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Abstract

Many common methods for data analysis rely on linear algebra. We provide new
results connecting data analysis error to numerical accuracy in the context of spectral
graph partitioning. We provide pointwise convergence guarantees so that spectral
blends (linear combinations of eigenvectors) can be employed to solve data analysis
problems with confidence in their accuracy. We apply this theory to an accessible
model problem, the ring of cliques, by deriving the relevant eigenpairs and finding
necessary and sufficient solver tolerances. Analysis of the ring of cliques provides
an upper bound on eigensolver tolerances for graph partitioning problems. These
results bridge the gap between linear algebra based data analysis methods and the
convergence theory of iterative approximation methods. These results explain how the
combinatorial structure of a problem can be recovered much faster than numerically
accurate solutions to the associated linear algebra problem.

1 Introduction

Spectral methods are a valuable tool for finding cluster structure in data. While all spectral
methods rely on approximating the eigenvectors of a matrix, the impact of numerical
accuracy on the quality of the partitions is not fully understood. Spectral partitioning
methods proceed in two steps, first one or more vectors approximating eigenvectors of a
graph matrix are computed, and then a partitioning scheme is applied to those vectors.
While many theoretical results quantify the relationship between the exact solution to
the numerical problem and the solution to the original data mining problem, few address
data analysis errors introduced by error in the numerical solution. For instance [9] studies
the runtime and quality (in terms of conductance) of partitioning algorithms including
spectral methods. Often the eigenvector computation is used as a primitive operation
without accounting for the trade-off between run time and numerical accuracy. Guattery
and Miller [6] studies various methods of applying exact eigenvectors to partition graphs
by producing examples where each variation does not find the optimal cut. Our paper
addresses the effect of numerical error in the eigenvector computation on the quality of
sweep cuts which reveal graph structure.
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In order to understand the impact of numerical error on spectral partitioning, we study
both general matrices and a specific family of graphs. Finding error and residual tolerances
for general graphs is a difficult problem. Section 2 provides tools for deriving a residual
tolerance for arbitrary graphs. Section 3 analyzes a model problem with clear cluster
structure, where linear combinations of eigenvectors represent a space of multiple good
partitions, and applies Section 2 results to derive a residual tolerance sufficient for solving
this model problem. This use of a model problem is well established in the linear algebra
literature where the Laplace equation on a regular grid is common in papers and software
regarding the solution of systems of equations. Analysis of this model problem allows us
to derive a solver tolerance for correctly recovering the clusters with a sweep cut scheme.
This analysis illustrates the difference between accurately solving the equation and correctly
recovering the combinatorial structure.

This approach to approximate eigenvectors can be applied to other applications where a
numerical method solves a data mining problem, such as solving personalized Pagerank as
a linear system [3] to rank vertices in a graph, or evaluating commute times [4] to produce
a metric distance on the vertices. These methods also apply numerical solvers to infer a
combinatorial or data analysis structure from the graph. A similar treatment, in terms of
a model problem, of these methods would benefit our understanding of the relationship
between numerical accuracy and data analysis accuracy.

Here we introduce the necessary concepts of data analysis quality and eigensolver ac-
curacy. For this work we focus on partitioning graphs to minimize conductance as defined
below. For any S ⊂ V , S∪S̄ = V represents a cut of the graph. Define Vol (S) =

∑
i,j∈S ai,j

as the total weight of the edges within S. And define E(S, S̄) =
∑

i∈S,j /∈S ai,j as the to-
tal weight of edges with one vertex in S and one vertex in the complement of S. The
conductance of a cut S is thus given by the formula [9]:

φ (S) =
E(S, S̄)

min(Vol (S),Vol
(
S̄
)
)
.

For any vector x, represent the sweep cut of x at t as in Equation (1).

S = Sx(t) = {i | xi > t} (1)

We denote by φ (x) the minimal conductance of a sweep cut of x, that is mint φ (Sx(t)).
The conductance of the graph is defined as φG = minS φ (S). If the graph has multiple
partitions with conductance less than a value ψ, then the application might accept any of
them.

The accuracy of a solution to the eigenvector problem can be measured in three quanti-
ties: Rayleigh quotient, error, and residual. Spectral methods for finding low-conductance
partitions rely on computing vectors x and corresponding scalars λ that solve the equations
Mx = λx for some graph-associated matrix M . The Rayleigh quotient, µ = xtMx is an
approximation to the eigenvalue λ. The error ‖v − x‖ where v is the closest exact solution
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is not accessible to a solver in general. The solver can use the norm of the eigenresidual,
‖Mx− µx‖, to determine when to stop iterations. Throughout this paper ‖·‖ will be taken
to mean the 2-norm with subscripts used to clarify when necessary. In order to practically
use an eigensolver, one must choose a residual tolerance ‖Mx− µx‖ < ε sufficient to ensure
that the computed eigenvector is accurate enough to solve the application problem. This
paper provides concrete residual tolerances for a specific model problem and provides tools
for finding such tolerances for more general graphs.

We briefly summarize notation for various graph matrices. Let 1 be the all ones vector.
If A is the adjacency matrix of a graph and D is the diagonal matrix whose entries are
di,i = (A1)i, then L = D − A is the combinatorial Laplacian, and L̂ = I − D−

1
2AD−

1
2

is the normalized Laplacian. Solutions of the generalized eigenvector problem Ly = Dy
are scaled solutions to the eigenvector problem D−

1
2AD−

1
2x = x where the scaling is

x = D
1
2y. We refer to D−

1
2AD−

1
2 as Â, and use the identity λk(L̂) = 1 − λn−k(Â) to

replace computations involving small eigenvalues of the normalized Laplacian matrix with
computations involving large eigenvalues of the adjacency matrix.

Conductance is an appropriate measure of partition quality for spectral partitioning
because of Cheeger’s inequality which bounds the conductance of the graph in terms of the
eigenvalues of the Laplacian matrix.

Theorem 1. General Cheeger Inequality[11] If x is a unit vector orthogonal to D
1
21 such

that xT L̂x = µ then D−
1
2x has a sweep cut S such that φ (S) = φ (x) ≤

√
2µ.

When x satisfies L̂x = λ2x, φG ≤ φ
(
D−

1
2x
)
≤
√

2λ2(L). This general form of

Cheeger’s inequality indicates that finding low-energy Laplacian eigenvectors is sufficient
for constructing low-conductance partitions of the graph.

In graph partitioning, the goal is to compute a partition of the graph that optimizes
the chosen objective. When applying spectral methods to graph partitioning, our goal is
not to compute very accurate eigenpairs, but instead to partition the vertex set of a graph
correctly. Because spectral partitioning can be used recursively to find small clusters, we
focus on splitting a graph into two parts. Our results on the model problem indicate that
approximate eigenvectors are sufficient to solve the data analysis problem and are much
faster to compute if the graph has the right structure.

1.1 A Model Problem

We use a simple model (the ring of cliques) to study the capabilities of spectral partition-
ing algorithms, form theory to characterize performance, and potentially enhance these
algorithms. Such use of model problems is well-established in the numerical analysis litera-
ture regarding iterative solutions to discretized partial differential equations (PDEs). The
Dirichlet Laplacian on a unit square discretized on a Cartesian lattice is a simple problem
with known eigenpairs and is used to study the properties of various eigensolvers. These
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simple model problems do not demonstrate the algorithms perform well on real-world prob-
lems, but are incredibly important tools for algorithm development and theoretical analysis.
For spectral partitioning, the ring of cliques is one candidate model problem for which we
can derive complete knowledge of the eigenpairs. In PDEs, the order of discretization error
(difference between continuous solution and discrete solution) provides the solver with a
stopping criterion. In spectral graph partitioning, we do not have this luxury, and we must
develop theory to understand how perturbations in a spectral embedding impact partition-
ing quality. Another reason to develop a collection of model problems is to enable careful
study of this impact in well-understood situations.

In order to provide a striking example of our improved analysis Section 3 studies our
model problem in detail. The goal is to understand when approximate eigenvectors have
sweep cuts that correctly identify graph structures. The ring of cliques has been studied as
“the most modular network” in order to demonstrate a resolution limit in the modularity
maximization procedure for community detection [5]. For this family of highly structured
graphs, the correct partition is unambiguous. We use the ring of cliques to investigate how
spectral embeddings for partitioning are affected by numerical error. Because of the high
degree of symmetry, the ring of cliques allows for a thorough closed form analysis produc-
ing formulas for the eigenvectors and eigenvalues. A sweep cut using exact eigenvectors
partitions the graph with small conductance and successful recovery of all the clusters.
We quantify the effects of approximation error on sweep cut partitions of this graph. Our
findings demonstrate that despite a small spectral gap, which implies slow convergence
of non-preconditioned eigensolvers, the ring of cliques is well partitioned by low accuracy
approximations to the eigenvectors.

Studying the ring of cliques provides guidance for practitioners on useful tolerances for
eigensolvers. We are able to construct the smallest perturbation that induces a mistake in
the sweep cut partition. This perturbation shows that when looking for clusters of size b

in a general graph the eigensolver tolerance must be smaller than O
(
b−

1
2

)
. Analysis of

the ring of cliques provides an upper bound on the eigensolver accuracy that is sufficient
to recover community structure.

1.2 Contributions

This paper provides the following contributions. Section 2 extends a known error bound on
the computation of eigenvectors to the computation of linear combinations of eigenvectors.
By extending this classical error bound to linear combinations of eigenvectors, we find a
condition on the spectrum of where numerically accurate blends are easy to achieve. 4
provides a general condition under which approximate eigenvectors preserve sweep cuts.
Section 3 analyzes a model problem and derives necessary and sufficient error tolerances
for solving the model problem, which are essentially tight for some parameter regime. We
show for the model problem where the number of clusters is polynomial in the size of the
clusters, the power method takes O (1) iterations to identify the clusters.
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1.3 Related Work

Iterative methods for solving eigenvector problems are well understood. These algorithms
are able to generate solutions to arbitrary approximation factors, but have run time which
increases in the number of iterations, where more iterations leads to better approximations.
Iterative methods [10, 14] have been shown to provide fast approximate solutions for a
wide range of problems. Many iterative eigensolvers can be represented as the output
y equals a polynomial p applied to the matrix M times a vector x, y = p(M)x. The
degree of p depends on the number of iterations of the method, which is controlled by the
eigenresidual tolerance ‖My − µy‖ < ε. The simplest such method is the power method
which is easy to analyze because p(M) is always Mk where k is the number of iterations.
More sophisticated methods choose p(M) adaptively and typically converge more quickly.
A practical implementation of the Arnoldi method can be found in [10], which is commonly
used in practice.

Localized eigenvectors are essential to analysis of the ring of cliques. Cucuringu and
Mahoney examine the network analysis implications of localized interior eigenvectors in
the spectrum of the Co-voting network of US Senators [2]. The graph is defined with con-
nections between members of the same session of Congress who vote together on the same
bills and connections between individuals who are reelected to consecutive sessions. The
first 41 eigenvectors are oscillatory across the congressional sessions with little variation
between the vertices in the same session, but the next eigenvectors are small in magnitude
on most sessions but take large positive values on members of one party and large negative
values on members of the other party within a few sessions. Thus blends of the dominant
eigenvectors indicate the sessions of congress. The ring of cliques also exhibits globally peri-
odic extremal eigenvectors and localized interior eigenvectors due to its Kronecker product
structure. We show that the ring of cliques, has a basis for an interior eigenspace with the
nonzero entries of each vector completely restricted to an individual clique. This localiza-
tion allows us to show that approximate eigenvectors recover the interesting combinatorial
structure.

Other work focuses on the impact of errors in measurement on the behavior of data
analysis algorithms. In the context of Gram (kernel) matrices, Huang et al.[8], studies
the effect of perturbing the original data points on the spectral partitioning method. A
similar line of investigation is pursued in [18] where data points are quantized to reduce
bandwidth in a distributed system. This work connects approximation with performance.
If one can demonstrate that data analysis accuracy is not affected too much, then one can
use an algorithm which sacrifices accuracy to improve performance. Our paper treats the
data as correctly observed and handles error in the iterative solver.

The impact of approximate numerical computing has been shown useful for several ap-
plications. In [1] eigenvectors of a kernel matrix are approximated with the power method
and then k-means is applied to these approximations. The k-means objective function
is well approximated when using approximate eigenvectors. The bounds given in [1] de-
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pend on using the k eigenvectors to partition into k parts and depend on the kth spectral
gap to control accuracy of approximation. Experiments also show that k-means on the
approximate eigenvectors is faster and sometimes more accurate in terms of Normalized
Mutual Information (NMI) compared to using exact eigenvectors. Our paper focuses on
partitioning into two clusters based on sweep cuts of a single approximate eigenvector and
makes a rigorous analysis of a model problem in order to understand how the numerical
accuracy interacts with combinatorial structure of the data clusters. Pothen et al. [13],
which used spectral partitioning for distributed memory sparse matrix computation, rec-
ognized the value of low-accuracy solutions. Approximate spectral coordinates are used to
reorder matrices before conducting high accuracy linear solves. Our paper contributes to
the understanding of how numerical approximation accuracy contributes to data analysis
accuracy.

2 Blends of Eigenvectors

In order to understand the relationship between eigensolver error and graph partitioning, we
study error bounds and the effect of pointwise error on the sweep cut procedure. Theorems 2
and 3 bound the error to a subspace in terms of the residual and quantities derived from
the eigenvalues of the matrix. This control over the error is then used in 4 to relate
eigenresidual to the conductance of a sweep cut of the graph. These results apply to
general matrices. Although a small spectral gap implies poor control on the error to a
single eigenvector, we derive a condition where low accuracy approximations effectively
partition the graph. Section 3 applies these theorems to a special family of graphs to show
that blends are faster to compute and provide nearly optimal partitions.

2.1 Converging to a Single Eigenspace

Let M ∈ Rn×n, M = M t be a general symmetric matrix. Consider the solutions to
the equation Mv = λv. Because M is symmetric, there are n eigenvalues in R (counting
multiplicities). The set of all eigenvalues is the spectrum λ(M), which we order decreasingly
as λ1 ≥ λ2 ≥ · · · ≥ λn. For k = 1, . . . , n, let vk be an eigenvector associated with λk,
Mvk = λkvk, such that vtkvl = 0 whenever l 6= k. Define the eigenspace associated with
λk as the invariant subspace associated with λk, that is

Xk := {x ∈ Rn : Mx = λkx } .

These definitions imply dim(Xk) = mult(λk) and Xk = Xl when λk = λl.

Remark 1. The results in this section are stated and proved in terms of generic symmetric
matrix M because they apply beyond spectral graph theory. Spectral partitioning methods
use the eigenvectors of L̂ = I − Â. Counting eigenvalues from largest to smallest starting

with 1, we see λ2(Â) = λn−1( L) with the same eigenvectors. Letting k = D1/21
∥∥D1/21

∥∥−1,

6



the normalized eigenvector of Â associated with λ1(Â) = 1, one can use M = Â−kkt in the
results of this section. Subtracting kkt moves the eigenvalue 1 to 0, or k is an eigenvector
associated with 0 ∈ λ(Â− kkt). Thus, for this M and for k where λk(M) > 0, we have

λk(M) = λk+1(Â).

In particular, for the Fiedler eigenvalue, λ1(M) = λ2(Â) = 1 − λn−1(L̂), and the Fiedler
vectors in the associated eigenspace correspond to extremal eigenvalue λ1(M). Compu-
tationally, implementations of iterative methods approximating the eigenvectors of λ2(Â)
perform better with a routine applying the operator Â− kkt.

Let (x, µ), x ∈ Rn, µ ∈ R, be an approximate eigenpair of M with ‖x‖ = 1 and
µ = xTMx, the Rayleigh quotient, which minimizes the function ‖Mx− θx‖ over all real
values θ. Define the two-norm of the eigenresidual as ε = ‖Mx− µx‖. As in [12], we have
a simple eigenvalue bound. By decomposing x in the eigenbasis x =

∑n
k=1 αkvk, we see

ε2 = ‖Mx− µx‖2 =

n∑
k=1

α2
k(λk − µ)2 ≥

(
n∑
k=1

α2
k

)(
min

1≤k≤n
(λ− µ)2

)
meaning there exists an eigenvalue λk within ε of µ,

min
1≤k≤n

|λk − µ| ≤ ε.

Also in [12], we have bounds estimating convergence to an eigenspace in angle. Define
the eigengap for λk as δk = minλ∈λ(M)\λk |λk − λ|. Moreover, if ε is small compared to δk
there exists a normalized eigenvector v ∈ Xk with which x has a small angle,

min
v∈Xk

√
1− 〈x, v 〉2 ≤ ε

δk
.

Instead of presenting a proof of this well-known result, we derive a similar bound for `2
and point-wise approximation to an eigenspace associated with an extremal eigenvector.

Theorem 2. Consider approximate eigenpair (x, µ) of symmetric M ∈ Rn×n with ‖x‖ = 1
and µ = xTMx. Assume

|µ− λ1| < min
λ∈λ(M)\λ1

|µ− λ|.

Given eigenresidual ε and eigengap δ1, there exists an eigenvector v ∈ X1 , with ‖v‖ = 1,
and error bound

‖x− v‖ ≤
√

8ε

δ1
.
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Proof. Let αv be the closest vector in X1 to x. Decompose x into its eigenvector compo-
nents within X1 and perpendicular to X1, x = αv +

∑
vk⊥X1

αkvk. Because µ is closer to
λ1 than any other eigenvalue, we have

ε2 = |λ1 − µ|2α2 +
∑

vk⊥Xk

|λk − µ|2α2
k ≥

∑
vk⊥Xk

|λk − µ|2α2
k ≥

δ21
4

∑
vk⊥Xk

α2
k.

Rearranging gives

4ε2

δ21
≥

∑
vk⊥Xk

α2
k = 1− α2.

‖x− v‖2 = ‖x− αv‖2 + ‖v − αv‖2 ≤ ‖x− αv‖2 + (1− α)2 ≤ 2(1− α2) ≤ 8ε2

δ21
,

This result implies,
1

n

∑
i∈V
|xi − vi|2 ≤ ‖x− v‖2 ≤ 8ε2

nδ21

so if ε2/n is small compared to the δ21 , then the average average error squared is also small.
Moreover we have a point-wise error bound,

max
i∈V
|xi − vi| ≤ ‖x− v‖ ≤

√
8ε

δ1

For a large graph, it is typical that Fiedler eigenvalue is so close to the next-to-largest
eigenvalue, that the error bounds demand an extremely small eigenresidual for convergence.
Note that this error analysis is independent of the algorithm used to compute the solution.
Choosing x = v3 shows that the condition |µ − λ1| < minλ∈λ(M)\λ1 |µ − λ| is necessary.
Thus for matrices M with small δ1, we need to remove this condition. When the δ1 is
small, a reasonable number of iterations of an eigensolver may produce a vector x with
xTMx close to λ1 which may not be very close to the true extremal eigenspace. In this case
we examine convergence to a linear combination of eigenvectors associated with a range of
eigenvalues.
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2.2 Converging to a Subspace Spanned by Multiple Eigenspaces

This section generalizes the previous error bound to the distance between x and a subspace
spanned by the eigenvectors associated with a range of eigenvalues. Assume that linear
combinations of eigenvectors associated with a range of eigenvalues [λq, λp] are satisfactory
for subsequent data analysis algorithms. If the Rayleigh quotient is within [λq, λp] and the
eigenresidual is smaller than the distance between µ and any eigenvalue outside [λq, λp],
then the following theorem holds.

Theorem 3. Consider approximate eigenpair (x, µ) of symmetric M ∈ Rn×n with ‖x‖ = 1
and µ = xtMx ∈ [λq, λp]. Define

δp,q(µ) = min
{k<p}∪{k>q}

|λk − µ| and X qp :=

q⊗
k=p

Xk.

Given eigenresidual ε = ‖Mx − µx‖ ≤ min(µ− λq−1, λp+1 − µ) there exists a vector v ∈
X qp , with ‖v‖ = 1, `2 error bound,

‖x− v‖ ≤
√

2ε

δp,q(µ)
,

Proof. Let x =
∑n

k=1 αkvk and Πx =
∑q

k=p αkvk, the `2-orthogonal projection onto X qp .

Note
∑n

k=1 α
2
k = 1. In the case where ‖Πx‖ = 1, we can let v = x and see the bound is

clearly satisfied. For ‖Πx‖ < 1, we first demonstrate that ‖x−Πx‖ is controlled by ε,

ε2 = ‖Mx− µx‖2

ε2 =
n∑
k=1

α2
k|λk − µ|2

ε2 =
∑

{k<p}∪{k>q}

α2
k|λk − µ|2 +

q∑
k=p

α2
k|λk − µ|2

ε2 ≥ δp,q(µ)2
∑

{k<p}∪{k>q}

α2
k +

q∑
k=p

α2
k|λk − µ|2

ε2 ≥ δp,q(µ)2
∑

{k<p}∪{k>q}

α2
k

ε2 ≥ δp,q(µ)2

1−
q∑

k=p

α2
k


ε

δp,q(µ)
≥ ‖x−Πx‖.
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There is a unit vector in X qp that is also within some factor of ε to x. Let v = Πx/‖Πx‖,
then ‖v −Πx‖ = 1− ‖Πx‖. We have

‖Πx‖2 + ‖(I −Π)x‖2 = 1

‖Πx‖2 = 1− ‖(I −Π)x‖2

‖Πx‖2 ≥ 1− ε2

δp,q(µ)2

‖Πx‖ ≥

√
1− ε2

δp,q(µ)2
.

Using the inequality a ≤
√
a for a ∈ (0, 1), we see

‖v −Πx‖ = 1− ‖Πx‖ ≤ 1−

√
1− ε2

δp,q(µ)2
≤ ε

δp,q(µ)
.

Then, because (x−Πx)t(Πx− v) = 0, we have

‖x− v‖2 = ‖x−Πx‖2 + ‖Πx− v‖2 ≤ 2ε2

δp,q(µ)2
.

Remark 2. Note that the size of the blend gap, δp,q(µ), is dependent on i) the size of
|λp − λq|, ii) how internal Rayleigh quotient µ is within [λq, λp], iii) and how far the
exterior eigenvalues are, |λq − λq+1| and |λp−1 − λp|. For a problem where the spectrum is
not known a priori, it is difficult to state an acceptable interval [λq, λp] for accomplishing
a given data mining task. Section 3.2 provides an example where one can choose [λq, λp]
a priori. The Congress graph has λ41 − λ42 ≥ 0.4 and the first 41 eigenvectors indicate
the natural clustering of the graph into sessions[2]. This analysis thus applies to this real
world network.

For our application, p = 1 and δpq = µ − λq+1

(
Â− kkt

)
≥ λq − λq+1, which can be

much larger than the spectral gap λ1(Â − kkt) − λ2(Â − kkt). In Section 2.1 the goal
of computation is a single eigenvector and the output of the approximation is a blend of
eigenvectors, the coefficients of the output in the eigenbasis of the matrix describes the
error introduced by approximation. In Section 2.2 the goal of computation is a blend of
eigenvectors, and we improve the error bound when the spectral gap is small.

In order to relate the numerical accuracy to the conductance for general graphs we
examine the impact of pointwise error on sweep cuts. For any prescribed conductance value
ψ, we derive a condition on vectors v such that we can guarantee that small perturbations
of v have conductance less than or equal to ψ. Let Sv(t) represent the sweep cut of v at t
as in Equation (1).
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Lemma 1. For any graph G, vector v ∈ Rn and scalar ψ > 0, define Tψ(v) = {t |
φ (Sv(t)) ≤ ψ}. Let gv(t) = mini|vi − t| and gv = maxt∈Tψ(v) gv(t). If ‖z‖∞ < gv, then
φ (v + z) ≤ ψ.

Proof. If Sv(t) = Sv+z(t) we can apply φ (v + z) < φ (Sv+z(t)) = φ (Sv(t)) ≤ ψ. Sv(t) =
Sv+z(t) if and only if sign(vi + zi − t) = sign(vi − t) for all i. By checking cases, one can
see that ‖z‖∞ < mini|vi − t| is sufficient to guarantee that vi + zi − t has the same sign as
vi − t.

Note that Lemma 1 is not a necessary condition as z = 1
2(v − t1) is a much larger

perturbation of v such that φ (v + z) ≤ ψ. Lemma 1 defines gv as a measure of sensitivity
of a single vector with respect to preserving sweep cuts of conductance less than or equal
to ψ. For vectors v with small gv, a small perturbation can disrupt the sweep cuts which
achieve conductance less than ψ. By defining the sensitivity of an invariant subspace
appropriately, 4 provides a path to deriving a residual tolerance for arbitrary graphs.
Denote by dmin, dmax the minimum and maximum degree of G.

Theorem 4. Let G be a graph and ψ > 0. Define V = Span {D−
1
2v1 . . . D

− 1
2vq}, where

for j ∈ {1 . . . q} Âvj = λqvj and vj are orthogonal. For any vector x, let µ = xtÂx and
δp,q(µ) = min{k<p}∪{k>q} |λk−µ|. For any q ∈ V , let gv be defined as in Lemma 1. Define

g = minv∈V,‖v‖2=1 gv. If
∥∥∥Âx− µx∥∥∥ < 1√

2

√
dmin
dmax

δp,q(µ)g, then φ
(
D−

1
2x
)
≤ ψ.

Proof. By 3 applied to x, there is a unit vector q ∈ Span{v1 . . .vq} such that ‖x− q‖∞ ≤
‖x− q‖2 <

√
dmin
dmax

g. Define z = (D−
1
2x − v) ‖v‖−1, where v = D−

1
2q ∈ V . By scaling

and normalizing we see

‖z‖2 =

∥∥∥D− 1
2x−D−

1
2q
∥∥∥
2∥∥∥D− 1

2q
∥∥∥
2

<

√
dmax
dmin

‖x− q‖ < g

Since
‖z‖∞ < g = min

v∈V,‖v‖2=1
max
t∈Tv

min
i∈{1...n}

|vi − t| < gv,

Lemma 1 implies φ
(
D−

1
2x
)
≤ ψ.

If one can bound the value of g from below, then this theorem gives a residual tolerance
for the eigenvector approximation when using sweep cuts to partition the graph. Section 3.3
applies this theorem to the ring of cliques family of graphs.

This section connects the eigenresidual to the error when computing blends of eigen-
vectors, and quantifies the impact of error on the sweep cut procedure. If the eigengap
is small enough, then one cannot guarantee that the Rayleigh quotient is closest to the
Fielder value, thus one cannot guarantee that the computed eigenvector is close to the
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desired eigenvector. In this small gap setting, a small eigenresidual indicates that the com-
puted vector is close to the desired invariant subspace. 4 shows that vectors with small
eigenresidual preserve low conductance sweep cuts for general graphs. 4 illustrates how
the residual tolerance depends on both the blend gap δp,q(µ) and the sensitivity g of the
eigenvectors. The following section applies this theory to the ring of cliques in order to
derive solver tolerances for graph partitioning.

3 The Ring of Cliques

To demonstrate the theory developed in Section 2 and to make our arguments as clear
as possible, we employ a previously studied model problem, the ring of cliques [5]. Theo-
rems 5 and 6 derive explicit formulas for all eigenvalues and eigenvectors. These formulas
determine the relevant residual tolerance. Moreover, complete spectral knowledge gives a
strong understanding the convergence properties of simple iterative methods.

The ring of cliques has several attractive properties for analysis of spectral partitioning.
The Community structure is as extreme as possible for a connected graph, so the solution
is well-defined. Also, we can apply theorems about block circulant matrices [17] to produce
closed form solutions to the eigenvector problem. This graph serves as a canonical example
of when solving an eigenproblem accurately is unnecessarily expensive to achieve data
analysis success. This example shows that it is possible for the combinatorial structure
of the data to be revealed faster than the algebraic structure of the associated matrices.
The graph is simple to partition accurately as there are many cuts relatively close to the
minimum. Any robust partitioning algorithm will correctly recover the cliques in this
graph. However, a Fiedler eigenvector is difficult to calculate with guarantees of point-wise
accuracy when using non-preconditioned iterative methods. An algorithm that computes a
highly accurate eigenpair will be inefficient on large problem instances. Sections 3.3 and 3.4
apply the tools from Section 2 in order to derive a residual tolerance sufficient for solving
the ring of cliques. Section 3.5 bounds the number of power method iterations necessary
to recover the ring of cliques, and Section 3.6 validates and illustrates these observations
with an experiment.

3.1 Definition

A q-ring of b-cliques, Rb,q, is parameterized by a block size b and a number of blocks q.
Each block represents a clique of size b and all possible internal connections exist within
each individual set of b vertices. For each block, there is a single vertex called the corner
connected to the corners of the adjacent cliques. These q corners form a ring. Each block
also has (b − 1) internal vertices that have no edges leaving the block. The adjacency
matrix associated with Rb,q is a sum of tensor products of simple matrices (identity, cycle,
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and rank-one matrices). We have

A = Iq ⊗ (1b1
t
b − Ib) + Cq ⊗ (e1e

t
1),

where the Ik are identity matrices of dimension k, 1b is a constant vector with dimension
b, e1 ∈ Rb is the cardinal vector with a one in its first entry and zero elsewhere, and Cq
is the adjacency matrix of a cycle graph on q vertices. The matrix A and other matrices
associated with this graph are block-circulant, which implies the eigenvectors are the Kro-
necker product of a periodic vector and the eigenvectors of a small eigenproblem defined
by structure in the blocks. Figure 1 shows the structure of the graph, and Figure 2 shows
the block structure of the adjacency matrix.

Figure 1: A drawing of Rb,q laid out to
show strucure.



Jb e1e
t
1 0 · · · e1e

t
1

e1e
t
1 Jb e1e

t
1 0

0 e1e
t
1 Jb e1e

t
1 0

...
. . .

. . .
. . .

0 e1e
t
1 Jb e1e

t
1

e1e
t
1 0 e1e

t
1 Jb



where Jb = 1b1
t
b − Ib.

Figure 2: The adjacency matrix of Rb,q
has block circulant structure.

Any partition that breaks a clique cuts at least b − 2 edges while any partition that
does not break any cliques cuts at most q edges. The best partition is break the ring into
two contiguous halves by cutting exactly two edges. There are q/2 partitions that achieve
this minimal cut for even q. We will consider any of these equivalent. Any partition that
breaks fewer than b − 2 edges will be regarded as a good, but not optimal cut. The fact
that many partitions are close to optimal and then the vast majority of partitions are very
far from optimal is a feature of this model problem.

3.2 Eigenpairs of ROC normalized Adjacency Matrix

Due to the block-circulant structure of the ring of cliques we are able to compute the
eigenvalues and eigenvectors in a closed form. Let ck,q, sk,q be the periodic vectors as
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1

Figure 3: Distribution of eigenvalues of Â for Rb=8,q=32. The gray bars represent a his-
togram of the eigenvalues, including multiplcities. The red diamond represents a large
multiplicity of (n− 2q) at −(b− 1)−1 corresponding to Xnoise (see Theorem 5). There is a

green interval near 1 containing the portion of the spectrum given by λ
(k)
1 and a blue inter-

val near 0 containing λ
(k)
1 for k = 0, 1, ..., bq/2c (see Theorem 6). The open left endpoint

of each interval signifies that the eigenvalue corresponding to λ
(k)
dq/2e is not present when q

is odd.

defined in Equation (2).

ck,qj = cos

(
2πk

q
j

)
sk,qj = sin

(
2πk

q
j

)
for j = 1, . . . , q (2)

These vectors are periodic functions with k cycles through the interval [−1, 1] sampled at
the qth roots of unity. We employ results from [7] and [17] to derive the full spectrum
of Â and a full eigenbasis. In summary, there is an eigenvalue −(b − 1)−1 with a large
multiplicity, n − 2q = (b − 2)q. Furthermore, the eigenspace associated with −(b − 1)−1

can be represented in a basis that contains variation internal to each clique, that is with
eigenvectors of the form h⊗ei where ei is the ith standard basis vector for each i ∈ {1 . . . q}.
For this reason, we call λnoise = −(b−1)−1 a noise eigenvalue. The positive eigenvalues are
called signal eigenvalues. The signal eigenvectors have the form pk,q⊗(ξe1+g1), where pk,q

is either sk,q or ck,q, e1 is one in its first entry, g1 is zero in its first entry and one elsewhere,
and ξ is a scalar. All of the internal members of the cliques take the same value in any
eigenvector associated with λk(Â) 6= (b−1)−1. The slowly varying eigenvectors (associated
with λk(Â) ≈ 1) give nearly optimal partitions of the graph. Linear combinations of these
slowly varying signal eigenvectors also give low conductance partitions. There are q − 1
non-localized eigenvectors with small positive or negative eigenvalues. These eigenvectors
have the internal clique members and their corner with different sign which causes them
to misclassify some of the corners. The distribution of the eigenvalues of Rb,q is illustrated
in Figure 4. The rest of Section 3.2 contains formulas for the eigenpairs and the details of
their derivations.

Theorem 5. (Rb,q Noise Eigenpairs) There is an eigenspace Xnoise of multiplicity (n−
2q) associated with eigenvalue

λnoise =
−1

b− 1
.
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Any vector that is zero-valued on all corner vertices and sums to zero on each individual
set of internal vertices is in Xnoise.

Proof. This is a specific case of locally supported eigenvectors [7] (LSEVs) brought on by
a high level of local symmetry in Rb,q. For each clique K, let x = ei− ej for vertices i and

j that are internal vertices of K. Both x and Âx are zero valued outside of K. Internally,
due to D−1/2(ei − ej) = (b− 1)−1/2(ei − ej) and the orthogonality 1tb(ei − ej) = 0, we see

Â(ei − ej) =
1

b− 1
(1b1

t
b − I)(ei − ej) =

−1

b− 1
(ei − ej).

Thus, x is an eigenvector of Â associated with −1/(b− 1). There are (b− 2) such linearly
independent eigenvectors for K, and the same is true for all q cliques. Thus, we have a
multiplicity of q(b− 2) = n− 2q for eigenvalue λnoise = (b− 1)−1.

These vectors are in the interior of the spectrum and thus are very well attenuated by
the power-method1. The remaining eigenvectors must be constant on the internal nodes
of the blocks because of orthogonality to the LSEVs which are spanned by ei − ej . In
any vector v the projection of v onto the global eigenvectors defines a mean value for
the elements of the blocks. Since all of the eigenvectors of interest are orthogonal to the
constant vector, their entries must sum to zero. So the LSEVs cannot change the mean of
a block. The remaining eigenvectors are given in 6.

1In a single iteration the shifted power method, xk+1 = (Â + (b − 1)−1I)xk, perfectly eliminates all
of the energy in the (n − 2q)-dimensional eigenspace associated with λ = −(b − 1)−1. If the graph is
perturbed with the addition and removal of a few edges, the eigenvectors become slightly less localized
and the associated eigenvalues spread out to a short range of values and are not perfectly eliminated in a
single iteration. However, the power method or a Krylov method will rapidly attenuate the energy in the
associated eigenspaces.
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Theorem 6. (ROC Signal Eigenpairs) For k = 0, ..., d q2e − 1, define

αk = 2 cos

(
2πk

q

)
βk =

1

2

(
αk

√
b− 1

b+ 1
−
√
b2 − 1 +

√
b+ 1

b− 1

)
ξ
(k)
1 = βk +

√
β2k + (b− 1)

ξ
(k)
2 = βk −

√
β2k + (b− 1)

λ
(k)
1 =

ξ
(k)
1√
b2 − 1

+ 1− 1

b− 1

λ
(k)
2 =

ξ
(k)
2√
b2 − 1

+ 1− 1

b− 1

Let 1b and 1q be the vectors of all ones in Rb and Rq, respectively. Also let e1 ∈ Rb
have a one in its first entry, zero elsewhere and g1 = 1b− e1. We have the following
eigenpairs.

(i) For k = 0, we have 2 eigenvalues of Â, λ
(0)
1 and λ

(0)
2 , each with multiplicity 1. The

associated (unnormalized) eigenvectors are

v
(0)
1 =

√
b+ 1(1q ⊗ e1) +

√
b− 1(1q ⊗ g1)

and
v
(0)
2 = (b− 1)3/2(1q ⊗ e1)−

√
b+ 1(1q ⊗ g1)

respectively.

(ii) For each k = 1, ..., d q2e − 1, we have 2 eigenvalues of Â, λ
(k)
1 and λ

(k)
2 , each with

multiplicity 2. Two independent (unnormalized) eigenvectors associated with λ
(k)
1 are

v
(k)
1,1 = ck,q ⊗

(
ξ
(k)
1 e1 + g1

)
and v

(k)
1,2 = sk,q ⊗

(
ξ
(k)
1 e1 + g1

)
.

Two independent (unnormalized) eigenvectors associated with λ
(k)
2 are

v
(k)
2,1 = ck,q ⊗

(
ξ
(k)
2 e1 + g1

)
and v

(k)
2,2 = sk,q ⊗

(
ξ
(k)
2 e1 + g1

)
.
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(iii) If q is even, then for k = q
2 , we have 2 eigenvalues of Â, λ

(q/2)
1 and λ

(q/2)
2 , each with

multiplicity 1. The associated (unnormalized) eigenvectors are

v
(q/2)
1 = cq/2,q ⊗

(
ξ
(q/2)
1 e1 + g1

)
and

v
(q/2)
2 = sq/2,q ⊗

(
ξ
(q/2)
2 e1 + g1

)
respectively.

Note if values of λ
(k)
p and λ

(l)
q coincide for (p, k) 6= (q, l) the eigenvalue multiplicities

add up.

Proof. Let Db = diag((b + 1)1 − 2g1). Matrix Â can be organized into blocks that all
co-commute with each other implying the eigenvectors are tensor products involving the
eigenvectors of the blocks. We decompose Â = (Iq ⊗ B1) + (Cq ⊗ B2), where Iq is the
identity in Rq, Cq is the adjacency matrix of a q- cycle, (Cq)ij = 1 ⇐⇒ |i − j| = 1 mod

q, B1 = D
−1/2
b (1b1

t
b − I)D

−1/2
b , and B2 = 1

b+1e1e
t
1. Because any eigenvector y of Cq is

also an eigenvector of Iq, eigenvectors of Â have the form y ⊗ z. Vectors z are derived by
plugging various eigenvectors of Cq into y and solving for a set of constraints that z must
satisfy for (y ⊗ z) to be an eigenvector associated with Â.

We describe the eigendecomposition of Cq. For k = 0, . . . , d q2e − 1, αk = 2 cos(2π/k)
is an eigenvalue of Cq. For k = 0, α0 is simple, and 1b is the associated eigenvector.
For k = 1, ..., d q2e-1, αk has multiplicity 2 and the associated 2-dimensional eigenspace is
span({ck,q, sk,q}), as defined in (2). If q is even, then αq/2 is a simple eigenvalue as well

and the associated eigenvector is cq/2,q. Letting y be an eigenvector associated with αk
and using the properties of Kronecker products, we see

Â(y ⊗ z) = [(Iq ⊗B1) + (Cq ⊗B2)] (y ⊗ z) = [(Iqy ⊗B1z) + (Cqy ⊗B2z)]

= [(y ⊗B1z) + (αky ⊗B2z)] = [(y ⊗B1z) + (y ⊗ αkB2z)]

= y ⊗ (B1z + αkB2z) = y ⊗ [(B1 + αkB2)z]

Here we see that if z is an eigenvector of Hk := B1 + αkB2, then (y⊗ z) is an eigenvector

associated with Â. Observe that Hk = D
−1/2
b (1b1

t
b + αke1e

t
1 − I)D

−1/2
b is a scaling of a

rank-2 shift from the identity matrix, where we would expect 3 eigenvalues: 2 simple and
one of multiplicity (b− 2).

We can easily verify that there is a (b − 2)-dimensional eigenspace of Hk associated
with −1/(b − 1). The tensor products of these vectors are an alternative basis associated
with the locally supported eigenvectors from Theorem 5. The associated eigenspace of Hk

is orthogonal to span({e1,g1}). Due to eigenvector orthogonality, the last two eigenvectors
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must be in the range of span({e1,g1}). Note that Dp
be1 = (b+1)pe1 and Dp

bg1 = (b−1)pg1.
We use this to solve for these eigenvectors and their associated eigenvalues in terms of αk
and b,

Hk(ξe1 + g1) = λ(ξe1 + g1)

(1b1
t
b + αke1e

t
1 − Ib)D

−1/2
b (ξe1 + g1) = λD

1/2
b (ξe1 + g1)

The right-hand side expands to(
λξ
√
b+ 1

)
e1 +

(
λ
√
b− 1

)
g1,

The left-hand side expands and simplifies to(
ξ√
b+ 1

+
√
b− 1

)
(e1 + g1) +

(
ξαk√
b+ 1

− ξ√
b+ 1

)
e1 +

(
−1√
b− 1

)
g1 =(

ξαk√
b+ 1

+
√
b− 1

)
e1 +

(
ξ√
b+ 1

+
√
b− 1− 1√

b− 1

)
g1 =

The coefficients of e1 and g1 must be equal, individually, because they are not linearly
dependent. Equating the left-hand and right-hand sides and simplifying gives two nonlinear
equations in ξ and λ,

ξαk
b+ 1

+

√
b− 1

b+ 1
= ξλ (3)

ξ√
b2 − 1

+ 1− 1

b− 1
= λ. (4)

Multiplying the second equation by ξ, setting the left-hand sides of both equations equal
to eliminate λ, then simplifying, yields the following quadratic equation in ξ,

ξ2 −

(
αk

√
b− 1

b+ 1
−
√
b2 − 1 +

√
b+ 1

b− 1

)
ξ − (b− 1) = 0,

which is easily solved. Define

βk =
1

2

(
αk

√
b− 1

b+ 1
−
√
b2 − 1 +

√
b+ 1

b− 1

)
and γk = b− 1.

Given ξ, λ is determined by the second equation in (4). The solution set to nonlinear
equations (3)-(4) is then

ξ
(k)
1 = βk +

√
β2k + γk, λ

(k)
1 =

ξ
(k)
1√
b2 − 1

+ 1− 1

b− 1
, and

ξ
(k)
2 = βk −

√
β2k + γk, λ

(k)
2 =

ξ
(k)
2√
b2 − 1

+ 1− 1

b− 1
.
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Thus we have local eigenpairs of Hk, ((ξ
(k)
1 e1 + g1), λ

(k)
1 ) and ((ξ

(k)
2 e1 + g1), λ

(k)
2 ). The

local eigenpairs ((ξ
(k)
1 e1 +g1), λ

(k)
1 ) yield global eigenpairs of Â of the form ((ck⊗ (ξ

(k)
1 e1 +

g1)), λ
(k)
1 ) and ((sk ⊗ (ξ

(k)
1 e1 + g1)), λ

(k)
1 ). Similarly, ((ξ

(k)
1 e1 + g1), λ

(k)
2 ) yield global

eigenvectors of Â associated with λ
(k)
2 . This accounts for the last 2q eigenpairs of Â.

In order to illustrate these formulas, Figure 4 shows the computed eigenvectors for the
graph R16,10 along with the eigenvalues. Eigenvectors associated with eigenvalues close to
1 have low conductance sweep cuts.

λ2 =0.9984 λn−1 =−0.2609

λ4 =0.9939 λn−2 =−0.2479

0 20 40 60 80 100 120 140 160
vertex index

λ16 =0.9680

0 20 40 60 80 100 120 140 160
vertex index

λn−3 =−0.2479

Figure 4: The eigenvectors of Â are shown for R16,10. The eigenvectors with eigenvalues
close to 1 (left) indicate the block structure with differing frequencies. The eigenvectors
close to −1 (right) assign opposite signs to the internal vertices and corner vertices of each
block.

Corollary 1. The asymptotic expansions of the eigenvalues are as follows.

(i) For the signal eigenpairs, we see

λ
(k)
1 = 1− 4− αk

2(b2 − 1)
+

1

4(b− 1)2
+

α2
k

4(b+ 1)2
+O(b−3)

(ii) For the non-signal (and non-noise) eigenpairs, we see

λ
(k)
2 =

αk − 1

b+ 1
−

α2
k

4(b+ 1)2
− αk

2(b2 − 1)
− 1

4(b− 1)2
+O(b−3)
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(iii) In particular, if q is even we have

λ2 = λ
(1)
1 ≈ 1−

[
2− cos

(
2π

q

)]
1

b2 − 1
+

1

4(b− 1)2
+ cos2

(
2π

q

)
1

(b+ 1)2
,

λq = λ
(q/2)
1 ≈ 1− 3

b2 − 1
+

1

4(b− 1)2
+

1

(b+ 1)2
,

λq+1 = λ
(0)
2 ≈ 1

b+ 1
− 1

(b+ 1)2
− 1

b2 − 1
− 1

(b− 1)2
,

λn = λ
(q/2)
2 ≈ −2

b+ 1
− 1

(b+ 1)2
+

1

b2 − 1
− 1

(b− 1)2
.

In other words,

1− C2

b2
< λ2 < 1, 1− Cq

b2
< λq < 1,

0 < λq+1 <
Cq+1

b
, −Cn

b
< λn < 0,

where C2, Cq, Cq+1, and Cn are positive quantities of order 1.

Proof. These are seen through the formulas in Theorem 6 and first-order Taylor expansion

of
√
β2k + (b− 1) about leading asymptotic term 1

4((b2 − 1)2) and simplification. Let θ =
√
b− 1 and η =

√
b+ 1. Then

β2k =
1

4

(
αkθ

η
− θη +

η

θ

)2

=
α2
kθ

2

4η2
+
θ2η2

4
+

η2

4θ2
− αkθ

2

2
+
αk
2
− η2

2
.

The first-order Taylor expansion we employ is
√
a2 + x = a + 1

2a
−1x + O(a−3x2), which

yields

√
β2k + θ2 =

√[
θη

2

]2
+

[(
1− αk

2

)
θ2 − η2

2
+
α2
kθ

2

4η2
+
αk
2

+
η2

4θ2

]
=

θη

2
+

1

θη

[(
1− αk

2

)
θ2 − η2

2
+
α2
kθ

2

4η2
+
αk
2

+
η2

4θ2

]
+O(b−2)

=
θη

2
+
(

1− αk
2

) θ
η
− η

2θ
+
α2
kθ

4η3
+

αk
2θη

+
η

4θ3
+O(b−2).
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Now, we see

ξ
(k)
1 = βk +

√
β2k + θ2 =

1

2

(
αkθ

η
− θη +

η

θ

)
+
√
βk + θ2

=
θ

η
+
α2
kθ

4η3
+

αk
2θη

+
η

4θ3
+O(b−2), and

ξ
(k)
2 = βk −

√
β2k + θ2 =

1

2

(
αkθ

η
− θη +

η

θ

)
−
√
βk + θ2

= −θη + (αk − 1)
θ

η
+
η

θ
−
α2
kθ

4η3
− αk

2θη
− η

4θ3
+O(b−2).

Then, noting η−1 − θ−1 = −2η−1θ−1, we see

λ
(k)
1 = 1− 1

θ2
+
ξ
(k)
1

θη

= 1− 1

θ2
+

1

η2
+

αk
2θ2η2

+
1

4θ4
+
α2
k

4η4

= 1− 4− αk
2θ2η2

+
1

4θ4
+
α2
k

4η4
+O(b−3).

Substituting in for θ and η gives the result presented in (i). Similarly, we see (ii) via

λ
(k)
2 = 1− 1

θ2
+
ξ
(k)
2

θη
=
αk − 1

η2
−
α2
k

4η4
− αk

2θ2η2
− 1

4θ4
+O(b−3).

Lastly, (iii) is seen by plugging in for specific values of k and αk = 2 cos
(
2πk
q

)
.

Remark 3. We observe several facts:

• The vector D−1/2v
(0)
1 is the constant vector. It causes no errors, but does not help to

separate any of the cliques.

• The vectors D−1/2v
(k)
1,1 and D−1/2v

(k)
1,2 for k = 1, . . . , dq/2e − 1 assign the same sign

to the corners as the internal members of each block and are associated with positive
eigenvalues. Note that we can consider all these eigenvectors as signal eigenvectors,

Xsignal = span
{
v
(1)
1 ,v

(2)
1 , ...,v

(dqe−1)
1

}
.

Because Xsignal ⊥ Xnoise, all sweep cuts of vectors in Xsignal keep internal vertices of
each clique together.
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Figure 5: Asymptotic estimates of spectral gaps (left) and Fiedler eigenvalues (right) for
rings of cliques with parameters b = 10, 100, 1000 and q = 2, 4, ..., 8096. Lines represent
leading-order terms derived in Theorems 7 and 8 and ’+’ represent actual eigenvalues as
given by the formulas in Theorem 6.

• If q is even, the vector D−1/2v
(q/2)
2 has values at the corners of opposite sign to the

values of the internal vertices and the sign of each corner oscillates around the ring.
This is the most oscillatory global eigenvector.

• The vectors D−1/2v
(k)
2,1 and D−1/2v

(k)
2,2 for k = 1, . . . , dq/2e − 1 assign opposite signs

to the corners and the internal members of each block. If vectors make large contri-
butions to the blend we compute, then there is potential to misclassify several of the
corner vertices.

We use the previous result to derive asymptotic estimates of the eigengaps associated
with eigenvalues near 1 and the size of the Fiedler eigenvalue. These asymptotic estimates
are compact formulas in terms of b and q. Figure 5 verifies these estimates empirically.

Theorem 7. (ROC Asymptotic Eigengap) For the graph Rb,q the spectral gap relevant

for computing an eigenvector associated with λ2(L̂) is asymptotically O
(
b−2q−2

)
for large

b and q.

Proof. Because λ2(Â) = λ3(Â), the eigenvalues of interest are λ2(Â) = λ
(1)
1 and λ4(Â) =

λ
(2)
1 . We will take Taylor expansions and collect the leading-order terms to understand the

asymptotic behavior. Define scalar function f(x) =
√
x+ a, for constant a that we define

below. Using the formulas in the previous result and a bit of algebra, we see λ
(1)
1 − λ

(2)
1 =

ξ
(1)
1 − ξ

(2)
1√

b2 − 1
=
β1 − β2 +

√
β21 + (b− 1)−

√
β22 + (b− 1)√

b2 − 1
=
β1 − β2 + f(x1)− f(x2)√

b2 − 1
(5)

22



with

xk =

(
1

4
− 1

2(b+ 1)

)
α2
k +

(
1− b

2

)
αk and a =

b2

4
+
b

2
− 3

2
+

1

2(b− 1)
.

We expand the two differences in the numerator of (5) separately, concentrating on the
f(x1)− f(x2) first. First-order Taylor expansion of f(x) at x1 yields

f(x2) = f(x1) + f ′(x1)(x2 − x1) +
f ′′(y)

2
(x2 − x1)2.

where y ∈ (min(x1, x2),max(x1, x2)). Rearranging and plugging in, we see

f(x1)− f(x2) = f ′(x1)(x1 − x2)−
f ′′(y)

2
(x1 − x2)2 =

x1 − x2
2
√
x1 + a

− (x1 − x2)2

4(y + a)3/2

Further, assume q >> 4πk and use a third-order Taylor expansion at 0 to see αk =
2−4(πk/q)2+O(q−4). Similarly, α2

k = 4 cos2(2πk/q) = 2(1+cos(4πk/q)) = 4−16(πk/q)2+
O(q−4). Thus,

(x1 − x2) =

(
1

4
− 1

2(b+ 1)

)(
48π2

q2

)
+

(
1− b

2

)(
12π2

q2

)
+O

(
bq−4

)
=
−6π2b

q2
+

24π2

q2
+O

(
bq−4

)
.

We return to β1 − β2 and expand using the cosine Taylor expansions.

β1 − β2 =
α1 − α2

2

√
b− 1

b+ 1
=

6π2

q2

√
b− 1

b+ 1
+O(q−4)

Lastly, (y + a)3/2 is O(b3) and (x1 + a)1/2 is O(b), so

λ
(1)
1 − λ

(2)
1 =

6π2

q2(b+ 1)
+

−3π2b

q2
√
x1 + a

√
b2 − 1

+
12π2

q2
√
x1 + a

√
b2 − 1

+O(b−1q−4).

As b → ∞ we see 2b−1
√
x1 + a → 1, so the first two terms cancel asymptotically and the

third term is O
(
q−2b−2

)
.

Theorem 8. (ROC Asymptotic Fiedler Eigenvalue) Let b and q be large and the
same order. For graph Rb,q the smallest nonzero eigenvalue of L̂ is O(b−2q−2).

Proof. The eigenvalue of interest is λ2(L̂) = 1 − λ2(Â) = 1 − λ(1)1 . Define scalar function
g(z) =

√
z + 1/4. Using the formulas in Theorem 6 and a bit of algebra, we see

1− λ(1)1 =
1

b− 1
− ξ

(1)
1√
b2 − 1

=
1

b− 1
− β1 +

√
β21 + (b− 1)√
b2 − 1

=
1

b− 1
− β1√

b2 − 1
− g(z) (6)
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with

z =
(1− α1)b

2(b2 − 1)
+

2α1 − 3

2(b2 − 1)
+

1

4(b− 1)2
+

α2
1

4(b+ 1)2
.

We derive the result by demonstrating that the larger terms in (6) cancel. Expanding the
second term in in the right-hand-side yields

β1√
b2 − 1

=
α1

2(b+ 1)
− 1

2
+

1

2(b− 1)
= −1

2
+

(1 + α1)b

2(b2 − 1)
+

1− α1

2(b2 − 1)
.

A second-order Taylor expansion of g(z) at zero shows for each z, we see g(z) = g(0) +
g′(0)z + 1

2g
′′(0)z2 + 1

6g
′′′(0)z3 + 1

24g
(iv)(y)z4 = 1

2 + z − z2 + 2z3 +O(z4), where

g′(z) =
1

2
√
z + 1/4

, g′′(z) = − 1

4(z + 1/4)3/2
, and g′′′(z) =

3

8(z + 1/4)5/2
.

Plugging in, we see the terms of g(z) up to order b−2 are

1

2
+

(1− α1)b

2(b2 − 1)
+

2α1 − 3

2(b2 − 1)
+

1

4(b− 1)2
+

α2
1

4(b+ 1)2
− (1− α1)

2b2

4(b2 − 1)2
.

The constant terms in β1/
√
b2 − 1 and g(z) cancel. The order b−1 terms in 1 − λ(1)1

cancel to an order b−2 term,

1

b− 1
− (1 + α1)b

2(b2 − 1)
− (1− α1)b

2(b2 − 1)
=

1

b− 1
− b

b2 − 1
=

1

b2 − 1
.

Combining fractions the order b−2 terms in 1− λ(1)1 , are reduced to

1

b2 − 1
−
[

1− α1

2(b2 − 1)
+

2α1 − 3

2(b2 − 1)
+

1

4(b− 1)2
+

α2
1

4(b+ 1)2
− (1− α1)

2b2

4(b2 − 1)2

]
=

(2− α1)b
2

(b2 − 1)2
+

(2α2
1 − 3)b

2(b2 − 1)2
+
−α2

1 + 2α1 − 9

4(b2 − 1)2

Factoring in the other b−3 terms and the cosine expansion α1 = 2− 4(π/q)2 +O(q−4), we
see

4π2b2

q2(b2 − 1)2
+O

(
b−4 + b−2q−4

)
.

Theorem 9. For any vector x ∈ Xsignal of Rb,q, φ
(
D−

1
2x
)
≤ q φ (v2).
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Proof. For any x ∈ X2, let S, S̄ be the partition given by the optimal sweep cut of D−
1
2x.

Fiedler’s nodal domain theorem implies at least one of S, S̄ is a connected component.
Because the eigenvectors are block constant, all vertices of each clique are assigned to
the same side of the partition. These imply that E(S, S̄) = 2. The optimal conductance
partition is found when Vol (S) = Vol

(
S̄
)

= q
(
b
2

)
. Thus φG = φ (v) = 2(q

(
b
2

)
)−1.

For any x ∈ Xsignal, the optimal sweep cut of D−
1
2x will partition the graph into two

pieces one containing k blocks and the other containing n−k blocks for some k ≤ n
2 . That is

min(Vol (S),Vol
(
S̄
)
) = k

(
b
2

)
. Since only edges between cliques are cut, E(S, S̄) ≤ 2k. Thus

φ
(
D−

1
2x
)
≤ 2
(
b
2

)−1
. By assigning adjacent blocks to alternating sides of the partition, we

see the bound is tight.

Notice that the smallest eigenvalue of L̂ scales as O
(
b−2q−2

)
, but the optimal con-

ductance scales as O
(
b−2q−1

)
, and that the worst case sweep cut partition of a blend has

conductance 2
(
b
2

)−1
independent of q. The remainder of this section shows that by accept-

ing this factor of q in conductance, one gains tremendously in computational efficiency.

3.3 A residual tolerance for ring of cliques

In order to derive a residual tolerance for the ring of cliques, we show that for any vector
in Span{v1 . . .vq} at least one block is sufficiently far from the other blocks in spectral
coordinates.

Lemma 2. Define Bi = {ib+2 . . . ib+q} as the vertex blocks of Rb,q. For any vector x, let
µj = |Bi|−1

∑
i∈Bj xi. Let W be the span of {eib+1 | i ∈ 0 . . . q − 1} ∪ {eBi | i ∈ 0 . . . q − 1}.

For any vector x ∈ W, ‖µ‖∞ > n−1/2 ‖x‖2.

Proof. By construction of x, µi = xj for all j ∈ Bi. Thus ‖x‖∞ = ‖µ‖∞. Equivalence of
norms implies ‖x‖2 <

√
nµq.

We are able to apply 4 and derive a residual tolerance for recovering the ring of cliques.

Corollary 2. If x is an approximate eigenvector of Rb,q with eigenresidual less than C
q
√
n

for some constant C and xt1 = 0, then φ
(
D−

1
2x
)
≤ 2
(
b
2

)−1
Proof. In the setting of 4, choose G = Rb,q, ψ = 2

(
b
2

)−1
. In the notation of Lemma 2

applied to sorted v, for all v ∈ V , gv = maxi(µi+1−µi) ≥ q−1 ‖µ‖∞ ≥ (q
√
n)−1. For some

C ∈ O (1), δp,q(µ)g > C
q
√
n

. So 4 implies computing x to a residual tolerance of C
q
√
n

is

sufficient to guarantee φ (x) ≤ 2
(
b
2

)−1
.
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2 gives a sufficient condition on approximate eigenvectors of Rb,q such that x partitions
the graph at least as well as any partition that recovers the cliques. 10 and 11 using
analysis specialized for Rb,q in Section 3.4 to construct the minimal perturbation that
causes the sweep cut proceedure to fail.

3.4 Minimal Perturbation

We want to find the minimal error at which a vector can make a mistake. The effects of
the corner vertices only enter into the constants of the following results, and for clarity
of exposition we omit handling of the corner vertices. 10 shows that no perturbation

with norm less than (1 + 2qn)−
1
2 can induce a mistake in the sweep cut. 11 constructs

a perturbation that induces a mistake in the sweep cut and has norm less than b−
1
2 . For

the parameter regime q ∈ O (1), the bounds in 2, 10, and 11 are all equivalent up to
constant factors.

Using the same notation as Lemma 2, we say that a vector y recovers all the cliques of
Rb,q if there is a threshold t ∈ (mini yi,maxi yi) such that for all Bi with j, k ∈ Bi, yj < t
if and only if yk < t.

Theorem 10. Let W be defined as in Lemma 2, and let PW be the orthogonal projector
onto W. For any vector y orthogonal to 1, define z = (I − PW)y. If ‖z‖2 ≤ (1 +

2qn)−
1
2 ‖y‖2, then y recovers all the cliques of Rb,q.

Proof. Define x = PWy. Without loss of generality, relabel the vertices and blocks such
that µi ≤ µi+1. Let αi = maxi zi and βi = mini zi for each Bi. Note that αi > 0 and
βi < 0 since z ⊥ eBi . The vector y recovers all the cliques if and only if there is a Bi where
αi − βi+1 ≤ µi+1 − µi. In this case, a threshold can be chosen in (µi + αj , µi+1 + βk).
Suppose that y does not recover all the cliques, then for all Bi αi− βi+1 > µi+1−µi. This
implies

∑q−1
i=0 αi−βi+1 >

∑q−1
i=0 µi+1−µi. Thus we can bound the 1-norm error as follows:

‖z‖1 ≥
∑
i

(αi − βi+1) ≥ µq − µ1 ≥ n−
1
2 ‖x‖2 .

Since z must have at least q nonzero entries ‖z‖2 > (2qn)−
1
2 ‖x‖2. Applying ‖y‖2 =

‖x‖2 + ‖z‖2, we see that (1 + 2qn)−
1
2 ‖y‖ < ‖z‖2.

The proof of Theorem 10 yields a construction for the minimal perturbation of x that
does not recover all the cliques.

Theorem 11. For any unit vector x ∈ W orthogonal to 1, there exists a perturbation z
where ‖z‖ < b−

1
2 ,PWz = 0 such that y = x + z does not recover all the cliques.
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Proof. For any x ∈ W, set α0 = 0, βq−1 = 0, αi = −βi+1 = µi+1−µi
2 .

‖z‖22 =

q−1∑
i=0

α2
i + β2i+1 =

1

2

q−1∑
i=0

(µi+1 − µi)2 = b−1 ‖x‖22 − 2

q−1∑
i=0

µi+1µi < b−1 ‖x‖22

Theorem 10 implies that (1 + 2qn)−
1
2 is a sufficient accuracy to ensure recovery of all

the cliques, and Theorem 11 implies that for some elements of the top invariant subspace
accuracy less than b−

1
2 is necessary to ensure recovery of all the cliques from that vector.

Figure 6 lends validation to the formulas in 10. The experiment shown is to take a
random (gaussian unit norm) linear combination of Xsignal, and then construct the minimal
perturbation that makes a mistake. Figure 6 shows the minimum over all samples as a
function of n. This experiment is conducted for three different parameter regimes, q = 25,
b = 25, and b = q =

√
n. One can see that the lower bound from 10 is below the empirical

observation, and that this lower bound is within a constant factor of the observed size of
the minimal perturbation.

We can now apply Theorem 2 and Theorem 3 to determine the residual tolerance for
an eigensolver for graph paritioning. The residual tolerance can be no larger than that for
the the ring of cliques, but some graphs may require smaller tolerances.

3.5 The Power Method

From the eigenvalues and error tolerances above, one can determine an upper bound on
the number of iterations required by the power method to recover all the cliques in Rb,q.

Theorem 12. Let x0 be sampled from Nn(0, 1). Let xk be the k-th iteration of the power

method, xk+1 ←− Âxk/‖xk‖ for Rb,q. Let ζ =
(
e7/8

8

)q/2
+
(
2
e

)(n−q)/2
. There is a k∗ of

O (logb q) such that for k ≥ k∗ a sweep cut based on xk makes no errors with probability at
least 1− ζ.

Proof. First, we bound ‖(I − PW)x0‖2 and ‖PWx0‖2 probabilistically. Each entry in x0

is independently sampled from N (0, 1). For any orthonormal basis of Rn, {vk}nk=1, the
distribution of each vtkx0 is also N (0, 1). Therefore, the distribution of ‖PWx0‖2 is a χ2-
distribution of order q, which has expected value q and cumulative distribution function
γ(q/2, z/2)/Γ(q/2), where Γ(·) is the gamma function and γ(·, ·) is the lower incomplete
gamma function. Let c0 ∈ (0, 1), using Chernoff bounds we have

p0 := Prob
[
‖PWx0‖2 > c0q

]
= 1−

γ
( q
2 ,

c0q
2

)
Γ
( q
2

) ≥ 1−
(
c0e

1−c0)q/2
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Figure 6: Empirical measurements of minimal error perturbations on a log-log scale. Lower
bounds are shown in the same color with dashed lines.
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Similarly, ‖(I−PW)x0‖2 is from a χ2-distribution of order order n− q, with expected
value n− q and known cdf. Let c1 ∈ (1,∞), we have

p1 := Prob
[
‖PWx0‖2 < c1(n− q)

]
=
γ
(
n−q
2 , c1(n−q)2

)
Γ
(n−q

2

) ≥ 1−
(
c1e

1−c1)(n−q)/2
The union of events

[
‖PWx0‖2 > c0q

]
and

[
‖PWx0‖2 < c1(n− q)

]
is a subset of all

possibilities for which
[
‖(I−PW )x0‖2
‖PWx0‖2 < c1(n−q)

c0q

]
holds. Therefore, setting c0 = 1/8 and

c1 = 2, we see

Prob

[
‖(I−PW)x0‖2

‖PWx0‖2
<
c1(n− q)
c0q

]
> p0p1 > 1− ζ

where ζ :=
(
e7/8

8

)q/2
+
(
2
e

)(n−q)/2
is a small positive constant when q, b > 4. Because a

sweep cut does not depend on the norm of a vector, we consider the iteration, xk ←−
1
λq
Âxk−1 which is equivalent to the power method. Letting λ∗ = max(|λq+1|, |λn|), this

iteration accentuates vector components in the range of PW by a factor greater than 1 and
attenuates those orthogonal to this space by factors less than λ∗/λq. If ‖PWx0‖2 > c0q,
then

‖xk‖2 ≥ ‖PWxk‖2 ≥ ‖PWx0‖2 ≥ c0q.

Also, if ‖(I−PW)x0‖2 ≤ c1(n− q), then

‖(I−PW)xk‖2 ≤
(
λ∗

λq

)2k

‖(I−PW)x0‖2 ≤
(
λ∗

λq

)2k

c1(n− q).

Therefore, under the assumptions on x0, the k-th iteration satisfies

‖(I−PW)xk‖
‖xk‖

≤
(
λ∗

λq

)k√c1
c0

(b− 1) = 4

(
λ∗

λq

)k√
b− 1.

By 10, if this ratio is less than (1 + 2qn)−1/2, then xk makes no errors. We see this is
ensured by

k ≥ k∗ :=

⌈
log 4 + log(b− 1) + log(1 + 2qn)

2 log (λq/λ∗)

⌉
.

Revisiting Corollary 1 we that λq > 1−Cq/b2 and λ∗ < max(Cq+1, Cn)/b so λq/λ
∗ = C∗b,

where C∗ is an order 1 constant. Plugging this in we see that k∗ is in O (logb q).
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3.6 Experiment

Here we show the results of a numerical experiment in order to lend intuition and validation
to the theorems. Take Rb,q and a random seed vector x(0). Then apply power iteration

x(i) = (Â − kkt)x(i−1). Far b = 20 and q = 30 the relevant measures of convergence are
shown in Table 1. Figure 7 illustrates the convergence behavior in terms of the conductance
of all sweep cuts, and the reordered adjacency matrix represented in sparsity plots. Table 1
shows that the convergence to the Fiedler vector stalls after iteration 3, but convergence to
the space orthogonal to Xnoise continues unabated. Letting Π be the projection onto X⊥noise,
we measure ‖Πx(i)‖ for each iteration. Applying 12, we calculate that k∗ = 5 iterations
will perfectly resolve the clique structure with probability at least 1− ζ = 0.99999998575.
After one iteration the sweep cut did not split any cliques, but only a single clique is shaved
off. After 3 iterations a nearly optimal partition is found.
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First Iteration Second Iteration Third Iteration
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Figure 7: First several iterations of the power method applied to Rb=20,q=30. Above: sweep
conductance of A reordered by sorting the 1st (top-left), 2nd (top middle), and 3rd iterations
(top-right). Horizontal axis represents which vertex to split at under the induced ordering;
vertical axis is the conductance for each split on a log scale. Below: matrix sparsity plots
of A reordered by sorting the 1st (bottom-left), 2nd (bottom-middle), and 3rd iterations
(bottom-right). Red lines demonstrate which edges are cut for the optimal cut in each
ordering.

i ε ‖Πx(i)‖ µ φ(x)
√

2µ

0 1.24806e+01 2.25433e+01 1.52966e+00 2.03094e+00 1.74909e+00
1 9.20534e-01 5.02679e-02 8.37276e-01 1.05263e-02 1.29404e+00
2 1.02629e-01 1.45977e-02 5.67751e-02 6.68577e-03 3.36972e-01
3 1.08242e-02 8.10095e-04 1.01284e-02 4.89853e-03 1.42326e-01
4 1.01568e-02 4.28591e-05 9.87761e-03 4.89853e-03 1.40553e-01
5 1.01262e-02 2.26698e-06 9.85062e-03 4.89853e-03 1.40361e-01
6 1.01022e-02 1.19907e-07 9.82549e-03 4.89853e-03 1.40182e-01
7 1.00782e-02 6.34217e-09 9.80038e-03 4.89853e-03 1.40003e-01
8 1.00543e-02 3.35448e-10 9.77526e-03 4.89853e-03 1.39823e-01
9 1.00303e-02 1.77422e-11 9.75013e-03 4.89853e-03 1.39643e-01
10 1.00063e-02 9.38388e-13 9.72498e-03 4.89853e-03 1.39463e-01
· · · · · · · · · · · · · · · · · ·
∞ 0.00000e+00 0.00000e+00 1.14176e-04 3.50018e-04 1.51113e-02

λ2(L̂) φ(v2) = φG

√
2λ2(L̂)

Table 1: Table corresponding to Figure 7 with 10 iterations. Convergence to the Fiedler
eigenpair is slow, yet convergence to the orthogonal complement of Xnoise is rapid (column
2).

31



4 Conclusions

When partitioning graphs where the spectral gap is small, computation of an accurate
approximation to a Fiedler vector is difficult. In order to satisfy the needs of spectral
partitioning without computing eigenvectors to high accuracy, we introduce spectral blends
and in particular the blend gap. Section 2.2 controls the distance between an approximate
eigenvector and an invariant subspace in terms of the eigenresidual and blend gap thereby
showing that accurate approximation to a spectral blend is easier to compute than an
accurate approximation of a single eigenvector. We provide a general tool for deriving
residual tolerances based on the structure of the graph spectrum. In order to illustrate
the utility of spectral blends, Section 3 studies a model problem and uses the theory of
block cyclic matrices and locally supported eigenvectors to present a closed form for the
eigenvalues and vectors. We show that any blend of large eigenvalue eigenvectors for the
ring of cliques recovers a correct clustering. This indicates that for problems where there are
multiple good partitions of the graph, spectral blends can be used to partition accurately.
The eigendecomposition of the model problem provides error and residual tolerances for
solving this problem with sweep cuts. 10 allows us to give guidance for error tolerances
for spectral partitioning. One should solve the eigenproblem to a tolerance no greater than
O
(
n−1

)
for graphs of size n. 12 shows that for the ring of cliques where the number of

clusters is polynomial in the sizes of the clusters, the number of power method steps taken
to recover the clusters is O (1). Further research will be able to expand these results to
more general graphs which have multiple good partitions.
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