
A New Parallel Algorithm for Connected Components in Dynamic Graphs

Robert McColl, Oded Green, David A. Bader
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, USA

Abstract—Social networks, communication networks, busi-
ness intelligence databases, and large scientific data sources
now contain hundreds of millions elements with billions of
relationships. The relationships in these massive datasets are
changing at ever-faster rates. Through representing these
datasets as dynamic and semantic graphs of vertices and edges,
it is possible to characterize the structure of the relationships
and to quickly respond to queries about how the elements in the
set are connected. Statically computing analytics on snapshots
of these dynamic graphs is frequently not fast enough to
provide current and accurate information as the graph changes.
This has led to the development of dynamic graph algorithms
that can maintain analytic information without resorting to full
static recomputation.

In this work we present a novel parallel algorithm for
tracking the connected components of a dynamic graph. Our
approach has a low memory requirement of O(V) and is
appropriate for all graph densities. On a graph with 512
million edges, we show that our new dynamic algorithm is
up to 128X faster than well-known static algorithms and
that our algorithm achieves a 14X parallel speedup on a x86
64-core shared-memory system. To the best of the authors’
knowledge, this is the first parallel implementation of dynamic
connected components that does not eventually require static
recomputation.

I. INTRODUCTION

In graph theory, given an undirected graph G = (V,E), a
connected component C ⊆ V ensures that for each s, t ∈ C
there is a path between s and t. Finding the connected
components of a graph is a well-studied problem. The
component labeling of a graph can be used as building block
within other calculations: betweenness centrality, community
detection, image processing, and others [8]. Hopcroft and
Tarjan [20] presented one of the first approaches for parti-
tioning a graph into connected components using a series
of Depth First Searches (DFS), one for each component.
Breadth First Search (BFS) can also be used in place of
DFS. Approaches relying only on DFS and BFS are aimed
at static graphs which can be thought of as snapshots of a
dynamic graph at an exact time.

In examining social networks such as Facebook, where
vertices and edges may represent people and friendships or
messages, the high rate of change makes computing many
analytics on snapshots of these massive graphs impractical as
the time between updates is much less than the time needed
to compute these analytics. This has led to the development

of algorithms for dynamic graphs in which edges can be
inserted or deleted. With respect to connected components,
edge insertions may join two different components, and edge
deletions may split one component into two. Given the graph
G and the components labels C, determining if an insertion
has joined two components can be done in O(1) time;
however, determining if a deletion has broken a component
is more expensive. Both of these scenarios must be detected
and handled by any dynamic graph algorithm.

In order to keep up with rapid changes, the algorithm
and its implementation must attain performance through full
system utilization and workload balancing. A strategy used
in this and other works is to aggregate updates into a batch
over time or until a certain number are collected. This batch
can then be applied in parallel. Batches increase the available
amount of parallel work and provide opportunities to reduce
redundant calculations between updates; however, they also
present synchronization challenges and the potential for
workload imbalance.

In this work, we show how to maintain an exact labeling
of the connected components of a dynamic graph with
millions of edges while applying batches of edge insertions
and deletions in parallel. To accomplish this task, we employ
a “parent-neighbor” sub-graph structure of up to a fixed size
O(V). In this sub-graph, parent and neighbor relationships
represent paths to the root of a breadth-first traversal of each
component. As long as each vertex has a path to the root,
the component is unbroken. In practice, we show that the
average case for maintaining this approach is much faster
than performing the O(V +E) work required to recompute
from scratch. The storage complexity is O(V).

The remainder of the paper will be structured as follows:
this section presents related work on serial and parallel con-
nected components algorithms for both static and dynamic
graphs. In Section II, we present our new algorithm and
the required data structures. In Section III, we will discuss
experimental methodology. Section IV gives quantitative and
performance results. Finally, in Section V, we will give
conclusions and future work.

A. Related Work

Many authors have published a variety of parallel algo-
rithms that compute solutions to the connected components
problem on shared-memory computers. Hirschburg et al.

246

978-1-4799-0730-4/13/$31.00 ©2013 IEEE

[19] presented the CONNECT algorithm, a classic parallel
algorithm to find the connected components in an undirected
graph. Two variations are presented, the first requires |V |2
processors and the second requires V dV logV e processors.
Both have a time complexity of O(log2V).

Shiloach and Vishkin [25] gave an
O(logV) algorithm that used |V | + 2|E| processors.
Because of its simplicity, parallelism, and load balancing
it has been implemented on several multi-core and many-
core systems. In the average case, it completes in ∼d/2
iterations, where d is the diameter of the graph.

Shiloach and Even present an algorithm that tracks con-
nected components in dynamic graphs as edges are removed
[24]. They accomplish this by maintaining a structure repre-
senting the vertices in the levels of breadth first search tree
for each component. For each deleted edge, if the vertices of
the edge are on the same level, the data structure does not
require updating. However, if they are on different levels
and the lower vertex has no other neighbors above it, the
lower vertex (and possibly a subtree) could potentially drop
a level or fall out of the tree altogether. Both of which require
updating the data structure. In more recent theoretical work
[23], a sequence of graphs are maintained, one per each edge
inserted, and reachability trees. The amortized update time
is O(E + V logV) and a worst-case query time of O(V).

In [12] a technique is shown that allows treating dense
graphs as sparse graphs - this is known as sparsification.
Sparsification is achieved by dividing the original graph into
smaller subgraphs with V vertices and O(V) edges. Certifi-
cates (aka graph properties) are computed for each subgraph.
This is followed by merging of these certificates. Ferragina
[15] uses the sparsification technique with the algorithm of
[21] to give an additional algorithm for computing static and
parallel connected components for a PRAM-like system.

Henzinger et al. [17] use a series of graphs in which
the vertices are colored based on their degrees to detect
new components in the face of deletions. Deleted edges
are removed from all of the graphs that are represented
and the colors are updated, then any O(V + E) connected
components algorithm is run on all graphs to discover
components containing only vertices of a certain color which
indicates the creation of a new component.

Henzinger and King [18] created another algorithm that
maintains several spanning trees in each component for
different levels of sparsity and performs updates on the trees
only when deletions occur in both the graph and the tree.

The problem with many of these streaming algorithms is
that they are too expensive to compute in practice, require
too much storage - even up to the size of the graph O(V +
E), ignore real world graph properties, or do not consider
practical multi-core and many-core systems.

B. Real World Graph Properties
In Albert et al. [1] the authors present the small-world

phenomena, which states that in many networks the distance
between two vertices is relatively small. It has been shown
that social networks have low diameters (maximal length of
the shortest path connecting any two vertices) [1]. Leskovec
et al. [22] define the effective diameter as the 90th percentile
distance of all the vertices. Using this definition limits the
effect of any tail-like structures in the graph.

Barabasi et al. [3] show that the distribution of the edges
over the vertices in the graph follows a power law. They
also discuss the concept of preferential attachment in social
networks, which states that highly-connected vertices are
more likely to be incident to insertions.

In Broder et al. [6] the authors show that World Wide
Web (WWW) has one connected component that contains
90% of the vertices in the graph. The work of Leskovec et
al. [22] confirmed that many real world networks have these
properties.

These properties help to motivate our work. Considering
them together, it is intuitive that a single edge deletion to a
high degree vertex is not likely to break apart a component.
Based on this, we posit that it should be possible to track
only a small portion of the edges around high degree vertices
or even a fixed number per vertex in order to maintain a
correct component labeling in these graphs.

C. STINGER - A Dynamic Graph Data Structure
STINGER [2] is an high-performance data structure de-

signed for dynamic graph problems. STINGER is a com-
promise between the massive storage and fast updates of
adjacency matrices and the minimal storage and static
nature of Compressed Sparse Row (CSR) representation.
STINGER has faster insertions and better locality than
traditional dynamic sparse structures like adjacency lists.
Further, STINGER is designed for parallelism such that
multiple threads can read and update the graph concurrently
[10].

STINGER has been used to implement a variety of
dynamic graph algorithms including clustering coefficients
[9], community detection, and betweenness centrality [16].
The reader is referred to [2] for additional details. We use
STINGER in this work to maintain the dynamic graph and to
provide a software platform for our algorithm. STINGER is
free and open source software co-developed by our group1.

II. TRACKING CONNECTED
COMPONENTS IN A DYNAMIC GRAPH

In the following section we present our new algorithm
for maintaining connected components for dynamic graphs.
We briefly discuss the concept of tracking connected com-
ponents in a dynamic graph. We follow this with an intro-
duction to our new algorithm and data structure. Finally,

1Available from http://www.stingergraph.com

247

Table I
THE DATA STRUCTURES MAINTAINED WHILE TRACKING DYNAMIC CONNECTED COMPONENTS.

Name Description Type Size (Elements)
C Component labels array O(V)
Size Component sizes array O(V)
Level Approximate distance from the root array O(V)
PN Parents and neighbors of each vertex array of arrays O(V · threshPN) = O(V)
Count Counts of parents and neighbors array O(V)
threshPN Maximum count of parents and neighbors for a given vertex value O(1)

ẼI Batch of edges to be inserted into graph array O(batch size)

ẼR Batch of edges to be deleted from graph array O(batch size)

the insertion and deletion approaches are discussed. For
simplicity, the pseudo code in this section does not explicitly
indicate atomic instructions.

Dynamic graph algorithms present several challenges
which include: 1) Correctness: for exact algorithms, the
results should be correct and consistent at fixed points in
time for the graph at that same point. 2) Parallelism: to
achieve the performance necessary to keep up with high-
speed data streams, an algorithm must be able to use all
of the resources available in the system. Additionally, syn-
chronization and communications need to be minimized. 3)
Time complexity: the complexity of the dynamic algorithm
should be better than that of the static; however, as long
as the real-world performance of the dynamic algorithm is
better on average on the data of interest, it may be tolerable
for the complexities to be equivalent. 4) Storage complexity:
this too should generally be comparable to or better than the
static case. Computing the connected components of a static
graph requires O(V +E) memory including the component
labels O(V) and the graph itself O(V+E). A dynamic graph
algorithm should not increase this bound. Given that the size
of the graph can be on the same scale as the total memory in
the machine, it is preferred that a dynamic graph algorithm
limit the amount of extras storage required to O(V).

Updating the connected components following an edge
insertion only requires a comparison of the component labels
of the vertices belonging to the edge. If the vertices have
the same component label, then the insertion operation is
complete. If the vertices have different component labels,
then the two independent components need to be relabeled
as the same component.

When maintaining a component labeling, edge deletion
is considerably more challenging to handle than edge in-
sertion. Deletions require determining if the deleted edge
was the single path connecting two otherwise independent
components. This is easy when the deleted edge is the only
edge incident to one (or both) of the vertices; however, if
both vertices have additional adjacencies, alternative path(s)
between the vertices may exist. Obviously it is possible to
use a SPSP (Single Pair Shortest Path) algorithm such as
BFS to verify that an alternative path exists. Unfortunately,
the worst case complexity for this is O(V + E) which is
the same as the complexity bound for computing connected

Algorithm 1 A parallel breadth-first traversal that
extracts the parent-neighbor subgraph.
Input: G(V,E)
Output: Cid, Size, Level, PN , Count
1: for v ∈ V do
2: Level[v]←∞, Count[v]← 0

3: for v ∈ V do
4: if Level[v] =∞ then
5: Q[0]← v, Qstart ← 0, Qend ← 1
6: Level[v]← 0, Cid[v]← v
7: while Qstart 6= Qend do
8: Qstop ← Qend

9: for i← Qstart to Qstop in parallel do
10: for each neighbor d of Q[i] do
11: if Level[d] =∞ then
12: Q[Qend]← d
13: Qend ← Qend + 1
14: Level[d]← Level[Q[i]] + 1
15: Cid[d]← Cid[Q[i]]

16: if Count[d] < threshPN then
17: if Level[Q[i]] < Level[d] then
18: PNd[Count[d]]← Q[i]
19: Count[d]← Count[d] + 1
20: else if Level[Q[i]] = Level[d] then
21: PNd[Count[d]]← −Q[i]
22: Count[d]← Count[d] + 1

23: Qstart ← Qstop

24: Size[v]← Qend

components. For the cases that the edge deletion did split
the connected component into two parts, it is necessary to
search and relabel the new components.

It becomes apparent that it is desirable to find a mecha-
nism that can state if the deletion is “safe”, meaning that
it is possible to state in O(1) time whether or not the
deletion could have broken a component. We require that
this mechanism have a 100% true positive rate – all deletions
marked as safe are truly safe, but allow for some false
negatives as the search and relabel process will appropriately
handle these cases.

The key challenge is minimizing the false negatives - the
cases where the mechanism suggests that the deletion is
unsafe when it actually is safe. This goes back to reducing
the need to search for an additional path between the vertices
to avoid doing the same work as static recomputation.

A. The Parents-Neighbors Sub-graph

In this subsection we present our algorithm and its respec-
tive data structure that has a low memory requirement of
O(V). Some approaches have higher memory requirements

248

Algorithm 2 The algorithm for updating the
parent-neighbor subgraph for inserted edges.
Input: G(V,E), ẼI , Cid, Size, Level, PN , Count
Output: Cid, Size, Level, PN , Count
1: for all〈s, d〉 ∈ ẼI in parallel do E ← E ∪ 〈s, d〉
2: insert(E, 〈s, d〉)
3: if Cid[s] = Cid[d] then
4: if Level[s] > 0 then
5: if Level[d] < 0 then
6: // d is not “safe”
7: if Level[s] < −Level[d] then
8: if Count[d] < threshPN then
9: PNd[Count[d]]← s

10: Count[d]← Count[d] + 1
11: else
12: PNd[0]← s

13: Level[d]← −Level[d]

14: else
15: if Count[d] < threshPN then
16: if Level[s] < Level[d] then
17: PNd[Count[d]]← s
18: Count[d]← Count[d] + 1
19: else if Level[s] = Level[d] then
20: PNd[Count[d]]← −s
21: Count[d]← Count[d] + 1

22: else if Level[s] < Level[d] then
23: for i← 0 to threshPN do
24: if PNd[i] < 0 then
25: PNVd[i]← s,
26: Break for-loop
27: ẼI ← ẼI\〈s, d〉
28: for all〈s, d〉 ∈ ẼI do
29: if Cid[s] 6= Cid[d] then
30: if Size[s] = 1 then
31: Size[s]← 0
32: Size[d]← Size[d] + 1
33: Cid[s]← Cid[d], PNs[0]← d
34: Level[s]← abs(Level[d]) + 1, Count[s]← 1
35: else
36: connectComponent(Input, s, d)

of O(V + E). This limits the size of graph that can be
analyzed. Further, a smaller memory footprint can allow
for better usage of the cache and reduced dependence on
memory bandwidth.

We call our data structure the parent-neighbor sub-graph.
This sub-graph is extracted using breadth-first traversals of
the original graph (one for each connected component). The
result is a directed sub-graph of the original undirected
graph. Each vertex will maintain a list of vertices that are
in the level above (“parents”) and/or in the same level
(“neighbor”) of the traversal where a level is a single frontier
in the search and parents / neighbors of a vertex must
be adjacent to that vertex in the original graph. Note that
if all the parents and neighbors were maintained then the
memory requirement of this would be O(V +E). Instead we
place a threshold (threshPN) on the total number of parent-
neighbors for each vertex. Given that each vertex can have
at most threshPN parent-neighbors, the storage requirement
of the parent-neighbor subgraph is O(V · threshPN). Since
threshPN is a constant O(1), the storage requirement can
be reduced to O(V). In Section IV we discuss the impact
of selecting threshPN .

This sub-graph is similar to the parent lists maintained

Algorithm 3 The algorithm for updating the
parent-neighbor subgraph for deleted edges.
Input: G(V,E), ẼR, Cid, Size, Level, PN , Count
Output: Cid, Size, Level, PN , Count
1: for all〈s, d〉 ∈ ẼR in parallel do
2: E ← E\〈s, d〉
3: hasParents← false
4: for p← 0 to Count[d] do
5: if PNd[p] = s or PNd[p] = −s then
6: Count[d]← Count[d]− 1
7: PNd[p]← PNd[Count[d]]

8: if PNd[p] > 0 then
9: hasParents← true

10: if (not hasParents) and Level[d] > 0 then
11: Level[d]← −Level[d]

12: for all 〈s, d〉 ∈ ẼR in parallel do
13: for all p ∈ PNd do
14: if p ≥ 0 or Level[abs(p)] > 0 then
15: ẼR ← ẼR\〈s, d〉
16: PREV ← Cid

17: for all 〈s, d〉 ∈ ẼR do
18: unsafe← (Cid[s] = Cid[d] = PREVs)
19: for all p ∈ PNd do
20: if p ≥ 0 or Level[abs(p)] > 0 then
21: unsafe← false
22: if unsafe then
23: if {〈u, v〉 ∈ G(E, V) : u = s} = ∅ then
24: Level[s]← 0, Cid[s]← s
25: Size[s]← 1, Count[s]← 0
26: else
27: Algorithm 4
28: repairComponent(Input, s, d)

in Brandes’s betweenness centrality algorithm [5]. In that
algorithm, every vertex has a list of the vertices in the level
above that are adjacent to it. Since each vertex stores a list of
up to the full size of its adjacency list, the memory required
for Brandes’s algorithm is O(V + E). The key differences
between our parent-neighbor sub-graph and the parent lists
of [5] are that we have placed a bound on the maximum
number of adjacencies in the list and that our list also stores
adjacent vertices that are on the same level.

B. Data Structure and Algorithm Details

Table I denotes the variables used by the algorithm and
data structure. We give a brief justification for the mem-
ory requirements. As each vertex knows the component it
belongs to and the size of its component, a total of O(V)
memory is required.

To store the partial list of parents and neighbors of a vertex
we have created an array called PN . To distinguish between
the parents and neighbors, the parents use positive numbers
and the neighbors use negative numbers. The benefit of such
an implementation is that there is a single array and single
counter for each vertex. Additional benefits include spatial
locality, reduced memory footprint vs. separate arrays, and
ease of programming. For this reason, vertices will be
indexed 1, 2, 3, .., |V |.

In the next subsection we further elaborate on the Level
array, yet, we want to note ahead of time that this array
does not maintain the actual distance from the root but
only an approximate distance as will become apparent. In

249

addition to this, we use “negative” distances to mark vertices
that potentially have lost all their parents yet still have
neighbors. These vertices should still have a path to the root
through their neighbors. The negative simply indicates to
other vertices that this vertex should not be depended on
when searching for a connection to the root.

As PN is an undirected sub-graph of a directed graph,
each inserted or deleted edge, (u, v), is taken care of twice
– once from v’s perspective and once u’s perspective.

C. Data Structure Initialization

Each vertex is initially unlabeled, its Level is set to ∞,
and its Counter is set to zero. Component sizes are set
to zero. In addition to the structures listed in Table I, a
temporary workspace of two |V | queues is used during the
initialization.

We use a series of parallel BFS traversals, one for each
connected component, to find and label the members of each
component and initialize the component sizes, parents, and
neighbors. Our BFS can be found in Algorithm 1. The first
unlabeled vertex is selected and enqueued. While the queue
is not empty, the edges of the vertices in the current frontier
are explored concurrently. Newly discovered vertices are
marked, enqueued to the next frontier, and a new parent is
inserted. For previously discovered vertices, two scenarios
of interest can arise: a new parent has been found or a new
neighbor has been found. These will be added to the PN
array.

Insertion of the current vertex as a parent or neighbor
only occurs if the total number of parents and neighbors
for the adjacent vertex is less than threshPN . Since the
BFS is level-synchronous, all parents of a vertex will be
found before even a single neighbor is found. Neighbors
will only be added to the parent-neighbor list if the vertex
did not have at least threshPN parents. Synchronization is
handled through atomic compare-and-swap operations on
the Level array and atomic fetch-and-add to enqueue newly
found vertices and to update the PN array and counter. For
simplicity these have not been marked in the pseudo code.

As a slight optimization, all edges connecting singleton
connected components are skipped in the first pass. Once the
larger components have been labeled, a parallel pass over all
vertices is used to initialize the singleton components.

D. Insertions and the Subgraph

For an edge insertion, the vertices on each edge are first
checked to see if they belong to the same component. The
pseudo-code for edge insertion can be found in Algorithm 2.
We differentiate two key scenarios for the insertion of edge
〈s, d〉: 1) the edge is within a connected component (intra-
connecting) and 2) the edge joins two components (inter-
connecting).

For the first, the levels of s and d are checked to see
if a new parent or neighbor relationship can be created.

Assume that Levels ≤ Leveld. If Counterd < threshPN

then s is added to PNd as a parent if (Levels < Leveld)
or as a neighbor otherwise, and Counterd is incremented.
If Counterd = threshPN and Levels < Leveld (i.e. s
can be a parent), d’s parents and neighbors are searched for
neighbors that could be replaced by the parent s.

The intra-connecting edges are handled in parallel. The
inter-connecting edges are handed consecutively upon com-
pletion of the intra-connecting edges.

When components are connected, a parallel BFS starts at
the joining vertex for the smaller of the two components
to relabel the smaller component’s members and add them
to the larger component’s tree in PN . For performance
purposes, singleton components are set aside during this
step. In the following step, all singletons handled in parallel.
Also, since two or more components could be connected
through multiple edge insertions within a single batch, inter-
connecting insertions are checked to see if the components
have already been rebuilt and relabeled by another insertion
before the parallel BFS rebuild is performed.

E. Deletions and the Subgraph

Once the data structure has been initialized, edge dele-
tions within the graph can be checked against the parents
and neighbors of the involved vertices to determine if the
deletion is safe. The pseudo-code for edge deletion can be
found in Algorithm 3.

Here we will focus on the deleted edge 〈s, d〉 from d’s
perspective again assuming Levels ≤ Leveld. Since the
graph is undirected, the same process is repeated for s. This
is crucial, as a deletion marked safe in one direction may
still be considered unsafe from the other.

To determine if the deletion was safe, if s is in PNd it is
removed, and PNd is searched for a remaining parent. If a
parent remains whose level is non-negative, a connection to
the root of the component must exist, the deletion is safe,
and nothing else needs to be done.

If d no longer has parents, a marker in the form of
Leveld ← −Leveld ,is placed to indicate this fact to the
neighbors of d. This marker will be removed only when an
inserted edge creates a new parent for d or PNd is recreated
during a component merger or split. If d still has neighbors,
they will be checked to see that they are still valid (i.e.
Level > 0), meaning that they have a path to the root. If
such a path exists, then d has a path to the root. If so, from
the perspective of d, the deletion was safe.

The first parallel for loop updates the parents and neigh-
bors of the vertices involved in the edge deletion. Note, that
the safety of the deleted edges is not confirmed by the end of
this loop. Due to parallel race conditions that may cause two
neighboring deleted edges to assume that they have paths
to the root through each other, the data structure must be
updated in the first parallel loop and safety must be checked

250

Algorithm 4 The algorithm for repairing the parent-neighbor subgraph when an unsafe deletion is reported.
Input: G(V,E), ẼR, Cid, Size, Level, PN , Count, s, d
Output: Cid, Size, Level, PN , Count
1: Q[0]← d, Qstart ← 0, Qend ← 1
2: SLQ← ∅, SLQstart ← 0, SLQend ← 0
3: Level[d]← 0, Cid[d]← d
4: disconnected← true
5: while Qstart 6= Qend do
6: Qstop ← Qend

7: for i← Qstart to Qstop in parallel do
8: u← Q[i]
9: for each neighbor v of u do

10: if Cid[v] = Cid[s] then
11: if Level[v] ≤ abs(Level[d]) then
12: Cid[v]← Cid[d]
13: disconnected← false
14: SLQ[SLQend]← v
15: SLQend ← SLQend + 1
16: else
17: Cid[v]← Cid[d]
18: Count[v]← 0
19: Level[v]← Level[u] + 1
20: Q[Qend]← v
21: Qend ← Qend + 1

22: if Count[v] < threshPN then
23: if Level[u] < Level[v] then
24: PNv[Count[v]]← u
25: Count[v]← Count[v] + 1
26: else if Level[v] = Level[v] then
27: PNv[Count[v]]← −u
28: Count[v]← Count[v] + 1

29: Qstart ← Qstop

30: if disconnected then
31: Size[d]← Qend

32: else
33: for i← SLQstart to SLQend in parallel do
34: Cid[i]← Cid[s]

35: while SLQstart 6= SLQend do
36: SLQstop ← SLQend

37: for i← SLQstart to SLQstop in parallel do
38: u← SLQ[i]
39: for each neighbor v of u do
40: if Cid[v] = Cid[d] then
41: Cid[v]← Cid[u]
42: Count[v]← 0
43: Level[v]← Level[u] + 1
44: SLQ[SLQend]← v
45: SLQend ← SLQend + 1

46: if Count[v] < threshPN then
47: if Level[u] < Level[v] then
48: PNv[Count[v]]← u
49: Count[v]← Count[v] + 1
50: else if Level[v] = Level[v] then
51: PNv[Count[v]]← −u
52: Count[v]← Count[v] + 1

53: Qstart ← Qstop

in a secondary parallel loop by verifying that each vertex
has it least one parent or valid neighbor.

For each unsafe deletion, the parent-neighbor graph needs
to be corrected. This is done using a partial parallel breadth
first traversal for which the pseudo-code can be found in
Algorithm 4. In an early version of the algorithm, the
approach was instead to perform a full search and simply
rebuild the component, but the performance of this approach
was found to be inferior to the presented approach.

The goal of this search is to find connections from the
starting vertex d back to the root of the component by
searching for other vertices in the same level that still have
parents or vertices in the level closer to the root.

Initially, d is marked as the root of a new component and
a BFS is begun to update PN data structure and component
labels. If a connection to the original component is not
found, the component is split into two and a new component
rooted at d is created by this search process. If the search
finds a connection back to the original component, the first
search ends and a second traversal is started to relabel and
rebuild part of the original component. The second traversal
begins from the set of vertices found in that last frontier
of the first and proceeds backward toward d. The resulting
sizes of the breadth first searches are used to reconcile the
component sizes. No vertices closer to the root than the
level of d will ever be added to the search or relabeled.
This limits the work of the search in the average case. Since
unsafe deletions are processed consecutively, the parents and
component labels are quickly checked before processing an

Table II
GRAPH SIZES USED IN OUR EXPERIMENTS FOR TESTING THE
ALGORITHM. MULTIPLE GRAPHS OF EACH SIZE WERE USED.

Totals edge per average degree
Vertices 8 16 32 64

2M 16M 32M 64M 128M
4M 32M 64M 128M 256M

16M 128M 256M 512M —

unsafe delete to determine if the unsafe condition has already
been repaired. As a result, in the worst case, the combined
number of edges traversed by all searches in this step is
limited to the number of edges in the graph; thus, the worst-
case performance is equal to that of a static re-computation.
As a slight optimization, vertices are checked to see if they
are of degree zero and are directly initialized to being their
own components.

III. EXPERIMENTAL METHODOLOGY

A. Synthetic Graphs and Experiments

Due to proprietary constraints, researchers do not always
have access to real social networks for investigation and
many of the datasets that are available are static. Further-
more, use of a single data set can limit the applicability of
experiments. Instead, synthetic networks are used. Generat-
ing synthetic networks gives experimenters control over the
size and properties of the network. Many works have been
written using the Erdös-Rènyi (ER) [13], [14] model which
uses a uniform random distribution for generating edges;
however, this tends to create one well-connected component

251

in which it is unlikely that an insertion or deletion would
ever connect or disconnect any components. As such, we do
not use this type of random graph.

In this work, we use an implementation of the Recursive
Matrix (R-MAT) [7] synthetic random graph generator.
This generator recursively divides the adjacency matrix
into quadrants, randomly selects one of these quadrants
with probabilities a, b, c, and d, and continues this process
recursively until the selected quadrant is of size one. For our
experimentation , we have used a = 0.55, b = c = 0.1, and
d = 0.25. R-MAT graphs mimic the structure of real social
networks in that they have a skewed degree distribution that
follows a power law and tend toward one large component
and many smaller components and singletons.

In this paper, we vary the size of the graph in terms of its
scale S and edge factor E, where the number of vertices is
2S and the number of edges is E ·2S . E thus corresponds to
the average degree. We used scales 21, 22, and 24 with edge
factors 8, 16, and 32 (qualitative results also include edge
factor 64). We refer to these graphs as R-MAT-21, R-MAT-
22, and R-MAT-24 with the average adjacencies. The sizes
of these graphs are listed in Table II. We generated three
graphs and an update stream for each scale and edge factor
combination using different random seeds. For example for
an R-MAT-21 graph with E = 8, three graphs and three
streams were generated.

An update stream consists of a series of edges to be
inserted or deleted. A fixed probability pdelete is used to
determine whether or not an update will be a deletion.
Deletions are selected from previous insertions.

In [10], [11] batches of 100K updates are used with
pdelete = 6.25%. For consistency, we use these parameters
as well. For each graph, 10 batches of 100K are used.
RMAT can potentially duplicate existing edges. We ignore
these as they already are in the graph. A single deletion
removes an edge regardless of the number of times that it
has been inserted.

The system used for our tests is a quad-socket system
with four 16-core AMD Opteron 6282 SE processors for a
total of 64 cores running at 2.6GHz. Each core has a private
1MB L2 cache, and each processor has a shared 16MB L3
cache. The system has 256GB of DDR3 RAM running at
1600MHz.

B. First Attempts

During the creation of our new algorithm, we attempted
several other approaches that were rejected due to being too
computationally demanding, requiring a full static recompu-
tation for each batch of 100K, or having limited parallel
scalability. These are presented here with a focus on how
deletions are handled:

1) Adjacency list intersection in the hope of finding two-
hop connecting paths. A similar approach with reasonable
performance was shown in [11]; however, at batches of 100k

0

500

1000

1500

2000

2500

8 16 32 64

threshPN=1

threshPN=2

threshPN=4

threshPN=6

threshPN=8

threshPN=12

Figure 2. Average number of unsafe deletes in PN data structure for
batches of 100K updates as a function of the average degree (x-axis) and
threshPN (bars).

it produces 750 unsafe deletes on average, thus requiring a
full static recompute.

2) Maintain a spanning tree for each component. If a
deleted edge is not in a tree, then it is considered safe. If the
edge is in the tree, then the tree and affected components
must be recomputed. In our experiments this approach is
able to mark 90% of all deletions as safe.

3) Maintain two independent spanning trees for each
connect component. Simply, find a spanning tree T , remove
T from G to create G′, and find a second spanning tree
T ′ in G′. Deletions are safe until a vertex has no parent
in either tree. When this occurs, the trees are recomputed
from scratch. This approach is able to mark 99.7% of the
deletes as safe, but this is not enough. This approach is also
computationally demanding relative to others.

4) Attempting a BFS from one or both vertices to find
a path between them. Given the low diameter, power law
distribution, and large single component tendency, this can
quickly encompass the entire component and most of the
graph.

IV. RESULTS

We present both quantitative and performance results.
In the quantitative results, we count how many deletions
removed relationships from the PN sub-graph, how many
insertions resulted in new relationships being added to the
PN sub-graph, and how many insertions resulted in a new
parent replacing an existing neighbor. We also track the
number of deletions reported as unsafe. In the performance
results, we show speedups over static re-computation, strong
scaling, and overhead given as a fraction of the total update
time spent maintaining the metric.

A. Quantitative

Fig. 1 depicts quantitative results for threshPN of 4, 6,
8, and 12 at different graph sizes. For a specific threshPN ,
different edge factors were tested from E = 8 to 64; these are
the abscissa. Due to the similarity of the results for R-MAT-
21 and R-MAT-22, we present charts only for the R-MAT-22
graphs.

We observe a trend that a decreasing number of deletions
and insertions affecting the PN sub-graph as the graph

252

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

8 16 32 64

Deleted neighbors

Deleted parents

Inserted neighbors

Inserted parents

Insert replacement

(a) threshPN = 4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

8 16 32 64

Deleted neighbors

Deleted parents

Inserted neighbors

Inserted parents

Insert replacement

(b) threshPN = 6

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

8 16 32 64

Deleted neighbors

Deleted parents

Inserted neighbors

Inserted parents

Insert replacement

(c) threshPN = 8

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

8 16 32 64

Deleted neighbors

Deleted parents

Inserted neighbors

Inserted parents

Insert replacement

(d) threshPN = 12

Deleted neighbors Deleted parents Inserted neighbors Inserted parents Insert replacement

Figure 1. Average number of inserts and deletes in PN array for batches of 100K updates for RMAT-22 graphs. The subfigures are for different values
of threshPN . Note that the ordinate is dependent on the specific bar chart. The charts for RMAT-21 graphs had very similar structure and have been
removed for the sake of brevity.

becomes denser. This is due to the fact that the fixed-
size sub-graph covers a smaller fraction of the total edges.
The number of neighbor replacements that occurs steadily
becomes greater than the number of inserted neighbors
and inserted parents. Based on Leskovec et al. [22], graph
densification causes a shrinkage in the graph diameter. As
such, in the initial data structure creation, the number of
parents that a vertex has goes up (on average) leading to
fewer replacements as edges are added. It can be further
inferred that as the graphs become denser E > 64, there
will be even fewer updates made to PN .

Looking across all of the subfigures, we see that the
number of insertions of parents (purple bars), neighbors
(green bars), and parents replacing neighbors (light blue)
increases with threshPN for a fixed average degree.

As the graphs become denser, it is more likely that a
deleted edge is in the PN sub-graph. This can reduce
performance due to the extra work in checking for discon-
nections. Moreover, as the threshPN increases, we see more
insertions and deletions into the PN sub-graph as expected.
However, the number of unsafe deletes is significantly small,
meaning that the data structure does not require significant
repairs.

Fig. 2 shows the number of unsafe deletions marked as a
function of the average degree for different threshPN for
the R-MAT-22 graph. The figure for the R-MAT-21 graph
is similar to R-MAT-22 and has been omitted. For any
given density, there are fewer unsafe deletes as the value of
threshPN increases. It is clear that using threshPN = 1
or threshPN = 2 is simply ineffective. For threshPN = 1,
each deletion from the data structure becomes an unsafe
delete. Increasing threshPN beyond 4 gives significantly
diminished returns in terms of he number of deletes marked
unsafe. For this reason, we chose threshPN = 4 for our
performance results.

1

2

4

8

16

32

64

1 4 16 64

Sp
e
e
d
u
p

Threads

8 16 32

Figure 3. Strong scaling results on RMAT-22 graphs with different average
degree as a function of the number of threads. Results include three graphs
at each average degree.

1

2

4

8

16

1 2 4 8 16 32 64

Sp
e
e
d
u
p

Threads

8 16 32

Figure 4. Speed up of the new algorithm over performing parallel static
recomputation after each batch on three different RMAT-22 graphs with
each average degree as a function of the number of threads.

B. Performance

In this section we present performance analysis of the
parent-neighbor sub-graph approach. We demonstrate the
scalability of our approach, compare performance versus a
parallel static recomputation after each batch, and examine
the effect of including updates to the parent-neighbor sub-
graph in the update cycle.

253

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32 64

%
 o

f
Ti

m
e

 in
 S

C
C

Threads

8 16 32

Figure 5. Fraction of the update time spent updating connected components
over time spent updating the graph structure and connected components.

We compare our new algorithm to a parallel implemen-
tation based on the Shiloach-Vishkin [25] algorithm that
has been experimentally determined to perform better than
traditional BFS on R-MAT graphs stored the STINGER
data structure. Although this implementation is not the
most work-efficient, it is scalable and highly parallel with
good workload balance, has low synchronization costs, and
performs well for graphs with low diameter. As a reminder
from the previous subsection, our results use threshPN = 4.

Fig. 3 gives strong scaling results (holding the amount of
work constant while increasing the number of threads/cores)
for our algorithm on nine different R-MAT-22 graphs, three
different graphs for each edge factor (8, 16, and 32). The
threads are increased in multiples of 2 from 1 to 64. The
plot shows nearly linear but not optimal scaling up to 32
threads in comparison with a single thread. The speedup is
10.5x at 32 threads and 12.8x at 64 threads.

Looking across the average adjacencies, the trend is
similar. At higher thread counts, increasing density results
in slight improvements in the average speedup. This is due
to a combination of increases in the amount of work that
can be performed in parallel and fewer joined and broken
components at higher densities.

Fig. 4 shows the performance improvement of using the
parent-neighbor sub-graph approach over recalculating the
connected components using the parallel static Shiloach-
Vishkin implementation after each batch. This is shown
for multiple graphs with different average degrees and is
also shown at each thread count. We show that the speedup
ranges from an average of 1.8x for an average degree of 8
up to 30.8x for an average degree of 32 with a maximum of
48.3x. A key insight in this graph is that the implementation
of our algorithm on STINGER and our implementation of
static connected components on STINGER have the same
scalability. This can be inferred from that fact that the ratio
between the time of the PN update and the static recom-
putation remains constant as the thread count is increased.

In Fig. 5, a similarly equal scalability is shown. This
graph shows the percentage of the time taken to perform
the PN updates in each update cycle (where the full time

1

2

4

8

16

32

64

128

256

8 16 32

Sp
ee

d
u

p

Edge Factor

Figure 6. Speed up over performing static recomputation after each batch
on scale 24 graphs for three graphs at each edge factor using 64 threads.

for the cycle also includes updating the STINGER graph
structure itself). The fraction of the time taken by the PN
updates at a given edge factor remains constant as the thread
count is increased. As the density increases, the updates
cost less time due to components splitting and merging
less frequently. This is evident in the increased speedup in
Fig. 4. The static cost remains constant regardless of how
often components merge or split, but our approach becomes
faster. At the same time, updating the data structure has
increasing cost with increasing density due to the greater
number of edges per vertex that must be traversed to insert or
remove and edge. More information on the implementation,
performance and scalability of updates in STINGER can be
found in [10].

Fig. 6 shows speedup over performing static recomputa-
tion after each batch for scale 24 graphs at edge factors up
to 32 using 64 threads. We see a similar speedup trend to
scale 22. The variance across the graphs of the same size
shows that our algorithm is more sensitive to the structure
of the graph and which edges are inserted and deleted
while the static algorithm is extremely consistent and load
balanced. The graph also shows that denser graphs give
much better results, with the third scale 24 edge factor 16
graph performing 1.26 million updates per second while
tracking connected components - 137x faster than static
recomputation.

V. CONCLUSIONS

In this work we presented a novel parallel low-memory
algorithm and data structure for maintaining a labeling of
the connected components in a dynamic graph. We have
shown that the algorithm performs well on sparse graphs and
that by tracking only a few edges per vertex (threshPN)
the number of unsafe deletes is reduced resulting in high
performance. We have shown that the new dynamic graph
algorithm outperforms a well-known static algorithm and
that it has the same parallel scalability. Further, we have
shown good strong scaling results despite our algorithm
containing some sections with only fine-grain parallelism.

Beamer et al. [4] have shown a BFS algorithm that
searches from the undiscovered vertices once half of all

254

vertices have been found. This outperforms traditional BFS
due to a large number of edge traversals in the traditional
BFS that do not find new vertices. Given that our algorithm
uses a BFS in both the initial stage and the streaming stage,
an efficient implementation of the Beamer algorithm for
STINGER data structure should be investigated.

ACKNOWLEDGEMENTS

Funding was provided by the U.S. Army Research Office
(ARO) and Defense Advanced Research Projects Agency
(DARPA) under Contract Number W911NF-11-C-0088. The
content of the information in this document does not nec-
essarily reflect the position or the policy of the Govern-
ment, and no official endorsement should be inferred. The
U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation here on.

REFERENCES

[1] R. Albert, H. Jeong, and A. Barabási, “Internet: Diameter of
the world-wide web,” Nature, vol. 401, no. 6749, pp. 130–
131, Sep 09 1999.

[2] D. A. Bader, J. Berry, A. Amos-Binks, D. Chavarría-Miranda,
C. Hastings, K. Madduri, and S. C. Poulos, “STINGER:
Spatio-Temporal Interaction Networks and Graphs (STING)
Extensible Representation,” Georgia Institute of Technology,
Tech. Rep., 2009.

[3] A.-L. Barabási and R. Albert, “Emergence of scaling in
random networks,” Science, vol. 286, no. 5439, pp. 509–512,
1999.

[4] S. Beamer, K. Asanovic, and D. Patterson, “Direction-
optimizing breadth-first search,” in High Performance Com-
puting, Networking, Storage and Analysis (SC), 2012 Inter-
national Conference for. IEEE, 2012, pp. 1–10.

[5] U. Brandes, “A faster algorithm for betweenness centrality,”
Journal of Mathematical Sociology, vol. 25, no. 2, pp. 163–
177, 2001.

[6] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Ra-
jagopalan, R. Stata, A. Tomkins, and J. Wiener, “Graph
structure in the web,” Computer Networks, vol. 33, pp. 309
– 320, 2000.

[7] D. Chakrabarti, Y. Zhany, and C. Faloutsos, “R-MAT: A
recursive model for graph mining,” in SIAM Proceedings
Series, 2004, pp. 442–446.

[8] M. B. Dillencourt, H. Samet, and M. Tamminen, “A general
approach to connected-component labeling for arbitrary im-
age representations,” Journal of the ACM (JACM), vol. 39,
no. 2, pp. 253–280, 1992.

[9] D. Ediger, K. Jiang, J. Riedy, and D. Bader, “Massive stream-
ing data analytics: A case study with clustering coefficients,”
in Parallel & Distributed Processing, Workshops and Phd
Forum (IPDPSW), 2010 IEEE International Symposium on.
IEEE, 2010, pp. 1–8.

[10] D. Ediger, R. McColl, J. Riedy, and D. Bader, “Stinger: High
performance data structure for streaming graphs,” in Proc.
High Performace Embedded Computing Workshop (HPEC
2012), Waltham, MA, Sep. 2012.

[11] D. Ediger, J. Riedy, D. Bader, and H. Meyerhenke, “Tracking
structure of streaming social networks,” in Parallel and Dis-
tributed Processing Workshops and Phd Forum (IPDPSW),
2011 IEEE International Symposium on, may 2011, pp. 1691
–1699.

[12] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig,
“Sparsification-a technique for speeding up dynamic graph
algorithms,” Journal of the ACM (JACM), vol. 44, no. 5, pp.
669–696, 1997.

[13] P. Erdös and A. Rényi, “On random graphs I,” Publicationes
Mathematicae, pp. 290–297, June 1959.

[14] ——, “The evolution of random graphs,” Magyar Tud. Akad.
Mat., pp. 17–61, 1960.

[15] P. Ferragina, “Static and dynamic parallel computation of con-
nected components,” Information processing letters, vol. 50,
no. 2, pp. 63–68, 1994.

[16] O. Green, R. McColl, and D. A. Bader, “A fast algorithm for
incremental betweenness centrality,” in Proceedings of the 4th
ASE/IEEE International Conference on Social Computing,,
ser. SocialCom ’12, 2012.

[17] M. R. Henzinger, V. King, and T. Warnow, “Constructing
a tree from homeomorphic subtrees, with applications to
computational evolutionary biology,” Algorithmica, vol. 24,
pp. 1–13, 1999.

[18] M. R. Henzinger and V. King, “Randomized fully dynamic
graph algorithms with polylogarithmic time per operation,” J.
ACM, vol. 46, no. 4, pp. 502–516, Jul. 1999.

[19] D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate, “Com-
puting connected components on parallel computers,” Com-
mun. ACM, vol. 22, no. 8, pp. 461–464, Aug. 1979.

[20] J. Hopcroft and R. Tarjan, “Algorithm 447: efficient algo-
rithms for graph manipulation,” Commun. ACM, vol. 16,
no. 6, pp. 372–378, Jun. 1973.

[21] C. P. Kruskal, L. Rudolph, and M. Snir, “Efficient parallel
algorithms for graph problems,” Algorithmica, vol. 5, no. 1-
4, pp. 43–64, 1990.

[22] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution:
Densification and shrinking diameters,” ACM Trans. Knowl.
Discov. Data, vol. 1, no. 1.

[23] L. Roditty and U. Zwick, “A fully dynamic reachability algo-
rithm for directed graphs with an almost linear update time,”
in Proceedings of the thirty-sixth annual ACM symposium on
Theory of computing, ser. STOC ’04. New York, NY, USA:
ACM, 2004, pp. 184–191.

[24] Y. Shiloach and S. Even, “An on-line edge-deletion problem,”
J. ACM, vol. 28, pp. 1–4, January 1981.

[25] Y. Shiloach and U. Vishkin, “An o(logn) parallel connectivity
algorithm,” Journal of Algorithms, vol. 3, no. 1, pp. 57 – 67,
1982.

255

