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Abstract—The construction of efficient parallel graph al-
gorithms is important for quickly solving problems in areas
such as urban planning, social network analysis, and hardware
verification. Existing GPU implementations of graph algorithms
tend to be monolithic and thus contributions from the literature
are typically rebuilt rather than reused. Recent work has focused
on traversal-based abstractions that efficiently execute a single
breadth-first search or enact algorithms in the “think like a
vertex” paradigm. However, graph analytics such as the all-pairs
shortest paths problem, diameter computations, betweenness cen-
trality, and reachability querying require the execution of many
such graph traversals. Typically, these traversals are independent
of one another and can thus be executed in parallel.

This paper presents multi-search, a simple abstraction that
is designed for graph algorithms requiring many breadth-first
searches that can be executed simultaneously. Although algo-
rithms have implicitly leveraged this abstraction in the past,
we provide an explicit, reusable implementation that efficiently
maps this abstraction to the GPU, performing more than twice as
fast as previous approaches on large graphs of varying diameter.
This approach allows us to scale our APSP implementation to
graphs with millions of vertices using a single GPU whereas
prior approaches were either constrained to much smaller graph
instances or required large supercomputers to process graphs of
similar size. To show the flexibility of our abstraction, we use
it to express betweenness centrality and achieve more than a
5.82x average speedup over parallel CPU implementations from
existing frameworks and a 2.24x average speedup over a manual,
highly optimized GPU implementation of the algorithm.

I. INTRODUCTION

Graph analysis is a useful abstraction that can be applied to
a variety of problems including epidemiology [28], hardware
verification [19], and the modeling of physical phenomena
[6]. Real world graph analytics require both scalability to
large graph instances and high-performance implementations.
Plenty of individual graph algorithms have been successfully
accelerated using GPUs [9], [32], [33]; however, these manual
implementations tend to make code reuse difficult compared to
their CPU counterparts. Code reuse is tremendously important,
because its absence results in tremendous effort spent dupli-
cating and extracting work that has already been completed.
Attempts to solve this issue have presented a number of
abstractions that fit certain classes of graph algorithms. The
Gather-Apply-Scatter (GAS) abstraction, for example, uses
a generalized addition operator to pull in and accumulate
information from neighboring vertices (gather), update active
vertices (apply), and propagate updates to neighboring vertices

(scatter) [17]. Traversal-based abstractions tend to hide the
performance-sensitive details of graph traversal while requiring
the user to provide application-specific functions for visiting
vertices, edges, or sets of vertices or edges [34], [39], [42].
There has also been a significant effort to standardize classical
graph algorithms in the context of linear algebra [24]. These
abstractions tend to focus on the efficient execution of a
single breadth-first search, so for problems requiring many
such searches, these approaches miss out on opportunities for
coarse-grained parallelism and thus, additional performance
gains.

In this study we focus on graph algorithms requiring many
breadth-first searches that can be executed independently in
parallel. This focus isn’t contrived; many analytics require
searching from several (or even all) vertices in a graph for the
purpose of path-counting or analyzing a graph from multiple
perspectives. For example, querying which sets of vertices
can reach one another can be implemented through a series
of breadth-first searches, one from each vertex in the set.
The All-Pairs Shortest Path (APSP) problem finds the length
of the shortest path between every pair of vertices, which
has been used to trace routes in transportation networks [36].
Betweenness centrality, a popular analytic for determining the
most influential vertices in a graph, builds upon the APSP
problem and thus also fits into this paradigm. The diameter
of a graph as well as other useful graph metadata can also be
determined from the solution of these problems.

We present the multi-search abstraction, which is a simple
methodology for formulating algorithms that execute many
simultaneous breadth-first searches. By providing a small
number of typically short functions, the user can define his
or her own algorithms that leverage this abstraction and
our efficient implementation. We consider the multi-search
abstraction to be a complement rather than a replacement
for GAS and traversal-based paradigms. Although existing
paradigms can be used to implement algorithms fitting the
multi-search abstraction, we show that taking advantage of
coarse-grained parallelism offered by performing many BFSs
at once leads to better performance.

Based on the above, this paper presents the following
contributions:

• We present the multi-search abstraction, a simple, yet
efficient methodology for expressing algorithms that
execute many graph traversals.
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• We provide an efficient, cooperative implementation of
this abstraction, and show that it outperforms existing
implicit GPU methods by greater than a factor of 2
for large graphs of varying diameter.

• Using our abstraction, we show that a single GPU can
be used to solve the APSP problem on sparse graphs
with millions of vertices whereas prior art required
large distributed systems to scale to graphs of similar
size.

• We implement betweenness centrality using our ab-
straction and show more than a 5.82x average speedup
over existing parallel CPU frameworks, a 3.07x average
speedup over an existing GPU framework, and a 2.24x
average speedup over a manual, heavily optimized
GPU implementation for a diverse set of graphs.

II. BACKGROUND

A. Terminology

A graph G = (V,E) is an abstract representation of data
consisting of a set of vertices V and a set of edges E connecting
pairs of vertices. Let n = |V | be the number of vertices and
m = |E| be the number of edges in the graph. The work in
this paper focuses on graphs with uniform edge weight, but
can be extended to handle graphs with arbitrary edge weights.
For simplicity, we consider graphs with undirected edges here,
noting that our implementation can handle graphs with either
directed or undirected edges. An undirected edge between
vertices u and v can be represented as two directed edges, one
from u to v and the other from v to u.

A path p from a vertex u to a vertex v is a set of edges
starting at u and ending at v. The degree of a vertex u is
the number of edges incident to u or the number of vertices
neighboring u. The diameter of a graph is the length of the
longest shortest path between any two vertices. The vertices
of a scale-free graph exhibit a power-law degree distribution
such that a small number of vertices have a large number of
neighbors and a large number of vertices have a small number of
neighbors [2]. Graphs exhibiting the small world phenomenon
(also known as six degrees of separation) have a diameter that
is logarithmic in the number of vertices [43]. Such graphs are
often, but not necessarily, scale-free. Finally, a vertex frontier is
a subset of vertices that are currently active during an iteration
of a graph traversal and an edge frontier is the set of outgoing
edges from the current vertex frontier.

B. The Multi-Search Abstraction

At a high-level, the multi-search abstraction fits any problem
that requires multiple, independent breadth-first searches. We
consider it a generalization of traversal-based approaches, which
abstract the details of graph traversal from the operations that
need to be performed on vertex frontiers. This abstraction
allows domain experts in parallel algorithm design to construct
the performance sensitive code that handles graph traversals
and allows end users to write a small number of functions
that are applied to the active vertices at each level. The end
user may still need to be aware of some details of parallel
programming, such as when atomic operations are necessary
to avoid race conditions, but their code is typically concise and
not substantially performance sensitive.

The users of our abstraction declare the set of vertices in
the graph that traversals are to be executed from in addition
to defining the functions that would be used in a standard
traversal-based abstraction. Hence, the multi-search abstraction
leverages coarse-grained parallelism because each search can
be executed independently as well as fine-grained parallelism
because the searches themselves can also be parallelized. In
the context of GPU computing, this method of abstraction is
especially useful for graphs that are too sparse to fully occupy
the GPU with a single breadth-first search.

C. Multi-Search Algorithms

This subsection describes several fundamental graph algo-
rithms that can be built on top of the multi-search abstraction.
Many of these algorithms are used as subroutines themselves,
showing the variety of use cases for the abstraction.

1) All-Pairs Shortest Paths: The All-Pairs Shortest Paths
(APSP) problem finds the shortest paths between all pairs of
vertices in a graph. The results can be represented as either
the specific distances between each pair of vertices or as the
paths themselves. For the latter representation, each vertex
can store its parent in the breadth-first search tree that starts
from the source. Note however, that the latter representation is
nondeterministic as multiple valid parents may exist for a given
vertex. For our experiments the choice of representation has a
negligible impact on performance, so we choose to compute
distances as has been done in other work in this area [7], [11],
[29].

Algorithm 1: The Floyd-Warshall Algorithm
1 for k ← 0 . . . n− 1 do
2 for i← 0 . . . n− 1 do
3 for j ← 0 . . . n− 1 do
4 d[i][j]← min(d[i][j], d[i][k] + d[k][j])

A canonical approach to solving the APSP problem is to
use the Floyd-Warshall (FW) algorithm, shown in Algorithm 1.
Algorithm 1 assumes that d[u][v] is initialized to 0 when u = v
and the weight of the edge u→ v otherwise (or ∞ if no such
edge exists). Having an O(n3) complexity that is independent
of the number of edges in the graph makes this approach
well-suited to dense graphs. In this paper we instead focus
our attention on sparse graphs, as graphs found in real world
applications tend to be sparse [8], [10].

Algorithm 2: Simplified Version of Johnson’s Algorithm
for Sparse Graphs
1 for s ∈ V do
2 Q.enqueue(s)
3 while ¬Q.empty() do
4 v ← Q.dequeue()
5 for w ∈ succ(v) do
6 if d[s][w] =∞ then
7 Q.enqueue(w)
8 d[s][w]← d[s][v] + 1
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For sparse graphs, a number of alternative approaches exist,
such as Johnson’s algorithm [22] or techniques based on Sparse
Matrix-Vector Multiplication (SpMV) [25]. Johnson’s algorithm
repeatedly runs Dijkstra’s Single-Source Shortest Paths (SSSP)
algorithm, using every vertex in the graph as a source. For the
graphs of uniform weight that we consider in this paper, this
algorithm can be simplified to have O(mn) complexity [5].
Algorithm 2 shows a simplified version of Johnson’s algorithm
for graphs with uniform weight. The algorithm assumes that
initially, for each source vertex s, d[s][t] = 0 when s = t and
that d[s][t] =∞ otherwise.

Since shortest path calculations are independent from one
source vertex to another, implementations choose to use a chunk,
or number of source vertices, to compute at the same time.
Although the selection of a chunk size may or may not impact
performance, it can have a tremendous impact on memory
consumption. At one extreme, Floyd-Warshall approaches use
a chunk of size n, as they compute shortest paths from all
source vertices simultaneously, requiring O(n2) storage. At
the other extreme, SpMV or BFS approaches uses a chunk
of size 1, as they sequentially compute the shortest paths
from one source vertex at a time, reusing O(n) storage for the
distances currently being computed (though the complete output
still requires O(n2) space, of course). Our implementation is
between these two endpoints: we use a chunk size equivalent to
the number of streaming multiprocessors on the GPU, which is
typically less than 16 on contemporary hardware. We can thus
trivially scale our implementation to distributed systems with
multiple GPUs per node by increasing the chunk size to be the
total number of streaming multiprocessors across all GPUs on
all nodes, as shown in [30] for betweenness centrality.

2) Diameter Computation: Computing the diameter of a
graph once one has performed an APSP computation is trivial.
The diameter can be defined in terms of d as follows:

diameter = max
u,v
{d[u][v]} (1)

Although disconnected graphs have an infinite diameter, it is
more helpful in practice to use a related metric, such as the
diameter of the largest connected component or the effective
diameter of some subset of the graph [26]. Knowledge of
a graph’s diameter is useful for designing the topology of
computer networks in order to minimize latency, cost, and
energy of sending messages between nodes [3]. Graph diameter
has also been shown to have a significant performance impact
for certain classes of parallel algorithms [30].

3) Transitive Closure: The transitive closure of a graph
is the set of all reachable vertices from each vertex in the
graph. Obtaining the transitive closure from d is also quite
simple: if d[u][v] 6=∞ then v is reachable from u, otherwise
it is not. A number of trade-offs exist for computing the
transitive closure of a graph. Depending on the application
and particular graph being analyzed, one may prefer to store
the entire transitive closure as a matrix, using O(n2) space, but
providing reachability queries in O(1) time. For large graphs,
one may instead prefer to perform a Breadth-First Search (BFS)
from the source of the query in an attempt to find the destination
of the query. This approach requires just O(1) space for the
result but takes O(m+n) time for each query. Recent research
has even proposed alternative methods that fall in between these
two extremes [41]. Determining whether vertices can reach one

another is a fundamental graph property that has been used for
memory consistency verification [31], social network analysis
[12], and the LU factorization of sparse matrices [15].

4) Betweenness Centrality: An example of an algorithm that
requires more work per vertex yet still fits well into the multi-
search abstraction is Betweenness Centrality (BC). Betweenness
Centrality is a metric that attempts to determine the most
influential or important vertices (or edges) in a network. The
metric quantitatively measures importance by comparing the
number of shortest paths passing through a particular vertex to
the total number of shortest paths found in the graph. If we
let σ[s][t] be the number of shortest paths from a vertex s to
another vertex t and σ[s][t](v) be the number of those paths
that pass through a third vertex v, we can define the BC score
of v as follows:

BC[v] =
∑

s6=t6=v

σ[s][t](v)

σ[s][t]
(2)

Brandes defined the dependency, which relates the BC
scores of a vertex to its successors (from the perspective of a
given source vertex s) [5]:

δ[s][v] =
∑

w∈succ(v)

σ[s][v]

σ[s][w]
(1 + δ[s][w]) (3)

This recursive relationship allows for the computation
of betweenness centrality in two steps of the multi-search
abstraction. The first is a downward traversal from s that solves
the APSP problem and counts the number of shortest paths
between all pairs of vertices. The second uses this information
to sum dependencies between each pair of vertices back up the
BFS tree until s is reached. The BC scores can be redefined
in terms of the dependencies as follows:

BC[v] =
∑
s6=v

δ[s][v] (4)

With applications in electronic design automation, urban
planning, and the analysis of the human brain, betweenness
centrality has received much attention in recent literature [6],
[21], [37]. BC has also been used a building block for more
complicated algorithms, such as community detection [16].

III. RELATED WORK

A. All-Pairs Shortest Paths

Noting that the APSP problem is a precursor to many
other graph algorithms, it is not surprising that it has received
significant attention in the literature. Prior implementations of
the APSP problem tend to focus on dense graphs, distributed
memory systems, and graphs containing fewer than 100,000
vertices. The APSP problem has been implemented on a rather
diverse set of architectures, including FPGAs [4], GPUs [23],
heterogeneous systems [29], and supercomputers [40]. We focus
our work on GPU implementations of the APSP problem for
large, sparse graphs representative of unstructured data found
in real world applications [8].

Bondhugula et al. present an FPGA-based APSP implemen-
tation based on motivation from an application in bioinformatics
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[4]. They developed a tiled approach to solving the Floyd-
Warshall algorithm, so their methods are most effective when
applied to dense graphs. Katz and Kider implement the APSP
algorithm on the NVIDIA G80 architecture, also using a tiled
version of FW [23]. They present results for graphs with up to
n = 11, 264 vertices and show a method for handling graphs
that are larger than the amount of memory provided by a
single GPU. Buluç et al. use a blocked recursive elimination
strategy to solve the APSP problem on the GPU by noting that
APSP corresponds to finding the matrix closure of the graph’s
adjacency matrix on the tropical semiring [7]. Using an NVIDIA
GeForce 880 Ultra GPU, the authors provide an implementation
that runs more than two orders of magnitude faster than an
Opteron CPU. Matsumoto et al. provide yet another approach to
computing the FW algorithm in a blocked fashion, this time on
a heterogeneous CPU-GPU system [29]. Their results scale to
graphs as large as n = 43, 776 vertices, exceeding 1 TFLOPS
in single-precision performance. Solomonik et al. implement
a communication-avoiding block-cyclic APSP algorithm on
a Cray XE6 supercomputer [40]. Djidjev et al. partition the
input graph, solving the APSP problem independently on each
component and unifying the results in a post-processing stage
[11]. Although they focus on planar graphs, the authors present
results on graphs with millions of vertices on a cluster with
hundreds of GPUs.

The collection of work above focuses on algorithms that
require O(n2) intermediate storage space (i.e., they use a chunk
of size n). This choice of chunk size causes scalability issues
on shared memory systems, requiring the deployment of these
algorithms on large distributed systems to analyze graphs similar
in size to the ones we study in this paper. Okuyama et al. instead
use an approach similar to that of Johnson’s algorithm and
found that the cost of such an approach was that the edge
distribution plays a fundamental role in the performance of
the algorithm [35]. However, the presented results are shown
for graphs with up to only n = 32, 768 vertices. Our approach
contributes to this area by scaling to much larger graphs with
only a single GPU through the use of a smaller chunk size,
achieving performance comparable to that of previous work
on large distributed systems. For instance, Solomonik et al.
solve the APSP problem for a graph with 65,536 vertices in
roughly two minutes on a system with 1,024 nodes (24,576
cores) [40]. They neglect to mention the density or structure of
this graph, but since their implementation is matrix-based, their
performance should be roughly equivalent regardless of the
graph’s sparsity. For a randomly generated Delaunay mesh and
Kronecker graph of the same size, our implementation requires
just 41 and 99 seconds, respectively, on a single GPU. Hence,
we provide a cost-effective, scalable, and fast solution to the
APSP problem for sparse graphs. Furthermore, since we design
our implementation as a general abstraction, other problems
can leverage its results.

B. Parallel Abstractions for Graph Analysis

Recently, a number of shared memory and distributed graph
programming frameworks have been developed in order to
abstract the complicated details of conducting high-performance
graph algorithms on parallel architectures [14], [24], [34], [39],
[42]. Many of these frameworks were inspired in part by the
Parallel Boost Graph Library [18]. These frameworks tend
to employ abstractions in the context of linear algebra, graph

traversal, or the Gather-Apply-Scatter (GAS) paradigm. Popular-
ized by the GraphLab framework [17], the Gather-Apply-Scatter
(GAS) abstraction executes algorithms by repeatedly applying
three steps:

1) Gather: Collect information about vertices and edges
that are adjacent to the active frontier.

2) Apply: Update the vertices in the active frontier based
on the gathered information.

3) Scatter: Use these updates to determine the vertices
and edges that belong to the next frontier.

Alternatively, traversal-based abstractions have the algorithm
developer provide code that is applied to vertices or edges in the
current frontier and sets up the frontier for the following search
iteration. Finally, linear algebraic abstractions formulate graph
algorithms as operations on vectors and matrices. For instance,
a breadth-first search can be represented as a SpMV between
the adjacency matrix of the graph and a vector representing
the active vertex frontier on the (min, +), or tropical, semiring.
The GraphBLAS standardizes a common set of building blocks
for graphs through the language of linear algebra [24]. Our
abstraction differs from a sparse matrix product in that the user
writes a function to visit vertices instead of defining a semiring,
and is perhaps more general because of this difference. We
also consider it more intuitive for the user to write a function
in terms of vertex frontiers than to define a semiring.

IV. MULTI-SEARCH IMPLEMENTATION

Our work complements existing paradigms as it provides a
related abstraction that focuses on problems that require many
graph traversals that can be executed independently. We view
the multi-search abstraction as a generalization of the traversal-
based abstraction: the more coarse-grained parallelism that is
available, the more likely one will benefit through the use of the
multi-search paradigm rather than the traversal-based paradigm.
In the event that only one search is desired, the multi-search
abstraction simply reduces to the traversal-based abstraction.
This section presents an efficient, cooperative implementation
of the multi-search abstraction that can be used to develop a
number of useful graph algorithms (such as the ones described
in Section II-C). Similar to GAS and traversal-based methods,
the multi-search abstraction derives its utility from decoupling
the complicated details of the underlying graph traversals from
the specific updates that need to occur for the higher-level
algorithm at hand. Hence, users are only required to implement
a few small functions that can all utilize the same device kernel
for graph traversals, encouraging code reuse and alleviating
programmers from having to implement their own error-prone
sets of parallel graph traversals.

Algorithm 3 shows our cooperative implementation of
the multi-search abstraction. Careful implementation of the
abstraction is rather important, since it will profoundly affect the
performance of all the algorithms that leverage the abstraction.
Users of the abstraction implement a small number of functions:

• init(): Initialize data structures at the beginning of
a search from source i.

• prior(): Handle any computation that may occur
just prior to a search iteration.
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Algorithm 3: Pseudocode for the Multi-Search Abstrac-
tion Kernel
// Loop across SMs

1 for i ∈ S do in parallel
2 Qcurr[0]← i
3 Qcurr len ← 1
4 Qnext len ← 0
5 init(i)
6 barrier()
7 while Qcurr len 6= 0 do
8 prior()
9 barrier()

10 for v ∈ Qcurr do
// Loop across threads

11 for w ∈ neighbors(v) do in parallel
12 visitV ertex(i, v, w)

13 swap(Qcurr, Qnext)
14 barrier()
15 Qcurr len ← Qnext len

16 Qnext len ← 0
17 post()
18 barrier()

19 finalize(i)

• visitVertex(): When an edge (u, v) is traversed
from source i, update the appropriate data structures
in terms of u, v, and i.

• post(): Handle any computation that may occur at
the end of a search iteration.

• finalize(): Handle any computation that may
occur after the search from source i is complete.

These functions are made available for generality and con-
venience to the end user; it isn’t expected that the user will
necessarily need all of these functions for their applications.
Algorithm 3 represents just one implementation of the abstrac-
tion for a set of hardware problems. Others are possible, and
users of the abstraction won’t need to change their code when
implementations of the abstraction are improved.

The for loop on Line 1 is executed in parallel across the
Streaming Multiprocessors (SMs) of the GPU. In practice, the
user’s case may only require a subset of vertices to search, so
we define the variable S to be this user-defined set. For the
APSP problem, S = V . The number of vertices in the graph
vastly outnumbers the number of SMs on the GPU, so each
SM sequentially processes many iterations of this for loop. The
while loop on Line 7 is executed by all of the threads within
each SM. We organize work at the warp level, where a warp
is a group of (as of this writing) 32 threads that execute in
lockstep within each SM. Initially we assigned each thread to
its own queue element and had warps cooperatively process the
adjacency lists of these elements one at a time. Although this
approach sufficiently balanced the work among threads within
each warp, it left an imbalance of work between warps. For
sufficiently small queues one warp could be left processing the
entire frontier while the other warps idle. Improving upon this
approach, we implemented a dynamic scheduling policy that

has warps asynchronously dequeue vertices in the current vertex
frontier. Instead of being statically assigned explicit batches of
vertices within each vertex frontier to process, warps dequeue
the next vertex after processing their current vertex. Hence, a
warp only will idle when there is no work remaining in the
current frontier.

The threads within each warp cooperatively process the
edges outgoing from to the dequeued vertex collected by that
warp. This cooperation leverages the __shfl() intrinsic in-
troduced by NVIDIA’s Kepler architecture. The shuffle intrinsic
allows for fast communication within a warp without requiring
the use of shared memory. For instance, __shfl(x,y) returns
the value of x held by thread y to all of the other threads in the
warp. Each thread in the warp traverses consecutive outgoing
edges from that queue element.

Algorithm 4: Implementation of init() for the All-
Pairs Shortest Paths Problem
1 for k ∈ |V | do in parallel
2 if k = i then
3 d[i][k]← 0

4 else
5 d[i][k]←∞

Algorithm 5: Implementation of visitVertex() for
the All-Pairs Shortest Paths Problem
1 if d[i][w] =∞ then
2 d[i][w]← d[i][v] + 1
3 t← atomicAdd(&Qnext len, 1)
4 Qnext[t]← w

Implementing the user-defined functions to implement
the APSP algorithm on top of the multi-search abstraction
is fairly straightforward. Algorithms 4 and 5 show APSP-
specific implementations of init() and visitVertex(),
respectively. The implementations for prior(), post(), and
finalize() can be left empty for this algorithm but may be
necessary for more complicated algorithms. Algorithm 4 simply
initializes d[u][v] ∀ u, v ∈ V × V . Algorithm 5 simply checks
if w has been visited. If not, it is atomically added to Qnext to
avoid race conditions. Note that duplicate entries in the queue
are possible, since multiple threads may see w as unvisited
before the first of these threads writes to d[i][w]. In practice,
these duplicates are rare because they require either duplicate
edges or multiple warps to simultaneously execute the same
instruction. In our tests we found that the atomicAdd() on
Line 3 was faster than having each warp prefix scan whether or
not it found an unvisited vertex. This result makes sense because
the atomic operation is with respect to a location in shared
memory and because warps would have to perform their own
scans since each warp expands a different queue element. For
algorithms that require the number of shortest paths between
each pair of vertices, an atomic Compare and Swap (CAS)
operation must be used to set the distances of unvisited vertices.
Otherwise, certain paths could be double counted, leading to
incorrect results. Although atomic operations are required here,
in the future we plan to provide our own queue data structure
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Fig. 1. Several thread decompositions for the multi-search abstraction

that provides a “safe” enqueuing function to abstract such
operations away from end users.

Several other methods for solving problems fitting this
paradigm on the GPU are essentially algorithms that solve the
APSP problem without the explicit use of this abstraction. For
instance, Jia et al. present vertex and edge-parallel methods for
computing betweenness centrality, noting that the edge-parallel
approach better maximizes the memory bandwidth achieved
by the GPU [20]. Similarly, McLaughlin and Bader provide
an approach that works particularly well for computing the
betweenness centrality of high-diameter graphs [30]. Both of
these methods employ an approach to BC that reflects the
multi-search abstraction in that the APSP problem is solved
for each vertex before dependencies are computed. Hence, we
can compare their mappings of simultaneous graph traversals
to the GPU.

Figure 1 shows an example of how these methods differ for
a simple graph. Consider a streaming multiprocessor that has
been assigned a breadth-first search from vertex 4. In the first
iteration of this search, vertex 4 will enqueue vertices 3 and 5,
which become the active vertex frontier for the next iteration
of the search. Figure 1 reflects this state, as vertices 3 and 5
are marked as active (shaded). Beneath the picture of the graph
in Figure 1 we show how the work-efficient approach [30],
the edge-parallel approach [20], and our cooperative approach
from Algorithm 3 assign the threads within the SM to edge
traversals. The work-efficient approach assigns threads within
each SM of the GPU to vertices on the active frontier. Hence,
the first thread traverses the three outgoing edges from vertex
3 and a second thread traverses the outgoing edge from vertex
5. Note that although this method only traverses edges in the
active edge frontier, threads have data-dependent amounts of
work to do and hence the amount of work per thread can vary
tremendously using this approach, leading to potentially severe
load imbalances. The edge-parallel approach simply assigns a
thread to every edge in the graph, regardless of whether or not it
is in the active frontier. This approach easily occupies the GPU
as many threads are needed to process iterations of moderate
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Fig. 2. Impact of scaling vertices and edges on performance for Erdős-Rényi
graphs

size; however, not all of these threads are contributing to the
progress of the algorithm. Finally, our cooperative approach
assigns warps to the adjacency lists of each vertex in the active
frontier one by one. Hence, the three outgoing edges of vertex
3 are processed by 3 threads of the one warp and the lone edge
from vertex 5 is then processed by one thread from a second
warp, all in parallel. When graphs are sufficiently large such
that the average adjacency list of a vertex tends to be greater
than the warp size of the architecture, the utilization of each
warp is high and the only edges processed by threads within
each warp are edges in the current edge frontier. Furthermore,
since this process is cooperative, threads have a well-partitioned
amount of work.

Figure 2 shows the scalability of our cooperative approach
presented in Algorithm 3 when it is used to solve the All-Pairs
Shortest Paths problem. We use randomly generated Erdős-
Rényi graphs and vary the number of vertices and edges to
see how these changes impact performance. The edge factor
influences the probability p of an edge selection in the G(n, p)
Erdős-Rényi random model [13]. Intuitively, a graph generated
with twice the edge-factor will contain twice as many edges;
however, the edge-factor should not be mistaken for average
degree. The average degree of graphs with edge-factor 5 used
to generate Figure 2 is approximately 28.

Figure 2 shows that our methodology is robust to scaling
both the number of vertices and the number of edges in the
graph. On average, increasing the edge factor by two results
in a 1.96x increase in execution time. One reason for why this
increase in execution time is slightly less than the expected
theoretical increase of 2x is that additional edges can provide
better warp occupancy. For instance, if the degree of a vertex
modulo the warp size of the architecture is small (but nonzero),
additional edges will only give unoccupied threads work until
all threads are occupied. Increasing the number of vertices
by a factor of two (which, for the same edge factor, also
increases the number of edges by a factor of two) results
in an increase in execution time of 4.64x on average. Since
the computational complexity of the algorithm is O(mn), we
theoretically expect to see a factor of 4 increase in execution
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TABLE I. GRAPH DATASETS USED FOR THIS STUDY. NODES AND EDGES
ARE DISPLAYED IN MILLIONS.

Graph Nodes Edges Notes/Sparsity

333SP 3.71m 22.22m Ferrari

adapative 6.82m 27.25m Urban Sim.

as-Skitter 1.70m 22.19m Internet

auto 0.45m 6.63m Partitioning

delaunay n21 2.10m 12.58m Triangulation

ecology1 1.00m 4.00m Gene Flow

hollywood-2009 1.14m 115.03m Movie Actors

kron g500-logn19 0.52m 43.56m Kronecker

ldoor 0.95m 45.57m Large Door

roadNet-CA 1.96m 5.53m Intersections

rgg n 2 21 s0 2.10m 28.98m Geometric

thermal2 1.23m 7.35m Diffusion

time. The additional 0.64x increase that we see in practice could
result from contention in resources when accessing memory
atomically as well as from potential load imbalances among
SMs.

V. EXPERIMENTAL SETUP

In the next section we present performance results that show
the scalability of the multi-search abstraction as well as how
it performs for several classes of real-world graphs. To show
the utility of the abstraction itself we implement betweenness
centrality on top of it and compare the performance of our
method to that of recent literature. CPU results were run on
an Intel Core i7-2600K processor. The Core i7-2600K has a
frequency of 3.4 GHz, and 8 MB last level cache, four physical
processor cores and a peak memory bandwidth of 21 GB/s.
We show results for CPU tests using 4 threads, since the use
of hyperthreading didn’t improve performance. GPU results
were run on NVIDIA GeForce GTX Titan and NVIDIA Tesla
K40c GPUs. The GeForce GTX Titan is a compute capability
3.5 GPU designed under the Kepler architecture that has 14
streaming multiprocessors, 6 GB of device memory, a clock
frequency of 837 MHz, and a peak memory bandwidth of 288.4
GB/s. The Tesla K40c is another compute capability 3.5 Kepler
GPU that has 15 streaming multiprocessors, 12 GB of device
memory, a clock frequency of 725 MHz, and the same peak
memory bandwidth as the GeForce GTX Titan.

CPU code was compiled using g++ version 4.8.1 and
OpenMP. GPU code was compiled using nvcc and the CUDA
7.0 toolkit, which we leverage for C++11 support in device
functions, allowing us to use lambda functions to implement

the user-defined portions of the multi-search abstraction1. We
present results based on publicly available graph data sets
from the 10th DIMACS Challenge [1], the Stanford Network
Analysis Platform [27], and the University of Florida Sparse
Matrix Collection [10]. Table I shows more information about
the set of graphs we perform tests on, including the number
of vertices and number of (directed) edges for each graph, the
significance of each data set, and finally the sparsity pattern of
each data set. Note that we use both real-world and randomly
generated graphs with highly varying connectivity from regular
numerical meshes to irregular scale-free graphs.

For scaling experiments, we compare against the work-
efficient [30] and edge-parallel approaches [20] described in
Section IV and contrasted in Figure 1. These techniques are
GPU-based and all of these experiments were run on the Tesla
K40c GPU. For the experiments on the benchmarks in Table I,
we compare against both CPU and GPU implementations, where
all GPU experiments were run on the GeForce GTX Titan GPU.

VI. EXPERIMENTAL RESULTS

A. All-Pairs Shortest Paths

Figure 3 compares APSP execution times using the three
methods of graph traversal shown in Figure 1. Figure 3a shows
results for a high-diameter Delaunay mesh, which typically
requires hundreds of search iterations to find all reachable
vertices from a given source vertex. In contrast, Figure 3b shows
results for a low-diameter, scale-free Kronecker graph, which
typically requires fewer than ten search iterations to complete
a Breadth-First Search. We can see that for the Delaunay mesh,
the work-efficient approach from [30] is preferential to the edge-
parallel approach from [20] whereas for the Kronecker graph,
the opposite is true. This notion that the graph structure has
significant performance implications lead to the hybrid approach
presented in [30]. However, we can see that for both of these
classes of graphs, our cooperative approach from Algorithm 3
is more robust to the structure of the graph, performing more
than twice as fast on large scales of both high and low-diameter
graphs. The work-efficient approach performs poorly on scale-
free networks since the power-law distribution of vertex degree
leads to severe load imbalances among threads. The edge-
parallel approach, in contrast, does better on scale-free networks
because a larger percentage of edges are active at once and
since threads have an equivalent amount of work. However,
this approach performs poorly on the smaller vertex frontiers
seen in high-diameter graphs since a majority of threads will
be assigned to edges that don’t actually need to be inspected.
The cooperative approach alleviates these issues by having the
warps within each SM asynchronously process adjacency lists,
allowing for work-efficiency as well as sufficient load-balancing
among concurrent threads.

Table II shows the time required to solve the APSP problem
as well as the maximum degree for our set of benchmark
graphs. We include the maximum degree simply to enhance the
information given in Table I, where we could not fit it. Using a
single GPU, we can scale to significantly larger graph instances
in comparison to existing methods, since our approach uses a
relatively small chunk of simultaneous source vertices. Existing
implementations tend to either use large distributed systems to

1Source code: https://github.com/Adam27X/graph-utils/
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(b) Scale-free network

Fig. 3. Comparison of multi-search traversal techniques for two classes of
networks

TABLE II. BENCHMARK RESULTS FOR SOLVING THE APSP PROBLEM.

Graph APSP Time (s) Maximum Degree

333SP 93150 28
adapative 342253 4
as-Skitter 28333 35455

auto 2291 37
delaunay n21 27432 23

ecology1 9187 4
hollywood-2009 43082 11469

kron g500-logn19 10236 80674
ldoor 7802 76

roadNet-CA 34358 12
rgg n 2 21 s0 49991 37

thermal2 13349 10

scale to graphs this large [11], [40] or restrict their studies to
smaller instances of graphs on shared memory machines [4],
[7], [23], [29].

It is intriguing to note that our performance on ldoor is
better than that of kron g500-logn19 despite the fact that ldoor
is a slightly larger graph. The irregularity of Kronecker graphs
makes them particularly challenging to process. Significant
warp divergences may occur when one warp processes the
vertex with the largest number of edges, causing other warps in
the block to idle before moving on to the next vertex frontier.
Splitting vertices with especially large frontiers into virtual
vertices is one potential improvement that could alleviate this
issue [38] that we intend to explore for future work.

B. Betweenness Centrality

Since we present this work as an abstraction that can be
applied to a number of problems requiring many simultaneous
breadth-first searches, it is important to show the performance of
such problems under our abstraction. We compare our approach
to four implementations of Betweenness Centrality from recent
literature: Ligra [39], Galois [34], Gunrock [42], and a hybrid
GPU implementation from [30]. Ligra is a shared-memory
CPU graph framework that uses a traversal-based abstraction
that allows users to write graph algorithms that map over
frontiers of edges and vertices (or subsets thereof). Galois
is a CPU-based system that provides the user with parallel
set iterators, allowing the user to write sequential code that
specifies loops that should be run in parallel. Rather than using
the bulk synchronous parallel model of execution, Galois uses
worklists to implement asynchronous execution. Gunrock has a
similar programming interface to Ligra, but is written in CUDA
for execution on GPU backends. It includes an advance stage
that visits the current vertex frontier as well as a filter stage
that generates the next frontier. Ligra, Galois, and Gunrock
provide their own implementations of betweenness centrality,
which we use for our experiments. Finally, the hybrid BC
GPU implementation of betweenness centrality uses an on-
line approach to determine whether a graph will benefit more
from either the work-efficient or edge-parallel methods that
were shown in Figure 1. In terms of programmability, Galois
is the most general as it can implement any worklist-based
algorithm, Ligra and Gunrock are specialized to traversal-based
graph algorithms, and hybrid BC is a manual implementation
that is specialized solely for betweenness centrality. Our multi-
search abstraction is meant for algorithms requiring many graph
traversals, but could be specialized to act similarly to Gunrock
or Ligra in the event that a sufficient number of traversals
aren’t available for the user’s application.

Table III shows timing results for each of these baselines
as well as our own cooperative approach. Table IV summarizes
the results in Table III by showing the average speedup our
cooperative approach attains over the methods that we compare
to from prior literature. For all tests we approximate BC scores
using k = 8192 source vertices to make the running time
of the algorithm more reasonable. The approximation simply
performs APSP calculations and dependency accumulations
from k source vertices rather than all of them, so the time to
compute the exact BC scores is roughly n

k times the time to
compute the approximate scores.
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TABLE III. BENCHMARK RESULTS FOR COMPUTING BETWEENNESS CENTRALITY. TIMES ARE IN SECONDS. THE FASTEST RESULT FOR EACH GRAPH IS
PRESENTED IN BOLD.

Framework 333SP adaptive as-Skitter auto delaunay n21 ecology1

Galois 4651 7086 1167 637 2004 906
Ligra 3005 3442 1241 665 992 635

Gunrock 1999 4851 N/A 161 712 1458
hybrid_BC 781 993 518 407 373 176
Cooperative 352 601 275 74 174 104

Framework hollywood-2009 kron g500-logn19 ldoor roadNet-CA rgg n 2 21 s0 thermal2

Galois 2058 1868 1240 1498 3518 1088
Ligra 4318 623 1751 700 2808 899

Gunrock 630 406 395 N/A N/A 277
hybrid_BC 1591 522 621 403 1066 204
Cooperative 602 523 183 145 399 115

TABLE IV. AVERAGE SPEEDUP OF THE COOPERATIVE APPROACH OVER
EXISTING FRAMEWORKS.

Galois Ligra Gunrock hybrid_BC

Speedup of 7.66x 5.82x 3.07x 2.24x
Cooperative

Compared to the parallel CPU implementations of Galois
and Ligra our implementation does very well, averaging 7.66x
and 5.82x speedups, respectively. The results in comparison to
Gunrock are more interesting in that they vary tremendously.
Since Gunrock uses a chunk size of 1 (i.e. it only leverages
fine-grained parallelism for BC), it does particularly poorly on
graphs with low average degree, such as ecology1 and adaptive.
On the other hard, Gunrock performs well on graphs that do
offer lots of fine-grained parallelism, such as hollywood-2009,
where its performance is competitive with ours and kron g500-
logn19 where its performance is even better than our own. The
entries denoted “N/A” in Table III for Gunrock correspond
to graphs that caused a memory access violation on the GPU.
For the graphs that we could compare, our implementation
was 3.07x faster on average than Gunrock. Finally, our GPU
abstraction is competitive with GPU code that is specialized
for computing BC scores. The hybrid BC implementation is
never significantly faster than that of our own yet for ldoor
our approach is 3.41x faster. Overall, our cooperative approach
is 2.24x faster than hybrid BC on average and is much more
easily leveraged for the development of algorithms that can
take advantage of the multi-search abstraction. Even though
hybrid BC is specialized for BC, our approach is faster because
of our efficient implementation of graph traversals shown in
Algorithm 3 and Figure 1.

VII. CONCLUSIONS

In this paper, we present and provide an efficient imple-
mentation of an abstraction for processing many simultaneous
breadth-first searches in parallel on the GPU. We implement
the abstraction by enlisting the threads within each warp to
cooperatively traverse the edges in elements in the active
vertex frontier. This approach is more than twice as fast as
previous GPU approaches that were used to schedule threads
for simultaneous graph traversals for large graphs of both low
and high diameter. Furthermore, our approach scales to graphs
with millions of vertices using a single GPU whereas previous
approaches used large clusters to solve problems of similar

size in greater amounts of time. Finally, our abstraction can
efficiently implement more complicated algorithms. We show
that an implementation of betweenness centrality that leverages
our abstraction achieves an average speedup of 7.66x and
5.82x over the Galois and Ligra multi-core graph frameworks,
a 3.07x speedup over the Gunrock GPU graph framework, and
an average speedup of 2.24x over a heavily optimized on-line
GPU implementation of betweenness centrality.

The literature on parallel implementations of graph al-
gorithms is beginning to shift from manual, hand-tuned
implementations of specific algorithms to libraries that provide
abstractions for certain classes of parallel algorithms. The
appropriate choice of an abstraction depends on the problem
that needs to be solved, the way in which each abstraction
is mapped to hardware, and the graph being analyzed. We
consider the definition of new abstractions and the unification
existing abstractions into a general parallel graph analytics
framework to be an exciting area of future work.
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