. As can be
expected, the best available running times as well
as the approximation factors for computing these
edit distances vary considerably with the edit
operations allowed.

Exact Computation of the Standard and
Permutation Edit Distance
The fastest algorithms for exactly computing the
standard edit distance have been available for
more than 25 years.

Theorem 1 (Levenshtein [9]) The standard edit
distance ED(S, R) can be computed exactly in
time O.n �m/ via dynamic programming.

Theorem 2 (Masek-Paterson [11]) The stan-
dard edit distance ED(S, R) can be computed
exactly in time O.n C n �m=log2

j� j n/ via the
“four-Russians trick”.

Theorem 3 (Landau-Vishkin [8]) It is possible
to compute ED(S, R) in time O.n �ED.S;R//.

Finally, note that if S and R are permutations
of the alphabet ¢ , PED(S, R) can be computed
much faster than the standard edit distance for
general strings: Observe that PED.S;R/ D
n � LCS.S;R/ where LCS(S, R) represents the
longest common subsequence of S and R. For
permutations S, R, LCS(S, R) can be computed in
time O.n � log logn/ [3].

Approximate Computation
of the Standard Edit Distance
If some approximation can be tolerated, it is
possible to considerably improve the QO.n � m/
time ( QO notation hides polylogarithmic factors)
available by the techniques above. The fastest
algorithm that approximately computes the stan-
dard edit distance works by embedding strings S
and R from alphabet ¢ into shorter strings S 0 and
R0 from a larger alphabet � 0 [2]. The embedding
is achieved by applying a general version of the
Locally Consistent Parsing [13, 14] to partition

the strings R and S into consistent blocks of
size c to 2c � 1; the partitioning is consistent
in the sense that identical (long) substrings are
partitioned identically. Each block is then re-
placed with a label such that identical blocks are
identically labeled. The resulting strings S 0 and
R0 preserve the edit distance between S and R
approximately as stated below.

Theorem 4 (Batu-Ergun-Sahinalp [2])
ED(S, R) can be computed in time QO.n1C�/

within an approximation factor of minfn
1��

3 Co.1/;

.ED.S; R/=n�/
1
2Co.1/g.

For the case of � D 0, the above result
provides an QO.n/ time algorithm for ap-
proximating ED(S, R) within a factor of
minfn

1
3Co.1/; ED.S;R/

1
2Co.1/g.

Approximate Computation
of Edit Distances Involving Block Edits
For all edit distance variants described above
which involve blocks, there are no known poly-
nomial time algorithms; in fact it is NP-hard to
compute TED(S, R) [1], EDM(S, R) and BED(S,
R) [10]. However, in case S and R are permuta-
tions of ¢ , there are polynomial time algorithms
that approximate transposition distance within
a constant factor:

Theorem 5 (Bafna-Pevzner [1]) TED(S, R) can
be approximated within a factor of 1.5 in O.n2/

time.

Furthermore, even if S and R are arbitrary strings
from ¢ , it is possible to approximately compute
both BED(S, R) and EDM(S, R) in near linear
time. More specifically obtain an embedding of
S and R to binary vectors f(S) and f(R) such that:

Theorem 6 (Muthukrishnan-Sahinalp [12])
jjf .S/�f .R/jj1

log� n
� BED.S;R/ � jjf .S/ �

f .R/jj1 � logn:

In other words, the Hamming distance between
f(S) and f(R) approximates BED(S, R) within
a factor of logn � log� n. Similarly for EDM(S, R),
it is possible to embed S and R to integer valued
vectors F(S) and F(R) such that:
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Theorem 7 (Cormode-Muthukrishnan [4])
jjF .S/�F .R/jj1

log� n
� EDM.S;R/ � jjF.S/ �

F.R/jj1 � logn:

In other words, the L1 distance between F(S) and
F(R) approximates EDM(S, R) within a factor of
logn � log� n.

The embedding of strings S and R into binary
vectors f(S) and f(R) is introduced in [5] and
is based on the Locally Consistent Parsing
described above. To obtain the embedding, one
needs to hierarchically partition S and R into
growing size core blocks. Given an alphabet
¢ , Locally Consistent Parsing can identify
only a limited number of substrings as core
blocks. Consider the lexicographic ordering
of these core blocks. Each dimension i of the
embedding f(S) simply indicates (by setting
f .S/Œi � D 1) whether S includes the ith
core block corresponding to the alphabet ¢ as
a substring. Note that if a core block exists in S
as a substring, Locally Consistent Parsing will
identify it.

Although the embedding above is exponential
in size, the resulting binary vector f(S) is very
sparse. A simple representation of f(S) and f(R),
exploiting their sparseness can be computed in
time O.n log� n/ and the Hamming distance be-
tween f(S) and f(R) can be computed in linear
time by the use of this representation [12].

The embedding of S and R into integer valued
vectors F(S) and F(R) are based on similar tech-
niques. Again, the total time needed to approxi-
mate EDM(S, R) within a factor of logn � log� n
is O.n log� n/.

Applications

Edit distances have important uses in compu-
tational evolutionary biology, in estimating the
evolutionary distance between pairs of genome
sequences under various edit operations. There
are also several applications to the document ex-
change problem or document reconciliation prob-
lem where two copies of a text string S have been
subject to edit operations (both single character
and block edits) by two parties resulting in two

versions S1 and S2, and the parties communicate
to reconcile the differences between the two ver-
sions. An information theoretic lower bound on
the number of bits to communicate between the
two parties is then ˝.BED.S;R// � logn. The
embedding of S and R to binary strings f(S) and
f(R) provides a simple protocol [5] which gives
a near-optimal tradeoff between the number of
rounds of communication and the total number of
bits exchanged and works with high probability.

Another important application is to the
Sequence Nearest Neighbors (SNN) problem,
which asks to preprocess a set of strings
S1, : : : , Sk so that given an on-line query
string R, the string Si which has the lowest
distance of choice to R can be computed in time
polynomial with jRj and polylogarithmic with
Pk

jD1 jSj j. There are no known exact solutions
for the SNN problem under any edit distance
considered here. However, in [12], the embedding
of strings Si into binary vectors f(Si), combined
with the Approximate Nearest Neighbors results
given in [6] for Hamming Distance, provides an
approximate solution to the SNN problem under
block edit distance as follows.

Theorem 8 (Muthukrishnan-Sahinalp [12])
It is possible to preprocess a set of strings
S1, : : : , Sk from a given alphabet � in
O.poly.

Pk
jD1 jSj j// time such that for any

on-line query string R from � one can compute
a string Si in time O.polylog.

Pk
jD1 jSj j/ �

poly.jRj// which guarantees that for all h 2
Œ1; k�; BED.Si ; R/ � BED.Sh; R/ � log.maxj

jSj j/ � log�.maxj jSj j/.

Open Problems

It is interesting to note that when dealing with
permutations of the alphabet ¢ the problem of
computing both character edit distances and
block edit distances become much easier; one can
compute PED(S, R) exactly and TED(S, R) within
an approximation factor of 1.5 in QO.n/ time. For
arbitrary strings, it is an open question whether
one can approximate TED(S, R) or BED(S, R)
within a factor of o.logn/ in polynomial time.
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One recent result in this direction shows that
it is not possible to obtain a polylogarithmic
approximation to TED(S, R) via a greedy
strategy [7]. Furthermore, although there is
a lower bound of ˝.n

1
3 / on the approximation

factor that can be achieved for computing the
standard edit distance in QO.n/ time by the use of
string embeddings, there is no general lower
bound on how closely one can approximate
ED(S, R) in near linear time.
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Problem Definition

The basic group testing problem is to identify
the unknown set of positive items from a large
population of items using as few tests as possi-
ble. A test is a subset of items. A test returns
positive if there is a positive item in the subset.
The semantics of “positives,” “items,” and “tests”
depend on the application.

In the original context [3], group testing was
invented to solve the problem of identifying
syphilis-infected blood samples from a large
collection of WWII draftees’ blood samples.
In this case, items are blood samples, which
are positive if they are infected. A test is
a pool (group) of blood samples. Testing a
group of samples at a time will save resources
if the test outcome is negative. On the other

http://dx.doi.org/10.1007/978-1-4939-2864-4_363
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hand, if the test outcome is positive, then all
we know is that at least one sample in the
pool is positive, but we do not know which
one(s).

In nonadaptive combinatorial group testing
(NACGT), we assume that the number of posi-
tives is at most d for some fixed integer d and
that all tests have to be specified in advance
before any test outcome is known. The NACGT
paradigm has found numerous applications in
many areas of mathematics, computer science,
and computational biology [4, 9, 10].

A NACGT strategy with t tests on a universe
ofN items is represented by a t�N binary matrix
M D .mij /, where mij D 1 iff item j belongs to
test i . Let Mi and Mj denote row i and column
j of M, respectively. Abusing notation, we will
also use Mi (respectively, Mj ) to denote the set
of rows (respectively, columns) corresponding to
the 1-entries of row i (respectively, column j ). In
other words, Mi is the i th pool, and Mj is the set
of pools that item j belongs to.

Let D � ŒN � be the unknown subset of posi-
tive items, where jDj � d . Let y D .yi /

t
iD1 2

f0; 1gt denote the test outcome vector, i.e., yi D

1 iff the i th test is positive. Then, the test outcome
vector is precisely the (Boolean) union of the
positive columns: y D

S
j2D Mj . The task of

identifying the unknown subset D from the test
outcome vector y is called decoding.

The main problem In many modern applica-
tions of NACGT, there are two key requirements
for an NACGT scheme:

1. Small number of tests. “Tests” are computa-
tionally expensive in many applications.

2. Efficient decoding. As the item universe size
N can be extremely large, it would be ideal for
the decoding algorithm to run in time sublin-
ear in N and more precisely in poly.d; logN/
time.

Key Results

To be able to uniquely identify an arbitrary subset
D of at most d positives, it is necessary and suffi-

cient for the test outcome vectors y to be different
for distinct subsets D of at most d positives. An
NACGT matrix with the above property is called
d -separable. However, in general such matrices
only admit the brute force˝.N d /-time decoding
algorithm. A very natural decoding algorithm
called the naïve decoding algorithm runs much
faster, in time O.tN /.

Definition 1 (Naïve decoding algorithm)
Eliminate all items that participate in negative
tests; return the remaining items.

This algorithm does not work for arbitrary d -
separable matrices. However, if the test matrix
M satisfies a slightly stronger property called d -
disjunct, then the naïve decoding algorithm is
guaranteed to work correctly.

Definition 2 (Disjunct matrix) A t � N binary
matrix M is said to be d -disjunct iff Mj n
S

k2S Mk ¤ ; for any set S of d columns and
any j … S . (See Fig. 1.)

Minimize Number of Tests

It is remarkable that d -disjunct matrices not only
allow for linear time decoding, which is a vast
improvement over the brute-force algorithm for
separable matrices, but also have asymptotically
the same number of tests as d -separable matrices
[4]. Let t .d;N / denote the minimum number
of rows of an N -column d -disjunct matrix. It
has been known for about 40 years [5] that
t .˝.
p
N/;N / D �.N/, and for d D O.

p
N/

we have

˝

�
d2

log d
logN

�

� t .d;N / � O.d2 logN/:

(1)

A t � N d -disjunct matrix with t D

O.d2 logN/, rows can be constructed randomly
or even deterministically (see [11]). However,
the decoding time O.tN / of the naïve
decoding algorithm is still too slow for modern
applications, where in most cases d � N and
thus t � N .
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Efficient Decodable
Group Testing, Fig. 1 A
d -disjunct matrix has the
following property: for any
subset S of d (not
necessarily contiguous)
columns, and any column
j that is not present in S ,
there exists a row i that has
a 1 in column j and all
zeros in S

j

i

S

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Efficient Decoding

An ideal decoding time would be in the order
of poly.d; logN/, which is sublinear in N for
practical ranges of d . Ngo, Porat, and Rudra [10]
showed how to achieve this goal using a couple of
ideas: (a) two-layer test matrix construction and
(b) code concatenation using a list recoverable
code.

(a) Two-layer test matrix construction The
idea is to construct M by stacking on top of
one another two matrices: a “filtering” matrix F
and an “identification” matrix D. (See Fig. 2.)
The filtering matrix is used to quickly identify
a “small” set of L candidate items including
all the positives. Then, the identification matrix
is used to pinpoint precisely the positives. For
example, let D be any d -disjunct matrix, and that
from the tests corresponding to the rows of F,
we can produce a set S of L D poly.d; logN/
candidate items in time poly.d; logN/. Then,
by running the naïve decoding algorithm on
S using test results corresponding to the rows
of D, we can identify all the positives in time
poly.d; logN/. To formalize the notion of
“filtering matrix,” we borrow a concept from
coding theory, where producing a small list
of candidate codewords is the list decoding
problem [6].

Definition 3 (List-disjunct matrix) Let dC` �
N be positive integers. A matrix F is .d; `/-list
disjunct if and only if

S
j2T Mj n

S
k2S Mk ¤ ;

for any two disjoint sets S and T of columns of
F with jS j D d and jT j D `. (See Fig. 3.)

Note that a matrix is d -disjunct matrix iff it
is .d; 1/-list disjunct. However, the relaxation
to ` D �.d/ allows the existence (and
construction) of .d;O.d//-list-disjunct matrices
with�.d log.N=d// rows. The existence of such
small list-disjunct matrices is crucially used in
the second idea below.

(b) Code Concatenation with list recoverable
codes A t � N .d; `/-list-disjunct matrix
admits O.tN /-decoding time using the naïve
decoding algorithm. However, to achieve
poly.d; logN/ decoding time overall, we will
need to construct list-disjunct matrices that allow
for a poly.d; logN/ decoding time. In particular,
to use such a matrix as a filtering matrix, it
is necessary that ` D poly.d/. To construct
efficiently decodable list-disjunct matrices, we
need other ideas. Ngo, Porat, and Rudra [10]
used a connection to list recoverable codes [6]
to construct such matrices. This connection
was used to construct .d;O.d3=2//-list-disjunct
matrices with t D o.d2 logd N/ rows that can
be decoded in poly.t/ time. This along with
the construction in Fig. 2 implies the following
result:

Theorem 1 ([10]) Given any d -disjunct matrix,
it can be converted into another matrix with 1C
o.1/ times as many rows that is also efficiently
decodable (even if the original matrix was not).

Other constructions of list-disjunct matrices
with worse parameters were obtained earlier by
Indyk, Ngo and Rudra [7], and Cheraghchi [1]
using connections to expanders and randomness
extractors.
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t1

t2

N

L := d + �

d

x

F (filtering matrix)
(d, �)-list disjunct

D (identification matrix)
d-disjunct

poly(t1)
time

O(L · t2)
time y2

y1

Efficient Decodable Group Testing, Fig. 2 The vector
x denotes the characteristic vector of the d positives
(illustrated by the orange box). The final matrix is the
stacking of F, which is a .d; `/-list-disjunct matrix, and
D, which is a d -disjunct matrix. The result vector is
naturally divided into y1 (the part corresponding to F and
denoted by the red vector) and y2 (the part corresponding

to D and denoted by the blue vector). The decoder first
uses y1 to compute a superset of the set of positives
(denoted by green box), which is then used with y2 to
compute the final set of positives. The first step of the
decoding is represented by the red-dotted box, while the
second step (naïve decoder) is denoted by the blue-dotted
box

Efficient Decodable
Group Testing, Fig. 3 A
.d; `/-list-disjunct matrix
satisfies the following
property: for any subset S
of size d and any disjoint
subset T of size `, there
exists a row i that has a 1
in at least one column in T
and all zeros in S

T

i

S

0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0

Applications

Heavy hitter is one of the most fundamental
problems in data streaming [8]. Cormode and
Muthukrishnan [2] showed that an NACGT
scheme that is efficiently decodable and is also
explicit solves a natural version of the heavy
hitter problem. An explicit construction means

one needs an algorithm that outputs a column
or a specific entry of M instead of storing the
entire matrix M which can be extremely space
consuming. This is possible with Theorem 1 by
picking the filtering and decoding matrices to be
explicit.

Another important generalization of NACGT
matrices are those that can handle errors in the
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test outcomes. Again this is possible with the
construction of Fig. 2 if the filtering and decoding
matrices are also error tolerant. The list-disjunct
matrices constructed by Cheraghchi are also error
tolerant [1].

Open Problems

The outstanding open problem in group test-
ing theory is to close the gap (1). An explicit
construction of .d; d/-list-disjunct matrices is
not known; solving this problem will lead to
a scheme that is (near-)optimal in all desired
objectives.
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Problem Definition

For a hypergraph H D .V; E/, a subset of edges
E 0 	 E is an exact cover of H , if every vertex
of V is contained in exactly one hyperedge of
E 0, that is, for all e; f 2 E 0 with e ¤ f ,
e \ f D ; and

S
E 0 D V . The EXACT COVER

(XC) problem asks for the existence of an exact
cover in a given hypergraph H . Exact Cover is in
Karp’s famous list of 21 NP-complete problems;
it is NP-complete even for 3-element hyperedges
(problem X3C [SP2] in [14]).
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Let G be a finite simple undirected graph with
vertex set V and edge set E. A vertex dominates
itself and all its neighbors, i.e., every vertex v 2
V dominates its closed neighborhood NŒv� D
fu j u D v or uv 2 Eg. A vertex subset D
of G is an efficient dominating (e.d.) set, if, for
every vertex v 2 V , there is exactly one d 2 D
dominating v [1, 2]. An edge subset M of G is
an efficient edge dominating (e.e.d.) set, if it is an
efficient dominating set in the line graph L.G/ of
G [15]. Efficient dominating sets are sometimes
also called independent perfect dominating sets,
and efficient edge dominating sets are also known
as dominating induced matchings.

The EFFICIENT DOMINATION (ED) problem
for a graph G asks for the existence of an e.d.
set in G. The EFFICIENT EDGE DOMINATION

(EED) problem asks for the existence of an e.d.
set in the line graph L.G/.

For a graph G, let N .G/ denote its closed
neighborhood hypergraph, that is, for every ver-
tex v 2 V , the closed neighborhood NŒv� is a
hyperedge in N .G/; note that this is a multiset
since distinct vertices may have the same closed
neighborhood. For a graph G, the square G2 has
the same vertex set as G and two vertices, x and
y, are adjacent in G2, if and only if their distance
in G is at most 2. Note that G2 is isomorphic to
L.N .G//.

By definition, the ED problem on a graph G is
the same as the Exact Cover problem on its closed
neighborhood hypergraph N .G/, and the EED
problem is the same as the Exact Cover problem
on L.N .G//.

Key Results

ED and EED are NP-complete; their complexity
on special graph classes was studied in various
papers – see, e.g., [2, 3, 12, 16–18, 20, 22, 24, 25]
for ED and [5, 7, 11, 15, 19, 21] for EED. In
particular, ED remains NP-complete for chordal
graphs as well as for (very restricted) bipartite
graphs such as chordal bipartite graphs, and EED
is NP-complete for bipartite graphs but solvable
in linear time for chordal graphs.

ED for Graphs
A key tool in [8] is a reduction of ED for G
to the maximum-weight independent set prob-
lem for G2, which is based on the following
observation:

For a hypergraph H D .V; E/ and e 2 E ,
let !.e/ WD jej be an edge weight function. For
the line graph L.H/, let ˛!.L.H// denote the
maximum weight of an independent vertex set
in L.H/. The weight of any independent vertex
set in L.H/ is at most jV j, and H has an exact
cover, if and only if ˛!.L.H// D jV j. Using the
fact that G2 is isomorphic to L.N .G// and ED
on G corresponds to Exact Cover on N .G/, this
means that ED on G can be reduced to the max-
imum weight of an independent vertex set in G2,
similarly for EED. This unified approach helps
to answer some open questions on ED and EED
for graph classes; one example is ED for strongly
chordal graphs: Since for a dually chordal graph
G, its square G2 is chordal, ED is solvable in
polynomial time for dually chordal graphs and
thus for strongly chordal graphs [8] (recall that
ED is NP-complete for chordal graphs). Similar
properties of powers lead to polynomial time
for ED on AT-free graphs using known results
[8]. For P5-free graphs having an e.d., G2 is
P4-free [9].

ED is NP-complete for planar bipartite graphs
of maximum degree 3 [9]. In [23], this is sharp-
ened by adding a girth condition: ED is NP-
complete for planar bipartite graphs of maximum
degree 3 and girth at least g, for every fixed g.

From the known results, it follows that ED
is NP-complete for F -free graphs whenever F
contains a cycle or a claw. Thus, F can be
assumed to be cycle- and claw-free (see, e.g.,
[9]); such graphs F are called linear forests.
For .P3 C P3/-free graphs and thus for P7-
free graphs, ED is NP-complete. ED is robustly
solvable in time O.nm/ for P5-free graphs and
for .P4 C P2/-free graphs [9, 23]. For every
fixed k � 1, ED is solvable in polynomial
time for .P5 C kP2/-free graphs [4]. For P6-free
graphs, the complexity of ED is an open prob-
lem, and correspondingly for .P6 C kP2/-free
graphs; these are the only open cases for F -free
graphs.
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EED for Graphs
The fact that graphs having an e.e.d. are K4-free
leads to a simple linear time algorithm for EED
on chordal graphs. More generally, EED is solv-
able in polynomial time for hole-free graphs and
thus for weakly chordal graphs and for chordal
bipartite graphs [7]. This also follows from the
fact that, for a weakly chordal graph G, L.G/2

is weakly chordal [10] and from the reduction
of EED for G to the maximum-weight inde-
pendent set problem for L.G/2. In [23], this is
improved to a robust O.nm/ time algorithm for
EED on hole-free graphs. In [8], we show that
EED is solvable in linear time for dually chordal
graphs.

One of the open problems for EED was its
complexity on Pk-free graphs. In [5], we show
that EED is solvable in linear time for P7-free
graphs. The complexity of EED remains open for
Pk-free graphs, k � 8. In [11], EED is solved in
polynomial time on claw-free graphs. EED is NP-
complete for planar bipartite graphs of maximum
degree 3 [7]. In [23], it is shown that EED is
NP-complete for planar bipartite graphs of max-
imum degree 3 and girth at least g, for every
fixed g.

XC, ED, and EED for Hypergraphs
The notion of ˛-acyclicity [13] is one of the
most important and most frequently studied hy-
pergraph notions. Among the many equivalent
conditions describing ˛-acyclic hypergraphs, we
take the following: For a hypergraphH D .V; E/,
a tree T with node set E and edge set ET is a join
tree of H , if, for all vertices v 2 V , the set of
hyperedges Ev WD fe 2 E j v 2 eg containing
v induces a subtree of T . H is ˛-acyclic, if it
has a join tree. Let H� WD .E ; fEv j v 2 V g/

be the dual hypergraph of H . The hypergraph
H D .V; E/ is a hypertree, if there is a tree T
with vertex set V such that, for all e 2 E , T Œe� is
connected. Obviously,H is ˛-acyclic, if and only
if its dual H� is a hypertree.

By a result of Duchet, Flament, and Slater
(see, e.g., [6]), it is known that H is a hypertree,
if and only if H has the Helly property and its
line graph L.H/ is chordal. In its dual version,

it says that H is ˛-acyclic, if and only if H is
conformal and its 2-section graph is chordal. In
[8], we show:

(i) ED and XC are NP-complete for ˛-acyclic
hypergraphs but solvable in polynomial time
for hypertrees.

(ii) EED is NP-complete for hypertrees but solv-
able in polynomial time for ˛-acyclic hyper-
graphs.
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Problem Definition

Multiple sequence alignment is an important
problem in computational biology. Applications
include finding highly conserved subregions in
a given set of biological sequences and inferring
the evolutionary history of a set of taxa from their
associated biological sequences (e.g., see [9]).
There are a number of measures proposed for
evaluating the goodness of a multiple alignment,
but prior to this work, no efficient methods are
known for computing the optimal alignment for
any of these measures. The work of Gusfield
[7] gives two computationally efficient multiple
alignment approximation algorithms for two
of the measures with approximation ratio of
less than 2. For one of the measures, they also
derived a randomized algorithm, which is much
faster and with high probability and reports a
multiple alignment with small error bounds.
To the best knowledge of the entry authors,
this work is the first to provide approximation
algorithms (with guarantee error bounds) for this
problem.
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Notations and Definitions

Let X and Y be two strings of alphabet †. The
pairwise alignment of X and Y maps X and Y
into strings X 0 and Y 0 that may contain spaces,
denoted by ‘_’, where (1) jX 0j D jY 0j D ` and
(2) removing spaces from X 0 and Y 0 returns X
and Y , respectively. The score of the alignment
is defined as d.X 0; Y 0/ D

P`
iD1 s.X

0.i/; Y 0.i//

whereX 0.i/ (and Y 0.i// denotes the i th character
in X 0 (and Y 0) and s.a; b/ with a; b 2 † [ ‘_’ is
the distance-based scoring scheme that satisfies
the following assumptions:

1. s.‘_’; ‘_’/ D 0;
2. Triangular inequality: for any three characters,
x; y; ´; s.x; ´/ � s.x; y/C s.y; ´//.

Let � D X1; X2; : : : ; Xk be a set of k > 2 strings
of alphabet †. A multiple alignment A of these k
strings maps X1; X2; : : : ; Xk to X 01; X

0
2; : : : ; X

0
k

that may contain spaces such that (1)
ˇ
ˇX 01

ˇ
ˇ Dˇ

ˇX 02
ˇ
ˇ D � � � D

ˇ
ˇX 0

k

ˇ
ˇ D ` and (2) removing

spaces from X 0i returns Xi for all 1 � i � k.
The multiple alignment A can be represented as a
k � ` matrix.

The Sum of Pairs (SP) Measure

The score of a multiple alignment A, de-
noted by SP(A/, is defined as the sum
of the scores of pairwise alignments in-
duced by A, that is,

P
i<j d.X

0
i ; X

0
j / D

P
i<j

P`
pD1 s.X

0
i Œp�; X

0
j Œp�/where 1�i <j �k.

Problem 1 (Multiple Sequence Alignment
with Minimum SP Score)

INPUT: A set of k strings, a scoring scheme s.
OUTPUT: A multiple alignment A of these k

strings with minimum SP.A/.

The Tree Alignment (TA) Measure

In this measure, the multiple alignment is derived
from an evolutionary tree. For a given set � of k
strings, let �0 
 �. An evolutionary tree T 0� for

� is a tree with at least k nodes, where there is
a one-to-one correspondence between the nodes
and the strings in �0. Let X 0u 2 �

0 be the string
for node u. The score of T 0�, denoted by TA

�
T 0�
�
,

is defined as
P

eD.u;v/D
�
X 0u; X

0
v

�
where e is an

edge in T 0� and D
�
X 0u; X

0
v

�
denotes the score

of the optimal pairwise alignment for X 0u and
X 0v . Analogously, the multiple alignment of �
under the TA measure can also be represented
by a j�0j � ` matrix, where j�0j � k, with a
score defined as

P
eD.u;v/ d

�
X 0u; X

0
v

�
(e is an

edge in T 0�/, similar to the multiple alignment
under the SP measure in which the score is the
summation of the alignment scores of all pairs of
strings. Under the TA measure, since it is always
possible to construct the j�0j � ` matrix such that
d
�
X 0u; X

0
v

�
D D

�
X 0u; X

0
v

�
for all e D .u; v/ in

T 0� and we are usually interested in finding the
multiple alignment with the minimum TA value,
so D

�
X 0u; X

0
v

�
is used instead of d

�
X 0u; X

0
v

�
in

the definition of TA
�
T 0�
�
.

Problem 2 (Multiple Sequence Alignment
with Minimum TA Score)

INPUT: A set of k strings, a scoring scheme s.
OUTPUT: An evolutionary tree T for these k

strings with minimum TA.T /.

Key Results

Theorem 1 Let A� be the optimal multiple
alignment of the given k strings with minimum SP
score. They provide an approximation algorithm
(the center star method) that gives a multiple
alignment A such that SP.A/

SP.A�/
� 2.k�1/

k

D 2 � 2
k

.

The center star method is to derive a multiple
alignment which is consistent with the optimal
pairwise alignments of a center string with all
the other strings. The bound is derived based on
the triangular inequality of the score function.
The time complexity of this method is O.k2`2/,
where `2 is the time to solve the pairwise align-
ment by dynamic programming and k2 is needed
to find the center string, Xc , which gives the
minimum value of

P
i¤c D.Xc ; Xi /.
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Theorem 2 Let A� be the optimal multiple
alignment of the given k strings with minimum
SP score. They provide a randomized algorithm
that gives a multiple alignment A such that
SP.A/

SP.A�/
� 2 C 1

r�1
with probability at least

1 �
�

r�1
r

�p
for any r > 1 and p � 1. Instead

of computing

�
k

2

�

optimal pairwise alignments

to find the best center string, the randomized
algorithm only considers p randomly selected
strings to be candidates for the best center
string; thus, this method needs to x compute
only .k � 1/p optimal pairwise alignments in
O.kp`2/ time where 1 � p � k.

Theorem 3 Let T � be the optimal evolutionary
tree of the given k strings with minimum TA score.
They provide an approximation algorithm that
gives an evolutionary tree T such that TA.T /

TA.T �/
�

2.k�1/
k
D 2 � 2

k
.

In the algorithm, they first compute all the

�
k

2

�

optimal pairwise alignments to construct a graph
with every node representing a distinct string
Xi and the weight of each edge .Xi ; Xj / as
D.XiXj /. This step determines the overall time
complexity O.k2`2/. Then, they find a mini-
mum spanning tree from the graph. The multiple
alignment has to be consistent with the optimal
pairwise alignments represented by the edges of
this minimum spanning tree.

Applications

Multiple sequence alignment is a fundamental
problem in computational biology. In particular,
multiple sequence alignment is useful in identify-
ing those common structures, which may only be
weakly reflected in the sequence and not easily
revealed by pairwise alignment. These common
structures may carry important information for
their evolutionary history, critical conserved mo-
tifs, and common 3D molecular structure, as well
as biological functions.

More recently, multiple sequence alignment is
also used in revealing noncoding RNAs (ncR-

NAs) [2]. In this type of multiple alignment, we
are not only align the underlying sequences but
also the secondary structures of the RNAs. Re-
searchers believe that ncRNAs that belong to the
same family should have common components
giving a similar secondary structure. The multiple
alignment can help to locate and identify these
common components.

Open Problems

A number of open problems related to the work
of Gusfield remain open. For the SP measure,
the center star method can be extended to the q-
star method .q > 2/ with approximation ratio of
2 � q=k [1, 10], sect. 7.5 of [11]). Whether there
exists an approximation algorithm with better
approximation ratio or with better time complex-
ity is still unknown. For the TA measure, to
be the best knowledge of the entry authors, the
approximation ratio in Theorem 3 is currently the
best result.

Another interesting direction related to this
problem is the constrained multiple sequence
alignment problem [12] which requires the mul-
tiple alignment to contain certain aligned charac-
ters with respect to a given constrained sequence.
The best known result [6] is an approximation
algorithm (also follows the idea of center star
method) which gives an alignment with approx-
imation ratio of 2 � 2=k for k strings.

For the complexity of the problem, Wang and
Jiang [13] were the first to prove the NP-hardness
of the problem with SP score under a nonmetric
distance measure over a 4-symbol alphabet. More
recently, in [5], the multiple alignment problem
with SP score, star alignment, and TA score have
been proved to be NP-hard for all binary or larger
alphabets under any metric. Developing efficient
approximation algorithms with good bounds for
any of these measures is desirable.

Experimental Results

Two experiments have been reported in the pa-
per showing that the worst-case error bounds in
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Theorems 1 and 2 (for the SP measure) are pes-
simistic compared to the typical situation arising
in practice.

The scoring scheme used in the experiments
is s.a; b/ D 0 if a D bI s.a; b/ D 1 it either
a or b is a space; otherwise s.a; b/ D 2.
Since computing the optimal multiple alignment
with minimum SP score has been shown to
be NP-hard, they evaluate the performance
of their algorithms using the lower bound of
P

i<j D.Xi ; Xj / (recall that D.Xi ; Xj / is the
score of the optimal pairwise alignment of Xi

and Xj /. They have aligned 19 similar amino
acid sequences with average length of 60 of
homeoboxs from different species. The ratio of
the scores of reported alignment by the center star
method to the lower bound is only 1.018 which
is far from the worst-case error bound given in
Theorem 1. They also aligned 10 not-so-similar
sequences near the homeoboxes, and the ratio
of the reported alignment to the lower bound
is 1.162. Results also show that the alignment
obtained by the randomized algorithm is usually
not far away from the lower bound.

Data Sets

The exact sequences used in the experiments are
not provided.
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Problem Definition

We consider the following fundamental problem
in scheduling theory. Suppose that there is a set J
of n independent jobs Jj with processing time pj

and a set P of m nonidentical processors Pi that
run at different speeds si . If job Jj is executed on
processor Pi , then processor Pi needs pj =si time
units to complete the job. The goal is to find an
assignment a W J ! P for the jobs to the proces-
sors that minimizes the total length of the sched-
ule maxiD1;:::;m

P
Jj Wa.Jj /DPi

pj =si . This is the
minimum time needed to complete all jobs on the
processors. The problem is denoted QjjCmax and
it is also called the minimum makespan problem
on uniform parallel processors. By simplicity we
may assume that the number m of processors is
bounded by the number of jobs; otherwise select
only the fastest n machines in O.m/ time.

Key Results

The scheduling problem on uniform and also
identical processors is NP-hard [7] and the exis-
tence of a polynomial time algorithm for it would
imply P D NP . Hochbaum and Shmoys [9, 10]
presented a family of polynomial time approxi-
mation algorithms fA�j� > 0g for both schedul-
ing problems, where each algorithmA� generates
a schedule of length .1 C �/OPT .I / for each
instance I and has running time polynomial in
the input size jI j. Such a family of algorithms is
called a polynomial time approximation scheme
(PTAS). It is allowed that the running time of
each algorithm A� is exponential in 1=�. The
running time of the PTAS for uniform processors
by Hochbaum and Shmoys [10] is .n=�/O.1=�2/.

Two restricted classes of approximation
schemes were defined to classify different faster

approximation scheme. An efficient polynomial
time approximation scheme (EPTAS) is a PTAS
with running time f .1=�/ poly.jI j/ for some
function f , while a fully polynomial time
approximation scheme (FPTAS) runs in time
poly.1=�; jI j/; polynomial in 1=� and the size
jI j of the instance. Since the scheduling problem
on identical and also uniform processors is
NP-hard in the strong sense (it contains bin
packing as special case), we cannot hope for
an FPTAS. For identical processors, Hochbaum
and Shmoys (see [8]) and Alon et al. [1] gave an
EPTAS with running time f .1=�/CO.n/, where
f is doubly exponential in 1=�.

Known Techniques
Hochbaum and Shmoys [9] introduced the
dual approximation approach for identical and
uniform processors and used the relationship
between these scheduling problems and the bin
packing problem. This relationship between
scheduling on identical processors and bin
packing problem had been exploited already by
Coffman et al. [3]. Using the dual approximation
approach, Hochbaum and Shmoys [9] proposed a
PTAS for scheduling on identical processors with
running time .n=�/O.1=�2/.

The main idea in the approach is to guess the
length of the schedule by using binary search
and to consider the corresponding bin packing
instance with scaled identical bin size equal to 1.
Then they distinguish between large items with
size > � and small items with size � �. For
the large items they use a dynamic programming
approach to calculate the minimum number of
bins needed to pack them all. Afterward, they
pack the remaining small items in a greedy way
in enlarged bins of size 1C � (i.e., they pack into
any bin that currently contains items of total size
at most 1; and if no such bin exists, then they open
a new bin).

Furthermore, Hochbaum and Shmoys (see [8])
and Alon et al. [1] achieved an improvement to
linear time by using an integer linear program
for the cutting stock formulation of bin packing
for the large items and a result on integer linear
programming with a fixed number of variables by
Lenstra [15]. This gives an EPTAS for identical
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processors with running time f .1=�/ C O.n/

where f is doubly exponential in 1=�.
For uniform processors, the decision problem

for the scheduling problem with makespan at
most T can be viewed as a bin packing problem
with different bin sizes. Using an �-relaxed ver-
sion of this bin packing problem, Hochbaum and
Shmoys [10] were also able to obtain a PTAS for
scheduling on uniform processors with running
time .n=�/O.1=�2/. The main underlying idea in
their algorithm is a clever rounding technique and
a nontrivial dynamic programming approach over
the different bins ordered by their sizes.

New Results
Recently, Jansen [11] proposed an EPTAS for
scheduling jobs on uniform machines:

Theorem 1 ([11]) There is an EPTAS (a family
of algorithms fA�j� > 0g) which, given an in-
stance I ofQjjCmax with n jobs andm processors
with different speeds and a positive number � >
0, produces a schedule for the jobs of length
A�.I / � .1 C �/OPT .I /. The running time of
A� is

2O.1=�2 log3.1=�// C poly.n/:

Interestingly, the running time of the EPTAS
is only single exponential in 1=�.

Integer Linear Programming and
Grouping Techniques
The new algorithm uses the dual approximation
method by Hochbaum and Shmoys [10] to trans-
form the scheduling problem into a bin packing
problem with different bin sizes. Next, the input
is structured by rounding bin sizes and processing
times to values of the form .1C ı/i and ı.1C ı/i

with i 2 Z where ı depends on �. After sorting
the bins according to their sizes, c1 � : : : �

cm, three groups of bins are built: B1 with the
largest K bins (where K is constant). Let G be
the smallest index such that capacity cKCGC1 �

�cK where � < 1 depends on �; such an index G
exists for cm � �cK . In this case B2 is the set of
the next G largest bins where the maximum size
cmax.B2/ D cKC1 divided by the minimum size
cmin.B2/ D cKCG is bounded by a constant 1=�
and B3 is the set with the remaining smaller bins

of size smaller than �cK . This generates a gap
of constant size between the capacities of bins in
B1 and B3. If the rate cm=cK , where cm is the
smallest bin size, is larger the constant � , then a
simpler instance is obtained with only two groups
B1 and B2 of bins.

For B1 all packings for the very large items
are computed (those which only fit there). If there
is a feasible packing, then a mixed integer linear
program (MILP) or an integer linear program
(ILP) in the simpler case is used to place the
other items into the bins. The placement of the
large items into the second group B2 is done
via integral configuration variables; similar to the
ILP formulation for bin packing by Fernandez de
la Vega and Lueker [6]. Fractional configuration
variables are used for the placement of large
items into B3. Furthermore, additional fractional
variables are taken to place small items into
B1, B2, and B3. The MILP has only a constant
number of integral variables and, therefore, can
be solved via the algorithm by Lenstra or Kannan
[14, 15].

In order to avoid that the running time is
doubly exponential in 1=�, a recent result by
Eisenbrand and Shmonin [5] about integer cones
is used. To apply their result a system of equal-
ities for the integral configuration variables is
considered and the corresponding coefficients are
rounded. Then each feasible solution of the mod-
ified MILP contains at most O.1=ı log2.1=ı//

integral variables with values larger than zero. By
choosing the strictly positive integral variables
in the MILP, the number of integral configu-
ration variables is reduced from 2O.1=ı log.1=ı//

to O.1=ı log2.1=ı//. The number of choices is
bounded by 2O.1=ı2 log3.1=ı//.

Afterward, the fractional variables in the
MILP solution are rounded to integral values
using ideas from scheduling job shops [13]
and scheduling on unrelated machines [16]. The
effect of the rounding is that most of the items
can be placed directly into the bins. Only a few
of them cannot be placed this way, and here is
where the K largest bins and the gap between
B1 and B3 come into play. It can be proved that
these items can be moved to the K largest bins
by increasing their sizes only slightly.
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Algorithm Avoiding the MILP
Recently an EPTAS for scheduling on uniform
machines is presented by Jansen and Robenek
[12] that avoids the use of an MILP or ILP solver.
In the new approach instead of solving (M)ILPs,
an LP-relaxation and structural information about
the “closest” ILP solution is used.

In the following the main techniques are de-
scribed for identical processors. For a given LP-
solution x, the distance to the closest ILP solution
y in the infinity norm is studied, i.e., kx � yk1.
For the constraint matrixAı of the considered LP,
this distance is defined by

max -gap.Aı/ WD maxfminfky? � x?k1 W y
?

solution of ILPg W x?solution of LPg:

Let C.Aı/ denote an upper bound for max -gap
.Aı/. The running time of the algorithm is
2O.1=� log.1=�/ log.C.Aı/// C poly.n/. The al-
gorithm for uniform processors is more
complex, but we obtain a similar running time
2O.1=� log.1=�/ log.C. QAı/// C poly.n/, where the
constraint matrix QAı is slightly different. For the
details we refer to [12].

It can be proved using a result by Cook
et al. [4] that C.Aı/; C. QAı/ � 2O.1=� log2.1=�//.
Consequently, the algorithm has a running time
at most 2O.1=�2 log3.1=�// C poly.n/, the same as
in [11]. But, to our best knowledge, no instance
is known to take on the value 2O.1=� log2.1=�//

for max - gap.Aı/. We conjecture C.Aı/ �

poly.1=�/. If that holds, the running time of the
algorithm would be 2O.1=� log2.1=�// C poly.n/

and thus improve the result in [11].

Lower Bounds
Recently, Chen, Jansen, and Zhang [2] proved the
following lower bound on the running time: For
scheduling on an arbitrary number of identical
machines, denoted by P jjCmax, a polynomial
time approximation scheme (PTAS) of running
time 2O..1=�/1�ı/ � poly.n/ for any ı > 0 would
imply that the exponential time hypothesis (ETH)
for 3-SAT fails.

Open Problems

The main open question is whether there is an EP-
TAS for scheduling jobs on identical and uniform
machines with a running time 2O.1=� logc.1=�// �

poly.n/.

Experimental Results

None is reported.
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Problem Definition

In the 50 years since the discovery of the
structure of DNA, and with new techniques for
sequencing the entire genome of organisms,
biology is rapidly moving towards a data-
intensive, computational science. Many of
the newly faced challenges require high-
performance computing, either due to the
massive-parallelism required by the problem,
or the difficult optimization problems that are
often combinatoric and NP-hard. Unlike the
traditional uses of supercomputers for regular,
numerical computing, many problems in biology
are irregular in structure, significantly more
challenging to parallelize, and integer-based
using abstract data structures.

Biologists are in search of biomolecular
sequence data, for its comparison with other

genomes, and because its structure determines
function and leads to the understanding of bio-
chemical pathways, disease prevention and cure,
and the mechanisms of life itself. Computational
biology has been aided by recent advances in
both technology and algorithms; for instance,
the ability to sequence short contiguous strings
of DNA and from these reconstruct the whole
genome and the proliferation of high-speed
microarray, gene, and protein chips for the study
of gene expression and function determination.
These high-throughput techniques have led to an
exponential growth of available genomic data.

Algorithms for solving problems from
computational biology often require parallel
processing techniques due to the data- and
compute-intensive nature of the computations.
Many problems use polynomial time algorithms
(e.g., all-to-all comparisons) but have long
running times due to the large number of items
in the input; for example, the assembly of
an entire genome or the all-to-all comparison
of gene sequence data. Other problems
are compute-intensive due to their inherent
algorithmic complexity, such as protein folding
and reconstructing evolutionary histories from
molecular data, that are known to be NP-hard (or
harder) and often require approximations that are
also complex.

Key Results

None

Applications

Phylogeny Reconstruction
A phylogeny is a representation of the evolu-
tionary history of a collection of organisms or
genes (known as taxa). The basic assumption of
process necessary to phylogenetic reconstruction
is repeated divergence within species or genes.
A phylogenetic reconstruction is usually depicted
as a tree, in which modern taxa are depicted at the
leaves and ancestral taxa occupy internal nodes,
with the edges of the tree denoting evolution-
ary relationships among the taxa. Reconstructing
phylogenies is a major component of modern
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research programs in biology and medicine (as
well as linguistics). Naturally, scientists are in-
terested in phylogenies for the sake of knowl-
edge, but such analyses also have many uses in
applied research and in the commercial arena.
Existing phylogenetic reconstruction techniques
suffer from serious problems of running time (or,
when fast, of accuracy). The problem is particu-
larly serious for large data sets: even though data
sets comprised of sequence from a single gene
continue to pose challenges (e.g., some analyses
are still running after 2 years of computation
on medium-sized clusters), using whole-genome
data (such as gene content and gene order) gives
rise to even more formidable computational prob-
lems, particularly in data sets with large numbers
of genes and highly-rearranged genomes.

To date, almost every model of speciation and
genomic evolution used in phylogenetic recon-
struction has given rise to NP-hard optimiza-
tion problems. Three major classes of methods
are in common use. Heuristics (a natural conse-
quence of the NP-hardness of the problems) run
quickly, but may offer no quality guarantees and
may not even have a well-defined optimization
criterion, such as the popular neighbor-joining
heuristic [9]. Optimization based on the crite-
rion of maximum parsimony (MP) [4] seeks the
phylogeny with the least total amount of change
needed to explain modern data. Finally, optimiza-
tion based on the criterion of maximum likelihood
(ML) [5] seeks the phylogeny that is the most
likely to have given rise to the modern data.

Heuristics are fast and often rival the opti-
mization methods in terms of accuracy, at least
on datasets of moderate size. Parsimony-based
methods may take exponential time, but, at least
for DNA and amino acid data, can often be
run to completion on datasets of moderate size.
Methods based on maximum likelihood are very
slow (the point estimation problem alone ap-
pears intractable) and thus restricted to very small
instances, and also require many more assump-
tions than parsimony-based methods, but appear
capable of outperforming the others in terms of
the quality of solutions when these assumptions
are met. Both MP- and ML-based analyses are
often run with various heuristics to ensure timely

termination of the computation, with mostly un-
quantified effects on the quality of the answers
returned.

Thus there is ample scope for the application
of high-performance algorithm engineering in
the area. As in all scientific computing areas,
biologists want to study a particular dataset and
are willing to spend months and even years in
the process: accurate branch prediction is the
main goal. However, since all exact algorithms
scale exponentially (or worse, in the case of
ML approaches) with the number of taxa, speed
remains a crucial parameter – otherwise few
datasets of more than a few dozen taxa could ever
be analyzed.

Experimental Results

As an illustration, this entry briefly describes
a high-performance software suite, GRAPPA
(Genome Rearrangement Analysis through
Parsimony and other Phylogenetic Algorithms)
developed by Bader et al. GRAPPA extends
Sankoff and Blanchette’s breakpoint phylogeny
algorithm [10] into the more biologically-
meaningful inversion phylogeny and provides
a highly-optimized code that can make use of
distributed- and shared-memory parallel systems
(see [1, 2, 6, 7, 8, 11] for details). In [3], Bader
et al. gives the first linear-time algorithm and fast
implementation for computing inversion distance
between two signed permutations. GRAPPA
was run on a 512-processor IBM Linux cluster
with Myrinet and obtained a 512-fold speed-
up (linear speedup with respect to the number of
processors): a complete breakpoint analysis (with
the more demanding inversion distance used in
lieu of breakpoint distance) for the 13 genomes
in the Campanulaceae data set ran in less than
1.5 h in an October 2000 run, for a million-
fold speedup over the original implementation.
The latest version features significantly improved
bounds and new distance correction methods
and, on the same dataset, exhibits a speedup
factor of over one billion. GRAPPA achieves this
speedup through a combination of parallelism
and high-performance algorithm engineering.
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Although such spectacular speedups will not
always be realized, many algorithmic approaches
now in use in the biological, pharmaceutical, and
medical communities may benefit tremendously
from such an application of high-performance
techniques and platforms.

This example indicates the potential of ap-
plying high-performance algorithm engineering
techniques to applications in computational
biology, especially in areas that involve complex
optimizations: Bader’s reimplementation did
not require new algorithms or entirely new
techniques, yet achieved gains that turned an
impractical approach into a usable one.
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Problem Definition

Dealing effectively with applications in large net-
works, it typically requires the efficient solution
of one ore more underlying algorithmic prob-
lems. Due to the size of the network, a consid-
erable effort is inevitable in order to achieve the
desired efficiency in the algorithm.

One of the primary tasks in large network
applications is to answer queries for finding best
routes or paths as efficiently as possible. Quite
often, the challenge is to process a vast number of
such queries on-line: a typical situation encoun-
tered in several real-time applications (e.g., traffic
information systems, public transportation sys-
tems) concerns a query-intensive scenario, where
a central server has to answer a huge number
of on-line customer queries asking for their best
routes (or optimal itineraries). The main goal in
such an application is to reduce the (average)
response time for a query.

Answering a best route (or optimal itinerary)
query translates in computing a minimum cost
(shortest) path on a suitably defined directed
graph (digraph) with nonnegative edge costs.
This in turn implies that the core algorithmic
problem underlying the efficient answering of
queries is the single-source single-target shortest
path problem.

Although the straightforward approach of pre-
computing and storing shortest paths for all pairs
of vertices would enabling the optimal answer-
ing of shortest path queries, the quadratic space
requirements for digraphs with more than 105

vertices makes such an approach prohibitive for
large and very large networks. For this reason, the
main goal of almost all known approaches is to
keep the space requirements as small as possible.
This in turn implies that one can afford a heavy
(in time) preprocessing, which does not blow up
space, in order to speed-up the query time.

The most commonly used approach for an-
swering shortest path queries employs Dijkstra’s
algorithm and/or variants of it. Consequently, the
main challenge is how to reduce the algorithm’s
search-space (number of vertices visited), as this
would immediately yield a better query time.

Key Results

All results discussed concern answering of
optimal (or exact or distance-preserving) shortest
paths under the aforementioned query-intensive
scenario, and are all based on the following
generic approach. A preprocessing of the input
network G D .V;E/ takes place that results in
a data structure of size O.jV j C jEj/ (i.e., linear
to the size of G). The data structure contains
additional information regarding certain shortest
paths that can be used later during querying.

Depending on the pre-computed additional
information as well as on the way a shortest path
query is answered, two approaches can be distin-
guished. In the first approach, graph annotation,
the additional information is attached to vertices
or edges of the graph. Then, speed-up techniques
to Dijkstra’s algorithm are employed that, based
on this information, decide quickly which part
of the graph does not need to be searched. In
the second approach, an auxiliary graph G0

is constructed hierarchically. A shortest path
query is then answered by searching only a small
part of G0, using Dijkstra’s algorithm enhanced
with heuristics to further speed-up the query
time.

In the following, the key results of the
first [3, 4, 9, 11] and the second approach [1, 2,
5, 7, 8, 10] are discussed, as well as results
concerning modeling issues.

First Approach: Graph Annotation
The first work under this approach concerns the
study in [9] on large railway networks. In that
paper, two new heuristics are introduced: the
angle-restriction (that tries to reduce the search
space by taking advantage of the geometric lay-
out of the vertices) and the selection of sta-
tions (a subset of vertices is selected among
which all pairs shortest paths are pre-computed).
These two heuristics along with a combination of
the classical goal-directed or A * search turned
out to be rather efficient. Moreover, they moti-
vated two important generalizations [10, 11] that
gave further improvements to shortest path query
times.
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The full exploitation of geometry-based
heuristics was investigated in [11], where both
street and railway networks are considered. In
that paper, it is shown that the search space
of Dijkstra’s algorithm can be significantly
reduced (to 5–10 % of the initial graph size) by
extracting geometric information from a given
layout of the graph and by encapsulating
pre-computed shortest path information in
resulted geometric objects, called containers.
Moreover, the dynamic case of the problem was
investigated, where edge costs are subject to
change and the geometric containers have to be
updated.

A powerful modification to the classical Dijk-
stra’s algorithm, called reach-based routing, was
presented in [4]. Every vertex is assigned a so-
called reach value that determines whether a par-
ticular vertex will be considered during Dijkstra’s
algorithm. A vertex is excluded from considera-
tion if its reach value is small; that is, if it does
not contribute to any path long enough to be of
use for the current query.

A considerable enhancement of the classical
A * search algorithm using landmarks (selected
vertices like in [9, 10]) and the triangle inequality
with respect to the shortest path distances was
shown in [3]. Landmarks and triangle inequality
help to provide better lower bounds and hence
boost A * search.

Second Approach: Auxiliary Graph
The first work under this approach concerns the
study in [10], where a new hierarchical decompo-
sition technique is introduced called multi-level
graph. A multi-level graph M is a digraph which
is determined by a sequence of subsets of V and
which extends E by adding multiple levels of
edges. This allows to efficiently construct, during
querying, a subgraph ofM which is substantially
smaller than G and in which the shortest path
distance between any of its vertices is equal to the
shortest path distance between the same vertices
in G. Further improvements of this approach have
been presented recently in [1]. A refinement of
the above idea was introduced in [5], where the
multi-level overlay graphs are introduced. In such

a graph, the decomposition hierarchy is not de-
termined by application-specific information as it
happens in [9, 10].

An alternative hierarchical decomposition
technique, called highway hierarchies, was
presented in [7]. The approach takes advantage
of the inherent hierarchy possessed by real-
world road networks and computes a hierarchy
of coarser views of the input graph. Then, the
shortest path query algorithm considers mainly
the (much smaller in size) coarser views, thus
achieving dramatic speed-ups in query time.
A revision and improvement of this method was
given in [8]. A powerful combination of the
highway hierarchies with the ideas in [3] was
reported in [2].

Modeling Issues
The modeling of the original best route (or
optimal itinerary) problem on a large network
to a shortest path problem in a suitably defined
directed graph with appropriate edge costs also
plays a significant role in reducing the query time.
Modeling issues are thoroughly investigated
in [6]. In that paper, the first experimental
comparison of two important approaches (time-
expanded versus time-dependent) is carried out,
along with new extensions of them towards
realistic modeling. In addition, several new
heuristics are introduced to speed-up query
time.

Applications

Answering shortest path queries in large graphs
has a multitude of applications, especially in
traffic information systems under the aforemen-
tioned scenario; that is, a central server has to
answer, as fast as possible, a huge number of
on-line customer queries asking for their best
routes or itineraries. Other applications of the
above scenario involve route planning systems
for cars, bikes and hikers, public transport sys-
tems for itinerary information of scheduled ve-
hicles (like trains or buses), answering queries



Engineering Algorithms for Large Network Applications 633

E

in spatial databases, and web searching. All the
above applications concern real-time systems in
which users continuously enter their requests for
finding their best connections or routes. Hence,
the main goal is to reduce the (average) response
time for answering a query.

Open Problems

Real-world networks increase constantly in size
either as a result of accumulation of more and
more information on them, or as a result of the
digital convergence of media services, commu-
nication networks, and devices. This scaling-up
of networks makes the scalability of the under-
lying algorithms questionable. As the networks
continue to grow, there will be a constant need
for designing faster algorithms to support core
algorithmic problems.

Experimental Results

All papers discussed in section “Key Results”
contain important experimental studies on the
various techniques they investigate.

Data Sets

The data sets used in [6, 11] are available from
http://lso-compendium.cti.gr/ under problems 26
and 20, respectively.

The data sets used in [1, 2] are available from
http://www.dis.uniroma1.it/~challenge9/.

URL to Code

The code used in [9] is available from http://doi.
acm.org/10.1145/351827.384254.

The code used in [6, 11] is available from
http://lso-compendium.cti.gr/ under problems 26
and 20, respectively.

The code used in [3] is available from http://
www.avglab.com/andrew/soft.html.
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Problem Definition

Transforming a theoretical geometric algorithm
into an effective computer program abounds with
hurdles. Overcoming these difficulties is the con-
cern of engineering geometric algorithms, which
deals, more generally, with the design and imple-
mentation of certified and efficient solutions to
algorithmic problems of geometric nature. Typ-
ical problems in this family include the con-
struction of Voronoi diagrams, triangulations, ar-
rangements of curves and surfaces (namely, space
subdivisions), two- or higher-dimensional search
structures, convex hulls and more.

Geometric algorithms strongly couple topo-
logical/combinatorial structures (e.g., a graph de-
scribing the triangulation of a set of points) on
the one hand, with numerical information (e.g.,
the coordinates of the vertices of the triangula-
tion) on the other. Slight errors in the numerical
calculations, which in many areas of science
and engineering can be tolerated, may lead to
detrimental mistakes in the topological structure,
causing the computer program to crash, to loop
infinitely, or plainly to give wrong results.

Straightforward implementation of geometric
algorithms as they appear in a textbook, using

standard machine arithmetic, is most likely to
fail. This entry is concerned only with certified
solutions, namely, solutions that are guaranteed
to construct the exact desired structure or a good
approximation of it; such solutions are often
referred to as robust.

The goal of engineering geometric algorithms
can be restated as follows: Design and implement
geometric algorithms that are at once robust and
efficient in practice.

Much of the difficulty in adapting in practice
the existing vast algorithmic literature in compu-
tational geometry comes from the assumptions
that are typically made in the theoretical study
of geometric algorithms that (1) the input is in
general position, namely, degenerate input is pre-
cluded, (2) computation is performed on an ideal
computer that can carry out real arithmetic to in-
finite precision (so-called real RAM), and (3) the
cost of operating on a small number of simple
geometric objects is “unit” time (e.g., equal cost
is assigned to intersecting three spheres and to
comparing two integer numbers).

Now, in real life, geometric input is quite
often degenerate, machine precision is limited,
and operations on a small number of simple
geometric objects within the same algorithm may
differ 100-fold and more in the time they take
to execute (when aiming for certified results).
Just implementing an algorithm carefully may
not suffice and often redesign is called for.

Key Results

Tremendous efforts have been invested in
the design and implementation of robust
computational-geometry software in recent years.
Two notable large-scale efforts are the CGAL

library [1] and the geometric part of the LEDA

library [14]. These are jointly reviewed in the
survey by Kettner and Näher [13]. Numerous
other relevant projects, which for space
constraints are not reviewed here, are surveyed by
Joswig [12] with extensive references to papers
and Web sites.

A fundamental engineering decision to
take when coming to implement a geometric
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algorithm is what will the underlying arithmetic
be, that is, whether to opt for exact computation
or use the machine floating-point arithmetic.
(Other less commonly used options exist as well.)
To date, the CGAL and LEDA libraries are almost
exclusively based on exact computation. One
of the reasons for this exclusivity is that exact
computation emulates the ideal computer (for
restricted problems) and makes the adaptation of
algorithms from theory to software easier. This
is facilitated by major headway in developing
tools for efficient computation with rational
or algebraic numbers (GMP [3], LEDA [14],
CORE [2] and more). On top of these tools, clever
techniques for reducing the amount of exact com-
putation were developed, such as floating-point
filters and the higher-level geometric filtering.

The alternative is to use the machine floating-
point arithmetic, having the advantage of be-
ing very fast. However, it is nowhere near the
ideal infinite precision arithmetic assumed in the
theoretical study of geometric algorithms and
algorithms have to be carefully redesigned. See,
for example, the discussion about imprecision in
the manual of QHULL, the convex hull program
by Barber et al. [5]. Over the years a variety
of specially tailored floating-point variants of
algorithms have been proposed, for example, the
carefully crafted VRONI package by Held [11],
which computes the Voronoi diagram of points
and line segments using standard floating-point
arithmetic, based on the topology-oriented ap-
proach of Sugihara and Iri. While VRONI works
very well in practice, it is not theoretically cer-
tified. Controlled perturbation [9] emerges as
a systematic method to produce certified ap-
proximations of complex geometric constructs
while using floating-point arithmetic: the input
is perturbed such that all predicates are com-
puted accurately even with the limited-precision
machine arithmetic, and a method is given to
bound the necessary magnitude of perturbation
that will guarantee the successful completion of
the computation.

Another decision to take is how to represent
the output of the algorithm, where the major issue
is typically how to represent the coordinates of
vertices of the output structure(s). Interestingly,

this question is crucial when using exact com-
putation since there the output coordinates can
be prohibitively large or simply impossible to
finitely enumerate. (One should note though that
many geometric algorithms are selective only,
namely, they do not produce new geometric en-
tities but just select and order subsets of the
input coordinates. For example, the output of an
algorithm for computing the convex hull of a set
of points in the plane is an ordering of a subset
of the input points. No new point is computed.
The discussion in this paragraph mostly applies to
algorithms that output new geometric constructs,
such as the intersection point of two lines.) But
even when using floating-point arithmetic, one
may prefer to have a more compact bit-size rep-
resentation than, say, machine doubles. In this
direction there is an effective, well-studied so-
lution for the case of polygonal objects in the
plane, called snap rounding, where vertices and
intersection points are snapped to grid vertices
while retaining certain topological properties of
the exact desired structure. Rounding with guar-
antees is in general a very difficult problem,
and already for polyhedral objects in 3-space the
current attempts at generalizing snap rounding
are very costly (increasing the complexity of
the rounded objects to the third, or even higher,
power).

Then there are a variety of engineering issues
depending on the problem at hand. Following
are two examples of engineering studies where
the experience in practice is different from what
the asymptotic resource measures imply. The
examples relate to fundamental steps in many
geometric algorithms: decomposition and point
location.

Decomposition
A basic step in many geometric algorithms is
to decompose a (possibly complex) geometric
object into simpler subobjects, where each
subobject typically has constant descriptive
complexity. A well-known example is the
triangulation of a polygon. The choice of
decomposition may have a significant effect on
the efficiency in practice of various algorithms
that rely on decomposition. Such is the case
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when constructing Minkowski sums of polygons
in the plane. The Minkowski sum of two sets A
and B in R

d is the vector sum of the two sets
A˚ B D faC bja 2 A; b 2 Bg. The simplest
approach to computing Minkowski sums of
two polygons in the plane proceeds in three
steps: triangulate each polygon, then compute
the sum of each triangle of one polygon with
each triangle of the other, and finally take
the union of all the subsums. In asymptotic
measures, the choice of triangulation (over
alternative decompositions) has no effect. In
practice though, triangulation is probably the
worst choice compared with other convex
decompositions, even fairly simple heuristic
ones (not necessarily optimal), as shown by
experiments on a dozen different decomposition
methods [4]. The explanation is that triangulation
increases the overall complexity of the subsums
and in turn makes the union stage more complex –
indeed by a constant factor, but a noticeable
factor in practice. Similar phenomena were
observed in other situations as well. For
example, when using the prevalent vertical
decomposition of arrangements – often it is too
costly compared with sparser decompositions
(i.e., decompositions that add fewer extra
features).

Point Location
A recurring problem in geometric computing
is to process given planar subdivision (planar
map), so as to efficiently answer point-location
queries: Given a point q in the plane, which
face of the map contains q? Over the years
a variety of point-location algorithms for
planar maps were implemented in CGAL, in
particular, a hierarchical search structure that
guarantees logarithmic query time after expected
O.n logn/ preprocessing time of a map with
n edges. This algorithm is referred to in CGAL

as the RIC point-location algorithm after the
preprocessing method which uses randomized
incremental construction. Several simpler, easier-
to-program algorithms for point location were
also implemented. None of the latter beats the
RIC algorithm in query time. However, the RIC
is by far the slowest of all the implemented

algorithms in terms of preprocessing, which in
many scenarios renders it less effective. One
of the simpler methods devised is a variant
of the well-known jump-and-walk approach to
point location. The algorithm scatters points
(so-called landmarks) in the map and maintains
the landmarks (together with their containing
faces) in a nearest-neighbor search structure.
Once a query q is issued it finds the nearest
landmark ` to q, and “walks” in the map from
` toward q along the straight line segment
connecting them. This landmark approach offers
query time that is only slightly more expensive
than the RIC method while being very efficient
in preprocessing. The full details can be found
in [10]. This is yet another consideration when
designing (geometric) algorithms: the cost of
preprocessing (and storage) versus the cost of
a query. Quite often the effective (practical)
tradeoff between these costs needs to be deduced
experimentally.

Applications

Geometric algorithms are useful in many areas.
Triangulations and arrangements are examples
of basic constructs that have been intensively
studied in computational geometry, carefully im-
plemented and experimented with, as well as used
in diverse applications.

Triangulations
Triangulations in two and three dimensions
are implemented in CGAL [7]. In fact, CGAL

offers many variants of triangulations useful for
different applications. Among the applications
where CGAL triangulations are employed are
meshing, molecular modeling, meteorology,
photogrammetry, and geographic information
systems (GIS). For other available triangulation
packages, see the survey by Joswig [12].

Arrangements
Arrangements of curves in the plane are
supported by CGAL [15], as well as en-
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velopes of surfaces in three-dimensional space.
Forthcoming is support also for arrangements
of curves on surfaces. CGAL arrangements
have been used in motion planning algorithms,
computer-aided design and manufacturing, GIS,
computer graphics, and more (see Chap. 1 in [6]).

Open Problems

In spite of the significant progress in certified im-
plementation of effective geometric algorithms,
the existing theoretical algorithmic solutions for
many problems still need adaptation or redesign
to be useful in practice. One example where
progress can have wide repercussions is devising
effective decompositions for curved geometric
objects (e.g., arrangements) in the plane and for
higher-dimensional objects. As mentioned ear-
lier, suitable decompositions can have a signif-
icant effect on the performance of geometric
algorithms in practice.

Certified fixed-precision geometric computing
lags behind the exact computing paradigm in
terms of available robust software, and moving
forward in this direction is a major challenge.
For example, creating a certified floating-point
counterpart to CGAL is a desirable (and highly
intricate) task.

Another important tool that is largely missing
is consistent and efficient rounding of geometric
objects. As mentioned earlier, a fairly satisfactory
solution exists for polygonal objects in the plane.
Good techniques are missing for curved objects
in the plane and for higher-dimensional objects
(both linear and curved).

URL to Code

http://www.cgal.org

Cross-References

�LEDA: a Library of Efficient Algorithms
�Robust Geometric Computation

Recommended Reading

Conferences publishing papers on the topic in-
clude the ACM Symposium on Computational
Geometry (SoCG), the Workshop on Algorithm
Engineering and Experiments (ALENEX), the
Engineering and Applications Track of the Eu-
ropean Symposium on Algorithms (ESA), its
predecessor and the Workshop on Experimental
Algorithms (WEA). Relevant journals include
the ACM Journal on Experimental Algorithmics,
Computational Geometry: Theory and Applica-
tions and the International Journal of Computa-
tional Geometry and Applications. A wide range
of relevant aspects are discussed in the recent
book edited by Boissonnat and Teillaud [6], titled
Effective Computational Geometry for Curves
and Surfaces.

1. The CGAL project homepage. http://www.cgal.org/.
Accessed 6 Apr 2008

2. The CORE library homepage. http://www.cs.nyu.
edu/exact/core/. Accessed 6 Apr 2008

3. The GMP webpage. http://gmplib.org/. Accessed 6
Apr 2008

4. Agarwal PK, Flato E, Halperin D (2002) Polygon de-
composition for efficient construction of Minkowski
sums. Comput Geom Theory Appl 21(1–2):39–61

5. Barber CB, Dobkin DP, Huhdanpaa HT (2008) Im-
precision in QHULL. http://www.qhull.org/html/qh-
impre.htm. Accessed 6 Apr 2008

6. Boissonnat J-D, Teillaud M (eds) (2006) Effective
computational geometry for curves and surfaces.
Springer, Berlin

7. Boissonat J-D, Devillers O, Pion S, Teillaud M,
Yvinec M (2002) Triangulations in CGAL. Comput
Geom Theory Appl 22(1–3):5–19

8. Fabri A, Giezeman G-J, Kettner L, Schirra S, Schön-
herr S (2000) On the design of CGAL a computa-
tional geometry algorithms library. Softw Pract Exp
30(11):1167–1202

9. Halperin D, Leiserowitz E (2004) Controlled per-
turbation for arrangements of circles. Int J Comput
Geom Appl 14(4–5):277–310

10. Haran I, Halperin D (2006) An experimental study
of point location in general planar arrangements. In:
Proceedings of 8th workshop on algorithm engineer-
ing and experiments, Miami, pp 16–25

11. Held M (2001) VRONI: an engineering approach
to the reliable and efficient computation of Voronoi
diagrams of points and line segments. Comput Geom
Theory Appl 18(2):95–123

12. Joswig M (2004) Software. In: Goodman JE,
O’Rourke J (eds) Handbook of discrete and compu-
tational geometry, chapter 64, 2nd edn. Chapman &
Hall/CRC, Boca Raton, pp 1415–1433

http://www.cgal.org
http://dx.doi.org/10.1007/978-1-4939-2864-4_200
http://dx.doi.org/10.1007/978-1-4939-2864-4_349
http://www.cgal.org/
http://www.cs.nyu.edu/exact/core/
http://www.cs.nyu.edu/exact/core/
http://gmplib.org/
http://www.qhull.org/html/qh-impre.htm
http://www.qhull.org/html/qh-impre.htm


638 Enumeration of Non-crossing Geometric Graphs

13. Kettner L, Näher S (2004) Two computational geom-
etry libraries: LEDA and CGAL. In: Goodman JE,
O’Rourke J (eds) Handbook of discrete and compu-
tational geometry, chapter 65, 2nd edn. Chapman &
Hall/CRC, Boca Raton, pp 1435–1463

14. Mehlhorn K, Näher S (2000) LEDA: a platform for
combinatorial and geometric computing. Cambridge
University Press, Cambridge

15. Wein R, Fogel E, Zukerman B, Halperin D
(2007) Advanced programming techniques applied to
CGAL’s arrangement package. Comput Geom The-
ory Appl 36(1–2):37–63

Enumeration of Non-crossing
Geometric Graphs

Shin-ichi Tanigawa
Research Institute for Mathematical Sciences
(RIMS), Kyoto University, Kyoto, Japan

Keywords

Enumeration; Non-crossing (crossing-free) geo-
metric graphs; Triangulations

Years and Authors of Summarized
Original Work

2009; Katoh, Tanigawa
2014; Wettstein

Problem Definition

Let P be a set of n points in the plane in general
position, i.e., no three points are collinear. A
geometric graph on P is a graph on the vertex set
P whose edges are straight-line segments con-
necting points in P . A geometric graph is called
non-crossing (or crossing-free) if any pair of its
edges does not have a point in common except
possibly their endpoints. We denote by P.P / the
set of all non-crossing geometric graphs on P
(which are also called plane straight-line graphs
on P ). A graph class C.P / 	 P.P / can be
defined by imposing additional properties such
as connectivity, degree bound, or cycle-freeness.
Examples of C.P / are the set of triangulations
(i.e., inclusion-wise maximal graphs in P.P /),

the set of non-crossing perfect matchings, the set
of non-crossing spanning k-connected graphs,
the set of non-crossing spanning trees, and the
set of non-crossing spanning cycles (i.e., sim-
ple polygons). The problem is to enumerate all
graphs in C.P / for a given set P of n points in
the plane.

The following notations will be used to
denote the cardinality of C.P /: tri.P / for
triangulations, pg.P / for plane straight-line
graphs, st.P / for non-crossing spanning trees,
and cg.P / for non-crossing spanning connected
graphs.

Key Results

Enumeration of Triangulations
The first efficient enumeration algorithm for tri-
angulations was given by Avis and Fukuda [3] as
an application of their reverse search technique.
The algorithm relies on well-known properties of
Delaunay triangulations.

A triangulation T on P is called Delaunay if
no point in P is contained in the interior of the
circumcircle of a triangle in T . If it is assumed for
simplicity that no four points in P lie on a circle,
then the Delaunay triangulation on P exists and
is unique. The Delaunay triangulation has the
lexicographically largest angle vector among all
triangulations on P , where the angle vector of a
triangulation is the list of all the angles sorted in
nondecreasing order.

For a triangulation T , a Lawson edge is an
edge ab which is incident to two triangles, say
abc and abd in T , and the circumcircle of abc
contains d in its interior. Flipping a Lawson
edge ab (i.e., replacing ab with another diagonal
edge cd ) always creates a triangulation having a
lexicographically larger angle vector. Moreover a
triangulation has a Lawson edge if and only if it
is not Delaunay. In other words, any triangulation
can be converted to the Delaunay triangulation by
flipping Lawson edges.

In the algorithm by Avis and Fukuda, a rooted
search tree on the set of triangulations is defined
such that the root is the Delaunay triangulation
and the parent of a non-Delaunay triangulation T
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is a triangulation obtained by flipping the smallest
Lawson edge in T (assuming a fixed total order-
ing on edges). Since the Delaunay triangulation
can be computed inO.n logn/ time, all the trian-
gulations can be enumerated by tracing the rooted
search tree based on the reverse search technique.
A careful implementation achieves O.n � tr.P //
time with O.n/ space.

An improved algorithm was given by
Bespamyatnikh [5], which runs in O.log logn �
tr.P // time with O.n/ space. His algorithm
is also based on the reverse search technique,
but the rooted search tree is defined by using
the lexicographical ordering of edge vectors
rather than angle vectors. This approach was
also applied to the enumeration of pointed
pseudo-triangulations [4]. See [6] for another
approach.

Enumeration of Non-crossing Geometric
Graphs
In [3], Avis and Fukuda also developed an enu-
meration algorithm for non-crossing spanning
trees, whose running time is O.n3 � sp.P //.
This was improved to O.n logn � sp.P // by
Aichholzer et al. [1]. They also gave enumeration
algorithms for plane straight-line graphs and non-
crossing spanning connected graphs with running
time O.n logn � pg.P // and O.n logn � sc.P //,
respectively.

Katoh and Tangiawa [8] proposed a simple
enumeration technique for wider classes of non-
crossing geometric graphs. The same approach
was independently given by Razen and Welzl [9]
for counting the number of plane straight-line
graphs, and the following description in terms of
Delaunay triangulations is from [9].

Since each graph in C.P / is a subgraph of
a triangulation, one can enumerate all graphs in
C.P / by first enumerating all triangulations and
then enumerating all graphs in C.P / in each
triangulation. The output may contain duplicates,
but one can avoid duplicates by enumerating only
graphs in fG 2 C.P / j L.T / 	 E.G/ 	 E.T /g
for each triangulation T , where L.T / denotes the
set of the Lawson edges in T . This enumera-
tion framework leads to an algorithm with time
complexity O..tpreC log logn/tri.P /C t � c.P //

and space complexity O.n C s/ provided that
graphs in fG 2 C.G/ j L.T / 	 E.G/ 	

E.T /g can be enumerated inO.t/ time per graph
with O.tpre/ time preprocessing and O.s/ space
for each triangulation T . For example, in the
case of non-crossing spanning trees, one can
use a fast enumeration algorithm for spanning
trees in a given undirected graph to solve each
subproblem, and the current best implementa-
tion gives an enumeration algorithm for non-
crossing spanning trees with time complexity
O.n � tri.P /C st.P //.

For plane straight-line graphs and spanning
connected graphs, pg.P / � .

p
8/ntri.P / [9]

and cs.P / � 1:51ntri.P / [8] hold for any
P in general position. Hence tri.P / is domi-
nated by pg.P / and cs.P /, respectively, and
plane straight-line graphs or non-crossing span-
ning connected graphs can be enumerated in
constant time on average with O.n/ space [8].
The same technique can be applied to the set of
non-crossing spanning 2-connected graphs. It is
not known whether there is a constant c > 1 such
that st.P / � cntri.P / for every P in general
position.

In [8] an approach that avoids enumerating all
triangulations was also discussed. Suppose that a
nonempty subset I of P.P / satisfies a monotone
property, i.e., for every G;G0 2 P.P / with
G 	 G0, G0 2 I implies G 2 I, and suppose
that C.P / is the set of all maximal elements in
I. Then all graphs in C.P / can be enumerated
just by enumerating all triangulations T on P
with L.T / 2 I, and this can be done efficiently
based on the reverse search technique. This ap-
proach leads to an algorithm for enumerating
non-crossing minimally rigid graphs in O.n2/

time per output with O.n/ space, where a graph
G D .V;E/ is called minimally rigid if jEj D
2jV j � 3 and jE 0j � 2jV 0j � 3 for any subgraph
G0 D .V 0; E 0/ with jV 0j � 2.

Enumeration of Non-crossing Perfect
Matchings
Wettstein [10] proposed a new enumeration (and
counting) technique for non-crossing geometric
graphs. This is motivated from a counting
algorithm of triangulations by Alvarez and
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Seidel [2] and can be used for enumerating,
e.g., non-crossing perfect matchings, plane
straight-line graphs, convex subdivisions, and
triangulations. The following is a sketch of the
algorithm for non-crossing perfect matchings.

A matching can be reduced to an empty graph
by removing edges one by one. By fixing a rule
for the removing edge in each matching, one can
define a rooted search tree T on the set of non-
crossing matchings, and the set of non-crossing
matchings can be enumerated by tracing T . To
reduce time complexity, the first idea is to trace
only a subgraph T 0 of T induced by a subclass
of non-crossing matchings by a clever choice of
removing edges. Another idea is a compression
of the search tree T 0 by using an equivalence
relation on the subclass of non-crossing match-
ings. The resulting graph G is a digraph on the set
of equivalence classes, where there is a one-to-
one correspondence between non-crossing per-
fect matchings and directed paths of length n=2
from the root. A crucial observation is that G has
at most 2nn3 edges while the number of non-
crossing perfect matchings is known to be at least
poly.n/ � 2n for any P in general position [7].
Hence non-crossing perfect matchings can be
enumerated in polynomial time on average by
first constructing G and then enumerating all the
dipaths of length n=2 in G. It was also noted in
[10] that the algorithm can be polynomial-time
delay, but still the space complexity is exponen-
tial in n.

Open Problems

A challenging open problem is to design an
efficient enumeration algorithm for the set of
non-crossing spanning cycles, the set of highly
connected triangulations, or the set of degree-
bounded triangulations or non-crossing spanning
trees. It is also not known whether triangulations
can be enumerated in constant time per output.
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Problem Definition

Let G D .V;E/ be a (directed or undirected)
graph with n D jV j vertices and m D jEj

edges. A walk of length k is a sequence of
vertices v0; : : : ; vk 2 V such that vi and viC1 are
connected by an edge of E, for any 0 � i < k.
A path � of length k is a walk v0; : : : ; vk such
that any two vertices vi and vj are distinct, for
0 � i < j � k: this is also called st-path where
s D v0 and t D vk . A cycle (or, equivalently,
elementary circuit) C of length k C 1 is a path
v0; : : : ; vk such that vk and v0 are connected by
an edge of E.

We denote by Pst .G/ the set of st-paths in
G for any two given vertices s; t 2 V and
by C.G/ the set of cycles in G. Given a graph
G, the problem of st-path enumeration asks for
generating all the paths in Pst .G/. The problem
of cycle enumeration asks for generating all the
cycles in C.G/.

We denote by S.G/ the set of spanning trees
in a connected graph G, where a spanning tree
T 	 E is a set of jT j D n � 1 edges such that
no cycles are contained in T and each vertex in
V is incident to at least an edge of T . Given a
connected graph G, the problem of spanning tree
enumeration asks for generating all the spanning
trees in S.G/.

Typical costs of enumeration algorithms are
proportional to the output size times a polynomial
function of the graph size. Sometimes enumera-
tion is meant with the stronger property of listing,
where each solution is explicitly output. In the
latter case, we define an algorithm for a listing
problem to be optimally output sensitive if its

running time is O.n C m C K/ where K is the
following output cost for the enumeration prob-
lem at hand, namely, Pst .G/, C.G/, or S.G/.

• K D
P

�2Pst .G/ j�j where j�j is the number
of nodes in the st-path � .

• K D
P

C2C.G/ jC j where jC j is the number
nodes in the cycle C .

• K D
P

T2S.G/ jT j D jS.G/j � .n � 1/ for
spanning trees.

Although the above is a notion of optimality
for listing solutions explicitly, it is possible in
some cases that the enumeration algorithm can
efficiently encode the differences between con-
secutive solutions in the sequence produced by
the enumeration. This is the case of spanning
trees, where a cost of K D jS.G/j is possible
when they are implicitly represented during enu-
meration. This is called CAT (constant amortized
time) enumeration in [28].

Key Results

Some possible approaches to attack the enumer-
ation problems are listed below, where the term
“search” is meant as an exploration of the space
of solutions.

Backtrack search. A backtracking algorithm
finds the solutions for a listing problem by ex-
ploring the search space and abandoning a partial
solution (thus the name “backtracking”) that can-
not be completed to a valid one.

Binary partition search. An algorithm divides
the search space into two parts. In the case of
graphs, this is generally done by taking an edge
(or a vertex) and (i) searching for all solutions that
include that edge (resp. vertex) and (ii) searching
for all solutions that do not include that edge
(resp. vertex). Point (i) can sometimes be imple-
mented by contracting the edge, i.e., merging the
endpoints of the edge and their adjacency list.

Differential encoding search. The space of
solutions is encoded in such a way that consec-
utive solutions differ by a constant number of
modifications. Although not every enumeration
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problem has properties that allow such encoding,
this technique leads to very efficient algorithms.

Reverse search. This is a general technique to
explore the space of solutions by reversing a local
search algorithm. This approach implicitly gener-
ates a tree of the search space that is traversed by
the reverse search algorithm. One of the proper-
ties of this tree is that it has bounded height, a
useful fact for proving the time complexity of the
algorithm.

Although there is some literature on tech-
niques for enumeration problems [38, 39, 41],
many more techniques and “tricks” have been in-
troduced when attacking particular problems. For
a deep understanding of the topic, the reader is
recommended to review the work of researchers
such as David Avis, Komei Fukuda, Shin-ichi
Nakano, and Takeaki Uno.

Path and Cycles
Listing all the cycles in a graph is a classical
problem whose efficient solutions date back to
the early 1970s. In particular, at the turn of the
1970s, several algorithms for enumerating all
cycles of an undirected graph were proposed.
There is a vast body of work, and the majority of
the algorithms listing all the cycles can be divided
into the following three classes (see [1, 23] for
excellent surveys).

Search space algorithms. Cycles are looked
for in an appropriate search space. In the case
of undirected graphs, the cycle vector space [6]
turned out to be the most promising choice: from
a basis for this space, all vectors are computed,
and it is tested whether they are a cycle. Since the
algorithm introduced in [43], many algorithms
have been proposed: however, the complexity of
these algorithms turns out to be exponential in the
dimension of the vector space and thus in n. For
the special case of planar graphs, the paper in [34]
describes an algorithm listing all the cycles in
O..jC.G/j C 1/n/ time.

Backtrack algorithms. All paths are generated
by backtrack, and, for each path, it is tested
whether it is a cycle. One of the first algo-
rithms based on this approach is the one pro-
posed in [37], which is however exponential in
jC.G/j. By adding a simple pruning strategy,

this algorithm has been successively modified
in [36]: it lists all the cycles in O.nm.jC.G/j C
1// time. Further improvements were proposed
in [16], [35], and [27], leading to O..jC.G/j C
1/.m C n// time algorithms that work for both
directed and undirected graphs. Apart from the
algorithm in [37], all the algorithms based on this
approach are polynomial-time delay, that is, the
time elapsed between the outputting of two cycles
is polynomial in the size of the graph (more
precisely, O.nm/ in the case of the algorithm
of [36] and O.m/ in the case of the other three
algorithms).

Algorithms using the powers of the adjacency
matrix. This approach uses the so-called variable
adjacency matrix, that is, the formal sum of edges
joining two vertices. A nonzero element of the
pth power of this matrix is the sum of all walks of
length p: hence, to compute all cycles, we com-
pute the nth power of the variable adjacency ma-
trix. This approach is not very efficient because
of the non-simple walks. All algorithms based on
this approach (e.g., [26] and [45]) basically differ
only on the way they avoid to consider walks that
are neither paths nor cycles.

For directed graphs, the best known algorithm
for listing cycles is Johnson’s [16]. It builds
upon Tarjan’s backtracking search [36], where
the search starts from the least vertex of each
strongly connected component. After that, a new
strongly connected component is discovered, and
the search starts again from the least vertex in it.
When exploring a strongly connected component
with a recursive backtracking procedure, it uses
an enhanced marking system to avoid visiting the
same cycle multiple times. A vertex is marked
each time it enters the backtracking stack. Upon
leaving the stack, if a cycle is found, then the
vertex is unmarked. Otherwise, it remains marked
until another vertex involved in a cycle is popped
from the stack, and there exists a path of marked
vertices (not in the stack) between these two
vertices. This strategy is implemented using a
collection of listsB , one list per vertex containing
its marked neighbors not in the stack. Unmarking
is done by a recursive procedure. The complexity
of the algorithm isO.nCmCjC.G/jm/ time and
O.nCm/ space.
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For undirected graphs, Johnson’s bound can
be improved with an optimal output-sensitive
algorithm [2]. First of all, the cycle enumeration
problem is reduced to the st-path enumeration by
considering any spanning tree of the given graph
G and its non-tree edges b1; b2; : : : ; br . Then, for
i D 1; 2; : : : ; r , the cycles in C.G/ can be listed
as st-paths in G n fb1; : : : ; big, where s and t
are the endpoint of non-tree edge bi . Hence, the
subproblem to be solved with an optimal output-
sensitive algorithm is the st-path enumeration
problem. Binary partition search is adopted to
avoid duplicated output, but the additional ingre-
dient is the notion of certificate, which is a suit-
able data structure that maintains the biconnected
components of the residual graph and guarantees
that each recursive call thus produces at least
one solution. Its amortized analysis is based on
a lower bound on the number of st-paths that can
be listed in the residual graph, so as to absorb the
cost of maintaining the certificate. The final cost
isO.mCnC

P
�2Pst .G/ j�j/ time andO.nCm/

space, which is optimal for listing.

Spanning Trees
Listing combinatorial structures in graphs has
been a long-time problem of interest. In his 1970
book [25], Moon remarks that “many papers have
been written giving algorithms, of varying de-
grees of usefulness, for listing the spanning trees
of a graph” (citation taken from [28]). Among
others, he cites [7, 9, 10, 13, 42] – some of these
early papers date back to the beginning of the
twentieth century. More recently, in the 1960s,
Minty proposed an algorithm to list all spanning
trees [24].

The first algorithmic solutions appeared in the
1960s [24] and the combinatorial papers even
much earlier [25]. Other results from Welch,
Tiernan, and Tarjan for this and other problems
soon followed [36, 37, 43] and used backtracking
search. Read and Tarjan presented an algorithm
taking O.mC nC jS.G/j �m/ time and O.mC
n/ space [27]. Gabow and Myers proposed the
first algorithm [11] which is optimal when the
spanning trees are explicitly listed, takingO.mC
nC jS.G/j � n/ time and O.mC n/ space.

When the spanning trees are implicitly
enumerated, Kapoor and Ramesh [17] showed
that an elegant incremental representation is
possible by storing just the O.1/ information
needed to reconstruct a spanning tree from
the previously enumerated one, requiring a
total of O.m C n C jS.G/j/ time and O.mn/
space [17], later reduced to O.m/ space by
Shioura et al. [32]. These methods use the reverse
search where the elements are the spanning trees.
The rule for moving along these elements and
for their differential encoding is based upon
the observation that adding a non-tree edge
and removing a tree edge of the cycle thus
formed produces another spanning tree from
the current one. Some machinery is needed to
avoid duplicated spanning trees and to spend
O.1/ amortized cost per generated spanning
tree.

A simplification of the incremental enumera-
tion of spanning trees is based on matroids and
presented by Uno [39]. It is a binary partition
search giving rise to a binary enumeration tree,
where the two children calls generated by the
current call correspond to the fact that the current
edge is either contracted in O.n/ time or deleted
in O.m � n/ time. There is a trimming and
balancing phase in O.n.m � n// time: trimming
removes the edges that do not appear in any of
the spanning trees that will be generated by the
current recursive call and contracts the edges that
appear in all of these spanning trees. Balancing
splits the recursive calls as in the divide-and-
conquer paradigm. A crucial property proved
in [39] is that the residual graph will generate at
least ˝.n.m � n// spanning trees, and thus the
total cost per call, which is dominated by trim-
ming and balancing, can be amortized as O.1/
per spanning tree. The method in [39] works
also for directed spanning trees (arborescences)
with an amortizedO.logn/ time cost per directed
spanning tree.

Applications

The classical problem of listing all the cycles of a
graph has been extensively studied for its many
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applications in several fields, ranging from the
mechanical analysis of chemical structures [33]
to the design and analysis of reliable commu-
nication networks and the graph isomorphism
problem [43]. Almost 40 years after, the problem
of efficiently listing all cycles of a graph is still
an active area of research (e.g., [14,15,22,29,30,
44]). New application areas have emerged in the
last decade, such as bioinformatics: for example,
two algorithms for this problem have been pro-
posed in [20] and [21] while studying biological
interaction graphs, with important network prop-
erties derived for feedback loops, signaling paths,
and dependency matrix, to name a few.

When considering weighted cycles, the paper
in [19] proves that there is no polynomial total
time algorithm (unless P D NP ) to enumer-
ate negative-weight (simple) cycles in directed
weighted graphs. Uno [40] and Ferreira et al. [8]
considered the enumeration of chordless cycles
and paths. A chordless or induced cycle (resp.,
path) in an undirected graph is a cycle (resp.,
path) such that the subgraph induced by its ver-
tices contains exactly the edges of the cycle
(resp., path). Both chordless cycles and paths are
very natural structures in undirected graphs with
an important history, appearing in many papers
in graph theory related to chordal graphs, perfect
graphs, and co-graphs (e.g., [4, 5, 31]), as well
as many NP-complete problems involving them
(e.g., [3, 12, 18]).

As for spanning trees, we refer to the section
“K-best enumeration” of this book.
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Problem Definition

A priority queue is an abstract data structure
that maintains a set Q of elements, each with an
associated value called a key, under the following
set of operations [5, 6]:

insert. Q; x; k /: Inserts element x with key k
into Q.

find-min. Q /: Returns an element ofQ with the
minimum key but does not change Q.

delete. Q; x; k /: Deletes element x with key
k from Q.

Additionally, the following operations are often
supported:
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delete-min. Q /: Deletes an element with the
minimum key value from Q and returns it.

decrease-key. Q; x; k /: Decreases the current
key k0 of x to k assuming k < k0.

meld. Q1 ;Q2 /: Given priority queues Q1 and
Q2, returns the priority queue Q1 [Q2.

Observe that a delete-min can be implemented as
a find-min followed by a delete, a decrease-key
as a delete followed by an insert, and a meld as
a series of find-min, delete and insert. However,
more efficient implementations of decrease-key
and meld often exist [5, 6].

Priority queues have many practical ap-
plications including event-driven simulation,
job scheduling on a shared computer, and
computation of shortest paths, minimum
spanning forests, minimum cost matching,
optimum branching, etc. [5, 6].

A priority queue can trivially be used for sort-
ing by first inserting all keys to be sorted into the
priority queue and then by repeatedly extracting
the current minimum. The major contribution
of Mikkel Thorup’s 2002 article (Full version
published in 2007) titled “Equivalence between
Priority Queues and Sorting” [17] is a reduction
showing that the converse is also true. Taken
together, these two results imply that priority
queues are computationally equivalent to sorting,
that is, asymptotically, the per key cost of sorting
is the update time of a priority queue.

A result similar to those in the current work
[17] was presented earlier by the same author [14]
which resulted in monotone priority queues (i.e.,
meaning that the extracted minimums are non-
decreasing) with amortized time bounds only. In
contrast, the current work [17] constructs general
priority queues with worst-case bounds.

In addition to establishing the equivalence
between priority queues and sorting, Thorup’s
reductions [17] are also used to translate several
known sorting results into new results on priority
queues.

Background
Some relevant background information is
summarized below which will be useful in
understanding the key results in section “Key
Results.”

• A standard word RAM models what one
programs in a standard imperative program-
ming language such as C. In addition to
direct and indirect addressing and conditional
jumps, there are functions, such as addition
and multiplication, operating on a constant
number of words. The memory is divided
into words, addressed linearly starting from 0.
The running time of a program is the number
of instructions executed and the space is the
maximal address used. The word length is a
machine-dependent parameter which is big
enough to hold a key and at least logarithmic
in the number of input keys so that they can
be addressed.

• A pointer machine is like the word RAM
except that addresses cannot be manipulated.

• The AC0 complexity class consists of
constant-depth circuits with unlimited fan-
in [18]. Standard AC0 operations refer to
the operations available via C but where the
functions on words are in AC0. For example,
this includes addition but not multiplication.

• Integer keys will refer to nonnegative integers.
However, if the input keys are signed integers,
the correct ordering of the keys is obtained
by flipping their sign bits and interpreting
them as unsigned integers. Similar tricks work
for floating point numbers and integer frac-
tions [14].

• The atomic heaps of Fredman and Willard
[7] are used in one of Thorup’s reductions
[17]. These heaps can support updates and
searches in sets of O

�
log2 n

�
keys in O .1/

worst-case time [20]. However, atomic heaps
use multiplication operations which are not
in AC0.

Key Results

The main results in this paper are two reductions
from priority queues to sorting. The stronger
of the two, stated in Theorem 1, is for integer
priority queues running on a standard word RAM.

Theorem 1 If for some nondecreasing function
S , up to n integer keys can be sorted in S.n/
time per key, an integer priority queue can be im-
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plemented supporting find-min in constant time,
and updates, i.e., insert and delete, in O .S.n//
time. Here n is the current number of keys in
the queue. The reduction uses linear space. The
reduction runs on a standard word RAM assum-
ing that each integer key is contained in a single
word.

The reduction above provides the following
new bounds for linear space integer priority
queues improving previous bounds given by Han
[8] and Thorup [14], respectively:

1. (Deterministic) O .log logn/ update time us-
ing a sorting algorithm by Han [9].

2. (Randomized) O
�p

log logn
�

expected up-

date time using a sorting algorithm given by
Han and Thorup [10].

The reduction in Theorem 1 employs atomic
heaps [7] which, in addition to being very compli-
cated, use AC0 operations. The following slightly
weaker recursive reduction which does not re-
strict the domain of the keys is completely com-
binatorial.

Theorem 2 If for some nondecreasing function
S , up to n keys can be sorted in S.n/ time per key,
a priority queue can be implemented supporting
find-min in constant time, and updates in T .n/
time where n is the current number of keys in the
queue and T .n/ satisfies the recurrence:

T .n/ D O .S.n//C T .O .logn//

The reduction runs on a pointer machine in
linear space using only standard AC0 operations.

This reduction implies the following new in-
teger priority queue bounds not implied by The-
orem 1, which improve previous bounds given
by Thorup in 1998 [13] and 1997 [15], respec-
tively:

1. (Deterministic in AC0) O
�
.log logn/1C�

�

update time for any constant � > 0 using a
standard AC0 sorting algorithm given by Han
and Thorup [10].

2. (Randomized in AC0) O .log logn/ expected
update time using a randomized AC0 sorting
algorithm given by Thorup [15].

The Reduction in Theorem 1
Given a sorting routine that can sort up to n

keys in S.n/ time per key, the priority queue is
constructed as follows. All keys are assumed to
be distinct.

The data structure has two major components:
a partially sorted list of keys called a base list and
a set of level buffers (also called update buffers).
Most keys of the priority queue reside in the base
list partitioned into logarithmic-sized disjoint sets
called base sets. While the keys inside any given
base set are not required to be sorted, each of
those keys must be larger than every key in the
base set (if any) appearing before it in the list.
Keys inside each base set are stored in a doubly
linked list allowing constant time updates. The
first base set in the list containing the smallest
key among all base sets is also maintained in an
atomic heap so that the current minimum can be
found in constant time. Each level buffer has a
different capacity and accumulates updates (in-
sert/delete) with key values in a different range.
Smaller level buffers accept updates with smaller
keys. An atomic heap is used to determine in
constant time which level buffer collects a new
update. When a level buffer accumulates enough
updates, they first enter a sorting phase and then a
merging phase. In the merging phase each update
is applied on the proper base set in the key list,
and invariants on base set size and ranges of level
buffers are fixed. These phases are not executed
immediately, instead they are executed in fixed
time increments over a period of time. A level
buffer continues to accept new updates, while
some updates accepted by it earlier are still in
the sorting phase, and some even older updates
are in the merging phase. Every time it accepts a
new update, O .S.n// time is spent on the sorting
phase associated with it and O .1/ time on its
merging phase including rebalancing of base sets
and scanning. This strategy allows the sorting and
merging phases to complete execution by the time
the level buffer becomes full again and thus keep-
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ing the movement of updates through different
phases smooth while maintaining an O .S.n//
worst-case time bound per update. Moreover,
the size and capacity constraints ensure that the
smallest key in the data structure is available in
O .1/ time. More details are given below.

The Base List: The base list consists of base sets
A1; A2; : : : ; Ak , where ˆ

4
� jAi j � ˆ for

i < k, and jAkj � ˆ for some ˆ D

‚.logn/. The exact value ofˆ is chosen care-
fully to make sure that it conforms with the
requirements of the delicate worst-case base
set rebalancing protocol used by the reduction.
The base sets are partitioned by base splitters
s0; s1; : : : ; skC1, where s0 D �1, skC1 D

1, and for i D 1; : : : ; k�1, maxAi�1 < si �

minAi . If a base set becomes too large or too
small, it is split or joined with an adjacent set,
respectively.

Level Buffers: Among the base splitters l C 2 D
‚.logn/ are chosen to become level splitters
t0; t1; : : : ; tl ; tlC1 with t0 D s0 D �1 and
tlC1 D skC1 D 1, so that for j > 0, the
number of keys in the base list below tj is
around 4jC1ˆ. These splitters are placed in
an atomic heap. As the base list changes the
level splitters are moved, as needed, in order
to maintain their exponential distribution.
Associated with each level splitter tj , 1 �
j � l , is a level buffer Bj containing keys
in Œtj�1; tjC2/, where tlC2 D 1. Buffer Bj

consists of an entrance buffer, a sorter, and
a merger, each with capacity for 4j keys.
Level j works in a cycle of 4j steps. The
cycle starts with an empty entrance, at most
4j updates in the sorter, and a sorted list of at
most 4j updates in the merger. In each step
one may accept an update for the entrance,
spend S

�
4j
�
D O .S.n// time in the sorter

and O .1/ time in merging the sorted list
in the merger with the O

�
4j
�

base splitters
in Œtj�1; tjC2/ and scanning for a new tj
among them. Therefore, after 4j such steps,
the sorted list is correctly merged with the
base list, a new tj is found, and a new sorted
list is produced. The sorter then takes the
role of the merger, the entrance becomes the

sorter, and the empty merger becomes the new
entrance.

Handling Updates: When a new update key k

(insert/delete) is received, the atomic heap of
level splitters is used to find in O .1/ time the
tj such that k 2 Œtj�1; tj /. If k 2 Œt0; t1/,
its position is identified among the O .1/ base
splitters below t1, and the corresponding base
set is updated in O .1/ time using the doubly
linked list and the atomic heap (if exists) over
the keys of that set. If k 2 Œtj�1; tj / for some
j > 1, the update is placed in the entrance
of Bj , performing one step of the cycle of Bj

in O .S.n// time. Additionally, during each
update another splitter tr is chosen in a round-
robin fashion, and a step of a cycle of level r
is executed in O .S.n// time. This additional
work ensures that after every l updates some
progress is made on moving each level splitter.

A find-min returns the minimum element of
the base list which is available in O .1/ time.

The Reduction in Theorem 2
This reduction follows from the previous reduc-
tion by replacing the atomic heap containing the
level splitters with a data structure similar to a
level buffer and the atomic heap over the keys
of the first base set with a recursively defined
priority queue satisfying the following recurrence
for update time: T .n/ D O .S.n//C T .O .ˆ//.

Further Improvement
Alstrup et al. [1] presented a general reduction
that transforms a priority queue to support insert
in O .1/ time while keeping the other bounds
unchanged. This reduction can be used to reduce
the cost of insertion to a constant in Theorems 1
and 2.

Applications

Thorup’s equivalence results [17] can be used to
translate known sorting results into new results
on priority queues for integers and strings in
different computational models (see section “Key
Results”). These results can also be viewed as a
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new means of proving lower bounds for sorting
via priority queues.

A new RAM priority queue that matches the
bounds in Theorem 1 and also supports decrease-
key in O .1/ time is presented by Thorup [16].
This construction combines Andersson’s expo-
nential search trees [2] with the priority queues
implied by Theorem 1. The reduction in Theo-
rem 1 is also used by Pagh et al. [12] in order to
develop an adaptive integer sorting algorithm for
the word RAM and by Arge and Thorup [3] to
develop a sorting algorithm that is simultaneously
I/O efficient and internal memory efficient in the
RAM model of computation. Cohen et al. [4] use
a priority queue generated through this reduction
to obtain a simple and fast amortized imple-
mentation of a reservoir sampling scheme that
provides variance optimal unbiased estimation of
subset sums. Reductions from meldable priority
queues to sorting presented by Mendelson et
al. [11] use the reductions from non-meldable
priority queues to sorting given in [17].

An external-memory version of Theorem 1
has been proved by Wei and Yi [19].

Open Problems

One major open problem is to find a general
reduction (if one exists) that allows us to decrease
the value of a key in constant time. Another open
question is whether the gap between the bounds
implied by Theorems 1 and 2 can be reduced or
removed. For example, for a hypothetical linear
time-sorting algorithm, Theorem 1 implies a pri-
ority queue with an update time of O .1/, while
Theorem 2 implies only O

�
log� n

�
-time updates.
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Problem Definition

A graph parameter � is a real-valued function
over graphs that is invariant under graph iso-
morphism. For example, the average degree of
the graph, the average distance between pairs
of vertices, and the minimum size of a vertex
cover are graph parameters. For a fixed graph
parameter � and a graph G D .V;E/, we would
like to compute an estimate of �.G/. To this
end we are given query access to G and would
like to perform this task in time that is sublinear
in the size of the graph and with high success
probability. In particular, this means that we do
not read the entire graph but rather only access
(random) parts of it (via the query mechanism).
Our main focus here is on a very basic graph
parameter: its average degree, denoted d.G/.

The estimation algorithm is given an approx-
imation parameter � > 0. It should output a
value Od such that with probability at least 2=3

(over the random choices of the algorithm) it
holds that d.G/ � Od � .1 C �/ � d.G/. (The
error probability can be decreased to 2�k by
invoking the algorithm�.k/ times and outputting
the median value.) For any vertex v 2 V D Œn� of

its choice, where Œn�
def
D f1; : : : ; ng, the estimation

algorithm may query the degree of v, denoted
d.v/. We refer to such queries as degree queries.
In addition, the algorithm may ask for the i th
neighbor of v, for any 1 � i � d.v/. These
queries are referred to as neighbor queries. We
assume for simplicity thatG does not contain any
isolated vertices (so that, in particular, d.G/ �
1). This assumption can be removed.

Key Results

The problem of estimating the average degree of
a graph in sublinear time was first studied by
Feige [7]. He considered this problem when the
algorithm is allowed only degree queries, so that
the problem is a special case of estimating the
average value of a function given query access
to the function. For a general function d W Œn� !
Œn � 1�, obtaining a constant-factor estimate of
the average value of the function (with constant
success probability) requires ˝.n/ queries to the
function. Feige showed that when d is the degree
function of a graph, for any � 2 .0; 1�, it is
possible to obtain an estimate of the average
degree that is within a factor of .2 C �/ by
performing only O.

p
n=�/ (uniformly selected)

queries. He also showed that in order to go below
a factor of 2 in the quality of the estimate, ˝.n/
queries are necessary.

However, given that the object in question is
a graph, it is natural to allow the algorithm to
query the neighborhood of vertices of its choice
and not only their degrees; indeed, the afore-
mentioned problem definition follows this natural
convention. Goldreich and Ron [10] showed that
by giving the algorithm this extra power, it is
possible to break the factor-2 barrier. They pro-
vide an algorithm that, given � > 0, outputs a
.1C�/-factor estimate of the average degree (with
probability at least 2=3) after performing O.

p
n �
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poly.logn; 1=�// degree and neighbor queries. In
fact, since a degree query to vertex v can be
replaced by O.log d.v// D O.logn/ neighbor
queries, which implement a binary search, degree
queries are not necessary. Furthermore, when the
average degree increases, the performance of the
algorithm improves, as stated next.

Theorem 1 There exists an algorithm that
makes only neighbor queries to the input
graph and satisfies the following condition.
On input G D .V;E/ and � 2 .0; 1/,
with probability at least 2=3, the algorithm

halts within O

�q

n=d.G/ � poly.logn; 1=�/

�

steps and outputs a value in Œd .G/; .1 C �/ �

d.G/�.

The running time stated in Theorem 1 is
essentially optimal in the sense that (as shown
in [10]) a .1 C �/-factor estimate requires

˝.

q

n=.�d.G/// queries, for every value

of n, for d.G/ 2 Œ2; o.n/�, and for � 2

Œ!.n�1=4/; o.n=d.G//�.
The following is a high-level description of

the algorithm and the ideas behind its analysis.
For the sake of simplicity, we only show how
to obtain a .1 C �/-factor estimate by perform-
ing O

�p
n � poly.logn; 1=�/

�
queries (under the

assumption that d.G/ � 1). For the sake of
the presentation, we also allow the algorithm to
perform degree queries. We assume that � � 1=2,
or else we run the algorithm with � D 1=2. We
first show how to obtain a .2C �/-approximation
by performing only degree queries and then ex-
plain how to improve the approximation by using
neighbor queries as well.

Consider a partition of the graph vertices into
buckets B1; : : : ; Br , where

Bi
def
D fv W .1C �=8/i�1 � d.v/ < .1C �=8/ig

(1)
and r D O.logn=�/. By this definition,

1

n

rX

iD1

jBi j�.1C�=8/
i 2
h
d.G/; .1C�=8/ � d.G/

i
:

(2)

Suppose we could obtain an estimate Obi of
the size of each bucket Bi such that Obi 2

Œ.1 � �=8/jBi j; .1C �=8/jBi j�. Then

1

n

rX

iD1

Obi � .1C �=8/
i

2
h
.1 � �=8/ � d.G/; .1C 3�=8/ � d.G/

i
:

(3)

Now, for each Bi , if we uniformly at ran-

dom select ˝
�

n
jBi j
� log r

�2

�
vertices, then, by

a multiplicative Chernoff bound, with proba-
bility 1 � O.1=r/, the fraction of sampled
vertices that belong to Bi is in the intervalh
.1 � �=8/ jBi j

n
; .1C �=8/ jBi j

n

i
. By querying the

degree of each sampled vertex, we can deter-
mine to which bucket it belongs and obtain an
estimate of jBi j. Unfortunately, if Bi is much
smaller than

p
n, then the sample size required

to estimate jBi j is much larger than the de-

sired O
�p
n � poly.logn; 1=�/

�
. Let L

def
D fi W

jBi j �
p
�n=8rg denote the set of indices of

large buckets. The basic observation is that if,
for each i 2 L, we have an estimate Obi 2

Œ.1 � �=8/jBi j; .1C �=8/jBi j�, then

1

n

X

i2L

Obi � .1C �=8/
i

2
h
.1=2 � �=4/ � d.G/; .1C 3�=8/ � d.G/

i
:

(4)

The reasoning is essentially as follows. Recall
that

P
v d.v/ D 2jEj. Consider an edge .u; v/

where u 2 Bj and v 2 Bk . If j; k 2 L,
then this edge contributes twice to the sum
in Eq. (4): once when i D j and once when
i D k. If j 2 L and k … L (or vice verse),
then this edge contributes only once. Finally,
if j; k … L, then the edge does not contribute
at all, but there are at most �n=8 edges of this
latter type. Since it is possible to obtain such
estimates Obi for all i 2 L simultaneously,
with constant success probability, by sampling
O
�
.
p
n � poly.logn; 1=�/

�
vertices, we can get a
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.2C�/-factor estimate by performing this number
of degree queries. Recall that we cannot obtain
an approximation factor below 2 by performing
o.n/ queries if we use only degree queries.

In order to obtain the desired factor of .1C �/,
we estimate the number of edges .u; v/ such
that u 2 Bj and v 2 Bk with j 2 L and
k … L, which are counted only once in Eq. (4).
Here is where neighbor queries come into play.
For each i 2 L (more precisely, for each i

such that Obi is sufficiently large), we estimate

ei
def
D jf.u; v/ W u 2 Bi ; v 2 Bk for k … Lgj.

This is done by uniformly sampling neighbors
of vertices in Bi , querying their degree, and
therefore estimating the fraction of edges incident
to vertices in Bi whose other endpoint belongs
to Bk for k … L. If we denote the estimate
of ei by Oei , then we can get that by perform-
ing O

�
.
p
n � poly.logn; 1=�/

�
neighbor queries,

with high constant probability, the Oei ’s are such
that

1

n

X

i2L

�
Obi � .1C �=8/

i C Oei

�

2
h
.1 � �=2/ � d.G/; .1C �=2/ � d.G/

i
:

(5)

By dividing the left-hand side in Eq. (5) by .1 �
�=2/, we obtain the .1C �/-factor we sought.

Estimating the Average Distance
Another graph parameter considered in [10] is
the average distance between vertices. For this
parameter, the algorithm is given access to a
distance-query oracle. Namely, it can query the
distance between any two vertices of its choice.
As opposed to the average degree parameter
where neighbor queries could be used to improve
the quality of the estimate (and degree queries
were not actually necessary), distance queries are
crucial for estimating the average distance, and
neighbor queries are not of much use. The main
(positive) result concerning the average distance
parameter is stated next.

Theorem 2 There exists an algorithm that
makes only distance queries to the input graph

and satisfies the following condition. On input
G D .V;E/ and � 2 .0; 1/, with proba-
bility at least 2=3, the algorithm halts within

O

�q

n=D.G/ � poly.1=�/

�

steps and outputs a

value in ŒD.G/; .1 C �/ � D.G/�, where D.G/
is the average of the all-pairs distances in G. A
corresponding algorithm exists for the average
distance to a given vertex s 2 V .

Comments for the Recommended
Reading

The current entry falls within the scope of
sublinear-time algorithms (see, e.g., [4]).

Other graph parameters that have been stud-
ied in the context of sublinear-time algorithms
include the minimum weight of a spanning tree
[2, 3, 5], the number of stars [11] and the number
of triangles [6], the minimum size of a vertex
cover [13–15, 17], the size of a maximum match-
ing [14, 17], and the distance to having vari-
ous properties [8, 13, 16]. Related problems over
weighted graphs that represent distance metrics
were studied in [12] and [1].
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Problem Definition

This entry considers geometric optimization
NP-hard problems like the Euclidean traveling
salesman problem and the Euclidean Steiner tree
problem. These problems are geometric variants
of standard graph optimization problems, and the
restriction of the input instances to geometric or
Euclidean case arises in numerous applications
(see [1,2]). The main focus of this entry is on the
Euclidean traveling salesman problem.

The Euclidean Traveling Salesman
Problem (TSP)
For a given set S of n points in the Euclidean
space R

d , find the minimum length path that
visits each point exactly once. The cost ı.x; y/
of an edge connecting a pair of points x; y 2 R

d

is equal to the Euclidean distance between points

x and y, that is, ı.x; y/ D

s
dP

iD1

.xi�yi /
2, where

x D .x1; : : : ; xd / and y D .y1; : : : ; yd /. More
generally, the distance could be defined using
other norms, such as `p norms for any p > 1,

ı.x; y/ D

�
pP

iD1

.xi � yi /
p

�1=p

.

For a given set S of points in Euclidean space
R

d , for a certain integer d , d � 2, a Euclidean
graph (network) is a graph G D .S; E/, where
E is a set of straight-line segments connecting
pairs of points in S . If all pairs of points in S
are connected by edges in E, then G is called a
complete Euclidean graph on S. The cost of the
graph is equal to the sum of the costs of the edges
of the graph, cost.G/ D

P
.x; y/2E ı.x; y/.

A polynomial-time approximation scheme
(PTAS) is a family of algorithms fA"g such that,
for each fixed © > 0, A" runs in polynomial time
in the size of the input and produces a .1 C ©/-
approximation.
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Related Work
The classical book by Lawler et al. [16] pro-
vides extensive information about the TSP. Also,
the survey exposition of Bern and Eppstein [8]
presents the state of the art for geometric TSP
until 1995, and the survey of Arora [2] discusses
the research after 1995.

Key Results

We begin with the hardness results. The TSP in
general graphs is well known to be NP-hard,
and the same claim holds for the Euclidean TSP
[14, 18].

Theorem 1 The Euclidean TSP is NP-hard.

Perhaps rather surprisingly, it is still not known
if the decision version of the problem is NP-
complete [14]. (The decision version of the Eu-
clidean TSP: given a point set in the Euclidean
space R

d and a number t , verify if there is a
simple path of length smaller than t that visits
each point exactly once.)

The approximability of TSP has been studied
extensively over the last few decades. It is
not hard to see that TSP is not approximable
in polynomial time (unless P D NP) for
arbitrary graphs with arbitrary edge costs. When
the weights satisfy the triangle inequality (the
so-called metric TSP), there is a polynomial-
time 3/2-approximation algorithm due to
Christofides [9], and it is known that no PTAS
exists (unless P D NP). This result has
been strengthened by Trevisan [21] to include
Euclidean graphs in high dimensions (the same
result holds also for any `p metric).

Theorem 2 (Trevisan [21]) If d � log n, then
there exists a constant " > 0 such that the
Euclidean TSP in R

d is NP-hard to approximate
within a factor of 1C ".

In particular, this result implies that if d � logn,
then the Euclidean TSP in R

d has no PTAS
unless P D NP .

The same result holds also for any `p metric.
Furthermore, Theorem 2 implies that Euclidean

TSP in R
log n is APX PB-hard under E-reductions

and APX-complete under AP-reductions.
It has been believed for some time that The-

orem 2 might hold for smaller values of d ,
in particular even for d D 2, but this has
been disproved independently by Arora [1] and
Mitchell [17].

Theorem 3 (Arora [1] and Mitchell [17]) The
Euclidean TSP on the plane has a PTAS.

The main idea of the algorithms of Arora and
Mitchell is rather simple, but the details of the
analysis are quite complicated. Both algorithms
follow the same approach. One first proves a so-
called structure theorem, which demonstrates that
there is a .1 C "/-approximation that has some
local properties (in the case of the Euclidean
TSP, there is a quadtree partition of the space
containing all the points such that there is a
.1 C "/-approximation in which each cell of the
quadtree is crossed by the tour at most a constant
number of times and only in some prespecified
locations). Then, one uses dynamic programming
to find an optimal (or almost optimal) solution
that obeys the local properties specified in the
structure theorem.

The original algorithms presented in the first
conference version of [1] and in the early version
of [17] have the running times of the form
O.n1=�/ to obtain a .1 C "/-approximation,
but this has been subsequently improved. In
particular, Arora’s randomized algorithm in
[1] runs in time O.n.log n/1=�/, and it can be
derandomized with a slowdown of O.n/. The
result from Theorem 3 can be also extended to
higher dimensions. Arora shows the following
result.

Theorem 4 (Arora [1]) For every constant d ,
the Euclidean TSP in R

d has a PTAS.
For every fixed c > 1 and given any n points in

R
d , there is a randomized algorithm that finds a�
1C 1

c

�
-approximation of the optimum traveling

salesman tour in O
�
n.log n/.O.

p
dc//d�1

�
time.

In particular, for any constant d and c, the
running time is O

�
n.log n/O.1/

�
. The algorithm

can be derandomized by increasing the running
time by a factor of O.nd /.
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This has been later extended by Rao and
Smith [19], who proved the following.

Theorem 5 (Rao and Smith [19]) There is a
deterministic algorithm that computes a

�
1C 1

c

�
-

approximation of the optimum traveling salesman

tour in O
�
2.cd/O.d/

nC .cd/O.d/n log n
�

time.

There is a randomized algorithm that
succeeds with probability at least 1

2
and that

computes a
�
1C 1

c

�
-approximation of the

optimum traveling salesman tour in expected
�
c
p
d
�O.d.c

p
d/d�1/

nCO.d n log n/ time.

These results are essentially asymptotically opti-
mal in the decision tree model thanks to a lower
bound of 	.n logn/ for any sublinear approxi-
mation for 1-dimensional Euclidean TSP due to
Das et al. [12]. In the real RAM model, one can
further improve the randomized results.

Theorem 6 (Bartal and Gottlieb [6]) Given
a set S of n points in d -dimensional grid
f0; : : : ; 
gd with 
 D 2.cd/O.d/

n, there is a
randomized algorithm that with probability 1 �
e�Od .n1=3d / computes a

�
1C 1

c

�
-approximation

of the optimum traveling salesman tour for S in
time 2.cd/O.d/

n in the integer RAM model.

If the data is not given in the integral form, then
one may round the data into this form using
the floor or mod functions, and assuming these
functions are atomic operations, the rounding
can be done in O.dn/ total time, leading to the
following theorem.

Theorem 7 (Bartal and Gottlieb [6]) Given a
set of n points in R

d , there is a randomized
algorithm that with probability 1 � e�Od .n1=3d /

computes a
�
1C 1

c

�
-approximation of the opti-

mum traveling salesman tour in time 2.cd/O.d/
n

in the real RAM model with atomic floor or mod
operations.

Applications

The techniques developed by Arora [1] and
Mitchell [17] found numerous applications in
the design of polynomial-time approximation
schemes for geometric optimization problems.

Euclidean Minimum Steiner Tree
For a given set S of n points in the Euclidean
space R

d , find the minimum-cost network con-
necting all the points in S (where the cost of a
network is equal to the sum of the lengths of the
edges defining it).

Euclidean k-median
For a given set S of n points in the Euclidean
space Rd and an integer k, find k-medians among
the points in S so that the sum of the distances
from each point in S to its closest median is
minimized.

Euclidean k-TSP
For a given set S of n points in the Euclidean
space R

d and an integer k, find the shortest tour
that visits at least k points in S .

Euclidean k-MST
For a given set S of n points in the Euclidean
space R

d and an integer k, find the shortest tree
that visits at least k points in S .

Euclidean Minimum-Cost k-Connected
Subgraph
For a given set S of n points in the Euclidean
space R

d and an integer k, find the minimum-
cost subgraph (of the complete graph on S ) that
is k-connected.

Theorem 8 For every constant d, the following
problems have a PTAS:

• Euclidean minimum Steiner tree problem in
R

d [1, 19]
• Euclidean k-median problem in R

d [5]
• Euclidean k-TSP and the Euclidean k-MST

problems in R
d [1]

• Euclidean minimum-cost k-connected
subgraph problem in R

d (constant k) [10]

The technique developed by Arora [1] and
Mitchell [17] led also to some quasi-polynomial-
time approximation schemes, that is, the
algorithms with the running time of nO.log n/.
For example, Arora and Karokostas [4] gave a
quasi-polynomial-time approximation scheme
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for the Euclidean minimum latency problem,
Das and Mathieu [13] gave a quasi-polynomial-
time approximation scheme for the Euclidean
capacitated vehicle routing problem, and Remy
and Steger [20] gave a quasi-polynomial-time
approximation scheme for the minimum-weight
triangulation problem.

For more discussion, see the survey by
Arora [2] and Czumaj and Lingas [11].

Extensions to Planar Graphs and Metric
Spaces with Bounded Doubling Dimension
The dynamic programming approach used by
Arora [1] and Mitchell [17] is also related to
the recent advances for a number of optimization
problems for planar graphs and in graphs in
metric spaces with bounded doubling dimension.
For example, Arora et al. [3] designed a PTAS for
the TSP in weighted planar graphs (cf. [15] for a
linear-time PTAS), and there is a PTAS for metric
spaces with bounded doubling dimension [7].

Open Problems

An interesting open problem is if the quasi-
polynomial-time approximation schemes men-
tioned above (for the minimum latency, the
capacitated vehicle routing, and the minimum-
weight triangulation problems) can be extended
to obtain PTAS. For more open problems, see
Arora [2].

Experimental Results

The Web page of the 8th DIMACS Imple-
mentation Challenge, http://dimacs.rutgers.edu/
Challenges/TSP/, contains a lot of instances.

URLs to Code and Data Sets

The Web page of the 8th DIMACS Imple-
mentation Challenge, http://dimacs.rutgers.edu/
Challenges/TSP/, contains a lot of instances.
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Problem Definition

All problems in NP can be exactly solved in
2poly.n/ time via exhaustive search, but research
has yielded faster exponential-time algorithms
for many NP-hard problems. However, some key
problems have not seen improved algorithms, and
problems with improvements seem to converge
toward O.C n/ for some unknown constant
C > 1.

The satisfiability problem for Boolean formu-
las in conjunctive normal form, CNF-SAT, is
a central problem that has resisted significant
improvements. The complexity of CNF-SAT and
its special case k-SAT, where each clause has
k literals, is the canonical starting point for the
development of NP-completeness theory.

Similarly, in the last 20 years, two hypothe-
ses have emerged as powerful starting points
for understanding exponential-time complexity.
In 1999, Impagliazzo and Paturi [5] defined the
exponential-time hypothesis (ETH), which as-
serts that 3-SAT cannot be solved in subexponen-
tial time. Namely, it asserts there is an � > 0 such
that 3-SAT cannot be solved inO..1C �/n/ time.
ETH has been a surprisingly useful assumption
for ruling out subexponential-time algorithms for
other problems [2, 6]. A stronger hypothesis has
led to more fine-grained lower bounds, which is
the focus of this article. Many NP-hard problems
are solvable in C n time via exhaustive search (for
some C > 1) but are not known to be solvable
in .C � �/n time, for any � > 0. The strong
exponential-time hypothesis (SETH) [1,5] asserts
that for every � > 0, there exists a k such that k-
SAT cannot be solved in timeO..2��/n/. SETH
has been very useful in establishing tight (and
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exact) lower bounds for many problems. Here we
survey some of these tight results.

Key Results

The following results are reductions from k-SAT
to other problems. They can be seen either as new
attacks on the complexity of SAT or as lower
bounds for exact algorithms that are conditional
on SETH.

Lower Bounds on General Problems
The following problems have lower bounds con-
ditional on SETH. The reduction for the first
problem is given to illustrate the technique.

k-Dominating Set
A dominating set of a graph G D .V;E/ is a
subset S 	 V such that every vertex is either
in S or is a neighbor of a vertex in S . The k-
DOMINATING SET problem asks to find a dom-
inating set of size k. Assuming SETH, for any
k � 3 and � > 0, k-DOMINATING SET cannot be
solved in O.nk��/ time [8].

The reduction from SAT to k-DOMINATING

SET proceeds as follows. Fix some k � 3 and
let F be a CNF formula on n variables; we build
a corresponding graph GF . Partition its variables
into k equally sized parts of n=k variables. For
each part, take all 2n=k partial assignments and
make a node for each partial assignment. Make
each of the k parts into a clique (disjoint from
the others). Add a dummy node for each partial
assignment clique that is connected to every node
in that clique but has no other edges. Addmmore
nodes, one for each clause. Finally, make an edge
from a partial assignment node to a clause node
iff the partial assignment satisfies the clause. We
observe that there is a k-dominating set in GF if
F is satisfiable.

2Sat+2Clauses
The 2SAT+2CLAUSES problem asks whether a
Boolean formula is satisfiable, given that it is
a 2-CNF with two additional clauses of arbi-
trary length. Assuming SETH, for any m D

n1Co.1/ and � > 0, 2SAT+2CLAUSES cannot

be solved in O.n2��/ time [8]. It is known that
2SAT+2CLAUSES can be solved in O.mn C n2/

time [8].

HornSat+kClauses
The HORNSAT+kCLAUSES problem asks
whether a Boolean formula is satisfiable, given
that it is a CNF of clauses that contain at most
one nonnegative literal per clause (a Horn CNF),
conjoined with k additional clauses of arbitrary
length but only positive literals. Assuming SETH,
for any k � 2 and � > 0, HORNSAT+kCLAUSES

cannot be solved in O..n C m/k��/ time [8]. It
can be trivially solved inO.nk � .mCn// time by
guessing a variable to set to true for each of the k
additional clauses and checking if the remaining
Horn CNF is satisfiable in linear time.

3-Party Set Disjointness
The 3-PARTY SET DISJOINTNESS problem is a
communication problem with three parties and
three subsets S1; S2; S3 	 Œm�, where the i th
party has access to all sets except for Si . The
parties wish to determine if S1 \ � � � \ S3 D

¿. Clearly this can be done with O.m/ bits of
communication. Assuming SETH, 3-PARTY SET

DISJOINTNESS cannot be solved using protocols
running in 2o.n/ time and communicating only
o.m/ bits [8].

k-SUM
The k-SUM problem asks whether a set of n
numbers contains a k-tuple that sums to zero.
Assuming SETH, k-SUM on n numbers cannot
be solved in no.k/ time for any k < n0:99. (It is
well known that k-SUM is inO.ndk=2e/ time) [8].

For all the problems below, we can solve in
2nnO.1/ time via exhaustive search.

k-Hitting Set
Given a set system F 	 2U in some universe U ,
a hitting set is a subsetH 	 U such thatH\S 6D
¿ for every S 2 F . The k-HITTINGSET problem
asks whether there is a hitting set of size at most t ,
given that each set S 2 F has at most k elements.
SETH is equivalent to the claim that for all � > 0,
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there is a k for which k-HITTINGSET cannot be
solved in time O..2 � �/n/ [3].

k-Set Splitting
Given a set system F 	 2U in some universe
U , a set splitting is a subset X 	 U such that
the first element of the universe is in X and for
every S 2 F , neither S 	 X nor S 	 .U n

X/. The k-SETSPLITTING problem asks whether
there is a set splitting, given that each set S 2
F has at most k elements. SETH is equivalent
to the claim that for all � > 0, there is a k for
which k-SETSPLITTING cannot be solved in time
O..2 � �/n/ [3].

k-NAE-Sat
The k-NAE-SAT problem asks whether a k-CNF
has an assignment where the first variable is set to
true and each clause has both a true literal and a
false literal. SETH is equivalent to the claim that
for all � > 0, there is a k for which k-NAE-SAT

cannot be solved in time O..2 � �/n/ [3].

c-VSP-Circuit-SAT
The c-VSP-CIRCUIT-SAT problem asks whether
a cn-size Valiant series-parallel circuit over n
variables has a satisfying assignment. SETH is
equivalent to the claim that for all � > 0, there
is a k for which c-VSP-CIRCUIT-SAT cannot be
solved in time O..2 � �/n/ [3].

Problems Parameterized by Treewidth
A variety of NP-complete problems have been
shown to be much easier on graphs of bounded
treewidth. Reductions starting from SETH given
by Lokshtanov, Marx, and Saurabh [7] can also
prove lower bounds that depend on the treewidth
of an input graph, tw.G/. The following are
proven via analyzing the pathwidth of a graph,
pw.G/, and the fact that tw.G/ � pw.G/.

Independent Set
An independent set of a graph G D .V;E/ is a
subset S 	 V such that the subgraph induced
by S contains no edges. The INDEPENDENT

SET problem asks to find an independent set of
maximum size. Assuming SETH, for any � > 0,

INDEPENDENT SET cannot be solved in .2 �

�/tw.G/nO.1/ time.

Dominating Set
A dominating set of a graph G D .V;E/ is a
subset S 	 V such that every vertex is either in
S or is a neighbor of a vertex in S . The DOMI-
NATING SET problem asks to find a dominating
set of minimum size. Assuming SETH, for any
� > 0, DOMINATING SET cannot be solved in
.3 � �/tw.G/nO.1/ time.

Max Cut
A cut of a graph G D .V;E/ is a partition of V
into S and V nS . The size of a cut is the number of
edges that have one endpoint in S and the other in
V nS . The MAX CUT problem asks to find a cut of
maximum size. Assuming SETH, for any � > 0,
MAX CUT cannot be solved in .2 � �/tw.G/nO.1/

time.

Odd Cycle Transversal
An odd cycle transversal of a graph G D .V;E/

is a subset S 	 V such that the subgraph
induced by V n S is bipartite. The ODD CYCLE

TRANSVERSAL problem asks to, given an inte-
ger k, determine whether there is an odd cycle
transversal of size k. Assuming SETH, for any
� > 0, ODD CYCLE TRANSVERSAL cannot be
solved in .3 � �/tw.G/nO.1/ time.

Graph Coloring
A q-coloring of a graph G D .V;E/ is a function
� W V ! Œq�. A q-coloring is proper if for
all edges .u; v/ 2 E, �.u/ 6D �.v/. The q-
COLORING problem asks to decide whether the
graph has a proper q-coloring. Assuming SETH,
for any q � 3 and � > 0, q-COLORING cannot be
solved in .q � �/tw.G/nO.1/ time.

Partition Into Triangles
A graph G D .V;E/ can be partitioned into
triangles if there is a partition of the vertices
into S1; S2; : : : ; Sn=3 such that each Si induces a
triangle in G. The PARTITION INTO TRIANGLES

problem asks to decide whether the graph can be
partitioned into triangles. Assuming SETH, for
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any � > 0, PARTITION INTO TRIANGLES cannot
be solved in .2 � �/tw.G/nO.1/ time.

All of the above results are tight, in the sense
that when � D 0, there is an algorithm for each of
them.

Showing Difficulty Via Set Cover
Given a set system F 	 2U in some universeU , a
set cover is a subset C 	 F such that

S
S2C S D

U . The SET COVER problem asks whether there
is a set cover of size at most t .

Cygan et al. [3] also gave reductions from SET

COVER to several other problems, showing lower
bounds conditional on the assumption that for all
� > 0, there is a k such that SET COVER where
sets in F have size at most k cannot be computed
in time O�..2 � �/n/.

It is currently unknown how SET COVER is re-
lated to SETH; if there is a reduction from CNF-
SAT to SET COVER, then all of these problems
would have conditional lower bounds as well.

Steiner Tree
Given a graph G D .V;E/ and a set of terminals
T 	 V , a Steiner Tree is a subset X 	 V

such that the graph induced by X is connected
and T 	 X . The STEINER TREE problem asks
whether G has a Steiner tree of size at most
t . With the above SET COVER assumption, for
all � > 0, STEINER TREE cannot be solved in
O�..2 � �/t / time.

Connected Vertex Cover
A connected vertex cover of a graph G D .V;E/
is a subset X 	 V such that the subgraph in-
duced by X is connected and every edge contains
at least one endpoint in X . The CONNECTED

VERTEX COVER problem asks whether G has a
connected vertex cover of size at most t . With
the above SET COVER assumption, for all � > 0,
CONNECTED VERTEX COVER cannot be solved
in O�..2 � �/t / time.

Set Partitioning
Given a set system F 	 2U in some universe U ,
a set partitioning is a set cover C where pairwise
disjoint elements have an empty intersection. The
SET PARTITIONING problem asks whether there

is a set partitioning of size at most t . With the
above SET COVER assumption, for all � > 0, SET

PARTITIONING cannot be solved inO�..2� �/n/
time.

Subset Sum
The SUBSET SUM problem asks whether a set of
n positive numbers contains a subset that sums
to a target t . With the above SET COVER assump-
tion, for all ı < 1, SUBSET SUM cannot be solved
in O�.tı/ time. Note that there is a dynamic
programming solution that runs in O.nt/ time.

Open Problems

• Does ETH imply SETH?
• Does SETH imply SET COVER requires
O�..2 � �/n/ time for all � > 0?

• Does SETH imply that the Traveling Sales-
man Problem in its most general, weighted
form requiresO�..2��/n/ time for all � > 0?

• Given two graphs F and G, on k and n nodes,
respectively, the SUBGRAPH ISOMORPHISM

problem asks whether a (noninduced) sub-
graph of G is isomorphic to F . Does SETH
imply that SUBGRAPH ISOMORPHISM cannot
be solved in 2O.n/?
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Problem Definition

In the subset sum problem, we are given
integers a1; : : : ; an; t and are asked to find a
subset X 	 f1; : : : ; ng such that

P
i2X ai D

t . In the Knapsack problem, we are given
a1; : : : ; an; b1; : : : ; bn; t; u and are asked to find
a subset X 	 f1; : : : ; ng such that

P
i2X ai � t

and
P

i2X bi � u. It is well known that both
problems can be solved in O.nt/ time using
dynamic programming. However, as is typical for
dynamic programming, these algorithms require
a lot of working memory and are relatively hard
to execute in parallel on several processors: the
above algorithms use O.t/ space which may be
exponential in the input size.

This raises the question: when can we avoid
these disadvantages and still be (approximately)
as fast as dynamic programming algorithms?
It appears that by (slightly) loosening the time
budget, space usage and parallelization can
be significantly improved in many dynamic
programs.

Key Results

A Space Efficient Algorithm for Subset Sum
In this article, we will use QO.�/ to suppress factors
that are poly-logarithmic in the input size. In
what follows, we will discuss how to prove the
following theorem:

Theorem 1 (Lokshtanov and Nederlof, [7])
There is an algorithm counting the number
of solutions of a subset sum instance in
QO.n2t .n C log t // time and .n C lg.t//.lgnt/

space.

The Discrete Fourier Transform
We use Iverson’s bracket notation: given a
Boolean predicate b, Œb� denotes 1 if b is true
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and 0 otherwise. Let P.x/ be a polynomial
of degree N � 1, and let p0; : : : ; pN�1 be
its coefficients. Thus, P.x/ D

PN�1
iD0 pix

i .
Let !N denote the N ’th root of unity, that
is, !N D e

2��
N . Let k; t be integers such that

k ¤ t . By the summation formula for geometric

progressions
�PN�1

`D0 r
` D 1�rN

1�r
for r ¤ 1

�
, we

have:

N�1X

`D0

!
`.k�t/
N D

1 � !
.k�t/N
N

1 � !k�t
N

D
1 �

�
!N

N

�k�t

1 � !k�t
N

D
1 � .1/k�t

1 � !k�t
N

D 0:

On the other hand, if k D t , then
PN�1

`D0 !
`.k�t/
N D

PN�1
`D0 1 D N . Thus, both cases can be

compactly summarized as
PN�1

`D0 !
`.k�t/
N D

Œk D t �N . As a consequence, we can express
a coefficient pt of P.x/ directly in terms of its
evaluations:

pt D

N�1X

kD0

Œk D t �pk

D

N�1X

kD0

1

N

N�1X

`D0

!
`.k�t/
N

X
pk

D
1

N

N�1X

`D0

!�`t
N

N�1X

kD0

pk

�
!`

N

�k

D
1

N

N�1X

`D0

!�`t
N P.!`

N /

(1)

Using the Discrete Fourier Transform
for Subset Sum
Given an instance a1; : : : ; an; t of subset sum,
define the polynomial P.x/ to be P.x/ D
Qn

iD1.1C x
ai /. Clearly, we can discard integers

ai larger than t , and assume that P.x/ has degree
at mostN D nt. If we expand the products in this
polynomial to get rid of the parentheses, we get
a sum of 2n products and each of these products
is of the type xk and corresponds to a subset

X 	 f1; : : : ; ng such that
P

i2X ai D k. Thus,
if we aggregate these products, we obtained the
normal form P.x/ D

PN�1
kD0 pkx

k , where pk

equals the number of subsets X 	 Œn� such that
P

i2X ai D k. Plugging this into Eq. 1, we have
that the number of subset sum solutions equals

pt D
1

N

N�1X

`D0

!�`t
N

nY

iD1

�
1C !

`ai

N

�
: (2)

Given Eq. 2, the algorithm suggests itself: evalu-
ation of the right-hand side gives the number of
solutions of the subset sum instance. Given !N ,
this would be a straightforward on the unit-cost
RAM model (recall that in this model arithmetic
instructions as C;�;� and = are assumed to take
constant time): the required powering operations
are performed in log.N / arithmetic operations so
an overall upper bound would be O.n2t log.nt//
time.

However, still the value of this algorithm is
not clear yet: for example, !N may be irrational,
so it is not clear how to perform the arithmetic
efficiently. This is an issue that also arises for
the folklore fast Fourier transform (see, e.g., [3]
for a nice exposition), and this issue is usually
not addressed (a nice exception is Knuth [6]).
Moreover in our case we should also be careful
on the space budget: for example, we cannot even
store 2t in the usual way within our space budget.
But, as we will now see, it turns out that we can
simply evaluate Eq. 2 with finite precision and
round to the nearest integer within the resource
bounds claimed in Theorem 1.

Evaluating Equation 2 with Finite Precision
The algorithm establishing Theorem 1 is pre-
sented in Algorithm 1. Here, � represents the
amount of precision the algorithm works with.
The procedure tr� truncates � bits after the
decimal point. The procedure apxr�.´/ returns
an estimate of !´

N . In order to do this, estimates
of !´

N with ´ being powers of 2 are precomputed
in Lines 3–4. We omit an explicit implementation
of the right-hand side of Line 4 since this is very
standard; for example, one can use an approxima-
tion of � together with a binary splitting approach
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Algorithm 1 Approximate evaluation of Eq. 2
Algorithm: SSS(a1; : : : ; an; t)
Require: for every 1 � i � n; ai < t .
1: � 3nC 6 log nt
2: s 0
3: for 0 � q � log N � 1 do
4: ==store roots of unity for powers of two

5: rq  tr�.e
2�2q

N� /
6: end for
7: for 0 � ` � N � 1 do
8: p apxr�.�`t % N /
9: for 1 � i � n do

10: p tr�.p � .1C apxr�.`ai % N ///
11: end for
12: s sC p
13: end for
14: return rnd.tr�. s

N
// ==round to nearest int

Algorithm: apxr�.´/
Require: ´ < N
15: p0  1
16: for 1 � q � log N � 1 do
17: if 2q divides ´ then
18: p tr�.p0 � rq/
19: end if
20: end for
21: return p0

(see [1, Section 4.9.1]) or a Taylor expansion-
based approach (see [2]). Crude upper bounds
on the time and space usage of both approaches
are O.�2 logN/ time and O.n log nt C log nt/
space.

Let us proceed with verifying whether
Algorithm 1 satisfies the resource bounds of
Theorem 1. It is easy to see that all intermediate
numbers have modulus at most 2nN , so their
estimates can be represented with O.�/ bits. For
all multiplications we will use an asymptotically
fast algorithm running in QO.n/ time (e.g., [5]).
Then, Line 3–4 take QO.�2 logN/ time. Line 6
takes QO.� lgN/ time; Lines 7–8 take n� lgN
time, which is the bottleneck. So overall, the
algorithm uses QO.Nn�/ D QO.n2t .n C log t //
time. The space usage is dominated by the
precomputed values which use O.logN�/ D
O.nC log t .log nt// space.

For the correctness of Algorithm 1, let us
first study what happens if we work with infinite
precision (i.e., � D 1). Note that apxr1.´/ D
!´

N since it computes

log N�1Y

qD1

Œ2q divides ´�rq

D

log N�1Y

qD1

Œ2q divides ´�!2q

N

D !

Plog N �1

qD1
Œ2q divides ´�2q

N D !´:

Moreover, note that on iteration ` of the for-loop
of Line 5, we will have on Line 9 that p D
P.!`

N / by the definition of P.x/. Then, it is easy
to see that Algorithm 1 indeed evaluates the right-
hand side of Eq. 2.

Now, let us focus on the finite precision. The
algorithm computes an N -sized sum of .n C
2 logN/-sized products of precomputed values,
(increased by one). Note that it is sufficient to
guarantee that on Line 9 in every iteration `, jp�
!�`t

N

Qn
iD1.1C!

`ai

N /j � 0:4, since then the total
error of s on Line 10 is at most 0:4N and the total
error of s=N is 0:4, which guarantees rounding to
the correct integer. Recall that p is the result of
an .nC 2 logN/-sized product, so let us analyze
how the approximation error propagates in this
situation. If Oa; Ob are approximations of a; b and
we approximate c by tr� Oa � Ob, we have

jc�Ocj � ja�OajjbjCjb�ObjjajCja�Oajjb�ObjC2��:

Thus, if a is the result of a (i-1)-sized product,
and using an upper bound of 2 for the modulus
of any of the product terms in the algorithm,
we can upper bound the error of Ei estimating
an i -length product as follows: E1 � 2�� and
for i > 1:

Ei � 2Ei�1 C 2
��2i�1 C 2��Ei�1 C 2

��

� 3Ei�1 C 2
��2i :

Using straightforward induction we have that
Ei � 6

i2�� So indeed, setting � D 3nC 6 log nt
suffices.

A Generic Framework
For Theorem 1, we only used that the to be
determined value is a coefficient of a (relatively)
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small degree polynomial that we can evaluate
efficiently. Whether this is the case for other
problems solved by dynamic programming can
be seen from the structure of the used recur-
rence: when the recurrence can be formulated
over a polynomial ring where the polynomials
have small degree, we can evaluate it fast and
interpolate with the same technique as above
to find a required coefficient. For example, for
Knapsack, one can use the polynomialP.x; y/ D
Qn

iD1.x
aiybi / and look for a nonzero coefficient

of xt 0

yu0

where t 0 � t and u0 � u to obtain
a pseudo-polynomial time and polynomial space
algorithm as well.

Naturally, this technique does not only apply
to the polynomial ring. In general, if the ring
would be R 	 CN�N equipped with matrix
addition and multiplication, we just need a matrix
that simultaneously diagonalizes all matrices of
R (in the above case, R are all circulant matrices
which are simultaneously diagonalized by the
Fourier matrix).

Applications

The framework applies to many dynamic pro-
gramming algorithms. A nice additional exam-
ple is the algorithm of Dreyfus and Wagner for
Steiner tree [4, 7, 8].
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Problem Definition

Given a graph G with n vertices, an ordering is a
bijective function � W V.G/! f1; 2; : : : ; ng. The
bandwidth of � is a maximal length of an edge,
i.e.,

bw.�/ D max
uv2E.G/

j�.u/ � �.v/j:

The bandwidth problem, given a graph G and a
positive integer b, asks if there exists an ordering
of bandwidth at most b.

http://dx.doi.org/10.1007/978-1-4939-2864-4_192
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Key Results

An exhaustive search for the bandwidth problem
enumerates all the nŠ orderings, trying to find
one of bandwidth at most b. The first single
exponential time algorithm is due to Feige and
Kilian [6], which we are going to describe now.

Bucketing
Definition 1 For a positive integer k, let Ik be
the collection of dn=ke sets obtained by splitting
the set f1; : : : ; ng into equal parts (except the last
one), i.e., Ik D ff1; : : : ; kg; fkC1; : : : ; 2kg; : : :g.
A function f W V.G/ ! Ik is called a k-bucket
assignment, if for every edge uv 2 E.G/ at least
one of the following conditions is satisfied:

• f .u/ D f .v/,
• jmax f .u/ �min f .v/j � b,
• jminf .u/ �max f .v/j � b.

Clearly, if a function f W V.G/! Ik is not a
k-bucket assignment, then there is no ordering �
of bandwidth at most b consistent with f , where
� is consistent with f iff �.v/ 2 f .v/ for each
v 2 V.G/. A bucket function can be seen as a
rough assignment – instead of assigning vertices
to their final positions in the ordering, we assign
them to intervals.

The O.10npoly.n// time algorithm of [6] is
based on two ideas, both related to the notion of
bucket assignments. For the sake of presentation,
let us assume that n is divisible by b, whereas b
is a power of two. Moreover, we assume thatG is
connected, as otherwise it is enough to consider
each connected component of G separately.

First, one needs to show that there is a family
of at most n3n�1 b-bucket assignments F , such

that any ordering of bandwidth at most b is
consistent with some b-bucket assignment from
F . We create F recursively by branching. First,
fix an arbitrary vertex v0, and assign it to some in-
terval from Ik (there are at most n choices here).
Next, consider any vertex v without assigned
interval, which has a neighbor u with already
assigned interval. By the assumption that G is
connected, v always exists. Note that in order
to create a valid bucket assignment, v has to be
assigned either to the same interval as u or to
one of its two neighboring intervals. This gives
at most three branches to be explored.

In the second phase, consider some b-bucket
assignment f 2 F . We want to check whether
there exists some ordering of bandwidth at most
b consistent with f . To do this, for each vertex
v, we branch into two choices, deciding whether
v should be assigned to the left half of f .v/ or
to the right half of f .v/. This leads to at most
2n b=2-bucket assignments to be processed. The
key observation is that each of those assignments
can be naturally split into two independent sub-
problems. This is because each edge within an
interval of length b=2 and each edge between
two neighboring intervals of length b=2 will be
of length at most b � 1. Additionally, each edge
connecting two vertices with at least two intervals
of length b=2 in between would lead to violating
the constraint of being a valid b=2-bucket assign-
ment. Therefore, it is enough to consider vertices
in even and odd intervals separately (see Fig. 1).
Such routine of creating more and more refined
bucket assignments can be continued, where the
running time used for n vertices satisfies

T .n/ D 2n � 2 � T .
n

2
/

... ...b
2

b
2

b
2

b
2

b
2

b
2

Exact Algorithms for Bandwidth, Fig. 1 Thick vertical lines separate subsequent intervals from Ib=2. Meaningful
edges connect vertices with exactly one interval in between
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which in turn gives T .n/ D 4npoly.n/.
Since we have jF j � n3n�1, we end up
with O.12npoly.n// time algorithm. If instead
of generating b-bucket assignments one uses
b=2-bucket assignments (there are at most n5n�1

of them), then the running time can be improved
to 10npoly.n/.

Dynamic Programming
In [2, 5], Cygan and Pilipczuk have shown that
for a single .b C 1/-bucket assignment, one can
check in time and space O.2npoly.n// whether
there exists an ordering of bandwidth at most
b consistent with it. Since there are at most
n3n�1 .b C 1/-bucket assignments, this leads to
O.6npoly.n// time algorithm.

The key idea is to assign vertices to their final
positions consistent with some f 2 F in a very
specific order. Let us color the set of positions
f1; : : : ; ng with color.i/ D .i � 1/ mod .b C 1/.
Define a color order of positions, where
positions from f1; : : : ; ng are sorted by their
color values, breaking ties with position values
(see Fig. 2).

A lemma that proves usefulness of the
color order shows that if we assign vertices to
positions in the color order, then we can use
the standard Held-Karp dynamic programming
over subsets approach. In particular, in a state of

1 5 9 12 2 6 10 13 3 7 11 14 4 8

b+1 b+1 b+1

Exact Algorithms for Bandwidth, Fig. 2 An index of
each position in a color order for n D 14 and b D 3

dynamic programming, it is enough to store the
subset S 	 V.G/ of vertices already assigned
to the first jS j positions in the color order
(see Fig. 3).

Further Improvements
Instead of upper bounding running time of the
algorithm for each .b C 1/-bucket assignment
separately, one can count the number of states
of the dynamic programming routine used by the
algorithm throughout the processing of all the
bucket assignments. As shown in [2], this leads to
O.5npoly.n// running time, which with more in-
sights and more technical analysis can be further
improved to O.4:83n/ [5] and O.4:383n/ [3].
If only polynomial space is allowed, then the
best known algorithm needs O.9:363n/ running
time [4].

Related Work

Concerning small values of b, Saxe [8] presented
a nontrivial O.nbC1/ time and space dynamic
programming, consequently proving the problem
to be in XP. However, Bodlaender et al. [1] have
shown that bandwidth is hard for any fixed level
of the W hierarchy.

For a related problem of minimum distortion
embedding, Fomin et al. [7] obtained a
O.5npoly.n// time algorithm, improved by
Cygan and Pilipczuk [4] to running times
same as for the best known bandwidth
algorithms.

v

b+1

bb

Exact Algorithms for Bandwidth, Fig. 3 When a ver-
tex v is to be assigned to the next position in the color
order, then all its neighbors from the left interval cannot

be yet assigned a position, whereas all its neighbors from
the right interval have to be already assigned in order to
obtain an ordering of bandwidth at most b
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Open Problems

Many vertex ordering problems admit O.2n

poly.n// time and space algorithms, like Hamil-
tonicity, cutwidth, pathwidth, optimal linear
arrangement, etc. In [2], Cygan and Pilipczuk
have shown that a dynamic programming routine
with such a running time is possible, provided
a .b C 1/-bucket assignment is given. A natural
question to ask is whether it is possible to obtain
O.2npoly.n// without the assumption of having
a fixed assignment to be extended.
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Problem Definition

The dominating set problem is a classical NP-
hard optimization problem which fits into the
broader class of covering problems. Hundreds of
papers have been written on this problem that has
a natural motivation in facility location.

Definition 1 For a given undirected, simple
graph G D .V;E/, a subset of vertices D 	 V is
called a dominating set if every vertex u 2 V �D
has a neighbor in D. The minimum dominating
set problem (abbr. MDS) is to find a minimum
dominating set of G, i.e., a dominating set of G
of minimum cardinality.

Problem 1 (MDS)

INPUT: Undirected simple graph G D .V;E/.
OUTPUT: A minimum dominating set D of G.
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Various modifications of the dominating set prob-
lem are of interest, some of them obtained by
putting additional constraints on the dominating
set as, e.g., requesting it to be an independent
set or to be connected. In graph theory, there
is a huge literature on domination dealing with
the problem and its many modifications. In graph
algorithms, the MDS problem and some of its
modifications like independent dominating set
and connected dominating set have been studied
as benchmark problems for attacking NP-hard
problems under various algorithmic approaches.

Known Results
The algorithmic complexity of MDS and its mod-
ifications when restricted to inputs from a par-
ticular graph class has been studied extensively.
Among others, it is known that MDS remains
NP-hard on bipartite graphs, split graphs, planar
graphs, and graphs of maximum degree 3. Poly-
nomial time algorithms to compute a minimum
dominating set are known, e.g., for permutation,
interval, and k-polygon graphs. There is also a
O.3k nO.1// time algorithm to solve MDS on
graphs of treewidth at most k.

The dominating set problem is one of the
basic problems in parameterized complexity; it
is W[2]-complete and thus it is unlikely that the
problem is fixed parameter tractable. On the other
hand, the problem is fixed parameter tractable on
planar graphs. Concerning approximation, MDS
is equivalent to MINIMUM SET COVER under L-
reductions. There is an approximation algorithm
solving MDS within a factor of 1 C log jV j,
and it cannot be approximated within a factor
of .1 � �/ ln jV j for any � > 0, unless NP �
DTIME(nlog log n).

Exact Exponential Algorithms
If P ¤ NP, then no polynomial time algorithm
can solve MDS. Even worse, it has been observed
in [5] that unless SNP	 SUBEXP (which is
considered to be highly unlikely), there is not
even a subexponential time algorithm solving the
dominating set problem.

The trivial O.2n .n C m// algorithm, which
simply checks all the 2n vertex subsets whether
they are dominating, clearly solves MDS. Three

faster algorithms have been established in 2004.
The algorithm of Fomin et al. [5] uses a deep
graph-theoretic result due to B. Reed, stating
that every graph on n vertices with minimum
degree at least three has a dominating set of size
at most 3n=8, to establish an O.20:955n/ time
algorithm solving MDS. The O.20:919n/ time
algorithm of Randerath and Schiermeyer [9] uses
very nice ideas including matching techniques to
restrict the search space. Finally, Grandoni [6]
established anO.20:850n/ time algorithm to solve
MDS.

Key Results

Branch and Reduce and Measure
and Conquer
The work of Fomin, Grandoni, and Kratsch
presents a simple and easy way to implement
a recursive branch and reduce algorithm to solve
MDS. It was first presented at ICALP 2005 [2]
and later published in 2009 in [3]. The running
time of the algorithm is significantly faster than
the ones stated for the previous algorithms.
This is heavily based on the analysis of the
running time by measure and conquer, which
is a method to analyze the worst case running
time of (simple) branch and reduce algorithms
based on a sophisticated choice of the measure of
a problem instance.

Theorem 1 There is a branch and reduce al-
gorithm solving MDS in time O.20:610n/ using
polynomial space.

Theorem 2 There is an algorithm solving MDS
in time O.20:598n/ using exponential space.

The algorithms of Theorems 1 and 2 are
simple consequences of a transformation from
MDS to MINIMUM SET COVER (abbr. MSC)
combined with new exact exponential time
algorithms for MSC.

Problem 2 (MSC)

INPUT: Finite set U and a collection S of subsets
S1; S2; : : : St of U .
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OUTPUT: A minimum set cover S 0, where S 0 	
S is a set cover of .U ;S/ if

S
Si2S0

Si D U .

Theorem 3 There is a branch and reduce al-
gorithm solving MSC in time O.20:305.jU jCjSj//
using polynomial space.

Applying memorization to the polynomial
space algorithm of Theorem 3, the running time
can be improved as follows.

Theorem 4 There is an algorithm solving MSC
in time O.20:299.jSjCjU j// needing exponential
space.

The analysis of the worst case running time of
the simple branch and reduce algorithm solving
MSC (of Theorem 3) is done by a careful choice
of the measure of a problem instance which al-
lows to obtain an upper bound that is significantly
smaller than the one that could be obtained using
the standard measure. The refined analysis leads
to a collection of recurrences. Then, random local
search was used to compute the weights, used in
the definition of the measure, aiming at the best
achievable upper bound of the worst case running
time. By now various other methods to do these
time-consuming computations are available; see,
e.g., [1].

Getting Faster MDS Algorithms
There is a lot of interest in exact exponential
algorithms for solving MDS and in improving
their best known running times. Two important
improvements on the running times of the orig-
inal algorithm stated in Theorems 1 and 2 have
been achieved. To simplify the comparison, let
us mention that in [4] those running times are
stated asO.1:5259n/ using polynomial space and
O.1:5132n/ needing exponential space.

Van Rooij and Bodlaender presented faster ex-
act exponential algorithms solving MDS that are
strongly based on the algorithms of Fomin et al.
and the methods of their analysis. By introducing
new reduction rules in the algorithm and a refined
analysis, they achieved running time O.1:5134n/

using polynomial space and time O.1:5063n/,
presented at STACS 2008. This analysis has been
further improved in [11] to achieve a running time
of O.1:4969n/ using polynomial space, which

was published in 2011. It should be emphasized
that memorization cannot be applied to the latter
algorithm.

The currently best known algorithms solving
MDS have been obtained by Ywata [7] and pre-
sented at IPEC 2011.

Theorem 5 There is a branch and reduce al-
gorithm solving MDS in time O.1:4864n/ using
polynomial space.

Theorem 6 There is an algorithm solving
MDS in time O.1:4689n/ needing exponential
space.

Ywata’s polynomial space branch and reduce
algorithm is also strongly related to the algo-
rithm of Fomin et al. and its analysis. The im-
provement in the running time is achieved by
some crucial change in the order of branchings
in the algorithm solving MSC, i.e., the algo-
rithm branches on the same element consecu-
tively. These consecutive branchings can then
be exploited by a refined analysis using global
weights called potentials. Thus, such an analy-
sis is dubbed “potential method.” By a variant
of memorization where dynamic programming
memorizes only solutions of subproblems with
small number of elements, an algorithm of run-
ning time O.1:4689n/ needing exponential space
has been obtained.

Counting Dominating Sets
A strongly related problem is #DS that asks to
determine for a given graph G the number of
dominating sets of size k, for any k. In [8],
Nederlof, van Rooij, and van Dijk show how to
combine inclusion/exclusion and a branch and re-
duce algorithm while using measure and conquer,
as to obtain an algorithm (needing exponential
space) of running time O.1:5002n/. Clearly, this
also solves MDS.

Applications

There are various other NP-hard domination-type
problems that can be solved by exact exponen-
tial algorithms based on an algorithm solving
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MINIMUM SET COVER: any instance of the initial
problem is transformed to an instance of MSC,
and then an algorithm solving MSC is applied and
thus the initial problem is solved. Examples of
such problems are TOTAL DOMINATING SET, k-
DOMINATING SET, k-CENTER, and MDS on split
graphs. Measure and conquer and the strongly
related quasiconvex analysis of Eppstein [1] have
been used to design and analyze a variety of
exact exponential branch and reduce algorithms
for NP-hard problems, optimization, counting,
and enumeration problems; see [4].

Open Problems

While for many algorithms it is easy to show that
the worst case analysis is tight, this is not the
case for the nowadays time analysis of branch
and reduce algorithms. For example, the worst
case running times of the branch and reduce
algorithms of Fomin et al. [3] solving MDS
and MSC remain unknown; a lower bound of
˝.3n=4/ for the MDS algorithm is known. The
situation is similar for many other branch and
reduce algorithms. Consequently, there is a strong
need for new and better tools to analyze the
worst case running time of branch and reduce
algorithms.
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Problem Definition

The satisfiability problem (SAT) for Boolean for-
mulas in conjunctive normal form (CNF) is one
of the first NP-complete problems [2, 13]. Since
its NP-completeness currently leaves no hope for
polynomial-time algorithms, the progress goes
by decreasing the exponent. There are several
versions of this parametrized problem that differ
in the parameter used for the estimation of the
running time.

Problem 1 (SAT)

INPUT: Formula F in CNF containing n vari-
ables, m clauses, and l literals in total.

OUTPUT: “Yes” ifF has a satisfying assignment,
i.e., a substitution of Boolean values for the
variables that makes F true. “No” otherwise.

The bounds on the running time of SAT algo-
rithms can be thus given in the form jF jO.1/ � ˛n,
jF jO.1/ � ˇm, or jF jO.1/ � � l , where jF j is the
length of a reasonable bit representation of F
(i.e., the formal input to the algorithm). In fact,
for the present algorithms, the bases ˇ and � are
constants, while ˛ is a function ˛.n;m/ of the
formula parameters (because no better constant
than ˛ D 2 is known).

Notation
A formula in conjunctive normal form is a set of
clauses (understood as the conjunction of these
clauses), a clause is a set of literals (understood
as the disjunction of these literals), and a literal
is either a Boolean variable or the negation of
a Boolean variable. A truth assignment assigns
Boolean values (false or true) to one or more vari-
ables. An assignment is abbreviated as the list of
literals that are made true under this assignment
(e.g., assigning false to x and true to y is denoted
by :x; y). The result of the application of an
assignment A to a formula F (denoted F ŒA�)
is the formula obtained by removing the clauses
containing the true literals from F and removing
the falsified literals from the remaining clauses.
For example, if F D .x _ :y _ ´/ ^ .y _ :´/,
then F Œ:x; y� D .´/. A satisfying assignment
for F is an assignment A such that F ŒA� D

true. If such an assignment exists, F is called
satisfiable.

Key Results

Bounds for ˇ and �

General Approach and a Bound for ˇ
The trivial brute-force algorithm enumerating all
possible assignments to the n variables runs in 2n

polynomial-time steps. Thus ˛ � 2, and by trivial
reasons also ˇ; � � 2. In the early 1980s, Monien
and Speckenmeyer noticed that ˇ could be made
smaller. (They and other researchers also noticed
that ˛ could be made smaller for a special case
of the problem where the length of each clause
is bounded by a constant; the reader is referred
to another entry (Local search algorithms for k-
SAT) of the Encyclopedia for relevant references
and algorithms.) Then Kullmann and Luckhardt
[12] set up a framework for divide-and-conquer
(Also called DPLL due to the papers of Davis and
Putnam [6] and Davis, Logemann, and Loveland
[7].) algorithms for SAT that split the original
problem into several (yet usually a constant num-
ber of) subproblems by substituting the values
of some variables and simplifying the obtained
formulas. This line of research resulted in the
following upper bounds for ˇ and � :

Theorem 1 (Hirsch [8]) SAT can be solved in
time

1. jF jO.1/ � 20:30897mI

2. jF jO.1/ � 20:10299l .

A typical divide-and-conquer algorithm for SAT
consists of two phases: splitting of the origi-
nal problem into several subproblems (e.g., re-
ducing SAT(F) to SAT(F[x]) and SAT .F Œ:x�/)
and simplification of the obtained subproblems
using polynomial-time transformation rules that
do not affect the satisfiability of the subprob-
lems (i.e., they replace a formula by an equi-
satisfiable one). The subproblems F1; : : : ; Fk for
splitting are chosen so that the corresponding
recurrent inequality using the simplified problems



672 Exact Algorithms for General CNF SAT

F 01; : : : ; F
0
k

,

T .F / �

kX

iD1

T
�
F 0i
�
C const,

gives a desired upper bound on the number of
leaves in the recurrence tree and, hence, on the
running time of the algorithm. In particular, in
order to obtain the bound jF jO.1/ � 20:30897m one
takes either two subproblems F Œx�; F Œ:x� with
recurrent inequality

tm � tm�3 C tm�4

or four subproblemsF Œx; y�; F Œx;:y�; F Œ:x; y�;
F Œ:x;:y� with recurrent inequality

tm � 2tm�6 C 2tm�7

where ti D max m.G/�iT .G/. The simplification
rules used in the jF jO.1/ � 20:30897m-time and the
jF jO.1/ �20:10299l -time algorithms are as followsW

Simplification Rules

Elimination of 1-Clauses If F contains a
1-clause .a/, replace F by F Œa�.

Subsumption If F contains two clauses C and
D such that C 	 D, replace F by F nfDg.

Resolution with Subsumption Suppose a lit-
eral a and clauses C and D are such that a is the
only literal satisfying both conditions a 2 C and
:a 2 D. In this case, the clause .C[D/nfa;:ag
is called the resolvent by the literal a of the
clauses C and D and denoted by R.C;D/.

The rule is: if R.C;D/ 	 D, replace F by
.F nfDg/ [ fR.C;D/g.

Elimination of a Variable by Resolution
[6] Given a literal a, construct the formula
DP a.F / by

1. Adding to F all resolvents by a
2. Removing from F all clauses containing a

or :a

The rule is: if DP a.F / is not larger in m (resp.,
in l) than F , then replace F by DP a.F /.

Elimination of Blocked Clauses A clause C
is blocked for a literal a w.r.t. F if C contains
the literal a, and the literal :a occurs only in
the clauses of F that contain the negation of at
least one of the literals occurring in Cnfag. For
a CNF-formula F and a literal a occurring in it,
the assignment I.a; F / is defined as

fag [
˚
literals x … fa;:ag j the clause

f:a; xg is blocked for :a w.r.t. F
�
:

Lemma 2 (Kullmann [11])

(1) If a clause C is blocked for a literal a w.r.t.
F , then F and F nfC g are equi-satisfiable.

(2) Given a literal a, the formula F is satisfiable
iff at least one of the formulas F Œ:a� and
F ŒI.a; F /� is satisfiable.

The first claim of the lemma is employed as a
simplification rule.

Application of the Black and White Literals
Principle Let P be a binary relation between
literals and formulas in CNF such that for a
variable v and a formula F , at most one of
P.v; F / and P.:v; F / holds.

Lemma 3 Suppose that each clause of F

that contains a literal w satisfying P.w; F /
contains also at least one literal b satisfying
P.:b; F /. Then F and F Œfl jP.:l; F /g� are
equi-satisfiable.

A Bound for �
To obtain the bound jF jO.1/ � 20:10299l , it is
enough to use a pair F Œ:a�; F ŒI.a; F /� of sub-
problems (see Lemma 2(2)) achieving the desired
recurrent inequality tl � tl�5 C tl�17 and to
switch to the jF jO.1/ �20:30897m-time algorithm if
there are none. A recent (much more technically
involved) improvement to this algorithm [16]
achieves the bound jF jO.1/ � 20:0926l .
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A Bound for ˛
Currently, no non-trivial constant upper bound
for ˛ is known. However, starting with [14]
there was an interest to non-constant bounds.
A series of randomized and deterministic al-
gorithms showing successive improvements was
developed, and at the moment the best possible
bound is achieved by a deterministic divide-and-
conquer algorithm employing the following re-
cursive procedure. The idea behind it is a di-
chotomy: either each clause of the input formula
can be shortened to its first k literals (then a
k-CNF algorithm can be applied), or all these
literals in one of the clauses can be assumed
false. (This clause-shortening approach can be
attributed to Schuler [15], who used it in a ran-
domized fashion. The following version of the
deterministic algorithm achieving the best known
bound both for deterministic and randomized
algorithms appears in [5].)
Procedure S

Input: a CNF formula F and a positive inte-
ger k.

1. Assume F consists of clauses C1; : : : ; Cm.
Change each clause Ci to a clause Di as
follows: If jCi j > k then choose any k
literals in Ci and drop the other literals;
otherwise leave Ci as is, i.e., Di D Ci . Let
F 0 denote the resulting formula.

2. Test satisfiability of F 0 using the m �

poly .n/ � .2 � 2=.k C 1//n-time k-CNF
algorithm defined in [4].

3. If F 0 is satisfiable, output “satisfiable” and
halt. Otherwise, for each i , do the follow-
ing:
1. Convert F to Fi as follows:

1. Replace Cj by Dj for all j < i .
2. Assign false to all literals in Di .

2. Recursively invoke Procedure S on
(Fi ; k).

4. Return “unsatisfiable”.

The algorithm just invokes Procedure S on
the original formula and the integer parameter
k D k � .m; n/. The most accurate analysis of
this family of algorithms by Calabro, Impagli-

azzo, and Paturi [1] implies that, assuming that
m > n, one can obtain the following bound
by taking k.m; n/ D 2log.m=n/ C const:
(This explicit bound is not stated in [1] and is
inferred in [3].)

Theorem 4 (Dantsin, Hirsch [3]) Assuming
m > n, SAT can be solved in time

jF jO.1/ � 2n

�

1 �
1

O .log .m=n//

�

:

Applications

While SAT has numerous applications, the pre-
sented algorithms have no direct effect on them.

Open Problems

Proving a constant upper bound on ˛ < 2 remains
a major open problem in the field, as well as the
hypothetic existence of .1C "/l -time algorithms
for arbitrary small " > 0.

It is possible to perform the analysis of a
divide-and-conquer algorithm and even to gener-
ate simplification rules automatically [10]. How-
ever, this approach so far led to new bounds only
for the (NP-complete) optimization version of
2-SAT [9].

Experimental Results

Jun Wang has implemented the algorithm yield-
ing the bound on ˇ and collected some statistics
regarding the number of applications of the sim-
plification rules [17].
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Problem Definition

A graph class ˘ is a set of simple graphs. One
can also think of ˘ as a property: ˘ comprises
all the graphs that satisfy a certain condition. We
say that class (property) ˘ is hereditary if it
is closed under taking induced subgraphs. More
precisely, whenever G 2 ˘ and H is an induced
subgraph of G, then also H 2 ˘ .
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We shall consider the MAXIMUM INDUCED

˘ -SUBGRAPH problem: given a graph G, find
the largest (in terms of the number of vertices)
induced subgraph of G that belongs to ˘ .
Suppose now that class ˘ is polynomial-time
recognizable: there exists an algorithm that
decides whether a given graphH belongs to˘ in
polynomial time. Then MAXIMUM INDUCED ˘ -
SUBGRAPH on an n-vertex graphG can be solved
by brute force in time (The O?.�/ notation hides
factors polynomial in the input size.) O?.2n/: we
iterate through all the induced subgraphs of G,
and on each of them, we run a polynomial-time
test deciding whether it belongs to ˘ .

Can we do anything smarter? Of course, this
very much depends on the class ˘ we are work-
ing with. MAXIMUM INDUCED ˘ -SUBGRAPH

is a generic problem that encompasses many
other problems as special cases; examples in-
clude CLIQUE (˘ D complete graphs), INDE-
PENDENT SET (˘ D edgeless graphs), or FEED-
BACK VERTEX SET (˘ D forests). It is conve-
nient to assume that ˘ is also hereditary; this
assumption is satisfied in many important exam-
ples, including the aforementioned special cases.

So far, the MAXIMUM INDUCED ˘ -
SUBGRAPH problem has been studied for many
graph classes ˘ , and basically in all the cases
it turned out that it is possible to find an
algorithm with running time O.cn/ for some
c < 2. Obtaining a result of this type is
often informally called breaking the 2n barrier.
While the algorithms share a common general
methodology, vital details differ depending on
the structural properties of the class ˘ . This
makes each and every algorithm of this type
contrived to a particular scenario. However, it
is tempting to formulate the following general
conjecture.

Conjecture 1 ([1]) For every hereditary,
polynomial-time recognizable class of graphs
˘ , there exists a constant c˘ < 2 for which there
is an algorithm solving MAXIMUM INDUCED

˘ -SUBGRAPH in time O.cn
˘ /.

On one hand, current partial progress on this
conjecture consists of scattered results exploit-
ing different properties of particular classes ˘ ,

without much hope for proving more general
statements. On the other hand, finding a coun-
terexample refuting Conjecture 1 based, e.g., on
the Strong Exponential Time Hypothesis seems
problematic: the input to MAXIMUM INDUCED

˘ -SUBGRAPH consists only of
�

n
2

�
bits of in-

formation about adjacencies between the ver-
tices, and it seems difficult to model the search
space of a general k-SAT using such input under
the constraint that ˘ has to be hereditary and
polynomial-time recognizable.

It can be that Conjecture 1 is either false
or very difficult to prove, and therefore, one
can postulate investigating its certain subcases
connected to well-studied classes of graphs. For
instance, one could assume that graphs from ˘

have constant treewidth or that ˘ is a subclass of
chordal or interval graphs. Another direction is to
strengthen the assumption about the description
of the class ˘ by requiring that belonging to
˘ can be expressed in some formalism (e.g.,
some variant of logic). Finally, one can inves-
tigate the algorithms for MAXIMUM INDUCED

˘ -SUBGRAPH where ˘ is not required to be
hereditary; here, natural nonhereditary properties
are connectivity and regularity.

Key Results

Table 1 presents a selection of results on the
MAXIMUM INDUCED ˘ -SUBGRAPH problem.
Since the algorithms are usually quite technical
when it comes to details, we now present an
overview of the general methodology and most
important techniques. In the following, we as-
sume that ˘ is hereditary and polynomial-time
recognizable.

Most often, the general approach is to exam-
ine the structure of the input instance and of
a fixed, unknown optimum solution. The goal
is to identify as broad spectrum of situations
as possible where the solution can be found
by examining O..2 � "/n/ candidates, for some
" > 0. By checking the occurrence of each
of these situations, we eventually narrow down
our investigations to the case where we have a
well-defined structure of the input instance and
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Exact Algorithms for Induced Subgraph
Problems, Table 1 Known results for MAXIMUM

INDUCED ˘ -SUBGRAPH. The first part of the table
presents results for problems for which breaking the 2n

barrier follows directly from branching on forbidden
subgraphs. The second part contains results for which
breaking the barrier requires a nontrivial insight into the
structure of ˘ . Finally, the last part contains results for
nonhereditary classes ˘ . Here, " denotes a small, positive
constant, and its index specifies a parameter on which the
value of this constant depends

Property Time complexity Reference

Edgeless O.1:2109n/ Robson [10]

Biclique O.1:3642n/ Gaspers et al. [6]

Cluster graph O.1:6181n/ Fomin et al. [3]

Bipartite O.1:62n/ Raman et al. [9]

Acyclic O.1:7347n/ Fomin et al. [2]

Constant treewidth O.1:7347n/ Fomin et al. [2]

Planar O.1:7347n/ Fomin et al. [4]

d -degenerate O..2� "d /n/ Pilipczuk�2 [8]

Chordal O..2� "/n/ Bliznets et al. [1]

Interval O..2� "/n/ Bliznets et al. [1]

r-regular O..2� "r /n/ Gupta et al. [7]

Matching O.1:6957n/ Gupta et al. [7]

a number of assumptions about how the solution
looks like. Then, hopefully, a direct algorithm can
be devised.

Let us consider a very simple example of
this principle, which is also a technique used
in many algorithms for breaking the 2n barrier.
Suppose the input graph has n vertices and as-
sume the optimum solution is of size larger that
.1=2C ı/n, for some ı > 0. Then, as candidates
for the optimum solution, we can consider all
the vertex subsets of at least this size: there is
only .2 � "/n of them, where " > 0 depends
on ı. Similarly, if the optimum solution has size
smaller than .1=2 � ı/n, then we can identify
this situation by iterating through all the vertex
subsets of size .1=2 � ı/n (whose number is
again .2 � "/n for some " > 0) and verifying
that none of them induces a graph belonging to
˘ ; note that here we use the assumption that
˘ is hereditary. In this case we can solve the
problem by looking at all vertex subsets of size

at most .1=2 � ı/n. All in all, we can solve
the problem faster than O?.2n/ provided that
the number of vertices in the optimum solution
differs by at least ın from n=2, for some " > 0.
More precisely, for every ı > 0 we will obtain
a running time of the form O..2 � "/n/, where
" tends to 0 when ı tends to 0. Hence, we can
focus only on the situation when the number of
vertices in the optimum solution is very close
to n=2.

We now give an overview of some other im-
portant techniques.

Branching on Forbidden Induced
Subgraphs
Every hereditary graph class ˘ can be char-
acterized by giving a minimal set of forbidden
induced subgraphs F : a graph belongs to ˘ if
and only if it does not contain any graph from
F as an induced subgraph, and F is inclusion-
wise minimal with this property. For instance,
the class of forests is characterized by F being
the family of all the cycles, whereas taking F to
be the family of all the cycles of length at least
4 gives the class of chordal graphs. For many
important classes the family F is infinite, but
there are notable examples where it is finite, like
cluster, trivially perfect, or split graphs.

If ˘ is characterized by a finite set of forbid-
den subgraphs F , then already a simple branch-
ing strategy yields an algorithm working in time
O..2 � "/n/, for some " > 0 depending on F .
Without going into details, we iteratively find
a forbidden induced subgraph that is not yet
removed by the previous choices and branch on
the fate of all the undecided vertices in this
subgraph, omitting the branch where all of them
are included in the solution. Since this forbidden
induced subgraph is of constant size, a standard
analysis shows that the running time of this algo-
rithm is O..2 � "/n/ for some " > 0 depending
on maxH2F jV.H/j. This simple observation can
be combined with more sophisticated techniques
in case when F is infinite. We can namely start
the algorithm by branching on forbidden induced
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subgraphs that are of constant size and, when
their supply is exhausted, turn to some other
algorithms. The following lemma provides a for-
malization of this concept; a graph is called F-
free if it does not contain any graph from F as an
induced subgraph.

Lemma 1 ([1]) Let F be a finite set of graphs
and let ` be the maximum number of vertices in
a graph from F . Let ˘ be a hereditary graph
class that is polynomial-time recognizable. As-
sume that there exists an algorithm A that for
a given F-free graph G on n vertices, in time
O..2�"/n/ finds a maximum induced subgraph of
G that belongs to ˘ , for some " > 0. Then there
exists an algorithm A0 that for a given graph
G on n vertices, in time O..2 � "0/n/ finds a
maximum induced subgraph of G that is F-free
and belongs to ˘ , where "0 > 0 is a constant
depending on " and `.

Thus, for the purpose of breaking the 2n bar-
rier, it is sufficient to focus on the case when
no constant-size forbidden induced subgraph is
present in the input graph.

Exploiting a Large Substructure
Here, the general idea is to look for a large
substructure in the graph that can be leveraged
to design an algorithm breaking the barrier. Let
us take as an example the MAXIMUM INDUCED

CHORDAL SUBGRAPH problem, considered by
Bliznets et al. [1]. Suppose that in the input graph
G one can find a clique Q of size ın, for some
ı > 0; recall that the largest clique in a graph
can be found as fast as in time O.1:2109n/ [10].
Then consider the following algorithm: guess, by
considering 2n�jQj possibilities, the intersection
of the optimum solution with V.G/ n Q. Then
observe that, since Q is a clique, every induced
cycle in G can have only at most two vertices
in common with Q. Hence, the problem of op-
timally extending the choice on V.G/ n Q to
Q essentially boils down to solving a VERTEX

COVER instance on jQj vertices, which can be

done in time O.1:2109jQj/. As Q constitutes
a linear fraction of all the vertices, the overall
running time is O.1:2109jQj � 2n�jQj/, which is
O..2 � "/n/ for some " > 0 depending on ı.
Thus, one can focus on the case where the largest
clique in the input graph, and hence also in any
maximum-sized induced chordal subgraph, has
less than ın vertices.

Potential Maximal Cliques
A potential maximal clique (PMC) in a graph G
is a subset of vertices that becomes a clique in
some inclusion-wise minimal triangulation (By a
triangulation of a graph we mean any its chordal
supergraph.) of G. Fomin and Villanger in [2]
observed two facts. Firstly, whenever H is an
induced subgraph of G of treewidth t , then there
exists a minimal triangulation TG of G that
captures H in the following sense: every clique
of TG intersects V.H/ only at a subset of some
bag of a fixed width-t tree decomposition of
H . Secondly, a graph G on n vertices can have
only O.1:734601n/ PMCs, which can be enu-
merated in time O.1:734601n/. Intuitively, this
means that we can effectively search the space
of treewidth-t induced subgraphs of G in time
O.1:734601n � nO.t// using dynamic program-
ming. Slightly more precisely, treewidth-t in-
duced subgraphs of G can be assembled in a
dynamic programming manner using states of
the form .˝;X/, where ˝ is a PMC in G

and X is a subset of ˝ of size at most t C
1, corresponding to ˝ \ V.H/. In this man-
ner one can obtain an algorithm with running
time O.1:734601n � nO.t// for finding the maxi-
mum induced treewidth-t subgraph, which in par-
ticular implies a O.1:734601n/-time algorithm
for MAXIMUM INDUCED FOREST, equivalent
to FEEDBACK VERTEX SET. Recently, Fomin
et al. [5] extended this framework to encapsulate
also problems where the induced subgraph H is
in addition required to satisfy a property express-
ible in Monadic Second-Order Logic.
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Problem Definition

The CNF satisfiability problem is to determine,
given a CNF formula F with n variables, whether
or not there exists a satisfying assignment for F .
If each clause of F contains at most k literals,
then F is called a k-CNF formula and the prob-
lem is called k-SAT, which is one of the most
fundamental NP-complete problems. The trivial
algorithm is to search 2n 0/1-assignments for
the n variables. But since [6], several algorithms
which run significantly faster than this O.2n/

bound have been developed. As a simple exercise,
consider the following straightforward algorithm
for 3-SAT, which gives us an upper bound of
1:913n: choose an arbitrary clause in F , say,
.x1_x2_x3/. Then generate seven new formulas
by substituting to these x1, x2, and x3 all the
possible values except .x1; x2; x3/ D .0; 1; 0/

which obviously unsatisfies F . Now one can
check the satisfiability of these seven formulas
and conclude that F is satisfiable iff at least one
of them is satisfiable. (Let T .n/ denote the time
complexity of this algorithm. Then one can get
the recurrence T .n/ � 7�T .n�3/ and the above
bound follows.)

Key Results

In the long history of k-SAT algorithms, the one
by Schöning [11] is an important breakthrough.
It is a standard local search and the algorithm
itself is not new (see, e.g., [7]). Suppose that
y is the current assignment (its initial value is
selected uniformly at random). If y is a satisfying
assignment, then the algorithm answers yes and
terminates. Otherwise, there is at least one clause
whose three literals are all false under y. Pick an
arbitrary such clause and select one of the three
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literals in it at random. Then flip (true to false
and vice versa) the value of that variable, replace
y with that new assignment, and then repeat the
same procedure. More formally:

SCH(CNF formula F , integer I )
repeat I times
y D uniformly random vector 2 f0; 1gn

´ D RandomWalk.F; y/;
if ´ satisfies F
then output(´); exit;
end
output(‘Unsatisfiable’);
RandomWalk(CNF formulaG.x1; x2; : : : ; xn/,

assignment y);
y0 D y;
for 3n times
if y0 satisfies G
then return y0; exit;
C  an arbitrary clause ofG that is not satisfied

by y0;
Modify y0 as follows:
select one literal of C uniformly at random and
flip the assignment to this literal;
end
return y0

Schöning’s analysis of this algorithm is very
elegant. Let d.a; b/ denote the Hamming dis-
tance between two binary vectors (assignments)
a and b. For simplicity, suppose that the formula
F has only one satisfying assignment y� and the
current assignment y is far from y� by Hamming
distance d . Suppose also that the currently false
clause C includes three variables, xi , xj , and
xk . Then y and y� must differ in at least one
of these three variables. This means that if the
value of xi , xj , or xk is flipped, then the new as-
signment gets closer to y� by Hamming distance
one with probability at least 1/3. Also, the new
assignment gets farther by Hamming distance one
with probability at most 2/3. The argument can
be generalized to the case that F has multiple
satisfying assignments. Now here comes the key
lemma:

Lemma 1 Let F be a satisfiable formula and
y� be a satisfying assignment for F . For each
assignment y, the probability that a satisfying
assignment (that may be different from y�)
is found by RandomWalk .F; y/ is at least
.1=.k � 1//d.y;y �/=p.n/, where p.n/ is a
polynomial in n.

By taking the average over random ini-
tial assignments, the following theorem
follows:

Theorem 1 For any satisfiable formula F

on n variables, the success probability of
RandomWalk .F; y/ is at least .k=2.k �

1//n=p.n/ for some polynomial p. Thus,
by setting I D .2.k � 1/=k/n � p.n/,
SCH finds a satisfying assignment with high
probability. When k D 3, this value of I is
O.1:334n/.

Applications

The Schöning’s result has been improved by a
series of papers [1, 3, 9] based on the idea of
[3]. Namely, RandomWalk is combined with the
(polynomial time) 2SAT algorithm, which makes
it possible to choose better initial assignments.
For derandomization of SCH, see [2]. Iwama and
Tamaki [4] developed a nontrivial combination of
SCH with another famous, backtrack-type algo-
rithm by [8], resulting in the then fastest algo-
rithm with O.1:324n/ running time. The current
fastest algorithm is due to [10], which is based
on the same approach as [4] and runs in time
O.1:32216n/.

Open Problems

k-SAT is probably the most popular NP-complete
problem for which numerous researchers are
competing for its fastest algorithm. Thus,
improving its time bound is always a good
research target.
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Experimental Results

AI researchers have also been very active in SAT
algorithms including local search; see, e.g., [5].
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Problem Definition

Let G D .V;E/ be an n-node undirected, simple
graph without loops. A set I 	 V is called
an independent set of G if the nodes of I are
pairwise not adjacent. The maximum indepen-
dent set (MIS) problem asks to determine the
maximum cardinality ˛.G/ of an independent set
of G. MIS is one of the best studied NP-hard
problems.

We will need the following notation. The
(open) neighborhood of a vertex v is N.v/ D
fu 2 V W uv 2 Eg, and its closed neighborhood
is NŒv� D N.v/ [ fvg. The degree deg.v/ of v
is jN.v/j. For W 	 V , GŒW � D .W;E \

�
W
2

�
/

is the graph induced by W . We let G � W D

GŒV �W �.

Key Results

A very simple algorithm solves MIS (exactly)
in O�.2n/ time: it is sufficient to enumerate
all the subsets of nodes, check in polynomial
time whether each subset is an independent set

http://dx.doi.org/10.1007/978-1-4939-2864-4_133
http://dx.doi.org/10.1007/978-1-4939-2864-4_330
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or not, and return the maximum cardinality in-
dependent set. We recall that the O� notation
suppresses polynomial factors in the input size.
However, much faster (though still exponential-
time) algorithms are known. In more detail, there
exist algorithms that solve MIS in worst-case
time O�.cn/ for some constant c 2 .1; 2/. In
this section, we will illustrate some of the most
relevant techniques that have been used in the
design and analysis of exact MIS algorithms.
Due to space constraints, our description will be
slightly informal (please see the references for
formal details).

Bounding the Size of the Search Tree
All the nontrivial exact MIS algorithms, starting
with [7], are recursive branching algorithms. As
an illustration, consider the following simple MIS
algorithm Alg1. If the graph is empty, output
˛.G/ D 0 (base instance). Otherwise, choose any
node v of maximum degree, and output

˛.G/ D maxf˛.G � fvg/; 1C ˛.G �NŒv�/g:

Intuitively, the subgraph G � fvg corresponds to
the choice of not including v in the independent
set (v is discarded), while the subgraphG�NŒv�
to the choice of including v in the independent set
(v is selected). Observe that, when v is selected,
the neighbors of v have to be discarded. We
will later refer to this branching as a standard
branching.

The running time of the above algorithm, and
of branching algorithms more in general, can be
bounded as follows. The recursive calls induce a
search tree, where the root is the input instance
and the leaves are base instances (that can be
solved in polynomial time). Observe that each
branching step can be performed in polynomial
time (excluding the time needed to solve sub-
problems). Furthermore, the height of the search
tree is bounded by a polynomial. Therefore, the
running time of the algorithm is bounded by
O�.L.n//, where L.n/ is the maximum number
of leaves of any search tree that can be generated
by the considered algorithm on an input instance
with n nodes. Let us assume that L.n/ � cn for
some constant c � 1. When we branch at node v,

we generate two subproblems containing n � 1
and n � jNŒv�j nodes, respectively. Therefore,
c has to satisfy cn � cn�1 C cn�jN Œv�j. As-
suming pessimistically jNŒv�j D 1, one obtains
cn � 2cn�1 and therefore c � 2. We can
conclude that the running time of the algorithm
is O�.2n/. Though the running time of Alg1
does not improve on exhaustive search, much
faster algorithms can be obtained by branching
in a more careful way and using a similar type
of analysis. This will be discussed in the next
subsections.

Refined Branching Rules
Several refined branching rules have been de-
veloped for MIS. Let us start with some reduc-
tion rules, which reduce the problem without
branching (alternatively, by branching on a single
subproblem). An isolated node v can be selected
w.l.o.g.:

˛.G/ D 1C ˛.G �NŒv�/:

Observe that if NŒu� 	 NŒv�, then node v can be
discarded w.l.o.g. (dominance):

˛.G/ D ˛.G � fvg/:

This rule implies that nodes of degree 1 can
always be selected.

Suppose that we branch at a node v, and in
the branch where we discard v we select exactly
one of its neighbors, say w. Then by replacing
w with v, we obtain a solution of the same car-
dinality including v: this means that the branch
where we select v has to provide the optimal
solution. Therefore, we can assume w.l.o.g. that
the optimal solution either contains v or at least
2 of its neighbors. This idea is exploited in the
folding operation [1], which we next illustrate
only in the case of degree-2 nodes. Let NŒv� D
fw1;w2g. Remove NŒv�. If w1w2 … E, create
a node v0 and add edges between v0 and nodes
in N.w1/ [ N.w2/ � fvg. Let Gfold.v/ be the
resulting graph. Then, one has

˛.G/ D 1C ˛.Gfold.v//:
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Intuitively, including node v0 in the optimal so-
lution to Gfold.v/ corresponds to selecting both
w1 and w2, while discarding v0 corresponds to
selecting v.

Let Alg2 be the algorithm that exhaustively
applies the mentioned reduction rules and then
performs a standard branching on a node of
maximum degree. Reduction rules reduce the
number of nodes at least by 1; hence, we have
the constraint cn � cn�1. If we branch at node v,
deg.v/ � 3. This gives cn � cn�1C cn�4, which
is satisfied by c � 1:380 : : :. Hence, the running
time is in O�.1:381n/.

Let us next briefly sketch some other useful
ideas that lead to refined branchings. A mirror [3]
of a node v is a node u at distance 2 from v such
that N.v/ �N.u/ induces a clique. By the above
discussion, if we branch by discarding v, we can
assume that we select at least two neighbors of v
and therefore we have also to discard the mirrors
M.v/ of v. In other terms, we can use the refined
branching

˛.G/Dmaxf˛.G�fvg�M.v//; 1C˛.G�NŒv�/g:

A satellite [5] of a node v is a node u at distance 2
from v such that there exists a node u0 2 N.v/ \
N.u/ that satisfies NŒu0� � NŒv� D fug. Observe
that if an optimal solution discards u, then we can
discard v as well by dominance since NŒu0� 	
NŒv� in G � fug. Therefore, we can assume that
in the branch where we select v, we also select its
satellites S.v/. In other terms,

˛.G/ D maxf˛.G � fvg/; 1C jS.v/j

C ˛.G �NŒv� � [u2S.v/NŒu�/g:

Another useful trick [4] is to branch on nodes
that form a small separator (of size 1 or 2 in the
graph), hence isolating two or more connected
components that can be solved independently
(see also [2, 5]).

Measure and Conquer
Above we always used the number n of nodes as a
measure of the size of subproblems. As observed
in [3], much tighter running time bounds can

be achieved by using smarted measures. As an
illustration, we will present a refined bound on
the running time of Alg2.

Let us measure the size of subproblems with
the number n3 of nodes of degree at least 3 (large
nodes). Observe that, when n3 D 0,G is a collec-
tion of isolated nodes, paths, and cycles. There-
fore, in that case, Alg2 only applies reduction
rules, hence solving the problem in polynomial
time. In other terms, L.n3/ D L.0/ D 1 in this
case. If the algorithm applies any reduction rule,
the number of large nodes cannot increase and we
obtain the trivial inequality cn3 � cn3 . Suppose
next that Alg2 performs a standard branching at
a node v. Note that at this point all nodes in the
graph are large. If deg.v/ � 4, then we obtain the
inequality cn3 � cn3�1Ccn3�5 which is satisfied
by c � 1:324 : : : . Otherwise (deg.v/ D 3),
observe that the neighbors of v have degree 3
in G and at most 2 in G � fvg. Therefore, the
number of large nodes is at most n3 � 4 in both
subproblems G � fvg and G � NŒv�. This gives
the inequality cn3 � 2cn3�4 which is satisfied by
c � 21=4 < 1:1893. We can conclude that the
running time of the algorithm is in O�.1:325n/.
In [3], each node is assigned a weight which is a
growing function of its degree, and the measure
is the sum of node weights (a similar measure is
used also in [2, 5]).

In [2], it is shown how to use a fast MIS
algorithm for graphs of maximum degree 
 to
derive faster MIS algorithms for graphs of maxi-
mum degree
C 1. Here the measure used in the
analysis is a combination of the number of nodes
and edges.

Memorization
So far we described algorithms with polynomial
space complexity. Memorization [6] is a tech-
nique to speed up exponential-time branching
algorithms at the cost of an exponential space
complexity. The basic idea is to store the op-
timal solution to subproblems in a proper (ex-
ponential size) data structure. Each time a new
subproblem is generated, one first checks (in
polynomial time) whether that subproblem was
already solved before. This way one avoids to
solve the same subproblem several times.
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In order to illustrate this technique, it is
convenient to consider the variant Alg3 of
Alg2 where we do not apply folding. This way,
each subproblem corresponds to some induced
subgraph GŒW � of the input graph. We will also
use the standard measure though memorization
is compatible with measure and conquer. By
adapting the analysis of Alg2, one obtains
the constraint cn � cn�1 C cn�3 and hence
a running time of O�.1:466n/. Next, consider
the variant Alg3mem of Alg3 where we apply
memorization. Let Lk.n/ be the maximum
number of subproblems on k nodes generated by
Alg3mem starting from an instance with n nodes.
A slight adaptation of the standard analysis
shows that Lk.n/ � 1:466n�k . However, since
there are at most

�
n
k

�
induced subgraphs on k

nodes and we never solve the same subproblem
twice, one also has Lk.n/ �

�
n
k

�
. Using

Stirling’s formula, one obtains that the two
upper bounds are roughly equal for k D ˛n and
˛ D 0:107 : : :. We can conclude that the running
time of Alg3mem is in O�.

Pn
kD0Lk.n// D

O�.
Pn

kD0 minf1:466n�k ;
�

n
k

�
g/ D O�.maxn

kD0

minf1:466n�k ;
�

n
k

�
g/ D O�.1:466.1�0:107/n/ D

O�.1:408n/. The analysis can be refined [6] by
bounding the number of connected induced sub-
graphs with k nodes in graphs of small maximum
degree.
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Problem Definition

In the maximum 2-satisfiability problem (abbre-
viated as MAX 2-SAT), one is given a Boolean
formula in conjunctive normal form, such that
each clause contains at most two literals. The task
is to find an assignment to the variables of the
formula such that a maximum number of clauses
are satisfied.

MAX 2-SAT is a classic optimization problem.
Its decision version was proved NP-complete by
Garey, Johnson, and Stockmeyer [7], in stark
contrast with 2-SAT which is solvable in linear
time [2]. To get a feeling for the difficulty of
the problem, the NP-completeness reduction is
sketched here. One can transform any 3-SAT

instance F into a MAX 2-SAT instance F 0, by
replacing each clause of F such as

ci D .`1 _ `2 _ `3/;

http://dx.doi.org/10.1007/978-1-4939-2864-4_132
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where `1, `2, and `3 are arbitrary literals, with the
collection of 2-CNF clauses

.`1/; .`2/; .`3/; .ci /; .:`1 _ :`2/; .:`2 _ :`3/;

.:`1 _ :`3/; .`1 _ ci /; .`2 _ ci /; .`3 _ ci /;

where ci is a new variable. The following are
true:

• If an assignment satisfies ci , then exactly
seven of the ten clauses in the 2-CNF
collection can be satisfied.

• If an assignment does not satisfy ci , then
exactly six of the ten clauses can be satisfied.

If F is satisfiable then there is an assignment
satisfying 7/10 of the clauses inF 0, and ifF is not
satisfiable, then no assignment satisfies more than
7/10 of the clauses in F 0. Since 3-SAT reduces
to MAX 2-SAT, it follows that MAX 2-SAT (as a
decision problem) is NP-complete.

Notation

A CNF formula is represented as a set of
clauses.

The letter ! denotes the smallest real number
such that for all � > 0, n by n matrix multipli-
cation over a field can be performed in O.n!C�/

field operations. Currently, it is known that ! <

2:373 [4, 16]. The field matrix product of two
matrices A and B is denoted by A � B .

LetA andB be matrices with entries from R[

f1g. The distance product ofA andB (written in
shorthand as A ~ B) is the matrix C defined by
the formula

C Œi; j � D min
kD1;:::;n

fAŒi; k�C BŒk; j �g:

A word on m’s and n’s: in reference to graphs,
m and n denote the number of edges and the
number of nodes in the graph, respectively. In
reference to CNF formulas, m and n denote the
number of clauses and the number of variables,
respectively.

Key Result

The primary result of this entry is a procedure
solving Max 2-Sat in O.m � 2!n=3/ time. The
method can be generalized to count the number of
solutions to any constraint optimization problem
with at most two variables per constraint. Indeed,
in the same running time, one can find a Boolean
assignment that maximizes any given degree-
two polynomial in n variables [18, 19]. In this
entry, we shall restrict attention to be Max 2-
Sat, for simplicity. There are several other known
exact algorithms for Max 2-Sat that are more
effective in special cases, such as sparse instances
[3, 8, 9, 11–13, 15, 17]. The procedure described
below is the only one known (to date) that runs in
cn steps for a constant c < 2.

Key Idea

The algorithm gives a reduction from MAX 2-SAT

to the problem MAX TRIANGLE, in which one is
given a graph with integer weights on its nodes
and edges, and the goal is to output a 3-cycle of
maximum weight. At first, the existence of such
a reduction sounds strange, as MAX TRIANGLE

can be trivially solved inO.n3/ time by trying all
possible 3-cycles. The key is that the reduction
exponentially increases the problem size, from
a MAX 2-SAT instance with m clauses and n

variables to a MAX TRIANGLE instance having
O.22n=3/ edges, O.2n=3/ nodes, and weights in
the range f�m; : : : ; mg.

Note that if MAX TRIANGLE required ‚.n3/

time to solve, then the resulting MAX 2-SAT

algorithm would take ‚.2n/ time, rendering the
above reduction pointless. However, it turns out
that the brute-force search of O.n3/ for MAX

TRIANGLE is not the best one can do: using fast
matrix multiplication, there is an algorithm for
MAX TRIANGLE that runs in O.Wn!/ time on
graphs with weights in the range f�W; : : : ;W g.

Main Algorithm

First, a reduction from MAX 2-SAT to MAX TRI-
ANGLE is described, arguing that each triangle of
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weight K in the resulting graph is in one-to-one
correspondence with an assignment that satisfies
K clauses of the MAX 2-SAT instance. Let a; b
be reals, and let ZŒa; b� WD Œa; b� \ Z.

Lemma 1 If MAX TRIANGLE on graphs with n
nodes and weights in ZŒ�W;W � is solvable in
O.f .W / � g.n// time, for polynomials f and g,
then MAX 2-SAT is solvable inO.f .m/�g.2n=3//

time, where m is the number of clauses and n is
the number of variables.

Proof Let C be a given 2-CNF formula. Assume
without loss of generality that n is divisible by 3.
Let F be an instance of MAX 2-SAT. Arbitrarily
partition the n variables of F into three sets P1,
P2, P3, each having n=3 variables. For each Pi ,
make a list Li of all 2n=3 assignments to the
variables of Pi .

Define a graph G D .V;E/ with V D L1 [

L2 [ L3 and E D f.u; v/ju 2 Pi ; v 2 Pj ; i ¤

j g. That is, G is a complete tripartite graph with
2n=3 nodes in each part, and each node in G

corresponds to an assignment to n=3 variables in
C . Weights are placed on the nodes and edges
of G as follows. For a node v, define w.v/ to
be the number of clauses that are satisfied by the
partial assignment denoted by v. For each edge
fu; vg, define w.fu; vg/ D �Wuv , where Wuv is
the number of clauses that are satisfied by both u
and v.

Define the weight of a triangle in G to be
the total sum of all weights and nodes in the
triangle.

Claim 1 There is a one-to-one correspondence
between the triangles of weight K in G and the
variable assignments satisfying exactlyK clauses
in F .

Proof Let a be a variable assignment. Then there
exist unique nodes v1 2 L1; v2 2 L2, and v3 2

L3 such that a is precisely the concatenation of
v1, v2, v3 as assignments. Moreover, any triple
of nodes v1 2 L1; v2 2 L2, and v3 2 L3

corresponds to an assignment. Thus, there is a
one-to-one correspondence between triangles in
G and assignments to F .

The number of clauses satisfied by an assign-
ment is exactly the weight of its corresponding

triangle. To see this, let Ta D fv1; v2; v3g be
the triangle in G corresponding to assignment a.
Then

w.Ta/ D w.�1/C w.�2/C w.�3/C w.f�1; �2g/

C w.f�2; �3g/C w.f�1; �3g/

D

3X

iD1

jfc 2 F j�i satisfies F gj

�
X

i;j Wi¤j

jfc 2 F j�i and �j satisfy F gj

D jfc 2 F ja satisfies F gj;

where the last equality follows from the
inclusion-exclusion principle.

Notice that the number of nodes in G is
3�2n=3, and the absolute value of any node and
edge weight is m. Therefore, running a MAX

TRIANGLE algorithm onG, a solution to MAX 2-
SAT, is obtained inO.f .m/ �g.3 �2n=3//, which is
O.f .m/ � g.2n=3// since g is a polynomial. This
completes the proof of Lemma 1.

Next, a procedure is described for finding
a maximum triangle faster than brute-force
search, using fast matrix multiplication. Alon,
Galil, and Margalit [1] (following Yuval [22])
showed that the distance product for matrices
with entries drawn from ZŒ�W;W � can be
computed using fast matrix multiplication as a
subroutine.

Theorem 1 (Alon, Galil, Margalit [1]) Let A
and B be n � n matrices with entries from
ZŒ�W;W �[ f1g. Then A~B can be computed
in O.W n! logn/ time.

Proof (Sketch) One can replace 1 entries in A
and B with 2W C 1 in the following. Define
matrices A0 and B 0, where

A0Œi; j � D x3W�AŒi;j �; B 0Œi; j � D x3W�BŒi;j �;

and x is a variable. Let C D A0 � B 0. Then

C Œi; j � D

nX

kD1

x6W�AŒi;k��BŒk;j �:
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The next step is to pick a number x that makes
it easy to determine, from the sum of arbitrary
powers of x, the largest power of x appearing
in the sum; this largest power immediately gives
the minimum AŒi; k� C BŒk; j �. Each C Œi; j � is
a polynomial in x with coefficients from ZŒ0; n�.
Suppose each C Œi; j � is evaluated at x D .nC1/.
Then each entry of C Œi; j � can be seen as an
.nC1/-ary number, and the position of this num-
ber’s most significant digit gives the minimum
AŒi; k�C BŒk; j �.

In summary, A ˝d B can be computed by
constructing

A0Œi; j � D .nC 1/3W�AŒi;j �;

B 0Œi; j � D .nC 1/3W�BŒi;j �

in O.W logn/ time per entry, computing C D
A0 � B 0 in O.n! � .W logn// time (as the sizes
of the entries are O.W logn/), then extracting
the minimum from each entry of C , in O.n2 �

W logn/ time. Note if the minimum for an entry
C Œi; j � is at least 2W C 1, then C Œi; j � D1.

Using the fast distance product algorithm, one
can solve MAX TRIANGLE faster than brute
force. The following is based on an algorithm by
Itai and Rodeh [10] for detecting if an unweighted
graph has a triangle in less than n3 steps. The
result can be generalized to counting the number
of k-cliques, for arbitrary k � 3. (To keep
the presentation simple, the counting result is
omitted. Concerning the k-clique result, there is
unfortunately no asymptotic runtime benefit from
using a k-clique algorithm instead of a triangle
algorithm, given the current best algorithms for
these problems.)

Theorem 2 MAX TRIANGLE can be solved in
O.W n! logn/, for graphs with weights drawn
from ZŒ�W;W �.

Proof First, it is shown that a weight function
on nodes and edges can be converted into an
equivalent weight function with weights on only
edges. Let w be the weight function of G, and
redefine the weights to be:

w0.fu; �g/ D
w.u/C w.�/

2
C w.fu; �g/;

w0.u/ D 0:

Note the weight of a triangle is unchanged by this
reduction.

The next step is to use a fast distance product
to find a maximum weight triangle in an edge-
weighted graph of n nodes. Construe the vertex
set of G as the set f1; : : : ; ng. Define A to be
the n � n matrix such that AŒi; j � D �w.fi; j g/
if there is an edge fi; j g, and AŒi; j � D 1

otherwise. The claim is that there is a triangle
through node i of weight at least K if and only
if .A ~ A ~ A/Œi; i � � �K. This is because
.A~ A~ A/Œi; i � � �K if and only if there are
distinct j and k such that fi; j g; fj; kg; fk; ig are
edges and AŒi; j �CAŒj; k�CAŒk; i � � �K, i.e.,
w.fi; j g/C w.fj; kg/C w.fk; ig/ � K.

Therefore, by finding an i such that .A ~
A ~ A/Œi; i � is minimized, one obtains a node i
contained in a maximum triangle. To obtain the
actual triangle, check all m edges fj; kg to see if
fi; j; kg is a triangle.

Theorem 3 MAX 2-SAT can be solved in O.m �
1:732n/ time.

Proof Given a set of clauses C , apply the reduc-
tion from Lemma 1 to get a graphG withO.2n=3/

nodes and weights from ZŒ�m;m�. Apply the
algorithm of Theorem 2 to output a max triangle
in G in O.m � 2!n=3 log.2n=3// D O.m � 1:732n/

time, using the O.n2:376/ matrix multiplication
of Coppersmith and Winograd [4].

Applications

By modifying the graph construction, one can
solve other problems in O.1:732n/ time, such
as Max Cut, Minimum Bisection, and Sparsest
Cut. In general, any constraint optimization prob-
lem for which each constraint has at most two
variables can be solved faster using the above
approach. For more details, see [18] and the
survey by Woeginger [21]. Techniques similar to
the above algorithm have also been used by Dorn
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[6] to speed up dynamic programming for some
problems on planar graphs (and in general, graphs
of bounded branchwidth).

Open Problems

• Improve the space usage of the above algo-
rithm. Currently, ‚.22n=3/ space is needed.
A very interesting open question is if there
is a O.1:99n/ time algorithm for MAX 2-SAT

that uses only polynomial space. This question
would have a positive answer if one could
find an algorithm for solving the k-CLIQUE

problem that uses polylogarithmic space and
nk�ı time for some ı > 0 and k � 3.

• Find a faster-than-2n algorithm for MAX 2-
SAT that does not require fast matrix multi-
plication. The fast matrix multiplication al-
gorithms have the unfortunate reputation of
being impractical.

• Generalize the above algorithm to work for
MAX k-SAT, where k is any positive integer.
The current formulation would require one
to give an efficient algorithm for finding a
small hyperclique in a hypergraph. However,
no general results are known for this problem.
It is conjectured that for all k � 2, MAX

k-SAT is in NO.2n.1� 1
kC1

// time, based on
the conjecture that matrix multiplication is in
n2Co.1/ time [17].
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Problem Definition

The treewidth parameter intuitively measures
whether the graph has a “treelike” structure.
Given an undirected graph G D .V;E/, a tree
decomposition of G is a pair .X ; T /, where
T D .I; F / is a tree and X D fXi j i 2 I g

is a collection of subsets of V called bags
satisfying:

1.
S

i2I Xi D V ,
2. For each edge uv of G, there is a bag Xi

containing both endpoints,

3. For all v 2 V , the set fi 2 I j v 2 Xig induces
a connected subtree of T .

The width of a tree decomposition .X ; T / is the
size of its largest bag, minus one. The treewidth
of G, denoted by tw.G/, is the minimum width
over all possible tree decompositions. One
can easily observe that n-vertex graphs have
treewidth at most n � 1 and that the graphs of
treewidth at most one are exactly the forests.

Given a graph G and a number k, the
TREEWIDTH problem consists in deciding if
tw.G/ � k. Arnborg, Corneil, and Proskurowski
show that the problem is NP-hard [1]. On
the positive side, Bodlaender [2] gives an
algorithm solving the problem in time 2O.k3/n.
Bouchitté and Todinca [4, 5] prove that the
problem is polynomial on classes of graphs
with polynomially many minimal separators,
with an algorithm based on the notion of
potential maximal clique. This latter technique
is also employed by several exact, moderately
exponential algorithms for TREEWIDTH.

Key Results

TREEWIDTH can be solved in O�.2n/ time
by adapting the O.nk/ algorithm of Arnborg
et al. [1] or the Held-Karp technique initially
designed for the TRAVELING SALESMAN

problem [12]. (We use here the O� notation
that suppresses polynomial factors.) Fomin
et al. [9] break this “natural” 2n barrier with
an algorithm running in time O�.1:8135n/,
using the same space complexity. Bodlaender
et al. [3] present a polynomial-space algorithm
running in O�.2:9512n/ time. A major
improvement for both results is due to Fomin and
Villanger [8].

Theorem 1 ([8]) The TREEWIDTH problem can
be solved in O�.1:7549n/ time using exponential
space and in O�.2:6151n/ time using polynomial
space.

These algorithms use an alternative definition for
treewidth. A graph H D .V;E/ is chordal or
triangulated if it has no induced cycle with four



Exact Algorithms for Treewidth 689

E

or more vertices. It is well-known that a chordal
graph has tree decompositions whose bags are
exactly its maximal cliques. Given an arbitrary
graph G D .V;E/, a chordal graph H D

.V; F / on the same vertex set is called a minimal
triangulation ofG ifH containsG as a subgraph
and no chordal subgraph of H contains G. The
treewidth of G can be defined as the minimum
clique size of H minus one, over all minimal
triangulations H of G.

A vertex subset S of graph G is a minimal
separator if there are two distinct components
GŒC � and GŒD� of the graph GŒV n S� such that
NG.C / D NG.D/ D S (NG.C / denotes the
neighborhood of C in graph G).

A vertex subset˝ of G is a potential maximal
clique if there exists some minimal triangulation
H of G such that ˝ induces a maximal clique in
H . Potential maximal cliques are characterized
as follows [4]: ˝ is a potential maximal clique
of G if and only if (i) for each pair of vertices
u; v 2 ˝, u and v are adjacent or see a same
component of GŒV n ˝�, and (ii) no component
ofGŒV n˝� sees the whole set˝. As an example,
when G is a cycle, its minimal separators are
exactly the pairs of nonadjacent vertices, and the
potential maximal cliques are exactly the triples
of vertices.

A block is pair .S; C / such that S is a minimal
separator ofG andGŒC � is a component ofGŒV n
S�. Denote byRG.S; C / the graph obtained from
GŒS [ C � by turning S into a clique, i.e., by
adding all missing edges with both endpoints
in S . The treewidth of G can be obtained as
follows:

tw.G/ D min
S

�

max
C

tw.R.S; C //

�

(1)

where the minimum is taken over all minimal
separators S and the maximum is taken over all
connected components GŒC � of GŒV n S�.

All quantities tw.RG.S; C // can be computed
by dynamic programming over blocks .S; C /, by
increasing the size of S [ C . We only consider
here blocks .S; C / such that S D NG.C / (see [4]
for more details).

tw.RG.S; C //

D min
S�˝�S[C

�

max
1�i�p

.j˝j�1; tw.RG.Si ; Ci ///

�

(2)

where the minimum is taken over all potential
maximal cliques˝ with S � ˝ 	 S[C and the
maximum is taken over all pairs .Si ; Ci /, where
GŒCi � is a component of GŒC n ˝� and Si D

NG.Ci /. Let ˘G denote the set of all potential
maximal cliques of graphG. It was pointed in [9]
that the number of triples .S;˝;C / like in Eq. 2
is at most nj˘G j, which proves that TREEWIDTH

can be computed in O�.j˘G j/ time and space, if
˘G is given in the input.

Therefore, it remains to give a good upper
bound for the number j˘G j of potential maximal
cliques of G, together with efficient algorithms
for listing these objects. Based on the previously
mentioned characterization of potential maximal
cliques, Kratsch et al. provide an algorithm
listing them in time O�.1:8135n/. Fomin and
Villanger [8] improve this result, thanks to the
following combinatorial theorem:

Theorem 2 ([8]) Let G D .V;E/ be an n-
vertex graph, let v be a vertex of G, and b; f
be two integers. The number of vertex subsets B
containing v such that GŒB� is connected, jBj D
b C 1, and jNG.B/j D f is at most

�
bCf

f

�
.

The elegant inductive proof also leads to an
O�.

�
bCf

f

�
/ time algorithm listing all such sets

B . Eventually, the potential maximal cliques of
an input graph G can be listed in O�.1:7549n/

time [8]. This bound was further improved to
O�.1:7347n/ in [7].

In order to obtain polynomial-space algo-
rithms for TREEWIDTH, Bodlaender et al. [3]
provide a relatively simple divide-and-conquer
algorithm, based on the Held-Karp approach,
running in O�.4n/ time. They also observe that
Eq. 1 can be used for recursive, polynomial-
space algorithms, by replacing the minimal
separators S by balanced separators, in the sense
that each component of GŒV n S� contains at
most n=2 vertices. This leads to polynomial-
space algorithm with O�.2:9512n/ running time.
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Fomin and Villanger [8] restrict the balanced
separators to a subset of the potential maximal
cliques, and based on Theorem 2 they obtain,
still using polynomial space, a running time of
O�.2:6151n/.

We refer to the book of Fomin and Kratsch [6]
for more details on the TREEWIDTH problem and
more generally on exact algorithms.

Applications

Exact algorithms based on potential maximal
cliques have been extended to many other prob-
lems like FEEDBACK VERTEX SET, LONGEST

INDUCED PATH, or MAXIMUM INDUCED SUB-
GRAPH WITH A FORBIDDEN PLANAR MINOR.
More generally, for any constant t and any prop-
erty P definable in counting monadic second-
order logic, consider the problem of finding, in an
arbitrary graph G, a maximum-size induced sub-
graph GŒF � of treewidth at most t and with prop-
erty P . This generic problem can be solved in
O�.j˘G j/ time, if ˘G is part of the input [7,10].
Therefore, there is an algorithm in O�.1:7347n/

time for the problem, significantly improving the
O�.2n/ time for exhaustive search.

Open Problems

Currently, the best known upper bound on the
number of potential maximal cliques in n-vertex
graphs is of O�.1:7347n/ and does not seem
to be tight [7]. Simple examples show that
this bound is of at least 3n=3 � 1:4425n. A
challenging question is to find a tight upper
bound and efficient algorithms enumerating
all potential maximal cliques of arbitrary
graphs.

Experimental Results

Several experimental results are reported in [3],
especially on an “engineered” version of the

O�.2n/ time and space algorithm based on the
Held-Karp approach. This dynamic programming
algorithm is compared with the branch and bound
approach of Gogate and Dechter [11] on in-
stances of up to 50 vertices. The results are rel-
atively similar. Bodlaender et al. [3] also observe
that the polynomial-space algorithms become too
slow even for small instances.
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Problem Definition

We focus on the following question: how an
assumption on the sparsity of an input graph, such
as bounded (average) degree, can help in design-
ing exact (exponential-time) algorithms for NP-
hard problems. The following classic problems
are studied:

Traveling Salesman Problem Find a minimum-
length Hamiltonian cycle in an input graph
with edge weights.

Chromatic Number Find a minimum number k
for which the vertices of an input graph can
be colored with k colors such that no two
adjacent vertices receive the same color.

Counting Perfect Matchings Find the number
of perfect matchings in an input graph.

Key Results

The classic algorithms of Bellman [1] and Held
and Karp [10] for traveling salesman problem
run in 2nnO.1/ time for n-vertex graphs. Using

the inclusion-exclusion principle, the chromatic
number of an input graph can be determined
within the same running time bound [4]. Finally,
as long as counting perfect matchings is con-
cerned, a half-century-old 2n=2nO.1/-time algo-
rithm of Ryser for bipartite graphs [12] has only
recently been transferred to arbitrary graphs by
Björklund [2].

In all three aforementioned cases, it is widely
open whether the 2n or 2n=2 factor in the running
time bound can be improved. In 2008, Björklund,
Husfeldt, Kaski, and Koivisto [5,6] observed that
such an improvement can be made if we restrict
ourselves to bounded degree graphs. Further
work of Cygan and Pilipczuk [8] and Golovnev,
Kulikov, and Mihajlin [9] extended these results
to graphs of bounded average degree.

Bounded Degree Graphs

Traveling Salesman Problem
Let us present the approach of Björklund, Hus-
feldt, Kaski, and Koivisto on the example of trav-
eling salesman problem. Assume we are given
an n-vertex edge-weighted graph G. The classic
dynamic programming algorithm picks a root
vertex r and then, for every vertex v 2 V.G/

and every set X 	 V.G/ containing v and r ,
computes T ŒX; v�: the minimum possible length
of a path in G with vertex set X that starts in r
and ends in v. The running time bound 2nnO.1/ is
dominated by the number of choices of the set X .

The simple, but crucial, observation is as fol-
lows: if a set X satisfies X \ NG Œu� D fug for
some u 2 V.G/ n frg, then the values T ŒX; v� are
essentially useless, as no path starting in r can
visit the vertex u without visiting any neighbor
of u (here NG Œu� D NG.u/ [ fug stands for
the closed neighborhood of u). Let us call a set
X 	 V.G/ useful if X \ NG Œu� ¤ fug for every
u 2 V.G/ n frg. The argumentation so far proved
that we may skip the computation of T ŒX; v� for
all setsX that are not useful. The natural question
is how many different useful sets may exist in an
n-vertex graph?

Consider the following greedy procedure: ini-
tiate A D ; and, as long as there exists a vertex
u 2 V.G/ such that NG Œu� \ NG ŒA� D ;,
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add an arbitrarily chosen vertex u to the set A.
By construction, the set A satisfies the following
property: for every u1; u2 2 A, we haveNG Œu1�\

NG Œu2� D ;. An interesting fact is that jAj D
˝.n/ for graphs of bounded degree: whenever
we insert a vertex u into the set A, we cannot
later insert into A any neighbor of u nor any
neighbor of a neighbor of u. However, if the
maximum degree of G is bounded by d , then
there are at most d neighbors of u, and every
such neighbor has at most d�1 further neighbors.
Consequently, when we insert a vertex u into A,
we prohibit at most d C d.d � 1/ D d2 other

vertices from being inserted into A, and jAj �
n=.1C d2/.

It is easy to adjust the above procedure such
that the root vertex r does not belong to A.
Observe that for every useful setX and every u 2
A, we have X \ NG Œu� ¤ fug and, furthermore,
the setsNG Œu� for u 2 A are pairwise disjoint. We
can think of choosing a useful set X as follows:
first, for every u 2 A, we choose the intersection
X \NG Œu� (there are 2jNG Œu�j � 1 choices, as the
choice fug is forbidden), and, second, we choose
the set X n NG ŒA�. Hence, the number of useful
sets is bounded by

 
Y

u2A

2jNG Œu�j � 1

!

� 2n�jNG ŒA�j D 2n �
Y

u2A

�
1 � 2�jNG Œu�j

�
� 2n �

Y

u2A

.1 � 2�d�1/

D 2n � .1 � 2�d�1/jAj � 2n � .1 � 2�d�1/
n

1Cd2

D
�
2 �

1Cd2p
1 � 2�d�1

�n

:

Thus, for every degree bound d , there exists
a constant "d > 0 such that the number of useful
sets in an n-vertex graph of maximum degree d is
bounded by .2�"d /

n, yielding a .2�"d /
nnO.1/-

time algorithm for traveling salesman problem. A
better dependency on d in the formula for "d can
be obtained using a projection theorem of Chung,
Frankl, Graham, and Shearer [7] (see [5]).

Chromatic Number
A similar reasoning can be performed for the
problem of determining the chromatic number
of an input graph. Here, it is useful to rephrase
the problem as follows: find a minimum number
k such that the vertex set of an input graph
can be covered by k maximal independent sets;
note that we do not insist that the independent
sets are disjoint. Observe that if X is a set of
vertices covered by one or more such maximal
independent sets, we have X \ NG Œu� ¤ ; for
every u 2 V.G/, as otherwise the vertex u should
have been included into one of the covering sets.
Hence, we can call a set X 	 V.G/ useful
if it intersects every closed neighborhood in G,

and we obtain again a .2 � "d /
n bound on the

number of useful sets. An important contribution
of Björklund, Husfeldt, Kaski, and Koivisto [5]
can be summarized as follows: using the fact that
the useful sets are upward-closed (any superset
of a useful set is useful as well), we can trim the
fast subset convolution algorithm of [3] to con-
sider useful sets only. Consequently, we obtain a
.2� "d /

nnO.1/-time algorithm for computing the
chromatic number of an input graph of maximum
degree bounded by d .

Bounded Average Degree

Generalizing Algorithms for Bounded Degree
Graphs
The above approach for traveling salesman prob-
lem has been generalized to graphs of bounded
average degree by Cygan and Pilipczuk [8] using
the following observation. Assume a graph G

has n vertices and average degree bounded by d .
Then, a simple Markov-type inequality implies
that for every � > 1 there are at most n=� vertices
of degree larger than �d . However, this bound
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cannot be tight for all values of � at once, and
one can prove the following: if we want at most
n=.˛�/ vertices of degree larger than �d for some
˛ > 1, then we can always find such a constant �
of order roughly exponential in ˛.

An appropriate choice of ˛ and the corre-
sponding value of � allow us to partition the
vertex set of an input graph into a large part
of bounded degree and a very small part of
unbounded degree. The extra multiplicative gap
of ˛ in the size bound allows us to hide the cost of
extensive branching on the part with unbounded
degree in the gains obtained by considering only
(appropriately defined) useful sets in the bounded
degree part.

With this line of reasoning, Cygan and
Pilipczuk [8] showed that for every degree
bound d , there exists a constant "d > 0 such
that traveling salesman problem in graphs of
bounded average degree by d can be solved
in .2 � "d /

nnO.1/ time. It should be noted
that the constant "d depends here doubly
exponentially on d , as opposed to single-
exponential dependency in the works for bounded
degree graphs.

Furthermore, Cygan and Pilipczuk showed
how to express the problem of counting perfect
matchings in an n-vertex graph as a specific
variant of a problem of counting Hamiltonian
cycles in an n=2-vertex graph. This reduction not
only gives a simpler 2n=2nO.1/-time algorithm for
counting perfect matchings, as compared to the
original algorithm of Björklund [2], but since the
reduction does not increase the number of edges
in a graph, it also provides a .2 � "d /

n=2nO.1/-
time algorithm in the case of bounded average
degree.

In a subsequent work, Golovnev, Kulikov,
and Mihajlin [9] showed how to use the
aforementioned multiplicative gap of ˛ to
obtain a .2 � "d /

nnO.1/-time algorithm for
computing the chromatic number of a graph
with average degree bounded by d . Furthermore,
they expressed all previous algorithms as the
task of determining one coefficient in a carefully
chosen polynomial, obtaining polynomial space
complexity without any significant loss in time
complexity.

Counting Perfect Matchings in Bipartite
Graphs
A somewhat different line of research concerns
counting perfect matchings in bipartite graphs.
Here, a 2n=2nO.1/-time algorithm is known for
several decades [12]. Cygan and Pilipczuk pre-
sented a very simple 2.1�1=.3:55d//n=2nO.1/-time
algorithm for this problem in graphs of average
degree at most d , improving upon the previous
works of Servedio and Wan [13] and Izumi and
Wadayama [11]. Furthermore, this result general-
izes to the problem of computing the permanent
of a matrix over an arbitrary commutative ring
with the number of nonzero entries linear in the
dimension of the matrix.
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Problem Definition

A k-coloring of a graph G D .V;E/ assigns one
of k colors to each vertex such that neighboring
vertices have different colors. This is sometimes
called vertex coloring.

The smallest integer k for which the graph
G admits a k-coloring is denoted �.G/ and
called the chromatic number. The number of k-
colorings of G is denoted P.GI k/ and called the
chromatic polynomial.

Key Results

The central observation is that �.G/ and P.GI k/
can be expressed by an inclusion-exclusion for-
mula whose terms are determined by the num-
ber of independent sets of induced subgraphs of
G. For X 	 V , let s.X/ denote the number
of nonempty independent vertex subsets disjoint
fromX , and let sr .X/ denote the number of ways
to choose r nonempty independent vertex subsets
S1; : : : ; Sr (possibly overlapping and with repeti-
tions), all disjoint from X , such that jS1j C � � � C

jSr j D jV j.

Theorem 1 ([1]) Let G be a graph on n ver-
tices.

1.

�.G/D min
k2f1;:::;ng

8
<

:
k W

X

X�V

.�1/jX js.X/k > 0

9
=

;
:

2. For k D 1; : : : ; n,

P.GI k/ D

kX

rD1

�
k

r

�
0

@
X

X�V

.�1/jX jsr .X/

1

A :

The time needed to evaluate these expressions
is dominated by the 2n evaluations of s.X/
and sr .X/, respectively. These values can be
precomputed in time and space within a poly-
nomial factor of 2n because they satisfy

s.X/ D

	
0; if X D V;
s .X [ f�g/C s .X [ f�g [N.v//C 1; for v … X;

http://arxiv.org/abs/1311.2456
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where N.v/ are the neighbors of v in G.
Alternatively, the values can be computed us-
ing exponential-time, polynomial-space algo-
rithms from the literature.

This leads to the following bounds:

Theorem 2 ([3]) For a graph G on n vertices,
�.G/ and P.GI k/ can be computed in

1. Time and space 2nnO.1/.
2. Time O.2:2461n/ and polynomial space

The space requirement can be reduced to
O.1:292n/ [4].

The techniques generalize to arbitrary families
of subsets over a universe of size n, provided
membership in the family can be decided in poly-
nomial time [3, 4], and to the Tutte polynomial
and the Potts model [2].

Applications

In addition to being a fundamental problem in
combinatorial optimization, graph coloring also
arises in many applications, including register
allocation and scheduling.
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Problem Definition

Many of the most important known quantum al-
gorithms operate in the query complexity model.
In the simplest variant of this model, the goal
is to compute some Boolean function of n input
bits by making the minimal number of queries
to the bits. All other resources (such as time and
space) are considered to be free. In the model of
exact quantum query complexity, one insists that
the algorithm succeeds with certainty on every
allowed input. The aim is then to find quan-
tum algorithms which satisfy this constraint and
still outperform any possible classical algorithm.
This can be a challenging task, as achieving a
probability of error equal to zero requires deli-
cate cancellations between the amplitudes in the
quantum algorithm. Nevertheless, efficient exact
quantum algorithms are now known for certain
functions.

Some basic Boolean functions which we will
consider below are:

• Parityn: f .x1; : : : ; xn/ D x1˚ x2˚ � � � ˚ xn.
• Thresholdn

k : f .x1; : : : ; xn/ D 1 if jxj � k,
and f .x/ D 0 otherwise, where jxj WD

P
i xi
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is the Hamming weight of x. The special case
k D n=2 is called the majority function.

• Exactnk : f .x1; : : : ; xn/ D 1 if jxj D k, and
f .x/ D 0 otherwise.

• NE (“not-all-equal”) on 3 bits: f .x1; x2; x3/ D

0 if x1 D x2 D x3, and f .x1; x2; x3/ D 1

otherwise.

Key Results

Early Results
One of the earliest results in quantum computa-
tion was that the parity of 2 bits can be computed
with certainty using only 1 quantum query [6],
implying that Parityn can be computed using
dn=2e quantum queries. By contrast, any clas-
sical algorithm which computes this function
must make n queries. The quantum algorithm for
Parityn can be used as a subroutine to obtain
speedups over classical computation for other
problems. For example, based on this algorithm
the majority function on n bits can be computed
exactly using n C 1 � w.n/ quantum queries,
where w.n/ is the number of 1s in the binary
expansion of n [8]; this result has recently been
improved (see below).

If the function to be computed is partial, i.e.,
some possible inputs are disallowed, the separa-
tion between exact quantum and classical query

complexity can be exponential. For example, in
the Deutsch-Jozsa problem we are given query
access to an n-bit string x (with n even) such that
either all the bits of x are equal or exactly half
of them are equal to 1. Our task is to determine
which is the case. Any exact classical algorithm
must make at least n=2 C 1 queries to bits of
x to solve this problem, but it can be solved
with only one quantum query [7]. An exponential
separation is even known between exact quantum
and bounded-error classical query complexity for
a different partial function [5].

Recent Developments
For some years, the best known separation be-
tween exact quantum and classical query com-
plexity of a total Boolean function (i.e., a function
f W f0; 1gn ! f0; 1g with all possible n-
bit strings allowed as input) was the factor of
2 discussed above. However, recently the first
example has been presented of an exact quantum
algorithm for a family of total Boolean func-
tions which achieves a lower asymptotic query
complexity than the best possible classical algo-
rithm [1].

The family of functions used can be sum-
marized as a “not-all-equal tree of depth d .”
It is based around the recursive use of the NE
function. Define the function NE0.x1/ D x1 and
then for d > 0

NEd .x1; : : : ; x3d /

D NE.NEd�1.x1; : : : ; x3d�1/;NEd�1.x3d�1C1; : : : ; x2�3d�1/;NEd�1.x2�3d�1C1; : : : ; x3d //:

Then the following separation is known:

Theorem 1 (Ambainis [1]) There is an exact
quantum algorithm which computes NEd using
O.2:593 : : :d / queries. Any classical algorithm
which computes NEd must make ˝.3d / queries,
even if it is allowed probability of failure 1=3.

In addition, Theorem 1 implies the first known
asymptotic separation between exact quantum
and classical communication complexity for a to-
tal function. Improvements over the best possible

classical algorithms are also known for the other
basic Boolean functions previously mentioned.

Theorem 2 (Ambainis, Iraids, and Smotrovs
[2]) There is an exact quantum algorithm which
computes Exactnk using maxfk; n � kg queries
and an exact quantum algorithm which computes
Thresholdn

k using maxfk; n�kC1g queries. Both
of these complexities are optimal.

By contrast, it is easy to see that any exact
classical algorithm for these functions must make
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n queries. An optimal exact quantum algorithm
for the special case Exact42 had already been
found prior to this, in work which also gave
optimal exact quantum query algorithms for all
Boolean functions on up to 3 bits [9].

Methods
We briefly describe the main ingredients of the
efficient quantum algorithm for NEd [1]. The
basic idea is to fix some small d0, start with an
exact quantum algorithm which computes NEd0

using fewer queries than the best possible clas-
sical algorithm, and then amplify the separation
by using the algorithm recursively. A difficulty
with this approach is that the standard approach
for using a quantum algorithm recursively in-
curs a factor of 2 penalty in the number of
queries with each recursive call. This factor of 2
is required to “uncompute” information left over
after the algorithm has completed. Therefore, a
query complexity separation by a factor of 2 or
less does not immediately give an asymptotic
separation.

This problem can be addressed by introducing
the notion of p-computation. Let p 2 Œ�1; 1�.
A quantum algorithm A is said to p-compute
a function f .x1; : : : ; xn/ if, for some state
j starti:

• Whenever f .x1; : : : ; xn/ D 0, Aj starti D

j starti.
• Whenever f .x1; : : : ; xn/ D 1, Aj starti D

pj starti C
p
1 � p2j i for some j i, which

may depend on x, such that h j starti D 0.

It can be shown that if there exists an algorithm
which p-computes some function f for some
p � 0, there exists an exact quantum algorithm
which computes f using the same number of
queries. Further, if an algorithm .�1/-computes
some function f , the same algorithm can im-
mediately be used recursively, without needing
any additional queries at each level of recursion.
Thus, to obtain an asymptotic quantum-classical
separation for NEd , it suffices to obtain an algo-
rithm which .�1/-computes NEd0 using strictly
fewer than 3d0 queries, for some d0.

The NEd problem also behaves particularly
well with respect to p-computation for general
values of p:

Lemma 1 If there is an algorithm A which p-
computes NEd�1 using k queries, there is an
algorithm A0 which p0-computes NEd with 2k
queries, for p0 D 1 � 4.1 � p/2=9.

This lemma allows algorithms for NEd�1 to
be lifted to algorithms for NEd , at the expense of
making the value of p worse. Nevertheless, given
that it is easy to write down an algorithm which
.�1/-computes NE0 using one query, the lemma
is sufficient to obtain an exact quantum algorithm
for NE2 using 4 queries. This is already enough
to prove an asymptotic quantum-classical separa-
tion, but this separation can be improved using
the following lemma (a corollary of a variant of
amplitude amplification):

Lemma 2 If there is an algorithm A which p-
computes NEd using k queries, there is an al-
gorithm A0 which p0-computes NEd with 2k

queries, for p0 D 2p2 � 1.

Interleaving Lemmas 1 and 2 allows one to
derive an algorithm which .�1/-computes NE8

using 2,048 queries, which implies an exact quan-
tum algorithm for NEd using O.2;048d=8/ D

O.2:593 : : :d / queries.

Experimental Results

It is a difficult task to design exact quantum query
algorithms, even for small functions, as these
algorithms require precise cancellations between
amplitudes. One way to gain numerical evidence
for what the exact quantum query complexity of
a function should be is to use the formulation
of quantum query complexity as a semidefinite
programming (SDP) problem [4]. This allows
one to estimate the optimal success probability
of any quantum algorithm using a given num-
ber of queries to compute a given function. If
this success probability is very close to 1, this
gives numerical evidence that there exists an
exact quantum algorithm using that number of
queries.
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This approach has been applied for all Boolean
functions on up to 4 bits, giving strong evidence
that the only function on 4 bits which requires
4 quantum queries is the AND function and
functions equivalent to it [9]. This has led to the
conjecture that, for any n, the only function
on n bits which requires n quantum queries
to be computed exactly is the AND function
and functions equivalent to it. This would be
an interesting contrast with the classical case
where most functions on n bits require n queries.
This conjecture has recently been proven for
various special cases: symmetric functions,
monotone functions, and functions with formula
size n [3].
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Problem Definition

From the earliest works on tile self-assembly,
abstract theoretical models and experimental im-
plementations have been linked. In 1998, in ad-
dition to developing the abstract and kinetic Tile
Assembly Models (aTAM and kTAM) [14], Win-
free et al. demonstrated the use of DNA tiles
to construct a simple, periodic lattice [16]. Pe-
riodic lattices and “uniquely addressed” assem-
blies, where each tile type appears once in each
assembly, have been widely studied, with systems
employing up to a thousand unique tiles in three
dimensions [8, 13]. While these systems provide
insight into the behavior of DNA tile systems, al-
gorithmic tile systems of more theoretical interest
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pose specific challenges for experimental imple-
mentation.

In the aTAM, abstract tiles attach individually
to empty lattice sites if bonds of a sufficient total
strength b (at least abstract “temperature” � ) can
be made, and once attached, never detach. Ex-
perimentally, free tiles and assemblies of bound
tiles are in solution. Tiles have short single-
stranded “sticky ends” regions that form bonds
with complementary regions on other tiles. Tiles
attach to assemblies at rates dependent only upon
their concentrations, regardless of the strength
of bonds that can be made. Once attached, tiles
can detach and do so at a rate that is exponen-
tially dependent upon the total strength of the
bonds [6]. Thus, for a tile ti with concentration
Œti � binding by a total abstract bond strength b,
we have attachment and detachment rates of

rf D kf Œti � rb D kf e
�b�Gı

se=RTC˛ (1)

where kf is an experimentally determined rate
constant, ˛ is a constant binding free energy
change (e.g., from entropic considerations),
Gıse

is the free energy change of a single-strength
bond, and T is the (physical) temperature. Us-
ing the substitutions Œti � D e�GmcC˛ , Gse D

�
Gıse=RT , and Okf D kf e
˛ , these can be

simplified to

rf D Okf e
�Gmc rb D Okf e

�bGse (2)

whereGse is a (positive) unitless free energy for a
single-strength bond (larger values correspond to
stronger bonds), Gmc is a free energy analogue of
concentration (larger values correspond to lower
concentrations), and Okf is an adjusted rate con-
stant.

These rates are the basis of the kinetic Tile
Assembly Model (kTAM), which is widely used
as a physical model of tile assembly [14]. Tiles
that attach faster than they detach will tend to
remain attached and allow further growth: for
example, if Gmc < 2Gse, tile attachments by
b � 2 will be favorable. Tiles that detach faster
than they attach will tend to remain detached and
not allow further growth. Since Gmc is dependent
upon tile concentration, and Gse is dependent

upon physical temperature (lower temperatures
result in larger Gse values), the attachment and
detachment rates can be tuned such that attach-
ment is slightly more favorable than detachment
for tiles attaching by a certain total bond strength
and less favorable for less strongly bound tiles. In
this way, in the limit of low concentrations and
slow growth, the kTAM approximates the aTAM
at a given abstract temperature � . When moving
away from this limit and toward experimentally
feasible conditions, however, the kTAM provides
insight into many of the challenges faced in
experimental implementation of algorithmic tile
assembly:

Growth errors: While tile assembly in the
aTAM is error-free, tiles can attach in erroneous
locations in experiments. Even ignoring the
possibility of lattice defects, malformed tiles, and
other experimental peculiarities, errors can arise
in the kTAM via tiles that attach by less than the
required bond strength (e.g., one single-strength
bond for a � D 2 system) and are then “frozen”
in place by further attachments [4]. As the further
growth of algorithmic systems depends on the
tiles already present in an assembly, a single
erroneously incorporated tile can propagate
undesired growth via further, valid attachments.
These errors can arise both in growth sites where
another tile could attach correctly (“growth
errors”) and lattice sites where no correct tile
could attach (“facet nucleation errors”) [3, 14].

Seeding: Tile assembly in the aTAM is usually
initiated from a designated “seed” tile. In solu-
tion, however, tiles are free to attach to all other
tiles and can form assemblies without starting
from a seed, even if this requires several unfavor-
able attachments to form a stable structure that
can allow further growth. Depending upon the tile
system, these “spuriously nucleated” structures
can potentially form easily. For example, a T D
2 system with boundaries of identical tiles that
attach by double bonds on both sides can readily
form long strings of boundary tiles [10, 11].

Tile depletion: As free tiles in solution are incor-
porated into assemblies, their concentrations are
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correspondingly reduced. This depletion lowers
the attachment rates for those tiles and in turn
changes the favorability of growth. If different
tile types are incorporated in different quantities,
their attachment rates will become unequal, and
at some point in assembly, attachment by two
single-strength bonds may be favorable for one
tile type and unfavorable for another.

Tile design: While theoretical constructions
may employ an arbitrary number of sticky
ends types, this number is limited by tile
designs in practice. Most tiles use short single-
stranded DNA regions of 5–10 nucleotides (nt),
limiting the number of possible sticky ends to
45–410 at best. However, since partial bonds
can form between subsequences of the sticky
ends, sequences with sufficient orthogonality
are required, and since DNA binding strength
is sequence dependent, sequences with similar
binding energies are required [5]. Both of these
effects place considerably more stringent limits
on the number of sticky ends and change the
behavior of experimental systems.

Key Results

Winfree and Bekbolatov developed a tileset
transformation, “uniform proofreading,” that
reduced per-site growth error rates from rerr 


me�Gse (where m is the number of possible
errors) to
 me�KGse by scaling each tile into
a K � K block of individually attaching tiles
with unique internal bonds [15]. However, this
transformation did not reduce facet nucleation
errors. Chen and Goel later created a modified
transformation, “snaked proofreading,” that
reduced both growth and facet nucleation errors
by changing the strengths of the internal bonds
used [3]. These and other proofreading methods
have the potential to drastically reduce error rates
in experimental systems.

Schulman et al. analyzed tile system nucle-
ation through the consideration of “critical nu-
clei,” tile assemblies where melting and further
growth are equally favorable, and showed that
by ensuring a sufficient number of unfavorable

attachments would be required for a critical nu-
cleus to form, the rate of spurious nucleation can
be kept arbitrarily low [11]. Using this analysis,
Schulman et al. constructed the “zigzag” ribbon
system, which forms a ribbon where each row
must assemble completely before the next can
begin growth, as an example of a system where
spurious nucleation can be made arbitrarily low
by increasing ribbon width. To nucleate desired
structures, this system makes use of a large,
preformed seed structure to allow the growth of
the first ribbon row.

Schulman et al. also devised a “constant-
temperature” growth technique where the
concentrations of assemblies, controlled by the
concentration of initial seeds in a nucleation-
controlled system, are kept small enough in
comparison to the concentrations of free tiles
that growth does not significantly deplete tile
concentrations, which thus remain approximately
constant [12]. After growth is completed, the
remaining free tiles are “deactivated” by adding
an excess of DNA strands complementary to
specific sticky ends sequences.

In analyzing the effects of DNA sequences
on tile assembly, Evans and Winfree showed an
exponential increase of error rates in the kTAM
for partial binding between different sticky ends
sequences and for differing sequence-dependent
binding energies and developed algorithms for
sequence design and assignment to reduce these
effects [5]. With reasonable design constraints,
their algorithms suggested limits of around 80
sticky ends types for tiles using 5 nt sticky ends
and around 360 for tiles using 10 nt sticky ends
before significant sequence effects begin to be-
come unavoidable and must be incorporated into
tile system design.

Experimental Results

While numerous designs exist for tile structures,
experimental implementations have usually used
either double-crossover (DX) tiles with 5 or
6 nt sticky ends [16] or single-stranded tiles
(SST) with 10 and 11 nt sticky ends [17]. SSTs
potentially offer a significantly larger sequence
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Experimental Implementation of Tile Assembly,
Fig. 1 Experimental results for algorithmic tile assembly.
(a) and (b) show the Rothemund et al. XOR system’s DX
tiles and resulting structures, with (b) illustrating the high
error rates and seeding problems of the system [9]. (c)
shows the Fujibayashi et al. fixed-width XOR ribbon [7],

while (d) shows the Barish et al. binary counter ribbon
with partial 2 � 2 proofreading [2]; the rectangular struc-
tures on the left of both systems are preformed DNA
origami seeds. (e) shows an example bit-copying ribbon
from Schulman et al. [12]

space and have been employed in large, non-
algorithmic systems [8, 13] but have not yet been
used for complex algorithmic systems.

Early experiments in algorithmic tile assembly
using DX tiles did not employ any of the
key results discussed above. Rothemund et al.
implemented a simple XOR system of four
logical tiles (eight tiles were needed owing to
structural considerations), using DNA hairpins on
“one-valued” tiles as labels [9] and flexible, one-
dimensional seeds (Fig. 1a,b). While assemblies
grew, and Sierpinski triangle patterns were
visible, error rates were between 1 and 10%
per tile. Barish et al. implemented more complex
bit-copying and binary counting systems in a
similar way, finding per-tile error rates of around
10% [1].

More recently, Fujibayashi et al. used rigid
DNA origami structures to serve as seeds for
the growth of a fixed-width XOR ribbon system
and, in doing so, reduced error rates to 1:4%
per tile without incorporating proofreading [7]
(Fig. 1c). This seeding mechanism was also used
by Barish et al. to seed zigzag bit-copying and
binary counting ribbon systems that implemented
2 � 2 uniform proofreading [2]. With nucleation
control and proofreading, these systems resulted
in dramatically reduced error rates of 0:26% per
proofreading block for copying and 4:1% for the
more algorithmically complex binary counting,
which only partially implemented uniform proof-
reading (Fig. 1d).

A similar bit-copying ribbon was later
implemented by Schulman et al., with the
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addition of the constant-temperature, constant-
concentration growth method and the use of
biotin-streptavidin labels rather than DNA
hairpins. The result was a decrease in error
rates by almost a factor of ten to 0:034%
per block [12] (Fig. 1e). At this error rate,
structures of around 2,500 error-free blocks,
or 10,000 individual tiles, could be grown
with reasonable yields, suggesting that with
the incorporation of proofreading, nucleation
control and constant-concentration growth
methods, low-error experimental implementa-
tions of increasingly complex algorithmic tile
systems may be feasible up to sequence space
limitations.
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Problem Definition

Experimental analysis of algorithms describes
not a specific algorithmic problem, but rather
an approach to algorithm design and analysis. It
complements, and forms a bridge between, tra-
ditional theoretical analysis, and the application-
driven methodology used in empirical analysis.

The traditional theoretical approach to algo-
rithm analysis defines algorithm efficiency in
terms of counts of dominant operations, under
some abstract model of computation such as
a RAM; the input model is typically either worst-
case or average-case. Theoretical results are usu-
ally expressed in terms of asymptotic bounds
on the function relating input size to number of
dominant operations performed.

This contrasts with the tradition of empirical
analysis that has developed primarily in fields
such as operations research, scientific computing,
and artificial intelligence. In this tradition, the
efficiency of implemented programs is typically
evaluated according to CPU or wall-clock times;
inputs are drawn from real-world applications or
collections of benchmark test sets, and experi-
mental results are usually expressed in compar-
ative terms using tables and charts.

Experimental analysis of algorithms spans
these two approaches by combining the sensi-
bilities of the theoretician with the tools of the
empiricist. Algorithm and program performance
can be measured experimentally according
to a wide variety of performance indicators,
including the dominant cost traditional to theory,
bottleneck operations that tend to dominate
running time, data structure updates, instruction
counts, and memory access costs. A researcher
in experimental analysis selects performance
indicators most appropriate to the scale and scope
of the specific research question at hand. (Of
course time is not the only metric of interest in
algorithm studies; this approach can be used to
analyze other properties such as solution quality
or space use.)

Input instances for experimental algorithm
analysis may be randomly generated or derived
from application instances. In either case, they
typically are described in terms of a small-

to medium-sized collection of controlled
parameters. A primary goal of experimentation
is to investigate the cause-and-effect relationship
between input parameters and algorithm/program
performance indicators.

Research goals of experimental algorith-
mics may include discovering functions (not
necessarily asymptotic) that describe the
relationship between input and performance,
assessing the strengths and weaknesses of
different algorithm/data structures/programming
strategies, and finding best algorithmic strategies
for different input categories. Results are
typically presented and illustrated with graphs
showing comparisons and trends discovered in
the data.

The two terms “empirical” and “experimen-
tal”, are often used interchangeably in the lit-
erature. Sometimes the terms “old style” and
“new style” are used to describe, respectively,
the empirical and experimental approaches to this
type of research. The related term “algorithm en-
gineering” refers to a systematic design process
that takes an abstract algorithm all the way to
an implemented program, with an emphasis on
program efficiency. Experimental and empirical
analysis is often used to guide the algorithm en-
gineering process. The general term algorithmics
can refer to both design and analysis in algorithm
research.

Key Results

None

Applications

Experimental analysis of algorithms has been
used to investigate research problems originating
in theoretical computer science. One example
arises in the average-case analysis of algorithms
for the One-Dimensional Bin Packing problem.
Experimental analyses have led to new theorems
about the performance of the optimal algorithm;
new asymptotic bounds on average-case perfor-
mance of approximation algorithms; extensions
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of theoretical results to new models of inputs; and
to new algorithms with tighter approximation
guarantees. Another example is the experi-
mental discovery of a type of phase-transition
behavior for random instances of the 3CNF-
Satisfiabilty problem, which has led to new
ways to characterize the difficulty of problem
instances.

A second application of experimental algorith-
mics is to find more realistic models of computa-
tion, and to design new algorithms that perform
better on these models. One example is found in
the development of new memory-based models
of computation that give more accurate time pre-
dictions than traditional unit-cost models. Using
these models, researchers have found new cache-
efficient and I/O-efficient algorithms that exploit
properties of the memory hierarchy to achieve
significant reductions in running time.

Experimental analysis is also used to design
and select algorithms that work best in practice,
algorithms that work best on specific categories
of inputs, and algorithms that are most robust
with respect to bad inputs.

Data Sets

Many repositories for data sets and instance gen-
erators to support experimental research are avail-
able on the Internet. They are usually organized
according to specific combinatorial problems or
classes of problems.

URL to Code

Many code repositories to support experimental
research are available on the Internet. They
are usually organized according to specific
combinatorial problems or classes of problems.
Skiena’s Stony Brook Algorithm Repository
(www.cs.sunysb.edu/~algorith/) provides a com-
prehensive collection of problem definitions and
algorithm descriptions, with numerous links to
implemented algorithms.
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list here. Some articles containing advice and
commentary on experimental methodology in the
context of algorithm research appear in the list
below.
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perimental work also appears in more general
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(ACM/IEEE Symposium on Data Structures
and Algorithms), Algorithmica, and ACM
Transactions on Algorithms.
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Problem Definition

Given a propositional formula in conjunctive nor-
mal form, such as .x _ y/ ^ . Nx _ Ny _ ´/ ^ . Ń/,
one wants to find an assignment of truth values
to the variables that makes the formula evaluate
to true. Here, Œx 7! 1; y 7! 0; ´ 7! 0� does
the job. We call such formulas CNF formulas and
such assignments satisfying assignments. SAT is
the problem of deciding whether a given CNF
formula is satisfiable. If every clause (such as
. Nx _ Ny _ ´/ above) has at most k literals, we call
this a k-CNF formula. The above example is a 3-
CNF formula. The problem of deciding whether
a given k-CNF formula is satisfiable is called

k-SAT. This is one of the most fundamental NP-
complete problems.

Several clever algorithms have been developed
for k-SAT. In this note we are mostly concerned
with the PPSZ algorithm [3]. This is itself an
improved version of the older PPZ algorithm [4].
Another prominent SAT algorithm is Schöning’s
random walk algorithm [6], which is slower than
PPSZ, but has the benefit that it can be turned into
a deterministic algorithm [5].

Given that we currently cannot prove P ¤
NP, all super-polynomial lower bounds on the
running time of k-SAT algorithms must be ei-
ther conditional, that is, rest on widely believed
but yet unproven assumptions, or must be for a
particular family of algorithms. In this note we
sketch exponential lower bounds for the PPSZ al-
gorithm, which is the currently fastest algorithm
for k-SAT. We measure the running time of a SAT
algorithm in terms of n, the number of variables.
Often probabilistic algorithms for k-SAT (like
PPSZ) have polynomial running time and success
probability pn for some p < 1. One can turn this
into a Monte Carlo algorithm with success prob-
ability at least 1=2 by repeating it .1=p/n times.
We prefer the formulation of PPSZ as having
polynomial running time, and we are interested
in the worst-case success probability pn.

Key Results

The worst-case behavior of PPSZ is exponential.
That is, there are satisfiable k-CNF formulas
on n variables, for which PPSZ finds a satisfy-
ing assignment with probability at most 2�˝.n/.
More precisely, there is a constant C and a

sequence �k �
C log2 k

k
such that the worst-case

success probability of PPSZ for k-SAT is at most
2�.1��k/n. See Theorem 3 below for a formal
statement.

The PPSZ Algorithm

The PPSZ algorithm, named after its inventors
Paturi, Pudlák, Saks, and Zane [3], is the fastest
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known algorithm for k-SAT. We now give a
brief description of it: Choose a random ordering
� of the n variables x1; : : : ; xn of F . Choose
random truth values b D .b1; : : : ; bn/ 2 f0; 1g.
Iterate through the variables in the ordering given
by � . When processing xi check whether it is
“obvious” what the correct value of xi should be.
If so, fix xi to that value. Otherwise, fix xi to bi .
By fixing we mean replacing each occurrence of
xi in F by that value (and each occurrence of Nxi

by the negation of that value). After all variables
have been processed, the algorithm returns the
satisfying assignment it has found or returns
failure if it has run into a contradiction.

It remains to specify what “obvious” means:
Given a CNF formula F and a variable xi , we
say that the correct value of xi is obviously b if
the statement xi D b can be derived from F

by width-w resolution, where w is some large
constant (think of w D 1;000). This can be
checked in time O.nw/, which is polynomial.

Let ppsz.F; �; b/ be the return value of ppsz.
That is, ppsz.F; �; b/ 2 sat.F / [ ffailureg,
where sat.F / is the set of satisfying assignments
of F .

A Very Brief Sketch of the Analysis of PPSZ
Let � be a permutation of x1; : : : ; xn and let
b D .b1; : : : ; bn/ 2 f0; 1g

n. Suppose we run
PPSZ on F using this permutation � and the truth
values b. For 1 � i � n, define Zi to be 1
if PPSZ did not find it obvious what the correct
value of xi should be. Let Z D Z1 C � � � C Zn.
To underline the dependence on F , � , and b, we
sometimes write Z.F; �; b/. It is not difficult to
show the following lemma.

Lemma 1 ([3]) Let F be a satisfiable CNF for-
mula over n variables. Let � be a random per-
mutation of its variables and let a 2 f0; 1gn be
satisfying assignment of F . Then

Pr
�;b
Œppsz.F; �; b/ D a� D E� Œ2

�Z.F;�;a/� (1)

Since x 7! 2x is a convex function, Jensen’s
inequality implies that E� Œ2

�Z � � 2�EŒZ�, and
by linearity of expectation, it holds that EŒZ� D
Pn

iD1 EŒZi �.

Lemma 2 ([3]) There are numbers ck 2 Œ0; 1�

such that the following holds: If F is a k-CNF
formula over n variables with a unique satisfying
assignment a, then E� ŒZi .F; �; a/� � ck for all
1 � i � n. Furthermore, for large k we have
ck 
 1�

�2

6k
, and in particular c3 D 2 ln.2/�1 


0:38.

Combining everything, Paturi, Pudlák, Saks, and
Zane obtain their main result:

Theorem 1 ([3]) Let F be a k-CNF formula
with a unique satisfying assignment a. Then
PPSZ finds this satisfying assignment with
probability at least 2�ckn.

It takes a considerable additional effort to show
that the same bound holds also if F has multiple
satisfying assignments:

Theorem 2 ([2]) Let F be a satisfiable k-CNF
formula. Then PPSZ finds a satisfying assignment
with probability at least 2�ckn.

We sketch the intuition behind the proof of
Lemma 2. It turns out that in the worst case the
event Zi D 1 can be described by the following
random experiment: Let T D .V;E/ be the
infinite rooted .k � 1/-ary tree. For each node
v 2 V choose �.v/ 2 Œ0; 1� randomly and
independently. Call a node v alive if �.v/ �
�.root/. Then PrŒZi D 1� is (roughly) equal to
the probability that T contains an infinite path
of alive vertices, starting with the root. Call this
probability ck . A simple calculation shows that
c3 D 2 ln.2/ � 1. For larger values of ck , there is
not necessarily a closed form, but Paturi, Pudlák,
Saks, and Zane show that ck 
 1�

�2

6k
for large k.

Hard Instances for the PPSZ
Algorithm

One can construct instances on which the success
probability of PPSZ is exponentially small. The
construction is probabilistic and rather simple. Its
analysis is quite technical, so we can only sketch
it here. We start with some easy estimates. By
Lemma 1 we can write the success probability of
PPSZ as
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Pr
�;b
Œppsz.F; �; b/ 2 sat.F /�

D
X

a2sat.F /

E� Œ2
�Z.F;�;a/� : (2)

Above we used Jensen’s inequality to prove
EŒ2�Z � � 2�EŒZ�. In this section we want to
construct hard instances, that is, instances on
which the success probability (2) is exponentially
small. Thus, we cannot use Jensen’s inequality,
as it gives a lower bound, not an upper. Instead,
we use the following trivial estimate:

X

a2sat.F /

E� Œ2
�Z.F;�;a/� �

X

a2sat.F /

max
�

2�Z.F;�;a/

� jsat.F /j � max
a2sat.F /;�

2�Z.F;�;a/ : (3)

We would like to construct a satisfiable k-CNF
formula F for which (i) jsat.F /j is small, i.e.,
F has few satisfying assignments, and (ii)
Z.F; �; a/ is large for every permutation and
every satisfying assignment a. It turns out there
are formulas satisfying both requirements:

Theorem 3 There are numbers �k converging to
0 such that the following holds: For every k,
there is a family .Fn/n	1, where each Fn is a
satisfiable k-CNF formula over n variables such
that

1. jsat.Fn/j � 2
�kn.

2. Z.F; �; a/ � .1 � �k/n for all � and all a 2
sat.Fn/.

Thus, the probability of PPSZ finding a satisfying
assignment of Fn is at most 2�.1�2�k/n. Further-

more, �k �
C log2.k/

k
for some universal constant

C .

This theorem shows that PPSZ has exponentially
small success probability. Also, it shows that
the strong exponential time hypothesis (SETH)
holds for PPSZ: As k grows, the advantage
over the trivial success probability 2�n becomes
negligible.

The Probabilistic Construction
Let A 2 F

n�n
2 . The system Ax D 0 defines

a Boolean function fA W f0; 1g
n ! f0; 1g as

follows: fA.x/ D 1 if and only if A � x D 0.
Say A is k-sparse if every row of A has at most
k nonzero entries. If A is k-sparse, then fA can
be written as a k-CNF formula with n variables
and 2k�1n clauses. Our construction will be prob-
abilistic. For this, we define a distribution over
k-sparse matrices in F

n�n
2 . Our distribution will

have the form Dn, where D is a distribution over
row vectors from F

n
2 . That is, we sample each row

of A independently from D. Let us describe D.
Define ei 2 F

n
2 to be the vector with a 1 at the

i th position and 0 elsewhere. Sample i1; : : : ; ik 2
f1; : : : ; ng uniformly and independently and let
X D ei1 C � � � C eik . Clearly, X 2 F

n
2 has at

most k nonzero entries. This is our distribution
D.

Let A be a random matrix sampled as de-
scribed, and write fA as a k-CNF formula F .
Note that sat.F / D kerA. The challenge is
to show that F satisfies the two conditions of
Theorem 3.

Lemma 3 (A has high rank) With probability
1 � o.1/, j ker.A/j � 2�kn.

This shows that F satisfies the first condition of
the theorem, i.e., it has few satisfying assign-
ments. Lemma 3 is quite straightforward to prove,
though not trivial. The next lemma shows that
Z.F; �; a/ is large.

Lemma 4 With probability 1�o.1/, it holds that
Z.F; �; a/ � .1��k/n for all permutations � and
all a 2 sat.F /.

Proving this lemma is the main technical chal-
lenge. The proof uses ideas from proof complex-
ity (indeed, the above construction is inspired by
constructions in proof complexity).

Open Problems

Suppose the true worst-case success probability
of PPSZ on k-CNF formulas is 2�rkn. Paturi,
Pudlák, Saks, and Zane have proved that rk �
1 � ˝ .1k/. Chen, Scheder, Talebanfard, and
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Tang showed that rk � 1 � O
�

log2 k
k

�
. Can one

close this gap by construction harder instances or
maybe even improve the analysis of PPSZ?

What is the average-case success probability
of PPSZ on F when we sample A from Dn? Note
that F is exponentially hard with probability 1 �
o.1/, but this might leave a 1=n probability that
F is very easy for PPSZ.

The construction of [1] is probabilistic. Can
one make it explicit? The proof of Lemma 4 uses
(implicit in [1]) a nonstandard notion of expan-
sion. We do not know of explicit construction of
those expanders.
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Notations The main properties of magnetic
disks and multiple disk systems can be captured
by the commonly used parallel disk model
(PDM), which is summarized below in its current
form as developed by Vitter and Shriver [22]:

N D problem size .in units of data items/I

M D internal memory size.inunitsofdata items/I

B D block transfer size .in units of data items/I

D D number of independent disk drivesI

P D number of CPUs;
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where M < N , and 1 � DB � M=2. The
data items are assumed to be of fixed length.
In a single I/O, each of the D disks can si-
multaneously transfer a block of B contiguous
data items. (In the original 1988 article [2], the
D blocks per I/O were allowed to come from
the same disk, which is not realistic.) If P �
D, each of the P processors can drive about
D=P disks; if D < P , each disk is shared by
about P=D processors. The internal memory
size is M=P per processor, and the P proces-
sors are connected by an interconnection net-
work.

It is convenient to refer to some of the above
PDM parameters in units of disk blocks rather
than in units of data items; the resulting formulas
are often simplified. We define the lowercase
notation

n D
N

B
; m D

M

B
; q D

Q

B
; ´ D

Z

B
(1)

to be the problem input size, internal memory
size, query specification size, and query output
size, respectively, in units of disk blocks.

The primary measures of performance in PDM
are:

1. The number of I/O operations performed
2. The amount of disk space used
3. The internal (sequential or parallel) computa-

tion time

For reasons of brevity in this survey, focus is re-
stricted onto only the first two measures. Most of
the algorithms run inO.N logN/ CPU time with
one processor, which is optimal in the compari-
son model, and in many cases are optimal for par-
allel CPUs. In the word-based RAM model, sort-
ing can be done more quickly in O.N log logN/
CPU time. Arge and Thorup [5] provide sort-
ing algorithms that are theoretically optimal in
terms of both I/Os and time in the word-based
RAM model. In terms of auxiliary storage in
external memory, algorithms and data structures
should ideally use linear space, which means

O.N=B/ D O.n/ disk blocks of storage. Vit-
ter [20] gives further details about the PDM
model and provides optimal algorithms and data
structures for a variety of problems. The content
of this chapter comes largely from an abbreviated
form of [19].

Problem 1 External sorting
INPUT: The input data records R0, R1, R2, . . .
are initially “striped” across the D disks, in units
of blocks, so that record Ri is in block bi=Bc and
block j is stored on disk j mod D.
OUTPUT: A striped representation of a permuted
ordering R�.0/, R�.1/, R�.2/, . . . of the input
records with the property that key.R�.i/ �

key.R�.iC1/ for all i � 0.

Permuting is the special case of sorting in
which the permutation that describes the final
position of the records is given explicitly and
does not have to be discovered, for example, by
comparing keys.

Problem 2 Permuting
INPUT: Same input assumptions as in external
sorting. In addition, a permutation � of the in-
tegers f0, 1, 2, . . . , N � 1g is specified.
OUTPUT: A striped representation of a permuted
ordering R�.0/, R�.1/, R�.2/, . . . of the input
records.

Key Results

Theorem 1 ([2, 15]) The average-case and
worst-case number of I/Os required for sorting
N D nB data items using D disks is

Sort.N / D ‚
� n

D
logm n

�
: (2)

Theorem 2 ([2]) The average-case and worst-
case number of I/Os required for permuting
N data items using D disks is

‚

�

min

	
N

D
;Sort.N /


�

: (3)

A more detailed lower bound is provided in (9) in
section “Lower Bounds on I/O.”
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Matrix transposition is the special case of
permuting in which the permutation can be rep-
resented as a transposition of a matrix from row-
major order into column-major order.

Theorem 3 ([2]) With D disks, the number
of I/Os required to transpose a p � q matrix
from row-major order to column-major order is

‚
� n

D
logm minfM;p; q; ng

�
; (4)

where N D pq and n D N=B .

Matrix transposition is a special case of a
more general class of permutations called bit-
permute/complement (BPC) permutations, which
in turn is a subset of the class of bit-matrix-
multiply/complement (BMMC) permutations.
BMMC permutations are defined by a logN �
logN nonsingular 0-1 matrix A and a (logN )-
length 0-1 vector c. An item with binary
address x is mapped by the permutation to
the binary address given by Ax ˚ c, where ˚
denotes bitwise exclusive-or. BPC permutations
are the special case of BMMC permutations in
which A is a permutation matrix, that is, each
row and each column of A contain a single 1.
BPC permutations include matrix transposition,
bit-reversal permutations (which arise in the
FFT), vector-reversal permutations, hypercube
permutations, and matrix re-blocking. Cormen
et al. [8] characterize the optimal number of
I/Os needed to perform any given BMMC
permutation solely as a function of the associated
matrix A, and they give an optimal algorithm for
implementing it.

Theorem 4 ([8]) With D disks, the number
of I/Os required to perform the BMMC
permutation defined by matrix A and vector c
is

‚

�
n

D

�

1C
rank.�/

logm

��

; (5)

where � is the lower-left logn � logB submatrix
of A.

The two main paradigms for external sorting
are distribution and merging, which are discussed
in the following sections for the PDM model.

Sorting by Distribution
Distribution sort [12] is a recursive process that
uses a set of S � 1 partitioning elements to
partition the items into S disjoint buckets. All the
items in one bucket precede all the items in the
next bucket. The sort is completed by recursively
sorting the individual buckets and concatenating
them together to form a single fully sorted list.

One requirement is to choose the S � 1 par-
titioning elements so that the buckets are of
roughly equal size. When that is the case, the
bucket sizes decrease from one level of recursion
to the next by a relative factor of ‚.S/, and thus
there are O.logS n/ levels of recursion. During
each level of recursion, the data are scanned.
As the items stream through internal memory,
they are partitioned into S buckets in an online
manner. When a buffer of size B fills for one of
the buckets, its block is written to the disks in
the next I/O, and another buffer is used to store
the next set of incoming items for the bucket.
Therefore, the maximum number of buckets (and
partitioning elements) is S D ‚.M=B/ D

‚.m/, and the resulting number of levels of re-
cursion is ‚.logm n/. How to perform each level
of recursion in a linear number I/Os is discussed
in [2, 14, 22].

An even better way to do distribution sort,
and deterministically at that, is the BalanceSort
method developed by Nodine and Vitter [14].
During the partitioning process, the algorithm
keeps track of how evenly each bucket has been
distributed so far among the disks. It maintains an
invariant that guarantees good distribution across
the disks for each bucket.

The distribution sort methods mentioned
above for parallel disks perform write operations
in complete stripes, which make it easy to write
parity information for use in error correction
and recovery. But since the blocks written in
each stripe typically belong to multiple buckets,
the buckets themselves will not be striped on
the disks, and thus the disks must be used
independently during read operations. In the
write phase, each bucket must therefore keep
track of the last block written to each disk so
that the blocks for the bucket can be linked
together.
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An orthogonal approach is to stripe the con-
tents of each bucket across the disks so that
read operations can be done in a striped manner.
As a result, the write operations must use disks
independently, since during each write, multiple
buckets will be writing to multiple stripes. Error
correction and recovery can still be handled ef-
ficiently by devoting to each bucket one block-
sized buffer in internal memory. The buffer is
continuously updated to contain the exclusive-or
(parity) of the blocks written to the current stripe,
and after D � 1 blocks have been written, the
parity information in the buffer can be written to
the final (Dth) block in the stripe.

Under this new scenario, the basic loop of
the distribution sort algorithm is, as before,
to read one memory load at a time and
partition the items into S buckets. However,
unlike before, the blocks for each individual
bucket will reside on the disks in contiguous
stripes. Each block therefore has a predefined
place where it must be written. With the
normal round-robin ordering for the stripes
(namely, : : : ; 1; 2; 3; : : : ;D; 1; 2; 3; : : : ;D; : : : ),
the blocks of different buckets may “collide,”
meaning that they need to be written to the
same disk, and subsequent blocks in those
same buckets will also tend to collide. Vitter
and Hutchinson [21] solve this problem by
the technique of randomized cycling. For each
of the S buckets, they determine the ordering
of the disks in the stripe for that bucket via a
random permutation of f1, 2, . . . , Dg. The S
random permutations are chosen independently.
If two blocks (from different buckets) happen to
collide during a write to the same disk, one block
is written to the disk and the other is kept on a
write queue. With high probability, subsequent
blocks in those two buckets will be written to
different disks and thus will not collide. As long
as there is a small pool of available buffer space to
temporarily cache the blocks in the write queues,
Vitter and Hutchinson [21] show that with high
probability the writing proceeds optimally.

The randomized cycling method or the related
merge sort methods discussed at the end of sec-
tion “Sorting by Merging” are the methods of
choice for sorting with parallel disks. Distribution

sort algorithms may have an advantage over the
merge approaches presented in section “Sorting
by Merging” in that they typically make better
use of lower levels of cache in the memory
hierarchy of real systems, based upon analysis
of distribution sort and merge sort algorithms on
models of hierarchical memory.

Sorting by Merging
The merge paradigm is somewhat orthogonal to
the distribution paradigm of the previous sec-
tion. A typical merge sort algorithm works as
follows [12]: In the “run formation” phase, the
n blocks of data are scanned, one memory load
at a time; each memory load is sorted into a
single “run,” which is then output onto a series
of stripes on the disks. At the end of the run
formation phase, there areN=M D n=m (sorted)
runs, each striped across the disks. (In actual
implementations, “replacement selection” can be
used to get runs of 2M data items, on the average,
when M � B [12].) After the initial runs are
formed, the merging phase begins. In each pass of
the merging phase, R runs are merged at a time.
For each merge, the R runs are scanned and its
items merged in an online manner as they stream
through internal memory. Double buffering is
used to overlap I/O and computation. At most
R D ‚.m/ runs can be merged at a time, and
the resulting number of passes is O.logm n/.

To achieve the optimal sorting bound (2), each
merging pass must be done in O.n=D/ I/Os,
which is easy to do for the single-disk case. In
the more general multiple-disk case, each parallel
read operation during the merging must on the
average bring in the next‚.D/ blocks needed for
the merging. The challenge is to ensure that those
blocks reside on different disks so that they can be
read in a single I/O (or a small constant number
of I/Os). The difficulty lies in the fact that the runs
being merged were themselves formed during the
previous merge pass. Their blocks were written to
the disks in the previous pass without knowledge
of how they would interact with other runs in later
merges.

The Greed Sort method of Nodine and Vit-
ter [15] was the first optimal deterministic EM
algorithm for sorting with multiple disks. It works
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by relaxing the merging process with a final
pass to fix the merging. Aggarwal and Plax-
ton [1] developed an optimal deterministic merge
sort based upon the Sharesort hypercube parallel
sorting algorithm. To guarantee even distribu-
tion during the merging, it employs two high-
level merging schemes in which the schedul-
ing is almost oblivious. Like Greed Sort, the
Sharesort algorithm is theoretically optimal (i.e.,
within a constant factor of optimal), but the con-
stant factor is larger than the distribution sort
methods.

One of the most practical methods for sorting
is based upon the simple randomized merge sort
(SRM) algorithm of Barve et al. [7], referred to as
“randomized striping” by Knuth [12]. Each run is
striped across the disks, but with a random start-
ing point (the only place in the algorithm where
randomness is utilized). During the merging pro-
cess, the next block needed from each disk is read
into memory, and if there is not enough room, the
least needed blocks are “flushed” (without any
I/Os required) to free up space.

Further improvements in merge sort are pos-
sible by a more careful prefetching schedule
for the runs. Barve et al. [6], Kallahalla and
Varman [11], Shah et al. [17], and others have
developed competitive and optimal methods for
prefetching blocks in parallel I/O systems.

Hutchinson et al. [10] have demonstrated a
powerful duality between parallel writing and
parallel prefetching, which gives an easy way to
compute optimal prefetching and caching sched-
ules for multiple disks. More significantly, they
show that the same duality exists between dis-
tribution and merging, which they exploit to get
a provably optimal and very practical parallel
disk merge sort. Rather than use random start-
ing points and round-robin stripes as in SRM,
Hutchinson et al. [10] order the stripes for each
run independently, based upon the randomized
cycling strategy discussed in section “Sorting
by Distribution” for distribution sort. These ap-
proaches have led to successfully faster external
memory sorting algorithms [9]. Clever algorithm
engineering optimizations on multicore architec-
tures have won recent big data sorting competi-
tions [16].

Handling Duplicates: Bundle Sorting
For the problem of duplicate removal, in
which there are a total of K distinct items
among the N items, Arge et al. [4] use a
modification of merge sort to solve the problem
in O

�
nmax

˚
1; logm.K=B/

��
I/Os, which

is optimal in the comparison model. When
duplicates get grouped together during a merge,
they are replaced by a single copy of the item and
a count of the occurrences. The algorithm can
be used to sort the file, assuming that a group of
equal items can be represented by a single item
and a count.

A harder instance of sorting called bundle
sorting arises when there are K distinct key
values among the N items, but all the items
have different secondary information that must
be maintained, and therefore items cannot be ag-
gregated with a count. Matias et al. [13] develop
optimal distribution sort algorithms for bundle
sorting using

O
�
nmax

˚
1; logm minfK; ng

��
(6)

I/Os and prove the matching lower bound. They
also show how to do bundle sorting (and sorting
in general) in place (i.e., without extra disk
space).

Permuting and Transposition
Permuting is the special case of sorting in which
the key values of the N data items form a per-
mutation of f1; 2; : : : ; N g. The I/O bound (3) for
permuting can be realized by one of the optimal
sorting algorithms except in the extreme case
B logm D o.logn/, where it is faster to move
the data items one by one in a nonblocked way.
The one-by-one method is trivial if D D 1,
but with multiple disks, there may be bottlenecks
on individual disks; one solution for doing the
permuting in O.N=D/ I/Os is to apply the ran-
domized balancing strategies of [22].

Matrix transposition can be as hard as general
permuting when B is relatively large (say, 1

2
M )

and N is O.M 2/, but for smaller B , the special
structure of the transposition permutation makes
transposition easier. In particular, the matrix can
be broken up into square submatrices of B2

elements such that each submatrix contains B
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blocks of the matrix in row-major order and also
B blocks of the matrix in column-major order.
Thus, if B2 < M , the transpositions can be done
in a simple one-pass operation by transposing
the submatrices one at a time in internal mem-
ory. Thonangi and Yang [18] discuss other types
of permutations realizable with fewer I/Os than
sorting.

Fast Fourier Transform and Permutation
Networks
Computing the fast Fourier transform (FFT) in
external memory consists of a series of I/Os that
permit each computation implied by the FFT
directed graph (or butterfly) to be done while its
arguments are in internal memory. A permutation
network computation consists of an oblivious
(fixed) pattern of I/Os such that any of the NŠ
possible permutations can be realized; data items
can only be reordered when they are in internal
memory. A permutation network can be realized
by a series of three FFTs.

The algorithms for FFT are faster and sim-
pler than for sorting because the computation is
nonadaptive in nature, and thus the communica-
tion pattern is fixed in advance [22].

Lower Bounds on I/O
The following proof of the permutation lower
bound (3) of Theorem 2 is due to Aggarwal and
Vitter [2]. The idea of the proof is to calculate, for
each t � 0, the number of distinct orderings that
are realizable by sequences of t I/Os. The value
of t for which the number of distinct orderings
first exceeds NŠ=2 is a lower bound on the av-
erage number of I/Os (and hence the worst-case
number of I/Os) needed for permuting.

Assuming for the moment that there is only
one disk, D D 1, consider how the number
of realizable orderings can change as a result
of an I/O. In terms of increasing the number of
realizable orderings, the effect of reading a disk

block is considerably more than that of writing
a disk block, so it suffices to consider only the
effect of read operations. During a read operation,
there are at most B data items in the read block,
and they can be interspersed among the M items
in internal memory in at most

�
M
B

�
ways, so the

number of realizable orderings increases by a fac-
tor of

�
M
B

�
. If the block has never before resided

in internal memory, the number of realizable
orderings increases by an extra BŠ factor, since
the items in the block can be permuted among
themselves. (This extra contribution of BŠ can
only happen once for each of the N=B original
blocks.) There are at most nC t � N logN ways
to choose which disk block is involved in the t th
I/O (allowing an arbitrary amount of disk space).
Hence, the number of distinct orderings that can
be realized by all possible sequences of t I/Os is
at most

.BŠ/N=B

 

N.logN/

 
M

B

!!t

: (7)

Setting the expression in (7) to be at least NŠ=2,
and simplifying by taking the logarithm, the re-
sult is

N logBCt

�

logNCB log
M

B

�

D 	.N logN/:

(8)
Solving for t gives the matching lower bound
	.n logm n/ for permuting for the case D D

1. The general lower bound (3) of Theorem 2
follows by dividing by D.

Hutchinson et al. [10] derive an asymptotic
lower bound (i.e., one that accounts for constant
factors) from a more refined argument that ana-
lyzes both input operations and output operations.
Assuming that m D M=B is an increasing
function, the number of I/Os required to sort or
permute n indivisible items, up to lower-order
terms, is at least

2N

D

logn

B logmC 2 logN
�

8
ˆ̂
<

ˆ̂
:

2n

D
logm n if B logm D !.logN/I

N

D
if B logm D o.logN/:

(9)
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For the typical case in which B logm D

!.logN/, the lower bound, up to lower order
terms, is 2n logm n I/Os. For the pathological in
which B logm D o.logN/, the I/O lower bound
is asymptotically N=D.

Permuting is a special case of sorting, and
hence the permuting lower bound applies also
to sorting. In the unlikely case that B logm D
o.logn/, the permuting bound is only 	.N=D/,
and in that case the comparison model must be
used to get the full lower bound (2) of Theo-
rem 1 [2]. In the typical case in which B logm D
	.logn/, the comparison model is not needed to
prove the sorting lower bound; the difficulty of
sorting in that case arises not from determining
the order of the data but from permuting (or
routing) the data.

The proof used above for permuting also
works for permutation networks, in which the
communication pattern is oblivious (fixed). Since
the choice of disk block is fixed for each t ,
there is no N logN term as there is in (7),
and correspondingly there is no additive logN
term in the inner expression as there is in (8).
Hence, solving for t gives the lower bound (2)
rather than (3). The lower bound follows directly
from the counting argument; unlike the sorting
derivation, it does not require the comparison
model for the case B logm D o.logn/. The
lower bound also applies directly to FFT, since
permutation networks can be formed from three
FFTs in sequence. The transposition lower bound
involves a potential argument based upon a
togetherness relation [2].

For the problem of bundle sorting, in which
the N items have a total of K distinct key values
(but the secondary information of each item is
different), Matias et al. [13] derive the matching
lower bound.

The lower bounds mentioned above assume
that the data items are in some sense “indivisible,”
in that they are not split up and reassembled in
some magic way to get the desired output. It
is conjectured that the sorting lower bound (2)
remains valid even if the indivisibility assump-
tion is lifted. However, for an artificial problem
related to transposition, removing the indivisi-
bility assumption can lead to faster algorithms.

Whether the conjecture is true is a challenging
theoretical open problem.

Applications

Sorting and sorting-like operations account for
a significant percentage of computer use [12],
with numerous database applications. In addition,
sorting is an important paradigm in the design of
efficient EM algorithms, as shown in [20], where
several applications can be found. With some
technical qualifications, many problems that can
be solved easily in linear time in internal memory,
such as permuting, list ranking, expression tree
evaluation, and finding connected components in
a sparse graph, require the same number of I/Os
in PDM as does sorting.

Open Problems

Several interesting challenges remain. One diffi-
cult theoretical problem is to prove lower bounds
for permuting and sorting without the indivisibil-
ity assumption. Another question is to determine
the I/O cost for each individual permutation, as
a function of some simple characterization of
the permutation, such as number of inversions.
A continuing goal is to develop optimal EM
algorithms and to translate theoretical gains into
observable improvements in practice.

Many interesting challenges and opportuni-
ties in algorithm design and analysis arise from
new architectures being developed. For example,
Arge et al. [3] propose the parallel external
memory (PEM) model for the design of efficient
algorithms for chip multiprocessors, in which
each processor has a private cache and shares a
larger main memory with the other processors.
The paradigms described earlier form the ba-
sis for efficient algorithms for sorting, selection,
and prefix sums. Further architectures to explore
include other forms of multicore architectures,
networks of workstations, hierarchical storage
devices, disk drives with processing capabilities,
and storage devices based upon microelectrome-



External Sorting and Permuting 715

E

chanical systems (MEMS). Active (or intelligent)
disks, in which disk drives have some processing
capability and can filter information sent to the
host, have been proposed to further reduce the
I/O bottleneck, especially in large database ap-
plications. MEMS-based nonvolatile storage has
the potential to serve as an intermediate level
in the memory hierarchy between DRAM and
disks. It could ultimately provide better latency
and bandwidth than disks, at less cost per bit than
DRAM.

URL to Code

Two systems for developing external memory
algorithms are TPIE and STXXL, which can
be downloaded from http://www.madalgo.
au.dk/tpie/ and http://stxxl.sourceforge.net/,
respectively. Both systems include subroutines
for sorting and permuting and facilitate
development of more advanced algorithms.
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