
 1

Standards for Graph Algorithm Primitives
Tim Mattson (Intel Corporation), David Bader (Georgia Institute of Technology), Jon Berry (Sandia National

Laboratory), Aydin Buluc (Lawrence Berkeley National Laboratory), Jack Dongarra (University of Tennessee),
Christos Faloutsos (Carnegie Melon University), John Feo (Pacific Northwest National Laboratory), John Gilbert

(University of California at Santa Barbara), Joseph Gonzalez (University of California at Berkeley), Bruce
Hendrickson (Sandia National Laboratory), Jeremy Kepner (Massachusetts Institute of Technology), Charles

Leiserson (Massachusetts Institute of Technology), Andrew Lumsdaine (Indiana University), David Padua (University
of Illinois at Urbana-Champaign), Stephen Poole (Oak Ridge National Laboratory), Steve Reinhardt (Cray

Corporation), Mike Stonebraker (Massachusetts Institute of Technology), Steve Wallach (Convey Corporation),
Andrew Yoo (Lawrence Livermore National Laboratory)

Abstract—	 It	 is	 our	 view	 that	 the	 state	 of	 the	 art	 in	
constructing	 a	 large	 collection	 of	 graph	 algorithms	 in	
terms	 of	 linear	 algebraic	 operations	 is	 mature	 enough	 to	
support	 the	 emergence	 of	 a	 standard	 set	 of	 primitive	
building	 blocks.	 This	 paper	 is	 a	 position	 paper	 defining	
the	 problem	 and	 announcing	 our	 intention	 to	 launch	 an	
open	 effort	 to	 define	 this	 standard.	

Keywords-component; Graphs; Algorithms; Linear Algebra;
Software Standards

I. PROBLEM STATEMENT
Data analytics and the closely related field of “big data”

have emerged as a leading research topics in both applied and
theoretical computer science. While it has been shown that
many problems can be addressed with a “map-reduce” style
framework, as we move to the next level of sophistication in
data analytics applications, graph algorithms that demand more
than “map-reduce” will play an increasingly vital role. There
are many ways to organize a collection of graph algorithms into
a high level library to support data analytics. It is probably
premature to standardize these graph APIs. The low level
building blocks of graph algorithms, however, are well
understood and we believe a suitable target for standardization.
In particular, the representation of graphs as sparse matrices
allows many graph algorithms to be represented in terms of a
modest set of linear algebra operations [1,2,5].

Our concern, however, is that as new researchers enter this
expanding field of research, the linear algebraic foundation of
this class of graph algorithms will fragment. Diversity at the
level of the primitive building blocks of graph algorithms will
not help advance the field of graph algorithms. It will hinder
progress as groups create different overlapping variants of what
should be common low level building blocks. Furthermore,
diverse sets of primitives will complicate the ability of the
vendor community to support this research with math tuned to
the needs of these algorithms.

It is our view that the state of the art in constructing a large
collection of graph algorithms in terms of linear algebraic
operations is mature enough to support the emergence of a
standard set of primitive building blocks. We believe it is

critical that we move quickly so as new research groups enter
this field we can prevent needless and ultimately damaging
diversity at the level of the basic primitives supporting this
research; thereby freeing up researchers to innovate and
diversify at the level of higher level algorithms and graph
analytics applications.

II. THE STATE-OF-THE-ART
The standardization of sparse linear algebra historically

begins with the NIST Sparse Basic Linear Algebra
Subprograms (BLAS) [3] and consists of Sparse Vector (Level
1), Matrix Vector (Level 2), and Matrix Matrix (Level 3)
operations. These BLAS were designed for solving the kinds
of sparse linear algebra operations that arise in finite element
simulation techniques that are widely used in engineering. In
particular, the operations are limited to traditional
multiplication and addition operations and, in the case of
matrix-matrix multiply, usually one of the arguments is dense.

We can extend the BLAS to address the needs of graph
algorithms by generalizing the pair of operations involved in
the computations to define a semiring. For example, in
semiring notation we could write the most common operations
found in the exiting Sparse BLAS as

 C = A +.* B

where +.* denotes standard matrix multiply. In the case of the
NIST Sparse BLAS, A is a sparse matrix, and B and C are
usually tall skinny dense matrices. In graph algorithms, a
fundamental operation is matrix-matrix multiply where both
matrices are sparse. This operation represents multi source 1-
hop breadth first search (BFS) and combine, which is the
foundation of many graph algorithms. In addition, it is often
the case that operations other than standard matrix multiply are
desired, for example:

C = A max.+ B

C = A min.max B

C = A |.& B

C = A f().g() B

 2

With this more general case of sparse matrix multiply, a
wide range of graphs algorithms can be implemented [1]. An
implementation of this approach is found in the combinatorial
BLAS [2]. The combinatorial BLAS provides implementations
of nine functions: matrix-matrix multiply (multi source BFS
combine), matrix-vector multiply (single source BFS combine),
element wise matrix-matrix multiply (edge weighting), reduce
(in/out degree), sub reference (sub-graph selection), sub assign
(sub-graph insertion), scale matrix (edge weighting), scale
vector (vertex weighting), and apply unary operator (edge
transformation). These functions are a reasonable basis for
graph algorithms primitives, and the combinatorial BLAS
demonstrate that they can be effectively implemented in a
parallel.

The data types and storage formats are also an important
consideration. The values should be able to handle all the
standard types: float, double, complex, boolean,
signed/unsigned integers of various lengths, and pointers to
external user defined data structures. There should be a
concept of a symmetric matrix to handle undirected graphs.
Internal formats should include at least Compressed Sparse
Rows (CSR) and Compressed Sparse Columns (CSC). Other
formats such as tuples and more complex formats [4] should
also be considered.

III. RECOMMENDATIONS
We believe the research community working on graph

algorithms expressed as linear algebra should come together
now and define a common API they can use in their research.
The combinatorial BLAS are an excellent starting point for this
work. We propose the formation of an ongoing combinatorial
BLAS forum to finalize the specification and take ownership of
its ongoing evolution.

REFERENCES
[1] Graph Algorithms in the Language of Linear Algebra, Edited by J.

Kepner and J. Gilbert, SIAM, 2011
[2] A. Buluc and J. Gilbert ,The Combinatorial BLAS: Design,

Implementation and Applications,
http://www.cs.ucsb.edu/research/tech_reports/reports/2010-18.pdf

[3] http://math.nist.gov/spblas/
[4] D. Ediger, K. Jiang, J. Riedy, and D.A. Bader, ``Massive Streaming Data

Analytics: A Case Study with Clustering Coefficients,'' 4th Workshop on
Multithreaded Architectures and Applications (MTAAP), Atlanta, GA,
April 23, 2010

[5] U Kang, C. Tsourakakis, and C. Faloutsos, ``PEGASUS: A Peta-Scale
Graph Mining System - Implementation and Observations,’’ IEEE
International Conference on Data Mining (ICDM) 2009, Miami, Florida,
USA.

