
Scalable and High Performance Betweenness
Centrality on the GPU

Adam McLaughlin
School of Electrical and Computer Engineering

Georgia Institute of Technology

Atlanta, Georgia 30332–0250

Adam27X@gatech.edu

David A. Bader
School of Computational Science and Engineering

Georgia Institute of Technology

Atlanta, Georgia 30332–0250

bader@cc.gatech.edu

Abstract—Graphs that model social networks, numerical sim-
ulations, and the structure of the Internet are enormous and
cannot be manually inspected. A popular metric used to analyze
these networks is betweenness centrality, which has applications
in community detection, power grid contingency analysis, and the
study of the human brain. However, these analyses come with a
high computational cost that prevents the examination of large
graphs of interest.

Prior GPU implementations suffer from large local data struc-
tures and inefficient graph traversals that limit scalability and per-
formance. Here we present several hybrid GPU implementations,
providing good performance on graphs of arbitrary structure
rather than just scale-free graphs as was done previously. We
achieve up to 13x speedup on high-diameter graphs and an
average of 2.71x speedup overall over the best existing GPU
algorithm. We observe near linear speedup and performance
exceeding tens of GTEPS when running betweenness centrality
on 192 GPUs.

Keywords—GPUs, Graph Algorithms, Parallel Algorithms

I. INTRODUCTION

Network analysis is a fundamental tool for domains as di-
verse as compilers [28], social networks [16], and computational
biology [10]. Real world applications of these analyses involve
tremendously large networks that cannot be inspected manually.
An example of a graph analytic that has found significant
attention in recent literature is Betweenness Centrality (BC).
Betweenness centrality has been used for finding the best
location of stores within cities [32], studying the spread
of AIDS in sexual networks [25], power grid contingency
analysis [24], and community detection [35]. The variety of
fields and applications in which this method of analysis has
been employed shows that graph analytics require algorithmic
techniques that make them performance portable to as many
network structures as possible. Unfortunately, the fastest known
algorithm for calculating BC scores has O(mn) complexity for
unweighted graphs with n vertices and m edges, making the
analysis of large graphs challenging. Hence there is a need for
robust, high performance graph analytics that can be applied
to a variety of network structures and sizes.

GPUs provide high performance for regular, dense, and
computationally demanding subroutines such as matrix multi-
plication. However, there has been recent success in accelerating
irregular, memory-bound graph algorithms on GPUs as well
[13], [28], [31]. Prior implementations of betweenness cen-
trality on the GPU have outperformed their CPU counterparts,

particularly on scale-free networks; however, they are limited
in scalability to larger graph instances, use asymptotically inef-
ficient algorithms that mitigate performance on high diameter
graphs, and aren’t general enough to be applied to the variety
of domains that can leverage their results.

This paper alleviates these problems by making the follow-
ing contributions:

• We provide a work-efficient algorithm for betweenness
centrality on the GPU that works especially well for
networks with a large diameter.

• For generality, we propose two algorithms that alternate
between leveraging either the memory bandwidth of
the GPU or the asymptotic efficiency of the work
being done based on the structure of the graph being
processed. The first of these approaches bases its
decision on how significantly the size of the working
set of vertices changes across iterations. The second is
an on-line approach that uses a small amount of initial
work from the algorithm to suggest which method of
parallelism would be best for processing the remaining
work.

• We implement our approach on a single GPU system,
showing an average speedup of 2.71× across a variety
of both real-world and synthetic graphs over the
best previous GPU implementation. Additionally, our
implementation attains near linear speedup on a cluster
of 192 GPUs. Our single GPU approach achieves
traversal rates up to 400 MTEPS (Millions of Traversed
Edges per Second) while our multi-node approach
achieves traversal rates exceeding 10 GTEPS (Billions
of Traversed Edges per Second).

II. BACKGROUND

A. Definitions

Let a graph G = (V,E) consist of a set V of n = |V |
vertices and a set E of m = |E| edges. A path from a vertex u
to a vertex v is any sequence of edges originating from u and
terminating at v. Such a path is a shortest path if its sequence
contains a minimal number of edges. A Breadth-First Search
(BFS) explores vertices of a graph by starting a “source” (or
“root”) vertex and exploring its neighbors. The neighbors of
these vertices are then explored and this process repeats until
there are no remaining vertices to be explored. Each set of

SC14: International Conference for High Performance Computing, Networking, Storage and Analysis

978-1-4799-5500-8/14 $31.00 © 2014 IEEE

DOI 10.1109/SC.2014.52

572

1

2

3

4

5

67

8

9

Fig. 1. Example Betweenness Centrality scores for a small graph

inspected neighbors is referred to as a vertex frontier and the
set of outgoing edges from a vertex frontier is referred to as
an edge-frontier. The diameter of a graph is the length of the
longest shortest path between any pair of vertices. A scale-free
graph has a degree distribution that follows a power law, where
a small number of vertices have a large number of outgoing
edges and a large number of vertices have a small number of
outgoing edges [5]. Finally, a small world graph has a diameter
that is proportional to the logarithm of the number of vertices in
the graph [37]. In these networks every vertex can be reached
from every other vertex by traversing a small number of edges.

B. Brandes’s Algorithm

Betweenness centrality was originally developed in the
social sciences for classifying people who were central to
networks and could thus influence others by withholding infor-
mation or altering it [18]. The metric attempts to distinguish
the most influential vertices in a network by measuring the
ratio of shortest paths passing through a particular vertex
to the total number of shortest paths between all pairs of
vertices. Intuitively, this ratio determines how well a vertex
connects pairs of other vertices in the network. Formally, the
Betweenness centrality of a vertex v is defined as:

BC(v) =
∑

s�=t�=v

σst(v)

σst
(1)

where σst is the number of shortest paths between vertices s
and t and σst(v) is the number of those shortest paths that
pass through v.

Consider Figure 1. Vertex 4 is the only vertex that lies on
paths from its left (vertices 5 through 9) to its right (vertices
1 through 3). Hence vertex 4 lies on all of the shortest paths
between these pairs of vertices and has a high BC score. In
contrast, vertex 9 does not belong on a path between any pair
of the remaining vertices in the graph and thus vertex 9 has a
BC score of zero. Vertex 8 can be found on a path from vertex
5 to vertex 9; however, the shortest path from vertex 5 to vertex
9 instead goes through vertex 7. Since vertex 8 does not lie on
any shortest paths between pairs of other vertices it also has a
BC score of zero. Note that the scores reflected in Figure 1 treat
a path from vertex u to vertex v as equivalent to a path from
vertex v to vertex u since these paths are undirected. In other
words, to avoid double counting the number of (undirected)
shortest paths we divide the scores by two. One might also

notice that the magnitude of BC values scales with the size
of the network. For a fair comparison of BC values between
vertices of two different graphs, a commonly used technique
is to normalize the BC scores by their largest possible value
[8]: (n − 1)(n − 2). Such a comparison could be useful for
comparing discrete slices of a network that changes over time
[27].

Naı̈ve implementations of Betweenness Centrality solve the
all-pairs shortest-paths problem using the O(n3) Floyd-Warshall
algorithm [17] and augment this result with path counting.
Brandes improved upon this approach with an algorithm that
runs in O(mn) time for unweighted graphs [7]. The key concept
of Brandes’s approach is the dependency of a vertex v with
respect to a given source vertex s:

δs(v) =
∑

w:v∈pred(w)

σsv

σsw
(1 + δs(w)) (2)

The recursive relationship between the dependency of a
vertex and the dependency of its successors allows a more
asymptotically efficient calculation of the centrality metric.
Brandes’s algorithm splits the betweenness centrality calculation
into two major steps:

1) Find the number of shortest paths between each pair
of vertices

2) Sum the dependencies for each vertex

We can redefine the calculation of BC scores in terms of
dependencies as follows:

BC(v) =
∑

s�=v

δs(v) (3)

III. PRIOR GPU IMPLEMENTATIONS

Two well-known GPU implementations of Brandes’s algo-
rithm have been published within the last few years. Jia et al.
[23] compare two types of fine-grained parallelism, showing
that one is preferable over the other because it exhibits better
memory bandwidth on the GPU. Shi and Zhang present GPU-
FAN [34] and report a slight speedup over Jia et al. by avoiding
data structure duplication and using a different distribution of
threads to units of work. Both methods focus their optimizations
on scale-free networks.

A. Vertex and Edge Parallelism

Jia et al. discussed two distributions of threads to graph
entities: vertex-parallel and edge-parallel [23]. The vertex-
parallel approach assigns a thread to each vertex of the graph
and that thread traverses all of the outgoing edges from that
vertex. In contrast, the edge-parallel approach assigns a thread
to each edge of the graph and that thread traverses that edge
only. In practice, the number of vertices and edges in a graph
tend to be greater than the available number of threads so each
thread sequentially processes multiple vertices or edges.

For both the shortest path calculation and the dependency
accumulation stages the number of edges traversed per thread
by the vertex-parallel approach depends on the out-degree of
the vertex assigned to each thread. The difference in out-degrees
between vertices causes a load imbalance between threads. For

573

1 2 2 1 1 3 9 7���

1 53 6

�������	
�����
	�	��
����������	����
	����

����������
	�	��
����������	����
	����

����������
���	
��	�����
�����	�������

���������	������
�����	�������

���
�	������������
�	
��	�����
�����	�������

���
�	�����������	�����
�����	�������

921 3 4 5 6 87

Fig. 2. Illustration of the distribution of threads to units of work. Top:
Vertex-parallel. Middle: Edge-parallel. Bottom: Work-efficient.

scale-free networks this load imbalance can be a tremendous
issue, since the distribution of out-degrees follows a power
law where a small number of vertices will have a substantial
number of edges to traverse [5]. The edge-parallel approach
solves this problem by assigning edges to threads directly.

Both the vertex-parallel and edge-parallel approaches from
Jia et al. use an O(n2 + m) graph traversal that checks if
each vertex being processed belongs to the current depth of the
search rather than keeping an explicit queue of these vertices.
For graphs with large diameters this method of graph traversal
produces a large amount of unnecessary work in the form of
branching overhead and accesses to global memory [31].

Furthermore, even for scale-free graphs the initial and final
iterations of the traversal will have a comparably small vertex
frontier and possibly a small number of edges to traverse for
these iterations, depending on the connectivity of those vertices.
In these cases the non-linear graph traversal can also be costly
in terms of execution time.

Figure 2 illustrates this concept. Using the same graph
shown in Figure 1, consider a Breadth-First Search starting at
vertex 4. During the second iteration of the search, vertices 1,
3, 5, and 6 are in the vertex frontier, and hence their edges
need to be inspected. The vertex-parallel method, shown in the
top portion of Figure 2, distributes one thread to each vertex
of the graph even though the edges connecting most of the
vertices in the graph do not need to be traversed, resulting

in wasted work. Also note that each thread is responsible for
traversing a different number of edges (denoted by the small
squares beneath each vertex), leading to workload imbalances.
The edge-parallel method, shown in the middle portion of
Figure 2, does not have the issue of load imbalance because
each thread has one edge to traverse. However, this assignment
of threads also results in wasted work because the edges that
do not originate from vertices in the frontier do not need to be
inspected in this particular iteration (but will be unnecessarily
inspected during every iteration). Finally, the bottom portion
of Figure 2 shows a work-efficient traversal iteration where
each vertex in the frontier is assigned a thread. In this case
only useful work is conducted although a load imbalance can
exist among threads.

B. GPU-FAN

The GPU-FAN package from Shi and Zhang was designed
for the analysis of biological networks representing protein
communications or genetic interactions [34]. They report
speedup ranging from 11% to 19% over the implementation
from Jia et al. on a simulated scale-free network with the
number of vertices varying from 10,000 to 50,000 and a
varying preferential attachment of edges to vertices. Since these
results are limited in scope, it is unclear as to which of these
two implementations is preferable, especially for other types
of networks such as small-world networks or high-diameter
networks.

Like the previous implementation from Jia et al., GPU-
FAN uses the edge-parallel method for load balancing across
threads. The most significant difference between the two
implementations is the distribution of groups of threads (thread
blocks using CUDA terminology) to units of work. The GPU-
FAN package focuses only on fine-grained parallelism, using all
threads from all thread blocks to traverse edges in parallel for
one source vertex of the BC computation at a time. In contrast,
the implementation from Jia et al. uses both coarse-grained and
fine-grained parallelism. The threads within a block traverse
edges in parallel while separate thread blocks each focus on
the independent roots of the BC computation. This approach
requires per-block data structures for the following variables:

• d, the BFS distance from the source vertex s to each
vertex

• σ, the number of shortest paths from s to each vertex

• δ, the dependency accumulation of each vertex with
respect to s

• P , the predecessor lists for each vertex with respect
to s

The largest of these data structures is the predecessor list,
which requires O(m) space. Jia et al. showed that the best
number of thread blocks to launch is equivalent to the number
of Streaming Multiprocessors (SMs) on the GPU. Since the
number of SMs that currently reside on GPU architectures
is small, this additional storage requirement doesn’t have a
significant impact on scalability.

Another significant difference between these two implemen-
tations is that GPU-FAN uses O(n2) space for the predecessor
list whereas Jia et al. use O(m) space. Since each vertex

574

besides the source vertex can have predecessors and since any
of these vertices can have up to O(n) predecessors based on
the topology of the graph, using O(n2) space to store this
information seems reasonable; however, an O(m) array of
boolean values can store this information more compactly. If
edge number i represents an edge from vertex u to vertex v
and u is the predecessor of v, then we can mark index i of
an O(m) predecessor array as true. We will show that the
choice of the O(n2) data structure for the predecessor array
severely limits the scalability of this algorithm in Section V. It
should also be noted that GPU-FAN’s approach also has the
O(n2 +m) graph traversal issues mentioned in the analysis of
the algorithm from Jia et al.

IV. METHODOLOGY

A. Work-efficient Approach

Algorithm 1: Work-efficient Betweenness Centrality Lo-
cal Variable Initialization

for v ∈ V do in parallel1
if v = s then2

d[v]← 03
σ[v]← 14

else5
d[v]←∞6
σ[v]← 07

δ[v]← 08

Qcurr[0]← s ; Qcurr len ← 19
Qnext len ← 010
S[0]← s ; Slen ← 111
ends[0]← 0 ; ends[1]← 1 ; endslen ← 212
shared depth← 013

Taking note of the issues mentioned in the previous section,
we now present the basis for our work-efficient implementation
of betweenness centrality on the GPU. Our approach leverages
optimizations from the literature in addition to our own novel
techniques. Algorithm 1 shows how we initialize local variables
before each of the n shortest path calculations and dependency
accumulations. The first way in which our implementation
differs from prior GPU implementations is that we discard the
predecessor array. Since all of the other local data structures
require O(n) memory, we reduce the space complexity of
our local data structures from O(m) to O(n). This removal
of space comes at the cost of additional computation, but
does not change the overall computational complexity of the
algorithm. In the dependency accumulation stage, rather than
traversing the predecessors directly, all of the neighbors of
a vertex are instead traversed. This technique, known as the
neighbor traversal approach from Green and Bader [19], not
only reduces storage requirements to enhance the scalability of
the algorithm, but also has been shown to generate speedups
on multi-core systems.

Algorithm 1 shows a second major difference between
the work-efficient approach and prior GPU implementations:
the use of explicit queues for graph traversal. We initialize
Qcurr, Qnext, and their respective lengths for the shortest path
calculation stage. Since levels of the graph are processed in

parallel we use two queues to distinguish vertices that are in
the current level of the search (Qcurr) from vertices that are
to be processed during the next level of the search (Qnext).
For the dependency accumulation stage we initialize S and its
length. In this case, we need to keep track of vertices at all
levels of the search and hence we only use one data structure
to store these vertices. To distinguish the sections of S that
correspond to each level of the search we use the ends array,
where endslen = maxv∈V {d[v]}+1 at the end of the traversal.
Vertices corresponding to depth i of the traversal are located
from index ends[i] to index ends[i+ 1]− 1 of S. This usage
of the ends and S arrays is comparable to the arrays used to
store the graph in CSR format.

Algorithm 2: Work-efficient Betweenness Centrality
Shortest Path Calculation

Stage 1: Shortest Path Calculation1
while true do2

for v ∈ Qcurr do in parallel3
for w ∈ neighbors(v) do4

if atomicCAS(d[w],∞, d[v] + 1) =∞ then5
t← atomicAdd(Qnext len, 1)6
Qnext[t]← w7

if d[w] = d[v] + 1 then8
atomicAdd(σ[w], σ[v])9

barrier()10
if Qnext len = 0 then11

depth← d[S[Slen − 1]] - 112
break13

else14
for tid← 0 . . . Qnext len − 1 do in parallel15

Qcurr[tid]← Qnext[tid]16
S[tid+ Slen]← Qnext[tid]17

barrier()18
ends[endslen]← ends[endslen−1]+Qnext len19
endslen ← endslen + 120
Qcurr len ← Qnext len21
Slen ← Slen +Qnext len22
Qnext len ← 023
barrier()24

A work-efficient shortest path calculation stage is shown
in Algorithm 2. Iterations of the while loop correspond to the
traversal of depths of the graph. The parallel for loop in Line 3
assigns one thread to each element in the queue such that
edges from other portions of the graph aren’t unnecessarily
traversed. The atomic Compare and Swap (CAS) operation
on Line 5 is used to prevent multiple insertions of the same
vertex into Qnext. This restriction allows us to safely allocate
O(n) memory for Qnext instead of O(m) in the case that
duplicate queue entries are allowed. Since we only require
one thread for each element in Qcurr rather than one thread
for every vertex or edge in the graph, this atomic operation
experiences limited contention and thus doesn’t significantly
reduce performance. Merrill et al. show that a prefix sum can
be used to have threads cooperatively add elements to the
queue [31], reducing the contention for the atomic instruction
that we use on Line 6. However, their work focuses explicitly

575

on BFS and differs from ours in that they are using all SMs
of the GPU to perform one high-performance graph traversal
whereas we are performing many graph traversals on each SM
independently. In our tests we found that the overhead of the
prefix sum was too large because the number of elements to
sum on each SM is Qcurr len, which is O(n) in the worst
case. When all SMs can contribute to these sums, as is the
case in Merrill’s work, this overhead is significantly reduced
because each SM can independently do its portion of the sum
in parallel and then the local sums can be reduced into a global
sum. For our work on betweenness centrality all SMs have
to perform their own sums (of the same number of elements)
independently.

The conditional on Line 11 checks to see if the queue
containing vertices for the next depth of the search is empty;
if so, the search is complete, so we break from the outermost
while loop. Otherwise, we transfer vertices from Qnext to
Qcurr, add these vertices to the end of S for the dependency
accumulation, and do the appropriate bookkeeping to set the
lengths of these arrays.

Algorithm 3: Work-efficient Betweenness Centrality De-
pendency Accumulation

Stage 2: Dependency Accumulation1
while depth > 0 do2

for tid← ends[depth] . . . ends[depth+ 1]− 1 do3
in parallel

w ← S[tid]4
dsw ← 05
sw ← σ[w]6
for v ∈ neighbors(w) do7

if d[v] = d[w] + 1 then8
dsw ← dsw + sw

σ[v] (1 + δ[v])9

δ[w]← dsw10

barrier()11
depth← depth− 112

Algorithm 3 shows a work-efficient dependency accumu-
lation. In addition to using the neighbor traversal approach,
we are also able to eliminate the use of atomics by checking
successors rather than the predecessors of each vertex. Since
vertices at the end of the BFS tree by definition have no
successors, we start the dependency accumulation one level
closer to the root of the tree (see Line 12 of Algorithm 2).
Furthermore, since the source vertex of the BFS tree does not
contribute to its own BC score, there is no need to perform any
work when depth = 0. The technique of checking successors
was developed by Madduri et al. for their implementation of
betweenness centrality on the Cray XMT supercomputer [26].
Rather than having multiple vertices that are currently being
processed in parallel update the dependency of their common
ancestor atomically, the ancestor can update itself based on its
successors without the need for atomic operations. Interestingly,
an edge-parallel implementation the successor approach would
still require atomic operations because multiple threads could
be assigned to the same ancestor.

Note that the parallel for loop in Line 3 of Algorithm 3
assigns threads only to vertices that need to accumulate their

TABLE I. CORRELATION OF VERTEX AND EDGE FRONTIER SIZES WITH

EXECUTION TIME FOR THREE RANDOMLY SELECTED ROOTS OF DIFFERENT

TYPES OF GRAPHS. THE SIZE OF THE VERTEX FRONTIER CORRELATES

POSITIVELY WITH EXECUTION TIME REGARDLESS OF THE ROOT OR

STRUCTURE OF THE GRAPH.

Graph Root ρv,t ρe,t

rgg n 2 20
0 0.950 0.950

2121 0.978 0.976
6004 0.981 0.980

delaunay n20
0 0.990 0.990

2121 0.995 0.995
6004 0.995 0.995

kron g500-logn20
0 0.798 0.093

2121 0.704 0.195
6004 0.936 -0.096

luxembourg.osm
0 0.885 0.883

2121 0.898 0.892
6004 0.910 0.907

smallworld
0 0.967 0.970

2121 0.989 0.998
6004 0.995 0.996

dependency values; this is where the bookkeeping done to
keep track of separate levels of the graph traversal in the ends
array comes to fruition. Rather than naı̈vely assigning a thread
to each vertex or edge and checking to see if that vertex or
edge belongs to the current depth we instead can instantly
extract vertices of that depth since they are a consecutive block
of entries within S. This strategy again prevents unnecessary
branch overhead and accesses to global memory that are made
by previous implementations.

B. Hybrid Approach

The major drawback of the approach outlined in the previous
section is the potential for significant load imbalance between
threads. Although our approach efficiently assigns threads to
units of useful work, the distribution of edges to threads is
entirely dependent on the structure of the graph. Our approach
is significantly faster than other methods on graphs with a large
diameter because such graphs tend to have a more uniform
distribution of outdegree. On scale-free or small world graphs,
however, the algorithm outlined in the previous section does not
improve performance. For these graphs there are iterations of the
graph traversal that require the inspection of a high percentage
of edges in the graph. For these iterations the load balance and
high memory-throughput of the edge-parallel method combined
with the fact that most of the edges inspected in fact need to
be inspected means that the edge-parallel method is preferable
to the work-efficient method. Based on this result we propose
a hybrid approach that chooses between the edge-parallel and
work-efficient methods based on the structure of the graph.
Rather than preprocessing the graph to attempt to determine
if it can be classified as a scale-free or small world graph,
we implement our hybridization at a finer granularity: each
iteration of the search.

Figure 3 illustrates our rationale behind this decision. Each
sub-figure shows how the vertex frontier evolves for three
randomly chosen source vertices within a graph. Note that the
axes of the sub-figures are on different scales to appropriately
show trends in the frontiers. The sub-figures represent different
classifications of graphs: meshes, road networks, scale-free,

576

0 200 400 600 8000 200 400 600 8000 200 400 600 800

0
%

0.
05

 %
0.

1
%

0.
15

 %
0.

2
%

0.
25

 %

Iteration Number

rg
g_

n_
2_

20
 V

er
te

x
F

ro
nt

ie
r

i = 0
i = 2121
i = 6004

(a) rgg n 2 20

0 100 200 300 4000 100 200 300 4000 100 200 300 400

0
%

0.
2

%
0.

4
%

0.
6

%
0.

8
%

Iteration Number

de
la

un
ay

_n
20

 V
er

te
x

F
ro

nt
ie

r
(b) delaunay n20

1 2 3 4 51 2 3 4 51 2 3 4 5

0
%

10
 %

20
 %

30
 %

40
 %

50
 %

60
 %

Iteration Number

kr
on

_g
50

0−
lo

gn
20

 V
er

te
x

F
ro

nt
ie

r

(c) kron g500-logn20

0 200 400 600 800 1000 12000 200 400 600 800 1000 12000 200 400 600 800 1000 1200

0
%

0.
05

 %
0.

15
 %

0.
25

 %

Iteration Number

lu
xe

m
bo

ur
g.

os
m

 V
er

te
x

F
ro

nt
ie

r

(d) luxembourg.osm

2 4 6 8 102 4 6 8 102 4 6 8 10

0
%

10
 %

20
 %

30
 %

40
 %

50
 %

Iteration Number

sm
al

lw
or

ld
 V

er
te

x
F

ro
nt

ie
r

(e) smallworld

Fig. 3. Evolution of vertex frontiers (as a percentage of total vertices) for different classifications of graphs

and small-world graphs. More information on these graphs can
be found in Table II. Although the position of the source vertex
plays an important role in precisely how the vertex frontier
changes with search iteration, we can see that the general sizes
and changes in size of the vertex frontier across iterations of the
search are more dependent on the overall structure of the graph.
For high-diameter graphs such as rgg n 2 20, delaunay n20,
and luxembourg.osm (Figures 3a, 3b, and 3d respectively), the
vertex frontier grows gradually and is always a small portion
of the total number of vertices in the graph. For graphs with
a smaller diameter such as kron g500-logn20 and smallworld
(in Figures 3c and 3e), the vertex frontier grows large after
just a few iterations and contains over half of the total number
of vertices in the graph at its peak. Both small-world and
scale-free graphs tend to exhibit this behavior. Although the
edge-frontier accurately estimates the amount of necessary
work for a given iteration, we found that the size of the vertex
frontier correlates quite well with the execution time of an
iteration. For instance, see Table I. For the same source vertices
whose vertex frontiers were plotted in Figure 3 we record the
elapsed time of each iteration (using the work-efficient method)
and calculate two correlation coefficients: ρv,t, which is the
correlation between the size of the vertex frontier and elapsed
time, and ρe,t, which is the correlation between the size of the
edge frontier and elapsed time. The correlation of the vertex
frontier with execution time is more robust to changes in source

vertex or graph structure. This is an important result because
we have the size of the vertex frontier at every iteration (since
we keep an explicit queue). Obtaining the size of the edge
frontier, in contrast, would require additional computation and
fetches to memory.

Intuitively, for large vertex frontiers, the edge-parallel
approach is favorable because of its memory throughput
whereas for small vertex frontiers the work-efficient approach is
favorable because the number of edges that will be traversed is
significantly smaller than the total number of edges in the graph.
While it is clear that the work-efficient approach is the best
choice for all search iterations for graphs with a high diameter,
the hybrid approach is especially useful for scale-free and small
world graphs. These graphs contain search iterations that can
have either a small or large vertex frontier (compared to the
total number of vertices), which means that the work-efficient
approach could be best for some iterations while the edge-
parallel approach could be best for others. Graph structures
that prefer the work-efficient method tend to have consistent
vertex frontiers, each of which contain a small percentage of
vertices in the graph. Using the edge-parallel approach for
any iteration would be wasteful for these classes of input. In
contast, when the edge-parallel approach is favored, there will
be some search iterations that have a comparably small amount
of required work. For example, the initial iteration of the search
simply expands the root vertex itself. If the root vertex is not a

577

high degree vertex the work required (and available parallelism)
for this iteration will be limited. Ideally, we would use the
work-efficient method to process this iteration.

Initially, we measured the size of the vertex frontier at a
given iteration and compared it to the total number of vertices
in the graph. If this ratio exceeded a threshold, then the edge-
parallel approach would be used. Otherwise, the work-efficient
approach was used. The problem with this approach is that the
percentage of vertices found in the queue can have tremendously
different implications for different scales of graphs, even if
those graphs have a similar classification or structure. For
instance, a road network consisting of 1,000,000 vertices would
be much more likely to use the edge-parallel approach than a
road network consisting of 1,000 vertices, even though neither
network would benefit from this approach.

Similarly, if we were to instead use the absolute size of
the frontier as a threshold we would also observe undesired
outcomes. The fact that the size of the vertex frontier has
crossed a certain threshold gives no information about how
it crossed that threshold. If the threshold is close to the
size of the graph, then the edge-parallel approach would be
performing mostly useful edge traversals and is likely to be the
better choice; however in the case that the threshold is much
smaller than the size of the graph the edge-parallel approach
would perform many unnecessary edge traversals and the work-
efficient approach would instead be the better choice.

We instead would like to detect when the frontier is
significantly changing from one iteration to another as this
information tells us when our strategy should change. If the
frontier is large and has not significantly changed (i.e. is still
large), then we should continue to use the edge-parallel method
to leverage its memory throughput. Conversely, if the frontier
is small and has not significantly changed then we should
continue to use the work-efficient method. Hence, we only
need to reconsider our parallelization strategy when the size of
the frontier changes from small to large or vice versa. Once we
have decided that we the frontier has changed in this way, we
can select the proper strategy based on the size of the frontier
that is to be processed during the next iteration of the traversal.

Algorithm 4: Hybrid method for selecting parallelization
strategy

Qchange = abs(Qnext len −Qcurr len)1
if Qchange > α then2

if Qnext len > β then3
//Choose edge-parallel method4

else5
//Choose work-efficient method6

Algorithm 4 describes this process. The variable Qchange

represents the change in size of the vertex frontier. If this value
is less than or equal to the parameter α, then we continue to
use the same strategy. Otherwise, we noticed that the size of
the vertex frontier has substantially changed and that we should
reconsider our strategy. If the number of vertices to be processed
during the next iteration (Qnext len) is larger than the parameter
β, then we choose the edge-parallel method. Otherwise, we opt
for the work-efficient method. In our experiments we found

the values of 768 and 512 were the best choices for α and β,
respectively. Although we were able to obtain favorable results
in comparison to prior methods using these choices of α and β
for all of the graphs tested, poor selection of these parameters
can, in general, have a significant impact on performance. We
initially start our calculations with the work-efficient method
for two reasons. Firstly, the initial vertex frontier is simply
the root itself, and for sparse graphs this vertex is unlikely
to be heavily connected to the rest of the graph. Secondly, in
the case that the edge-parallel method is preferred, using the
work-efficient method shows a 2.2x slowdown in worst case
for the input sets that we tested. However, in the case that
the work-efficient method is preferred, using the edge-parallel
method can show greater than a 10x reduction in speed. Thus,
incorrectly choosing the edge-parallel method is more costly
than incorrectly choosing the work-efficient method.

C. Sampling

The exact computation of betweenness centrality computes a
BFS for each vertex in the graph. Since all of these searches are
independent, they can be executed in parallel. For large graphs
of interest, there often are fewer available parallel resources
than vertices in the graph. For example, the Titan supercomputer
at Oak Ridge National Laboratory has 18,688 GPUs and it is
ranked second on the June 2014 TOP500 list [1], [15]. For
graphs whose vertices mostly belong to one large connected
component, the amount of time to process each root is roughly
equivalent, as the same number of edges need to be traversed
for each root. Therefore the amount of time required to process
k vertices is roughly k times the time required to process one
vertex [33].

Algorithm 5: Sampling method for selecting paralleliza-
tion strategy

Input: Set of nsamps connected component sizes (keys)
sort(keys)1
barrier()2
if keys[nsamps/2] < γ ∗ log2(n) then3

//Choose edge-parallel method4

Using the above analysis, an estimate of the average size
of the connected components within the graph (and thus the
preferred method of parallelism) is obtained by processing a
small subset of the vertices and storing the maximum distance
of the BFS from these vertices. Essentially this method willingly
computes a small number of source vertices using a potentially
unsatisfactory method of parallelism and uses this result to
ensure that the desired method of parallelism is used to compute
the remaining source vertices. Algorithm 5 shows how this
method is implemented. For our implementation we set nsamps

to 512 and process these vertices using the work-efficient
method. For these vertices, we record the maximum depth
of each of their BFS traversals and take the median of this
set as our estimate. We prefer the median because it is an
unbiased estimator and less sensitive to outliers. If this median
is sufficiently small then it is likely that our graph is a small-
world or scale-free graph and thus we should switch to using
the edge-parallel approach. Again, the work-efficient method
is chosen by default; Algorithm 5 helps us determine whether

578

S
pe

ed
up

 o
ve

r
E

dg
e−

pa
ra

lle
l (

Ji
a

et
 a

l.)

0.
5

1.
0

2.
0

5.
0

10
.0

work−efficient
hybrid
sampling

af_shell caida cnr amazon del20 gowalla luxem small

Fig. 4. Comparison of Work-Efficient, Hybrid, and Sampling methods

or not to deviate from that initial strategy. In our experiments
we found the value of γ = 4 to be best.

The advantage to the sampling approach is that it leverages
completed work to come to its decision rather than prepro-
cessing the graph or doing calculations that do not directly
advance the progress of the program. The drawback of the
sampling approach is that it does not switch its strategy at the
granularity of a search iteration like the hybrid method does.
Given our analysis of Figure 3, we recall that when the work-
efficient method is preferred, it is preferred for all iterationsof
the traversal. Hence, we only need the search iteration level
of granularity for choosing our method of parallelism when
the edge-parallel method is best for a given network. To avoid
using the edge-parallel method for iterations of the search that
have trivial amounts of work we simply check the size of the
queue to make sure it is sufficiently large. If it is, we proceed
with the edge-parallel method; otherwise, we revert to the
work-efficient method. We perform this check at every search
iteration when the sampling method chooses the edge-parallel
approach. Similar to the use of β in the hybrid approach, the
sampling approach requires the vertex frontier to contain at least
512 elements to use the edge-parallel method. This parameter
is designed to scale with the architecture rather than the size
or structure of the graph.

Figure 4 provides a comparison of the various parallelization
methods discussed in this paper to the edge-parallel method
from Jia et. al [23]. For road networks and meshes (af shell,
del20, luxem) all of the methods outperform the edge-parallel
method by about 10×. The amount of unnecessary work
performed by the edge-parallel method for these graphs is
severe. Note that the work-efficient method outperforms both
the hybrid and sampling methods for these graphs. The latter
methods require either additional computation or overhead for
deciding which method of parallelism to use; this difference
in performance is essentially the cost of generality. For the
remaining graphs (scale-free and small-world graphs) using the
work-efficient method alone performs slower than the edge-
parallel method whereas the hybrid and sampling methods
are either the same or slightly better. In these cases we see

the advantage of choosing our method of parallelization at
the granularity of a search iteration. If information about the
structure of the graph is known a priori, then the value of α
can be adjusted accordingly; however, given no information
at all, the sampling approach slightly outperforms the hybrid
approach overall. The sampling approach deduces the structure
of the graph based on information extracted from completed
a small portion of useful work whereas the hybrid method
estimates the structure by using the parameters α and β in
addition to vertex frontier sizes.

V. RESULTS

A. Experimental Setup

Single-node GPU experiments were implemented using
the CUDA 6.0 Toolkit. The CPU is an Intel Core i7-2600K
processor running at 3.4 GHz with an 8 MB cache and 16
GB of DRAM. The GPU is a GeForce GTX Titan that has
14 Streaming Multiprocessors (SMs) and a base clock of 837
MHz. The Titan has 6 GB of GDDR5 memory and is a CUDA
compute capability 3.5 (“Kepler”) GPU.

Multi-node experiments were run on the Keeneland Initial
Delivery System (KIDS) [36]. KIDS has two Intel Xeon X5660
CPUs running at 2.8 GHz and three Tesla M2090 GPUs per
node. Nodes are connected by an Infiniband QDR network.
The Tesla M2090 has 16 SMs, a clock frequency of 1.3 GHz,
6 GB of GDDR5 memory, and is a CUDA compute capability
2.0 (“Fermi”) GPU.

We compare our techniques to both GPU-FAN [34] and Jia
et al. [23] when possible, using their implementations that have
been provided online1. The graphs used for these comparisons
are shown in Table II. These graphs were taken from the 10th
DIMACS Challenge [4], the University of Florida Sparse Matrix
Collection [14], and the Stanford Network Analysis Platform
(SNAP) [12], [38]. These benchmarks contain both real-world
and randomly generated instances of graphs that correspond to
a wide variety of practical applications and network structures.
Although numerous approaches for approximating Betweenness
Centrality have been proposed [3], [9], we focus our attention
on its exact computation, noting that our techniques can be
trivially adjusted for approximation.

B. Scaling

First we compare how well our algorithm scales with
graph size for three different types of graphs. Since the
implementation of Jia et al. cannot read graphs that contain
isolated vertices, we were unable to obtain results using this
reference implementation for the random geometric (rgg) and
simple Kronecker (kron) graphs. Additionally, since the higher
scales caused GPU-FAN to run out of memory, we simply
extrapolated what we would expect these results to look like
from the results at lower scales (denoted by dotted lines). Note
that from one scale to the next the number of vertices and
number of edges both double.

Noting the log-log scale on the axes, we can see from
Figure 5a that the sampling approach outperforms the algorithm
from GPU-FAN by over 12x for all scales of rgg. It is interesting

1Our implementation is available at https://github.com/Adam27X/hybrid BC

579

TABLE II. GRAPH DATASETS USED FOR THIS STUDY

Graph Vertices Edges Max degree Diameter Description
af shell9 [14] 504,855 8,542,010 39 497 Sheet metal forming

caidaRouterLevel [4] 192,244 609,066 1,071 25 Internet router-level topology
cnr-2000 [4] 325,527 2,738,969 18,236 33 Web crawl

com-amazon [38] 334,863 925,872 549 46 Amazon product co-purchasing
delaunay n20 [4] 1,048,576 3,145,686 23 444 Random triangulation

kron g500-logn20 [11] 1,048,576 44,619,402 131,503 6 Kronecker
loc-gowalla [12] 196,591 1,900,654 29,460 15 Geosocial

luxembourg.osm [4] 114,599 119,666 6 1,336 Road map
rgg n 2 20 [21] 1,048,576 6,891,620 36 864 Random geometric
smallworld [37] 100,000 499,998 17 9 Small world phenomenon

15 16 17 18 19 20

5
10

15
20

15 16 17 18 19 20

5
10

15
20

Scale: log2(Number of Vertices)

lo
g 2

(T
im

e)

GPU−FAN
Sampling
GPU−FAN Extrapolated

(a) rgg

10 12 14 16 18 20

−
5

0
5

10
15

20

10 12 14 16 18 20

−
5

0
5

10
15

20

10 12 14 16 18 20

−
5

0
5

10
15

20

Scale: log2(Number of Vertices)

lo
g 2

(T
im

e)

GPU−FAN
Edge−parallel (Jia et al.)
Sampling
GPU−FAN Extrapolated

(b) delaunay

16 17 18 19

10
12

14
16

16 17 18 19

10
12

14
16

Scale: log2(Number of Vertices)

lo
g 2

(T
im

e)

GPU−FAN
Sampling
GPU−FAN Extrapolated

(c) kron

Fig. 5. Scaling by problem size for three different types of graphs

to note that the sampling approach only takes slightly more time
than GPU-FAN when the sampling approach processes a graph
four times as large. For the delaunay mesh graphs in Figure 5b
we can see that the edge-parallel method and the sampling
approach both outperform GPU-FAN for all scales. The edge-
parallel approach even outperforms the sampling approach for
graphs containing less than 10,000 vertices; however, it should
be noted that these differences in timings are trivial as they are
on the order of milliseconds. As the graph size increases the
sampling method clearly becomes dominant and the speedup it
achieves grows with the scale of the graph. Again, the sampling
approach can handle a graph with a million vertices faster than
the previous approaches can handle a graph that is only half as
large. Finally, we compare the sampling approach to GPU-FAN
for kron in Figure 5c. Although GPU-FAN is marginally faster
than the sampling approach for the smallest scale graph we
can see that the sampling approach is best at the next scale and
the trend shows the amount by which the sampling approach
is best grows with scale. Furthermore, neither of the previous
implementations could support this type of graph at larger
scales whereas the sampling method can support even larger
scales.

C. Benchmarks

For graph algorithms, standard metrics such as FLoating-
point Operations Per Second (FLOPs) are not accurate indica-
tors of performance because most of their processing time is
spent accessing memory [2]. One alternative metric to FLOPs
used to measure the performance of data-intensive algorithms

TABLE III. PERFORMANCE OF EDGE-PARALLEL AND SAMPLING

METHODS FOR VARIOUS GRAPHS. RESULTS ARE IN MTEPS (MILLIONS OF

TRAVERSED EDGES PER SECOND).

Graph Edge-parallel Sampling Speedup
af shell9 18.00 239.66 13.31x

caidaRouterLevel 180.98 182.21 1.01x
cnr-2000 141.75 220.64 1.56x

com-amazon 109.72 127.79 1.16x
delaunay n20 14.19 145.09 10.23x
loc-gowalla 209.56 219.31 1.05x

luxembourg.osm 4.74 39.42 8.31x
smallworld 297.48 398.63 1.34x

Average 2.71x Geometric Mean Speedup

is the number of Traversed Edges per Second (TEPS). For the
exact computation of betweenness centrality that is considered
in this paper, the number of TEPS has been defined as [33]:

TEPSBC =
mn

t
(4)

In this equation, n is the number of vertices, m is the number
of (undirected) edges, and t is the execution time of the BC
computation.

Table III compares sampling results to Jia et al. only because
the graphs tested are too large to be analyzed by GPU-FAN.
Results are reported in Millions of Traversed Edges Per Seconds
(MTEPS). In the most extreme case, the edge-parallel approach
requires more than two and half days to process the af shell9
graph while the sampling approach cuts this time down to

580

under five hours. Similarly, the edge-parallel approach takes
over 48 minutes to process the luxembourg.osm road network
whereas the sampling approach requires just 6 minutes. We
can see that the sampling approach achieves approximately
40 MTEPS for all of these graphs whereas the edge-parallel
method has particularly low MTEPS for high-diameter graphs.
The TEPS metric described above only accounts for edges that
need to be traversed by the algorithm (i.e. useful work). Since
the edge-parallel approach naı̈vely traverses every edge for
every BFS iteration of every root, the number of useful edge
traversals per unit time is overcome by futile edge inspections.
Overall, sampling performs 2.71x faster on average than the
edge-parallel approach.

D. Multi-GPU Experiments

Although our approaches leverage both coarse and fine-
grained parallelism there is still more available parallelism than
can be handled by a single GPU. Our methods easily extend
to multiple GPUs as well as multiple nodes. We extend the
algorithm by distributing a subset of roots to each GPU. Since
each root can be processed independently in parallel, we should
expect close to perfect scaling if each GPU has a sufficient
(and an evenly distributed) amount of work. For graphs that
have one very large connected component the amount of work
to perform (in terms of the number of edges to traverse) will
be equivalent for each root and thus, each GPU if the number
of GPUs divides evenly into the number of source vertices. For
graphs that have a larger number of connected components an
imbalance between GPUs is of course more probable; however,
since each GPU processes hundreds of source vertices (or more)
it is highly likely for each GPU to process source vertices from
each connected component.

Although the local data structures for each root are in-
dependent (and thus only need to reside on one GPU), we
replicate the data representing the graph itself across all GPUs
to eliminate communication bottlenecks. Once each GPU has its
local copy of the BC scores these local copies are accumulated
for all of the GPUs on each node. Finally, the node-level
scores are reduced into the global BC scores by a simple call
to MPI Reduce(). Figure 6 shows how well our algorithm
scales out to multiple GPUs for delaunay, rgg, and kron graphs.
It shows that linear speedup is easily achievable if the problem
size is sufficiently large (i.e. if there is sufficient work for each
GPU). Looking at the delaunay 64 node case specifically, it
appears that the graph needs at least 218 vertices to achieve
near linear speedups. Since each node contains 3 GPUs, this
allocates at least 1350 root vertices to each GPU. Furthermore,
since the delaunay graphs have a particularly small ratio of
edges to vertices, these particular graphs need more work per
GPU than denser graphs that typically occur in real-world
problems. Hence linear speedups are achievable at even smaller
scales of graphs for denser network structures. For instance,
using 64 nodes provides about a 35× speedup over a single
node for scale 16 delaunay graph whereas using the same
number of nodes at the same scale for rgg and kron graphs
provides over 40× and 50× speedups respectively. The scaling
behavior seen in Figure 6 is not unique to these graphs because
of the vast amount of coarse-grained parallelism offered by the
algorithm. For graphs of large enough size this scalability can
be obtained independently of network structure.

TABLE IV. MULTI-NODE PERFORMANCE FOR VARIOUS GRAPHS.
RESULTS ARE IN GTEPS (BILLIONS OF TRAVERSED EDGES PER SECOND).

Graph 64 Nodes (GTEPS) Speedup over 1 Node
rgg n 2 20 8.25 63.34x

delaunay n20 9.37 63.24x
kron g500-logn20 24.13 63.75x

Table IV shows TEPS rates for our 64 node (192 GPU)
implementation. Results are reported in Billions of Traversed
Edges per Second (GTEPS). For each graph classification
we see almost perfect linear speedup over 1 node (3 GPUs).
The notably better TEPS rate for the Kronecker graph occurs
because this graph tends to have more isolated vertices than
real world graphs (or even other synthetic graphs) due to
how it is randomly generated. Since the calculation for TEPS
implicitly assumes that all vertices belong to one connected
component, the reported TEPS value for kron g500-logn20
is inflated. Nevertheless, over 75% of the vertices for this
graph are not isolated, and adjusting for this factor still results
in approximately 18 GTEPS for this graph. The reason that
this adjusted value is still greater than the TEPS values for
the delaunay and rgg graphs is that the Kronecker graph is
scale-free and thus utilizes the edge-parallel method for certain
traversal iterations.

VI. RELATED WORK

Recent work on high performance graph algorithms has
focused on accelerators, hybridization, and vectorization. David-
son et al. provide a GPU implementation to solve the Single-
Source Shortest Path (SSSP) problem and also show a tradeoff
between work-efficiency and available parallelism [13]. They
compare the performance of various methods that all save
work compared to the traditional Bellman-Ford approach. We
consider the application of hybrid approaches such as the ones
presented in this paper to this problem to be an interesting
direction of future work. Beamer et al. present a hybrid
implementation of Breadth-First Search on multi-socket CPU
server systems [6]. Similar to our hybrid approach, they use
one approach (“top-down”) when the vertex frontier is small
and another (“bottom-up”) when the vertex frontier is large.
Their heuristic requires the size of the frontier, the number
of edges to check from the frontier, and the number of edges
to check from unexplored vertices. We alternatively use the
change in the frontier size as the major factor in deciding
how to distribute threads to units of work. Finally, Hong et
al. provide a fast parallel detection of Strongly Connected
Components in Small-World Graphs on multi-core CPUs [22].
Their work found limitations of previous approaches that were
especially detrimental on large graph instances that exhibit
the small-world phenomenon. The limitation of this approach
is that it is not performance portable to general structures of
network data, requiring users to have a priori knowledge of
the topological structure of their input.

VII. CONCLUSIONS

In this paper we have discussed various methods for
computing Betweenness Centrality on the GPU. Leveraging
information about the structure of the graph, we present several
methods that choose between two methods of parallelism: edge-
parallel and work-efficient. For high-diameter graphs using

581

0 10 20 30 40 50 60

0
10

20
30

40
50

60

0 10 20 30 40 50 60

0
10

20
30

40
50

60

0 10 20 30 40 50 60

0
10

20
30

40
50

60

0 10 20 30 40 50 60

0
10

20
30

40
50

60

Number of Nodes

S
pe

ed
up

 o
ve

r
1

N
od

e

Scale 15
Scale 16
Scale 17
Scale 18

(a) rgg

0 10 20 30 40 50 60

0
10

20
30

40
50

60

0 10 20 30 40 50 60

0
10

20
30

40
50

60

0 10 20 30 40 50 60

0
10

20
30

40
50

60

0 10 20 30 40 50 60

0
10

20
30

40
50

60

0 10 20 30 40 50 60

0
10

20
30

40
50

60

0 10 20 30 40 50 60

0
10

20
30

40
50

60

Number of Nodes

S
pe

ed
up

 o
ve

r
1

N
od

e

Scale 10
Scale 12
Scale 14
Scale 16
Scale 18
Scale 20

(b) delaunay

0 10 20 30 40 50 60

0
10

20
30

40
50

60

0 10 20 30 40 50 60

0
10

20
30

40
50

60

Number of Nodes

S
pe

ed
up

 o
ve

r
1

N
od

e

Scale 16
Scale 19

(c) kron

Fig. 6. Multi-GPU scaling by number of nodes for various graph structures. Each node contains three GPUs.

asymptotically optimal algorithms is paramount to obtaining
good performance whereas for small-diameter graphs it is
preferable to maximize memory throughput, even if unnecessary
work is completed. In addition our methods are more scalable
and general than existing implementations. Finally, we run our
algorithm on a cluster of 192 GPUs, showing that speedup
scales almost linearly with the number of GPUs. Overall,
our single-GPU approaches perform 2.71× faster on average
than the best previous GPU approach and our multi-GPU
implementation is capable of exceeding 10 GTEPS.

For future work we would like to efficiently map additional
graph analytics to parallel architectures. The importance of
robust, high-performance primitives cannot be overstated for
the implementation of more complicated parallel algorithms.
Ideally, GPU kernels should be modular and reusable [30];
fortunately, packages such as Thrust [20] and CUB [29] are
beginning to bridge this gap. A software environment in which
users have access to a suite of high performance graph analytics
on the GPU would allow for fast network analysis and serve
as a building block for more complicated programs.

ACKNOWLEDGMENT

The work depicted in this paper was partially sponsored
by Defense Advanced Research Projects Agency (DARPA)
under agreement #HR0011-13-2-0001. The content, views and
conclusions presented in this document do not necessarily reflect
the position or the policy of DARPA or the U.S. Government, no
official endorsement should be inferred. Distribution Statement
A: “Approved for public release; distribution is unlimited.” This
work was also partially sponsored by NSF Grant ACI-1339745
(XScala). This research used resources of the Keeneland
Computing Facility at the Georgia Institute of Technology,
which is supported by the National Science Foundation under
Contract OCI-0910735. Special thanks to Jeff Young for his
assistance with running experiments on KIDS. Finally, we
would also like to thank NVIDIA Corporation for their donation
of a GeForce GTX Titan GPU.

REFERENCES

[1] ORNL Debuts Titan Supercomputer. 2012 (accessed April 10, 2014).
[Online]. Available: https://www.olcf.ornl.gov/wp-content/themes/olcf/
titan/Titan Debuts.pdf

[2] M. Anderson, “Better Benchmarking for Supercomputers,” Spectrum,
IEEE, vol. 48, no. 1, pp. 12–14, 2011.

[3] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail, “Approximating
Betweenness Centrality,” in Algorithms and models for the web-graph.
Springer, 2007, pp. 124–137.

[4] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, Eds., Graph
Partitioning and Graph Clustering - 10th DIMACS Implementation
Challenge, ser. Contemporary Mathematics, vol. 588, 2013.

[5] A.-L. Barabási and R. Albert, “Emergence of Scaling in Random
Networks,” science, vol. 286, no. 5439, pp. 509–512, 1999.

[6] S. Beamer, K. Asanović, and D. Patterson, “Direction-optimizing breadth-
first search,” Scientific Programming, vol. 21, no. 3, pp. 137–148, 2013.

[7] U. Brandes, “A Faster Algorithm for Betweenness Centrality,” Journal
of Mathematical Sociology, vol. 25, pp. 163–177, 2001.

[8] U. Brandes, “On Variants of Shortest-Path Betweenness Centrality and
their Generic Computation,” Social Networks, vol. 30, no. 2, pp. 136–145,
2008.

[9] U. Brandes and C. Pich, “Centrality Estimation in Large Networks,”
International Journal of Bifurcation and Chaos, vol. 17, no. 07, pp.
2303–2318, 2007.

[10] E. Bullmore and O. Sporns, “Complex Brain Networks: Graph Theo-
retical Analysis of Structural and Functional Systems,” Nature Reviews
Neuroscience, vol. 10, no. 3, pp. 186–198, 2009.

[11] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A Recursive Model
for Graph Mining.” in SDM, vol. 4. SIAM, 2004, pp. 442–446.

[12] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and Mobility: User
Movement in Location-Based Social Networks,” in Proceedings of the
17th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2011, pp. 1082–1090.

[13] A. A. Davidson, S. Baxter, M. Garland, and J. D. Owens, “Work-
Efficient Parallel GPU Methods for Single-Source Shortest Paths,” in
International Parallel and Distributed Processing Symposium, vol. 28,
2014.

[14] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, Dec.
2011.

[15] J. J. Dongarra, H. W. Meuer, and E. Strohmaier, “Top500 Supercomputer
Sites,” 1994.

[16] D. Ediger, K. Jiang, J. Riedy, D. A. Bader, C. Corley, R. Farber, and
W. N. Reynolds, “Massive Social Network Analysis: Mining Twitter for
Social Good,” 2010.

[17] R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, vol. 5,
no. 6, pp. 345–, Jun. 1962.

[18] L. C. Freeman, “A Set of Measures of Centrality Based on Betweenness,”
Sociometry, pp. 35–41, 1977.

[19] O. Green and D. A. Bader, “Faster Betweenness Centrality Based on Data
Structure Experimentation,” Procedia Computer Science, vol. 18, no. 0,

582

pp. 399 – 408, 2013, 2013 International Conference on Computational
Science.

[20] J. Hoberock and N. Bell, “Thrust: A Parallel Template Library,” Online
at http://thrust. googlecode. com, vol. 42, p. 43, 2010.

[21] M. Holtgrewe, P. Sanders, and C. Schulz, “Engineering a Scalable High
Quality Graph Partitioner,” in Parallel Distributed Processing (IPDPS),
2010 IEEE International Symposium on, April 2010, pp. 1–12.

[22] S. Hong, N. C. Rodia, and K. Olukotun, “On Fast Parallel Detection
of Strongly Connected Components (SCC) in Small-World Graphs,” in
Proceedings of SC13: International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2013, p. 92.

[23] Y. Jia, V. Lu, J. Hoberock, M. Garland, and J. C. Hart, “Edge v. Node
Parallelism for Graph Centrality Metrics,” GPU Computing Gems, vol. 2,
pp. 15–30, 2011.

[24] S. Jin, Z. Huang, Y. Chen, D. Chavarria-Miranda, J. Feo, and P. C. Wong,
“A Novel Application of Parallel Betweenness Centrality to Power Grid
Contingency Analysis,” in IEEE International Symposium on Parallel
Distributed Processing (IPDPS), 2010, pp. 1–7.

[25] F. Liljeros, C. R. Edling, L. A. Amaral, H. E. Stanley, and Y. Aberg,
“The Web of Human Sexual Contacts,” Nature, vol. 411, no. 6840, pp.
907–908, 2001.

[26] K. Madduri, D. Ediger, K. Jiang, D. Bader, and D. Chavarria-Miranda,
“A Faster Parallel Algorithm and Efficient Multithreaded Implementations
for Evaluating Betweenness Centrality on Massive Datasets,” in IEEE
International Symposium on Parallel & Distributed Processing (IPDPS),
May 2009, pp. 1–8.

[27] A. McLaughlin and D. Bader, “Revisiting Edge and Node Parallelism
for Dynamic GPU Graph Analytics,” in 2014 IEEE 28th International
Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), 2014.

[28] M. Mendez-Lojo, M. Burtscher, and K. Pingali, “A GPU Implementation
of Inclusion-based Points-to Analysis,” in Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’12. New York, NY, USA: ACM, 2012, pp.

107–116.

[29] D. Merrill. CUDA Unbound. 2013 (accessed April 11, 2014). [Online].
Available: http://nvlabs.github.io/cub/

[30] D. Merrill, M. Garland, and A. Grimshaw, “Policy-based Tuning for
Performance Portability and Library Co-Optimization,” in Innovative
Parallel Computing (InPar), 2012. IEEE, 2012, pp. 1–10.

[31] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU Graph
Traversal,” in Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP ’12. New
York, NY, USA: ACM, 2012, pp. 117–128.

[32] S. Porta, V. Latora, F. Wang, E. Strano, A. Cardillo, S. Scellato,
V. Iacoviello, and R. Messora, “Street Centrality and Densities of Retail
and Services in Bologna, Italy,” Environment and Planning B: Planning
and design, vol. 36, no. 3, pp. 450–465, 2009.

[33] A. E. Sarıyüce, E. Saule, K. Kaya, and Ü. Çatalyürek, “Regularizing
Graph Centrality Computations,” Journal of Parallel and Distributed
Computing (JPDC), 2014 (to appear).

[34] Z. Shi and B. Zhang, “Fast Network Centrality Analysis using GPUs,”
BMC bioinformatics, vol. 12, no. 1, p. 149, 2011.

[35] J. Soman and A. Narang, “Fast Community Detection Algorithm
with GPUs and Multicore Architectures,” in International Parallel &
Distributed Processing Symposium (IPDPS). IEEE, 2011, pp. 568–579.

[36] J. S. Vetter, R. Glassbrook, J. Dongarra, K. Schwan, B. Loftis,
S. McNally, J. Meredith, J. Rogers, P. Roth, K. Spafford, and S. Yala-
manchili, “Keeneland: Bringing Heterogeneous GPU Computing to
the Computational Science Community,” Computing in Science &
Engineering, vol. 13, no. 5, pp. 90–95, 2011.

[37] D. J. Watts and S. H. Strogatz, “Collective Dynamics of Small-World
Networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[38] J. Yang and J. Leskovec, “Defining and Evaluating Network Communities
Based on Ground-Truth,” in Proceedings of the ACM SIGKDD Workshop
on Mining Data Semantics. ACM, 2012, p. 3.

583

