
Graph Algorithms Building Blocks (GABB’2014)

Tim Mattson, David Bader, Aydın Buluç, John Gilbert, Joseph Gonzalez, Jeremy Kepner

The Basic Linear Algebra Subprograms (BLAS), introduced

over 30 years ago, had a transformative effect on linear alge-

bra. By building Linear Algebra algorithms from a common

set of highly optimized building blocks, researchers spend less

time mapping algorithms onto specific hardware features and

more time on interesting new algorithms.

Could the same transformation occur for Graph algorithms?

Can Graph algorithm researchers converge around a core set

of building blocks so we can focus more on algorithms and

less on mapping software onto hardware?

Graph Algorithms Building Blocks workshop (GAB’14)

will address these questions. The workshop will open with

a pair of talks that define a candidate set of graph algorithm

building blocks that we call the “Graph BLAS”. With this

context established, the reamining talks explore issues raised

by these Graph BLAS, suggest alternative sets of low level

building blocks, and finally consider lessons learned from past

standards efforts. We will close with an interactive panel about

our collective quest to standardize a set of core graph algorithm

building blocks.

1. MOTIVATION AND MATHEMATICAL FOUNDATIONS OF

THE GRAPHBLAS - TIM MATTSON (INTEL CORP)

Graphs can be represented in terms of sparse incidence

matrices where the row and column indices label vertices

in the graph and the elements of the matrix indicate which

edges connect pairs of vertices. The key insight behind this

approach is that when a graph is represented by a sparse

incidence matrix, Sparse Matrix-vector multiplication is the

dual of Breadth First Search. By generalizing the pair of

operations involved in the linear algebra computations to

define a semiring, we can extend the range of these primitives

to support a wide range of parallel graph algorithms. This

work is the foundation of the new Graph BLAS initiative [1].

2. EXAMPLES AND APPLICATIONS OF GRAPH ALGORITHMS

IN THE LANGUAGE OF LINEAR ALGEBRA - JOHN GILBERT

(UC SANTA BARBARA)

What can you really do with the Graph BLAS? This talk

will explore the range of algorithms that have been defined

around the Combinatorial BLAS [2]; which served as the

starting point for our work to define the Graph BLAS. We will

consider the bold assertion frequently voiced by researchers

working on “graphs in the language of Linear algebra” that

“any graph algorithm I know how to map onto a distributed

memory machine can be expressed using the sparse incidence

matrices and algebraic semirings”.

3. GRAPHX: UNIFYING GRAPHS AND TABLES THROUGH

RELATIONAL ALGEBRA - JOSEPH GONZALEZ (UC

BERKELEY)

Driven by the growing importance of graphs and graph

structured data, a range of new systems [3–5] have emerged to

support scalable graph computation on commodity hardware.

These systems exploit specialized graph APIs to efficiently

execute graph algorithms in multicore and distributed envi-

ronments both in memory and on disk. While graph process-

ing systems are well-suited for graph computation, they do

not address the wider range of tasks required in real-world

graph-analytics (e.g., graph construction, filtering, and data

ingress, egress, and management). These more general tasks

are typically accomplished using more general distributed

data-processing systems. As a consequence practitioners are

forced to alternate between systems leading to costly data

movement and a more complex programming model.

To unify these disparate views of computation in a single

system we introduce GraphX, which embeds graph computa-

tion (and GraphBLAS) within more general data processing

systems by casting graph operations in relational algebra.

Proposed over three decades ago by Codd [6], relational

algebra has unified data management systems around a single

highly expressive abstraction and helped create a several

hundred billion dollar industry. However, while it is possible to

directly express graph computation within relational algebra,

this can lead to an inefficient execution as these systems are not

optimized for graphs. To address this limitation, we translate

advances in graph processing systems (e.g., distributed graph

representation and data-movement patterns) to distributed join

strategies and materialized view maintenance. We show that

through these optimizations GraphX can achieve performance

parity with widely used graph-processing systems while sup-

porting computation that spans table and graphs.

4. EFFECTIVE GRAPH-ALGORITHMIC BUILDING BLOCKS

FOR GRAPH DATABASES - DAVID MIZELL, STEVEN P.

REINHARDT (YARCDATA LLC, A CRAY COMPANY)

The graph-algorithms building blocks (GABB) effort aims

to accelerate the maturation of graph-analytic tools and

their use by defining and encouraging implementation of a

core set of building-block functions. In the authors opinion,

GABBs need to be effective in the context of graph databases

(GDBs), which provide persistent interfaces, typically usable

by subject-matter experts, to provide greatest value. The GDB

context presents constraints that may not exist elsewhere.

First, we expect the primary user interface to GDBs will

be declarative query languages, which will provide extensive

2014 IEEE 28th International Parallel & Distributed Processing Symposium Workshops

978-1-4799-4116-2/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPSW.2014.221

1135

general-purpose functionality but which will also need exten-

sion with specific high-value graph algorithms, which may be

implemented by the developers of the GDB, by customers or

users, or by third parties such as graph-analytic researchers.

We see that the developers of these extension functions will

initially be the primary audience for GABBs. Second, the

performance cost of copying and reformatting data between

data formats will continue to be prohibitive, and so it is vital

that GABB enable implementations onto the native GDB data

structure. Third, the native GDB data structure will be con-

strained by the query needs of users and need careful GABB

interface design to enable high-performance implementations.

Fourth, we envision domain-specific graph languages such as

GreenMarl becoming the preferred vehicle for graph-algorithm

development, below the level of the declarative query language

and above the low-level procedural language (likely C++).

Assuming that the initial API definition of GABBs is for C++,

that API must also enable efficient implementation of graph-

domain-specific languages.

5. ADJACENCY MATRICES, INCIDENCE MATRICES,

DATABASE SCHEMAS, AND ASSOCIATIVE ARRAYS -

JEREMY KEPNER AND VIJAY GADEPALLY (MIT LINCOLN

LABORATORY)

Spreadsheets, databases, hash tables and dictionaries; these

are the fundamental building blocks of big data storage,

retrieval and processing. The MIT Dynamic Distributed Di-

mensional Data Model (D4M) is an interface to databases and

spreadsheets that enable developers to write analytics in the

language of linear algebra, significantly reducing the time and

effort required. At the core of D4M are associative arrays that

allow big data to be represented as large sparse matrices. This

sparse matrix D4M schema has been adopted in a number of

domains (most notably in the Apache Accumulo community).

Linear algebraic graph algorithms work naturally with the

D4M schema when such algorithms are cast in terms of edge

incidence matrices. An incidence matrix, E, stores each edge

in a graph as a row and every vertex as a column. Setting

E(i, v1) = −1 and E(i, v2) = 1 is one convention to indicate

that edge i starts at vertex v1 and ends at vertex v2. Incidence

matrices naturally represent partite-directed weighted-multi-

hyper graphs (i.e., graphs with many vertex classes, edge

direction, weighted edges, multiple edges between vertices,

and multiple vertices per edge). Incidence matrices naturally

encompass the full richness of data that is found in many

data sets (e.g., text documents, bioinformatics, network logs,

weblinks, and health records). In contrast, in an adjacency

matrix, A, each row and column represent vertices in the graph

and setting A(v1, v2) = 1 denotes an edge from vertex v1
to vertex v2. In the above convention for E, the adjacency

matrix and the incidence matrix are linked by the formula

A = |E′ < 0||E > 0|. In other words, A is the cross-

correlation of E. Any algorithm that can be written using A

can also be written using E via the above formula. However,

because A is a projection of E, information is always lost in

constructing A, and there are algorithms that can be written

using E that cannot be constructed using A. This talk will

describe the interrelationships between adjacency matrices,

incidence matrices, database schemas, and associative arrays

in the context of specific examples drawn from a number of

real-world applications.

6. LINEAR ALGEBRA OPERATOR EXTENSIONS FOR

PERFORMANCE TUNING OF GRAPH ALGORITHMS - SAEED

MALEKI, G. CARL EVANS, AND DAVID PADUA

(UNIVERSITY OF ILLINOIS)

Linear algebra operators can be used to represent many

graph algorithms in a concise and clear manner. The use of this

notation allows for rapid development of complex algorithms.

This is potentially not only an immense benefit to developers

but also can contribute to performance since linear algebra

operations often translate directly in to parallel codes. Today,

the power and flexibility of the linear algebra comes with some

drawbacks. Standard sparse kernels can not take advantage of

all the structure that is present in either the graphs or the

algorithms and as a result fall short of the performance of

custom implementations. To rectify this, we propose a multi-

level system where a high-level linear algebra structure is used

to construct a correct program and then low-level performance

features possibly controlled by parameters are used to tune the

generic kernels.

The key features we have identified so far are: data distri-

bution, synchronization, selection, mirroring, and coalescing.

The most obvious of these features, data distribution, is also

important for standard parallel linear algebra. Therefore, it is

no surprise that it is important in the case of graphs. The

other features have proven important so far in the cases where

iterative methods are used. Since these are very common in the

linear algebraic representation of graph algorithms it is critical

that they are supported to allow for maximum performance.

When using iterative methods on graphs, there are many cases

where most of the graph is unaffected by the iteration. By

taking advantage of this, it is possible to obtain significant

savings in communication costs. We propose handling this by

allowing for local-only updates between synchronizations as

well as by using sub graph selection to only apply an operation

to a portion of a graph. This is augmented in many cases by

mirroring of the partition borders. This can be done in either a

push or pull model depending on the behavior of the algorithm.

Finally, coalescing is used in conjunction with mirroring to

allow updates to aggregate before they are sent remotely. By

extending the traditional linear algebra operators with these

features we have been able to produce linear algebra based

versions of several problems including single source shortest

path that preform close to custom implantations.

1136

7. COMMUNICATION-AVOIDING LINEAR-ALGEBRAIC

PRIMITIVES FOR GRAPH ANALYTICS - AYDIN

BULUÇ(BERKELEY LAB), GREY BALLARD, JAMES

DEMMEL, JOHN GILBERT, LAURA GRIGORI, BEN

LIPSHITZ, ADAM LUGOWSKI, ODED SCHWARTZ, EDGAR

SOLOMONIK, SIVAN TOLEDO

Graph algorithms typically have very low computational

intensities, hence their execution times are bounded by their

communication requirements. In addition to improving the

running time drastically, reducing communication will also

help improve the energy consumption of graph algorithms.

Many of the positive results for communication-avoiding al-

gorithms come from numerical linear algebra. This suggests

an immediate path forward for developing communication-

avoiding graph algorithms in the language of linear algebra.

Unfortunately, the algorithms that achieve communication

optimality for asymptotically more available memory are the

so-called 3D algorithms, yet the existing software for graph

analytics is either 1D or 2D. In this talk, I will describe two

new communication-avoiding kernels for graph computations,

discuss how they can be integrated into an existing library like

the Combinatorial BLAS and how they can be incorporated

into the future Graph BLAS standard.

Sparse matrix-matrix multiplication (SpGEMM) enables

efficient parallelization of various graph algorithms. It is the

workhorse of a scalable distributed-memory implementation

of betweenness centrality, an algorithm that finds influential

entities in networks. Existing parallel algorithms for SpGEMM

spend the majority of their time in inter-node communica-

tion on large concurrencies. We investigated communication-

optimal algorithms for SpGEMM. Our theoretical paper [7]

proves new communication lower bounds, presents two new

communication-optimal algorithms, and provides a unified

communication analysis of existing and new algorithms. Here,

I will also discuss the implications of input/output sparsity on

the choice of stationary and replicated matrices.

All-pairs shortest paths is a computationally intensive graph

algorithm. For dense graphs, we developed a distributed

memory algorithm that is communication optimal. This work-

efficient algorithm is based on the recursive version of

Kleene’s algorithm (as opposed to the more popular Floyd-

Warshall algorithm), and uses the ideas from 3D algorithms

that replicate the input data c times to reduce communication

by a factor of
√
c. The algorithm enables much better strong

scaling, and we were able to solve a 65K vertex dense APSP

problem in about two minutes [8].

8. STANDARDS: LESSONS LEARNED - ANDREW

LUMSDAINE (INDIANA UNIVERSITY)

Standardization works best when it happens at the right

time in the evolution of a technology. There are several

different models for technology evolution and standardization

including those by Doi and by Shaw. The Doi model attempts

to balance research interest in a technology with industrial

adoption, proposing that standardization is best introduced in

the gap between the decrease of new development and the

increase in deployed implementations. The Shaw model is

based on extensive studies of the evolution of best practices in

multiple disciplines and the reflection of those processes into

the software technology lifecycle. In this model, technology

evolves in cycles consisting of new problems, ad hoc solutions,

community folklore / best practices, codification, models /

theory, and finally improved practice.

A slightly modified version of this latter model that substi-

tutes standardization for codification and implementation for

models / theory can well explain why a number of efforts

with which we are all familiar either succeeded or failed.

The original MPI standardization process, for example, took

existing best practices and created a single unified interface

for functionality that was well understood, already existed,

and was being widely used. It is clear that this process

went through the full cycle – standardizing MPI led to

improved practices in scientific computing. Subsequent efforts

to standardize what seemed like good ideas before there were

significant examples of use were less successful. The story

repeats itself in many venues including some with which this

author has first hand experience – the ”new” BLAS and C++

standardization.

There are important lessons to be learned from these past ef-

forts. Accordingly, in this talk I will discuss the Doi and Shaw

models and present case studies from MPI, new BLAS, and

C++– covering both the successes and the disappointments. I

will conclude by reflecting on how these lessons learned might

apply to standardizing linear algebra based graph BLAS.

REFERENCES

[1] http://istc-bigdata.org/GraphBlas/.

[2] A. Buluç and J. R. Gilbert, “The Combinatorial BLAS:

Design, implementation, and applications,” Intl. Journal
of High Perf. Comp. Appl. (IJHPCA), vol. 25, no. 4, pp.

496–509, 2011.

[3] G. Malewicz et al., “Pregel: a system for large-scale graph

processing,” in SIGMOD’10, 2010.

[4] J. E. Gonzalez et al., “PowerGraph: Distributed graph-

parallel computation on natural graphs,” in OSDI ’12,

2012.

[5] A. Roy et al., “X-Stream: Edge-centric graph processing

using streaming partitions,” in SOSP ’13, 2013.

[6] E. F. Codd, “A relational model of data for large shared

data banks,” Commun. ACM, vol. 13, no. 6, pp. 377–387,

Jun. 1970.

[7] G. Ballard, A. Buluç, J. Demmel, L. Grigori, B. Lipshitz,

O. Schwartz, and S. Toledo, “Communication optimal

parallel multiplication of sparse random matrices,” in

SPAA 2013: The 25th ACM Symposium on Parallelism in
Algorithms and Architectures, Montreal, Canada, 2013.

[8] E. Solomonik, A. Buluç, and J. Demmel, “Minimizing

communication in all-pairs shortest paths,” in Proceedings
of the IPDPS. IEEE Computer Society, 2013.

1137

