
 Procedia Computer Science 18 (2013) 561 – 570

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science
doi: 10.1016/j.procs.2013.05.220

International Conference on Computational Science, ICCS 2013

Streaming Breakpoint Graph Analytics for Accelerating and
Parallelizing the Computation of DCJ Median of Three Genomes

Zhaoming Yin1 , Jijun Tang2 , Stephen W. Schaeffer3 , David A. Bader1,∗

1, School of Compuational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
2,Deptartment of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA

3,The Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA 16802, USA

Abstract

The problem of finding the median of three genomes is the key process in building the most parsimonious
phylogenetic trees from genome rearrangement data. The median problem using Double-Cut-and-Join (DCJ)
distance is NP-hard and the best exact algorithm is based on a branch-and-bound best-first search strategy
to explore sub-graph patterns in Multiple BreakPoint Graph (MBG). In this paper, by taking advantage of
the “streaming” property of MBG, we introduce the “footprint-based” data structure to reduce the space
requirement of a single search nodes from O(v2) to O(v); minimize the redundant computation in counting
cycles/paths to update bounds, which leads to dramatically decrease of workload of a single search node.
Additional heuristic of branching strategy is introduced to help reducing the searching space. Last but
not least, the introduction of a multi-thread shared memory parallel algorithm with two load balancing
strategies bring in additional benefit by distributing search work efficiently among different processors. We
conduct extensive experiments on simulated datasets and our results show significant improvement on all
datasets. And we test our DCJ median algorithm with GASTS, a state of the art software phylogenetic tree
construction package. On the real high resolution Drosophila data set, our exact algorithm run as fast as
the heuristic algorithm and help construct a better phylogenetic tree.

Keywords: Genome Rearrangement, Double-cut-and-joining Median, Parallel Programming

1. Introduction

Inferring phylogenies (evolutionary history) of given species is a fundamental problem in computational
biology [20]. Although DNA sequence data is still the dominant source of data, building phylogenies from

1This Research was sponsored in part by the NSF PetaApps Grants OCI-0904461 (Bader), OCI-0904179 (Tang), OCI-
0904166 (Schaeffer) and NSF OCI-1214504 (Bader).

∗
Corresponding author, URL: http://www.cc.gatech.edu/∼bader/ (David A. Bader)

Available online at www.sciencedirect.com

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

562 Zhaoming Yin et al. / Procedia Computer Science 18 (2013) 561 – 570

higher-level changes such as genome rearrangements has gained increasing interests from the field because
of the larger number of states (4 for nucleotide sequences versus n-1 gene adjacencies). The problem of
finding median of three genomes based on genome rearrangement, is the building block for constructing a
phylogenetic tree under the maximum parsimony criteria [8, 14]. Given three genomes, it asks for a “median”
genome which has the minimum accumulated genome rearrangement operations (distance) between these
three genomes. There are different methods to solve the median problem using different measurement of
distance metrics, such as break-point [16], reversal [3], translocation [1] and double-cut-and-join(DCJ) [23].
Double-cut-and-join (DCJ) operation can unify the operation of reversal, translocation, fusion, and fission
with only two moves on a Breakpoint graphs, which makes it the most studied operation in the last few
years. The DCJ median problem has proven to be NP-hard and APX-hard [13] and several exact algorithms
have been implemented to solve the DCJ median problems on both circular chromosomes [4, 5] and linear
chromosomes [6, 7]. These methods are fast when genomes are similar, but as the search space grows to
prohibitively large, it may take months if not years for them to finish when the genomes are distant.

Emerging social network research has introduced the method of streaming graph analysis [11, 18], which deals
with how to quickly maintain information on a temporally or spatially changing graph without traversing
the whole graph. Because of the combinatoric nature of genome rearrangement analysis, various types of
graphs are introduced to represent genome sequences, for example the overlap graph [9], breakpoint graph
(BPG), [17] and cycle graph [15], of which the breakpoint graph is studied the most. Many algorithms
explore the changing properties of these graphs, which can also be viewed as graph streaming. In this paper,
we picked the DCJ median algorithm which deals with BPG as an example, to show how streaming graph
analysis methods can help design genome rearrangement algorithms and achieve significant improvement on
both time and space needed to complete the analysis.

0 1 3 2 6 7 4 5

0 1 3 2 6 7 4 5

CAP

Circular

Linear

(a) BreakPoint Graph

0

5

3

4

1

2

(b) MBG

0

cap

2

1

4

63
5

7
type i
type j

type k

(c) CMBG

Figure 1: Examples of Breakpoint Graphs.

2. Preliminaries

Breakpoint Graphs (BPG): given a genome which contains g non-duplicate genes, each gene is marked
with a signed number 1 ≤ |i| ≤ g. A breakpoint graph BPG = (V, E), such that V is consists of 2g vertices,
each gene i is represented by a pair of vertices head (marked |i| ∗ 2 − 2) and tail(marked |i| ∗ 2 − 1), and
these vertices are ordered following the gene sequence: head(i) is ordered in front of tail(i) if i is positive,
otherwise, tail(i) is put in front of head(i). E consists of g edges and if two genes i and j are adjacent to
each other in the gene order(..., i, j....), an edge will connect their adjacent vertices. When dealing with end
points, if the chromosome that the genome contains is circular, two end points of the breakpoint graph will
be connected by an single edge, if the chromosome is linear, each of two end points will connect by an edge
to a separate vertex called a CAP vertex. Figure 1(a) shows the BPG for gene sequence (1,-2,4,3) under
circular and linear cases.

Multiple Breakpoint Graph (MBG): Given multiple genomes which have the same set of non-duplicated
genes, we can define a MBG by using different type of edges to represent different genomes. If genomes

563 Zhaoming Yin et al. / Procedia Computer Science 18 (2013) 561 – 570

consist only of circular chromosomes, the constructed graph is a MBG. Figure 1(b) shows the MBG for
three gene orders ((1,2,3);(1,3,2);(1,-2,-3)). It’s easy to notice that MBG is 3-regular graph.

Capped Multiple Breakpoint Graph (CMBG): If genomes consist of single or multiple linear chromo-
somes, the constructed graph is CMBG. Figure 1(c) shows the CMBG for three gene orders that each are
consisted of two chromosomes ((1,2;3,4);(1,3;2,4);(-1,2;-4,3)) (‘;’ indicates the end of a chromosome). Other
than CAP vertex, every vertex in CMBG has degree of 3. If not specified, we use BPG to represent all
these three classes of graphs.

a

c d

b

a

c d

ba

c d

b

DCJ

OR

(a) DCJ operations

0

5

3

4

1

2

0

5

3

4

1

2
Shrink

AS

(b) 0-matching, AS, shrinking on edge without
CAP vertex.

0

CAP

1

2

Shrink

0
CAP

1

2

CUP

type i
type j

type k

type i
type j

type k
z-matching

(c) shrinking on edge with CAP ver-
tex.

Figure 2: Examples of operations on BPG.

Double-Cut-and-Join(DCJ): DCJ is the operation that cuts two edges of the BPG then rejoins its four
end vertices. Figure 2(a) shows an example of DCJ operations. Given two genomes, the DCJ distance is
the minimum number of DCJ operations to transform one genome into another. Given three genomes, the
DCJ median is the genome which has the least accumulate distance between the other three genomes, which
can be mapped to BPG by a maximal matching that represented by black edges called 0-matchings.

Adequate Subgraphs (ASs): ASs defined in [4, 6] are such graphs that if a BPG is partitioned into two
parts, one part is an AS, the other part is the rest of the graph, there will be no 0-matching edges connecting
these two parts. ASs can be used to parition the BPG and help to find the DCJ median without losing
accuracy.

Edge Shrinking: ASs can be bridged out from the BPG by edge shrinking operations. When an AS is
selected to partition the graph, its possible 0-matching edges are selected at first. Then, if one 0-matching
edge does not contain CAP vertex, edges of the same type that incident to the same 0-matching edge will
be joined into a single edge; If the 0-matching edge contains a CAP vertex, the edge incident to the non-
CAP vertex will be connected to a CUP vertex. Figure 2(b) shows examples of 0-matching, AS, and edge
shrinking on the edge that does not contain CAP vertex. Figure 2(c) shows an example of edge shrinking
on edge that contains a CAP vertex.

Edge Expansion: Edge expansion is the reverse operation of edge shrinking.

DCJ(i, j) = ijc + iuiu + juju +
iaju + iuja + iaja + iuju

2
+min(iaia, iaiu) + min(jaja, jaju) (1)

Cycle: In a BPG, start with a vertex, and visit the edges with type i and j repeatedly, if this tour comes
back to the start vertex, all vertices and edges contained in this tour are in an i-j cycle which in abbreviation
ijc.

Path: In a CMBG, start with a CAP or CUP vertex, and visit edges with type i and j repeatedly, and
this tour will come back to the CAP or CUP vertex, all vertices and edges contained in this tour are in a

564 Zhaoming Yin et al. / Procedia Computer Science 18 (2013) 561 – 570

path, we can name different types of paths by types of their first and last edge and the start/end vertex. For
example, i-cap-j-cup path defines a path that start from CAP vertex with an type-i edge and end until a
CUP vertex with a type-j edge, we can abbreviated this path as iaju. Every vertex in an ijc or in a path has
degree of 2. In BPG, the DCJ distance between two genomes marked by i and type-j edges, is calculated
by Formula 1.

Best-first-search based Branch and Bound Algorithm (A* BnB): The best algorithm to solve the
DCJ median problem is an A* BnB algorithm. When searching on a search node represented by a BPG with
v vertices, first it traverses the BPG to detect ASs, which is a classic subgraph isomorphism problem [12].
Since this step only detects small ASs of limited patterns, special algorithms have been developed which
all have time/space complexity of O(v); second, if there are ASs found, one or two child search nodes will
be expanded by shrinking the 0-matching edges in ASs, otherwise there will be v − 1 child search nodes
expanded. At the very beginning of this search process, there usually are a lot of ASs in BPG, but after a
few steps, BPG will be altered to a state that for the first time there is no ASs exists in it, we call it BPG
kernel, and the number of vertices in BPG kernel is marked as κ. When the searching process reaches BPG
kernel, it’s hard to generate new ASs by shrinking “assumed” 0-matching edges, and the following search
processes have a branching factor dicided by κ. This step has time/space complexity of O(v); third, each
BPG of the expanded child search node will be traversed to get cycle/path number for updating the upper
and lower bounds. In this step, if ASs are detected, the time/space complexity is O(v). In contrast, if there
is no ASs detected, the time/space complexity become O(v2).

3. Streaming Breakpoint Graph Analysis Methods

One very important point to notice is that, κ determines the performance of this A* BnB algorithm. To
begin with, the algorithm’s branching factor is decided by κ. In addition, if there is no ASs in a search node,
the third step in the A* BnB will have complexity of O(v2), which makes the complexity for processing this
search node O(v2). Last but not least, if κ is large there will be a huge number of BPGs generated for child
search nodes, which makes this algorithm additionally bound by I/O. However, most of the operations on
BPG is minor, which only involves change on one edge, by utilizing the properties of streaming BPG, it is
possible to reduce both time and space requirement for processing a search node.

3.1. Compressed Data Structures for Memory and I/O Efficiency

In the current DCJ median algorithm, every time when there are new child search nodes expanded, new
BPGs will be allocated and pushed into a search list. As a result, huge amount of memory allocation and
I/O can not be avoided. Because each BPG of a child search node is generated from shrinking edges of
the BPG of the root search node following several steps, we can store these edges as ”footprints” instead
of BPGs themselves. Here, because we only consider search nodes from the BPG kernel stage (because
processing node before this stage is fast), every search node could only store footprints after the BPG kernel
stage. In other words, there is only one BPG in the memory, when finished processing search node a with
footprint f-a, and continue searching from another search node b with footprint f-b, edges of BPG in f-a are
expanded then edges in f-b are shrunk to switch from node a to node b. In addition, if there is no AS found
in the parent search node, the expanded v − 1 child search nodes will all share the same footprint of their
parent. Under such circumstance, the cost of storing a child search node can be additionally contracted to
only 1 edge and a pointer to the footprint of their parent search node.

3.2. A Fast Method to Update Cycle/Path Numbers

In the current DCJ median algorithm, every vertex needs to be visited once to estimate cycle/path numbers
for bounding. However, when the BPG of a child search node is generated by just shrinking one edge
from the BPG of its parent node, we have the following observations (see Figure 3 for example.) to help

565 Zhaoming Yin et al. / Procedia Computer Science 18 (2013) 561 – 570

design quick method to update cycle/path numbers. Suppose shrinking one 0-matching edge connecting
two vertices a and b (a and b are not neighbors, because if they are neighbors after shrinking, they will be
bridged out from the BPG and there will be no change in the cycle number), the type-i and type-j edge of
a is connected to vertex x and y, the type-i and type-j edge of b is connected to vertex w and z.

Observation 1. If a and b are in different connected components (ijc or path), and at least one vertex is
in a ijc, after shrinking, the number of ijc will decrease by 1.

Observation 2. If a and b are in the same cycle, after shrinking, the number of ijc could be changed by
either increase 1, or stay the same).

Observation 3. If a and b are in the same path, after shrinking, the number of cycles will be increase by
1 if and only if x and w are in the same adjacent vertices set after the component is separated by a and b.

Observation 4. If at least one of a and b are in a path, after shrinking, the number of path stays the same.

(a) An example of observation 1. (b) examples of observation 2. (c) An example of observation 3 and 4.

Figure 3: Examples of different observations when only one 0-matching is shrunk.

update cycle fast(a, b)
if a and b in different cycle then
cycle number decrease 1;

else {a or b is in a cycle}
x=neighbor[a][i] ;
w=neighbor[b][i] ;
if x and w are in the same
adjacency vertices set then
cycle number increase 1;

end if
end if

update path type fast(a, b)
if a and b in different path then
update path types;

else {a or b is in a path}
x=neighbor[a][i] ;
w=neighbor[b][i] ;
if x and w are in the same
adjacency vertices set then
cycle number increase 1;
update path types;

end if
end if

Based on Observation 1, 2 and 3, we can update the cycle number in O(1) time if only one 0-matching edge
is shrunk. Based on Observation 4, it’s possible to visit only the connected component of affected vertices
to determine the change of path type. The summarized fast algorithm for updating cycle/path number is
shown in update cycle fast(a, b) and update path fast(a, b) separately.

3.3. Heuristics for Reducing Search Space

In a recent paper by Rajan et. al, [22], they designed approximation algorithm to compute DCJ median,
though DCJ median problem is APX-hard, the algorithm achieved a good approximation rate for reverse
median problem [3] (using DCJ median algorithm to approximate reverse median problem). This method

566 Zhaoming Yin et al. / Procedia Computer Science 18 (2013) 561 – 570

can be served to provide initial tighter lower bound, even though it might not be helpful for reducing search
space, it can be useful in reducing space requirement, because those branched search node whose upper
bound is smaller than the global maximal lower bound will be discarded, and the initialization of a tighter
global lower bound can increase this threshold. In this paper, we introduce a branching strategy, which is
helpful to quickly exhaust search nodes with the maximal upper bound and approach lower bound faster.
In [5], the author state that the upper bound is upperBound = c+ 3

n + c1,2+c1,3+c2,3
2 (actually, this formula

is just for circular chromosomes, but we can extent it to linear chromosomes). Suppose vertex Vk is in ijck

and we define cycle rank sum of Vk as R(Vk) =
∑

(i,j)∈(1,2,3),i�j |ijck|.
Proposition 1. If there is no AS detected, and we select the vertex Vk in BPG such that R(Vk) =
min(R(Vi))(Vi ∈ BPG), and shrink this vertex with other vertices in BPG to generate |2v − 1| inter-
mediate child BPGs, the number of child BPGs with upper bound value that is equal to the global maximal
upper bound is minimized.

Based on Observation 1, we know that if two vertices are in different component (cycle), after shrinkage the
total cycle number will decrease by 1, since vertex Vk with R(Vk) = min(R(Vi))(Vi ∈ BPG) has the least
number of vertices that share component(cycle) with it, then shrink this vertex with all other vertices will
cause the maximal number of cycles to merge, and the upper bound will decreased.

3.4. Shared Memory Parallel Algorithm

Since there are a lot of articles about parallel branch and bound algorithms [10], we will not dive into detail
about the framework of the parallel algorithm. Here we discuss two load balancing strategies that we use
in our shared memory multi-thread parallel algorithm. The first strategy is, when a thread has finished its
work, it will check the intermediate files of other threads with the maximal upper bound value, if such files
exits, it can “steal” the tasks of other threads by just renaming the files to its own, this strategy has very
little overhead of synchronization. The second strategy is, when there is no files left of other threads, instead
of “stealing” other threads’ work, this thread just kill itself, and notify one of other threads with maximal
expected work to do to fork their jobs to a new thread to continue searching.

4. Experimental Results

We conduct our experimental tests of this method on a machine using the linux operating system with 16
Gb of memory and an Intel(R) Xeon(R) CPU E5530 16 core processor, each core has 2.4GHz of speed.
Because the existing DCJ algorithms (both for circular and linear chromosomes) are implemented using
JAVA [4, 6, 7], we also implement our algorithm using JAVA, all of the source code are compiled with
JDK1.7 with -O option.

4.1. Time/space usage

In [4, 6, 7], the authors analyzed the performance of the original DCJ median algorithm with a simplified
model, i.e. they only allowed reversal as the event and assumed that the DCJ distance between each of the
three species is the same. In this paper, we generate simulated data using a model which is biologically more
accurate. First we generate phylogenetic model trees of three genomes by using a birth-death model [24].
Then, based on the model tree, we execute DCJ operations on each genome for some random times, then
we select the generated data of a specific κ, we collect 10 data samples for each κ. For the test of time/space
complexity, we run the program to process only 10k search nodes then return. In the experiment, we have a
parameter called thresh, which stands for the threshold for the number of graphs stored in the memory, if the
number exceeds this threshold, these graphs will be stored back to the disk. We have tested the threshold
for 2k and 10k nodes (k=1000).

567 Zhaoming Yin et al. / Procedia Computer Science 18 (2013) 561 – 570

 0

 200

 400

 600

 800

 1000

 1200

 100 200 300 400 500 600 700 800 900 1000

tim
e

(s
ec

on
ds

)

kappa(kernel size)

time for I/O

cir_2k_s
lin_2k_s
cir_10k_s
lin_10k_s
cir_2k_o
lin_2k_o
cir_10k_o
lin_10k_o

 0

 20

 40

 60

 80

 100

 120

 140

 160

 100 200 300 400 500 600 700 800 900 1000

tim
e

(s
ec

on
ds

)

kappa(kernel size)

time for accessing memory

cir_2k_s
lin_2k_s
cir_10k_s
lin_10k_s
cir_2k_o
lin_2k_o
cir_10k_o
lin_10k_o

 0

 50

 100

 150

 200

 250

 300

 100 200 300 400 500 600 700 800 900 1000

tim
e

(s
ec

on
ds

)

kappa(kernel size)

time for updating # of cycle/path

cir_2k_s
lin_2k_s
cir_10k_s
lin_10k_s
cir_2k_o
lin_2k_o
cir_10k_o
lin_10k_o

 0

 20

 40

 60

 80

 100

 120

 140

 160

 100 200 300 400 500 600 700 800 900 1000

tim
e

(s
ec

on
ds

)

kappa

time for AS(adequate subgraph detection)

cir_2k_s
lin_2k_s
cir_10k_s
lin_10k_s
cir_2k_o
lin_2k_o
cir_10k_o
lin_10k_o

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 200 300 400 500 600 700 800 900 1000

tim
e

(s
ec

on
ds

)

kappa(kernel size)

time for total execution

cir_2k_s
lin_2k_s
cir_10k_s
lin_10k_s
cir_2k_o
lin_2k_o
cir_10k_o
lin_10k_o

Figure 4: Time complexity comparison for our streaming algorithm (s) and the original algorithm (o).

 0

 1

 2

 3

 4

 5

 100 200 300 400 500 600 700 800 900 1000

sq
rt

(G
b)

kappa(kernel size)

sqrt(disk space usage)

cir_2k_s
lin_2k_s
cir_10k_s
lin_10k_s
cir_2k_o
lin_2k_o
cir_10k_o
lin_10k_o

 0

 100

 200

 300

 400

 500

 600

 700

 800

 100 200 300 400 500 600 700 800 900 1000

M
b

kappa(kernel size)

memory space usage

cir_2k_s
lin_2k_s
cir_10k_s
lin_10k_s
cir_2k_o
lin_2k_o
cir_10k_o
lin_10k_o

Figure 5: Space complexity comparison for our streaming algorithm (s) and the original algorithm (o).

568 Zhaoming Yin et al. / Procedia Computer Science 18 (2013) 561 – 570

Table 1: The running time and search space for circular chromosomes
Search space for Circular Chromosome

κ method finished avg time (seconds) avg search space
80 optimized 10/10 6.42 159784

non-optimized 8/10 >336.61 > 9861818
90 optimized 10/10 27.66 669608

non-optimized 6/10 N/A N/A
100 optimized 10/10 850.33 17146636

non-optimized 1/10 N/A N/A
Search space for linear Chromosome

κ method finished avg time (seconds) avg space
80 optimized 10/10 44.77 442855

non-optimized 10/10 6576.07 71782336
90 optimized 10/10 201.48 1729328

non-optimized 2/10 N/A N/A
100 optimized 10/10 24236.91 138420207

non-optimized 0/10 N/A N/A

In Figure 4, combined with the total time, we also recorded four types of time: time to detect adequate
subgraphs, time to store and retrieve graphs, time for I/O and time to update lower/upper bounds. We can
see from the figure that for the original algorithm, under all of cases, the time grows quadratic (since the
time for the original algorithm to run larger data (κ > 500) is so large, we do not include these results), and
for our stream algorithm, the time grows linearly. This is also true for the separate time of I/O, memory
access and bound update. Another thing is, when the threshold is increased from 2k to 10k, our stream
algorithm time reduces a lot on both circular and linear chromosome cases, but as for the original algorithm,
it even takes more time. In addition, we have also noticed the reduce of time for detecting ASs, this could
due to our code optimization, but also the improvement of memory locality, since there is only one graph
stored in the memory. Last but not least, we can see that in the original algorithm, it spends more time on
bound update than ASs detection, but our streaming algorithm reduce the bound update time to less than
ASs detection time.

Figure 5 shows the space usage for the original algorithm and our streaming algorithm, it’s very clear that
our algorithm takes way less storage(memory and disk) than the original algorithm. One thing to notice
is, for every graph in the original algorithm, it stores the according median genome for that graph, and the
space usage is O(g), we disable this storage to make the comparison fair, because our “footprint” based data
structure and make sure that we don’t need to keep the median genome information.

4.2. Problem space for complete search

In our previous discussion, we state that the performance of DCJ algorithm is directly dependent on BPG
kernel size κ, and the figure shows that both the time/space complexity have been reduced, which makes our
improvements well justified. However, the improvement of the time/space complexity can only introduce
at most two orders of magnitude of speedup, we can additionally reduce the search space to gain more
performance by using heuristics. In Table 1, it shows the comparison between methods that performs the
heuristic of upper/lower bound (optimized) and which does not use heuristics (non-optimized). For a given κ,
if the non-optimized algorithm can not finish the search by searching the maximal number of search nodes of
optimized algorithm, we marked it as “unfinished”. From the table, it’s very clear that our heuristic reduced
search space for both circular and linear chromosomes by a factor of nearly two.

4.3. Parallel speedup

We implement our parallel algorithm by using JAVA threads, and we perform the experiment on the same
data set of the previous section, the speedup is averaged over 10 cases. We can see from Figure 6(a) that
our algorithm achieved very good parallel speed up, especially on large data search space problems. For

569 Zhaoming Yin et al. / Procedia Computer Science 18 (2013) 561 – 570

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14 16

sp
ee

d
up

threads

parallel speed up

80_cir
90_cir
100_cir
80_lin
90_lin
100_lin

(a) parallel speed up

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10 12 14 16

ef
fic

ie
nc

y
va

lu
e

threads

parallel efficiency

80_cir
90_cir
100_cir
80_lin
90_lin
100_lin

(b) parallel efficiency

Figure 6: Parallel speed up.

Table 2: The experiment result for phylogenetic tree construction

dataset
num
genes

max
κ

median
κ

Heuristic
tree length

Exact
tree length

Heuristic
time (seconds)

Serial
time (seconds)

Parallel
time (seconds)

dros-5 9738 172 12 4395 4320 102.8 1449 394.5
dros-12 7332 234 60 5305 5244 547.1 7055 1933

the circular chromosome, when κ = 80, the algorithm scales well up to 8 threads, and when κ = 90 we can
achieve speed up close to 10 when using 16 threads. Surprisingly, we can see even super-linear speed-ups
for some cases such when κ = 100 and thread number is 16.The observation of super-linear speed up is due
to the reduce of the search space when multiple thread is running. As for linear chromosomes, because the
data we generated has larger search space and they are more evenly distributed, we can see that for all three
kernel sizes, the algorithm scales well.

Figure 6(b) shows the normalized efficiency for our parallel program which is calculated by Ts

Tp
× Wp

Ws
of

which Ts/Tp is the serial/parallel execution time and Ws/Wp is the number of total processed nodes (total
work) for serial/parallel program. In general, when increasing the number of threads, the parallel efficiency
is reducing. There might be multiple reasons: 1) there is large overhead for Java thread scheduling, 2) the
memory allocated is increasing with the number of threads growing, 3) there are overhead for synchronization
when threads are doing load balancing.

4.4. Experiment on Real Drosophila data

We plugged in our algorithm into the state of art phylogenetic tree construction package GASTS [7] which
uses a DCJ median heuristic [22], and conduct the experiment on the real Drosophila data set [2, 21], we
designed two data sets with the number of species increased. One with 5 species (which are Dmel, Dere,
Dana, Dpse and Dwil), we choose these 5 species because they have a long diameter in the phylogenetic
relations. Another with all of 12 species of Drosophila. We deleted all of insertion, deletion and duplications
to make each species has the same gene content, and the 5 species data set has more genes than 12 species
data set because as more divergent taxa are included the number of shared orthologous genes decreases. (see
Table 2). The experimental results are shown in Table 2, we do not use a model tree in our experiment. We
can see that during the process of constructing the phylogenetic tree, most of the median problems are easy
to solve (with a small κ). However, there are a few median problems that is extremly hard to solve, which
has a very large κ. For these problems, we set the program’s threshold to search up to 1 million node then
return the local minimum. On both data sets, our DCJ median plug-in helps to find a better phylogenetic
tree which has smaller accumulated tree length, and comparing to the heuristics based median solver our
serial code is just about 10 times slower, by utilizing the parallel algorithm, this gap reduces to about 4.

570 Zhaoming Yin et al. / Procedia Computer Science 18 (2013) 561 – 570

5. Conclusion and Future Work

Our optimized algorithm specialized in reducing redundant storage and computation by taking advantages
of streaming properties of BPG, achieves many folds of acceleration. With the introduction of heuristic,
and parallel computing method, many real-size datasets can now be solved within a limit number of search
nodes. Additional benifits might be explored to further improve our algorithm. For example, Zhang et
al. [25] introduced a mixtrue framework to accelerate the DCJ median computation, combined with their
method, our streaming algorithm might run even faster. Compeau [19] proposed the breakpoint graph
analysis based DCJ-Indel distance model, it’s possible to apply our algorithm to compute the DCJ-Indel
median efficiently.

References
[1] A. Bergeron, J. Mixtacki and J. Stoye, On sorting by Translocations, J Comput Biol, 2006 Mar,13(2) pp. 567-78.
[2] Bhutkar, A., S. W. Schaeffer, S. Russo, M. Xu, T. F. Smith et al., Chromosomal rearrangement inferred from

comparisons of twelve Drosophila genomes, Genetics 179: 2008 1657-1680.
[3] A. Caprara, The Reversal Median Problem, INFORMS Journal on Computing, 2003, 15(1), pp. 93-113.
[4] A. W. Xu and D. Sankoff, Decompositions of multiple breakpoint graphs and rapid exact solutions to the median problem,

WABI, 2008, pp. 25-37.
[5] A. W. Xu, A Fast and Exact Algorithm for the Median of three Problem: a Graph Decomposition Approach, J. Comput

Biol, 2009, 16(10), pp. 1-13.
[6] A. W. Xu, DCJ Median Problems on Linear Multichromosomal Genomes: Graph Representation and Fast Exact Solu-

tions, F.D. Ciccarelli and I. Miklos (Eds.): Proceedings of RECOMB Comparative Genomcis, LNBI 5817, 7083. 2009.
[7] A. W. Xu and B. M. Moret, GASTS: Parsimony Scoring under Rearrangements, WABI, 2011, pp. 351-363.
[8] B. M. Moret , J. Tang , L. Wang and T. Warnow, Steps Toward Accurate Reconstructions of Phylogenies from

Gene-Order Data, J. Compt. Syst, 2002, Vol 65, pp. 508–525.
[9] D. A. Bader, B. M Moret and M. Yan, A Linear-time Algorithm for Computing Inversion Distance between Signed

Permutations with an Experimental Study, J Comput Biol, 2001, 8(5), pp. 483-91.
[10] D .A. Bader, W .E. Hart, C .A. Phillips Parallel Algorithm Design for Branch and Bound Tutorials on Emerging

Methodologies and Applications in Operations Research International Series in Operations Research & Management
Science Volume 76, pp 5.1-5.44, 2005

[11] D. Ediger, J. Riedy, H. Meyerhenke, and D.A. Bader, Tracking Structure of Streaming Social Networks, 5th Workshop
on Multithreaded Architectures and Applications (MTAAP), Anchorage, AK, May 20, 2011.

[12] D. Ullmann, R Julian, An algorithm for subgraph isomorphism, Journal of the ACM, 1976, 23 (1), pp. 31-42.
[13] E. Tannier, C. Zheng, D. Sankoff, Multichromosomal genome median and halving problems, WABI; Vol. 5251 LLNCS,

2008, pp. 1-13.
[14] G. Bourque, P. A. Pevzner, Genome-scale evolution: reconstructing gene orders in the ancestral species, Genome Res,

2002 Jan, Vol. 12, No. 1, pp. 26-36.
[15] G. Fertin, A. Labarre, I. Rusu, E. Tannier and S. Vialette, Combinatorics of Genome Rearrangements, First sd.,

The MIT press, Cambridge, MA, 2009.
[16] I. Pe’er , R. Shamir, The median problems for breakpoints are NP-complete, Elec. Colloq. on Comput. Complexity, 1998,

Vol 71.
[17] M. A. Alekseyev and P. A. Pevzner, Breakpoint Graphs and Ancestral Genome Reconstructions, Genome Res, 2009,

May 19(5), pp. 943-57.
[18] O. Green, R. McColl and D. Bader, A Fast Algorithm For Incremental Betweenness Centrality, 4th ASE/IEEE

International Conference on Social Computing, 2012.
[19] P.E. C. Compeau A Simplified View of DCJ-Indel Distance, Algorithms in Bioinformatics Lecture Notes in Computer

Science Volume 7534, 2012, pp 365-377
[20] P. A. Pevzner, Computational Molecular Biology: An Algorithmic Approach First sd., The MIT press, Cambridge, MA,

2000.
[21] S. Shaeffer, S. W., A. Bhutkar, B. F. Mcallister, M. Matsuda, L. M. Matzkin et al., Polytene chromosomal

maps of 11 Drosophila species: The order of genomic scaffolds inferred from genetic and physical maps, Genetics 179:
2008 1601-1655.

[22] V. Rajan, A. W. Xu , Y. Lin , K. M. Swenson and B. M.E. Moret Heuristics for the Inversion Median Problem,
Proc. 8th Asia-Pacific Bioinformatics Conf. APBC 10.

[23] S. Yancopoulos, O. Attie, R. Friedberg, Efficient sorting of genomic permutations by translocation, inversion and
block interchange, Bioinform, 21, 2005 3340-C3346.

[24] Y. Lin, V. Rajan and B .M .E. Moret, Fast and accurate phylogenetic reconstruction from high-resolution whole-genome
data and a novel robustness estimator, RECOMB-CG, 2010, pp. 137-148.

[25] Y. Zhang, F. Hu and J. Tang, A Mixture Framework for Inferring Ancestral Gene Orders, APBC 2012, in BMC
Bioinformatics 2012, 13(Suppl 1):S7

