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Abstract—As multicore processor architectures are now
prevalent in server nodes of parallel and distributed computing
systems, it has become important to characterize the perfor-
mance of applications run on these architectures. This study
investigates the performance degradation an application expe-
riences from memory interference due to other applications co-
located on cores of the same multicore processor. We propose a
methodology for designing models that are capable of utilizing
varying amounts of information relating to an application and
its co-located applications to predict the application’s execution
time performance degradation due to co-location. We evaluate
the models using several application co-location scenarios based
on real world test data from two scientific benchmark suites
on two server class Intel Xeon multicore processors.
Keywords: performance modeling; resource management; mem-

ory interference; application co-location; benchmarking; multicore

processors

I. INTRODUCTION

There is an inherent trade-off in large scale computer

systems between reducing the use of system resources by

consolidating applications to as few server processor nodes

as possible (to reduce system power) and the performance

degradation that occurs in these applications as a result of

sharing system resources with other applications. Memory

interference caused by multiple applications co-located on

a multicore processor has been shown to negatively impact

application performance (e.g. [ChD14], [DaF14], [SaS13],

[TaM11]). Specifically, sharing of system resources such as

DRAM and the last-level cache by co-located applications

creates contention and increases the memory intensity of all

applications running on the multicore processor [DaF14].

This increase in memory intensity results in a corresponding

increase in average memory access time, which ultimately

contributes to an increase in the application’s overall execu-

tion time. This increase in execution time is significant, and

in some cases can as much as double or triple the execution

time of an application as compared to its baseline execution

time [MeS10].

The use of multicore processors that experience perfor-

mance degradation due to co-location is pervasive through-

out many kinds of computing systems, but its effects are

most likely to be prevalent in large-scale server systems and

high-performance computers. In these kinds of computing

systems, highly parallel applications running on multicore

processors result in a sharing of resources in a manner

that creates memory interference and causes performance

degradation. Having a methodology that is capable of pre-

dicting how well a system will run in a particular co-

location scenario would be very useful for these systems. For

example, the information gained from accurate co-location

performance degradation could be integrated into intelligent

application scheduling, and may lead to system performance

improvement by more fully utilizing hardware and thereby

increasing opportunities for server consolidation to save

power while still maintaining quality of service constraints.

The work presented in this paper provides a methodology
that can be used to create co-location aware performance
models.

The methodology for analyzing system performance that

is described in this work is general enough to be appli-

cable to any set of applications running on any multicore

processor. Once application performance information for a

particular combination of multicore processor and target ap-

plications has been collected, our methodology uses machine

learning techniques to construct performance models char-

acterizing that performance information. Once trained, these

models require only a single serial baseline measurement of

parameters for each application running alone in the system

to make predictions about the performance degradation from
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memory interference that will occur when the application

is executing with different types of co-located applications.

While it has been shown in [SaS13] that an application’s use

of memory resources operates in varying phases across its

execution, this work shows that going into such a level of

detail is not necessary to make accurate predictions.

After describing how our methodology operates, our work

validates the theory behind the proposed methodology using

real world data collected on two Intel Xeon server-class

machines running a collection of scientific application work-

loads, with some models performing with 98% accuracy. In

addition to creating and demonstrating a methodology that is

capable of being ported across processor architectures, this

work provides insight into what memory use information is

most important to know about a set of applications running

in a system.

This work makes the following key contributions: (a)

we identify factors that can characterize slowdown during

application co-location scenarios, and methods to capture

those factors; (b) we propose a novel methodology to inte-

grate these factors into multi-granularity and multi-fidelity

performance models that can be used to predict application

performance under co-location scenarios; (c) we show that

a fine level of detail is not always necessary to achieve

reasonable prediction accuracy; and (d) we validate the

methodology with real-world data obtained from running

co-located scientific workloads on contemporary Intel Xeon

server-scale multicore processors with up to 12 cores per

processor.

The rest of the paper is organized as follows. The next

section discusses related work in this area. Our prediction

modeling methodology is presented in Section III. Section

IV describes details of the testing environment and data

collection. Experimental results validating the models are

shown in Section V. The paper concludes with a discussion

of practical applications that can be taken from the experi-

mental results in Section VI.

II. RELATED WORK

Several works have explored the impact of co-location on

application performance in multicore environments. Here we

briefly summarize the most relevant prior works in this area.

The authors in [TaM11] give an early examination of

how co-locating multiple applications on a single multicore

processor affects performance. However, their work focuses

on a general examination of the effects that co-location has

on the system as a whole, and does not examine the effects

on specific applications or create co-location performance

models the way that our work does.

The study in [SaS13] gives an excellent review of how

the architecture that an application is run on can affect the

cache use and memory intensity of that application. The

paper however does not attempt to make predictions about

performance degradation as we do, but it does show the

importance of including memory intensity and cache usage

information when characterizing performance degradation in

the presence of application co-location.

Our work in [DaF14] measures memory interference from

application co-location, and its impact on system perfor-

mance for a single Intel i7 machine. However that work does

not create models that predict system performance, and the

scope of the work is restricted to only a single consumer

class machine.

The work in [MaT11] describes the challenges faced by

applications sharing resources, and the need for being able

to perform precise predictions of performance degradation.

The paper presents its “Bubble-Up” methodology for pre-

dicting performance degradation results. However, it does

not consider the impact of dynamic voltage and frequency

scaling on application performance, and also does not collect

experimental data or characterize the memory interference

effect of having more than two applications co-located.

The authors in [ChD14] present an extension to the

“energy roofline” model that explores the effect of memory

intensity (from the perspective of arithmetic intensity) on

execution time and power use. The study runs a series of

constructed microbenchmarks on twelve machine architec-

tures and provides an analysis of the performance of the

systems. While this study collects data about performance

degradation from memory interference on a set of real

machines, it uses small “microbenchmark” tests on these

machines, as opposed to the scientific workloads we use.

Moreover their work does not create models to predict

performance due to memory interference.

Similar to our work, the work in [DwF12] also looks

at creating a portable methodology using machine learning

techniques for predicting application performance degrada-

tion from shared resources. The authors in this paper also

incorporate shared resources beyond the last-level cache.

However the addition of incorporating these resources forces

the resulting model to be extremely complicated, and their

model requires constantly monitoring a large number of

processor performance counters, which can cause system-

wide slowdown for all running applications. In contrast,

our methodology needs to collect performance counter in-

formation about each application only a single time, and

provides better prediction performance. Additionally, our

methodology guarantees a uniform selection of training

data over the possible co-location space (allowing for more

portability) while the work from these authors selects the

vast majority of its training data at random.

The authors acknowledge that work exploring the effect

of hyperthreading (SMT) on application performance is an

open and active area of research. Papers such as [DeK06] and

[PaE00] examine scheduling and resource use of application

utilizing SMT. We chose to focus our study on the interfer-

ence that applications experience at an inter-core granularity,

and for this study we have turned off hyperthreading to
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remove the possibility of application interference in the L1

cache.

III. MODELING METHODOLOGY

A. Overview

Our work uses two types of machine learning techniques,

linear modeling and neural networks, for constructing the

predictive models. These techniques have been used in

prior work [DwF12], [MaT11] but were limited in attribute

selection and scope. For each machine learning technique,

we design several models with varying levels of complexity

and application features.

B. Model Features

The performance prediction models that we design use

up to eight separate features to predict how the target

application performance is impacted by co-located appli-

cations. The eight features were chosen by performing a

principal component analysis (PCA) on the data collected

from multicore processors considered in this work. PCA

allows all of the features that were gathered to be ranked

according to variance of their output, giving an idea of which

features were most important to include in the models.

These features are a general set that are present in most

multicore processors. We have constructed models that use

increasingly complicated combinations of the features. These

range from combinations we felt would be most easily

available to a resource manager making allocation decisions,

to combinations that required more information about the

application’s baseline information to construct. The eight

features are shown in Table I. The table gives the name of the

feature in the first column, and the aspect of the processor

that it measures in the second column.

The features of Table I can be combined to create models

of various complexities. The “target” application in the

table is the one for which we are interested in determining

slowdown due to co-location. The baseline execution time

seen in Table I is the execution time of the target appli-

cation without any co-location present. The model feature

sets listed in Table II represent six possible scenarios, one

baseline scenario (model “A”) that uses only the baseExTime
feature for predictions and five other scenarios. For each of

the five other scenarios, the resource management system

has a certain amount of baseline information about the

system, the target application, and the other applications co-

located on the system. The progression from one model to

the next simulates a realistic process where the resource

management system progressively obtains more detailed

information about the system and the executing applications.

C. Linear Model

To predict the impact of application performance due to

co-location, six linear models were developed using the six

feature sets listed in Table II. Each linear model is the

sum of the products of the utilized features and the model

coefficients determined during training, plus a constant. A

general model for predicting co-located execution time using

N features would take the form of Equation 1. Linear

regression is used to calculate the values for the coefficients

using the linear least squares function in the Python package

SciPy.

co-located execution time =
N∑
i=1

(coefficient i ∗ featurei) + constant (1)

D. Neural Network Model

From observation of the raw data, there are obvious

instances of nonlinearity in a few of the features of our data.

This was the primary motivation for attempting to create a

prediction model using a neural network that can capture

non-linearity effects. Neural networks [Bis06] are a machine

learning technique that is commonly used when making

predictive models. The approach is inspired by attempting to

mimic how the human brain is thought to work by defining

a set of “neurons” that are used as nodes for the system. The

inputs to these neurons are propagated through the network

via a series of functions located at each node in the network.

The final output value is determined by the input value’s

propagation through the network. For our model the input

neurons are the features of the data available in each model,

and the outputs determine the predicted execution time with

performance degradation that the model will experience with

co-location. The neural networks used in this work vary in

the number of nodes used from ten to twenty depending on

the model feature set that is used as inputs to the network.

A scaled conjugate gradient numerical method was used to

determine the co-efficient values at each network node.

E. Model Accuracy

All of the models are evaluated using Mean Percentage

Error and Normalized Root Mean Squared Error as two ways

of comparing the predicted application execution time for

each test (predictedj) to the actual execution time for each

test (actualj).

1) Mean Percent Error: Mean Percent Error (MPE) is

defined in Equation 2. The magnitudes of the actual values

within the data vary greatly (e.g. when modeling execution

time, actual values could range from as little as 150 seconds

to over 1000 seconds based on the application that is being

executed and the state of co-location of the applications in

the system), and MPE allows the evaluation of prediction

accuracy independent of these magnitudes for each of the

M sample points of data. This error value is taken for just

the target application’s execution time.
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Table I: Model Features

Feature name aspect of execution measured
baseExTime baseline execution time of target application at all P-states
numCoApp number of co-located applications
coAppMem sum of co-application memory intensities
targetMem target application memory intensity

coAppCM/CA sum of co-application last-level cache misses/cache accesses
coAppCA/INS sum of co-application last-level cache accesses/instructions
targetCM/CA target application last-level cache misses/cache accesses
targetCA/INS target application last-level cache accesses/instructions

Table II: Sets of Model Feature Groups

Set name feature groups within set
A baseExTime
B model A + NumCoApp
C model B + coAppMem
D model C + targetMem
E model D + coAppTCM/TCA, coAppTCA/INS
F model E + targetTCM/TCA, targetTCA/INS

MPE = 100 ∗ 1

M

M∑
j=1

|predictedj − actualj
actualj

| (2)

2) Normalized Root Mean Squared Error: Normalized

Root Mean Squared Error (NRMSE) gives an indication of

the variance of our predicted values from the actual values.

For M sample points, NRMSE provides a ratio of Root

Mean Squared Error and the interval of values that the actual

data can take (actualmax − actualmin). Normalized root

mean squared error is defined in Equation 3.

NRMSE =
100

M
∗
√∑M

j=1(
predictedj−actualj

actualj
)2

actualmax − actualmin
(3)

IV. IMPLEMENTATION OVERVIEW

A. Testing Environment

1) Operating System: One of the objectives of this re-

search was to design a methodology that could be applied

to a wide variety of computing systems. Our testing envi-

ronment was designed to be portable across many multicore

processor architectures to allow for simplicity of gathering

test data and ease of recreating the testing environment

for future users of this work. To ensure accurate data is

collected, the testing environment is run from a “lightweight”

command line version of the Ubuntu 14.04 operating system

[Can12] installed on a USB drive. This is done to minimize

the effect that the operating system has on application

execution. Unessential OS utilities and kernel daemons were

removed so that the applications being monitored suffer as

little interference from unpredicted events in the OS as pos-

sible. Such an environment mimics a large-scale computing

platform meant to execute multiple parallel jobs.

2) Processor Performance Counters: Modern multicore

processors provide the ability for developers to monitor

hardware events that occur inside a multicore processor

during the execution of an application. Through the use of

specialized “performance counters” present in the processor

it is possible to track the number of occurrences of certain

events that take place, such as the number of instructions

executed or last-level cache misses. These performance

counters are architecture dependent, and due to differences

between microarchitectures the number and types of per-

formance counters that are available to the system are not

consistent (e.g. differences across [Int14a], [Int14b], and

[Int14c]). Given the design goal of having portability for

our methodology, interfacing directly with these hardware

performance counters is not a valid option. Therefore, the

testing environment makes use of two tools to facilitate

interactions with the hardware.

The first tool is the “Performance Application Program-

ming Interface" (PAPI) [Pap14], an API that was made

specifically to provide portability when accessing perfor-

mance counters across different architectures. PAPI has

created a general list of more than 100 standard performance

counter “presets” that are likely to be present in a modern

processor. PAPI has made it more accessible to interface

with these counters across architectures.

The second tool our testing environment utilizes is the

HPC toolkit [Htk14]. This suite of applications interface with

PAPI and make it easier to monitor and collect information

from multiple performance counters in the system. Specifi-

cally, HPC toolkit’s “hpcrun-flat” application profiler is used

to collect performance counter information because it is able

to run with very low overhead.

3) Measuring Cache Use: From [DaF14], it is known

that applications that need to access data from memory

more often experience a larger amount of performance

degradation due to co-location. We incorporate these perfor-

437437



mance degradations into our prediction models by collecting

measurements of these effects. We have found that three

hardware performance counter measurements can be used

to collect the information necessary for deriving the metrics

used in our methodology’s models:

• number of last-level cache misses an application ex-

periences (LLC) representing the number of times an

application must go to main memory

• number of instructions the application executes (NI)

• total number of last-level cache accesses the application

attempts (TCA)

Measured features derived from these measurements were

listed in Section III. It should be noted that “last-level” cache

misses and accesses are dependent on architecture, and can

refer to either the L2 or L3 cache depending on the multicore

processor that is being used. It is also important to note that

when collecting test results for the execution of applications

the values measured in these performance counters suffer a

loss of temporal information, so they can only represent an

average value across time.

One notable metric derived from this data is application

memory intensity. Memory intensity is defined to be a ratio

of an application’s last-level cache misses to the number of

instructions executed by that application. This metric gives

an idea of the rate at which an application needs to go to

main memory to fetch data. It is useful because it shows

whether an application’s execution will be more likely to be

memory bound relative to another application, meaning that

its performance depends more on its memory access speed

rather than its computational speed. Memory intensity also

gives some idea of how much an application tends to access

memory. A highly memory intensive application will utilize

the shared cache resource more, and therefore it will tend

to affect, and be more affected, by the memory interference

from other applications.
4) Processor Performance States (P-states): Processor

performance states (P-states) are a set of discrete voltage and

frequency values in which a multicore processor can oper-

ate. P-states utilize dynamic voltage and frequency scaling

(DVFS), supported in all contemporary multicore processors.

DVFS techniques can reduce the dynamic operating power of

a multicore processor to consume less power or to temporar-

ily reduce the operating temperature due to the multicore

processor having exceeded a thermal cut-off. However, these

benefits come at the cost of having to throttle the multicore

processor speed by decreasing the clock frequency. This

generally increases the execution time (decreasing system

performance) of any application running on the multicore

processor. The range and number of P-state frequencies

that are available in a system are highly dependent on the

architecture of the multicore processor. Processor P-states

are likely to change in high performance computing systems

based on the system’s need to reduce power or temperature.

This work focuses only on how changing P-states affects

application execution time. This effect is taken into account

through knowledge of the baseline execution time of each

application at a given P-state.

B. Data Collection and Experimental Setup

1) Benchmark Applications: The applications run as test-

ing workloads for our model validation were taken from

two scientific benchmark suites. The set of eleven applica-

tions that we considered varied in the types of tasks that

they perform and are characterized by a wide spread of

memory intensity values. Table III shows the applications,

those taken from the PARSEC benchmark suite [Par14] are

denoted with (P), and those from the NAS benchmark suite

[Nas14] are denoted with (N). The table also shows the

application’s associated baseline memory intensity values,

where baseline memory intensity values are measured when

the applications are executed on a multicore processor by

themselves without interference caused by co-location.

As shown in Table III, these applications have been

categorized into four memory intensity classes denoted as

“Class I” through “Class IV.” Class I applications are the

most memory intensive applications (meaning that they have

the highest number of last-level cache misses per number

of instructions executed and are more memory bound),

while class IV applications are the least memory intensive

(meaning that they experience fewer last-level cache misses

per number of instructions executed, and their execution

is more CPU bound). Categorizing the applications into

groups in this way allows applications from particular groups

to be referred to more generally. These groupings allow

for more broad use of this methodology for performance

prediction. Should a system developer not have detailed

memory intensity information about the applications running

in the system, but still has a general idea of how memory

intensive the applications might be, then having application

class values will allow the developer to still be able to use

the model. The developer can still gain some insight as to the

expected performance of the system by running the model

with average values for that application’s class.

It should be noted that the memory intensity values listed

in Table III are from baseline measurements for one specific

system. We found that the memory intensity values do

not vary widely between the machines we tested, thus we

used the memory intensity classes to accurately represent

class categories for the Xeon family of multicore processors

we consider. It is also important to note that the memory

intensity values between application classes tend to differ

by orders of magnitude. This allows for clearer distinctions

to be drawn between application classes.

2) Multicore Processors Tested: The specifications of the

multicore processors tested during the validation of our

methodology are shown in Table IV. All multicore proces-

sors used are from the Xeon family of multicore processors,

with a varying number of available cores (ranging from six
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Table III: Memory Intensity Classification

Applications classification baseline memory intensity
(LLC / NI)

canneal (P) Class I 1.84×10−2

cg (N) Class I 1.56×10−2

ua (N) Class II 1.63×10−3

sp (N) Class II 1.50×10−3

lu (N) Class II 1.11×10−3

fluidanimate (P) Class III 8.60×10−4

freqmine (P) Class III 3.47×10−5

blackscholes (P) Class III 1.88×10−5

bodytrack (P) Class IV 8.69×10−7

ep (N) Class IV 6.27×10−10

swaptions (P) Class IV 4.22×10−10

to twelve), L3 (last-level) cache size, and frequency ranges.

More detailed information about these processors can be

found in [Int14b] and [Int14c].

Table IV: Multicore Processors Used for Validation

Intel processor num. cores L3 cache frequency range

Xeon E5649 6 12MB 1.60-2.53 GHz
Xeon E5-2697v2 12 30MB 1.20-2.70 GHz

3) Training Setup: “Training data” was collected from

each multicore processor to construct the models discussed

in Section III. The training data for all of the machines was

collected in the form of execution time values of various co-

locations using all eleven applications as target applications

co-located with a subset of only four of the applications

available in the testing environment. Specifically, cg, sp, flu-
idanimate, and ep were used as the applications that were co-

located with each “target” application to provide the training

data with a selection of applications that are representative

of each of the four classes of memory intensity. We limited

our use of co-location applications for training data to four

applications to keep the number of tests that we could run

for training tractable.

When measuring application performance, data is col-

lected for only a single “target” application during any given

co-location test. Initial baseline tests were run that measured

each application’s execution without co-location across six

P-state frequencies to determine how each application per-

formed without interference from other applications. This

baseline test provides a basis of comparison for the effect of

interference on application performance degradation. These

four applications were then scheduled co-located with each

other in a manner that allowed the machine being tested

to have a sparsely distributed set of co-location tests that

were evenly spread across the number of total possible co-

location combinations available to the machine for use as

training data.

In particular, training data was collected for each of

the eleven target applications by running tests co-locating

each application with multiple copies of each of the four

co-location applications mentioned earlier. These four co-

location applications represent applications from each of the

four memory intensity classes. Multiple copies of each of

these co-location applications were run co-located together

for each of the number of co-locations denoted in the

“number of co-locations” column shown in Table V. Each

of these sets of tests where then run once for each of the six

selected P-states for each multicore processor. The P-state

frequencies are shown in Table V. It should be clarified that

each of the columns three to six in the table represent nested

loops in the data collection code. Thus each attribute that is

included as parameters to the data collection increases the

size of the co-location space substantially. For example, the

data collection was generally conducted as:

for each multicore processor:
for each frequency:

for each target application:
for each co-located application:

for each co-locations:
get_exec_time_of_target()

The “num. of co-locations” column in Table V shows the

number of additional applications that were homogeneously

co-located with the target application (i.e. all co-located

applications are of the same type). The applications ranged

on each multicore processor from only a single co-located

application occupying one additional core, to co-located

applications running on all of the multicore processor’s

available cores (i.e., one target application plus n − 1 co-

located applications for a multicore processor that has n
cores).

Setting up the training data in this way is an attempt

to sample the set of all possible co-locations for a given

machine in a uniform way that minimizes the amount of

training data that is needed to calculate co-efficients for

our model. At the same time, the training data is carefully

selected to providing a model that is flexible. The data

that is collected for training the models is designed to be

able to both predict between the training data’s gaps in

the sample space, and extend beyond the set of four co-

location applications available to the training data and be

able to make predictions about applications that it has not

seen previously.

4) Model Testing: Application testing was done by parti-

tioning the training data described in Section IV-B3 through

repeated random sub-sampling validation based on the boot-

strapping approach first described in [EfT94]. Thirty percent

of the data was randomly selected and withheld from the

training process of each model. After training, the withheld

data was run through each of the models and measured for

accuracy. In this way, each model was tested using data that

had not been seen previously during testing. The partitioning

process was repeated one-hundred times, each time with a

new random selection of points being withheld from training.

The error values from each of these one-hundred training and
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Table V: Training Schedule

Multicore processor num. CPUs (n) target applications co-location applications frequencies (GHz) num. of co-locations

Intel Xeon E5649 6 all eleven applications cg,sp,fluidanimate,ep 2.53, 2.40, 2.26, 2.00, 1.73, 1.60 1, 2, 3, 4, 5
Intel Xeon E5-2697v2 12 all eleven applications cg,sp,fluidanimate,ep 2.70, 2.40, 2.10, 1.80, 1.50, 1.20 1, 3, 5, 7, 9, 11

Table VI: Effects of Memory Interference on Canneal

num. co-located applications execution time (s) normalized execution time linear model F (MPE) neural network model F (MPE)

0 220 1.00 - -
1 229 1.04 11.0% 2.5%
3 239 1.09 9.4% 2.2%
5 253 1.15 7.3% 1.8%
7 266 1.21 4.5% 0.4%
9 277 1.26 4.1% 5.0%
11 292 1.33 1.7% 11.4%

testing partitioning groups was then averaged to determine

the overall accuracy of each model.

V. EXPERIMENTAL RESULTS

A. Overview

This section details the performance results of each of the

12 models we propose (two classes of modeling techniques

- linear, and neural network - with six variants each, based

on the six model feature groups in Table II). Each of the

feature groups offers a trade-off between prediction accuracy

and model complexity. Figures 1- 4 show the prediction

accuracy for the training data set and testing data set on the

6-core Intel Xeon E5649 and the 12-core Intel Xeon E5-

2697v2 multicore processors, respectively. Model prediction

accuracy represented in both MPE and NRMSE is included

for each of the machine learning techniques.

Each data point in the figures represents the average

training error and average testing error from one-hundred

partitions of the data for a particular model. In the case of

each model, the error for each partition that was tested did

not vary much (at most a quarter of a percent), meaning that

each separate model shown has a tight confidence interval

for its prediction accuracy.

B. The Effects of Memory Interference

Table VI provides an example of the performance degra-

dation the canneal application experiences from memory

interference due to increasing numbers of the cg application

co-located on cores of a 12-core Intel Xeon E5-2697v2

multicore processor. It can clearly be seen in the table

how the application’s performance (the execution time of

canneal) is negatively impacted over canneal’s baseline

execution time of 220 seconds as the number of co-located

applications increases. The increase in execution time is

shown in the “normalized execution time” column of the

table as the co-located execution time normalized by the

baseline execution time of the canneal application. In this

case, increasing application execution time by as much as

33%. The table also shows the accuracy of the execution

time predictions for linear and neural network models (using

the MPE metric) making execution time predictions using

feature set “F.”

C. Results of Linear Modeling

For both multicore processors tested, the more advanced

linear models provide only a modest improvement over the

baseline linear model (model A) when feature information is

added to the models. For the 6-core processor (Figure 1) the

linear model has an MPE training error and testing error of

8% for its baseline models. With the addition of new features

the 6-core processor is able to reduce its error down to an

MPE of 6.5% for the linear model. The 12-core processor

does not show any improvement from the addition of more

model features (Figure 2). The linear NRMSE variance

results for the 6-core and 12-core processors (Figure 3 and

Figure 4) follow very similar trends to the MPE model

except that the variance in predictions reduces from 4.25%

to 3.75%.

The complexity of the sample space makes it challenging

for the linear models to perform well beyond the baseline

model, and in each case the only cache use information

that proves to be helpful is information about the co-located

applications. Given the fact that the model features do not

help to train these models very well, it is not surprising

that performance of the testing data very closely matches

that of the training data. As mentioned earlier, non-linearity

in the data make predictions with these linear models less

accurate. The 12-core processor results in particular suffer

from having to predict performance degradation for a much

greater number of possible co-locations.

D. Results of Neural Network Modeling

The neural network models provide a clear improvement

and very accurate predictions over the linear models (Figures

1-4). It can clearly be seen in the neural network models how

the addition of application cache use helps to improve the

predictions of each model. Predictably, the most complex

neural network models, which utilize the most information,

perform the best (operating with only a 2% MPE error on the
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testing data for both multicore processors), however it ap-

pears as though the most important features are the features

measuring the cache use information of the applications that

are co-located with the target (coAppMem, coAppCM/CA,

and coAppCA/INS from Table I).

As with the linear models, the NRMSE results show

that the variance between the predictions and actual values

decrease with generally the same trends as the MPE graphs

except that for both machines the inclusion of the co-

located application’s cache access related metrics in model

E reduced the NRMSE greater than it reduced the MPE.

E. Model Accuracy

Figure 5(a) shows a detailed view of each application’s

execution time distribution on a 6-core Intel Xeon E5649

machine. The points inside each application’s distribution

mark the specific execution time values measured for each

test run for each application. Space limitations prevent

showing a detailed view of the performance of all models,

however Figure 5(b) shows a detailed view of the perfor-

mance of the neural network model using feature set F (i.e.

the most accurate model) on the execution time data shown

in Figure 5(a). Distributions of the percent error between

the model’s execution time predictions and the application’s

actual execution time are shown for each application. The

lines across each distribution represents the distribution’s

median (dashed line) and upper and lower quartiles (dotted

lines). The figure shows that the accuracy of the model’s

predictions are generally accurate (there error is close to

zero), that the majority of the model’s predictions are ±2%
from the actual execution time values, and that nearly all of

the predictions are within 5% of the actual execution time

values.

Figure 1: Model performance per feature set for the 6 core

Intel Xeon E5649. (a) MPE for the training data set. (b)

MPE for the testing data set. The figure shows results for

each of the machine learning techniques: linear (solid blue)

and neural networks (dashed green).

Figure 2: Model performance per feature set for the 12 core

Intel Xeon E5-2697v2. (a) MPE for the training data set. (b)

MPE for the testing data set. The figure shows results for

each of the machine learning techniques: linear (solid blue)

and neural networks (dashed green).

Figure 3: Model performance per feature set for the 6 core

Intel Xeon E5649. (a) NRMSE for the training data set. (b)

NRMSE for the testing data set. The figure shows results for

each of the machine learning techniques: linear (solid blue)

and neural networks (dashed green).

Figure 4: Model performance per feature set for the 12 core

Intel Xeon E5-2697v2. (a) NRMSE for the training data set.

(b) NRMSE for the testing data set. The figure shows results

for each of the machine learning techniques: linear (blue)

and neural networks (green).
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Figure 5: Distributions of each application’s execution time (a), and the accuracy of the neural network model using feature

set F on each application (b), for the 6 core Intel Xeon E5649 machine.

VI. CONCLUSIONS

In this paper, we propose a modeling methodology that

allows for predictions to be made about the performance

degradation that occurs from multiple applications running

co-located on a multicore processor. The methodology is

general enough to be applied to any multicore processor

or set of applications. To validate the methodology we

demonstrate its effectiveness by applying it to two server

class Intel Xeon multicore processors with up to 12 cores,

running real data workloads from two scientific benchmark

suites.

Specifically, this work looked at how machine learning

techniques can be used to make predictions about application

performance degradation due to contention in shared cache

and main memory resources when multiple applications

were run co-located on the same multicore processor. While

simpler linear models do not seem to provide much benefit

from the addition of application cache use information,
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the results from Figure 1 and Figure 2 show that neural

networks can provide quite accurate predictions of applica-

tion performance. For the neural network even the addition

of only some of the application features is capable of

producing fairly accurate performance predictions. Using

all the features the neural network has only a very small

MPE of 2% and an NRMSE of around 1%. Considering

that performance degradation due to co-location can extend

an application’s execution time quite significantly, even a

model limited to only knowledge of application memory

intensity may be able to provide good enough predictions

for performance.

Applying this methodology to create models for larger

scale systems where the much greater number of cores

could cause significantly larger performance degradation due

to co-location would enable the design of a new class of

interference-aware intelligent scheduling mechanisms that

could provide substantial performance improvement in those

systems. In addition to possibilities for optimizing applica-

tion scheduling, a system for predicting application perfor-

mance, such as the method shown here, offers the possibility

for use in other areas such as energy modeling. Our next

steps are to include monitoring of application power use

into the testing environment. The energy use of a system

is heavily dependent on the time that the system spends

executing applications. Having this methodology that is

capable of predicting an application’s execution time when

presented with the uncertainty of memory interference from

co-location allows this work to lend itself very well to being

able to also include the ability to estimate the energy used

by the system during execution of a particular application, as

well as the increase in energy use that is caused by memory

interference. Finally, it would also be interesting to extend

this work by examining application performance on families

of machines outside of Intel’s Xeon architecture.
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