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Abstract—The study of genomes has been revolutionized by sequencing machines that output many short overlapping substrings

(called reads). The task of sequence assembly in practice is to reconstruct long contiguous genome subsequences from the reads.

With Next Generation Sequencing (NGS) technologies, assembly software needs to be more accurate, faster, and more memory-

efficient due to the problem complexity and the size of the data sets. In this paper, we develop parallel algorithms and compressed data

structures to address several computational challenges of NGS assembly. We demonstrate how commonly available multicore

architectures can be efficiently utilized for sequence assembly. In all stages (indexing input strings, string graph construction and

simplification, extraction of contiguous subsequences) of our software PASQUAL, we use shared-memory parallelism to speed up the

assembly process. In our experiments with data of up to 6.8 billion base pairs, we demonstrate that PASQUAL generally delivers the

best tradeoff between speed, memory consumption, and solution quality. On synthetic and real data sets PASQUAL scales well on our

test machine with 40 CPU cores with increasing number of threads. Given enough cores, PASQUAL is fastest in our comparison.

Index Terms—Parallel algorithms, de novo sequence assembly, parallel suffix array construction, shared memory parallelism, high-

performance bioinformatics

Ç

1 INTRODUCTION

AN organism’s genome consists of base pairs (bp) from two
strands of complementary bases. Reading a sequence of

these bases or base pairs is termed as genome sequencing. This
process is central to the study of genomes for bioinforma-
ticians. No current sequencing technology is capable of
reading the code of life in its entirety in one go. Instead,
Whole-Genome Shotgun (WGS) sequencing machines sam-
ple random positions. They output a large number of
genome fragments called reads. Sequence assembly refers to
arranging and merging the reads into longer contiguous
subsequences (contigs) with the goal of reconstructing the
original sequence. We focus here on de novo assembly, where
no reference sequence aids the reconstruction.

Next Generation Sequencing (NGS) technologies pro-
duce a huge number of reads in a short amount of time and
have thus reduced the experimental cost per base drasti-

cally [21]. They have opened up opportunities to study
organisms at the genome level, promising a deeper

understanding of genome regulation and biological me-
chanisms [16]. A thorough study can assist in designing
more effective drugs. With the advent of NGS technologies,
computational biology experiences a fundamental shift. By
sequencing genomes more rapidly, researchers can study
the evolution of viruses and bacteria already during an
outbreak [17].

1.1 Motivation

Compared to previous sequencing machines, NGS technol-
ogies produce shorter reads (typically 35 to 400 bp) and
demand a higher coverage (the ratio of the total length of all
reads to the genome length) to account for small read
lengths and issues such as measurement errors [10]. The
typical number of reads generated by NGS technologies is
in the order of several millions up to a few billion,
depending on genome size and coverage. With improving
technologies one can expect the data sets to grow larger.
Consequently, assembly becomes even more demanding in
terms of running time and memory consumption. As an
example, experiments on 39 million bp data have been
reported to take days on a workstation [4]. A fundamental
shift in scientific discovery, however, can only be fully
realized with sufficiently fast assembly techniques.

Several state-of-the-art tools for de novo WGS assembly
model the problem as finding a cyclic superwalk in a de
Bruijn graph [18]. The vertices in the de Bruijn graph
represent k continuous base pairs, called k-mers. Edges
represent a suffix-prefix overlap of length k� 1 between two
k-mers, see Fig. 1 in the Supplementary Material (SM), which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPDS.2012.
190. Since this method explores a relatively small search
space by limiting k, it is very fast. However, de Bruijn graph

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 5, MAY 2013 977

. X. Liu is with the School of Computational Science and Engineering,
College of Computing, Georgia Institute of Technology, 500 Northside Cir.
NW Apt MM5, Atlanta, Georgia 30309. E-mail: xing.liu@gatech.edu.

. P.R. Pande is with the School of Computational Science and Engineering,
College of Computing, Georgia Institute of Technology, 39887 Cedar Blvd,
Unit 149, Newark, CA 94560.

. H. Meyerhenke is with the Institute of Theoretical Informatics, Karlsruhe
Institute of Technology (KIT), PO Box 6980, Karlsruhe 76128, Germany.
E-mail: meyerhenke@kit.edu.

. D.A. Bader is with the School of Computational Science and Engineering,
College of Computing, Georgia Institute of Technology, 266 Ferst Drive,
Atlanta, GA 30332. http://www.cc.gatech.edu/~bader

Manuscript received 15 Aug. 2011; revised 4 June 2012; accepted 4 June 2012;
published online 22 June 2012.
Recommended for acceptance by S. Aluru.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2011-08-0540.
Digital Object Identifier no. 10.1109/TPDS.2012.190.

1045-9219/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society



assembly tends to multiply sequencing errors as every
incorrect base may introduce up to k erroneous vertices
[18, p. 325]. Also, a reduced search space may miss overlaps.

Given the fact that the read lengths are increasing again
with emerging sequencing technology [24], recent assem-
blers have switched back to the previously popular Over-
lap/Layout/Consensus (OLC) approach [26], [6]. This
approach finds overlaps between reads explicitly, by using
indexes based on either hashing or string matching. Some
OLC assemblers do not construct an index, but perform a
pairwise read alignment with quadratic time complexity.
Comparing only reads with sufficient overlap is an
improvement, but still prohibitive for large NGS inputs.
Overlaps are modeled by OLC tools with an overlap graph
(or a variant, the string graph [19], see Fig. 2 in the online
SM), on which suitable traversal algorithms detect the
sequence layout (relative order of reads) and consensus
(final alignment covering the genome).

1.2 Outline and Contribution

To cope with massive sequencing data, we present parallel
assembly techniques developed as part of our software
PASQUAL, short for PArallel SeQUence AssembLer. Follow-
ing the OLC approach, we develop and implement a
combination of parallel algorithms and data structures. For
instance, we adapt recent advances in string matching to
accelerate the computation of overlaps between reads.
Most data structures and procedures in PASQUAL ap-
peared similarly in previous work [9], [26]; we improve
them by parallelism and other algorithm engineering
optimizations. PASQUAL uses OpenMP and is designed
for shared memory parallelism.

The general structure of PASQUAL is a division into three
stages (also see Section 1 in the online SM), following
established OLC assemblers. After presenting background
information and related work in Section 2, we describe the
first stage in Section 3. There, the collection of reads obtained
from sequencing machines is fed into a tailor-made parallel
algorithm for the expensive, but crucial preprocessing step
of index construction. Our algorithm constructs a suffix
array for biological sequences in parallel and is key to
achieving good overall parallel performance and memory
efficiency due to a subsequent compression step.

Indexing is followed by an overlap search and by the
construction of a graph that leads to an approximate read
layout. In PASQUAL, we use a string graph; our parallel
algorithm for constructing it is detailed in Section 4. The
final stage is to determine the precise layout of the reads
and to extract contigs from the string graph in parallel. It
uses mostly graph manipulations and traversal, see
Section 5. In our descriptions, we focus on important
design choices for parallelism.

Our experimental results in Section 6 demonstrate that
multithreaded PASQUAL is the fastest tool in the majority of
experiments. At the same time its solution quality on
simulated data sets is mostly comparable to the results of
four competitors, three of which are run in parallel. For real
data sets, PASQUAL is always the fastest tool. In terms of
quality, all tools seem to require further improvements.

Due to the use of compressed data structures, PASQUAL

is capable of handling data with billions of bases. Unlike

SOAPdenovo, the only tool with fairly comparable speed,
PASQUAL is not restricted to k-mer (or overlap) lengths
smaller than 128—and PASQUAL produces significantly
fewer misassembled contigs.

2 PRELIMINARIES

2.1 Biological Background and Notation

A genome of a higher organism is composed of a sequence
of DNA bases, where a base can be one of four molecules
abbreviated by A, C, G, and T. DNA usually comes with
two strands in the form of a double helix. Since bases pair
up with a fixed complement (A-T, C-G), it is sufficient to
reconstruct one of the strands.

The sequence assembly problem has originally been
modelled as a variation of the NP-hard shortest common
superstring problem [11]: given a collection of strings R ¼
fR1; R2; . . . ; RNg (the reads) with combined total length n,
find the shortest string s such that every string from the
collection is a substring of s. As sequenced reads have
numerous repeats and sequencing errors, several other
models have been developed for practical purposes, e.g., a
superwalk in a de Bruijn graph (cf. Fig. 1 in the online SM)
or the Overlap/Layout/Consensus model. Due to the same
reason, one strives for the recovery of the genome as a set of
large contiguous subsequences, called contigs, and uses
heuristics to cope with sequencing errors.

We use the following notation. Let R be the input
collection of N reads and l the length of the reads in the
collection. Thus, n :¼

PN
i¼1 jRij ¼ ðl �NÞ is the total length of

all the reads in R. The jth symbol in the ith read is
represented by using the index notation Ri½j�. The suffix of
read Ri starting at the jth symbol in Ri is denoted by Ri½j; l�.
Each input character is drawn from the alphabet �0 ¼
fA;C;G; Tg. We let � :¼ �0 [ f$g and make the usual
assumption that each Ri is terminated by $, which is
lexicographically smaller than all characters in �0.

2.2 Related Work

The two main recent graph-based modeling approaches to
sequence assembly have been based on either de Bruijn
graphs or Overlap/Layout/Consensus. We focus our
description on tools following these approaches, as the
techniques proposed in our paper are best applicable in this
context. For a detailed treatment we refer to surveys [18],
[20], [21], [22].

Numerous sequence assemblers follow the de Bruijn
graph or OLC approach such as ALLPATHS [4], SSAKE
[27], QSRA [2], and SHARCGS [7]. To put these tools into
perspective, we refer to Zhang et al.’s comparison [30] of the
practical execution time and memory consumption of these
and several other assemblers for various sequences; as an
example, an assembly of the E. coli genome (�4:6 Mbp in
size) using the above tools takes hours. The tools in our
comparison take at most a few minutes on a larger data set.
For our detailed experimental comparison, we select Velvet
[28], Edena [9], SOAPdenovo [13], and ABySS [25]. The first
three are also used by Zhang et al. [30] and perform well in
large parts of their study.

Velvet is a de Bruijn graph NGS assembler that is
primarily designed to handle short reads. It uses a hash
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table to index the k-mers created from the reads. String
searches are facilitated by a splay-tree. Edena is an
assembler based on the OLC approach. It addresses the
inefficiency of the naive OLC method by using exact
matching and suffix arrays [9, p. 5]. Edena is able to handle
millions of reads on a desktop computer. Although Edena is
significantly slower than Velvet (cf. [30]), we include it in
our experiments to compare PASQUAL to an OLC assem-
bler. Velvet has been parallelized to some extent with
OpenMP, while Edena is sequential. We do not consider the
FPGA-accelerated version of Velvet [5] due to its special
hardware architecture. The improved algorithms and
extensive parallelism in PASQUAL make our tool much
faster than both Velvet (OpenMP version) and Edena.

SOAPdenovo is a de Bruijn graph based parallel
assembler that uses pthreads to accelerate the assembly
process on a shared memory system. YAGA [10] and ABySS
are distributed parallel assemblers using MPI. Both of them
also use the de Bruijn graph approach. Thus all three share
the same drawbacks of other de Bruijn graph assemblers.
Unlike Velvet, YAGA, and ABySS explicitly sort the k-mers,
since this is easier to parallelize than a splay tree. The
source code for YAGA is not publicly available, hence we
use ABySS and SOAPdenovo as our major parallel
standards of reference in the experiments.

Related techniques for speeding up the assembly process
are described in Section 2.2 of the online SM.

3 PARALLEL INDEX CONSTRUCTION

The first stage in PASQUAL’s assembly process requires the
construction of a full text index on the collection of reads to
allow for fast overlap searches between reads. The steps of
this stage are duplicate removal, suffix array construction,
and compressed index construction.

3.1 Removing Duplicate Reads

As first step we use a Bloom filter [1] (for some background
cf. Section 3.1 of the online SM) to remove duplicate reads
from the data set. Duplicate reads occur multiple times in
the input or equal the reverse complement of another read.
By removing duplicates we save both time and space in the
upcoming assembly stages, since fewer reads have to be
indexed and searched. Also, the resulting string graph is
smaller. The design choice may induce, however, more
ambiguous multiple edges in the string graph. These
multiple edges must be resolved in a later graph simplifica-
tion step (Section 5.1). In future work, we plan to assemble
statistics about the distribution of multiple reads. This can
help to distinguish repeats from sequencing errors, infor-
mation we do not use so far.

Some other OLC assemblers also remove duplicate reads,
e.g., Edena. De Bruijn graph-based assemblers have the
related problem of identifying already found k-mers.
Various data structures are used for this purpose, e.g., hash
tables and splay trees in Velvet and sparse hashmaps in
ABySS. The drawback of splay trees is theirOðlognÞ response
time. Sparse hashmaps as well as Bloom filters, the latter
being used in PASQUAL, are related and able to tradeoff
speed with memory consumption. In our experiments with
PASQUAL using a Bloom filter, we save 10-50 percent total

time and space by the duplicate removal. Due to the overlap
in the sequences, the false positives caused by the Bloom
filter hardly affect correctness nor quality.

3.2 Parallel Suffix Array Construction

Suffix arrays [14] are very popular for text indexing
purposes. The suffix array SA½1 : n�ðsÞ of a string s is an
array of pointers to the suffixes of s in lexicographic order. It
can answer queries of the form “Is s a substring of T?” in time
Oðjsj þ log jT jÞ. For our collection of reads fR1; R2; . . . ; RNg,
we construct a generalized suffix array by representing the
collection as a string R ¼ R1$R2$ . . .RN$, which is a
concatenation of all ($-terminated) reads. Table 1 in the
online SM shows an example for the two reads “ACG$” and
“GTA$.”

Suffix array construction algorithms (SACAs) have been
studied intensively in the literature. Puglisi et al. [23]
compare more than 20 algorithms regarding their efficiency.
More recent practical SACAs include [15], [29]. In Section 3.2
of the online SM, we argue why none satisfies all our
requirements. Our parallel index construction algorithm is
mainly based on the sequential LS algorithm [12], whose
asymptotic running time is Oðn lognÞ. Interestingly, SACAs
with asymptotic linear running time are usually not faster
in practice [23].

LS proceeds in phases, in each of which the Ternary-Split
Quicksort (TSQS) is used to sort the suffix array according
to the lexicographic order of the first h (initially, h :¼ 1)
characters of each suffix. Then, the position and length of
each bucket that holds the suffixes with the same initial h
symbols are stored. In the next phase, h is doubled and the
buckets of the last phase are sorted as before, yielding new
buckets. The suffix array can be constructed by logn such
phases, each of which runs in time OðnÞ [12]. Recall that the
input collection of reads is a concatenation of all the $-
terminated reads and the $ symbols are lexicographically
smaller than all the other symbols in the string. For our
special case, the order of the suffixes can be determined by
at most log l (instead of logn) phases, where l is the
(maximum) read length. That means we have a time
complexity of Oðn � log lÞ by using the LS algorithm (which
is linear in the input size if l is seen as a constant).

At first glance, the parallelization of LS seems rather
intuitive since within each phase, every bucket can be sorted
independently. Yet, several efficiency and scalability issues
arise. First, there are very few buckets initially, especially for
our collection of reads with alphabet size five. Thus, for a
larger number of processors, there is not enough parallelism
during the initial phases of sorting. Second, the distribution
of the number of elements in each bucket causes load
imbalances, which cannot be hidden due to insufficient
parallelism. Finally, if we want to process all buckets in each
phase concurrently, we need to store the position and length
of all the buckets. The number of buckets can become linear
in n, which means that we need significant extra memory for
the suffix array construction. For inputs with billions of
reads, this amount is unaffordable.

To overcome the described problems, we make some
changes to the original LS algorithm. Algorithm 1 in the
online SM shows the framework of our parallel SACA. Our
algorithm consists of three stages, with three parameters
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fI; P ;Mg. I controls the degree of initial parallelism we can
have at the second stage. For this purpose, in the first stage,
the initial I (I > 1) characters are used to sort the suffixes
with radix sort, which can be easily implemented by
parallel prefix sums. For efficiency, I is not chosen too
large. Once there is enough parallelism, sorting in the
second stage is more efficient than parallel radix sort. We
use one of f3; 4; 5g for I, depending on the read length.

The second stage proceeds as the LS algorithm. Each
phase doubles h (initially, h :¼ 1) and recursively sorts the
buckets by using TSQS. Buckets in this stage are processed
in parallel until the P th phase. Then the last stage is started,
in which we sort each bucket by recursive TSQS. After the
P th phase there are enough buckets to process them
concurrently in an efficient way. By sorting sequentially in
a recursive manner, we avoid storing the bucket positions
and lengths explicitly. Here, we see a tradeoff between
the degree of parallelism and memory use. P denotes the
maximum parallelism we can have, and also determines the
space requirements. We suggest to choose P between 2 and
5 for achieving good scalability and memory efficiency.

Another performance issue arises in stage 3 when the
bucket size becomes small. Then the overhead of recursion
dominates the running time. Thus, if a bucket is smaller
than M, we insertion sort the bucket in one phase, which
is more efficient for small inputs. M is empirically chosen
as 128.1

3.3 Parallel Compressed Index Construction

To handle massive amounts of data on a shared-memory
machine, it is essential to use compressed indexing schemes
so as to efficiently utilize the memory subsystem and other
computing resources. We use an FM-index [8], a com-
pressed data structure based on suffix arrays and the
Burrows-Wheeler transform (BWT) [3]. After constructing
these data structures for a text T , we can find the occurrence
of any string s as a suffix of text T in timeOðjsjÞ. The BWT B
is an array of characters, where B½i� stores the character
preceding the ith suffix in sorted suffix array order. The
FM-index consists of two integer arrays, C and OccB. C½a�
stores the number of characters in the collection of reads
that are smaller than a. OccB½a; i� denotes the number of
occurrences of a in B½1 : i�. Table 2 in the online SM shows
the BWT and FM-index for two concatenated reads.

With the suffix array at hand, it is straightforward to
construct the arrays needed for the FM-index on the input
read collection in parallel by parallel reduction and prefix
sums. However, it is a problem to store the 2D array OccB
for very large inputs. The collection of reads has size n and
an alphabet size of 5, which requires 20n bytes memory if
each element is a 4-byte integer. To reduce the storage
amount, we sample the array OccB every 128 symbols into a
new array called Occ sampleB, whose length is only 1=128th
of the original array’s. For the remaining positions within
each 128-length interval of OccB, we create a bit array
Occ bitmapB for each character in the alphabet, in which the
occurrences of the symbol at the corresponding position in
B are indicated by a bit 1 or 0, respectively. To store these

bit arrays, we need only 5n=8 bytes. With the arrays
Occ bitmapB and Occ sampleB we can recompute values of
OccB in Oð1Þ time. For machines with micro-SIMD instruc-
tions, we use bit count instructions as an optimization.

4 STRING GRAPH CONSTRUCTION

With the index we can search for overlaps between reads
and construct a string graph [19] to store these overlaps. As
Myers explains, the “goal is a string-labeled graph in which
the original genome sequence corresponds to some tour of
the graph” [19, p. ii80].

In our (slightly adapted) string graph representation,
vertices represent reads, whereby identical reads are not
considered due to redundancy. Two vertices are (initially)
connected by an edge if and only if their corresponding
reads share an overlap. Edges in the string graph are
bidirected, modeling the nature of the overlap (forward/
backward). They are labeled with the remaining unmatched
substrings of the two incident reads. An example is shown in
Fig. 2 in the online SM. Overlaps shorter than some
threshold � may be accidental overlaps. This threshold � is
called minimum overlap length and its value can be chosen
experimentally or according to the read coverage. Generally,
one can choose larger values of � for reads with high
coverage. The string graph constructed with a large � has
fewer edges, but some essential overlaps may be missed,
especially for reads with low coverage.

4.1 Overlap Search

Naive overlap search for OLC involving pairwise read
alignment has a time complexity of Oðn2Þ. Recent OLC
assemblers employ improvements using string matching
techniques; Simpson and Durbin [26] are the first to use
the FM-index to find overlaps between reads and to
construct the string graph. PASQUAL follows their direc-
tion, but improves their work with parallelism and some
crucial improvements.

The main steps of the original algorithm for overlap
search [26] are shown in Algorithm 2 in the online SM. It
uses an important property of the FM-index. If the suffix
array interval of string S is known as ½u; v� (S is a prefix of
all suffixes in ½u; v�), the interval for the string aS can be
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computed in Oð1Þ time with a routine called updateBwd.
To find the overlaps for a read R, ½u; v� is initialized as the
suffix interval of R½l� and updated by processing the
symbols of R consecutively from right to left with
updateBwd. Therefore, the kth call of the routine returns
the suffix array interval that contains the suffixes sharing
R½l� kþ 1; l� as their prefixes. Starting from the �th
iteration, the algorithm performs an extra call of upda-

teBwd with symbol $, which returns the interval that
contains the strings in the form of $S, and S matches
R½l� kþ 1; l�.

The algorithm finds all overlaps for a read in time OðlÞ.
Although the read length l can be seen as a constant, the
algorithm is still very expensive in practice, especially for
large l. One important improvement we make exploits that
the overlaps in the string graph must be longer than � . If
one can compute the suffix array interval for R½l� � þ 1; l�
directly, processing the read from its right end becomes
unnecessary. Fortunately, such a direct retrieval of the
interval is possible since PASQUAL uses LS sort in its suffix
array construction algorithm. In the �th phase of LS sort, the
suffix array interval for R½l� � þ 1; l� equals the interval of
the bucket containing the length � suffix of R.

The improved overlap search follows this idea and is
sketched in Algorithm 1. We add code in parallel LS sort to
precompute the suffix intervals for every read. We need
new code in insertion sort because the bucket size for a read
may become too small after the P th phase of LS sort and the
algorithm proceeds to the insertion sort stage. We can
always retrieve the interval for R½l� P þ 1; l� at the
beginning of insertion sort, and still save some computa-
tion. Depending on the value of � (can be larger than
80 percent of l), up to 50 percent computational work can be
saved by this improvement.

Since overlap search for each read is completely
independent from other reads, parallelizing the string
graph construction is straightforward. PASQUAL uses
adjacency lists to store the graph. The vertex and edges
owned by each read can also be created concurrently.

4.2 Removing Transitive Edges

The next graph construction step removes transitive
edges. These edges are obsolete for sequence reconstruc-
tion as their information is already contained in the string
graph. As an example, the edge between R1 and R3 in
Fig. 2 in the online SM is transitive because the overlap
represented by it can be inferred by the edges R1 ! R2

and R2 ! R3. Removing transitive edges is essential as it
saves memory and simplifies the resolution of ambiguous
paths in a later stage.

Simpson and Durbin [26] propose a transitive edge
removal algorithm similar in spirit to overlap search and
using the FM-index. The method is as fast as an inherently
sequential triangle detection [19], but uses only 1=3 of the
memory [26]. The Simpson-Durbin algorithm processes
each read independently, which offers more opportunities
for parallelization. It uses the routine updateFwd on the
intervals returned by the overlap search routine for a read
R. As inferred by the name, updateFwd extends the suffix
to the forward direction, i.e., given the interval for string S
and symbol a, it returns the interval for Sa. The main

procedure extractIrreducible tests for each interval
if the extension of some suffixes in the interval reaches the
end of a read. (This is done by calling updateFwd with $
on the intervals.) If so, these reads share only intransitive
edges with R and processing their intervals is terminated.
Otherwise the set of intervals is processed by updateFwd

with the characters A, C, G, T . This yields four interval
subsets, on each of which extractIrreducible is
called recursively.

PASQUAL makes two important improvements to this
removal algorithm. First, there is no need to extend the
interval with all four characters every time. Since the reads
in the set of intervals are known, we can examine only the
characters existing in these reads, which narrows down the
search space considerably. Second, checking with $ in every
call of extractIrreducible is not necessary. The
extension can only reach the end of a read if the maximum
length of the suffixes in the interval is equal to the read
length. This length is known for every set of intervals.

With parallelism and our improvements, PASQUAL

constructs the string graph for Human Genome chr22 in
under one minute (with eight threads, six minutes with one
thread) on an Intel Xeon X5570 CPU. SGA is reported to
need nearly an hour for similar data [26].

5 PARALLEL GRAPH SIMPLIFICATION AND CONTIG

LISTING

After the removal of transitive edges, the resulting graph
may still have many vertices with ambiguous paths. These
paths are mainly caused by sequencing errors and genomic
repeats. While repeats cannot be resolved, we can fix many
sequencing errors. As ambiguous paths due to sequencing
errors are resolved, the structure of the graph is becoming
simpler. Therefore, we use the term string graph simplifica-
tion to refer to this step. Sequencing errors are unavoidable
in today’s sequencing methods. Therefore, string graph
simplification is essential for a good assembly quality.

5.1 Structures Caused by Sequencing Errors

Many assemblers remove sequencing errors based on the
observation that erroneous reads usually form special
graph structures. Even though most of these assemblers
are based on de Bruijn graphs, this idea remains valid for
PASQUAL. Two previously known graph structures are
called tip and bubble.

A tip is a dead end path containing only erroneous reads.
The length of a tip (the number of vertices in it) is typically
very short because the case of many erroneous reads
overlapping a correct read is rare. We can empirically
choose a cutoff length below which a dead end path is
considered a tip and should be removed from the graph. We
denote this cutoff by �. As an example, the string graph
shown in Fig. 3a in the online SM contains three tips
hR10! R12i, hR10! R13i and R14. R14 is also a tip as it
has only inbound edges.

A bubble is a cycle formed by two or more ambiguous
paths that start and end at the same vertex. It has at least
one path consisting only of erroneous reads. Such artifacts
can be caused by clonal polymorphisms [9]. A bubble is
detected by examining the length of its paths. All its
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erroneous paths must be shorter than � and at least one
other path is larger than � plus the maximum erroneous
path length, where � is another cutoff chosen empirically.
Fig. 3b in the online SM displays the example for a bubble.
The shorter path hR11! R12! R13i contains only erro-
neous reads.

We have discovered two additional structures relevant to
sequencing errors. They might be more relevant for overlap
and string graphs as none of them has been reported by any
de Bruijn graph based assemblers so far. We call the first
new structure bubble combo. An example is shown in Fig. 1a.
It consists of multiple bubbles connected by a junction
vertex. In Fig. 1a, the junction is vertex R10. A bubble combo
cannot be resolved by the tip or bubble rules. However, if we
combine any two paths of the junction vertex, every
combination is an erroneous bubble path. For example, the
vertex R10 in Fig. 1a has three paths: hR9! R10i, hR10!
R11i and hR10! R12! R13i. The combinations of them,
hR9! R10! R11i and hR9! R10! R12! R13i, are
both part of a bubble.

The second structure we have identified is named bridge,
see Fig. 1b. A bridge consists of two tips (hR19! R20i,
hR21! R20i) and one bubble (the cycle formed by hR10!
R22! R23! R15i and hR10! R11! � � � ! R14! R15i)
that are connected by a single bridge edge R20! R23. If the
bridge edge can be discovered and removed, a bridge is
reduced to independent bubbles and tips.

Recall that only intransitive edges are extracted for all
the reads, yet we can still retrieve the number of transitive
edges by checking the interval size after overlap search. To
differentiate, in the following we use the term number of
overlaps to refer to the total number of transitive and
intransitive edges of a vertex. One important observation in
Fig. 1b is that R20 has many left overlaps (overlap the read’s
left side) but only one right overlap, and the right overlap
length is shorter than the average overlap length of the
graph. This special property of R20 is due to errors on one
end of R20 which happen to match R23. Thus, it does not
overlap any other reads except R23 on this end due to the
errors, while the other end of R20 which does not have
errors shares overlaps with many reads. This gives us a hint
for discovering bridge edges.

5.2 Parallel Graph Simplification Algorithms

We start the string graph simplification with discovering
the bridge edges. We process every vertex with multiple
inbound edges and only one outbound edge or multiple
outbound edges and only one inbound edge in parallel. If a
vertex satisfies the following conditions, we consider the
only in-/outbound edge a bridge edge and remove the edge
from the graph. 1) It has multiple right overlaps but only
one left overlap or multiple left overlaps but only one right

overlap and 2) the length of the only left/right overlap is
shorter than the average overlap length of the graph.

To detect and remove other special graph structures, we
maintain an array to store multiple paths for each vertex.
The initialization of path arrays is shown in Algorithm 3 in
the online SM. We first examine all vertices in parallel and
classify them into three groups, BRANCH, ENDPOINT, PASS.
This classification is done according to the number of
inbound edges and outbound edges. BRANCH vertices have
multiple inbound edges and at least one outbound edge or
multiple outbound edges and at least one inbound edge.
ENDPOINT vertices are vertices with only outbound or only
inbound edges. Finally, if a vertex has exactly one inbound
edge and one outbound edge, it is added to the PASS group.

For every BRANCH vertex v, an array P is created to store

the multiple paths starting at v. Each path is represented by a

tuple hlen; end; dir; updatedi, where end denotes the ending

vertex of the path, len is the path length anddir is the direction

of the path (inbound or outbound). The function exten-

d_path is used to extend the path until it reaches an

ENDPOINT or BRANCH vertex. The return value of exten-

d_path contains the length and end of the new path.
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After initializing the paths, we can detect the special
graph structures in parallel. The parallel algorithm of
removing tips and bubbles is shown in Algorithm 4 in the

online SM. It processes every BRANCH vertex in two steps.
In the path extension step, if the type of the ending vertex
has been changed, extend path is used to extend the path

and obtain the new path length and end. When a path is
extended to the new end, its corresponding flag updated is
set. In the second step, the tip and bubble structures can be

discovered with the array P at hand. If a path ends with an
ENDPOINT vertex and its length is shorter than the cutoff �,
it is a tip. We also check each path ending with a BRANCH

vertex. If two such paths end exactly at the same BRANCH

vertex, we check the path lengths to see if it is a bubble.
When tips or bubbles are found, instead of removing the

entire path from the graph, the BRANCH vertex only

disconnects edges that belong to itself. Thus the computa-
tions at each BRANCH vertex can be performed indepen-
dently from other vertices without synchronization, which

ensures the efficiency of the parallel algorithm. Some tips or
bubbles cannot be detected before others are removed or
resolved. For example, in Fig. 1b, the tip hR10! R11!
R12i will not be detected until the tip hR11! R13i has
been removed. Thus, the path extension and tip/bubble

removal described above are performed iteratively. The

iteration ends when no more tips or bubbles have been
found, which is monitored by the mutex-lock secured
shared variable finished.

With the path arrays at hand, we can remove bubble

combos in parallel as in Algorithm 2. A BRANCH vertex is
considered a junction vertex candidate if the end vertices of

all its paths are ENDPOINTs. We continue to check the
candidate if all the possible combinations of its paths satisfy
the conditions for a bubble combo, i.e., every combination of

paths is shorter than � and shorter than the corresponding
correct paths minus �.

5.3 Listing Contigs

After graph simplification the contigs can be extracted by

traversing the vertices of the string graph. The graph may
still have some ambiguous paths due to sequence repeats
and the remaining erroneous reads. For the purpose of

getting longer contigs, some assemblers use greedy heur-
istics: whenever the graph traversal reaches a vertex with
ambiguous paths, they only select the path with the largest

overlap and remove the rest. The disadvantage of this
greedy approach is that it may result in misassemblies.

PASQUAL employs a conservative algorithm that extracts

only unambiguous simple paths. Whenever a vertex with
multiple outgoing edges is encountered, we stop the contig
extension and mark the vertex as the end of a contig. The

process is then repeated on the remaining graph portion.
This conservative contig extraction can also be carried out
in parallel. Again, we locate all the BRANCH vertices of the

graph, and for every BRANCH vertex we simultaneously
remove their ambiguous multiple edges, so that the
resulting graph only contains non-overlapping continuous

chains. Then, contigs can be extracted from the chains
concurrently. Each chain produces exactly one contig.

6 EXPERIMENTAL RESULTS

PASQUAL is written in C. The code and the experimental
setup are available from the project website.2 Our test
environment comprises of two Intel-based servers. One has
two quad-core Intel Xeon X5570 CPUs, the other one four
Intel Xeon E7-8870 CPUs with 10 cores each and Hyper-
threading. More details on our hard- and software environ-
ment are in Section 6 the online SM.

We report on a representative subset of our extensive
comparisons between PASQUAL 1.0 (P) and four other
tools: the de Bruijn graph based assemblers Velvet 1.2.01
(V), ABySS 1.3.2 (A), and SOAPdenovo 1.05 (S), as well as
the OLC assembler Edena 3DEV110920_linux64 (E). Except
for Edena all tools offer some sort of parallelism and are
run in parallel (with shared memory also for the MPI-based
tool ABySS). All tools take the overlap length as input. In
case of Edena and PASQUAL, this is the minimum overlap
length � , whereas in case of the de Bruijn graph based tools
it is the k-mer length. The optimal overlap length is not
known beforehand; multiple values of � are tried to choose
the best result.

We first generate simulated data sets from chromosome 22
(chr22) of the human genome and chromosome 6 (chr 6) of
zebrafish. The two chromosomes have length 33.5 Mbp and
61 Mbp, respectively. Error-free reads are uniformly
sampled from these sequences to generate synthetic data
sets, each with different coverage and read length. We
present results from eight of these data sets, which have a
coverage of 30 and 50 and read lengths of 35 bp, 100 bp, and
200 bp. The total input length of these data sets ranges from
1 to 3 billion bp, see Table 3a in the online SM. The real data
sets we use include Escherichia coli (749.4 Mbp, l ¼ 36), S.
Typhimurium (1.1 Gbp, l ¼ 80), and Caenorhabditis elegans
(6.8 Gbp, l ¼ 100). More details are given in Section 6 of the
online SM, in particular in its Table 3b.

6.1 Solution Quality

Due to the problem’s complexity, it is hardly possible to
obtain the original sequence as output. Instead, it is
desirable to obtain a small number of long contigs that
cover (almost) the entire length of the sequence (indicated
by total length of contigs). Thus, we measure the assembly
quality by number of contigs, length of the longest contig,
N50 length, number of N50 contigs, number of erroneous
contigs and total length of all contigs. The N50 length is the
length of the read for which 50 percent of all base pairs are
in reads of that length or longer. The corresponding number
of contigs is called number of N50 contigs. A large value of
the N50 length is an indicator of a good solution. Moreover,
it is important that the assembly is accurate, i.e., as few
reads as possible are misassembled into erroneous contigs.
Since we use simulated reads as well as real data with
reference sequences on NCBI, we can compare the resulting
contigs to identify misassembled contigs. Note that neither
metric is self-sufficient. All of them have to be studied in
consideration with each other. For example, the number of
contigs is not meaningful unless you also take the contig
lengths into account.
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Table 1 compares the best sequence assembly from the
corresponding data sets with different assemblers. One
more multirow for an instance only solvable with
PASQUAL can be found in Table 4 in the online SM. The
optimal value of the overlap length was determined by
carrying out assembly over six overlap lengths, the best
results are listed in the table. Entries of experiments not
executed to completion or without assembly of reads into
contigs are marked with “�” or a textual description. The
inability to handle the corresponding k-mer length is
marked with “N/A.”

As seen from the assembly statistics in Table 1, there is
no clear picture due to large differences in the quality. For
the simulated data set in the first multirow, chr_22_c30_l100,
all five assemblers result in a mostly comparable solution
quality. The maximum length is very similar and regarding
the important N50 length metric, many values are similar
again. Yet, PASQUAL obtains a solution that improves
approximately 10 percent on the second best tool. This N50
length improvement effect of PASQUAL can also be seen for
d_rerio_c30_l100. Unfortunately, a comparison for the third
simulated data set is not possible since no tool apart from
PASQUAL is able to generate a solution.

When working on real data sets, the results show a
different behavior. For all three data sets, Velvet is able to
generate solutions that are among the best ones in terms of
N50 length and also (to a somewhat lesser extent) total and
maximum length. All other tools, including PASQUAL,
have difficulties with at least one data set and perform
significantly worse than the respective best tool. Since the
aspiration of this paper is an acceleration of assembly
stages rather than the best possible quality in all scenarios,
we leave an improvement for real data sets to future work.

An evaluation of the number of misassemblies, where
PASQUAL clearly fares best, is in Section 6.1 of the online
SM. The large number of errors of the other assemblers
puts their other quality results into perspective.

To summarize, we observe that overlap-based assem-
blers result in a better assembly for simulated data sets.
They yield fewer misassembled contigs and comparable
metrics for genomes of both simple and complex organisms.
For real data sets only Velvet is consistently among the tools
with the highest quality in terms of contig length. All tools,
however, produce a fairly large number of misassembled
contigs, in particular the de Bruijn graph based assemblers.

6.2 Performance and Resource Consumption

Table 2 compares the overall assembly time required by the
different assemblers. The two fastest tools are clearly
SOAPdenovo and PASQUAL, which finish all their experi-
ments in less than 20 minutes each. While PASQUAL takes
the lead for all real data sets, SOAPdenovo is about twice as
fast for some simulated ones. Edena and Velvet are not
competitive in terms of execution speed. Also ABySS lags
behind significantly. While this might be due to the fact that
ABySS has been designed for distributed memory paralle-
lism, its inability to finish a large number of experiments
successfully would remain a problem. Also Velvet and
Edena are not able to assemble some simulated data sets,
either due to a crash or due to their extensive running time
of more than 12 hours. SOAPdenovo cannot handle reads
longer than 127 bp. For data on how the single phases
contribute to the running time of PASQUAL, we refer to
Section 6.2 of the online SM.

The amount of memory consumed by the assemblers
(estimates reported by the execution server) is depicted in
Table 3. Although the data are somewhat inconsistent, a few
patterns are apparent. Velvet and Edena use more memory
for smaller k-mer/overlap lengths, supposedly due to more
overlaps. SOAPdenovo has the smallest consumption of all
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TABLE 1
Assembly Statistics: The Solution Quality Values Refer
to the Best Assembly, Which Has Been Selected from

a Collection Resulting from Six Different Values
for Overlap Parameter �; k for Each Read Length

For Read Length l ¼ 36, k 2 f21::31::2g, for l ¼ 80, k 2 f41::57::2g, for
l ¼ 100, k 2 f53::63::2g, and for l ¼ 200, k 2 f153; 155; 157; 159; 161; 165g.

TABLE 2
Running Times for Each of the Assemblers

All programs except for Edena use 16 threads. Best values per instance
in bold font. Note that sometimes ABySS unexpectedly hangs during
execution (marked by -), an issue discussed in forums as well (http://
bit.ly/qVfOrn and http://bit.ly/qCoWhv).



tools for simulated data sets with small k-mer lengths.
However, its memory usage increases drastically with
higher k-mer lengths and with the real data sets. ABySS
(compiled with Google SparseHash) is relatively stable w.r.t.
the k-mer length, which makes it most memory-economical
for larger data sets and read lengths—but it often hangs. Our
assembler PASQUAL usually takes a place in the middle for
simulated data and is most often the best for real data. We
attribute the latter to our error correction algorithms, which
simplify the string graph. In 18 of the 20 cases depicted in
Tables 2 and 3, PASQUAL is not dominated in terms of both
higher speed and lower memory consumption.

Fig. 2 displays the scalability of PASQUAL and SOAPde-
novo up to 40 cores (80 threads with Hyperthreading). The
experiments are performed on the machine with Intel Xeon
E7-8870 CPUs. PASQUAL is slower than SOAPdenovo until
16 threads, where the two have nearly comparable
performance. But PASQUAL scales better and thus has a
better performance on more cores. Additional speedup
results of PASQUAL (1 to 16 threads) on the Intel Xeon
X5570 system can be found in Section 6.2 of the online SM.

7 CONCLUSIONS AND FUTURE WORK

We have presented parallel techniques to address the
computational challenges of de novo genome sequence
assembly. These techniques have been implemented in
our software tool PASQUAL and our experiments show
that PASQUAL assembles data sets with up to 6.8 billion
base pairs in about 15 minutes on two Intel Xeon quad-
core processors. Of the four other tools used in our
experimental comparison, only SOAPdenovo reaches this
order of time to solution. However, SOAPdenovo cannot
handle k-mer lengths beyond 127, which is a problem for
larger read lengths of emerging sequencing technologies.
Our results suggest that PASQUAL delivers the best
tradeoff between speed, memory consumption, and
solution quality.

PASQUAL does not offer all stages of a complete assembly
pipeline yet. The support of paired-end reads and scaffolding
is planned by the integration of third-party tools. Another

beneficial addition would be improved error correction.
Rather than providing a full assembler, our intention with
this work was to provide guidance how to accelerate the
assembly process and reduce the memory consumption.

ACKNOWLEDGMENTS

This work was partially supported by NSF I/UCRC Grant
IIP-0934114, NIH RC2 HG005542, and Northrop Grumman.

REFERENCES

[1] B.H. Bloom, “Space/Time Trade-Offs in Hash Coding with
Allowable Errors,” Comm. ACM, vol. 13, pp. 422-426, 1970.

[2] D. Bryant, W. Wong, and T. Mockler, “QSRA—A Quality-Value
Guided de Novo Short Read Assembler,” BMC Bioinformatics,
vol. 10, no. 1, p. 69, 2009.

[3] M. Burrows and D.J. Wheeler, “A Block-Sorting Lossless Data
Compression Algorithm,” technical report, Digital SRC Research
Report, 1994.

[4] J. Butler, I. MacCallum, M. Kleber, I.A. Shlyakhter, M.K. Belmonte,
E.S. Lander, C. Nusbaum, and D.B. Jaffe, “ALLPATHS: De Novo
Assembly of Whole-Genome Shotgun Microreads,” Genome
Research, vol. 18, no. 5, pp. 810-820, 2008.

[5] Convey Computer Corporation, “Convey Graph Constructor
Guide,” Dec. 2011.

[6] H. Dinh and S. Rajasekaran, “A Memory-Efficient Data Structure
Representing Exact-Match Overlap Graphs with Application for
Next-Generation DNA Assembly,” Bioinformatics, vol. 27,
pp. 1901-1907, 2011.

[7] J. Dohm, C. Lottaz, T. Borodina, and H. Himmelbauer,
“SHARCGS, A Fast and Highly Accurate Short-Read Assembly
Algorithm for de Novo Genomic Sequencing,” Genome Research,
vol. 17, no. 11, pp. 1697-1706, 2007.

[8] P. Ferragina and G. Manzini, “Opportunistic Data Structures with
Applications,” Proc. 41st Ann. Symp. Foundations of Computer
Science, pp. 390-398, 2000.

[9] D. Hernandez, P. François, L. Farinelli, M. Østerås, and J.
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