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Abstract—	  It	  is	  our	  view	  that	  the	  state	  of	  the	  art	  in	  
constructing	  a	  large	  collection	  of	  graph	  algorithms	  in	  
terms	  of	  linear	  algebraic	  operations	  is	  mature	  enough	  to	  
support	  the	  emergence	  of	  a	  standard	  set	  of	  primitive	  
building	  blocks.	  This	  paper	  is	  a	  position	  paper	  defining	  
the	  problem	  and	  announcing	  our	  intention	  to	  launch	  an	  
open	  effort	  to	  define	  this	  standard.	  
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I.  PROBLEM STATEMENT  
Data analytics and the closely related field of “big data” 

have emerged as a leading research topics in both applied and 
theoretical computer science.   While it has been shown that 
many problems can be addressed with a “map-reduce” style 
framework, as we move to the next level of sophistication in 
data analytics applications, graph algorithms that demand more 
than “map-reduce” will play an increasingly vital role.   There 
are many ways to organize a collection of graph algorithms into 
a high level library to support data analytics.   It is probably 
premature to standardize these graph APIs.  The low level 
building blocks of graph algorithms, however, are well 
understood and we believe a suitable target for standardization.  
In particular, the representation of graphs as sparse matrices 
allows many graph algorithms to be represented in terms of a 
modest set of linear algebra operations [1,2,5]. 

Our concern, however, is that as new researchers enter this 
expanding field of research, the linear algebraic foundation of 
this class of graph algorithms will fragment.   Diversity at the 
level of the primitive building blocks of graph algorithms will 
not help advance the field of graph algorithms.  It will hinder 
progress as groups create different overlapping variants of what 
should be common low level building blocks.   Furthermore, 
diverse sets of primitives will complicate the ability of the 
vendor community to support this research with math tuned to 
the needs of these algorithms.     

It is our view that the state of the art in constructing a large 
collection of graph algorithms in terms of linear algebraic 
operations is mature enough to support the emergence of a 
standard set of primitive building blocks.  We believe it is 

critical that we move quickly so as new research groups enter 
this field we can prevent needless and ultimately damaging 
diversity at the level of the basic primitives supporting this 
research; thereby freeing up researchers to innovate and 
diversify at the level of higher level algorithms and graph 
analytics applications. 

 

II. THE STATE-OF-THE-ART 
The standardization of sparse linear algebra historically 

begins with the NIST Sparse Basic Linear Algebra 
Subprograms (BLAS) [3] and consists of Sparse Vector (Level 
1), Matrix Vector (Level 2), and Matrix Matrix (Level 3) 
operations.   These BLAS were designed for solving the kinds 
of sparse linear algebra operations that arise in finite element 
simulation techniques that are widely used in engineering.  In 
particular, the operations are limited to traditional 
multiplication and addition operations and, in the case of 
matrix-matrix multiply, usually one of the arguments is dense.   

We can extend the BLAS to address the needs of graph 
algorithms by generalizing the pair of operations involved in 
the computations to define a semiring.  For example, in 
semiring notation we could write the most common operations 
found in the exiting Sparse BLAS as 

 C = A +.* B 

where +.* denotes standard matrix multiply.  In the case of the 
NIST Sparse BLAS, A is a sparse matrix, and B and C are 
usually tall skinny dense matrices.  In graph algorithms, a 
fundamental operation is matrix-matrix multiply where both 
matrices are sparse.  This operation represents multi source 1-
hop breadth first search (BFS) and combine, which is the 
foundation of many graph algorithms.  In addition, it is often 
the case that operations other than standard matrix multiply are 
desired, for example: 

C = A max.+ B 

C = A min.max B 

C = A |.& B 

C = A f().g() B                                 
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With this more general case of sparse matrix multiply, a 
wide range of graphs algorithms can be implemented [1].  An 
implementation of this approach is found in the combinatorial 
BLAS [2].  The combinatorial BLAS provides implementations 
of nine functions: matrix-matrix multiply (multi source BFS 
combine), matrix-vector multiply (single source BFS combine), 
element wise matrix-matrix multiply (edge weighting), reduce 
(in/out degree), sub reference (sub-graph selection), sub assign 
(sub-graph insertion), scale matrix (edge weighting), scale 
vector (vertex weighting), and apply unary operator (edge 
transformation).  These functions are a reasonable basis for 
graph algorithms primitives, and the combinatorial BLAS 
demonstrate that they can be effectively implemented in a 
parallel. 

The data types and storage formats are also an important 
consideration.  The values should be able to handle all the 
standard types: float, double, complex, boolean, 
signed/unsigned integers of various lengths, and pointers to 
external user defined data structures.   There should be a 
concept of a symmetric matrix to handle undirected graphs.  
Internal formats should include at least Compressed Sparse 
Rows (CSR) and Compressed Sparse Columns (CSC).  Other 
formats such as tuples and more complex formats [4] should 
also be considered. 

 

III. RECOMMENDATIONS 
We believe the research community working on graph 

algorithms expressed as linear algebra should come together 
now and define a common API they can use in their research. 
The combinatorial BLAS are an excellent starting point for this 
work.  We propose the formation of an ongoing combinatorial 
BLAS forum to finalize the specification and take ownership of 
its ongoing evolution. 
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