
Faster Clustering Coefficient Using Vertex Covers

Oded Green, David A. Bader

College of Computing
Georgia Institute of Technology

Atlanta, Georgia, USA

Abstract—Clustering coefficients, also called triangle count-
ing, is a widely-used graph analytic for measuring the closeness
in which vertices cluster together. Intuitively, clustering co-
efficients can be thought of as the ratio of common friends
versus all possible connections a person might have in a
social network. The best known time complexity for computing
clustering coefficients uses adjacency list intersection and is
O(V · d2max), where dmax is the size of the largest adjacency
list of all the vertices in the graph. In this work, we show
a novel approach for computing the clustering coefficients in
an undirected and unweighted graphs by exploiting the use
of a vertex cover, V̂ ⊆ V . This new approach reduces the
number of times that a triangle is counted by as many as
3 times per triangle. The complexity of the new algorithm
is O(V̂ · d̂2max + tV C) where d̂max is the size of the largest
adjacency list in the vertex cover and tV C is the time needed
for finding the vertex cover. Even for a simple vertex cover
algorithm this can reduce the execution time 10%−30% while
counting the exact number of triangles (3-circuits). We extend
the use of the vertex cover to support counting squares (4-
circuits) and clustering coefficients for dynamic graphs.

Keywords-Graph Algorithms; Social Network Analysis; Net-
work Science;

I. INTRODUCTION

Clustering coefficients is a graph analytic that states how

tightly bound vertices are in a graph [29]. The tightness is

measured by computing the number of closed triangles in

the graph, which can then imply the small-world property.

Computing the clustering coefficients has been applied to

many types of networks: communication [26], collaboration

[27], social [27], citation [23], and biological [7]. In social

networks, one can think of the local clustering coefficients as

the ratio of actual mutual acquaintances versus all possible

mutual acquaintances. Applications using clustering coeffi-

cients include DIMES [26], which is a distributed platform

used for providing an accurate, and comprehensive map of

the Internet and automatic Web-Spam detection [8].

There are two types of clustering coefficients: global and

local. The global clustering coefficient is a single value

computed for the entire graph, whereas the local clustering

coefficient is computed per vertex. Both are computed in a

similar fashion. Without the loss of generality, we consider

the global clustering coefficient in this work; nonetheless

our approach is applicable for computing local clustering

coefficients. Table I presents the notations used in this paper.

Definition 1: Formally, the global clustering coefficient

is:

CCglobal =
∑

v∈V

CCv =
∑

v∈V

tri(v)

deg(v) · (deg(v)− 1)

There are several approaches for computing clustering

coefficients:

1) Enumerating over all node-triples. This has an O(V 3)
upper bound complexity.

2) Using matrix multiplication. This has an O(V w) com-

plexity where w ≤ 2.376 [11].

3) Intersecting adjacency lists. This has an O(V · d2max)
upper bound [25] where dmax is the vertex with largest

adjacency.

In this paper we show a novel and intuitive way to im-

prove the adjacency list intersection approach that removes

redundant list intersections, therefore reducing the run-time

of the algorithm. We accomplish this by only intersecting

the adjacency lists of vertices that are marked in an arbitrary

vertex cover.

We then extend our method for computing a circuit of

any length and illustrate this with circuits of length 4. We

show that our new approach can also be applied to dynamic

graphs.

The remainder of the paper will be structured as follows.

Section II discusses the related work and discusses real

world graph properties and introduces vertex covers. In

Section III, we present our new algorithm for counting 3-

circuits (clustering coefficients), 4-circuits, and extend the

vertex cover approach for computing clustering coefficients

for dynamic graphs. In Section IV, we discuss our experi-

mental methodology and present quantitative results. Finally,

in Section V, we present our conclusions and discuss future

work.

II. RELATED WORK

In this section we review the literature that addresses

the challenge of computing clustering coefficients for large

dynamic graphs. These approaches take into account op-

timizations such as parallelization, approximation, and dy-

namic algorithms that make only local modifications to the

graphs. These optimizations are crucial in order to analyze

social networks such as Facebook [1] and Twitter [2] which

can potentially have million of members and thousands of

SocialCom/PASSAT/BigData/EconCom/BioMedCom 2013

978-0-7695-5137-1/13 $26.00 © 2013 IEEE

DOI 10.1109/SocialCom.2013.51

321

Table I
NOTATIONS IN THIS PAPER

Name Description

CCglobal Global clustering coefficient
CCv Clustering coefficient for vertex v
deg(v) Degree of vertex v.
tri(v) Number of triangle that vertex v is in.

V̂ A vertex cover of the graph, V̂ ⊆ V .
dmax Vertex with maximal degree in the graph.

d̂max Vertex with maximal degree from the vetex cover.
u, v, w, x Vertices in the graph.

updates per second. The combination of these approaches

allows scaling of the data set.

Clustering coefficients is an analytic that is relatively

simple to parallelize because of the relatively large number

of independent operations that can be executed. The exact

parallel granularity that is used and whether it is local or

global will define the synchronization methods required,

which is important as the number of threads in a system

increases and when full system utilization is desired. An

additional benefit of computing clustering coefficients for

dynamic graphs is that a given update requires modifying

only local values.

We now discuss algorithms that have tackled the chal-

lenges mentioned above. We add that our new algorithm is

an orthogonal optimization to the ones mentioned, meaning

that our approach would also benefit from parallelization and

the creation of a dynamic algorithm.

In [13], a massively multithreaded architecture, the Cray

XMT2, is used for computing dynamic clustering coeffi-

cients for a graph with half a billion edges. The Cray XMT2

is a massively parallel system that supports several thousand

light-weight concurrent threads with a Uniform Memory

Architecture (UMA) that allows for fine-grain parallelism.

To achieve high system utilization on the XMT2 for the

dynamic case, the incoming updates are batched together

and dealt with concurrently by the various threads. In [22] a

GPU implementation of clustering coefficients is presented.

Approximation and dynamic data flows are the focus of

[8], [10]. These show different techniques for approximating

clustering coefficients. In [13] an additional approximate

algorithm is given that is based on Bloom filters. The Bloom

filters are created only for a subset of the vertices in the

batch.

A. Real World Graph Properties

Many social networks share common properties. One

of these is the small-world property. The first work to

discuss the small-world property is due to Milgram [24].

Milgram suggests that people within the United States are

not likely to be separated by more than six steps. This was

later reconfirmed in [29] with additional experimentation.

Watts and Strogatz first introduce the concept of clustering

coefficients in [29].

Further research on graph properties advanced when it

was shown in [6], [9], [16] that the world wide web follows

a power law distribution on the number of adjacent edges

a vertex has. These graphs are considerably sparse with an

average degree that is constant. For example, the average

degree for Facebook [1] is 189 [28], which is very small

compared to the number of vertices in the graph. This

power law distribution is important for an analytic such as

clustering coefficients where the time complexity is based

on the vertex with the highest degree.

B. Vertex Covers

A Vertex Cover is a set V̂ ⊆ V such that for all (a, b) ∈ E,

either a ∈ V̂ or b ∈ V̂ (or possibly both). A minimal vertex

cover is the smallest V̂ ⊆ V meeting the requirement above.

Finding a vertex cover is a well studied problem [12], [19],

[21], [5], [18]. Finding the minimal vertex cover is known

to be NP-Complete (NPC) [17], [20]. We do not extend the

discussion on this as it not relevant for this paper.

While finding the minimal vertex cover is intractable,

there are numerous algorithms that can find some vertex

cover in polynomial time, including linear time [12], [19],

[21], [5]. In [21] a parallel algorithm for computing the

vertex cover based on the A* formulation is given.

A theoretic PRAM algorithm is given in [19] where the

vertex cover is found in iterative fashion using an Euler

circuit. A total of O(V + E) processors are required and

the time complexity is O(log3(E)).

III. VERTEX COVER CLUSTERING COEFFICIENTS

In this section we show a new algorithm for finding

the clustering coefficients using vertex covers that avoid

wasteful neighbor intersections.

A. Clustering Coefficients for Static Graphs

In the following subsections we discuss both theoretical

and practical implications of the the vertex cover. For

simplicity, assume that a vertex cover of V̂ of G = (V,E)
is given.

Consider a triangle made up of three vertices u, v, w.
These vertices may potentially have additional adjacencies;

for our discussion these edges are not relevant. Now consider

a vertex cover over this triangle. Fig. 1 depicts all legal

vertex covers of a triangle. Note that a closed triangle, made

up of u, v, w ∈ V , can be represented as six different tuples:

(u, v, w), (u,w, v), (v, u, w), (v, w, u), (w, u, v), (w, v, u).
All these tuples need to be counted. Note, that by using a

lexicographical sorting, only three of these tuples need to be

counted. This however, does not change the relevance of our

approach as our algorithm benefits from the lexicographical

sorting as well.

Lemma 1: At least two out of the three vertices that

make up a triangle are within the vertex cover, V̂ . By

contradiction, consider the case that only one vertex is in

322

Algorithm 1: Pseudo-code for computing clustering

coefficients given a vertex cover V̂ .

triangles← 0;
for v ∈ V̂ do

for u ∈ adj(v) do
if u = v then

next u;

if u ∈ V̂ then
C ← intersect(v, adj(c), u, adj(v));
for c ∈ C do

if c ∈ V̂ then
triangles⇐ triangles+ 1;

else
triangles⇐ triangles+ 3;

the vertex cover, V̂ , without the loss of generality, assume

v ∈ V̂ and u,w /∈ V̂ . As such there is an edge (u,w) ∈ E
that is not covered, meaning that V̂ is not a vertex cover. �

Lemma 2: Given two vertices u, v /∈ V̂ , there are no

triangles in the graph in which both u and v are in the

same triangle. This is immediate from Lemma 1. �
As a results of these two Lemmas, we only need to

intersect the adjacency lists of two adjacent vertices when

both vertices are marked in the vertex cover. That is, for

u, v ∈ V ∧ (u, v) ∈ E such that either:

1) v ∈ V̂ ∧ u /∈ V̂
2) v /∈ V̂ ∧ u ∈ V̂

the intersection between these vertices is not required.

In the original algorithm, this intersection is indeed com-

puted. We now show that it is only necessary to intersect

adjacency lists of adjacent vertices that are both in the vertex

cover.

We denote C as the set of the intersections between the

two vertices. If C is empty, these vertices do not have

common neighbors. If C is not empty then for each w ∈ C
the following two scenarios can happen: 1) w ∈ V̂ or 2)

w /∈ V̂ . Both these scenarios are depicted in Fig. 1.

Using the above observations we show that it is possible

to compute the clustering coefficient by intersecting the

adjacency lists of two vertices u, v such that u, v ∈ V̂ ∧
(u, v) ∈ E. We are required to show that all six tuples are

accounted for. We start with the case that w ∈ C ∧ w ∈ V̂ ,

as such u, v, w ∈ V̂ . When intersecting u with v, w is

found. When intersecting v with u, w is found again. The

intersection will be repeated for intersecting u with v, v
with w and their respective reverse orders. For each of the

triangles found, the global triangle counter is increased. All

six tuples have been accounted for.

For the second scenario when w ∈ C ∧ w /∈ V̂ , the

only intersection computed is between vertices u and v and

vertices u and v. w is not intersected with other vertices

as it is not in the vertex cover. As such, some intersections

� �

�

� �

�

� �

�

� �

�

Figure 1. All the legal vertex covers of the triangle made up of u, v, w.
The vertices in the vertex cover are marked with an additional circle.

are omitted. Yet, the omitted intersections can be accounted

for by a simple counting correction where each intersection

is counted as 3 different triangles. Given the two computed

intersections, u with v and v with u, all the six triangles are

properly accounted for.

Given the above, it is possible to create an algorithm

for computing the clustering coefficients given a vertex

cover that reduces the number of neighbor intersections.

The pseudo-code for this is given in Algorithm 1. Note the

algorithm assumes that a vertex cover has been computed.

We extend the discussion on the time complexity of vertex

covers in a following subsection.

B. Complexity Analysis

In this section we do a complexity analysis of our new

algorithm and discuss the cost of computing the vertex cover

in terms of time complexity. The time complexity of the

original algorithm is O(V ·d2max) where dmax is the size of

the largest adjacency list in the graph. The key difference

between our new algorithm and the original algorithm is that

only a subset of vertices requires adjacency list intersection:

V̂ . Further, only the adjacency lists of vertices that are within

the vertex cover are intersected. As such the O(d2max) is

replaced with O(d̂2max), where d̂max is the size of the largest

adjacency list in the vertex cover.

Intuitively, the computational bottleneck of the original

algorithm is the vertex with the largest adjacency list. This

is because this vertex is intersected with all its neighbors

dmax times and each intersection requires dmax operations.

Conceptually this is still the same for the new algorithm,

however, the bottleneck is no longer the highest degree

vertex in the graph, but, rather the highest degree vertex

in the vertex cover. This gives the new algorithm a time

complexity of O(T imeV C + V̂ · d̂2max), where O(T imeV C)
refers to the time complexity of finding a vertex cover.

For the new algorithm to be considered optimal and not

to add additional overhead to the existing complexity, the

following requirements needs to be met: O(T imeV C) ≤

323

� �

� �

� �

� �

� �

� �

�

� �

�

Figure 2. All legal vertex covers of the square made up of u, v, w,
and x. Additional edges that are non-relevant have been removed. There
are additional vertex covers for square. However, these follow one of the
presented patterns. The vertices in the vertex cover are marked with an
additional circle.

O(V · d2max). For practical purposes, an even tighter bound

is needed: O(T imeV C) ≤ O(V · d2max − V̂ · d̂2max). These
requirements imply that the time spent computing the vertex

cover should not be greater than the reduced run-time.

While a trivial vertex cover of V̂ ≡ V can be found in

O(1), this is essentially the original algorithm. Linear time

approximations yield reasonable smaller vertex covers than

V in practice. For most linear-time vertex cover algorithms

the condition is met almost trivially as O(V +E) is smaller

than O(V̂ · d̂2max). This is not true for considerably sparse

graphs, where E ∼= 2 · V , as very little work is required for

computing the list intersections. We extend this discussion

in Section IV.

C. Circuits of length 4 and higher

A circuit is defined as a simple path of vertices where

each vertex and edge is traversed once with the first and last

vertices in the path being the same. For example, a triangle

is a 3-circuit. Abdo et al. [3] suggest using larger circuits

than 3-circuits for the purpose of graph analysis. Specifically,

they discuss the impact of “long-distance” relationships on

the underlying graph structure.

A circuit of length four can be considered a square and

a circuit of length five can be considered a pentagon. From
a social network analysis standpoint, finding a square in the

network given a specific player, v, is equivalent to finding

common friends of any two of v’s friends. This can be

extended to find circuits of all sizes.

Fig. 2 depicts a subset of different vertex covers for a

square. In all these vertex covers, u and x are part of the

cover. All non-relevant edges have been removed. Note, in

all the examples of Fig. 2 at least one set of vertices that

are across from each other (i.e two-hops away) are in the

vertex cover. This is mandatory for the vertex cover to be

maintained. In our examples, these vertices are u and x. We

Algorithm 2: Pseudo-code for counting 4-circuits given

a vertex cover V̂ .
squares← 0;
for u ∈ V̂ do

for x ∈ V̂ do
if u = x then

next x;

C ← intersect(u, adj(u), x, adj(x));
InV̂ ← {};
notInV̂ ← {};
for c ∈ C do

if c ∈ V̂ then
InV̂ ← InV̂ ∪ {c};

else
notInV̂ ← notInV̂ ∪ {c};

squares← squares+ |C| · (|C| − 1)
|notInV̂ | · (|notInV̂ | − 1)
+2 · |notInV̂ | · (|InV̂ | − 1)

refer to these vertex-pair as cross-vertices.

Finding circuits of length four entails taking all vertex

pairs and intersecting their adjacencies. Given the adjacency

set of two cross-vertices C, if |C| > 2 (meaning that the

vertices share two or more neighbors) then a square exists.

To be exact there are |C| · (|C| − 1) different 4-circuits. We

will elaborate on this.

The pseudo-code for finding the number of 4-circuits

using the vertex cover approach can be found in Alg. 2. The

pseudo-code makes the proper counting correction. Using

the cross-vertices observation, we reduce the computed

intersection from “all vertex pairs” to “all vertex-cover pairs”

without missing a 4-circuit. To get the original algorithm for

4-circuits, the pseudo code requires a simple modification:

replace V̂ with V in the first two loops and get rid of the

counting correction code.

Given u, x are cross-vertices (not necessarily in the vertex

cover), now consider the following scenarios when w, v ∈ V
and w, v are cross-vertices (both pairs must be cross vertices

for a square to exist). The following scenarios occur:

1) w, v /∈ V̂ . If they are part of the 4-circuit, then they

can be found when intersecting the adjacency list of

u, x and therefore this intersection can be avoided as

it is redundant. If they are not part of a 4-circuit, but

simply vertices that are two hops away, then there is no

point intersecting their adjacencies allowing a reduced

number of intersections.

2) Either w ∈ V̂ ∧ v /∈ V̂ or v ∈ V̂ ∧ w /∈ V̂ . Without

the loss of generality, assume the second case. Once

again, for w, v to be part of a 4-circuit, u, x ∈ V̂
cross vertices need to be adjacent to them. For the

same reasons as in 1), redundant intersections can be

avoided.

3) w, v ∈ V̂ . It is possible that they are part of a 4-

circuit. If u, x ∈ V̂ are cross vertices, then they are

324

�

�

Figure 3. The cross-vertices (u, x) and their common neighboring vertices
found in adjacency intersection. These neighbors are divided into groups:
those in the vertex cover and those not in the vertex cover. The vertices in
the vertex cover are marked with an additional circle.

part of a 4-circuit. Therefore, their adjacencies need

to be intersected. As such, the 4-circuit will be found

for the intersection of w with v, v with w, u with x,
and x with u.
If u, x ∈ V̂ , it is possible to swap roles between w, v
and u, x and go back to 1) which states that the only

intersections that need to be computed are between the

vertices in the cover.

The above essentially states the counting corrections that

need to be made.

Assume that u, x ∈ V̂ , meaning that they are potentially

cross-vertices and need to have their lists intersected. In

the process of intersecting their adjacencies lists, the set C
consists of two subsets, the first set consists of vertices in

the vertex cover and is denoted inV̂ , and the second set

consists of vertices that are not in the vertex cover, denoted

as notInV̂ . Fig. 3 depicts the intersections of two vertices

u and x. The vertices belonging to inV̂ have been marked

with a double circle.

The number of ordered pairs in the intersection is |C| ·
(|C| − 1), each one of them specifies a different 4-circuit.

Remember, that u will be intersected with x and x will be

intersected with u and these give different 4-circuits 1.

Because not all vertex pairs have their lists intersected, a

counting correction needs to be taken into account. Con-

sider v, w common neighbors of the ordered pair (u, x).
If v, w ∈ V̂ , then the ordered pair (v, w) will have its

neighbors intersected and then u, x will be found. Therefore,

no correction needs to be done.

If v, w /∈ V̂ , then the ordered pair (v, w) will not have

its adjacencies intersected, therefore, requiring a counting

correction as if the adjacencies of the ordered pair (v, w)
were intersected and found u, x as its common neighbors.

This adds two additional 4-circuits because of the ordering

of the neighbors. The ordered pair (w, v) also will not have

its neighbors intersected; however, this counting correction

1This can be avoided if lexicographical sorting is used.

is taken into account by the ordered pair (x, u). Therefore,
for the 4-circuit consisting of vertices u, v, w, x all eight 4-

circles are accounted for. The counting correction needed

because of vertices that are not in the vertex cover is

|notInV̂ | · (|notInV̂ | − 1).
For the case in which only one of w, v is in the vertex

cover, the explanation from above repeats itself. Therefore,

the number of cycles that need to be accounted for is

essentially the number of ways to order w, v: 2 · |inV̂ | ·
(|notInV̂ | − 1).
In this subsection we showed how to find 4-circuits using

the vertex cover and applying additional counting correcting

techniques. These techniques can be further extended to

include the general K-circuit case for K ≥ 3. However,
the general K-circuit case is outside the scope of this paper.

D. Clustering Coefficients in Dynamic Graphs

In this subsection we show that our new vertex cover

clustering coefficients approach can also be applied to dy-

namic graphs. The two types of operations that we consider

for dynamic graphs are edge insertions and edge deletions.

Vertex insertion and deletion are simple. A vertex insertion

places a new vertex in the graph without any edges. A vertex

deletion can be serialized as a set of edge deletions.

For an inserted edge, e = (u, v), into the graph the

following three scenarios can arise:

1) u, v /∈ V̂
2) (u ∈ V̂ ∧ v /∈ V̂) or (v ∈ V̂ ∧ u /∈ V̂)
3) u, v ∈ V̂

The global and local clustering coefficients are handled

slightly differently. Again, we focus on the global case.

For the first case, where both vertices are not in the vertex

cover, one of the vertices has to be added to the vertex cover

to ensure that all edges are covered. For simplicity assume

that v is added to the vertex cover. The inserted edge can

potentially close several triangles. The second case is similar

to the first but does not require modifying the vertex cover.

Obviously, for the third case when both vertices in the vertex

cover, the vertex cover does not require any modification.

Edge deletions can be dealt with in a similar fashion.

However, when deleting e = (u, v), the first scenario in

which u, v /∈ V̂ is not possible as this violates the vertex

cover’s properties.

IV. EMPIRICAL RESULTS

In this section we present empirical performance results

of the new clustering coefficients algorithm for both triangle

counting and square counting. In our tests we used an

Intel i7-2600K system with 16GB of memory. The clock

frequency is 3.4GHz. We used graphs taken from the 10th

DIMACS Implementation Challenge on Graph Partitioning

and Graph Clustering [4]. The graphs we used can be found

in Table II. The global clustering coefficient value for these

graphs are presented in Fig. 4.

325

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
lu
st
er
in
g
C
oe
ffi
ci
en
t

coA
uth

ors
Cit

ese
er

cita
tio
nC

ites
eer

coA
uth

ors
DB

LP

coP
ape

rsC
ites

eer

coP
ape

rsD
BL

P

RM
AT
-16

RM
AT
-18

RM
AT
-20

aud
ikw

1
ldo

or
cag

e15

lux
em

bou
rg

bel
giu

m

roa
d-c

ent
ral

roa
d-u

sa

cel
ega

ns-
me

tab
oli
c
em

ail

pol
blo

gs

net
sci
enc

e
pow

er

hep
-th

PG
Pg
ian

tco
mp

o

ast
ro-

ph

con
d-m

at

as-
22j

uly
06

con
d-m

at-
200

3

con
d-m

at-
200

5

sm
allw

orl
d

pre
f-a
ttac

hm
ent

cai
daR

out
erL

eve
l

Figure 4. This chart shows the global clustering coefficient value for graphs from Table II.

10
-4

10
-3

10
-2

10
-1

1

coA
uth

ors
Cit

ese
er

cita
tio
nC

ites
eer

coA
uth

ors
DB

LP

coP
ape

rsC
ites

eer

coP
ape

rsD
BL

P

RM
AT
-16

RM
AT
-18

RM
AT
-20

aud
ikw

1
ldo

or
cag

e15

lux
em

bou
rg

bel
giu

m

roa
d-c

ent
ral

roa
d-u

sa

cel
ega

ns-
me

tab
oli
c
em

ail

pol
blo

gs

net
sci
enc

e
pow

er

hep
-th

PG
Pg
ian

tco
mp

o

ast
ro-

ph

con
d-m

at

as-
22j

uly
06

con
d-m

at-
200

3

con
d-m

at-
200

5

sm
allw

orl
d

pre
f-a
ttac

hm
ent

cai
daR

out
erL

eve
l

t
v
c

t
v
c
+

t
c
c
,n

e
w

Figure 5. The ordinate presents the ratio of time spent finding the vertex cover as a function of the total time spent computing the vertex cover and the
clustering coefficients. The ordinate is a logscale. An additional blue curve has been placed at 2.5%. The bars of about 2/3 of the graphs are below this
curve.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

coA
uth

ors
Cit

ese
er

cita
tio
nC

ites
eer

coA
uth

ors
DB

LP

coP
ape

rsC
ites

eer

coP
ape

rsD
BL

P

RM
AT
-16

RM
AT
-18

RM
AT
-20

aud
ikw

1
ldo

or
cag

e15

lux
em

bou
rg

bel
giu

m

roa
d-c

ent
ral

roa
d-u

sa

cel
ega

ns-
me

tab
oli
c
em

ail

pol
blo

gs

net
sci
enc

e
pow

er

hep
-th

PG
Pg
ian

tco
mp

o

ast
ro-

ph

con
d-m

at

as-
22j

uly
06

con
d-m

at-
200

3

con
d-m

at-
200

5

sm
allw

orl
d

pre
f-a
ttac

hm
ent

cai
daR

out
erL

eve
l

|V̂
|

|V
|

Figure 6. The ordinate is the size ratio of the vertex cover, V̂ , and the vertex set V . Note that |V̂ | ≤ |V |. An additional blue curve has been added at
70%. The bars of about 3/5 of the graphs are below this curve.

For benchmarking purposes, we used the clustering coef-

ficient algorithm from [13]. This is a highly optimized CSR

implementation of clustering coefficients. As such we have

used this CSR clustering coefficient implementation as our

baseline and have implemented our new algorithms based

using the list intersection taken from the implementation.

We use is a simple linear time greedy algorithm, O(V+E)
for finding the vertex cover. For each vertex v in the graph,

we check if v has any neighbors that are not within in the

vertex cover. If this is the case, v is added to the vertex cover.

This algorithm by no means ensures a small or minimal

vertex cover. Nonetheless, for our needs it is sufficient as it

gave small enough vertex covers for us to see improvements.

A. Static Clustering Coefficients
The overhead to compute a reasonable vertex cover is

negligible for many graphs. Fig. 5 depicts the portion of

time needed to compute the vertex cover out of the total

needed for computing the clustering coefficients. Note that

the ordinate of Fig. 5 is a log-scale which shows the time

spent computing the vertex cover out of the total time of the

new algorithm (time for the vertex cover and the clustering

coefficient algorithm that uses the vertex cover), and lower

is better. In Fig. 5 an additional (constant) curve has been

added at 2.5%. For many of the graphs, the vertex cover

takes less than 2.5% of the total time to compute.
Fig. 6 depicts the size of the vertex cover in comparison

with the entire vertex set V . An additional constant curve has

326

0.0

0.2

0.4

0.6

0.8

1.0

coA
uth

ors
Cit

ese
er

cita
tio
nC

ites
eer

coA
uth

ors
DB

LP

coP
ape

rsC
ites

eer

coP
ape

rsD
BL

P

RM
AT
-16

RM
AT
-18

RM
AT
-20

aud
ikw

1
ldo

or
cag

e15

lux
em

bou
rg

bel
giu

m

roa
d-c

ent
ral

roa
d-u

sa

cel
ega

ns-
me

tab
oli
c
em

ail

pol
blo

gs

net
sci
enc

e
pow

er

hep
-th

PG
Pg
ian

tco
mp

o

ast
ro-

ph

con
d-m

at

as-
22j

uly
06

con
d-m

at-
200

3

con
d-m

at-
200

5

sm
allw

orl
d

pre
f-a
ttac

hm
ent

cai
daR

out
erL

eve
l

t
c
c
,n

e
w

t
c
c
,o

r
i
g
i
n
a
l

Figure 7. The ordinate is the time ratio of the new vertex cover-based clustering coefficients algorithm and the original clustering coefficient algorithm.
The time of the new algorithm includes both the time needed to find the vertex cover and the time for computing the clustering coefficients. All bars below
the blue curve occur when the new algorithm is faster, as such lower is better.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
e
rc
e
n
ta
g
e
%

co
Au

tho
rsC

ite
se
er

cit
ati
on
Ci
tes
ee
r

co
Au

tho
rsD

BL
P

co
Pa
pe
rsC

ite
se
er

co
Pa
pe
rsD

BL
P

RM
AT
-1
6

RM
AT
-1
8

RM
AT
-2
0

au
dik

w1
ldo

or

ca
ge
15

lux
em

bo
ur
g

be
lgi
um

ro
ad
-ce

ntr
al

ro
ad
-u
sa

ce
leg

an
s-m

eta
bo
lic

em
ail

po
lbl
og
s

ne
tsc
ien

ce
po
we

r

he
p-
th

PG
Pg
ian

tco
mp

o

as
tro
-p
h

co
nd
-m
at

as
-2
2ju

ly0
6

co
nd
-m
at-
20
03

co
nd
-m
at-
20
05

sm
all
wo

rld

pr
ef-
att
ac
hm

en
t

ca
ida

Ro
ute

rL
ev
el

Intersection-Ratio: Element-Ratio:new
original

new
original

Figure 8. The ordinate is the ratio of the number of intersection that are necessary by the new algorithm in comparison with the original algorithm.

been added at 70%. For slightly more than half the graphs,

the size of the vertex cover is less than 70% the size of the

entire vertex set.

Fig. 7 depicts the ratio of the time it takes to compute the

global clustering coefficients using our new method over

the original algorithm. For this figure, lower is better as this

means that the new algorithm takes a fraction of the original

run-time. An additional blue curve has been added to the

figure to state when the performance of the two algorithms is

the same. There are several graphs that do not benefit from

our new approach. These are graphs for which the vertex

cover is roughly the size of |V |. A different vertex cover

(by a different algorithm) might possibly reduce the size of

the vertex cover and allow for shorter run times. However,

this was not the focus of our work.

For six graphs that we tested, the time for finding the

vertex cover took over 10% of the total time. Out of these

six graphs, four are road networks. The reason the vertex

cover takes such a high percentage of the total time is due

to the considerable sparsity of these graphs, where|E| ≤
2 · |V |. These graphs have low clustering coefficients and

the amount of intersections needed is considerably small. It

is not surprising that for these graphs the total time of our

new algorithm is greater than the time using the original

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

cel
ega

ns-
me

tab
oli
c
em

ail

pol
blo

gs

net
sci
enc

e
pow

er

hep
-th

PG
Pg
ian

tco
mp

o

ast
ro-

ph

con
d-m

at

as-
22j

uly
06

con
d-m

at-
200

3

con
d-m

at-
200

5

sm
allw

orl
d

pre
f-a
ttac

hm
ent

cai
daR

out
erL

eve
l

t
v
c

t
v
c
+

t
c
c
,n

e
w

Figure 9. The ordinate presents the ratio of time spent finding the vertex
cover as a function of the total time spent finding all the 4-circuits. Note
that the ordinate is a log scale. The abscissa are the Clustering graphs from
Table II.

approach as our vertex cover added overhead. Fortunately,

this overhead is negligible.

In Fig. 8 two different bar charts are shown, both are ratio

values from 0 to 1, such that the ratios are between our new

algorithm and the original one. The green patterned bars are

the ratio between the number of adjacency lists intersected

using the new method and the respective number using the

original method. The blue solid bars are the ratio between

the actual number of elements intersected for both methods.

327

Table II
GRAPHS FROM THE 10TH DIMACS IMPLEMENTATION CHALLENGE

THAT ARE USED IN OUR EXPERIMENTS, GROUPED BY TYPE AND

SORTED WITHIN EACH GROUP BY VERTEX COUNT.

Name |V | |E|
Collaboration Networks

coAuthorsCiteseer 227,320 814,134
citationCiteseer 268,495 1,156,647
coAuthorsDBLP 299,067 977,676
coPapersCiteseer 434,102 16,036,720
coPapersDBLP 540,486 15,245,729

Random Networks
RMAT-16 65,536 2,456,071
RMAT-18 262,144 10,582,686
RMAT-20 1,048,576 44,619,402

matrix
audikw1 943,695 38,354,076
ldoor 952,203 22,785,136
cage15 5,154,859 47,022,346

Road Networks
luxembourg.osm 114,599 119,666
belgium.osm 1,441,295 1,549,970
road_central 14,081,816 16,933,413
road_usa 23,947,347 28,854,312

clustering
celegans_metabolic 453 2025
email 1,133 5,451
polblogs 1,490 16,715
netscience 1,589 2,742
power 4,941 6,594
hep-th 8,361 15,751
PGPgiantcompo 10,680 24,316
astro-ph 16,706 121,251
cond-mat 16,726 47,594
as-22july06 22,963 48,436
cond-mat-2003 31,163 120,029
cond-mat-2005 40,421 175,691
smallworld 100,000 499,998
preferentialAttachment 100,000 499,985
caidaRouterLevel 192,244 609,066

These two ratios are slightly different. The first ratio states

how many intersections need to be computed. The second

ratio states how many comparisons need to be done as part

of the list intersection. The second ratio takes into account

that the lists are not equal length. This is expected in graphs

following power-law distribution [6], [9], [16]. For graphs

with a uniform distribution of edges, such as the Erdös-

Rényi ([14], [15]) random graph model, it is very likely that

these ratios would be similar. Further this non-uniformity

plays a critical part of the time complexity of the algorithm,

specifically dmax.

As expected, the graphs that had larger vertex covers

(when |V̂ | ∼= |V |) did not have a reduction in the number

of intersections or the number of elements intersected. The

graphs with the smaller vertex covers had fewer intersec-

tions, fewer comparisons, and reduced runtime.

As the number of intersections of our algorithm is

bounded by the number of intersections of the original

algorithm (which computes all the intersections) these ratios

0.0

0.2

0.4

0.6

0.8

1.0

cel
ega

ns-
me

tab
oli
c
em

ail

pol
blo

gs

net
sci
enc

e
pow

er

hep
-th

PG
Pg
ian

tco
mp

o

ast
ro-

ph

con
d-m

at

as-
22j

uly
06

con
d-m

at-
200

3

con
d-m

at-
200

5

sm
allw

orl
d

pre
f-a
ttac

hm
ent

cai
daR

out
erL

eve
l

t
s
q
u
a
r
e
,n

e
w

t
s
q
u
a
r
e
,o

r
i
g
i
n
a
l

Figure 10. The ordinate is the time ratio of the new vertex cover
based clustering coefficients algorithm and the original clustering coefficient
algorithm. The time of the new algorithm includes both the time needed to
find the vertex cover and the time for computing the clustering coefficients.
The blue curve denotes equal run-times for the new and original algorithm.
All bars below the blue curve state the new algorithm is faster, as such
lower is better.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
er
ce
nt
ag
e
%

cel
ega

ns-
me

tab
oli
c
em

ail

pol
blo

gs

net
sci
enc

e
pow

er

hep
-th

PG
Pg
ian

tco
mp

o

ast
ro-

ph

con
d-m

at

as-
22j

uly
06

con
d-m

at-
200

3

con
d-m

at-
200

5

sm
allw

orl
d

pre
f-a
ttac

hm
ent

cai
daR

out
erL

eve
l

Figure 11. The ordinate is the ratio of the number of intersection that are
necessary by the new algorithm in comparison with the original algorithm.

are smaller than one.

In the context of performance, the smaller these ratios

are the better the performance will be as these ratios are

correlated to the number of list intersections that need to be

done. As such, the lower the ratios, the better.

B. Static 4-Circuits

In this subsection we present performance results for

finding 4-circuits using the algorithm presented in Section

III-C. A key challenge of the 4-circuit counting is the

increased time complexity of the algorithm. As such, for

the 4-circuits counting we present results for the smaller

graphs that belong to the clustering subset of graphs taken

from Table II. We note that finding the 4-circuits for larger

graphs can be parallelized to further reduce the running time.

Fig. 9 depicts the time spent computing the vertex cover

vs. the time to compute the vertex cover and find the 4-

circuits. For almost all the graphs, the time to compute the

vertex cover is less that 0.1%. For several graphs the vertex

covers takes less than 0.001% of the total time. We use the

same vertex cover algorithm as before and the running times

are the same as before. As the circuits get longer the time

spent on finding the vertex cover becomes a smaller fraction

of the total running time.

328

Fig. 10 depicts the time ratio between the new algorithm

(including time spent on finding the vertex cover) and the

original algorithm for computing 4-circuits. The blue curve

at y = 1 denotes when the execution time of both algorithms

is the same. Once again, any bar below the blue curve means

that the new algorithm is faster than the original algorithm.

For half the graphs the new algorithm is 30% faster than

the previous algorithm which is due to fewer intersections.

Fig. 11 depicts the ratio of the number of comparisons

made during the list intersections for the new and original

algorithms.

V. CONCLUSIONS

In summary, in this paper we design and implement

a new method for computing exact clustering coefficients

using vertex covers. This method reduces the number of list

intersections and avoids unnecessary element comparisons.

The two key differences between our new algorithm and the

original approach are as follows: 1) our algorithm computes

a vertex cover of the graph and 2) our algorithm applies

a counting correcting technique that makes up for triangles

that are not counted multiple times.

We show that the new algorithm is both exact (gives

the same results as the original algorithm) and correct (by

proofs). We then show that our new approach can also be

used on circuits of length four and can be extended to longer

circuits. All these are followed by performance analysis in

which we showed that the new algorithm is indeed faster,

15%−20% for the 3-circuit and 30%−40% for the 4-circuit,

than the previous algorithms.

While the focus of work was to show the viability of

the vertex cover for clustering coefficients, we believe that

the vertex cover approach might be applicable to additional

social network analytics, perhaps community detection and

modularity-based algorithms. Several open problems related

to this work are:

1) Finding additional analytics that can benefit from the

vertex cover.

2) Testing the sensitivity of the algorithm by changing the

vertex cover algorithm. This includes using additional

vertex cover algorithms or using the same vertex cover

algorithm as we did that accesses the vertices in a

different order (this should give a different cover).

3) Similar to the previous issue, is it possible to select

a vertex cover algorithm based on properties of the

input graph.

4) For the dynamic graph case, how does the vertex cover

change over time? Does the vertex cover gradually

increase in size over time until its the size of the

vertex set or is the vertex cover near constant over

the insertion?

5) Creating an efficient algorithm for finding a K-circuit

for some given K using the vertex cover approach.

6) Is there an effective way to parallelize the new algo-

rithm?

ACKNOWLEDGMENTS

Funding was provided by the U.S. Army Research Office

(ARO) and Defense Advanced Research Projects Agency

(DARPA) under Contract Number W911NF-11-C-0088. The

content of the information in this document does not nec-

essarily reflect the position or the policy of the Govern-

ment, and no official endorsement should be inferred. The

U.S. Government is authorized to reproduce and distribute

reprints for Government purposes notwithstanding any copy-

right notation here on.

The authors thank David Ediger, Robert McColl, Lluis

Miquel Munguia, and Anita Zakrzewska, for their suggestion

and useful comments that have improved the quality of this

paper.

REFERENCES

[1] “Facebook,” 2013. [Online]. Available: https://www.facebook.
com/

[2] “Twitter,” 2013. [Online]. Available: https://twitter.com/

[3] A. H. Abdo and A. P. S. de Moura, “Clustering as a Measure
of the Local Topology of Networks,” arXiv physics/0605235,
2006.

[4] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, 10th
DIMACS Implementation Challenge on Graph Partitioning
and Graph Clustering. American Mathematical Society,
2013, vol. 588.

[5] R. Bar-Yehuda and S. Even, “A Linear-Time Approximation
Algorithm for the Weighted Vertex Cover Problem,” Journal
of Algorithms, vol. 2, no. 2, pp. 198–203, 1981.

[6] A.-L. Barabási and R. Albert, “Emergence of Scaling in
Random Networks,” Science, vol. 286, no. 5439, pp. 509–
512, 1999.

[7] A.-L. Barabási and Z. N. Oltvai, “Network Biology: Under-
standing the Cell’s Functional Organization,” Nature Reviews
Genetics, vol. 5, no. 2, pp. 101–113, 2004.

[8] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Efficient
Semi-streaming Algorithms for Local Triangle Counting in
Massive Graphs,” in Proceedings of the 14th ACM SIGKDD
Int’l Conf. on Knowledge Discovery and Data Mining. ACM,
2008, pp. 16–24.

[9] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Ra-
jagopalan, R. Stata, A. Tomkins, and J. Wiener, “Graph
Structure in the Web,” Computer Networks, vol. 33, no. 1,
pp. 309–320, 2000.

[10] L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-
Spaccamela, and C. Sohler, “Counting Triangles in Data
Streams,” in Proceedings of the 25th ACM SIGMOD-SIGACT-
SIGART Symp. on Principles of Database Systems. ACM,
2006, pp. 253–262.

329

[11] D. Coppersmith and S. Winograd, “Matrix Multiplication via
Arithmetic Progressions,” Journal of Symbolic Computation,
vol. 9, no. 3, pp. 251–280, 1990.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms. MIT press, 2001.

[13] D. Ediger, K. Jiang, J. Riedy, and D. A. Bader, “Massive
Streaming Data Analytics: A Case Study with Clustering
Coefficients,” in International Symposium on Parallel & Dis-
tributed Processing, Workshops and PhD Forum (IPDPSW).
IEEE, 2010, pp. 1–8.

[14] P. Erdös and A. Rényi, “On Random Graphs I,” Publicationes
Mathematicae, pp. 290–297, June 1959.

[15] ——, “The Evolution of Random Graphs,” Magyar Tud.
Akad. Mat., pp. 17–61, 1960.

[16] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power-Law
Relationships of The Internet Topology,” in ACM SIGCOMM
Computer Communication Review, vol. 29, no. 4. ACM,
1999, pp. 251–262.

[17] M. R. Garey and D. S. Johnson, Computers and Intractability.
freeman New York, 1979, vol. 174.

[18] D. S. Hochbaum, “Approximation Algorithms for the Set
Covering and Vertex Cover Problems,” SIAM Journal on
Computing, vol. 11, no. 3, pp. 555–556, 1982.

[19] A. Israeli and Y. Shiloach, “An Improved Parallel Algo-
rithm for Maximal Matching,” Information Processing Let-
ters, vol. 22, no. 2, pp. 57–60, 1986.

[20] S. Khuller, U. Vishkin, and N. Young, “A Primal-dual Par-
allel Approximation Technique Applied to Weighted Set and
Vertex Covers,” J. Algorithms, vol. 17, no. 2, pp. 280–289,
1994.

[21] V. Kumar, K. Ramesh, and V. N. Rao, “Parallel Best-First
Search of State-space Graphs: A Summary of Results,” in
Proceedings of the 1988 National Conference on Artificial
Intelligence. Morgan Kaufmann. Citeseer, 1988.

[22] A. Leist, K. Hawick, D. Playne, and N. S. Albany, “GPGPU
and Multi-Core Architectures for Computing Clustering Coef-
ficients of Irregular Graphs,” in Proc. Int’l Conf. on Scientific
Computing (CSC’11), 2011.

[23] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs Over
Time: Densification Laws, Shrinking Diameters and Possible
Explanations,” in Proceedings of the 11th ACM SIGKDD Int’l
Conf. on Knowledge Discovery in Data Mining. ACM, 2005,
pp. 177–187.

[24] S. Milgram, “The Small World Problem,” Psychology Today,
vol. 2, no. 1, pp. 60–67, 1967.

[25] T. Schank and D. Wagner, “Finding, Counting and Listing
All Triangles in Large Graphs, an Experimental Study,” in
Experimental and Efficient Algorithms. Springer, 2005, pp.
606–609.

[26] Y. Shavitt and E. Shir, “DIMES: Let the Internet Measure
Itself,” ACM SIGCOMM Computer Communication Review,
vol. 35, no. 5, pp. 71–74, 2005.

[27] S. H. Strogatz, “Exploring Complex Networks,” Nature, vol.
410, no. 6825, pp. 268–276, 2001.

[28] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, “The
Anatomy of the Facebook Social Graph,” arXiv preprint
arXiv:1111.4503, 2011.

[29] D. J. Watts and S. H. Strogatz, “Collective Dynamics of
“Small-World” Networks,” Nature, vol. 393, no. 6684, pp.
440–442, 1998.

330

