
37X R D S • s p r i n g 2 0 1 3 • V o l . 1 9 • N o . 3

feature

Analyzing massive streaming graphs efficiently requires new
algorithms, data structures, and computing platforms.

By Jason Riedy and David A. Bader
DOI: 10.1145/2425676.2425689

Massive Streaming
Data Analytics:
A graph-based approach

interfaces like Google’s Pregel. These
systems extract graphs from large data-
sets and perform heavy pre-processing
work for each analysis.

Often, the rapid growth of data in
many applications requires streaming
analysis to produce results with suf-
ficiently fast turn-around time, which
means that data must be analyzed as
it arrives. In the massive streaming
data analytics model, the graph itself
is viewed as an infinite stream of edge
insertions, deletions, and updates. Cur-
rently, systems that handle streaming
data support only aggregate informa-
tion like counts or averages. Streaming
analysis also opens new avenues to par-
allel processing.

There are many emerging applica-
tions, described in the next section,

The world is awash in data of all forms. Highway sensors generate continuous traffic
information, high-throughput sequencers produce vast quantities of genetic information,
people send text and images constantly, and more. Everyone recognizes that the sheer
volume of raw data already surpasses our analysis capabilities and keeps growing.

But how do we turn this data into insight? Our goal is to guide decisions with accurate
information derived from graph-structured data. Graphs—collections of vertices connected by
edges—provide some structure to the mess that is big data. These graphs are semantic, with
types given to edges and vertices, although not necessarily the well-curated semantic graphs

of the Semantic Web vision. The
graphs in our case are more ad-hoc,
but still contain vast amounts of use-
ful information.

In many cases, the data can be de-
composed into a primary signal, the
current trends, plus noise that may hold
the next signal. The primary signal of-
ten is easy to find. Take a social mes-
saging site like Twitter, for example.
Counting words or phrases that appear
in tweets allows identifying popular
topics and provides insight into trends,
as in the Euro 2012 final match between
Spain and Italy. At the final goal, Twit-
ter processed more than 15,000 mes-
sages per second [1], requiring great
scalability of their infrastructure. In
some cases, however, the main signal
may deceive. After the 2010 Haiti earth-

quake, initial analysis suggested a cor-
relation between building damage and
the number of text messages sent. How-
ever, after factoring in the context of the
messages, the counts had a slight nega-
tive correlation with damage [2].

Making future predictions based on
data is even more difficult. Most of the
noise observed, like forwarding a short-
lived joke shared among a lunch group,
does not have an impact. Sometimes,
as in computer network security, noise
in the data produces effects far beyond
its apparent magnitude. Determining
what noise is considered meaning-
ful in a fast and efficient way is a chal-
lenge. The current state-of-the-art tools
for graph analysis are often based on
MapReduce-like systems, sometimes
with bulk-synchronous parallel (BSP)

38

feature

X R D S • s p r i n g 2 0 1 3 • V o l . 1 9 • N o . 3

panies could prevent false positives and
boost overall quality.

Public policy and crisis management.
Initiatives like the United Nation’s Global
Pulse and the U.S. government’s Data.
gov recognize the importance of data and
real-time analysis to public policy from
planning to crisis response. Spanning
across domains including health, en-
ergy, and commerce, this data is highly
heterogeneous but linked through
people, places, and organizations.
Researchers are monitoring elections
through social media [4], analyzing the
effectiveness of public health alerts [5],
and helping journalists analyze collec-
tions of documents and records [6].

Context is very important through-
out this data. As mentioned earlier,
initial analysis of simply counting text
messages sent within grid cells during
the 2010 Haiti earthquake appeared to
track building damage. But that wasn’t
the case [2]. It’s clear that insight re-
quires deeper analysis to account for
correlations and interactions.

Network security. Many people carry
or use multiple devices to connect to

which require more complex graph
analysis. The computations involved
in complex graph analysis (which we
refer to as “kernels”) are notoriously
difficult to parallelize; the kernels re-
quire very little computation and of-
ten are highly synchronized. Memory
latency and bandwidth throughout
the memory hierarchy typically limits
these kernels’ performance. Opera-
tions for updating or changing mas-
sive graphs are often scattered and
require much less synchronization.
Working with batches of changes pro-
vides more opportunities for high per-
formance. The core of this article out-
lines our approach and summarizes
our framework, STING, for analyzing
spatio-temporal interaction networks
and graphs.

EMERGING APPLICATIONS
A few important applications of massive
streaming graph analysis are emerging;
they are discussed as follows.

Online social networks. Business in-
telligence company DOMO combined
sources to estimate that in one minute

on average, Facebook users share more
than 650, 000 pieces of content, Twit-
ter users post more than 100,000 mes-
sages, and Tumblr users publish almost
30,000 posts [3]. Some of this content
is highly valuable, showing upcoming
news or trends. Other pieces are useless
spam to be filtered away. Immediate
feedback of relative value or “spammi-
ness” to authors, advertisers, and com-

Everyone recognizes
that the sheer
volume of raw data
already surpasses
our analysis
capabilities and
keeps growing.
But how do
we turn this data
into insight?

39X R D S • s p r i n g 2 0 1 3 • V o l . 1 9 • N o . 3

the same online services. They assume
a level of security while simultaneously
expecting ease of use and adding the
confounding factor of multiple access
sources. Assuring security requires rapid
response to access and posting requests.
This is only one variant of the general
network security problem facing service
providers. Separating authorized access
from dangerous access while not alien-
ating users requires rapid response giv-
en the context of user identity, access
method, and service state. This exists
for services ranging from online social
networks to distributed file systems. Us-
ers need to be authorized rapidly given
varied contexts and policies.

Health informatics. The wealth of
long-term medical information collect-
ed by institutions like the Mayo Clinic
is slowly being digitized. This data adds
new information about family histories
to a network of diagnostic similarities.
The medical literature produces more
relationships between symptoms,
causes, and other factors. Doctors,
responders, administrators, and pol-
icy makers need different, up-to-date

Figure 1. A small example of a scale-free graph. In larger variants of such graphs,
the degree (number of edges) of different vertices can vary by orders of magnitude.

40

feature

X R D S • s p r i n g 2 0 1 3 • V o l . 1 9 • N o . 3

based and other common platforms.
We assume a small collection of atomic
operations is available to avoid explicit
locking. We also assume the processors
are highly multi-threaded to tolerate
some memory latency. Data structures
and algorithms are arranged to permit
both the autonomous multi-threading
available in most processors and coher-
ent multi-threading as in GPUs.

Classic parallel analysis of static
graphs that scale to massive data al-
most always builds trees through some
breadth-first search technique. These
methods are useful for initial analysis
but sacrifice too much performance.
Changing graphs are considered in
traditional dynamic algorithms work.
These algorithms tailor data structures
to individual analysis kernels, requiring
maintenance of many different massive
structures for different kernels. When
data size is a problem, multiplying that
size often is prohibitive. Other tradi-
tional approaches like streaming algo-
rithms assume much less information
is maintained per kernel, but that the
entire data is available for one or mul-
tiple passes. We would prefer focusing
only on the data that has changed from
one state to the next.

Our approach borrows ideas from
each of these but applies them for
massive, persistent data. By analyzing
batches of the data’s changes, we can
enhance the parallelism and trade-off
between aggregate performance and
analysis latency.

STING, A FRAMEWORK FOR
STREAMING, GRAPH-STRUCTURED
DATA ANALYSIS
To tackle graph analysis in the face of
big data, we are developing the STING
(Spatio-Temporal Interaction Networks
and Graphs) framework [9]. STING bal-
ances portability, productivity, and
performance for research and develop-
ment. Our young framework accumu-
lates batches of edge changes into a se-
mantic graph data structure, STINGER
(STING Extensible Representation), and
runs analysis kernels to monitor graph
properties. STING is a C framework por-
table across POSIX and OpenMP plat-
forms as well as the Cray XMT.

Kernels currently available in STING
include: (1) connected component
monitoring, (2) clustering coefficient

summaries of this disparate data. The
information needs to be recent but also
respectful of privacy concerns between
separate individuals and data stores.
The change is relatively slow, but health
informatics is leading in combining
disparate data across data with strong
privacy boundaries.

Financial analysis and monitoring.
Computer-driven, high-frequency trad-
ing systems trade stocks and commodi-
ties at rates far faster than human regu-
lators can monitor. The NYSE processes
more than four billion traded shares per
day [7]. Investors want rapid, focused
analysis and response combining not
only the current trades, but also auxil-
iary information like financial filings
and news stories. Regulators require
monitoring the overall health of var-
ied, interconnected markets to identify
anomalies. Current regulatory controls
do not handle interconnections in the
“fragmented and fragile” marketplace
[8], leading to instability like the flash
crash that occurred on May 6, 2012.

NEW ROUTES TO
PARALLEL PERFORMANCE
In the multi-everything era, codes per-
forming massive data analysis must
expose parallelism wherever possible.
Graph codes are notoriously difficult
to parallelize efficiently. Working in-
crementally using a streaming data
model offers new opportunities to ex-
ploit parallelism.

For now, we consider parallel plat-
forms providing a shared, global ad-
dress space to programs. Such a space
can be implemented over physically
distributed memory, as in the Cray
XMT, or within a single node, as in Intel-

Graph codes are
notoriously difficult
to parallelize
efficiently. Working
incrementally using
a streaming data
model offers new
opportunities to
exploit parallelism.

ACM Conference
Proceedings

Now Available via
Print-on-Demand!

Did you know that you can
now order many popular

ACM conference proceedings
via print-on-demand?

Institutions, libraries and
individuals can choose
from more than 100 titles
on a continually updated
list through Amazon, Barnes
& Noble, Baker & Taylor,
Ingram and NACSCORP:
CHI, KDD, Multimedia,
SIGIR, SIGCOMM, SIGCSE,
SIGMOD/PODS,
and many more.

For available titles and
ordering info, visit:
librarians.acm.org/pod

ACM Conference
Proceedings

Now Available via
Print-on-Demand!

41X R D S • s p r i n g 2 0 1 3 • V o l . 1 9 • N o . 3

tracking, (3) STINGER microbenchmarks,
and (4) a few example static analysis
kernels. Streaming community detection
and seed set expansion are scheduled
to be included soon.

The STINGER data structure. Our
STINGER data structure provides easy
and efficient methods to both insert
and remove edges from a scale-free
graph (a graph whose degree distribu-
tion follows a power law), while also
permitting fast querying of neigh-
bor information and other meta-
data about vertices and edges. The
STINGER specification does not spec-
ify consistency; the programmer must
assume that the graph can change un-
derneath the application.

The STINGER data structure resem-
bles an adjacency list graph structure.
Neighbors of each vertex are stored in a
linked list of “edge blocks.” Implement-
ing lists using a list of arrays is common
in many systems. The STINGER data
structure implements a hybrid between
packed arrays and linked lists, allow-
ing support of both rapid updates and
multi-threaded iteration. The dense
blocks are processed easily with vectors
or coherent threads, while the separate
blocks provide work for more general
but rapidly spawned threads.

Each directed edge stored in STING-
ER consists of a source vertex, a desti-
nation vertex, a weight, a last-modified
timestamp, an initial insertion time-
stamp, and an arbitrary semantic type
stored as an integer. Weights within a
single data store can be defined either
as integers or floating-point data. Un-
directed graphs are represented with
a pair of directed edges. Applications
may use the semantic types to distin-
guish between different kinds of edges
(as in an ontology), provide keys into
external databases, support permis-
sions, as well as other capabilities. The
two timestamps provide a sense of time
to analysis kernels without requiring
strict time keeping. Application codes
can traverse the graph structure di-
rectly through C macros or use a safer
interface. The safer interface provides a
function that gathers the edge list from
the various blocks and returns it to the
application in an array. This has the
double benefit of isolating the applica-
tion from changes in the data structure
as well as simplifying conversion of ex-

support multiple models. One model
is not to coordinate with the separately
running kernels at all. The kernels con-
tinually scan the data structure. This
is appropriate for low-performance
data auditing tasks. Another model is
to notify the kernels of the changes,
often only the affected vertices, ei-
ther before or after updating the data
structure depending on the kernel.
STINGER maintenance performance
is fast enough that this model is suf-
ficient in most practical applications.
Kernels needing extreme performance
at the cost of more complex program-
ming will be provided the changes si-
multaneously with the data structure
maintenance. This will be useful for
approximation algorithms and others
that assume a certain level of noise
in the data. Although our STINGER
data structure remains consistent,
the represented graph can suffer from
undirected edges only existing in one
stored direction.

EXAMPLE ALGORITHM: MONITORING
CONNECTED COMPONENTS
Scale-free graphs like social networks
often have one massive connected com-
ponent, where a path exists between
all pairs of vertices, and many smaller
outlying components. Knowing when
the small components merge or when
a group splits from the massive compo-
nent is useful both for general informa-
tion and to guide other algorithms (e.g.,
sampling for centrality approximation).
The STING distribution includes an
analysis kernel that maintains a map-
ping of vertices to connected compo-
nents subject to batches of edge inser-
tions and removals.

The analysis kernel is handed the
batch and the graph after updating.
With this, the algorithm maintains a
component label function c where c(i)
provides the component label of vertex
i. It also maintains a spanning tree for
each component; the root of the tree
serves as the component label. The
spanning tree is used for handling re-
movals and is a natural by-product of
the Shiloach-Vishkin parallel static
connected components algorithm.

Our algorithm processes inser-
tions before removals. Insertions are
straight-forward, but removals require
more effort. Given a component label

isting static codes that utilize the popu-
lar compressed sparse row format to
work with STINGER. On the Cray XMT,
we often observe that this safer “copy
out” strategy provides identical or bet-
ter performance for static codes using
STINGER compared to compressed
sparse row representations.

The STING pipeline. The currently
distributed example STING kernels are
self-contained. The two streaming ex-
ample kernels, which compute cluster
coefficients and maintain connected
components, work with a straight-for-
ward pipeline. Updates to the graph
(edge insertions and removals) are pro-
cessed in batches, where each batch
is pre-processed to reduce redundant
work. To update the graph, STING mod-
ifies the STINGER data structure and
provides the kernels with the batch and
the updated data structure.

To pre-process a batch, undirect-
ed edges are duplicated into a pair
of pseudo-directed edges stored in
STINGER. The batch is then sorted
and collapsed in parallel, combining
multiple actions on each source vertex.
In these examples, multiple insertions
increment the edge’s integer weight
but otherwise count as a single edge.
Insertions and removals are handled
in order of appearance within the in-
put batch of updates. Initial removals
only can take effect if the edge is in
the graph; this case is handled when
modifying the graph after batch pre-
processing. In general, different ker-
nels need different access to the graph
data. Future versions of STING will

Often, the rapid
growth of data in
many applications
requires streaming
analysis to produce
results with
sufficiently fast
turn-around time,
which means
that data must be
analyzed as it arrives.

42

feature

X R D S • s p r i n g 2 0 1 3 • V o l . 1 9 • N o . 3

tion through a search is the only known
method with sub-quadratic space com-
plexity to determine if the deleted edge
has cleaved one component into two.
In scale-free graphs, very few deletions
will separate components. We rely on
heuristics to identify the 99.7 percent of
effect-less deletions in our tests.

If an edge endpoint has degree one,
it is separated into its own compo-
nent easily. If the deleted edge is not
the stored tree edge, the component
remains connected. If some neighbor
can reach the component’s root along
existing tree edges, we repair the tree
by taking that neighbor as the cur-
rent vertex’s parent. If we cannot reach
the root, we save the vertex where the
search ended. After all the checks, we
attempt to repair the tree by trying a
neighbor search from all the unique
search-ending vertices. If all these at-
tempts fail, we queue effected vertices
until a user-defined threshold and then
re-run static connected components.
Each of these searches only follows tree
edges, limiting memory accesses.

We evaluate performance on an
Intel-based server. The server has
four 10-core hyperthreading E7-8870
processors at 2.4 GHz with 256 GiB of
1,333 MHz DDR3 memory. We emulate
a social network with a relatively small
R-MAT [10] generated graph with more
than 16.7 million vertices and 88 mil-
lion edges. R-MAT also generates the
edge actions, inserting a possibly du-
plicate edge with probability of 7/8 or
removing a previously inserted edge
with a probability of 1/8. Threads are
spread across processor sockets first,
then cores, and then hyperthreads.
Memory is interleaved across sockets
by 2 MiB pages using numactl.

For large batches of 30,000 edge ac-
tions or more, STING can maintain the
connected components at an aggregate
rate of over 105 updates per second us-
ing 20 threads. Figure 2 shows the ag-
gregate performance in updates per
second when varying thread counts
and batch sizes. Figure 3 translates the
performance into the latency between
beginning to analyze the batch and
updating the connected components.
Many applications prefer lower latency
to aggregate performance; STING batch
size parameters can support a range of
latency/performance trade-offs.

function c(i), inserting an undirected
edge {i, j} into a graph connects com-
ponents c(i) and c(j). In scale-free
graphs, the vast majority of inserted
edges are in the same component and
c(i) = c(j). Within a batch, these edges
produce no component changes and
can be ignored. The remaining inser-
tions join components.

We replace the vertices within a
batch’s inserted edges with their com-
ponent labels. A parallel counting sort

followed by a parallel uniqueness check
collapses the batch’s insertions into
the edges joining previously separate
components. We run a parallel, static
connected components algorithm on
this far smaller graph to identify which
components are to be merged, and then
we relabel the link the smaller compo-
nents and link their tree roots to the
largest component’s root.

Edge removal, as always seems the
case, is more complicated. Recomputa-

Figure 2. STING Aggregate performance in updates per second when varying thread
counts and batch sizes.

Number of threads

Co
nn

ec
te

d
co

m
po

ne
nt

 u
pd

at
es

 p
er

 s
ec

on
d

103.5

104

104.5

105

105.5

���

��� �
�
���� �

��
�
�� �

�����

�
�
� �

�

�

���

�

��

���
�
��

�

�
� ���

�

�

�
��

�

���

�

�

�
�
�

�

���

�
�
�

�
�

�
��
�

�
��

�
�� ���

���

��

�

���

�
�
� ��

� ���
���

���

���

�
�� �

�
�

���

��
� �

�
� �

��

��
�

���

���

���

���

���

�
�
�

���
�
��

���

���

���

�
�� ��

�

���

�

�
� �

�� ���

���

���

�
��

���

�
�
�

�
��

�
�� �

�
�

��
�

���

�
��

���

���
���

���

��
� �

��
���

���

���

10 20 30 40

Batch size

� 1000000

� 300000

� 100000

� 30000

� 10000

� 3000

� 1000

� 300

� 100

Figure 3. Latency between beginning to analyze the batch and updating the
connected components.

Number of threads

Se
co

nd
s

pe
r b

at
ch

 p
ro

ce
ss

ed

100

10–0.5

10–1

10–1.5

10–2

���

��� �

�
�

�
�
� �

��

�
�� �

��
���

�

�
�

�

�

�

���

�

��

���

�
��

�

�

� ���

�

�

�

�
�

�
���

�

�

�

�

�

�

���

�

�

�

�

�

�
���

�
��

�

��

���

���

��

�

���

�

�

� ��

� ���
���

���

���

�
�� �

�
�

���

��

� �
�
� �

�
�

�
�
�

���

���

���

���

���

�
�
�

�
��

�

�
�

���

���

���

�
�� ��

�

���

�

�
�

�
�� ���

���

���

�
��

���

�
�
�

�
��

�
�� �

�
�

���

���

�
�
�

���

��
�

���

���

��� �
��

���

���

��
�

10 20 30 40

Batch size
� 1000000

� 300000

� 100000

� 30000

� 10000

� 3000

� 1000

� 300

� 100

43X R D S • s p r i n g 2 0 1 3 • V o l . 1 9 • N o . 3

[6]	O verview; Visualization to Connect the Dots. Knight
Foundation. http://overview.ap.org

[7]	 Consolidated volume in NYSE listed issues, 2010 –
current. 2011. NYSE Euronext. http://www.nyxdata.
com/nysedata/asp/factbook/viewer_edition.asp?m
ode=table&key=3139&category=3

[8]	 Findings Regarding the Market Events of May 6,
2010; Report of The Staffs of the CFTC and SEC
to the Joint Advisory Committee on Emerging
Regulatory Issues. 2010. U.S. Commodity Futures
Trading Commission. http://www.sec.gov/news/
studies/2010/marketevents-report.pdf

[9]	 Bader, D. and Riedy, J., et al. STINGER: Spatio-
Temporal Interaction Networks and Graphs (STING)
Extensible Representation. 2012. http://www.
cc.gatech.edu/stinger.

[10]	 Chakrabarti, D., Zhan, Y., and Faloutsos, C. R-MAT: A
recursive model for graph mining. In the Proceedings
of the 2004 SIAM International Conference on
Data Mining (Nashville, TN, June 13-16). SIAM,
Philadelphia, 2004.

Biographies

E. Jason Riedy is faculty in the School of Computational
Science and Engineering at Georgia Tech as a Research
Scientist II. He primarily develops algorithms and tools
parallel analysis of dynamic social networks. His other
interests include high-performance and accurate
linear algebra, floating-point arithmetic, and parallel
combinatorial optimization. His Ph.D. in computer science
is from the University of California, Berkeley in 2010 in
combinatorial optimization and targeted high-precision
arithmetic.

David A. Bader is a full professor in the School of
Computational Science and Engineering, College of
Computing, at Georgia Institute of Technology, and
Executive Director for high performance computing. He
received his Ph.D. in 1996 from The University of Maryland.
His interests are at the intersection of high-performance
computing and real-world applications, including
computational biology and genomics and massive-scale
data analytics. He is a Fellow of the IEEE and AAAS, a
National Science Foundation CAREER Award recipient, a
co-founder of the Graph500 List for benchmarking “Big
Data” computing platforms. Bader is recognized as a
“RockStar” of high performance computing by insideHPC
and as HPCwire’s People to Watch in 2012.

© 2013 ACM 1529-4972/13/03 $15.00

The large latency of large batches
raises another performance question:
How does processing a large batch com-
pare with rerunning the fast static con-
nected components algorithm? Figure
4 provides the speed-up over static re-
computation. There is a distinct knee
in the curve; batches of 30,000 edge ac-
tions provide good speed-up and high
aggregate performance with a latency
of under 0.32 seconds. Also apparent
is that we need not allocate the entire
system to a single analysis kernel.
The peak performance is achieved
with at most 20 threads. We are ex-
perimenting to see how the memory
and thread resources affect multiple
analysis kernels’ performance.

RELATED WORK AND
FUTURE DIRECTIONS
Analyzing streaming, graph-structured
data combines, and leverages, work in
many areas from architecture to sys-
tems. The STING approach harnesses
current changes in computing architec-
tures. Highly multi-threaded architec-
tures are widely available ranging from
the massive yet general multi-thread-
ing of the Cray XMT to more modest
threading on Intel-based systems and
the massive but more coherent thread-
ing in general-purpose graphics pro-
cessing units.

Visualization has long relied on
dataflow systems like Data Explorer,
Khoros, and other tools to process
results as a batched pipeline. Tools
like IBM’s InfoSphere Streams and
Apache’s S4 are carrying this model
into data analysis as well. The current
tools focus on aggregate information
like counts but could be extended to
support graph structure.

Tools for massive data analysis for
graph-structured data, like Google’s
Pregel and Apache’s Hadoop-based
Giraph, work on a bulk-synchronous
model. Kernels work across the en-
tire data store in large, iterative steps.
These systems do not handle streaming
data, but do handle important issues
like fault-tolerance and truly massive
data storage. Other systems like CMU’s
GraphChi are bringing streaming data
into this model.

We see emerging applications us-
ing systems combining STING’s focus
on streaming, semantic data with the

massive scale and fault tolerance of
these frameworks built as a part of a
larger dataflow system on massively
multi-threaded architectures.

Acknowledgments
STING development and porting has
been supported in part through the
Intel Labs Academic Research Office
for the Parallel Algorithms for Non-
Numeric Computing Program, the
Center for Adaptive Supercomputing
Software - Multithreaded Architec-
tures at Pacific Northwest National
Laboratory, and the DARPA HPCS pro-
gram. Work identifying application
areas and needs has been supported
in part by these programs as well
as the National Science Foundation
through grant 1216898.

References

[1]	 Rios, M. Euro 2012 Recap. 2012. http://blog.twitter.
com/2012/07/euro-2012-recap.html

[2]	 Ball, P., Klingner, J., and Lum, K. Crowdsourced data
is not a substitute for real statistics. 2011. http://
benetech.blogspot.com/2011/03/crowdsourced-
data-is-not-substitute-for.html

[3]	 James, J. How Much Data is Created Every Minute?
2012. http://www.domo.com/blog/2012/06/how-
much-data-is-created-every-minute

[4]	 Georgia Tech team uses Twitter, blogs to monitor
elections in developing nations. Georgia Institute
of Technology. 2011. http://www.gatech.edu/
newsroom/release.html?nid=71154

[5]	 Frias-Martinez, E. and Frias-Martinez, V. Enhancing
Public Policy Decision Making using Large-Scale Cell
Phone Data. 2012. http://www.unglobalpulse.org/
publicpolicyandcellphonedata

Figure 4. Speed-up over static connected components algorithm.

Updates per second

Sp
ee

d−
up

 o
ve

r s
ta

ti
c

re
co

m
pu

ta
ti

on

101

100.5

100

10–0.5

103.5 104 104.5 105 105.5

101.5

Batch size

1000000

300000

100000

30000

10000

3000

1000

300

100

Threads

10

20

30

40

