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Abstract—Serving as cache disks, flash-based solid-state drives (SSDs) can significantly boost the performance of read-intensive
applications. However, frequent data updating, the necessary condition for classical replacement algorithms (e.g., LRU, MQ, LIRS, and
ARC) to achieve a high hit rate, makes SSDs wear out quickly. To address this problem, we propose a new approach—write-efficient
caching (WEC)—to greatly improve the write durability of SSD cache. WEC is conducive to reducing the total number of writes issued
to SSDs while achieving high hit rates. WEC takes two steps to improve write durability and performance of SSD cache. First, WEC
discovers write-efficient data, which tend to be active for a long time period and to be frequently accessed. Second, WEC keeps the
write-efficient data in SSDs long enough to avoid excessive number of unnecessary updates. Our findings based on a wide range of
popular real-world traces show that write-efficient data does exist in a wide range of popular read-intensive applications. Our
experimental results indicate that compared with the classical algorithms, WEC judiciously improves the mean hits of each written block
by approximately two orders of magnitude while exhibiting similar or even higher hit rates.

Index Terms—Cache drives, flash, SSD, endurance, write-efficient data

1 INTRODUCTION

N recent years, flash-based solid-state drive (SSD) cache

gradually attracts more and more attention due to the
small capacity of RAM cache compared with the data explo-
sion [3] and SSD cache’s high storage density, remarkable
performance boost, and low additional costs [10], [11], [12].
Because SSDs’ read performance is extremely good com-
pared with hard disk drives (HDDs), SSD cache is valuable
especially for the systems mainly storing the fast accumulat-
ing write-once-read-many data (e.g., images, videos, and
shared files). Ninety percent of network traffic in taobao.
com—one of the largest e-commerce websites in China—is
contributed by image browsing; the image data storage of
the website increases by 200 percent each year [1]. Similarly,
videos stored in Facebook’s data centers grow by 239 percent
per year [2]. However, SSDs have very limited write endur-
ance in their entire life cycle [4], i.e. the off-the-shelf enter-
prise-class SSDs only allow writing 1.38~10.05 times of its
own capacity per day if a common five-year lifetime is
expected (see Table 1).

SSD’s limited write endurance makes the hardware
assumption of cache replacement algorithms no longer
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applicable. Traditional cache algorithms (e.g. LRU, LFU, MQ
[21], LIRS [17], and ARC [18]) assume cache device can be
written infinitely, and then conduct a manner of frequent and
unlimited cached data updating. This manner is not suitable
for SSD any more. For example, Table 2 shows that powered
by a widely adopted LRU cache replacement algorithm, the
practical writing speed of a disk cache is 233~154,134 times
of SSD capacity per day. Such a high writing speed is far
beyond the allowed endurance of commercial SSD products
(see Table 1), meaning that SSDs will be rapidly worn out.

Therefore, each cached block should yield excessive hits
while residing in SSD cache, where writing is an expensive
operation; otherwise, it wastes one time of valuable and
scarce SSD write limitation. We introduce write efficiency
(WE) to quantify the rewards of write operations. Given an
amount of data, its write efficiency (see Eq. (1)) can be
defined as the data’s total hits divided by the total number of
writes to achieve the hits. Specially, the WE value of a single
cached block is equal to its hits prior to its eviction; whereas
the WE value of the entire SSD cache is equal to the total hits
of all cached blocks divided by all SSD writes. Then we can
say, unlike traditional RAM-oriented cache algorithms aim-
ing at high hit rates, SSD-oriented cache algorithms should
focus on caching data that can produce high write efficiency,
i.e. many hits and few writes at the same time

Hits
E = . 1
w Writes ®

Aiming at large write efficiency of cached data in SSD

cache, two conditions must be satisfied:

1) Selecting write-efficient data (WED), i.e. the long-term pop-
ular data that can produce many hits for writing one block,
to enter SSD cache;

2) Keeping WED long in SSD cache to adequately explore their
potential of achieving high write efficiency.

0018-9340 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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TABLE 1
The Write Endurance of Off-the-Shelf Enterprise-Class
SSDs is Limited and Insufficient for the Write Demands
of Serving as a Cache

SSDs Capacity TBW Endurance
Intel 910 [7] 400 GB 5PB 7.18x/day
Micron P300 [8] 200 GB 3.5PB 10.05x/day
Samsung PM830 [9] 512 GB 1250 TB 1.38x/day
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TABLE 2
Write Speed of a Disk Cache Is Far Beyond SSDs’ Write
Endurance in Typical Applications

Applications CHR TD WA WS
Search Engine [40] 63.51 percent 1h  4,22820x  101,477x/day
OLTP [40] 62.81 percent 3 h 19,266.79x  154,134x/day
File Server [42] 95.36 percent 0.5h 92.56x 4,443x/day
VoD [43] 2235 percent 5h 48.56x 233x/day

Note: Capacity and total Bytes Written (a.k.a., TBW) are from the producers’
official documents [7], [8], [9]. Write endurance is measured in terms of
the number of times an SSD can overwrite all its data in one day ensuring a
five-year lifetime (i.e. TBW/Capacity/(5*365)).

Traditional cache replacement schemes (e.g. LRU) prefer
to cache hot data in a short run, and of course, they cannot
keep write-efficient data long in SSD cache. Some modified
schemes are proposed in recent years to limit the writes to
SSD cache through a data filter. For example, SieveStore [38]
only allows the blocks with larger miss counts than a thresh-
old to enter SSD. However, the cached data in SSDs remains
to be evicted passively. These schemes cannot make write-
efficient data stay long in SSD cache to satisfy the above
condition 2. The following example in Table 3 shows the
cached data changes in SSD for LRU and SieveStore, respec-
tively. For the sake of simplicity, the cache capacity is only
one block and the miss threshold of data filtering in Sieve-
Store is set as 3. Another solution with a lazy data eviction
scheme is also given in this example, and it obviously
achieves higher write efficiency than the former two.

The above example suggests that the eviction manner of
general cache replacement schemes has negative effect for
write efficiency, because the new arrival data block often is
not much better, or even worse than the evicted one, but
one additional write operation to SSD indeed happens.
Shown as Eq. (1), similar nominator and larger denominator
often make write efficiency drop. The eviction manner of
LRU and SieveStore can be summarized as push mode, where
the cached blocks are passively evicted when new data
blocks are pushed into SSD cache. Even though write-effi-
cient data blocks are cached in SSD, they cannot fully realize
their potentials to achieve high write efficiency due to early
eviction far before the end of its active lifetime, as Fig. 1a
shows. On the contrary, the other obviously better solution
adopts a pull mode of caching, where the write-efficient data
can be kept long in SSD cache to contribute much more hits
in a much longer active lifetime in SSD. Only when it
becomes unpopular, it leaves actively and pulls a new
write-efficient data block, as Fig. 1b shows.

In order to address these issues, we designed a new cache
algorithm called write-efficient caching (WEC) based on the
idea of pull-mode caching. WEC can accurately and quickly

Note: CHR—cache hit rates; TD—trace duration; WA—uwrite amounts: mul-
tiple of SSD capacity; WS—uwrite speeds. WS = WA*24/TD. Cache capacity is
one tenth of all the data volumes.

identify write-efficient data blocks, and judiciously keep the
write-efficient data in SSDs for a sufficiently long period to
produce high write efficiency. Our experimental results
show that WEC achieves writing efficiency one or two orders
of magnitude higher than the existing cache algorithms.

The rest of this paper is organized as follows. In
Section 2 we analyze the key features of write-efficient
data based on real-world traces. Section 3 gives a
detailed comparison between the pull cache mode and
the push mode of existing cache schemes. Our proposed
WEC is presented in Section 4, followed by the quantita-
tive evaluation in Section 5 and related work in Section
6. Finally, Section 7 concludes this paper.

2 FEATURES OF WRITE-EFFICIENT DATA

Caching write-efficient data in SSDs to produce high write
efficiency, which is a non-trivial process, raises the follow-
ing three challenging questions.

1. Does write-efficient data widely exist in various

applications?

II. How to identify write-efficient data?

III. How to keep write-efficient data sufficiently long in SSD-

based caches?

In this section, we look for the answers to these three ques-
tions through analysis on some typical real-system traces.
Workloads of five types of real-world read-intensive services
and their mixed workload listed in Table 4 provide a detailed
case study of the write-efficient data. The traces were respec-
tively collected from a search engine [40], OLTP application
for financial institutions [40], Windows build servers [41],
file servers [42], and video-on-demand servers [43].

2.1 Identifying Write-Efficient Data

In order to discover write-efficient data in various applica-
tions, we analyze some key characteristics of all the block
bins after ranking all the data blocks according to their
access counts in each examined trace.

TABLE 3
An Example Comparing Write Efficiency among LRU, SieveStore, and an Obviously Better Solution with a Lazy Eviction Scheme
Requests 1 2 3 1 4 1349 2 5 1 23,0 4 2 43,4 1 6 Writes Hits WE
LRU (11 21 81 [l (4 @1 21 61 11 21 141 21 41 [l [l 15 0 0
SieveStore [38] [r 1 rr r rronmronlonor i 20 21 RrEMl M 413 2 067
A Better Solution [ [ [1 [1 [1 (a1 [l (a1 @ 1[1 [ [ [ o [moo1 2 20

Cache capacity is assumed to be one for simplicity. Note: Rs,.q implies R can enter SSD now according to SieveStore; [X] means block X is in cache after this

request; [ X]* means a cache hit.
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Fig. 1. Push mode makes hot data be evicted too early, with the result of
low write efficiency, while pull mode can realize the potential of write-effi-
cient data fully to contribute much more hits with the same cost of one
write operation.

TABLE 4
Characteristics of Some Real-World Read-Intensive
I/O Workload Traces
Trace Name Application Type ReqNum  Read Ratio
websearch Search Engine 5,047,596  99.98 percent
financial OLTP 1,555,474  81.82 percent
buildserver Build Server 957,596 87.34 percent
auspexserver File Server 215,678  99.93 percent
cctovod VoD 550,310 100 percent
mix Multiple App. 8,326,654  95.13 percent

Fig. 2 plots the average accesses per block against the
ranked block bins for the five real-system traces and their
mixed trace. We can conclude that the top data blocks
are much more frequently accessed than the other blocks in
the applications. For example, the top 0.1 percent blocks
of the mix trace are accessed on average for more than 2,657
times during the time period of a few hours. Caching
these popular blocks in SSD-based caches may potentially
lead to a large number of cache hits, thereby achieving high
writing efficiency.

Fig. 3 shows the average access interval length and the
active lifespan of the ranked block bins for the mix trace.
An access interval length quantifies the distance between
two adjacent accesses to a block. If a block has a small
access interval length, caching the block may yield a high
hit rate. Note that the access interval of a block is not
measured with clock time. Rather, the access interval is
measured in inter-reference recency (IRR), which refers
to the number of other blocks accessed between two con-
secutive references to the block [17]. For example, for a
visiting sequence a, b, ¢, b, d, a, the IRR between the two
adjacent request a is 3 (including b, ¢, d) rather than 4. In
addition, the active lifespan—sum of a block’s all access
interval lengths—reflects the block’s maximum possible
staying time in cache.

Fig. 3 confirms that the most-accessed blocks not only
have the longest active periods, but also are accessed in a
relatively high density. Therefore, write-efficient data can
be discovered by identifying these blocks that are most
likely to be frequently accessed; this type of block can
reduce the number of SSD writes after being cached in the
SSD-based cache. Both high cache hit rate and a small count
of written blocks can be simultaneously accomplished, lead-
ing to high write efficiency.
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Fig. 2. Caching top blocks may lead to high write efficiency. For exam-
ple, the top 1 percent blocks are accessed for more than 1,000 times
within several hours.
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Fig. 3. The most-accessed data blocks can be considered as write-effi-
cient data, because they not only have a long active lifespan, but also
have shorter mean access intervals.
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Fig. 4. Too early eviction of cached data and low write efficiency are con-
sequent, because although most access intervals are very small, some
very large access intervals are mixed up with them universally for most-
accessed blocks.

2.2 Challenge of Preserving Write-Efficient Data
Although write-efficient data is widely found in read-inten-
sive applications, caching the data in SSD-based disk cache
raises challenging issues due to nonuniform access interval
lengths.

Fig. 4 plots the access interval count against the ranked
access interval length (measured in IRR) bins for the top
0.1,0.5, 1 and 10 percent most-accessed blocks, respectively.
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Fig. 5. The three types of existing cache schemes all belong to the push
mode, which prevents them to keep write-efficient data within SSD
cache for long to produce high write efficiency.

A vast majority of the intervals have very short lengths;
a few intervals are very long. This phenomenon is more
pronounced when the statistics covers more top blocks.
The drawback of the push-mode cache replacement algo-
rithms is that a write-efficient data block can be easily
evicted when a long interval occurs. In other words, write-
efficient data will be swapped out of cache much before
the end of the data’s active lifespan and; therefore, low write
efficiency becomes inevitable under the management of the
traditional algorithms.

3 PuLL MobDE VERsuUs PusH MODE

In this section, we summarize and category the existing SSD
cache schemes into three types, shown as Fig. 5. But all
of them fall into the same manner of push-mode caching.
And then, a detailed comparison between the existing push
mode and a new pull mode, which leads to much higher
write efficiency, is given.

3.1 Existing Three Types of Push-Mode Caching
3.1.1 Traditional Cache Management

Traditional cache replacement algorithms, such as FIFO,
LRU, LFU, MFU, FBR [19], LRU-k [20], MQ [21], LIRS [17],
and ARC [18], ignore the erasure limits of SSDs, thereby
issuing an excessive number of writes by updating cache
contents nearly for every missed request. However, many
industry SSD cache products still adopt the traditional algo-
rithms for simpleness. For example, Facebook’s Flashcache
[13] employed FIFO and LRU as its cache schemes, while
linux dm-cache [15] implemented MQ [21].

To address the issue of poor write efficiency of the tradi-
tional cache management for SSD-based cache disks [13],
[15], [22], increasing efforts have been made to design the
following two new types of caching algorithms to reduce
the number of SSD writes.
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3.1.2 Raising the Entry Threshold of Cached Data

One solution is to set a data filter on the data path entering
SSD cache, with the results of reduced SSD writes. For
instance, LARC [39] set a virtual LRU queue with limited
length before SSD cache, and hitting the LRU queue is the
condition of entering SSD. It means that only hot blocks
with two consecutive close requests can be cached in SSDs.

Another kind of filtering condition are access counts.
EMC’s FAST Cache [10] and Intel’s Turbo Memory (ITM)
[36] only allow data blocks with an access count larger than
a threshold to be fetched into SSD-based cache. To avoid
cache pollution of high frequently accessed data, SieveStore
[38] only allocates a cache to a block if the nth miss of the
block is detected in a recent access window. SieveStore is
the representative solution of this category due to its good
effects. In industrial products, Netapp’s Intellgent Caching
[11] and Oracle Exadata’s Smart Flash Cache [12] adopts
similar cache schemes.

3.1.3 Periodical Sampling

A second kind of approach to reduce SSD writes is to peri-
odically update cached data without handling each cache
miss. For example, the Solaris ZFS file system adopts a tech-
nique called second-level ARC (L2ARC) [37], which period-
ically fills SSD with the to-be-evicted contents at the tail of
RAM cache queue. L2ARC employs a periodical sampling
module to select cached data to reduce the amount of writ-
ten data to SSDs. In addition, Linux’s bcache [14] adopts an
analogous scheme. However, they may lead to an uncer-
tainty in storage system performance due to the fact that hot
contents may not be cached in a timely manner.

3.2 Comparison between Push and Pull Mode

Recall that the two conditions to achieve high write effi-
ciency presented in Section 1 are: 1) selecting write-efficient
data to cache, and 2) keeping them long in SSD cache.
Therefore, in the following Table 5, we make a comparison
on the two conditions among the three types of existing
push-mode solutions and a new write-efficient pull mode
(See Fig. 1).

3.2.1 Selecting Write Efficient Data to Cache

Among the traditional cache algorithms, the recency-based
ones (e.g., LRU) are inadequate to identify write-efficient
data, because these algorithms tend to cache short-term
temporal hot data blocks rather than long-term hot ones.
On the contrary, LFU and other frequency-based cache

TABLE 5
Unlike Pull Mode, Existing Push-Mode Solutions Can’t Satisfy Both the Two Conditions to Achieve High Write Efficiency

Types Selecting Keeping Representative Industrial Solutions
WED WED Algorithm
Push Mode Traditional Cache Schemes / X LRU, LFU, etc. Facebook Flashcache, Linux dm-cache
Raising Entry Threshold 4 — SieveStore, LARC EMC FAST Cache, Netapp Intelligent
cache, Oracle Smart Flash Cache, Intel
Turbo Memory
Periodical Sampling - - L2ARC Solaris ZFS, Linux bcache
Pull Mode vV Vv Our proposed WEC (Write-Efficient Caching)

Note: \/ , -, x, and | mean good, not so good, poor, and uncertain respectively.
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replacement schemes are focused on blocks with the highest
access frequencies. Consequently, their performance is
uncertain in condition 1.

The solutions with raised entry threshold of SSD cache
usually select data blocks that have already been referenced
for several times. These blocks usually have large possibility
to be write-efficient data.

L2ARC periodically updates cached data in SSDs from
the tail of the RAM queue managed by the ARC scheme.
The cached data in SSDs are sampling points of ARC'’s pref-
erence; thus, L2ARC selects more short-term hot blocks as
ARC does than write-efficient data for SSD.

Pull-mode solutions promote new data for SSD cache from
many candidates with long access history records. Therefore,
the probability of picking write-efficient data is high.

3.2.2 Keeping Write-Efficient Data Long in SSD Cache

Keeping write-efficient data in SSDs is much harder than
condition 1, because the ubiquitous long access intervals of
write-efficient data makes it easy be evicted much before its
active lifetime ends (See Section 2.2).

In the push mode, a cached data block is forced to be
evicted when a new data blocks enters SSDs. Therefore, the
write-efficient data cached in the SSD are unable to be kept
for a long time period due to early evictions. Although
the solutions like SieveStore and L2ARC reduce SSD write
amounts, these approaches, unfortunately, do not funda-
mentally change the push-mode behaviors of the traditional
caching algorithms. For example, if there are excessive
cache misses for SieveStore, the large number of SSD writes
can quickly wear out the SSD cache disk. L2ZARC lacks the
flexibility in controlling the blocks’ lifespan in SSDs. Such a
deficiency makes it difficult for L2ZARC to offer the improve-
ment of write efficiency, because the fixed period may be
too short for active blocks and too long for inactive ones.

On the contrary, in pull mode, the write-efficient data in
SSD is protected to produce as many hits as possible. Only
when a block loses its activity, it leaves proactively to make
room for new pulled write-efficient data.

4 WRITE-EFFICIENT CACHING ALGORITHM

In this section, we propose a write-efficient caching algo-
rithm dedicated to SSD-based caches to achieve high writ-
ing efficiency by adopting a new pull mode of SSD cached
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data updating to satisfy both of the two conditions summa-
rized in Table 5. Fig. 6 illustrates that WEC’s data updating
in SSD is detached from the arrivals of newly pushed data
sources (e.g., misses, filtered misses, or other requested data
occurs). Rather, the SSD data are updated independently
and periodically under the supervising of WEC.

Each round of SSD data updating has two steps: 1) If any
write-efficient data block ends its active lifespan after many
cache hits in the SSD cache, this block proactively leaves
SSD itself in order to provide cache space for another write-
efficient data block (see details on the “Proactive Data Leav-
ing” module in Section 4.1). 2) WEC pulls new write-effi-
cient data into SSD cache based on history block access
information (see Section 4.2 for details on the “Pulling New
Write-Efficient Data” module). The primary benefit of this
pull model is protecting cached write-efficient data from
being evicted in an early stage. WEC leverages the novel
pull model to cache write-efficient data to achieve a high hit
rate while reducing the amount of data written to SSD-
based caches. The detailed workflow of WEC is summa-
rized in Section 4.3.

4.1 Proactive Data Leaving

WEC prevents write-efficient data from being evicted in an
early stage by introducing a loose quit condition of cached
data in SSDs. As Fig. 7 shows, we assume a complete LRU
stack containing all the data blocks in HDD storage, which
arranges blocks in a recency order regardless of the block
locations (i.e., RAM cache, SSD cache or HDD). Traditional
cache schemes evict a cached block when it goes out of the
boundary of cache capacity (see line I in Fig. 7).

Recall that it is a challenge to keep write-efficient data
in cache for a long time due to occasional large access
intervals (see more details in Section 2.2 and Fig. 4). We
address this challenge by putting quit threshold (QT) off
to line II in Fig. 7 so that SSD-based caches can tolerant
large access intervals and keep write-efficient data for a
longer time period.

In this case, the cached blocks that goes out of cache
capacity will not be replaced by HDD blocks that has better
recency, so you can see data blocks located in RAM cache,
SSD cache and HDD are mixed in this complete LRU stack
in Fig. 7.
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Although this mechanism can improve write efficiency, it

introduces the following two new challenges:

1) The delayed eviction of cached data may leads to many
unpopular data staying in SSDs, with the possible result of
obvious drops of cache hit rates.

2) Maintaining such a huge complete LRU stack introduces a
lot of overhead.

The following two sections dedicate to solve the above

two challenges.

4.1.1  Appropriate Quit Threshold

Simply setting a very large QT value, however, is not a satis-
factory solution, because non-write-efficient data may be
mistakenly treated as write-efficient one; overdue write-
efficient data with terminated lifespan wastes valuable SSD
resources for a very long time period. To avoid this prob-
lem, we must choose an appropriate QT value to keep active
write-efficient data in SSDs while evicting garbage data in a
timely manner.

The setting of QT needs to be automatically adjusted
according to various cache capacity settings. WEC deter-
mines the QT value based on the capacity ratio (CR)
between cache and storage. In other words, WEC relies on a
mapping function to derive the QT value from the capacity
ratio CR (see Eq. (2) where UBN means unique block num-
ber of the whole storage)

QT = UBN = f(CR). 2

Although it is a challenge to develop a scheme that can
optimize SSD-based cache for a wide range of applications,
designing a satisfactory mapping function for QT values is
straightforward. For example, the implementation of WEC
adopts a square root function to express the relation
between QT and cache capacity ratio CR. Please refer to
Section 5.4.2 for a discussion on various mapping functions
used to adjust QT values. We observe that the effects of the
tested functions are quite similar when the cache size is
large (see Figs. 17 and 18).

4.1.2 WCQ + SPQ = Complete LRU Stack

The downside of maintaining a huge LRU stack lies in
heavy computing and metadata-storage overhead in RAM.
To address this problem, we set the headmost small part of
the complete LRU stack as a write-efficient data candidates
queue (WCQ), which is used for selecting write-efficient
data. For the other part of the LRU stack before QT, only the
blocks located in SSD are meaningful for us, so we record
these SSD blocks in a SSD protection queue (SPQ). The
design of WCQ and SPQ queues help in reducing the meta-
data management overhead of WEC.

As Fig. 7 shows, SSD blocks” ranks in the complete LRU
stack are also recorded and marked as ”idle time” in SPQ.
When an SSD block goes out of WCQ, it is placed at the head
of SPQ, and set its initial idle time as the total number of
blocks of WCQ, i.e. its current rank in the complete LRU stack.
If a block is evicted from WCQ, the idle time of all the blocks
in SPQ increases by 1, indicating its position in the LRU stack
moves backward. In doing so, the idle time of a SPQ block
equals to its position in the complete LRU stack. When
the idle time of a block is larger than a length limit (a.k.a., QT
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popular data to guarantee that promoted data have good high write effi-
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prior to lower one to achieve high average quality of promoted data.

of the complete LRU stack shown in Fig. 7), the block should
leave proactively to make room for better ones.

In addition, SPQ is implemented as a FIFO-like queue.
When there is a hit to a block in SPQ, the block is deleted
from SPQ and placed at the head of WCQ, indicating that
the block is activated again.

4.2 Pulling New Write-Efficient Data
4.2.1 Selecting WED with Low Overhead

Recall that write-efficient blocks have the highest access rate
with a long active lifespan (see Section 2). In the existing sol-
utions (e.g., SieveStore, Intel’s Turbo Memory, and EMC’s
FAST Cache), the selection of write-efficient blocks is trig-
gered by access or miss thresholds. However, these solu-
tions have high overhead due to the needs of maintaining
access records of all the blocks in an entire storage system.

Write-efficient data not only has a high access rate, but
also has a short interval length on average (i.e., a short time
between two consecutive accesses). There is no need to
maintain the historical access information of all the blocks
in a storage system. Write-efficient data blocks can be stand-
ing out from a short cache queue. Therefore WEC only
maintains the historical access information of WCQ rather
than the entire storage system.

WEC takes a simple yet efficient approach (see Fig. 8) to
discover write-efficient data candidates. Promoting blocks
accessed more than a threshold from WCQ means that the
block is continuously accessed within a small interval. A
large number of non-popular blocks are excluded from
WCQ. Furthermore, the high access rate of a block implies a
good possibility of being repeatedly accessed within short
periods of time. Thus, these blocks are more likely to be pro-
moted as write-efficient data than the others. We do not by
any means claim that WEC can accurately pick the best can-
didate blocks; nevertheless, a vast majority of candidates
selected by WEC are write-efficient data.

4.2.2 Organization of WCQ

The write-efficient data candidates queue is a standard low-
overhead LRU queue maintaining the hottest data in a stor-
age system. WCQ provides candidates for the write-efficient
data promotion module. To improve the accuracy of discov-
ering write-efficient data, WCQ'’s capacity is usually larger
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than the sum of RAM and SSD to record historical access
information. Except for all cached blocks in RAM and a por-
tion of cached blocks in SSD (the rest part is managed by
SPQ), the other blocks in WCQ are residing in HDDs (see,
for example, Fig. 7).

When RAM is full, blocks with the least recency in RAM
will be evicted for new arrivals. Note that a removed block
is still kept in WCQ; the removed one is marked as a HDD
block. The metadata of each block maintained in WCQ
includes: ID, access counts, and location (i.e., RAM, SSD, or
HDD).

WEC judiciously adjusts the length limit of WCQ. When
a data promotion is performed, WCQ’s length limit is
reduced if the number of promoted write-efficient block
candidates is more than what is needed by SSD; on the other
hand, when there are few candidates, WCQ increases its
length limit.

4.3 Workflow Summary

As Fig. 6 shows, the SSD cache’s data updating is detached
from normal request process. In this part, we summarize
the workflow of these two processes.

4.3.1 SSD Data Updating

WEC’s data updating in SSD cache is performed periodi-
cally. In each round, WEC first searches the whole SPQ for
blocks with larger idle time than QT. If no such blocks exist,
there is no need to update SSD cached data in this round;
otherwise, the blocks with large enough idle time are
removed from SPQ to make some free slots, and a process
of pulling new write-efficient data from WCQ is invoked.

In this case, WEC searches blocks located in RAM or
HDD in WCQ for the ones whose access count is larger than
a threshold. When enough blocks are pulled to fill up the
free slots in SPQ, or WCQ is fully scanned, the process is
accomplished. In fact, the time complexity of WEC is O(N),
where N is the length of WCQ.

Furthermore, we can set the period of WEC’s SSD data
updating as a large value (e.g., 50,000 requests) to further
reduce the overhead. Our evidence (see Section 5.4.1) con-
firms that setting a larger data updating period can lead to
higher writing efficiency for WEC.

4.3.2 Request Processing

The pseudo code below outlines WEC’s request processing
procedure in various scenarios. Note that write requests do
not impose any caching pressure, because WEC addresses
the needs of read-intensive workloads. If the targets of
writes are cached or exist in WCQ, the metadata and data
will both be eliminated to avoid generating dirty blocks
(i.e., few writes are directly served by disks).

0: def REQ PROCESS (Request x):

1 case 1: z is a read request.

2 case 1.1: z hits a RAM or SSD block in WCQ (cache hit).
3: promote the block to WCQ'’s head.

4: case 1.2: z hits a HDD block in WCQ (cache miss).

5 mark the block as a RAM block in WCQ;

6 promote it to WCQ's head;
7 RAM_REPLACEQ).
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8: case 1.3: z hits a block in SPQ (cache hit).

9: move the block from SPQ to WCQ'’s head.
10: WCQ _EVICTO().
11: case 1.4: x does not hit any queue (cache miss).
12: add a new RAM block related to x at WCQ’s head;
13: RAM_REPLACE();
14: WCQ_EVICT().

15:  case 2: x is a write request.

16: if 2 hits a block in WCQ or SPQ.

17: delete the block from WCQ or SPQ.

18: def RAM_REPLACE ():

19:  if RAM blocks in WCQ is beyond RAM capacity:
20: mark the last RAM block in WCQ as a HDD block.
21: def WCQ_EVICT():

22:  assuming y is the evicted block.

23:  all SPQ blocks’ IdleTime + 1.

24:  if yis an SSD block.

25: put y at SPQ’s head, y's IdleTime=WCQ’s length.

5 EVALUATION

The performance of our WEC is evaluated driven by real-
world workloads (see Section 5.1). We compare WEC with
the traditional caching algorithms in terms of performance
and impacts on SSD endurance in Section 5.2. We also
examine the sensitivity of WEC under various cache capac-
ity settings (see Section 5.3), and various parameter settings
(see Section 5.4). Finally, an SSD inner writes estimation is
made in Section 5.5.

5.1 Experimental Settings
Performance metrics. There are three performance metrics
used in our experiments. (1) Write efficiency measured as
SSD hits divided by the amount of data written to SSD is a
primary performance metric to quantify the efficiency of
turning SSD writes into hits, which is the dominate ability
for the SSD-oriented cache schemes. (2) Total cache hit rate
including both RAM-based and SSD-based cache is a tradi-
tional indicator to evaluate cache replacement algorithms.
(3) The number of blocks written to SSD-based cache can be
used to measure the amount of data written to SSDs.
Alternative solutions. We compare WEC against the three
existing solution families:

e The two-layer cache hierarchy comprised of RAM
and SSDs [22] are managed by the classical cache
replacement algorithms like LRU, LFU, MQ [21],
LIRS [17] and ARC [18], which offer high perfor-
mance without addressing the endurance issue of
SSDs.

e The SieveStore system makes use of selective cache
allocation to reduce allocation-writes [38].

e The Solaris ZFS file system powered by the L2ZARC
scheme [37] applies ARC [18] for RAM data manage-
ment. L2ARC limits the number of writes to SSDs by
a periodical data updating scheme.

5.2 Overall Performance Evaluation

Let us compare the overall performance of WEC with that of
the traditional cache algorithms (i.e., LRU, LFU, LIRS, MQ
and ARC). Figs. 9, 10, and 11 plot the write efficiency, the
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Fig. 9. WEC’s write efficiency is about one to two orders of magnitude
higher than those of the existing cache algorithms.

total hit rates of an entire cache comprised of both RAM and
SSD, and the amount of SSD writes, respectively. In this
group of experiments, the capacity ratio between cache
(including RAM and SSD) and storage is set as 1/10.

Fig. 9 shows that the write efficiency of WEC is about an
order of magnitude higher than that of SieveStore and
L2ARC, and is around two orders of magnitude higher than
the traditional cache algorithms. Taking the mix trace for
example, the write efficiency of WEC is as high as 131.03
(i.e., writing one block into SSD can bring 131.03 cache hits
as a reward); the write efficiency values of L2ARC, SieveS-
tore, and the traditional algorithms are 15.62, 6.52~11.54,
and 1.04~1.50, respectively. The low write efficiency of the
traditional algorithms is caused by their aggressive push
mode. A large number of blocks in SSDs have not been fre-
quently accessed before being evicted from the SSDs, lead-
ing to about 1 hit per written block on average. The high
write efficiency of WEC can be demonstrated through high
total cache hit rate (see Fig. 10) and reduced amount of SSD
writes (see Fig. 11).

The high write efficiency of WEC confirms that the pull
mode is very effective in terms of keeping high-quality con-
tents in SSD-based caches all the time unless the popularity
has changed. L2ZARC and SieveStore, on the other hand, tend
to evict the high-quality data blocks far before their active
lifespan terminates. Even worse, the traditional algorithms
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Fig. 10. WEC achieves similar or even higher total cache hit rates com-
pared with existing solutions.
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Fig. 11. WEC significantly reduces the amount of SSD writes.

evict write-efficient data in an earlier stage. The data in SSDs
stays for a short time period due to the evictions of popular
data induced by an excessive number of misses.

Among the traditional algorithms, LIRS achieves the
highest write efficiency in most cases, whereas SieveStore
+LRU outperforms the others in the SieveStore series.
This result reveals that integrating simple algorithm with
SieveStore may outperform the complicated algorithms. In
addition, L2ARC always has higher write efficiency than
SieveStore even when L2ARC’s amount of SSD writes is
larger than that of SieveStore, because SSDs in L2ARC’s
cache layer can deliver more cache hits.

Fig. 10 plots the total cache hit rates of RAM augmented
with SSDs. In most cases, one of the traditional algorithms
can achieve the highest cache hit rates because of no SSD
write limitation. However, the caching solutions with SSD
write limitation can also lead to very good performance
thanks to write-efficient blocks cached in SSDs. This trend is
more pronounced when it comes to the mix workload. For
example, the total cache hit rate of WEC is 90.99 percent,
whereas that of the traditional algorithms are in a range
between 89.23 to 91.20 percent. Except for LIRS, WEC out-
performs all the other traditional schemes.

In modern data centers, it is common to have multiple
applications sharing a storage system. The mix workload
examined here resembles real storage systems in data
centers. WEC significantly improves the lifespan of SSDs
without noticeably downgrading I/O performance. In
many cases, WEC’s cache hit rate is higher than those of the
widely used algorithms like LRU.

5.3 Cache Capacity Sensitivity
5.3.1 Cache Sizes

A good caching algorithm needs to achieve high perfor-
mance in a variety of system configurations including vari-
ous capacity ratios between cache and storage. An ideal
caching scheme for SSDs should exhibit high cache hit rates
and maintain high write efficiency under various cache sizes.

In this group of experiments, we focus on the mix work-
load. In addition to WEC and L2ARC, LIRS and SieveStore
+LRU are evaluated, because they achieve the best perfor-
mance and the highest write efficiency in their own algo-
rithm families (see Section 5.2). Figs. 12 and 13 compare the
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Fig. 12. WEC achieves higher and stable SSD write efficiency than the
other three approaches under various cache sizes.

write efficiency and total cache hit rates of the four algo-
rithms when the ratio between cache and storage ranges
from 1 to 20 percent.

Fig. 12 indicates that the write efficiency of SieveStore
+LRU is relatively low with small cache sizes. The write effi-
ciency values of WEC, L2ARC, and LIRS are not very sensi-
tive to cache size. The write efficiency gap between WEC and
the other solutions is consistent with the results plotted in
Fig. 9. For example, when cache size is relatively large, WEC
achieves over 100 hits by fetching one block into SSD, whereas
L2ARC and SieveStore+LRU can benefit as few as 10 hits, and
the traditional algorithms only experience on average 1 hit.

SieveStore has low write efficiency under small cache
sizes, because there are many misses satisfying the sieve
condition caused by low cache hit rate. These large number
of misses make SSD cache evict many active hot blocks
before they contribute more hits.

Fig. 13 plots the total cache hit rate when the capacity
ratio between cache and storage various from 1 to 20 percent.
The cache hit rate of WEC, in most cases, is close to that
of LIRS. In a few cases, WEC has better hit rates than LIRS.
SieveStore+LRU is the worst one with perspective of hit rate.

We conclude that WEC reduces SSD writes and achieves
high write efficiency without any adverse performance
impact under various cache settings.
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Fig. 13. WEC achieves the best or suboptimal total cache hit rate among
the four algorithms under various cache sizes.
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age configuration, whereas the RAM percentage significantly affects the
write efficiency of the other three solutions.

5.3.2 Capacity Ratio Between RAM and SSD

Given a hybrid cache layer composed of RAM and SSD, we
investigate the impact of the capacity ratio between RAM
and SSD on overall system performance. Large RAM leads
to low latency; a large SSD offers large cost-effective cache
capacity, which in turn gives rise to a high cache hit rate. Ide-
ally, a good cache replacement scheme should deliver high
performance under various capacity ratio of RAM and SSD.

Again, we pay attention to the mix workload. Figs. 14
and 15 show the write efficiency and the cache hit rates
when the percentage of RAM ranges from 5 to 70 percent of
the entire cache layer. The capacity ratio between cache and
storage is set to 1/10.

Fig. 14 reveals that the write efficiency of WEC is not sen-
sitive to the RAM percentage configuration, whereas the
RAM percentage significantly affects the write efficiency of
the other three solutions. For the traditional caching algo-
rithms and SieveStore, a small SSD capacity shortens each
block’s time spent in SSD-based cache, resulting in few hits
per SSD write. In the L2ARC case, a large RAM capacity
increases the number of blocks cached into SSDs, thereby
leading to premature and frequent data evictions. On the
contrary, the proactive-data-leaving mechanism imple-
mented in WEC keeps popular blocks in the SSD cache
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Fig. 15. The cache hit rate of WEC is insensitive to RAM percentage.
WEC’s cache hit rate is close to those of LIRS and L2ARC under various
RAM settings.
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almost for the blocks” entire active life cycles under a variety
of system settings.

We observe from Fig. 15 that the total cache hit rate of
SieveStore is the worst one among all the four evaluated
schemes. Unlike the other three solutions, the cache hit rate
of WEC is insensitive to RAM percentage. This result sug-
gests that WEC can achieve high cache hit rate regardless of
the settings of RAM cache.

In most cases, WEC'’s write efficiency and hit rate are
constantly higher than those of the traditional caching algo-
rithms, SieveStore, and L2ARC under various RAM per-
centage settings.

5.4 Parameter Sensitivity
5.4.1 SSD Data Updating Period

WEC stores write-efficient data in SSDs for a long time; the
long lifetime of cached data makes frequent SSD updates
unnecessary. This feature allows us to set a large SSD data
updating period (i.e., the period of checking if some cached
blocks should be evicted) in order to reduce WEC’s over-
head without affecting performance. Fig. 16 exhibits the
write efficiency and the cache hit rate of WEC when the
data updating periods ranges from 50 to 50,000 requests.

Fig. 16 indicates that increasing WEC’s updating period
has marginal impacts on its cache hit rate (e.g., hit rate only
decreases from 90.99 to 90.93 percent). Even when the
updating period increases high up to 50,000 requests, the
cache hit rate is still as high as 90.57 percent. On the other
hand, a large updating period leads to high write efficiency.
For example, WEC’s write efficiency increases from 131.03
to 276.45 when the updating period goes up to 50,000 from
50 requests. When it comes to storage systems with no strict
performance constraint, setting a very large data updating
period not only helps to achieve high write efficiency, but
also significantly reduces WEC's overhead.

In summary, it is recommended to minimize WEC’s
overhead by increasing its data updating period, which
helps in improving write efficiency. Please note that in most
of our experiments, WEC’s updating period is set as short
as 50 requests. In practice, we can increase the updating
period to further reduce WEC’s overhead.
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cent, the five CR mapping functions deliver a similar write efficiency.

5.4.2 Proactive Data Leaving Threshold Functions

A critical parameter of the proactive data leaving module is
the quit threshold, which is used to distinguish active write-
efficient blocks from to-be-evicted cold blocks residing in
SSD-based caches. To achieve good performance under var-
ious cache capacity settings, WEC dynamically and judi-
ciously sets the QT value according to the capacity ratio
(CR) between cache and storage. The QT value is derived
from CR using a proper mapping function. For a variety of
cache capacities (i.e., CR ranges from 1 to 20 percent) under
the mix workload, Figs. 17 and 18 show the write efficiency
and cache hit rates of WEC, in which five different mapping
functions f(CR) (see Eq. (2)) are implemented. The five
functions express super-linear, linear, and sub-linear incre-
ments of QT with the increasing value of the CR ratio

f(CR) = CR?/CR?*/CR/CR?/CR"". (3)

Fig. 17 shows that CR'/? achieves the highest write effi-
ciency when the ratio of cache and storage is smaller than
14 percent; CRY? is highest when the ratio is 14 percent;
and CR is best when the ratio is larger than 14 percent.
Nevertheless, the write efficiency discrepancy among the
five mapping functions is very small. When the capacity
ratio of cache and storage is large than 9 percent, the five
functions deliver a similar write efficiency.
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Fig. 18. The discrepancy in cache hit rate among the five CR mapping
functions is negligible.
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WEC is far ahead of all the others, even making the worst estimation.

Fig. 18 confirms that the discrepancy in cache hit rate
among the five functions is negligible. When the cache/stor-
age ration is larger than 6 percent, the hit rates of CR'/? and
CR'/? are slightly higher than those of the other functions.

WEC’s performance is insensitive to the CR mapping
function implemented in the proactive eviction module.
Generally, we recommend to implement CR'/? and CR'/?
in the proactive eviction module; these two mapping func-
tions allow WEC to exhibit good write efficiency and high
cache hit rate in most cases. Please note that the CR'/? func-
tion is employed as a proactive eviction threshold function
throughout all the other experiments in our study.

5.5 SSD Inner Writes Estimation

When it comes to SSDs, write amounts on physical flash
chips (a.k.a., inner writes) are usually larger than the
size of requests issued by users (a.k.a., external writes).
This phenomenon is called write amplification of SSD
(See Section 6 for details). Importantly, such inner write
amounts on physical flash chips directly determine the
endurance of SSD products.

In general, a random write pattern leads to a relative
large write amplification rate (WAR) (i.e.,, inner writes
divided by external writes) caused by many extra inner
valid data migrations during garbage collection. For exam-
ple, Saxena et al. [35] discovered that the SSD cache’s write
amplification rate of typical read-intensive applications has
a value ranging from 2.03 to 2.23; their proposed a new tech-
nique to reduce WAR down to 2.02~2.18. In contrast, a
sequential write pattern gives rise to a small WAR close to 1.

Expect for FIFO and L2ARC performing a sequential write
pattern to SSD cache, all the other caching schemes lead to a
random write pattern. In previous experiments, accurate SSD
external write amounts are used to calculate write efficiency
of all caching schemes. Accurate SSD inner writes can not
be obtained here; nevertheless, we apply typical WAR of
sequential and random write patterns to estimate inner write
amounts. We make use of the inner write amounts to derive
inner write efficiency (IWE), which is equal to total hits
divided by total estimated inner write amounts.

Fig. 19 shows the IWE values of FIFO, LIRS, SieveStore
+LRU, L2ARC and WEC under three workloads of Filebench
[44] (i.e., randomfileaccess, networkfs, and randomread). In this
group of experiments, SSD write amplification rate ranges
from 1.0 to 2.3. Thanks to the sequential-write nature of
FIFO and L2ARC, these two schemes achieve high IWEs

near the left side of the curves. The other random-write
based schemes obtain high IWEs near the right side of the
curves. These results indicate that FIFO outperform LIRS in
IWE in the networkfs and randomread workload; L2ARC out-
performs SieveStore under the randomfileaccess workload.
The results also show that the IWE value of WEC remains
approximately one order of magnitude higher than those of
SieveStore and L2ARC, and about two orders of magnitude
higher of those of FIFO and LIRS.

Furthermore, much attention has been paid to reducing
the write amplification rate of inner SSDs [32], [34], [35].
The IWE advantage of WEC over FIFO and L2ARC is
expected to be more pronounced when WEC is seamlessly
integrated with these write-amplification reduction techni-
ques applied in SSD products.

6 RELATED WORK

Flash-Based SSD Caching. Flash-based SSD caching is a
promising solution for boosting today’s storage systems. A
classical technique proposed by Kgil et al. [22] is a two-level
cache composed of RAM and a flash memory secondary
cache, where the flash-based disk cache is spitted into sepa-
rate read and write regions to improve I/O performance.

In addition to the cache replacement schemes discussed
earlier in this paper, many other approaches are focused on
a wide range aspects of flash cache. For example, Koller
et al. [23] developed host-side flash-based cache for optimiz-
ing accesses to network storage through new cache policies
to obtain a better tradeoff point among performance, data
consistency and staleness than traditional write-back and
write-through polices. Bonfire [24] was designed to signifi-
cantly reduce large flash cache’s warmup time. In addition,
Lee et al. proposed a new in-place commit technique that
merges write buffer and journal into one, thereby reducing
the time and space overhead of logging by utilizing the
non-volatile feature of new cache devices [25].

The Endurance Challenge of SSDs. Flash-based SSDs have
very limited total bytes written (TBW) in their entire life
cycle [4]. This deficiency is mainly caused by the following
two factors. First, to pursue high storage density and reduc-
ing manufacturing cost, SSD vendors have widely adopted
the technique of storing multiple bits in one unit, forcing
erase cycles of per cell to drop from 100,000 to 5,000 or even
lower [5]. Second, due to the inherent write amplification
phenomenon of flash chips, actual write sizes are likely to
be much larger than requested ones. Write amplification is
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triggered by the mismatch of erase and read/write opera-
tion units [6] as well as the extra migrations of valid data on
to-be-erase blocks.

System-Level Enhancement on Endurance. Apart from cache
replacement schemes aiming to reduce the amount of writ-
ten data (see, for example, SieveStore [38] and L2ARC [37]),
there are approaches to improve the endurance of SSDs that
play other types of roles in storage systems. For instance,
FlashVM [26] and SSDAlloc [27] aim to reduce the number
of writes issued to SSDs in flash-based virtual memory sys-
tems. [-CASH [28] arranges SSDs to store seldom-changed
and mostly read reference data, whereas a HDD stores a log
of changed deltas of SSD data. In this case, SSDs does not
handle random writes. Ren et al. [29] introduced a new
caching algorithm that exploits content locality of I1/O
requests to reduce SSD cache’s write pressure.

There are also some designs focusing on improving the
reliability of the whole storage systems with a full consider-
ation of the limited endurance of SSDs. Balakrishnan et al.
[30] proposed Diff-RAID, in which SSDs do not wear out at
the same time in SSD-based RAIDs. An age differential in
an array of SSDs is created in Diff-RAID to ensure data
safety by replacing old devices with new ones stepwise.
Lee et al. [31] introduced a dynamic throttling technique
called READY to enlarge SSDs’ lifetimes by directly limiting
the number of writes.

Device-Level Enhancement on Endurance. Optimizing the
architecture and algorithms inner SSD devices is another
important family of techniques to reduce write amplification
and improve endurance. Oh et al. [32] implemented a method
to balance cache space and over-provisioned space reserved
for garbage collection of inner SSDs, thereby extending SSD
lifetimes. A hybrid storage device that uses disks as a write
buffer for SSD was designed by Soundararajan et al. [33] to
reduce the number of writes issued to SSDs. CAFTL [34]
reduces redundant data in similar pages at the FTL level to
decrease the amount of written data in SSDs. And FlashTier
[35] was proposed as a dedicated flash device architecture
with an interface purposely designed for caching; FlashTier
improves I/O performance and reduces erase cycles.

7 CONCLUSIONS

It is a great challenge to deploy SSDs as cache disks in stor-
age systems, because frequently updating cached data can
quickly wear these SSDs out. In this study, we designed a
new solution—write-efficient caching—to improve write
durability of SSD-based caches. At the heart of WEC is a
new pull mode that proactively discards useless contents and
pulls new write-efficient data into SSD-based caches. The
pull mode not only guards against cached write-efficient
data’s too early eviction, but also prevents low-value-added
data from being frequently pushed into SSD caches. The
pull mode allows WEC to achieve high hit rates and to
reduce the amount of data written to SSDs.

Our extensive experiments using real-world workloads
demonstrate that (1) WEC’s write efficiency is one or two
orders of magnitude higher than those of the existing caching
schemes; and (2) WEC maintains similar or sometimes even
higher cache hit rates than those of the existing solutions.
One of the salient features of WEC is that it can be applied in
a wide range of computing environments to significantly
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extend SSD lifespans. For example, when it comes to video-
on-demand applications powered by LIRS and L2ARC,
WEC extends the lifespan of Intel 910 enterprise-class SSDs
from 60.9 and 447.3 days to 1571.6 days (i.e., 4.3 years).
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