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Analyzing massive streaming graphs efficiently requires new 
algorithms, data structures, and computing platforms. 
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Massive Streaming  
Data Analytics:  
A graph-based approach

interfaces like Google’s Pregel. These 
systems extract graphs from large data-
sets and perform heavy pre-processing 
work for each analysis. 

Often, the rapid growth of data in 
many applications requires streaming 
analysis to produce results with suf-
ficiently fast turn-around time, which 
means that data must be analyzed as 
it arrives. In the massive streaming 
data analytics model, the graph itself 
is viewed as an infinite stream of edge 
insertions, deletions, and updates. Cur-
rently, systems that handle streaming 
data support only aggregate informa-
tion like counts or averages. Streaming 
analysis also opens new avenues to par-
allel processing.

There are many emerging applica-
tions, described in the next section, 

The world is awash in data of all forms. Highway sensors generate continuous traffic  
information, high-throughput sequencers produce vast quantities of genetic information,  
people send text and images constantly, and more. Everyone recognizes that the sheer 
volume of raw data already surpasses our analysis capabilities and keeps growing. 

But how do we turn this data into insight? Our goal is to guide decisions with accurate 
information derived from graph-structured data. Graphs—collections of vertices connected by 
edges—provide some structure to the mess that is big data. These graphs are semantic, with 
types given to edges and vertices, although not necessarily the well-curated semantic graphs 

of the Semantic Web vision. The 
graphs in our case are more ad-hoc, 
but still contain vast amounts of use-
ful information. 

In many cases, the data can be de-
composed into a primary signal, the 
current trends, plus noise that may hold 
the next signal. The primary signal of-
ten is easy to find. Take a social mes-
saging site like Twitter, for example. 
Counting words or phrases that appear 
in tweets allows identifying popular 
topics and provides insight into trends, 
as in the Euro 2012 final match between 
Spain and Italy. At the final goal, Twit-
ter processed more than 15,000 mes-
sages per second [1], requiring great 
scalability of their infrastructure. In 
some cases, however, the main signal 
may deceive. After the 2010 Haiti earth-

quake, initial analysis suggested a cor-
relation between building damage and 
the number of text messages sent. How-
ever, after factoring in the context of the 
messages, the counts had a slight nega-
tive correlation with damage [2]. 

Making future predictions based on 
data is even more difficult. Most of the 
noise observed, like forwarding a short-
lived joke shared among a lunch group, 
does not have an impact. Sometimes, 
as in computer network security, noise 
in the data produces effects far beyond 
its apparent magnitude. Determining 
what noise is considered meaning-
ful in a fast and efficient way is a chal-
lenge. The current state-of-the-art tools 
for graph analysis are often based on 
MapReduce-like systems, sometimes 
with bulk-synchronous parallel (BSP) 
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panies could prevent false positives and 
boost overall quality. 

Public policy and crisis management. 
Initiatives like the United Nation’s Global  
Pulse and the U.S. government’s Data.
gov recognize the importance of data and 
real-time analysis to public policy from 
planning to crisis response. Spanning 
across domains including health, en-
ergy, and commerce, this data is highly 
heterogeneous but linked through 
people, places, and organizations.  
Researchers are monitoring elections 
through social media [4], analyzing the 
effectiveness of public health alerts [5], 
and helping journalists analyze collec-
tions of documents and records [6]. 

Context is very important through-
out this data. As mentioned earlier, 
initial analysis of simply counting text 
messages sent within grid cells during 
the 2010 Haiti earthquake appeared to 
track building damage. But that wasn’t 
the case [2]. It’s clear that insight re-
quires deeper analysis to account for 
correlations and interactions. 

Network security. Many people carry 
or use multiple devices to connect to 

which require more complex graph 
analysis. The computations involved 
in complex graph analysis (which we 
refer to as “kernels”) are notoriously 
difficult to parallelize; the kernels re-
quire very little computation and of-
ten are highly synchronized. Memory 
latency and bandwidth throughout 
the memory hierarchy typically limits 
these kernels’ performance. Opera-
tions for updating or changing mas-
sive graphs are often scattered and 
require much less synchronization. 
Working with batches of changes pro-
vides more opportunities for high per-
formance. The core of this article out-
lines our approach and summarizes 
our framework, STING, for analyzing 
spatio-temporal interaction networks 
and graphs. 

EMERGING APPLICATIONS
A few important applications of massive 
streaming graph analysis are emerging; 
they are discussed as follows.  

Online social networks. Business in-
telligence company DOMO combined 
sources to estimate that in one minute 

on average, Facebook users share more 
than 650, 000 pieces of content, Twit-
ter users post more than 100,000 mes-
sages, and Tumblr users publish almost 
30,000 posts [3]. Some of this content 
is highly valuable, showing upcoming 
news or trends. Other pieces are useless 
spam to be filtered away. Immediate 
feedback of relative value or “spammi-
ness” to authors, advertisers, and com-

Everyone recognizes 
that the sheer 
volume of raw data 
already surpasses 
our analysis 
capabilities and 
keeps growing.  
But how do  
we turn this data  
into insight?
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the same online services. They assume 
a level of security while simultaneously 
expecting ease of use and adding the 
confounding factor of multiple access 
sources. Assuring security requires rapid 
response to access and posting requests. 
This is only one variant of the general 
network security problem facing service 
providers. Separating authorized access 
from dangerous access while not alien-
ating users requires rapid response giv-
en the context of user identity, access 
method, and service state. This exists 
for services ranging from online social 
networks to distributed file systems. Us-
ers need to be authorized rapidly given 
varied contexts and policies. 

Health informatics. The wealth of 
long-term medical information collect-
ed by institutions like the Mayo Clinic 
is slowly being digitized. This data adds 
new information about family histories 
to a network of diagnostic similarities. 
The medical literature produces more 
relationships between symptoms, 
causes, and other factors. Doctors, 
responders, administrators, and pol-
icy makers need different, up-to-date 

Figure 1. A small example of a scale-free graph. In larger variants of such graphs,  
the degree (number of edges) of different vertices can vary by orders of magnitude.
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based and other common platforms. 
We assume a small collection of atomic 
operations is available to avoid explicit 
locking. We also assume the processors 
are highly multi-threaded to tolerate 
some memory latency. Data structures 
and algorithms are arranged to permit 
both the autonomous multi-threading 
available in most processors and coher-
ent multi-threading as in GPUs. 

Classic parallel analysis of static 
graphs that scale to massive data al-
most always builds trees through some 
breadth-first search technique. These 
methods are useful for initial analysis 
but sacrifice too much performance. 
Changing graphs are considered in 
traditional dynamic algorithms work. 
These algorithms tailor data structures 
to individual analysis kernels, requiring 
maintenance of many different massive 
structures for different kernels. When 
data size is a problem, multiplying that 
size often is prohibitive. Other tradi-
tional approaches like streaming algo-
rithms assume much less information 
is maintained per kernel, but that the 
entire data is available for one or mul-
tiple passes. We would prefer focusing 
only on the data that has changed from 
one state to the next. 

Our approach borrows ideas from 
each of these but applies them for 
massive, persistent data. By analyzing 
batches of the data’s changes, we can 
enhance the parallelism and trade-off 
between aggregate performance and 
analysis latency. 

STING, A FRAMEWORK FOR  
STREAMING, GRAPH-STRUCTURED 
DATA ANALYSIS
To tackle graph analysis in the face of 
big data, we are developing the STING 
(Spatio-Temporal Interaction Networks 
and Graphs) framework [9]. STING bal-
ances portability, productivity, and 
performance for research and develop-
ment. Our young framework accumu-
lates batches of edge changes into a se-
mantic graph data structure, STINGER 
(STING Extensible Representation), and 
runs analysis kernels to monitor graph 
properties. STING is a C framework por-
table across POSIX and OpenMP plat-
forms as well as the Cray XMT. 

Kernels currently available in STING 
include: (1) connected component 
monitoring, (2) clustering coefficient  

summaries of this disparate data. The 
information needs to be recent but also 
respectful of privacy concerns between 
separate individuals and data stores. 
The change is relatively slow, but health 
informatics is leading in combining 
disparate data across data with strong 
privacy boundaries. 

Financial analysis and monitoring. 
Computer-driven, high-frequency trad-
ing systems trade stocks and commodi-
ties at rates far faster than human regu-
lators can monitor. The NYSE processes 
more than four billion traded shares per 
day [7]. Investors want rapid, focused 
analysis and response combining not 
only the current trades, but also auxil-
iary information like financial filings 
and news stories. Regulators require 
monitoring the overall health of var-
ied, interconnected markets to identify 
anomalies. Current regulatory controls 
do not handle interconnections in the 
“fragmented and fragile” marketplace 
[8], leading to instability like the flash 
crash that occurred on May 6, 2012. 

NEW ROUTES TO  
PARALLEL PERFORMANCE
In the multi-everything era, codes per-
forming massive data analysis must 
expose parallelism wherever possible. 
Graph codes are notoriously difficult 
to parallelize efficiently. Working in-
crementally using a streaming data 
model offers new opportunities to ex-
ploit parallelism. 

For now, we consider parallel plat-
forms providing a shared, global ad-
dress space to programs. Such a space 
can be implemented over physically 
distributed memory, as in the Cray 
XMT, or within a single node, as in Intel-

Graph codes are 
notoriously difficult 
to parallelize 
efficiently. Working 
incrementally using 
a streaming data 
model offers new 
opportunities to 
exploit parallelism.
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tracking, (3) STINGER microbenchmarks,  
and (4) a few example static analysis  
kernels. Streaming community detection 
and seed set expansion are scheduled 
to be included soon. 

The STINGER data structure. Our 
STINGER data structure provides easy 
and efficient methods to both insert 
and remove edges from a scale-free 
graph (a graph whose degree distribu-
tion follows a power law), while also 
permitting fast querying of neigh-
bor information and other meta-
data about vertices and edges. The 
STINGER specification does not spec-
ify consistency; the programmer must 
assume that the graph can change un-
derneath the application. 

The STINGER data structure resem-
bles an adjacency list graph structure. 
Neighbors of each vertex are stored in a 
linked list of “edge blocks.” Implement-
ing lists using a list of arrays is common 
in many systems. The STINGER data 
structure implements a hybrid between 
packed arrays and linked lists, allow-
ing support of both rapid updates and 
multi-threaded iteration. The dense 
blocks are processed easily with vectors 
or coherent threads, while the separate 
blocks provide work for more general 
but rapidly spawned threads. 

Each directed edge stored in STING-
ER consists of a source vertex, a desti-
nation vertex, a weight, a last-modified 
timestamp, an initial insertion time-
stamp, and an arbitrary semantic type 
stored as an integer. Weights within a 
single data store can be defined either 
as integers or floating-point data. Un-
directed graphs are represented with 
a pair of directed edges. Applications 
may use the semantic types to distin-
guish between different kinds of edges 
(as in an ontology), provide keys into 
external databases, support permis-
sions, as well as other capabilities. The 
two timestamps provide a sense of time 
to analysis kernels without requiring 
strict time keeping. Application codes 
can traverse the graph structure di-
rectly through C macros or use a safer 
interface. The safer interface provides a 
function that gathers the edge list from 
the various blocks and returns it to the 
application in an array. This has the 
double benefit of isolating the applica-
tion from changes in the data structure 
as well as simplifying conversion of ex-

support multiple models. One model 
is not to coordinate with the separately 
running kernels at all. The kernels con-
tinually scan the data structure. This 
is appropriate for low-performance 
data auditing tasks. Another model is 
to notify the kernels of the changes, 
often only the affected vertices, ei-
ther before or after updating the data 
structure depending on the kernel. 
STINGER maintenance performance 
is fast enough that this model is suf-
ficient in most practical applications. 
Kernels needing extreme performance 
at the cost of more complex program-
ming will be provided the changes si-
multaneously with the data structure 
maintenance. This will be useful for 
approximation algorithms and others 
that assume a certain level of noise 
in the data. Although our STINGER 
data structure remains consistent, 
the represented graph can suffer from 
undirected edges only existing in one 
stored direction. 

EXAMPLE ALGORITHM: MONITORING 
CONNECTED COMPONENTS
Scale-free graphs like social networks 
often have one massive connected com-
ponent, where a path exists between 
all pairs of vertices, and many smaller 
outlying components. Knowing when 
the small components merge or when 
a group splits from the massive compo-
nent is useful both for general informa-
tion and to guide other algorithms (e.g., 
sampling for centrality approximation). 
The STING distribution includes an 
analysis kernel that maintains a map-
ping of vertices to connected compo-
nents subject to batches of edge inser-
tions and removals. 

The analysis kernel is handed the 
batch and the graph after updating. 
With this, the algorithm maintains a 
component label function c where c(i) 
provides the component label of vertex 
i. It also maintains a spanning tree for 
each component; the root of the tree 
serves as the component label. The 
spanning tree is used for handling re-
movals and is a natural by-product of 
the Shiloach-Vishkin parallel static 
connected components algorithm. 

Our algorithm processes inser-
tions before removals. Insertions are 
straight-forward, but removals require 
more effort. Given a component label 

isting static codes that utilize the popu-
lar compressed sparse row format to 
work with STINGER. On the Cray XMT, 
we often observe that this safer “copy 
out” strategy provides identical or bet-
ter performance for static codes using 
STINGER compared to compressed 
sparse row representations. 

The STING pipeline. The currently 
distributed example STING kernels are 
self-contained. The two streaming ex-
ample kernels, which compute cluster 
coefficients and maintain connected 
components, work with a straight-for-
ward pipeline. Updates to the graph 
(edge insertions and removals) are pro-
cessed in batches, where each batch 
is pre-processed to reduce redundant 
work. To update the graph, STING mod-
ifies the STINGER data structure and 
provides the kernels with the batch and 
the updated data structure. 

To pre-process a batch, undirect-
ed edges are duplicated into a pair 
of pseudo-directed edges stored in 
STINGER. The batch is then sorted 
and collapsed in parallel, combining 
multiple actions on each source vertex. 
In these examples, multiple insertions 
increment the edge’s integer weight 
but otherwise count as a single edge. 
Insertions and removals are handled 
in order of appearance within the in-
put batch of updates. Initial removals 
only can take effect if the edge is in 
the graph; this case is handled when 
modifying the graph after batch pre-
processing. In general, different ker-
nels need different access to the graph 
data. Future versions of STING will 

Often, the rapid 
growth of data in 
many applications 
requires streaming 
analysis to produce 
results with 
sufficiently fast  
turn-around time, 
which means 
that data must be 
analyzed as it arrives.
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tion through a search is the only known 
method with sub-quadratic space com-
plexity to determine if the deleted edge 
has cleaved one component into two. 
In scale-free graphs, very few deletions 
will separate components. We rely on 
heuristics to identify the 99.7 percent of 
effect-less deletions in our tests. 

If an edge endpoint has degree one, 
it is separated into its own compo-
nent easily. If the deleted edge is not 
the stored tree edge, the component 
remains connected. If some neighbor 
can reach the component’s root along 
existing tree edges, we repair the tree 
by taking that neighbor as the cur-
rent vertex’s parent. If we cannot reach 
the root, we save the vertex where the 
search ended. After all the checks, we 
attempt to repair the tree by trying a 
neighbor search from all the unique 
search-ending vertices. If all these at-
tempts fail, we queue effected vertices 
until a user-defined threshold and then 
re-run static connected components. 
Each of these searches only follows tree 
edges, limiting memory accesses. 

We evaluate performance on an 
Intel-based server. The server has 
four 10-core hyperthreading E7-8870 
processors at 2.4 GHz with 256 GiB of 
1,333 MHz DDR3 memory. We emulate 
a social network with a relatively small 
R-MAT [10] generated graph with more 
than 16.7 million vertices and 88 mil-
lion edges. R-MAT also generates the 
edge actions, inserting a possibly du-
plicate edge with probability of 7/8 or 
removing a previously inserted edge 
with a probability of 1/8. Threads are 
spread across processor sockets first, 
then cores, and then hyperthreads. 
Memory is interleaved across sockets 
by 2 MiB pages using numactl. 

For large batches of 30,000 edge ac-
tions or more, STING can maintain the 
connected components at an aggregate 
rate of over 105 updates per second us-
ing 20 threads. Figure 2 shows the ag-
gregate performance in updates per 
second when varying thread counts 
and batch sizes. Figure 3 translates the 
performance into the latency between 
beginning to analyze the batch and 
updating the connected components. 
Many applications prefer lower latency 
to aggregate performance; STING batch 
size parameters can support a range of 
latency/performance trade-offs. 

function c(i), inserting an undirected 
edge {i, j} into a graph connects com-
ponents c(i) and c( j). In scale-free 
graphs, the vast majority of inserted 
edges are in the same component and 
c(i) = c( j). Within a batch, these edges 
produce no component changes and 
can be ignored. The remaining inser-
tions join components. 

We replace the vertices within a 
batch’s inserted edges with their com-
ponent labels. A parallel counting sort 

followed by a parallel uniqueness check 
collapses the batch’s insertions into 
the edges joining previously separate 
components. We run a parallel, static 
connected components algorithm on 
this far smaller graph to identify which 
components are to be merged, and then 
we relabel the link the smaller compo-
nents and link their tree roots to the 
largest component’s root. 

Edge removal, as always seems the 
case, is more complicated. Recomputa-

Figure 2. STING Aggregate performance in updates per second when varying thread 
counts and batch sizes.
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Figure 3. Latency between beginning to analyze the batch and updating the 
connected components.
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The large latency of large batches 
raises another performance question: 
How does processing a large batch com-
pare with rerunning the fast static con-
nected components algorithm? Figure 
4 provides the speed-up over static re-
computation. There is a distinct knee 
in the curve; batches of 30,000 edge ac-
tions provide good speed-up and high 
aggregate performance with a latency 
of under 0.32 seconds. Also apparent 
is that we need not allocate the entire 
system to a single analysis kernel. 
The peak performance is achieved 
with at most 20 threads. We are ex-
perimenting to see how the memory 
and thread resources affect multiple 
analysis kernels’ performance. 

RELATED WORK AND  
FUTURE DIRECTIONS
Analyzing streaming, graph-structured 
data combines, and leverages, work in 
many areas from architecture to sys-
tems. The STING approach harnesses 
current changes in computing architec-
tures. Highly multi-threaded architec-
tures are widely available ranging from 
the massive yet general multi-thread-
ing of the Cray XMT to more modest 
threading on Intel-based systems and 
the massive but more coherent thread-
ing in general-purpose graphics pro-
cessing units. 

Visualization has long relied on 
dataflow systems like Data Explorer, 
Khoros, and other tools to process 
results as a batched pipeline. Tools 
like IBM’s InfoSphere Streams and 
Apache’s S4 are carrying this model 
into data analysis as well. The current 
tools focus on aggregate information 
like counts but could be extended to 
support graph structure. 

Tools for massive data analysis for 
graph-structured data, like Google’s 
Pregel and Apache’s Hadoop-based 
Giraph, work on a bulk-synchronous 
model. Kernels work across the en-
tire data store in large, iterative steps. 
These systems do not handle streaming 
data, but do handle important issues 
like fault-tolerance and truly massive 
data storage. Other systems like CMU’s 
GraphChi are bringing streaming data 
into this model. 

We see emerging applications us-
ing systems combining STING’s focus 
on streaming, semantic data with the 

massive scale and fault tolerance of 
these frameworks built as a part of a 
larger dataflow system on massively 
multi-threaded architectures. 
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Figure 4. Speed-up over static connected components algorithm.
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