
Contemporary Mathematics
Volume 588, 2013
http://dx.doi.org/10.1090/conm/588/11703

Parallel community detection
for massive graphs

E. Jason Riedy, Henning Meyerhenke, David Ediger, and David A. Bader

Abstract. Tackling the current volume of graph-structured data requires par-
allel tools. We extend our work on analyzing such massive graph data with
a massively parallel algorithm for community detection that scales to current
data sizes, clustering a real-world graph of over 100 million vertices and over
3 billion edges in under 500 seconds on a four-processor Intel E7-8870-based
server. Our algorithm achieves moderate parallel scalability without sacri-

ficing sequential operational complexity. Community detection partitions a
graph into subgraphs more densely connected within the subgraph than to
the rest of the graph. We take an agglomerative approach similar to Clauset,
Newman, and Moore’s sequential algorithm, merging pairs of connected inter-
mediate subgraphs to optimize different graph properties. Working in parallel
opens new approaches to high performance. We improve performance of our
parallel community detection algorithm on both the Cray XMT2 and OpenMP
platforms and adapt our algorithm to the DIMACS Implementation Challenge
data set.

1. Communities in Graphs

Graph-structured data inundates daily electronic life. Its volume outstrips the
capabilities of nearly all analysis tools. The Facebook friendship network has over
845 million users [9]. Twitter boasts over 140 million new messages each day [34],
and the NYSE processes over 300 million trades each month [25]. Applications
of analysis range from database optimization to marketing to regulatory monitor-
ing. Global graph analysis kernels at this scale tax current hardware and software
architectures due to the size and structure of typical inputs.

One such useful analysis kernel finds smaller communities, subgraphs that lo-
cally optimize some connectivity criterion, within these massive graphs. We extend
the boundary of current complex graph analysis by presenting the first algorithm
for detecting communities that scales to graphs of practical size, over 100 million
vertices and over three billion edges in less than 500 seconds on a shared-memory
parallel architecture with 256 GiB of memory.

2010 Mathematics Subject Classification. Primary 68R10, 05C85; Secondary 68W10, 68M20.
This work was supported in part by the Pacific Northwest National Lab (PNNL) Center

for Adaptive Supercomputing Software for MultiThreaded Architectures (CASS-MT), NSF Grant
CNS-0708307, and the Intel Labs Academic Research Office for the Parallel Algorithms for Non-
Numeric Computing Program.

c©2013 American Mathematical Society

207

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

208 E. JASON RIEDY, HENNING MEYERHENKE, DAVID EDIGER, AND DAVID A. BADER

Community detection is a graph clustering problem. There is no single, uni-
versally accepted definition of a community within a social network. One popular
definition is that a community is a collection of vertices more strongly connected
than would occur from random chance, leading to methods based on modular-
ity [22]. Another definition [28] requires vertices to be more connected to others
within the community than those outside, either individually or in aggregate. This
aggregate measure leads to minimizing the communities’ conductance. We con-
sider disjoint partitioning of a graph into connected communities guided by a local
optimization criterion. Beyond obvious visualization applications, a disjoint par-
titioning applies usefully to classifying related genes by primary use [36] and also
to simplifying large organizational structures [18] and metabolic pathways [29].
We report results for maximizing modularity, although our implementation also
supports minimizing conductance.

Contributions. We present our previously published parallel agglomerative
community detection algorithm, adapt the algorithm for the DIMACS Implemen-
tation Challenge, and evaluate its performance on two multi-threaded platforms.
Our algorithm scales to practical graph sizes on available multithreaded hardware
while keeping the same sequential operation complexity as current state-of-the-art
algorithms. Our approach is both natively parallel and simpler than most current
sequential community detection algorithms. Also, our algorithm is agnostic towards
the specific criterion; any criterion expressible as individual edge scores can be op-
timized locally with respect to edge contractions. Our implementation supports
both maximizing modularity and minimizing conductance.

Capability and performance. On an Intel-based server platform with four
10-core processors and 256 GiB of memory, our algorithm extracts modular commu-
nities from the 105 million vertex, 3.3 billion edge uk-2007-05 graph in under 500
seconds. A 2 TiB Cray XMT2 requires around 2 400 seconds on the same graph.
Our edge-list implementation scales in execution time up to 80 OpenMP threads
and 64 XMT2 processors on sufficiently large graphs.

Outline. Section 2 presents our high-level algorithm and describes our current
optimization criteria. Section 3 discusses implementation and data structure details
for our two target threaded platforms. Section 4 considers parallel performance and
performance on different graph metrics for two of the DIMACS Implementation
Challenge graphs; full results are in the workshop report [32]. Section 5 discusses
related work, and Section 6 considers future directions.

2. Parallel Agglomerative Community Detection

Agglomerative clustering algorithms begin by placing every input graph ver-
tex within its own unique community. Then neighboring communities are merged
to optimize an objective function like maximizing modularity [2,21,22] (internal
connectedness) or minimizing conductance (normalized edge cut) [1]. Here we sum-
marize the algorithm and break it into primitive operations. Section 3 then maps
each primitive onto our target threaded platforms.

We consider maximizing metrics (without loss of generality) and target a local
maximum rather than a global, possibly non-approximable, maximum. There are a
wide variety of metrics for community detection [12]. We discuss two, modularity
and conductance, in Section 2.1.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL COMMUNITY DETECTION FOR MASSIVE GRAPHS 209

Our algorithm maintains a community graph where every vertex represents
a community, edges connect communities when they are neighbors in the input
graph, and weights count the number of input graph edges either collapsed into
a single community graph edge or contained within a community graph vertex.
We currently do not require counting the vertices in each community, but such an
extension is straight-forward.

From a high level, our algorithm repeats the following steps until reaching some
termination criterion:

(1) associate a score with each edge in the community graph, exiting if no
edge has a positive score,

(2) greedily compute a weighted maximal matching using those scores, and
(3) contract matched communities into a new community graph.

Each step serves as our primitive parallel operations.
The first step scores edges by how much the optimization metric would change

if the two adjacent communities merge. Computing the change in modularity and
conductance requires only the weight of the edge and the weight of the edge’s adja-
cent communities. The change in conductance is negated to convert minimization
into maximization.

The second step, a greedy approximately maximum weight maximal matching,
selects pairs of neighboring communities where merging them will improve the com-
munity metric. The pairs are independent; a community appears at most once in the
matching. Properties of the greedy algorithm guarantee that the matching’s weight
is within a factor of two of the maximum possible value [27]. Any positive-weight
matching suffices for optimizing community metrics. Some community metrics, in-
cluding modularity [6], form NP-complete optimization problems. Additional work
computing our heuristic by improving the matching may not produce better results.
Our approach follows existing parallel algorithms [15, 20]. Differences appear in
mapping the matching algorithm to our data structures and platforms.

The final step contracts the community graph according to the matching. This
contraction primitive requires the bulk of the time even though there is little com-
putation. The impact of contraction’s intermediate data structure on improving
multithreaded performance is explained in Section 3.

Termination occurs either when the algorithm finds a local maximum or accord-
ing to external constraints. If no edge score is positive, no contraction increases
the objective, and the algorithm terminates at a local maximum. In our experi-
ments with modularity, our algorithm frequently assigns a single community per
connected component, a useless local maximum. Real applications will impose ad-
ditional constraints like a minimum number of communities or maximum commu-
nity size. Following the DIMACS Implementation Challenge rules [3], Section 4’s
performance experiments terminate once at least half the initial graph’s edges are
contained within the communities, a coverage ≥ 0.5.

Assuming all edges are scored in a total of O(|Ec|) operations and some heavy
weight maximal matching is computed in O(|Ec|) [27] where Ec is the edge set
of the current community graph, each iteration of our algorithm’s loop requires
O(|E|) operations. As with other algorithms, the total operation count depends
on the community growth rates. If our algorithm halts after K contraction phases,
our algorithm runs in O(|E| · K) operations where the number of edges in the
original graph, |E|, bounds the number of edges in any community graph. If the

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

210 E. JASON RIEDY, HENNING MEYERHENKE, DAVID EDIGER, AND DAVID A. BADER

community graph is halved with each iteration, our algorithm requires O(|E| ·
log |V |) operations, where |V | is the number of vertices in the input graph. If
the graph is a star, only two vertices are contracted per step and our algorithm
requires O(|E| · |V |) operations. This matches experience with the sequential CNM
algorithm [35].

2.1. Local optimization metrics. We score edges for contraction by mod-
ularity, an estimate of a community’s deviation from random chance [2, 22], or
conductance, a normalized edge cut [1]. We maximize modularity by choosing the
largest independent changes from the current graph to the new graph by one of
two heuristics explained below. Minimization measures like conductance involve
maximizing changes’ negations.

Modularity. Newman [21]’s modularity metric compares the connectivity
within a collection of vertices to the expected connectivity of a random graph with
the same degree distribution. Let m be the number of edges in an undirected
graph G = G(V,E) with vertex set V and edge set E. Let S ⊂ V induce a graph
GS = G(S,ES) with ES ⊂ E containing only edges where both endpoints are
in S. Let mS be the number of edges |ES |, and let mS be an expected number
of edges in S given some statistical background model. Define the modularity
of the community induced by S as QS = 1

m (mS −mS). Modularity represents
the deviation of connectivity in the community induced by S from an expected
background model. Given a partition V = S1 ∪ S2 ∪ · · · ∪ Sk, the modularity of

that partitioning is Q =
∑k

i=1 QSi
.

Newman [21] considers the specific background model of a random graph with
the same degree distribution as G where edges are independently and identically
distributed. If xS is the total number of edges in G where either endpoint is in
S, then we have QS = (mS − x2

S/4m)/m as in [2]. A subset S is considered a
module when there are more internal edges than expected, QS > 0. The mS term
encourages forming large modules, while the xS term penalizes modules with excess
external edges. Maximizing QS finds communities with more internal connections
than external ones. Expressed in matrix terms, optimizing modularity is a quadratic
integer program and is an NP-complete optimization problem [6]. We compute a
local maximum and not a global maximum. Different operation orders produce
different locally optimal points.

Section 3’s implementation scores edges by the change in modularity produced
by contracting that one edge, analogous to the sequential CNM algorithm. Merg-
ing the vertex U into a disjoint set of vertices W ∈ C, requires that the change
ΔQ(W,U) = QW∪U − (QW + QU) > 0. Expanding the expression for modularity,

m · ΔQ(W,U) = m (QW∪U − (QW + QU))

= (mW∪U − (mW + mU)−
(mW∪U − (mW + mU))

= mW↔U − (mW∪U − (mW + mU)),

where mW↔U is the number of edges between vertices in sets W and U . Assuming
the edges are independent and identically distributed across vertices respecting

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL COMMUNITY DETECTION FOR MASSIVE GRAPHS 211

their degrees [8],

(mW∪U − (mW + mU)) = m · xW

2m
· xU

2m
, and

ΔQ(W,U) =
mW↔U

m
− xW

2m
· xU

2m
.(1)

We track mW↔U and xW in the contracted graph’s edge and vertex weights, re-
spectively. The quantity xW equals the sum of W ’s degrees or the volume of W .
If we represent the graph G by an adjacency matrix A, then ΔQ is the rank-one
update A/m − (v/2m) · (v/2m)T restricted to non-zero, off-diagonal entries of A.
The data necessary for computing the score of edge {i, j} are A(i, j), v(i), and v(j),
similar in spirit to a rank-one sparse matrix-vector update.

Modularity can be defined slightly differently depending on whether you double-
count edges within a community by treating an undirected graph as a directed graph
with edges in both directions. The DIMACS Implementation Challenge uses this
variation, and we have included an option to double-count edges.

Modularity has known limitations. Fortunato and Barthélemy [11] demonstrate
that global modularity optimization cannot distinguish between a single community
and a group of smaller communities. Berry et al. [4] provide a weighting mechanism
that overcomes this resolution limit. Instead of this weighting, we compare CNM
with the modularity-normalizing method of McCloskey and Bader [2]. Lancichinetti
and Fortunato [17] show that multi-resolution modularity can still have problems,
e.g. merging small clusters and splitting large ones.

McCloskey and Bader’s algorithm (MB) only merges vertices into the commu-
nity when the change is deemed statistically significant against a simple statistical
model assuming independence between edges. The sequential MB algorithm com-
putes the mean ΔQ(W, :) and standard deviation σ(ΔQ(W, :)) of all changes adja-
cent to community W . Rather than requiring only ΔQ(W,U) > 0, MB requires a

tunable level of statistical significance with ΔQ(W,U) > ΔQ(W, :)+k·σ(ΔQ(W, :)).
Section 4 sets k = −1.5. Sequentially, MB considers only edges adjacent to the ver-
tex under consideration and tracks a history for wider perspective. Because we
evaluate merges adjacent to all communities at once by matching, we instead filter
against the threshold computed across all current potential merges.

Conductance. Another metric, graph conductance, measures a normalized
cut between a graph induced by vertex set S and the graph induced by the remaining
vertices V \ S. Denote the cut induced by a vertex set S ⊂ V by

∂(S) = {{u, v}|{u, v} ∈ E, u ∈ S, v /∈ S},

and the size of the cut by |∂(S)|. Then the conductance of S is defined [1] as

(2) φ(S) =
|∂(S)|

min{Vol(S),Vol(V \ S)} .

If S = V or S = ∅, let φ(S) = 1, the largest obtainable value.
The minimum conductance over all vertex sets S ⊂ V is the graph’s conduc-

tance. Finding a subset with small conductance implies a bottleneck between the
subset’s induced subgraph and the remainder. Random walks will tend to stay
in the induced subgraph and converge rapidly to their stationary distribution [5].
Given a partition V = S1 ∪ S2 ∪ · · · ∪ Sk, we evaluate the conductance of that

partitioning as
∑k

i=1 φ(Si).

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

212 E. JASON RIEDY, HENNING MEYERHENKE, DAVID EDIGER, AND DAVID A. BADER

We score an edge {i, j} by the negation of the change from old to new, or
φ(Si)+φ(Sj)−φ(Si ∪Sj). We again track the edge multiplicity in the edge weight
and the volume of the subgraph in the vertex weight.

3. Mapping the Agglomerative Algorithm to Threaded Platforms

Our implementation targets two multithreaded programming environments, the
Cray XMT [16] and OpenMP [26], both based on the C language. Both provide
a flat, shared-memory view of data but differ in how they manage parallelism.
However, in our use, both environments intend that ignoring the parallel directives
produces correct although sequential C code. The Cray XMT environment focuses
on implicit, automatic parallelism, while OpenMP requires explicit management.

The Cray XMT architecture tolerates high memory latencies from physically
distributed memory using massive multithreading. There is no cache in the pro-
cessors; all latency is handled by threading. Programmers do not directly control
the threading but work through the compiler’s automatic parallelization with oc-
casional pragmas providing hints to the compiler. There are no explicit parallel
regions. Threads are assumed to be plentiful and fast to create. Current XMT
and XMT2 hardware supports over 100 hardware thread contexts per processor.
Unique to the Cray XMT are full/empty bits on every 64-bit word of memory. A
thread reading from a location marked empty blocks until the location is marked
full, permitting very fine-grained synchronization amortized over the cost of mem-
ory access. The full/empty bits permit automatic parallelization of a wider variety
of data dependent loops. The Cray XMT provides one additional form of parallel
structure, futures, but we do not use them here.

The widely-supported OpenMP industry standard provides more traditional,
programmer-managed threading. Parallel regions are annotated explicitly through
compiler pragmas. Every loop within a parallel region must be annotated as a
work-sharing loop or else every thread will run the entire loop. OpenMP supplies
a lock data type which must be allocated and managed separately from reading or
writing the potentially locked memory. OpenMP also supports tasks and methods
for interaction, but our algorithm does not require them.

3.1. Graph representation. We use the same core data structure as our
earlier work [30, 31] and represent a weighted, undirected graph with an array
of triples (i, j, w) for edges between vertices i and j with i �= j. We accumulate
repeated edges by adding their weights. The sum of weights for self-loops, i = j,
are stored in a |V |-long array. To save space, we store each edge only once, similar
to storing only one triangle of a symmetric matrix.

Unlike our initial work, however, the array of triples is kept in buckets defined
by the first index i, and we hash the order of i and j rather than storing the strictly
lower triangle. If i and j both are even or odd, then the indices are stored such
that i < j, otherwise i > j. This scatters the edges associated with high-degree
vertices across different source vertex buckets.

The buckets need not be sequential. We store both beginning and ending in-
dices into the edge array for each vertex. In a traditional sparse matrix compressed
format, the entries adjacent to vertex i + 1 would follow those adjacent to i. Per-
mitting non-sequential buckets reduces synchronization within graph contraction.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL COMMUNITY DETECTION FOR MASSIVE GRAPHS 213

Storing both i and j enables direct parallelization across the entire edge array. Be-
cause edges are stored only once, edge {i, j} can appear in the bucket for either i
or j but not both.

A graph with |V | vertices and |E| non-self, unique edges requires space for
3|V |+ 3|E| 64-bit integers plus a few additional scalars to store |V |, |E|, and other
book-keeping data. Section 3.4 describes cutting some space by using 32-bit integers
for some vertex information.

3.2. Scoring and matching. Each edge’s score is an independent calculation
for our metrics. An edge {i, j} requires its weight, the self-loop weight for i and j,
and the graph’s total weight. Parallel computation of the scores is straight-forward,
and we store the edge scores in an |E|-long array of 64-bit floating point data.

Computing the heavy maximal matching is less straight-forward. We repeat-
edly sweep across the vertices and find the best adjacent match until all vertices are
either matched or have no potential matches. The algorithm is non-deterministic
when run in parallel. Different executions on the same data may produce different
matchings. This does not affect correctness but may lead to different communities.

Our earlier implementation iterated in parallel across all of the graph’s edges on
each sweep and relied heavily on the Cray XMT’s full/empty bits for synchroniza-
tion of the best match for each vertex. This produced frequent hot spots, memory
locations of high contention, but worked sufficiently well with nearly no program-
ming effort. The hot spots crippled an explicitly locking OpenMP implementation
of the same algorithm on Intel-based platforms.

We have updated the matching to maintain an array of currently unmatched
vertices. We parallelize across that array, searching each unmatched vertex u’s
bucket of adjacent edges for the highest-scored unmatched neighbor, v. Once each
unmatched vertex u finds its best current match, the vertex checks if the other side
v (also unmatched) has a better match. If the current vertex u’s choice is better, it
claims both sides using locks or full/empty bits to maintain consistency. Another
pass across the unmatched vertex list checks if the claims succeeded. If not and
there was some unmatched neighbor, the vertex u remains on the list for another
pass. At the end of all passes, the matching will be maximal. Strictly this is not
an O(|E|) algorithm, but the number of passes is small enough in social network
graphs that it runs in effectively O(|E|) time.

If edge {i, j} dominates the scores adjacent to i and j, that edge will be found by
one of the two vertices. The algorithm is equivalent to a different ordering of exist-
ing parallel algorithms [15,20] and also produces a maximal matching with weight
(total score) within a factor of 0.5 of the maximum. Our non-deterministic algo-
rithm matches our shared-memory execution platform and does not introduce syn-
chronization or static data partitioning to duplicate deterministic message-passing
implementations.

Social networks often follow a power-law distribution of vertex degrees. The
few high-degree vertices may have large adjacent edge buckets, and not iterat-
ing across the bucket in parallel may decrease performance. However, neither the
Cray XMT nor OpenMP implementations currently support efficiently composing
general, nested, light-weight parallel loops. Rather than trying to separate out
the high-degree lists, we scatter the edges according to the graph representation’s
hashing. This appears sufficient for high performance in our experiments.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

214 E. JASON RIEDY, HENNING MEYERHENKE, DAVID EDIGER, AND DAVID A. BADER

Our improved matching’s performance gains over our original method are mar-
ginal on the Cray XMT but drastic on Intel-based platforms using OpenMP. The
original method followed potentially long chains of pointers, an expensive operation
on Intel-based platforms. Scoring and matching together require |E| + 4|V | 64-bit
integers plus an additional |V | locks on OpenMP platforms.

3.3. Graph contraction. Contracting the agglomerated community graph
requires from 40% to 80% of the execution time. Our previous implementation was
relatively efficient on the Cray XMT but infeasible on OpenMP platforms. We use
the bucketing method to avoid locking and improve performance for both platforms.

Our current implementation relabels the vertex endpoints and re-orders their
storage according to the hashing. We then roughly bucket sort by the first stored
vertex in each edge. If a stored edge is (i, j;w), we place (j;w) into a bucket
associated with vertex i but leave i implicitly defined by the bucket. Within each
bucket, we sort by j and accumulate identical edges, shortening the bucket. The
buckets then are copied back out into the original graph’s storage, filling in the i
values. This requires |V |+1+2|E| storage, more than our original implementation,
but permits much faster operation on both the XMT2 and Intel-based platforms.

Because the buckets need not be stored contiguously in increasing vertex order,
the bucketing and copying do not need to synchronize beyond an atomic fetch-and-
add. Storing the buckets contiguously requires synchronizing on a prefix sum to
compute bucket offsets. We have not timed the difference, but the technique is
interesting.

3.4. DIMACS adjustments. Our original implementation uses 64-bit inte-
gers to store vertex labels. All of the graphs in the DIMACS Implementation Chal-
lenge, however, require only 32-bit integer labels. Halving the space required for ver-
tex labels fits the total size necessary for the largest challenge graph, uk-2007-05,
in less than 200 GiB of RAM. Note that indices into the edge list must remain 64-
bit integers. We also keep the edge scores in 64-bit binary floating-point, although
only 32-bit floating-point may suffice.

Surprisingly, we found no significant performance difference between 32-bit
and 64-bit integers on smaller graphs. The smaller integers should decrease the
bandwidth requirement but not the number of memory operations. We conjecture
our performance is limited by the latter.

The Cray XMT’s full/empty memory operations work on 64-bit quantities, so
our Cray XMT2 implementation uses 64-bit integers throughout. This is not a
significant concern with 2 TiB of memory.

4. Parallel Performance

We evaluate parallel performance on two different threaded hardware architec-
tures, the Cray XMT2 and an Intel-based server. We highlight two graphs, one real
and one artificial, from the Implementation Challenge to demonstrate scaling and
investigate performance properties. Each experiment is run three times to capture
some of the variability in platforms and in our non-deterministic algorithm. Our
current implementation achieves speed-ups of up to 13× on a four processor, 40-
physical-core Intel-based platform. The Cray XMT2 single-processor times are too
slow to evaluate speed-ups on that platform.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL COMMUNITY DETECTION FOR MASSIVE GRAPHS 215

Table 1. Sizes of graphs used for performance evaluation.

Graph |V | |E|
uk-2002 18 520 486 261 787 258

kron g500-simple-logn20 1 048 576 44 619 402

4.1. Evaluation platforms. The next generation Cray XMT2 is located
at the Swiss National Supercomputing Centre (CSCS). Its 64 processors run at
500 MHz and support four times the memory density of the Cray XMT for a total
of 2 TiB. These 64 processors support over 6 400 hardware thread contexts. The
improvements over the XMT also include additional memory bandwidth within a
node, but exact specifications are not yet officially available.

The Intel-based server platform is located at Georgia Tech. It has four ten-
core Intel Xeon E7-8870 processors running at 2.40 GHz with 30 MiB of L3 cache
per processor. The processors support HyperThreading, so the 40 physical cores
appear as 80 logical cores. This server, mirasol, is ranked #17 in the November
2011 Graph 500 list and is equipped with 256 GiB of 1 067 MHz DDR3 RAM.

Note that the Cray XMT allocates entire processors, each with at least 100
threads, while the OpenMP platforms allocate individual threads which are mapped
to cores. Results are shown per-Cray-XMT processor and per-OpenMP-thread. We
run up to the number of physical Cray XMT processors or logical Intel cores. Intel
cores are allocated in a round-robin fashion across sockets, then across physical
cores, and finally logical cores.

4.2. Test graphs. We evaluate on two DIMACS Implementation Challenge
graphs. Excessive single-processor runs on highly utilized resources are discour-
aged, rendering scaling studies using large graphs difficult. We cannot run the
larger graph on a single XMT2 processor within a reasonable time. Table 1 shows
the graphs’ names and number of vertices and edges. The workshop report [32]
contains maximum-thread and -processor timings for the full DIMACS Implemen-
tation Challenge. Additionally, we consider execution time on the largest Challenge
graph, uk-2007-05. This graph has 105 896 555 vertices and 3 301 876 564 edges.

4.3. Time and parallel speed-up. Figure 1 shows the execution time as a
function of allocated OpenMP thread or Cray XMT processor separated by platform
and graph. Figure 2 translates the time into speed-up against the best single-thread
execution time on the Intel-based platform. The execution times on a single XMT2
processor are too large to permit speed-up studies on these graphs. The results
are the best of three runs maximizing modularity with our parallel variant of the
Clauset, Newman, and Moore heuristic until the communities contain at least half
the edges in the graph. Because fewer possible contractions decrease the conduc-
tance, minimizing conductance requires three to five times as many contraction
steps and a proportionally longer time.

Maximizing modularity on the 105 million vertex, 3.3 billion edge uk-2007-05

requires from 496 seconds to 592 seconds using all 80 hardware threads of the Intel
E7-8870 platform. The same task on the Cray XMT2 requires from 2 388 seconds
to 2 466 seconds.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

216 E. JASON RIEDY, HENNING MEYERHENKE, DAVID EDIGER, AND DAVID A. BADER

Number of threads / processors

T
im

e
(s

)

100.5

101

101.5

102

102.5

103

Intel E7−8870

●

●

●

●

●
●

●
● ●

●
●●

368.0 s

33.4 s

84.9 s

6.6 s

20 21 22 23 24 25
26

Cray XMT2

●

●

●

●
●

● ● ●●

1188.9 s

285.4 s
349.6 s

72.1 s

20 21 22 23 24 25
26

Graph
● uk−2002 kron_g500−simple−logn20

Figure 1. Execution time against allocated OpenMP threads or
Cray XMT processors per platform and graph. The best single-
processor and overall times are noted in the plot. The dashed lines
extrapolate perfect speed-up from the time on the least number of
processors.

4.4. Community quality. Computing communities quickly is only good if
the communities themselves are useful. Full details are in the workshop report [32].
Figure 3 shows the results from two different modularity-maximizing heuristics
and one conductance-minimizing heuristic. The real-world uk-2002 graph shows
non-trivial community structure, but the artificial kron g500-simple-logn20 lacks
such structure [33]. There appears to be a significant trade-off between modular-
ity and conductance which should be investigated further. Subsequent work has
improved modularity results through better convergence criteria than coverage.

5. Related Work

Graph partitioning, graph clustering, and community detection are tightly re-
lated topics. A recent survey by Fortunato [12] covers many aspects of community
detection with an emphasis on modularity maximization. Nearly all existing work
of which we know is sequential and targets specific contraction edge scoring mech-
anisms. Many algorithms target specific contraction edge scoring or vertex move
mechanisms [14]. Our previous work [30, 31] established and extended the first
parallel agglomerative algorithm for community detection and provided results on
the Cray XMT. Prior modularity-maximizing algorithms sequentially maintain and
update priority queues [8], and we replace the queue with a weighted graph match-
ing. Separately from this work, Fagginger Auer and Bisseling developed a similar

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL COMMUNITY DETECTION FOR MASSIVE GRAPHS 217

Number of threads / processors

S
p
ee

d
u
p

2

4

6

8

10

12

●

●

●

●

●

●

●

●
●

●

●

●
11 x

13 x

20 40 60 80

Graph
● uk−2002 kron˙g500−simple−logn20

Figure 2. Parallel speed-up relative to the best single-threaded
execution. The best achieved speed-up is noted on the plot. The
dotted line denotes perfect speed-up matching the number of pro-
cessors.

modularity-optimizing clustering algorithm [10]. Their algorithm uses more mem-
ory, is more synchronous, and targets execution on GPUs. Fagginger Auer and
Bisseling’s algorithm performs similarly to ours and includes an interesting star
detection technique.

Zhang et al. [37] recently proposed a parallel algorithm that identifies com-
munities based on a custom metric rather than modularity. Gehweiler and Meyer-
henke [13] proposed a distributed diffusive heuristic for implicit modularity-based
graph clustering. Classic work on parallel modular decompositions [24] finds a
different kind of module, one where any two vertices in a module have identical
neighbors and are somewhat indistinguishable. This could provide a scalable pre-
processing step that collapses vertices that will end up in the same community,
although removing the degree-1 fringe may have the same effect.

Work on sequential multilevel agglomerative algorithms like [23] focuses on
edge scoring and local refinement. Our algorithm is agnostic towards edge scoring
methods and can benefit from any problem-specific methods. The Cray XMT’s
word-level synchronization may help parallelize refinement methods, but we leave
that to future work.

6. Observations

Our algorithm and implementation, the first published parallel algorithm for
agglomerative community detection, extracts communities with apparently high
modularity or low conductance in a reasonable length of time. Finding modularity-
maximizing communities in a graph with 105 million vertices and over 3.3 billion

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

218 E. JASON RIEDY, HENNING MEYERHENKE, DAVID EDIGER, AND DAVID A. BADER

G
ra

p
h
 n

am
e

Number of communities

10
4
.5

10
5

10
5
.5

10
6

10
4
.5

10
5

10
5
.5

10
6

cn
m

●● ● ●●● ●● ●● ●●● kron_g500−simple−logn20

uk−2002

m
b

●● ● ●●● ●● ●●●● kron_g500−simple−logn20

uk−2002

co
n
d

●●● ●●● kron_g500−simple−logn20

uk−2002

Intel E7−8870 Cray XMT2

G
ra

p
h
 n

am
e

Coverage

0
.2

0
.4

0
.6

0
.8

0
.2

0
.4

0
.6

0
.8

cn
m

● ● ●●● ● ● ●● ●●●● kron_g500−simple−logn20

uk−2002

m
b

● ●●●●● ●●●●● ● kron˙g500−simple−logn20

uk−2002

co
n
d

● ●● ●● ● kron_g500−simple−logn20

uk−2002

Intel E7−8870 Cray XMT2

G
ra

p
h
 n

am
e

Mirror Coverage

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

cn
m

●●● ●●● ●● ●● ●●● kron˙g500−simple−logn20

uk−2002

m
b

●● ● ●●● ● ● ●●●● kron_g500−simple−logn20

uk−2002

co
n
d

●● ● ● ●● kron_g500−simple−logn20

uk−2002

Intel E7−8870 Cray XMT2

Figure 3. Coverage, modularity, and average conductance for
the two graphs. The graphs are split vertically by platform and
horizontally by scoring method. Here “cnm” and “mb” are the
Clauset-Newman-Moore and McCloskey-Bader modularity maxi-
mizing heuristics, and “cond” minimizes the conductance.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL COMMUNITY DETECTION FOR MASSIVE GRAPHS 219

edges requires a little over eight minutes on a four processor, Intel E7-8870-based
server. Our implementation can optimize with respect to different local optimiza-
tion criteria, and its modularity results are comparable to a state-of-the-art se-
quential implementation. By altering termination criteria, our implementation can
examine some trade-offs between optimization quality and performance. As a twist
to established sequential algorithms for agglomerative community detection, our
parallel algorithm takes a novel and naturally parallel approach to agglomeration
with maximum weighted matchings. That difference appears to reduce differences
between the CNM and MB edge scoring methods. The algorithm is simpler than ex-
isting sequential algorithms and opens new directions for improvement. Separating
scoring, choosing, and merging edges may lead to improved metrics and solutions.
Our implementation is publicly available1.

Outside of the edge scoring, our algorithm relies on well-known primitives that
exist for many execution models. Much of the algorithm can be expressed through
sparse matrix operations, which may lead to explicitly distributed memory imple-
mentations through the Combinatorial BLAS [7] or possibly cloud-based imple-
mentations through environments like Pregel [19]. The performance trade-offs for
graph algorithms between these different environments and architectures remain
poorly understood.

Besides experiments with massive real-world data sets, future work includes the
extension of the algorithm to a streaming scenario. In such a scenario, the graph
changes over time without an explicit start or end. This extension has immediate
uses in many social network applications but requires algorithmic changes to avoid
costly recomputations on large parts of the graph.

Acknowledgments

We thank PNNL and the Swiss National Supercomputing Centre for providing
access to Cray XMT systems. We also thank reviews of previous work inside Oracle
and anonymous reviewers of this work.

References

[1] R. Andersen and K. Lang, Communities from seed sets, Proc. of the 15th Int’l Conf. on World
Wide Web, ACM, 2006, p. 232.

[2] D.A. Bader and J. McCloskey, Modularity and graph algorithms, Presented at UMBC, Sep-
tember 2009.

[3] D.A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, Competition rules and objec-
tive functions for the 10th DIMACS Implementation Challenge on graph partitioning and
graph clustering, http://www.cc.gatech.edu/dimacs10/data/dimacs10-rules.pdf, Septem-
ber 2011.

[4] J.W. Berry., B. Hendrickson, R.A. LaViolette, and C.A. Phillips, Tolerating the community
detection resolution limit with edge weighting, CoRR abs/0903.1072 (2009).

[5] Béla Bollobás, Modern graph theory, Graduate Texts in Mathematics, vol. 184, Springer-
Verlag, New York, 1998. MR1633290 (99h:05001)

[6] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin Hoefer, Zoran Nikoloski,
and Dorothea Wagner, On modularity clustering, IEEE Trans. Knowledge and Data Engi-
neering 20 (2008), no. 2, 172–188.

[7] Aydın Buluç and John R Gilbert, The Combinatorial BLAS: design, implementation, and

applications, International Journal of High Performance Computing Applications 25 (2011),
no. 4, 496–509.

1http://www.cc.gatech.edu/~jriedy/community-detection/

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

http://www.cc.gatech.edu/dimacs10/data/dimacs10-rules.pdf
http://www.ams.org/mathscinet-getitem?mr=1633290
http://www.ams.org/mathscinet-getitem?mr=1633290
http://www.cc.gatech.edu/~jriedy/community-detection/

220 E. JASON RIEDY, HENNING MEYERHENKE, DAVID EDIGER, AND DAVID A. BADER

[8] A. Clauset, M.E.J. Newman, and C. Moore, Finding community structure in very large net-
works, Physical Review E 70 (2004), no. 6, 66111.

[9] Facebook, Fact sheet, February 2012, http://newsroom.fb.com/content/default.aspx?

NewsAreaId=22.
[10] B. O. Fagginger Auer and R. H. Bisseling,Graph coarsening and clustering on the GPU, Tech.

report, 10th DIMACS Implementation Challenge - Graph Partitioning and Graph Clustering,
Atlanta, GA, February 2012.

[11] S. Fortunato and M. Barthélemy, Resolution limit in community detection, Proc. of the
National Academy of Sciences 104 (2007), no. 1, 36–41.

[12] Santo Fortunato, Community detection in graphs, Phys. Rep. 486 (2010), no. 3-5, 75–174,
DOI 10.1016/j.physrep.2009.11.002. MR2580414 (2011d:05337)

[13] Joachim Gehweiler and Henning Meyerhenke, A distributed diffusive heuristic for cluster-
ing a virtual P2P supercomputer, Proc. 7th High-Performance Grid Computing Workshop
(HGCW’10) in conjunction with 24th Intl. Parallel and Distributed Processing Symposium
(IPDPS’10), IEEE Computer Society, 2010.

[14] Robert Görke, Andrea Schumm, and Dorothea Wagner, Experiments on density-constrained
graph clustering, Proc. Algorithm Engineering and Experiments (ALENEX12), 2012.

[15] Jaap-Henk Hoepman, Simple distributed weighted matchings, CoRR cs.DC/0410047 (2004).
[16] P. Konecny, Introducing the Cray XMT, Proc. Cray User Group meeting (CUG 2007) (Seattle,

WA), CUG Proceedings, May 2007.
[17] Andrea Lancichinetti and Santo Fortunato, Limits of modularity maximization in community

detection, Phys. Rev. E 84 (2011), 066122.
[18] S. Lozano, J. Duch, and A. Arenas, Analysis of large social datasets by community detection,

The European Physical Journal - Special Topics 143 (2007), 257–259.
[19] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty

Leiser, and Grzegorz Czajkowski, Pregel: a system for large-scale graph processing, Proceed-
ings of the 2010 international conference on Management of data (New York, NY, USA),
SIGMOD ’10, ACM, 2010, pp. 135–146.

[20] Fredrik Manne and Rob Bisseling, A parallel approximation algorithm for the weighted maxi-
mum matching problem, Parallel Processing and Applied Mathematics (RomanWyrzykowski,

Jack Dongarra, Konrad Karczewski, and Jerzy Wasniewski, eds.), Lecture Notes in Computer
Science, vol. 4967, Springer Berlin / Heidelberg, 2008, pp. 708–717.

[21] M.E.J. Newman, Modularity and community structure in networks, Proc. of the National
Academy of Sciences 103 (2006), no. 23, 8577–8582.

[22] M.E.J. Newman and M. Girvan, Finding and evaluating community structure in networks,
Phys. Rev. E 69 (2004), no. 2, 026113.

[23] Andreas Noack and Randolf Rotta, Multi-level algorithms for modularity clustering, Exper-
imental Algorithms (Jan Vahrenhold, ed.), Lecture Notes in Computer Science, vol. 5526,
Springer Berlin / Heidelberg, 2009, pp. 257–268.

[24] Mark B. Novick, Fast parallel algorithms for the modular decomposition, Tech. report, Cornell
University, Ithaca, NY, USA, 1989.

[25] NYSE Euronext, Consolidated volume in NYSE listed issues, 2010 – current, March
2011, http://www.nyxdata.com/nysedata/asp/factbook/viewer_edition.asp?mode=table&

key=3139&category=3.
[26] OpenMP Architecture Review Board, OpenMP application program interface; version 3.0,

May 2008.
[27] STACS 99, Lecture Notes in Computer Science, vol. 1563, Springer-Verlag, Berlin, 1999.

Edited by Christoph Meinel and Sophie Tison. MR1734032 (2000h:68028)
[28] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi, Defining and identifying

communities in networks, Proc. of the National Academy of Sciences 101 (2004), no. 9, 2658.
[29] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-L. Barabási, Hierarchical

organization of modularity in metabolic networks, Science 297 (2002), no. 5586, 1551–1555.

[30] E. Jason Riedy, David A. Bader, and Henning Meyerhenke, Scalable multi-threaded commu-
nity detection in social networks, Workshop on Multithreaded Architectures and Applications
(MTAAP) (Shanghai, China), May 2012.

[31] E. Jason Riedy, Henning Meyerhenke, David Ediger, and David A. Bader, Parallel community
detection for massive graphs, Proceedings of the 9th International Conference on Parallel
Processing and Applied Mathematics (Torun, Poland), September 2011.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

http://newsroom.fb.com/content/default.aspx?NewsAreaId=22
http://newsroom.fb.com/content/default.aspx?NewsAreaId=22
http://www.ams.org/mathscinet-getitem?mr=2580414
http://www.ams.org/mathscinet-getitem?mr=2580414
http://www.nyxdata.com/nysedata/asp/factbook/viewer_edition.asp?mode=table&key=3139&category=3
http://www.nyxdata.com/nysedata/asp/factbook/viewer_edition.asp?mode=table&key=3139&category=3
http://www.ams.org/mathscinet-getitem?mr=1734032
http://www.ams.org/mathscinet-getitem?mr=1734032

PARALLEL COMMUNITY DETECTION FOR MASSIVE GRAPHS 221

[32] , Parallel community detection for massive graphs, Tech. report, 10th DIMACS Im-
plementation Challenge - Graph Partitioning and Graph Clustering, Atlanta, GA, February
2012.

[33] C. Seshadhri, Tamara G. Kolda, and Ali Pinar, Community structure and scale-free collec-
tions of Erdös-Rényi graphs, CoRR abs/1112.3644 (2011).

[34] Twitter, Inc., Happy birthday Twitter!, March 2011, http://blog.twitter.com/2011/03/

happy-birthday-twitter.html.

[35] Ken Wakita and Toshiyuki Tsurumi, Finding community structure in mega-scale social net-
works, CoRR abs/cs/0702048 (2007).

[36] Dennis M. Wilkinson and Bernardo A. Huberman, A method for finding communities of re-
lated genes, Proceedings of the National Academy of Sciences of the United States of America
101 (2004), no. Suppl 1, 5241–5248.

[37] Yuzhou Zhang, Jianyong Wang, Yi Wang, and Lizhu Zhou, Parallel community detection on
large networks with propinquity dynamics, Proceedings of the 15th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining (New York, NY, USA), KDD ’09,
ACM, 2009, pp. 997–1006.

Georgia Institute of Technology, 266 Ferst Drive, Atlanta, Georgia, 30332

E-mail address: jason.riedy@cc.gatech.edu

Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, 76131 Karlsruhe,

Germany

E-mail address: meyerhenke@kit.edu

Georgia Institute of Technology, 266 Ferst Drive, Atlanta, Georgia, 30332

E-mail address: dediger@gatech.edu

Georgia Institute of Technology, 266 Ferst Drive, Atlanta, Georgia, 30332

E-mail address: bader@cc.gatech.edu

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

http://blog.twitter.com/2011/03/happy-birthday-twitter.html
http://blog.twitter.com/2011/03/happy-birthday-twitter.html

	Parallel community detection for massive graphs
	1. Communities in Graphs
	2. Parallel Agglomerative Community Detection
	3. Mapping the Agglomerative Algorithm to Threaded Platforms
	4. Parallel Performance
	5. Related Work
	6. Observations
	Acknowledgments
	References

