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Abstract. Community detection, or graph clustering, is the problem of
finding dense groups in a graph. This is important for a variety of applica-
tions, from social network analysis to biological interactions. While most
work in community detection has focused on static graphs, real data
is usually dynamic, changing over time. We present a new algorithm
for dynamic community detection that incrementally updates clusters
when the graph changes. The method is based on a greedy, modularity
maximizing static approach and stores the history of merges in order to
backtrack. On synthetic graph tests with known ground truth clusters,
it can detect a variety of structural community changes for both small
and large batches of edge updates.
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1 Introduction

Graphs are used to represent a variety of relational data, such as internet traffic,
social networks, financial transactions, and biological data. A graph G = (V,E)
is composed of a set of vertices V , which represent entities, and edges E, which
represent relationships between entities. The problem of finding dense, highly
connected groups of vertices in a graph is called community detection or graph
clustering. In cases where communities are non-overlapping and cover the entire
graph, the term community partitioning may also be used. Many real world
graphs contain communities, such as groups of friends on social networks, lab
colleagues in a co-publishing graph, or related proteins in biological networks.
In this work, we present a new algorithm for incremental community detection
on dynamic graphs.

1.1 Related Work

Most work in community detection has been done for static, unchanging graphs.
Popular methods include hierarchical vertex agglomeration, edge agglomeration,
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clique percolation, spectral algorithms, and label propagation. Details of a vari-
ety of approaches can be found in the survey by Fortunato [11]. The quality of
a community C is often measured using a fitness function. Modularity, shown in
Eq. 1, is a popular measure that compares the number of intra-community edges
to the expected number under a random null model [16]. Let kC

in be the sum of
edge weights for edges with both endpoint vertices in C and kC

out be the sum of
edge weights for edges with only one endpoint in C.

Q(C) =
1

|E| (k
C
in − (kC

in + kC
out)

2

4 |E| ) (1)

CNM [6] is a hierarchical, agglomerative algorithm that greedily maximizes
modularity. Each vertex begins as its own singleton community. Communities
are then sequentially merged by contracting the edge resulting in the greatest
increase in modularity. Riedy et al. present a parallel version of this algorithm
in which a weighted maximal matching on edges is used [19].

Real graphs evolve over time. Many works study community detection on
dynamic graphs by creating a sequence of data snapshots over time and cluster-
ing each snapshot. Chakrabarti et al. [5] introduce evolutionary clustering and
GraphScope uses block modeling and information compression principles [21].
There are many other works which study the evolution of communities in chang-
ing graphs [9,14,22]. However, these are not incremental methods. A second cat-
egory of algorithms incrementally updates previously computed clusters when
the underlying graph changes. By reusing previous computations, incremental
algorithms can run faster, which is critical for scaling to large datasets. This is
especially useful for applications in which community information must be kept
up to date for a quickly changing graph and low latency is desired. Moreover,
incremental approaches can result in smoother community transitions.

Duan et al. [10] present an incremental algorithm for finding k-clique com-
munities [18] in a changing graph and Ning et al. [17] provide a dynamic algo-
rithm for spectral partitioning. Other algorithms search for emerging events in
microblog streams [3,4]. Dinh et al. [7,8] present an incremental updating algo-
rithm to modularity based CNM. First, standard CNM is run on the initial
graph. For each graph update, every vertex that is an endpoint of an inserted
edge is removed from its community and placed into a new singleton community.
The standard, static CNM algorithm is then restarted and communities may be
further merged to increase modularity.

The work most closely related to ours is by Görke et al. [13], in which the
authors also present two dynamic algorithms that update a CNM based clus-
tering. In their first algorithm, endpoint vertices of newly updated edges, along
with a local neighborhood, are freed from their current cluster and CNM is
restarted. The second algorithm stores the dendrogram of cluster merges formed
by the initial CNM clustering. When the graph changes, the algorithm back-
tracks cluster merges using this dendrogram until specified conditions are met.
If an intra-community edge is inserted, it backtracks till the two endpoint ver-
tices are in separate communities. If an intra-community edge is deleted or an
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inter-community edge is inserted, it backtracks till both endpoints are their own
singleton communities. No backtracking occurs on a inter-community edge dele-
tion. After communities have been modified, CNM is restarted.

1.2 Contribution

In this work we present two incremental algorithms that update communities
when the underlying graph changes. The first version, BasicDyn is similar to
previous work by Görke et al. [13]. Our second algorithm, FastDyn, is a modi-
fication of BasicDyn that runs faster. We use various synthetic dynamic graphs
to test the quality of our methods. Both BasicDyn and FastDyn are able to
detect community changes.

backtracking Re-contracting 

Roots marked           represent 
actual communities output for G 

Fig. 1. The left image shows ForestG created after agglomeration. The center image
shows the ForestG after backtracking undos merges using BasicDyn or FastDyn.
Right shows after re-starting agglomeration using Agglomerate or FastAgglomerate.

2 Algorithm

The basis of our algorithm is the parallel version of CNM presented by Riedy
et al. [19]. We will denote this by Agglomerate. Each vertex in the graph G is
initialized as its own singleton community, forming the community graph Gcomm.
Note that while Gcomm is initially the same as G, each vertex of Gcomm represents
a group or cluster of vertices in G. The weighted degree of a vertex c ∈ Gcomm

corresponds to kc
out and the weight assigned to c (initially 0), corresponds to the

intra-community edges kc
in.

Next, the following three steps are repeated until the termination criterion
is reached. (1) For each edge in Gcomm, the change in modularity resulting from
an edge contraction is computed. Given an edge (c1, c2) in Gcomm, the change
in modularity is given by the value ΔQ(c1, c2) = Q(c1 ∪ c2) − (Q(c1) + Q(c2)),
which can be easily computed using Eq. 1. This score is assigned to the edge.
(2) A weighted maximal matching is computed on the edges of Gcomm using
these scores. (3) Edges in the maximal matching are contracted in parallel. An
edge contraction merges the two endpoint vertices into one vertex. Termination
occurs when no edge contraction results in a great enough modularity increase.

All vertices that have been merged together by edge contractions correspond
to a single community and so by repeatedly merging vertices in Gcomm, we create
ever larger communities in G. The history of these contractions can be stored as a
forest of merges. Pairs of vertices in Gcomm that were merged together by an edge
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contraction are children of the same parent. The root of each tree corresponds
to the final communities found for G. We refer to this forest by ForestG. Edge
contraction scores can be computed in O(|E|) time. If the maximal matching
is also computed in O(|E|), then the complexity of Agglomerate is O(K ∗ |E|),
where K is the number of contraction phases. In the best case, the number of
communities halves in each phase and the complexity is O(log(|V |)∗ |E|). In the
worst case, the graph has a star formation and only one edge contracts in each
phase, resulting in a complexity of O(|V | ∗ |E|).

Our dynamic algorithm begins with the initial graph G and runs the Agglom-
erate algorithm to create ForestG. We then apply a stream of edge insertions and
deletions to G. These updates can be applied in batches of any size. Small batch
sizes are used for low latency applications, while aggregating larger batches can
result in a relatively lower overall running time. For each batch of updates, our
algorithm uses the history of merges in ForestG and undoes certain merges that
previously had taken place. This breaks apart certain previous communities and
un-contracts corresponding vertices in Gcomm. Next, the Agglomerate algorithm
is restarted and new modularity increasing merges may be performed. Figure 1
shows this process. Next we describe two versions of the dynamic algorithm,
each of which follows the basic steps described.

BasicDyn: When a new batch of edge insertions and deletions is processed, each
vertex that is an endpoint of any edge in the batch is marked. Merges are then
backtracked in ForestG until each marked vertex is in its own singleton com-
munity. After backtracking, Agglomerate is restarted to re-merge communities.

FastDyn: The FastDyn method is based on BasicDyn, but has two modi-
fications that improve computational speed. The first is that backtracking of
previous merges in ForestG occurs under more stringent conditions. Merges are
only undone if the quality of the merge, as measured by the induced change
in modularity, has significantly decreased compared to when the merge initially
took place. Because merges may be performed in parallel using a weighted max-
imal matching on edges, not every vertex c ∈ Gcomm merges with its high-
est scoring neighbor best(c). When a vertex c ∈ Gcomm merges at time ti,
we store both the score of that merge ΔQti(c,match(c)) and the score of the
highest possible merge c could have participated in ΔQti(c, bestti(c)). After a
batch of edge updates is applied at time tcurr and the graph G changes, the
best and actual merge scores are rechecked. The score of a merge has sig-
nificantly decreased if: ΔQti(c, bestti(c)) − ΔQti(c,match(c)) + threshold <
ΔQtcurr

(c, besttcurr
(c)) − ΔQtcurr

(c,match(c)). This occurs if either the score
of the merge taken has decreased or the score of the best possible merge has
increased.

For each merge evaluated, FastDyn checks the above condition and if it
is met, ForestG is backtracked to undo the merge. Merges that are evaluated
are those that occur between clusters that contain at least one member that is
directly affected by the batch of edge updates (is an endpoint of an newly inserted
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Data: Gcomm and ForestG,prev

1 while contractions occuring do
2 for v ∈ Gcomm in parallel do
3 paired[v] = 0;
4 match[v] = v;

5 end
6 while matches possible do
7 for v ∈ Gcomm s.t. paired[v] == 0 in parallel do
8 max = 0, match[v] = v;
9 for neighbors w of v s.t. paired[w] == 0 do

10 if ΔQ(v, w) > max then
11 max = ΔQ(v, w);
12 match[v] = w;

13 end

14 end

15 end
16 for v ∈ Gcomm s.t. paired[v] == 0 in parallel do
17 if match[v] > 0 and (match[match[v]] == v or

prevroot[v] == prevroot[match[v]]) then
18 paired[v] = 1;
19 end

20 end

21 end
22 for v ∈ Gcomm in parallel do
23 Pointer jump match array to root;
24 dest[v]=root;

25 end
26 Contract in parallel all vertices in Gcomm with same value of dest;

27 end
Algorithm 1. The FastAgglomerate algorithm used by FastDyn. prevroot
labels each vertex by its root in ForestG,prev, which corresponds to its previous
community membership.

or deleted edge). In ForestG, this corresponds to leaf nodes that represent such
endpoint vertices as well as any upstream parent of such a leaf node.

The second modification of FastDyn occurs in the re-merging step. Instead
of running Agglomerate after backtracking merges, FastDyn runs a modified
method, which we will call FastAgglomerate. Because Agglomerate only allows
two vertices to merge together in a contraction phase, star-like formations con-
taining n vertices take n phases to merge, which results in a very long running
time. We have found that backtracking merges creates such structures so that
running Agglomerate after backtracking results in a very long tail of contrac-
tions, each of which only contacts a small number of edges. We address this
problem with FastAgglomerate, which uses information about previous merges
to speed up contractions. Instead of performing a maximal edge matching,
FastAgglomerate allows more than two vertices of Gcomm to contract together
if in the previous time step these vertices eventually ended up contracted into
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the same community (if they correspond to nodes in ForestG that previously
shared the same root). In the static case, merging several vertices together in
one contraction phase could lead to deteriorating results. FastAgglomerate is
able to do this, however, because it uses information from the merges of the pre-
vious time step. Intuitively, merges that previously occurred are more likely to
be acceptable later. Pseudocode is given in Algorithm 1. In the worst case, both
BasicDyn and FastDyn will backtrack enough to undo many or most merges.
In this case, the running time is the same as that of Agglomerative. For small
updates, the dynamic algorithms run faster in practice. FastDyn decreases the
number of contraction steps needed by allowing several vertices to merge in a
single step.

Fig. 2. Results for the synthetic test of splitting and merging clusters are shown. The
actual and detected number of communities across time are plotted for batch sizes of 1,
10, 100, and 1000. An alternative approach is shown and labeled “NoHistory” (Color
figure online).

3 Results

Dynamic community detection is only useful if the algorithm is able to detect
structural changes. We evaluate our algorithm using two tests. First, we form a
ring of 32 communities, each with 32 vertices. Each vertex in a community is
on average connected to 16 other vertices in the cluster. Over time, edges are
both inserted and removed so that each of the 32 clusters consecutively splits
in two. Once each community has been split, edges are then updated so that
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pairs of clusters merge together (different pairs than at the start), resulting in
32 clusters again. Figure 2 shows the number of communities detected over time
by BasicDyn with the solid blue line, the number detected by FastDyn with
the green dots and dashes, and the actual number with the dashed red line.
Because graphs are randomly generated, each curve is the average of 10 runs.
The x-axis represents the number of updates that have been made to the graph.
Batch sizes used are 1,10,100, and 1000. A batch size of n means that n edge
insertions and deletions are accumulated before the communities are incremen-
tally updated. Since the curves rise and then fall, both algorithms are able to
detect first splits and then merges. As the batch size increases, the performance
of FastDyn improves, which is expected because a larger batch size allows more
communities to be broken apart during backtracking and the algorithm has more
options for how to re-contract communities. Therefore, the algorithm can output
results closer to those that would be found with a static recomputation begin-
ning from scratch. We also compare the ability of FastDyn and BasicDyn to
detect community changes to the dynamic algorithm from [20], which also uses
greedy modularity maximization. After a batch of edges is inserted and removed,
this method removes each vertex with an updated edge from its current com-
munity into its own singelton community. Agglomeration is then restarted. The
results of this alternative approach are shown in Fig. 2 with the purple dotted
line labeled “NoHistory”. Unlike the backtracking approaches, community splits
and merges are only detected for a large batch size of 1000.

Fig. 3. Results for FastDyn on the second synthetic test using a shifting stochastic
block model are shown. The y-axis shows the quality of output and x-axis shows the
probability of an intra-community edge.

The second test is run on a graph formed using a stochastic block model [15].
We generate two separate graphs, blockA and blockB, each with two communi-
ties in which the probability of an intra-community edge and that of an inter-
community edge are both specified. BlockB uses the same parameters as blockA,
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but with the vertex members of each community changed. Half of the vertices
that were in community one in blockA move to the second community of blockB
and half of those that were in community two of blockA move to community one
of blockB. We begin by running Agglomerate on the entire blockA. Then, in a
stream of updates, we remove edges from blockA and add edges from blockB. At
the end of the stream, the graph will equal blockB. This test differs from the first
test in an important way. In test one, the algorithm could always detect some
number of distinct communities. Here, distinct communities only exist near the
beginning and end of the stream, while in the middle the graph is a mixture of
blockA and blockB. The updates to the graph in this test are randomly distrib-
uted across all vertices so that much of ForestG may be affected. In contrast,
the updates in test one were applied to one cluster at a time. Lastly, test one
specifically tests splits and merges, while test two uses a general rearrangement.
Figure 3 shows how well FastDyn is able to distinguish the two communities of
blockB at the end of the stream. Communities are detected for each batch, but we
only evaluate at the end of the stream since that is when the graph returns to a
known block structure. The x-axis varies the probability of an intra-community
edge. Unsurprisingly, the algorithm performs better when the communities in
blockA and blockB are denser. The y-axis shows the correctness of FastDyn,
which is determined as follows. For each vertex v in the graph, we compare its
actual community in blockB to its community output by FastDyn. The Jac-
card index then measures the normalized overlap between the two sets, with 1
measuring perfect overlap, and 0 no overlap. The average Jaccard index across
all vertices measures the algorithm correctness. Because blockA and blockB are
randomly generated, each point plotted is an average of 50 separate runs on
different graphs. The two synthetic tests described above show that FastDyn
is able to distinguish structural community changes. Synthetic tests are useful
because communities have ground truth and known changes can be applied.

Table 1. The time to compute the initial static community detection and average time
to update with incremental algorithms is shown.

Graph Initial Batch size FastDyn BasicDyn

Facebook 3.5 s 10 0.1 s 0.2 s

1000 0.7 s 4.9 s

DBLP 122 s 10 7.1 s 21.7 s

1000 72 s 101 s

Slashdot 45 s 10 0.6 s 2.1 s

1000 7.5 s 289 s

Table 1 shows the running time of the initial static community detection used
by the dynamic algorithms and the average running time to process a batch
of size 10 and 1000 edges for FastDyn and BasicDyn. The algorithms were
tested on a Slashdot graph [12], a DBLP graph [1,24], and a Facebook wall post
graph [2,23]. The FastDyn algorithm is faster than BasicDyn for all graphs and
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batch sizes. The speedup of using a dynamic algorithm is greater for small batch
sizes because the incremental algorithms perform less work, while running time
for static computation remains the same. Therefore, an incremental approach
is most useful for monitoring applications where community results must be
updated after a small number of data changes.

4 Conclusion

In this work, we present two incremental community detection algorithms for
dynamic graphs. Both use hierarchical, modularity maximizing clustering as
their base and update results by storing the history of previous merges in a
forest. While BasicDyn is similar in nature to a previous approach, FastDyn
has two improvements that significantly improve running time while maintaining
clustering quality. FastDyn is faster than BasicDyn on all real graphs tested
for both small and large update batch sizes. Incrementally updating allows for
speedup over recalculating from scratch whenever the graph changes, especially
for small batch sizes when low latency updates are needed. While the algorithm
is based off a parallel static algorithm, and can be parallelized, the focus of this
work was to study improvements in performance due to incremental updates.
Parallel scalability is a topic for future work.
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