
Energy-Efficient Scheduling for Best-Effort Interactive Services to Achieve High
Response Quality

Zhihui Du∗, Hongyang Sun†, Yuxiong He‡, Yu He∗, David A. Bader§, Huazhe Zhang¶
∗Tsinghua National Laboratory for Information Science and Technology

Department of Computer Science and Technology, Tsinghua University, Beijing, China
†School of Computer Engineering, Nanyang Technological University, Singapore

‡Microsoft Research, Redmonds, WA, USA
§College of Computing, Georgia Institute of Technology, Atlanta, GA, USA

¶School of Information and Communication Engineering, Beijing University of Post and Telecommunication, Beijing, China

Abstract—High response quality is critical for many best-
effort interactive services, and at the same time, reducing energy
consumption can directly reduce the operational cost of service
providers. In this paper, we study the quality-energy tradeoff
for such services by using a composite performance metric that
captures their relative importance in practice: Service providers
usually grant top priority to quality guarantee and explore
energy saving secondly. We consider scheduling on multicore
systems with core-level DVFS support and a power budget. Our
solution consists of two steps. First, we employ an equal sharing
principle for both job and power distribution. Specifically, we
present a “Cumulative Round-Robin” policy to distribute the
jobs onto the cores, and a “Water-Filling” policy to distribute
the power dynamically among the cores. Second, we exploit
the concave quality function of many best-effort applications,
and develop Online-QE, a myopic optimal online algorithm for
scheduling jobs on a single-core system. Combining the two steps
together, we present a heuristic online algorithm, called DES
(Dynamic Equal Sharing), for scheduling best-effort interactive
services on multicore systems. The simulation results based on a
web search engine application show that DES takes advantage of
the core-level DVFS architecture and exploits the concave quality
function of best-effort applications to achieve high service quality
with low energy consumption.

Keywords-Energy efficiency; Scheduling algorithm; Quality of
service; Multicore systems

I. INTRODUCTION

Many large-scale interactive services—including web

search, video-on-demand, financial, recommendations, map

search, and online gaming—require high service quality with-

in a short response time, which is critical for a service provider

to stay competitive and win customers [15]. In addition, these

services are often hosted on thousands of machines, and hence

it is also crucial to reduce unnecessary energy consumption,

which can reduce the operational cost and increase the profit

of the service provider, not to mention its impact on the carbon

footprint and global environment.

These interactive services possess two properties: they are

often best-effort in nature, and must respond within a rigid

deadline. (1) A best-effort request can be partially executed

and will produce partial results. Given additional resources,

such as processing time, the results will improve in quality.

We use a quality function to map the processing time a request

receives to its quality value, and the shape of such a quality

function is usually non-decreasing and concave as shown in

Figure 1. (2) The processing for a request is limited by time

0 500 1000
0

0.2

0.4

0.6

0.8

1

Processing time(ms)

Q
ua

lit
y

Figure 1. An example quality function that maps the processing time a
request receives to its quality value.

or resource constraints, e.g., it has a deadline. For example,

a web search engine often strives to answer a query within

150ms with at least 95% of the quality that could be obtained

if there is no deadline constraint.

In this paper, we study the problem of scheduling best-

effort interactive services on multicore systems for quality-

energy tradeoff. We introduce a composite performance met-

ric 〈quality, energy〉 to capture their relative importance

in practice: Service providers usually grant top priority on

service quality to guarantee user experiences; under a quality

guarantee, they also want to make the system more cost

effective by reducing the energy consumption. In other words,

〈quality, energy〉 first ranks the schedules based on the

service quality, and then for those producing the same quality,

it prefers the one with the lowest energy. Such a lexicographic

order [12] respects the relative importance of quality and

energy from the perspective of service providers.

We focus on scheduling best-effort interactive services on

emerging processors that support core-level DVFS (Dynamic

Voltage & Frequency Scaling). Compared to most existing

processors that only support system-level DVFS [20][22],

where all cores on a chip must share the same speed, core-

level DVFS allows each individual core to have its own

speed/power level with little additional overhead [26][27].

While the entire system is bounded by a power budget, the

new architecture apparently provides more flexibility for both

quality and energy optimization.

We present a heuristic online algorithm, called DES (Dy-

namic Equal Sharing), which possesses two important prop-

erties that differentiate it from other scheduling algorithms:

(1) DES takes advantage of the core-level DVFS feature for

2013 IEEE 27th International Symposium on Parallel & Distributed Processing

1530-2075/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPS.2013.26

637

2013 IEEE 27th International Symposium on Parallel & Distributed Processing

1530-2075/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPS.2013.26

637

better power distribution among the cores in order to handle

the service demand variation of the requests. Specifically,

cores with heavy load (executing long or more requests) can

consume more power and run faster to achieve higher response

quality while cores with light load (executing short or less

requests) can spend less power and run slower to improve the

energy efficiency. (2) DES exploits the best-effort feature of

interactive services to optimize the execution of the requests.

In particular, the quality of many best-effort applications

is a concave function of a request’s processing time [14]:

response quality improves with increasing resources but with

diminishing returns. DES runs the most profitable portions of

the requests under heavy load in order to gain more quality

with the same energy expenditure.

With the above intuition, DES divides the multicore

scheduling problem into two sub-problems. The first sub-

problem concerns how to distribute the requests onto the cores

and how to distribute the power budget among the cores. The

second sub-problem concerns how to execute the assigned

requests on a single core with the given power budget. DES
integrates our solutions to the two subproblems, and can be

considered as DES = C-RR + WF + Online-QE. That is, it

uses “Cumulative Round-Robin” policy and “Water-Filling”

policy for job and power distributions, respectively, and then

it applies a myopic optimal algorithm Online-QE, which is

inspired by an offline optimal algorithm, for scheduling the

requests on each individual core.

We use simulation to evaluate the performance of DES
and to compare it with a few widely accepted scheduling

algorithms. Using requests from web search engine as the

driving workload, the results show that DES takes advantage

of the core-level DVFS architecture and the concave quality

function of best-effort applications to achieve high quality

with low energy consumption. In particular, at light load,

DES achieves about 2% more quality than other scheduling

algorithms (which is significant for large-scale interactive

services) with roughly the same energy as the compared

scheduling algorithms. At heavy load, the quality improve-

ment is even more as DES can better utilize the power budget

and the energy resources. For the same target quality of 0.9,

DES achieves up to 69% higher throughput than the other

scheduling algorithms.

The contributions of this paper are the following: (1)

We present a new metric 〈quality, energy〉 to evaluate the

quality-energy tradeoff of online services. (2) We develop an

optimal offline algorithm on single-core systems with respect

to 〈quality, energy〉, and present a myopic online algorithm

based on the offline optimal. (3) We propose an heuristic

online scheduling algorithm to schedule requests on multicore

systems with core-level DVFS support and a power budget.

(4) We use simulation to evaluate the performance of our

algorithm and validate the results on real systems.

The rest of this paper is organized as follows. Section

II formulates the scheduling problem. Section III presents

the single-core offline algorithm and its optimality proof, as

well as a single-core online algorithm. Section IV presents

our main algorithm for multicore systems, followed by its

performance evaluation in Section V. Section VI discusses

some related work, and Section VII concludes the paper.

II. PROBLEM FORMULATION

A. Best-Effort Interactive Services

We consider the following model for best-effort interactive

services [15]. There is a set J = {J1, J2, · · · , Jn} of

n interactive requests or jobs, and each job Jj ∈ J is

characterized by a release time rj , a deadline dj , and a service
demand wj (the required number of CPU cycles). Each job

can only be processed between its release time and deadline.

We assume that the deadlines of the jobs are agreeable, that

is, a job with later release time has a later deadline. This is

true for many applications such as search engines and video-

on-demand servers, where jobs usually have similar response

time requirements.

Another important property of best-effort interactive ser-

vices is the support of partial evaluation. Let pj denote the

processed volume (the number of processed cycles) job Jj
receives during [rj , dj], and it need not equal to its full service

demand, that is, partial execution is allowed with pj ≤ wj .

In a schedule, if pj = wj , we say that job Jj is satisfied.

Otherwise, the job is said to be deprived. A quality function
f : R → R maps the processed volume of a job to a quality

value gained by (partially) executing the job. We assume that

the quality function f is monotonically increasing and strictly
concave. For simplicity of analysis, we also assume that the

same function f applies to all jobs in J . Such concave quality

functions are common due to the effect of diminishing returns;

many best-effort interactive services such as search engines

and video-on-demand servers exhibit such properties [15].

The total quality gained by executing a set J of jobs is then

given by Q =
∑

Jj∈J f(pj).

B. Multicore Server

We consider a multicore server supporting core-level DVFS.

A server is composed of a set {M1,M2, · · · ,Mm} of m
cores, and each core supports independent DVFS and can

have a different speed from other cores. The total power

consumption of a core consists of both dynamic power and

static power, i.e., P = Pdynamic+Pstatic. The dynamic power

is usually a convex function of the core’s speed [25], and

we employ the model Pdynamic = a × sβ , where a > 0 is

the scaling factor and β > 1 is the power parameter. The

static power Pstatic = b is a non-negligible constant with

b > 0. In this paper we do not allow an individual core to

shut down when the server is running, so the static power will

then become a common offset to all scheduling algorithms.

Therefore, except when validating the results using a real

system in Section V-G, we ignore static power in the rest

of this paper and only consider the effect of dynamic power

for comparing different scheduling algorithms.

For the dynamic power, the server has a total budget H
which can be distributed arbitrarily among the cores. Let Pi(t)
denote the power consumption of core Mi at time t. The total

power P (t) of the system, which is given by the sum of power

of all cores at time t, should be bounded by the power budget

H , i.e., P (t) =
∑m

i=1 Pi(t) ≤ H . The energy consumption E
for scheduling a set J of jobs is the total power consumed

638638

from the release time of the first job to the deadline of the last

job, i.e., E =
∫ dn

r1
P (t)dt. Note that the energy above refers to

the one contributed by the dynamic power only while the static

energy consumption in interval [r1, dn] will be a constant for

all scheduling algorithms in our model.

To reduce context-switching overhead, we consider non-
migratory scheduling, that is, a job can be executed by any

core in the server; but once started, it cannot be migrated to a

different core. The total processed volume of a job is decided

by the processing time the job receives as well as the speed of

the core executing the job. For job Jj , let sj(t) represent the

speed of the core that is processing the job at time t. If job Jj
is not being processed at time t, we have sj(t) = 0. The total

processed volume of job Jj is given by pj =
∫ dj

rj
sj(t)dt.

C. Performance Metric and Scheduling Model

To address both quality and energy concerns, we introduce

a composite performance metric – 〈quality, energy〉 – as

our scheduling objective. As interactive service providers, the

top priority is to offer high quality of service to improve

user experiences. With a quality guarantee, they also want

to make the system more energy efficient. The composite

metric 〈quality, energy〉 captures precisely this objective by

first ranking the schedules based on the total quality, and

then for those under the same quality chooses the one that

minimizes the total energy consumption. In other words, a

lexicographic order is imposed on the 〈quality, energy〉 pair

when comparing different schedules. An optimal solution with

respect to this performance metric should produce the highest

total quality Q among all valid schedules, and it should also

consume the minimum amount of energy E among those

schedules that maximize the total quality.

In this paper, we consider both offline and online scheduling

for the single-core scenario. An offline model assumes that a

scheduler knows complete information about all jobs includ-

ing future arrivals. Although not practical in reality, it inspires

the design of our online algorithms for both a single core

and multicore systems. In the online model, a scheduler uses

only the information of arrived jobs including their service

demands, release times and deadlines without requiring any

information of future jobs.

III. ALGORITHMS FOR SINGLE-CORE SYSTEM

This section discusses scheduling for a single-core system.

We first introduce an offline algorithm and prove its optimality

with respect to 〈quality, energy〉. Inspired by this optimal

offline algorithm, we then present a myopic optimal online al-

gorithm, which turns out to be an important component when

designing our multicore scheduling algorithm in Section IV.

A. Optimal Offline Algorithm

We present an offline algorithm, called QE-OPT, and

prove that it produces an optimal schedule with respect to

〈quality, energy〉 under a given power budget.

Preliminaries: QE-OPT generates an optimal schedule in

two steps: The first step determines the processing volume

for each job in the job set to maximize the total quality. The

second step determines the speed at which each job will be

processed to minimize the overall energy.

The design of the two steps is inspired by two algo-

rithms, namely, Energy-OPT [25] and Quality-OPT [15],

respectively.1 Each algorithm gives an optimal schedule for

a simpler metric. QE-OPT is an amalgamation of these two

algorithms, and we will show that it is optimal with respect

to 〈quality, energy〉. We first give an overview of these two

algorithms to help us construct and understand QE-OPT.

Energy-OPT uses DVFS to schedule jobs on a single core

to minimize the energy consumption without power budget

constraint. Since there is no power limit, all jobs can be

satisfied and there is no need to consider partial evaluation.

Two key concepts are defined for Energy-OPT:

• Interval intensity: The intensity of an interval I = [z, z′]
is defined as

g(I) =

∑
wi

z′ − z
,

where the sum is taken over all jobs in JI =
{Jj |[rj , dj] ⊆ [z, z′]}. It is also called the average speed

of interval I .

• Critical interval: We call I∗ a critical interval if I∗

maximizes g(I) among all intervals in J . The set JI∗ of

jobs falling in I∗ is the critical group of J . The average

speed of a critical interval is called critical speed.

Since Energy-OPT attempts to satisfy all jobs in J , its main

intuition is to find the most intensive interval, or the critical

interval I∗, to schedule first. Due to the convex nature of

the power function, the most energy-efficient speed to run

JI∗ would be g(I∗) because the core cannot run any slower

to finish all the jobs in I∗ before their deadlines. After

deciding the first critical interval and assigning the schedule

for this critical group, Energy-OPT removes the interval and

the critical group from J , adjusts the release time and the

deadline for other jobs that partially overlap with this interval,

and then repeats the process of finding the next critical interval

for the remaining jobs recursively.

Quality-OPT, on the other hand, schedules jobs on a single

core with a fixed speed to maximize the total service quality.

Since the core’s speed cannot be changed and the jobs need

to be processed before their deadlines, some jobs can only

be partially evaluated when the workload is high. As with

Energy-OPT, two important concepts are defined for Quality-
OPT:

• Deprived mean (d-mean) of an interval: The d-mean p̃(I)
of an interval I = [z, z′] is defined as

p̃(I) =
z′ − z −∑

Jj∈S(I) wj

|D(I)| ,

where S(I) and D(I) denote the set of satisfied jobs and

the set of deprived jobs in interval I , respectively. The

type of each job is determined by comparing its service

demand with a temporary value of d-mean in an iterative

fashion (See [15] for details). Note that if all jobs in an

interval I can be satisfied, i.e., |D(I)| = 0, its d-mean
is simply defined as p̃(I) =∞.

1Energy-OPT is also referred to as the YDS algorithm in the literature [4],
and Quality-OPT is also called Tians-OPT in [15].

639639

• Busiest deprived interval: An interval I∗ is called the

busiest deprived interval if I∗ minimizes p̃(I∗) among

all intervals of job set J .

Since the quality functions of all jobs are concave and

identical, the intuition behind Quality-OPT is that it will

achieve the highest quality for the jobs in I∗ by satisfying

all jobs in S(I∗) and allocating an equal processing volume

(or d-mean) to each deprived job. As with Energy-OPT, after

finding the first busiest deprived interval and assigning the

schedule for this group of jobs, Quality-OPT removes this

interval and scheduled jobs, adjusts the release time and the

deadline for other jobs that partially overlap with this interval,

and recursively schedules the remaining jobs by searching for

the next busiest deprived interval or until all jobs are satisfied

with the fixed core speed.

Algorithm QE-OPT: QE-OPT addresses a more complex

problem by combining the benefits of Quality-OPT and

Energy-OPT, which are responsible for maximizing quality

and minimizing energy, respectively. In particular, QE-OPT
first runs Quality-OPT with the maximum core speed, i.e., full

power budget, to determine the processing volume for each

job. This step guarantees to deliver the maximum quality. The

minimum energy is then ensured by running Energy-OPT on

top of the schedule produced by Quality-OPT. The following

shows the two steps of QE-OPT in detail:

1) Apply Quality-OPT on job set J using the maximum

core speed to determine the processing volume pj for

each job Jj ∈ J . Then, for each job, adjust its service

demand to be its processed volume, i.e., wj ← pj ,

without changing the release time and deadline. Call

the new job set J ′.
2) Apply Energy-OPT on the new job set J ′ with the

adjusted service demands to determine the speed sj to

execute each job Jj ∈ J ′ on the core.

Since both Quality-OPT and Energy-OPT produce non-

preemptive schedules when the deadlines of the jobs are

agreeable, the final schedule computed by QE-OPT also

executes each job without preemption in the order of their

arrivals. A straightforward implementation of Energy-OPT
takes O(n3) time, and the complexity of Quality-OPT is

O(n4), where n is the total number of jobs. Thus, a straight-

forward implementation of QE-OPT takes O(n4) time. In

Section III-B, we show that when jobs arrive in an online

manner, a simpler implementation of QE-OPT is possible with

lower complexity.

Optimality Analysis: We show that QE-OPT produces an

optimal schedule with respect to the metric 〈quality, energy〉.
Before proving its optimality, we first show that the schedule

produced by QE-OPT is always feasible.

Theorem 1: QE-OPT produces a feasible schedule for any

job set on a single-core system.

Proof: We prove the feasibility by showing that any

critical speed used by Energy-OPT for job set J ′ is not

more than the maximum core speed, denoted by s∗. Since the

critical speed is non-increasing over critical intervals and the

speed within a critical interval does not change [25], we need

only consider the first critical interval I∗ found by Energy-
OPT. Suppose the speed of this interval is larger than the

maximum core speed, i.e., g(I∗) > s∗. Consider the set of

jobs in I∗. While both Quality-OPT with fixed speed s∗ and

Energy-OPT with variable speed are able to complete every

job in I∗, Energy-OPT runs at speed g(I∗) thus consumes

more energy than Quality-OPT. This contradicts the fact that

Energy-OPT produces a minimum energy schedule for any

critical job group.

Theorem 2: QE-OPT produces an optimal schedule with

respect to 〈quality, energy〉 on a single-core system.

Proof: Since Quality-OPT computes the maximum qual-

ity on a core with fixed speed, and the first step of QE-
OPT uses the fastest core speed, QE-OPT gives the maximum

possible quality for the job set. Moreover, since the quality

function is strictly concave, according to convex optimiza-

tion [6], the optimal quality is uniquely determined by the

assigned job processing volumes calculated by Quality-OPT.

From Theorem 1, we know that the same optimal quality is

preserved by Energy-OPT without violating the power budget.

Since Energy-OPT gives a minimum energy schedule for any

critical job group, the schedule produced by QE-OPT also

minimizes the energy among those with maximum quality.

B. Myopic Optimal Online Algorithm

While QE-OPT gives an optimal solution to our scheduling

problem, it requires complete information of the jobs includ-

ing future arrivals. This section presents a practical online

algorithm, called Online-QE, based on the basic principles of

QE-OPT but with lower complexity.

Online-QE simply computes the optimal schedule based

on the current knowledge of the jobs in the system, including

jobs that have arrived so far and whose deadlines have not

yet expired. The algorithm is invoked in an online manner

whenever some triggering events occur (see Section IV-E).

Upon each invocation, Online-QE recomputes a new schedule

using QE-OPT. Apparently, the overall schedule is not glob-

ally optimal for the whole set of jobs; Online-QE guarantees

a myopic optimal solution for the set of available jobs at each

invocation.

There is, however, one issue we need to address to even

guarantee myopic optimal schedule on the set of ready jobs.

That is, a new invocation can be requested when the currently

running job is not yet completed according to the previous

schedule. We address this issue by readjusting the release time

of the job to ensure correct calculations of both Quality-OPT
and Energy-OPT. Let t denote the current time when Online-
QE is invoked. Let Jt denote the set of ready jobs at time t,
and let J1 ∈ Jt denote the job that is currently running, and

suppose that the processed volume of J1 so far is p̄1. Before

invoking the algorithm, we first adjust the release time of J1
to be r1 = t− p̄1/s

∗, where s∗ denotes maximum core speed

under the given power budget, and adjust the release time of

any other job Jj ∈ Jt to be rj = t. Keeping all the other

attributes of the jobs unchanged, call the new job set with

adjusted release times J ′t . Online-QE performs two steps:

1) Apply Quality-OPT on J ′t using the maximum core

speed to determine the processing volume pj for each

job Jj ∈ J ′t . Then, for the currently running job J1,

readjust its release time to be the current time t, and

640640

adjust its service demand to be w1 = p1−p̄1. If w1 ≤ 0,

remove J1 from J ′t . For any other job Jj ∈ J ′t , adjust

its service demand to be wj = pj . Call the new job set

J ′′t .

2) Run Energy-OPT on the new job set J ′′t to determine

the speed sj to execute each job Jj ∈ J ′′t on the core

from current time t onwards.

Following the analysis of QE-OPT, it is not hard to see

that Online-QE gives a feasible and myopic optimal schedule

for the set of ready jobs at each invocation. In particular, the

adjustments of the jobs’ release time before both steps of

the algorithm ensure the correct calculations of the optimal

processing volume and the speed for each job, assuming that

there is no future arrivals and the computed schedule is only

applied to the jobs from the current time onwards.

Moreover, the computational complexity of Online-QE can

be reduced to O(n2) at each invocation, where n denotes the

total number of ready jobs when the algorithm is invoked.

This is because all jobs except the currently running one can

now be considered as having the same release time. Therefore,

both Energy-OPT and Quality-OPT need only consider the

O(n) intervals instead of all O(n2) possible intervals.

Finally, the schedule produced by Online-QE for the entire

job set is also non-preemptive and it works even when the

power budget of the core can change at each invocation. On

a multicore system, such scenario can happen with dynamic

power distribution across cores. This allows our single-core

algorithm to be employed as an independent procedure in

scheduling multicore systems as described in Section IV-D.

IV. ALGORITHM FOR MULTICORE SYSTEM

This section discusses scheduling on multicore systems

with a dynamic power budget that can be distributed arbi-

trarily among the cores. The offline version of this problem

is NP-hard, since a simpler problem where the objective is

to minimize the energy consumption without a power budget

has been shown to be NP-hard [1]. In this section, we focus

on the online version of the problem by presenting a heuristic

algorithm, called DES (Dynamic Equal Sharing). We evaluate

the performance of DES in Section V.

A. Overview of DES

Two key aspects of our multicore scheduling algorithm are

to distribute the ready jobs onto the cores and to distribute

the power budget among the cores. These are two challenging

tasks because we need to consider their impacts on both qual-

ity and energy. To achieve good job and power distributions,

DES applies the principle of equal sharing, which turns out

to be an effective strategy to address both quality and energy

concerns. By doing so, the algorithm effectively divides the

multicore scheduling problem into many independent single-

core problems, and the sub-problem for each individual core

can then be solved by using the Online-QE algorithm pre-

sented in Section III-B.

B. Job Distribution Policy

To maximize quality, it is desirable to distribute the jobs

evenly among the cores so as to balance the workload on each

core. This will minimize job contention so that more jobs

can be potentially satisfied and more work can be completed,

which directly contributes towards higher total quality. To

minimize energy with a convex power function, we want to

run each job as slowly as possible while meeting its deadline.

Apparently, having less job contention on each core enables

us to achieve this goal. Thus, even distribution of the jobs

also helps reduce the overall energy consumption.
With this intuition, we employ a simple and efficient

“C-RR” (Cumulative Round Robin) policy to equally share

the ready jobs among the cores at each invocation of the

algorithm. The policy is cumulative in the sense that it starts

to assign the ready jobs from the core where the last job

distribution cycle stops. Compared with non-cumulative RR,

which distributes jobs starting from the same core at each

invocation, “C-RR” can lead to much balanced job distribution

in the long run. Since our algorithm is non-migrating, once

a job is distributed to a core, it will stay on the core till

completion or when it is discarded due to partial evaluation.

C. Power Distribution Policy
After job distribution, each core can produce its own

schedule by using the Online-QE algorithm. However, the

total requested power from all cores may exceed the total

power budget of the system. In such case, we need an effective

policy to distribute the power.
Since the power function is convex, the sum of speeds of

all the cores is maximized when the power is equally shared

among them. This will maximize the total amount of work

that can be done in a time unit, thus potentially improves the

chance to complete more work and achieve higher quality.

Therefore, the key insight for power distribution is, once

again, equal sharing. Due to workload variations, however,

a core may need less power than the designated equal share.

In this case, it will be more energy-efficient to provide only

what the core demands and assign the remaining power budget

to other cores with higher power demands. Based on this

intuition, we propose a dynamic power distribution policy,

called “WF” (Water-Filling).
As the name suggests, “WF” policy is analogous to filling

water into containers of different heights. Here, the total

amount of water represents the total power budget, and the

height of a container represents the requested power of the

corresponding core. Imagine that the bottom of the containers

are connected so that water can flow freely among them.

“WF” policy is equivalent to pouring water from the top of

the containers until all are fully filled or there is no more

water. Figure 2 illustrates this process on a 4-core system.

In this example, core 4 requires less than the equal share so

that it gets what it demands. Cores 1, 2 and 3, having higher

demands, equally share the remaining power.
More formally, let hi denote the requested power from core

Mi and let ai denote the assigned power for core Mi. Initially,

set ai = 0 for all 1 ≤ i ≤ m. Given a total power budget H ,

the “WF” policy distributes the power to the cores iteratively

as follows:

1) Suppose there are m′ unsatisfied cores whose request-

ed power remains nonzero. If m′ = 0, the policy

terminates. Otherwise, let hmin denote the minimum

requested power among these cores.

641641

Power “Water Filling” from here

4321 Cores

Figure 2. “WF” policy for distributing power budget among cores.

2) If hmin ·m′ ≥ H , then evenly distribute the remaining

power budget to these cores, i.e., ai = ai +H/m′, and

terminate. Otherwise, add hmin power to each of these

cores, i.e., ai = ai + hmin. Then, update the remaining

power budget H = H − hmin ·m′ and the request of

each core hi = hi − hmin. Go back to Step 1).

D. DES Algorithm

We now describe our DES (Dynamic Equal Sharing) algo-

rithm. The basic idea is to use the job and the power distribu-

tion policies to divide one global multicore scheduling prob-

lem into several local single-core problems. Then, we employ

the single-core online algorithm presented in Section III-B on

each individual core. In a sense, DES can be considered as

DES = C-RR + WF + Online-QE, which presents a package

of solutions, and each component addresses a different aspect

of a complex scheduling problem.

DES is invoked to recompute the schedule whenever some

triggering events occur (See Section IV-E). The input is a set

of ready jobs that have arrived since the last invocation, and

the output is a schedule that defines when a job runs on which

core and at what speed. Suppose DES is invoked at time t,
and the following shows the scheduling steps:

1) Ready-job-distribution: Employ the “C-RR” policy to

distribute the ready jobs onto the cores. Adjust the

release time of all jobs to the current time t.
2) Budget-free-independent-core-scheduling: Assuming

unlimited power, use Energy-OPT to calculate a

schedule on each core. Let P ′i (t) denote the power

required at time t in this schedule for core Mi. Since

all jobs are now released at current time t, according

to Energy-OPT, the calculated power on each core

decreases monotonically over time, i.e., P ′i (t
′) ≤ P ′i (t)

for all t′ ≥ t. If the total power at time t can meet

the budget, i.e., P ′(t) =
∑m

i=1 P
′
i (t) ≤ H , we can

complete all jobs under the power budget and the

algorithm terminates; otherwise, proceed to Step 3).

3) Dynamic-power-distribution: Employ the “WF” policy

to distribute the total power budget H among the cores

based on the required power P ′i (t) of each core Mi at

time t. Let Pi(t) denote the distributed power to Mi.

4) Budget-bounded-independent-core-scheduling: For each

core Mi, employ the single-core Online-QE algorithm

with power budget Pi(t) to calculate a schedule.

Steps (1) and (3) distribute the jobs and the power budget to

the cores respectively, and Steps (2) and (4) schedule the jobs

on each individual core. In particular, Step (2) first calculates

an optimistic schedule for each core without assuming a

power budget. If such a schedule does not violate the power

constraint, all jobs can be satisfied and we are done; otherwise,

Step (3) resolves the power competition among the cores and

Step (4) produces a feasible schedule that meets the power

budget with some partially evaluated jobs.

E. Triggering Events for Grouped Scheduling

Instead of using Immediate Scheduling (IS), which recom-

putes a new schedule whenever a job arrives, we employ

Grouped Scheduling (GS) for DES. With GS, arriving jobs

are first stored in a waiting queue, and they are only as-

signed to cores when certain scheduling events are triggered.

GS reduces scheduling overhead; it also helps to improve

the quality of scheduling decision by considering multiple

requests together. The following shows the three types of

triggering events we use in this paper:

• Quantum trigger: The scheduler is triggered periodically

after each scheduling quantum.

• Idle-core trigger: An idle core triggers the scheduler to

start assigning more jobs.

• Counter trigger: The scheduler is triggered when certain

number of jobs have been accumulated in the queue.

V. PERFORMANCE EVALUATION

We evaluate the performance of our DES algorithm on dif-

ferent architectures and compare it with different algorithms.

First, the simulation results show that DES can take advantage

of both the modern hardware architecture and the feature of

the best-effort applications to achieve high quality and low

energy. Second, even for the same architecture and appli-

cation, DES outperforms other widely accepted scheduling

algorithms. The sensitivity study then shows how the quality

function, power budget and number of cores can affect the

performance of our algorithm. Finally, validation on a real

system shows the accuracy of the simulations, thus suggesting

the reliability of our results.

A. Evaluation Methodology

Our DES algorithm targets at best-effort interactive services

on multicore architectures that support fine-grained core-level

DVFS. In our evaluation, we simulate such an architecture

and use the web search engine as an example to model

interactive services. We evaluate the performance of DES from

the following five aspects: (1) Does it take advantage of the

core-level DVFS to achieve high quality with low energy?

(2) Given the same architecture, does DES take advantage

of the partial evaluation feature of best-effort applications

(e.g. web search) to achieve higher quality? (3) Based on the

same architecture and application, does DES improve quality

and save energy compared with other scheduling policies?

(4) How is the performance of DES affected by different

quality functions, amount of power budget, number of cores

and discrete speed scaling in the system? (5) How reliable

are the simulation results when validated on real systems

with realistic power models? We elaborate our evaluation

methodologies of the five sets of experiments as follows.

642642

Taking Advantage of Modern Multicore Architectures:
We implement DES on three processor architectures with

different levels of DVFS support. The aim is to evaluate both

quality and energy of DES on these architectures, and to show

its advantage on the core-level DVFS systems.

• No-DVFS: This architecture cannot support any DVFS to

achieve energy saving. To implement DES on No-DVFS
architecture, we ignore Steps (2) and (3) of the algorithm

as well as the second step of the single-core Online-QE
algorithm. In other words, the algorithm simply assigns

the ready jobs to cores using the “C-RR” policy, and

employs Quality-OPT to optimize quality on each core.

• S-DVFS (System-level DVFS): This architecture provides

limited DVFS support, where all cores can change their

speeds all must share the same speed at any time. To

implement DES on S-DVFS, we set the power require-

ments of all cores calculated in Step (2) of DES to the

maximum power requested by any core, so Step (3) will

assign the same power to each core. If the total power

requirement is less than the power budget, unlike No-
DVFS, S-DVFS is able to save energy by running all

cores at a slower speed. The second step of the single-

core Online-QE algorithm is also ignored.

• C-DVFS (Core-level DVFS): This is the most flexible

architecture that allows each individual core of the sys-

tem to run at different speed at any time. It can provide

fine-grained DVFS support and our DES algorithm is

designed for this architecture.

Taking Advantage of Best-Effort Interactive Services:
Web search is a good example of best-effort interactive

service, where we can obtain some quality even if a job is

only partially executed by its deadline. For a job that cannot

be partially evaluated, however, we will not get any quality if

it is not executed to completion. To show how DES can take

advantage of this feature, we will vary the proportion of the

jobs with best-effort support to compare the different qualities

obtained with the same power budget.

Comparing with Different Scheduling Algorithms: Under

the same hardware architecture and application models, we

compare the performance of our DES algorithm with three

widely used scheduling policies, namely FCFS (First-Come,

First-served)2, LJF (Longest Job First) and SJF (Shortest Job

First). All three algorithms are triggered whenever a core

becomes idle, and a job in the ready queue (with earliest

release time in FCFS, with largest service demand in LJF,

and with smallest service demand in SJF) will be assigned to

the core. The job will be executed with the slowest possible

speed to finish it before deadline to save energy. If the power

supplied to the core is not enough to complete the job, it will

be executed with the highest available speed till its deadline.

The default power distribution policy for all three algorithms

is static equal sharing, i.e., all the cores will be given the same

power budget, similarly to the situation under the S-DVFS
architecture. We also compare DES with these algorithms

when they are augmented with “WF” power distribution.

2FCFS is equivalent to EDF (Earliest Deadline First) policy, since we
assumed that the jobs’ deadlines are agreeable.

Sensitivity Study under Different Scenarios: We study the

sensitivity of DES under the following scheduling scenarios:

• Effect of quality function: We show how quality functions

with different concavity can affect the total achieved

quality with the same consumed energy.

• Effect of power budget: We show the tradeoff between

quality and energy and its implications when different

power budgets are used, especially under heavy load.

• Effect of number of cores: We show how different

numbers of cores can affect quality and energy, and the

optimal number of cores to use for the best performance.

• Effect of discrete speed scaling: We show how to support

DES under discrete speed scaling model, and study its

impact on quality and energy.

In the last sensitivity study, we modify the power distribu-

tion policy in order to support discrete speed scaling. After

performing the “WF” power distribution and starting from the

core with the lowest assigned power, we rectify the speed to a

discrete value closest to but not less than the continuous one,

subject to the total power budget. If the power budget cannot

support such a discrete speed, we will select the next lower

discrete speed instead.
Validation on Real System: We validate the simulation

results on a real system to evaluate the accuracy of the energy

consumption. In this study, a scheduling trace of the DES
algorithm under discrete speed scaling is reproduced on a

8-node multicore cluster. To match our simulation settings

with the actual system, we also adopt a more practical power

consumption model including both static and dynamic power.

We use regression method to obtain a power function based

on a set of measured 〈speed, power〉 pairs on the real system.

Under this practical power function, we compare the result of

our simulations with the one measured in the system.

B. Simulation Setup

We model a web search server with m = 16 cores

and model the web search requests with partial evaluation

support as follows. The arrival of the requests follows the

Poisson process and the deadline of each request is defined

to be 150ms after its arrival (later responses may affect user

experience). The service demand of a request follows bounded

Pareto distribution with three parameters α, xmin and xmax,

which represent the Pareto index, the lower bound and the

upper bound on the service demand (for simplicity, we use

how many processing units instead of how many instructions

to represent the jobs’ demands), respectively. We define the

processing capability of a core executing at 1Ghz in one

second to be 1000 processing unit. Our simulation results

show consistency with different parameter values, hence we

only present the results with α = 3, xmin = 130 processing

units and xmax = 1000 processing units (the mean service

demand of a request can then be calculated to be 192

processing units).

We use the following family of quality functions:

q(x) =
1− e−cx

1− e−1000c
, (1)

where c is a multiplier constant determining the concavity of

the function. Figure 7(a) visualizes the quality functions with

643643

different values of c. We use the default value of c = 0.003
except in Section V-F where we perform sensitivity study on

the impact of different quality functions. The total quality

presented in our simulation results are normalized against the

maximum possible quality that can be obtained.
We set a total dynamic power budget of H = 320W and

apply the dynamic power function Pdynamic = a× sβ , where

a = 5 and β = 2 are constants and s is the core speed (in

terms of Ghz). So the average speed for each core is
√

20/5 =
2Ghz, and it can finish 2000 processing units in one second.

In our simulation, we do not consider static power since it

serves as a common offset to all scheduling algorithms.
Under this setting, we quantitatively define the workload to

be light when the job arrival rate is less than 120 requests per

second, which means that on average the requests consume

72% of the server’s total processing capacity with the given

power budget and number of cores. We also define heavy load

to be when the job arrival rate is larger than 180 requests per

second, which already exceeds the total processing capacity

of the server in the ideal case.
For the triggering events, we use all three triggers described

in Section IV-E and set the quantum trigger to be 500ms and

use a counter trigger of 8 requests. The simulation time for

all the experiments is 1800 seconds.

C. Performance of DES on Different Architectures
We evaluate DES on three architectures: No-DVFS, S-

DVFS, and C-DVFS. The results show that C-DVFS produces

the highest quality and consumes the lowest energy, which

demonstrates the benefits of our “WF” power distribution

policy and the effectiveness of DES on exploiting modern

architecture with fine-grained DVFS support.
Figure 3(a) shows that C-DVFS always achieves the best

quality among the three architectures (the qualities of S-DVFS
and No-DVFS are very close to each other). Under light load,

C-DVFS is much better than S-DVFS and No-DVFS. In this

case, C-DVFS can achieve nearly full quality (by processing

each request to near completion) but S-DVFS and No-DVFS
will lose about 2% of the quality (some requests will be

discarded before completing the search), which is considered

significant in large-scale search engines. The reason is that

although DES tries to distribute the jobs evenly on each core,

it cannot completely eliminate the load imbalance because

of the variance in the jobs’ service demand. Both No-DVFS
and S-DVFS lack architectural support to dynamically allocate

enough power for those cores experiencing temporal high

loads. With C-DVFS, DES can now exploit the hardware

flexibility by allowing heavily loaded cores to have more

power than lightly loaded ones in order to alleviate the load

imbalance and hence return more search results.
With increasing loads, the quality will start to decrease for

all architectures, but C-DVFS’s quality degrades much slower

than those of S-DVFS and No-DVFS. Under heavy load, the

qualities of the three architectures become similar because all

cores will be heavily loaded, and the power budget is not

sufficient to support the cores to achieve more quality. In this

case, the best strategy is to give each core the same power,

diminishing the difference between static and dynamic power

distribution.

100 150 200
0.9

0.92

0.94

0.96

0.98

1

 Arrival Rate

Q
ua

lit
y

C−DVFS
S−DVFS
No−DVFS

(a)

100 150 200 250

2

3

4

5

6x 10
5

Arrival Rate

E
ne

rg
y

C−DVFS
S−DVFS
No−DVFS

(b)

Figure 3. Quality and energy of DES on different architectures.

Figure 3(b) shows that DES also takes advantage of the C-
DVFS architecture to save energy. Because No-DVFS does not

support any DVFS, it consumes the maximum energy given

by the budget. S-DVFS architecture can save energy when

the peak power of the cores is less than the budget. C-DVFS
achieves further saving by reducing the speed of an individual

core according to its own load. Under light load, both C-
DVFS and S-DVFS can save energy but C-DVFS saves more.

In particular, S-DVFS saves at least 35.6% of the dynamic

energy compared with No-DVFS, and C-DVFS further saves

about 6.8% on top of S-DVFS.3 Again under heavy loads,

the entire dynamic power budget is used to execute the jobs

regardless of the architectures, and they consume the same

amount of energy.

D. Performance of DES with Different Job Execution Models

We show that DES indeed benefits from jobs that have

partial evaluation support. In this set of simulations, we vary

the proportion of the jobs that can be partially evaluated.

Three different scenarios are presented under the same load

conditions. One is that all the jobs cannot be partially ex-

ecuted; the second is that 50% of the jobs can be partially

executed and the last scenario is that all jobs can be partially

executed. For a job that cannot be partially evaluated, the

algorithm first checks if it can be completed in full under the

current schedule. If not, the algorithm discards this job and

computes a new schedule based on the remaining jobs.

Figure 4 shows that the more jobs that can support partial

evaluation, the more quality we will get under the same load,

and the more energy will be consumed because more work

needs be done in order to achieve higher quality. It clearly

shows that our DES algorithm can take advantage of the

partial evaluation feature of the jobs and can explore the power

budget efficiently to improve quality.

As shown in Figure 4(a), under light load, all three cases

can achieve almost full quality with low energy consumption

because the power budget is sufficient to finish all the jobs.

With increasing workload, their qualities all decrease, but

the case with 100% partial evaluatable jobs decreases much

slower. The horizonal dotted line in Figure 4(a) shows that to

achieve the same normalized quality of 0.9, the 100% case

can support a workload with an arrival rate as high as 194
requests per second, while the 50% case can support an arrival

rate of 168 (a reduction of about 13.4% in workload), and the

3The total energy saving also depends on the proportion of static power.
For example, if static power takes up 60% of the total power, then C-DVFS
saves about (35.6% + 6.8%)× 40% = 16.96% of the total energy.

644644

100 150 200
0.85

0.9

0.95

1

Arrival Rate

Q
ua

lit
y

0%
50%
100%

(a)

100 150 200 250

3

4

5

6x 10
5

Arrival Rate

E
ne

rg
y

0%
50%
100%

(b)

Figure 4. Quality and energy of DES for jobs with different proportions of
partial evaluation support.

0% case can only support an arrival rate of 158 (a reduction

of about 18.5%). On the other hand, the vertical dotted line

shows that under the same workload with an arrival rate of

150, the 100% case achieves a normalized quality as high as

0.99, the 50% case achieves a quality of 0.95, and the 0%
case only achieves a quality of 0.93.

E. Comparing DES with Different Scheduling Algorithms

We have shown that our DES algorithm can take advantage

of the core-level DVFS architecture and the features of best-

effort applications to achieve high quality. In this subsection

we will show that under the same hardware architecture and

application model, DES can take advantage of its power

distribution policy to achieve better performance than three

widely accepted scheduling algorithms: FCFS, LJF, and SJF.

In the first experiment, we employ the default static power

sharing policy for the other three algorithms. Figure 5(a)

shows that the quality of DES is always better than the other

algorithms. Even under light load, the qualities of FCFS, LJF
and SJF are about 2% less than DES, which is significant

for large-scale interactive services. This is because DES has

a global view in job distribution and speed scaling, and at

the same time it is supported by the dynamic “WF” power

distribution, which provides the flexibility to optimize for

more jobs in one schedule. The other algorithms, however,

only optimize for one job in one schedule and use static power

distribution. In particular, the “WF” power distribution is ef-

fective because of the variance in jobs’ service demands even

under light load. In such case, “WF” borrows some excessive

power budget from the lightly-loaded cores to support the

heavily-loaded ones, and therefore achieves better resource

utilization, which eventually translates to higher quality.

Among the three algorithms, the qualities of LJF and SJF
are the worst, because they disturb the arrival/deadline order

of the jobs. In either case, jobs with earlier deadline may

be discarded in favor of jobs with later deadline, while they

could have been co-scheduled to achieve better quality. FCFS
achieves relatively higher quality since it respects the deadline

order of the jobs so it can finish more jobs.

For the same quality, say 0.9, DES can support an arrival

rate as high as 196, while FCFS, LJF and SJF support an

arrival rate of 164, 132 and 116 respectively. It means that

the throughput of DES is about 20%, 48% and 69% higher

than those of FCFS, LJF and SJF.

Figure 5(b) shows that, under light load, DES achieves

significantly higher quality with little extra energy consump-

100 150 200
0.9

0.92

0.94

0.96

0.98

1

 Arrival Rate

Q
ua

lit
y

DES
FCFS
LJF
SJF

(a)

100 150 200 250
1

2

3

4

5

6x 10
5

Arrival Rate

E
ne

rg
y

DES
FCFS
LJF
SJF

(b)

Figure 5. Quality and energy comparison for different scheduling algorithms.

100 150 200
0.9

0.92

0.94

0.96

0.98

1

 Arrival Rate

Q
ua

lit
y

DES
FCFS+WF
LJF+WF
SJF+WF

(a)

100 150 200 250

2

3

4

5

6x 10
5

Arrival Rate

E
ne

rg
y

DES
FCFS+WF
LJF+WF
SJF+WF

(b)

Figure 6. Quality and energy comparison for different scheduling algorithms
with “WF” power distribution.

tion. When the load increases, the energy consumption of

all algorithms (except SJF) will start to increase, and DES
incurs more energy in order to complete more work to sustain

its quality. The energy of SJF reduces with increasing load

because it will discard more long jobs with early deadlines.

In this case, the short jobs will be executed with very slow

speed for energy efficiency, but the long jobs will not have any

chance to be executed before they expire. This also explains

why SJF has the worst quality among all algorithms.

In another experiment, we enhance the three comparing

algorithms with “WF” power distribution. Figure 6 shows

that they can all benefit from this dynamic policy. Specifi-

cally, under light load, all the “WF”-enhanced algorithms can

achieve nearly full quality, which is a significant improvement

compared to the results in Figure 5(a). When the load becomes

high, DES still maintains its quality advantage over the other

algorithms, due to its global view in job distribution and speed

scaling. In particular, DES schedules all jobs in the ready

queue at each invocation while FCFS, LJF and SJF select

only one job to schedule, so they cannot efficiently make use

of the power budget to achieve high quality in total.

F. Sensitivity Study

We perform some sensitivity study on our DES algorithm

in this subsection. The results show: (1) With the same

power budget, we can achieve more quality if the applications

exhibit a more concave quality function; (2) For the same

target quality, more power budget can support higher load,

with increased energy consumption; (3) With the same power

budget, an optimal number of cores can be used to achieve

the best quality with the least energy under a specific load; (4)

Discrete speed scaling has little impact on the performance

of DES.

Effect of different quality functions: DES is designed for

best-effort interactive services with concave quality functions.

645645

0 500 1000
0

0.2

0.4

0.6

0.8

1

 x

Q
ua

lit
y c=0.009

c=0.005
c=0.003
c=0.002
c=0.001
c=0.0005

(a)

100 150 200 250
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 Arrival Rate

Q
ua

lit
y

c = 0.009
c = 0.005
c = 0.003
c = 0.002
c = 0.001
c = 0.0005

(b)

Figure 7. Different quality functions and impacts on the quality of DES.

100 150 200 250
0

0.2

0.4

0.6

0.8

1

Arrival Rate

Q
ua

lit
y

budget = 80
budget = 160
budget = 320
budget = 480
budget = 640

(a)

100 150 200 250
0

2

4

6

8

10

12x 10
5

Arrival Rate

E
ne

rg
y

budget = 80
budget = 160
budget = 320
budget = 480
budget = 640

(b)

Figure 8. Quality and energy of DES with different power budgets.

The resulting quality is highly affected by the concavity of

the function. Figure 7(a) shows different quality functions by

choosing different values for the parameter c given in Eq. (1).

As can be seen, a larger c gives a more concave function, and

therefore gets more quality from (partially) executing the same

fraction of the job. Because of this, under the same schedule,

a larger c results in higher quality than a smaller c, as shown

in Figure 7(b). The energy consumption will not be affected

by the quality functions.

Effect of different power budgets: Figure 8 depicts the

impact of different power budgets on both quality and energy.

The results show: (1) When load is heavy, with more power

budget, DES is able to achieve higher quality under the same

load, or support higher load in order to sustain the same

quality; when load is light, however, high power budget is

not necessary. (2) The energy consumption will increase as the

load increases until the total power reaches the given budget.

From then on, a higher load will no longer affect the energy

while the quality will start to degrade.

Effect of different numbers of cores: Both quality and

energy will benefit from having more cores in the system.

Due to the convexity of the power function, a larger number

of cores will increase the total processing capability under the

same power budget. It also decreases the potential contention

of the jobs on each core so that a job can be executed

more slowly to save energy. Figure 9 shows the impact of

different numbers of cores on both quality and energy when

the arrival rate is 90 (Similar curves are observed for other

loads). We can see that a small number of cores only obtains

very limited quality and consumes a lot of energy. The effect

of both quality and energy improves as more cores are added

to the system. Such improvement reaches saturation when no

more concurrent jobs can be executed with additional cores.

In our experiment, 16 cores are sufficient to sustain high

quality with low energy. In practice, adding more cores will

change the hardware setting, which will lead to more static

0 2 4 6
0.5

0.6

0.7

0.8

0.9

1

Number of Cores=2x

Q
ua

lit
y

(a)

0 2 4 6
2

3

4

5

6x 10
5

Number of Cores=2x

E
ne

rg
y

(b)

Figure 9. Quality and energy of DES with different numbers of cores.

100 150 200

0.9

0.95

1

 Arrival Rate

Q
ua

lit
y

Continuous Speed
Discrete Speed

(a)

100 150 200 250

2

3

4

5

6x 10
5

Arrival Rate

E
ne

rg
y

Continuous Speed
Discrete Speed

(b)

Figure 10. Quality and energy with continuous and discrete speed scaling.

power consumption, so the effect of energy saving will be

compromised to some extent by the increased static energy.

Effect of discrete speed scaling: Figure 10 compares the

the quality and energy of DES under continuous and discrete

speed scaling. The discrete implementation loses some quality

because it is not able to use the ideal speed to complete as

much work as originally planned in the continuous case. But at

the same time, the energy consumption of the discrete version

is also less than that of the continuous one. Under light load,

the difference in quality is about 1% and the difference in

energy is less than 7.6%, which is relatively high. This is

because of the variance in service demands and the limit in a

core’s highest speed. For example, even when the total power

budget is sufficient, some long requests cannot be completed

due to the discrete speed limit of the cores, but they can

be completed under continuous speed scaling since the cores

can run in any speed. The differences in both quality and

energy become smaller as the arrival rate increases. Under

heavy load, the both of differences are reduced to less than

0.5% between the two implementations.

G. Validation on Real Systems

This last subsection validates the accuracy of our simulation

results, in particular the energy consumption, by comparing it

against the one measured in a real system. For this purpose,

we implement DES using discrete speed scaling and apply the

scheduling solutions from simulation on the real system for

energy measurement.

The system we use is a 8 nodes multicore cluster. Each node

has two Quad-Core AMD Opteron(tm) Processor 2380. Each

core’s speed can be set as 800Mhz, 1300Mhz, 1800Mhz, or

2500Mhz independently. The corresponding power consump-

tions are 11.06W, 13.275W, 16.85W and 22.69W, respectively.

The cluster is equipped with the PowerPack software [13] as

well as the necessary hardware to measure its practical energy

consumption. Adopting the power model P = a× sβ + b, we

646646

40 60 80 100 120
5

6

7

8

9

x 10
4

Arrival Rate

 E
ne

rg
y

 Simulation
 Real

Figure 11. Energy comparison between simulation and real system imple-
mentation.

can get a = 2.6075, β = 1.791 and b = 9.2562, which are

then used to drive our simulation. The power budget is set as

152W and the simulation time for each arrival rate is 10min.

Figure 11 shows the energy measurements from both simula-

tions and the real system. The results are very close to each

other, despite the fact that there could be additional scheduling

overheads in the actual system implementation. This suggests

that our simulations provide accurate and reliable results on

the performance of the DES algorithm.

VI. RELATED WORK

In this section, we review some related works on schedul-

ing interactive services for energy minimization and quality

maximization.

Energy Minimization with DVFS: DVFS has been a widely

adopted technique to achieve higher energy efficiency. Yao

et al. [25] initiated the study of energy minimization by

scheduling requests on a single DVFS-enabled processor. As-

suming that power is a convex function of the processor speed,

they provided an optimal offline algorithm as well as two

online algorithms, which was shown to have good competitive

ratios [4][25]. Refinement for the offline algorithm was later

provided in [21] with lower computational complexity as well

as with discrete processor speed. Albers et al. [1] recently

considered the same scheduling problem but for multicore

systems, where the speed of each core can be independently

scaled. They provided both an optimal offline algorithm and a

competitive online algorithm for this setting. All these results

assumed no power budget, i.e., the speed of the processors

can be scaled arbitrarily high, so all the jobs can be fully

processed to achieve the maximum possible quality.

Quality Maximization under Overloads: Maximizing the

service quality for interactive jobs on a fixed-speed processor

has been the subject of many studies over the years. While the

EDF (Earliest Deadline First) algorithm is known to produce

an optimal schedule under light load, it can perform very

badly in overloaded systems [24]. To handle overloads, many

early works [19][5][18][17][23] assumed a strict scheduling

model in which an uncompleted job before its deadline does

not contribute any value towards the total quality. Inspired

by the emerging workload on interactive services such as

web search and video-on-demand, He et al. [15] recently

considered a scheduling model that supports partial evaluation

for the jobs. Assuming that the quality function is non-

decreasing and strictly concave, they gave an optimal offline

algorithm, and evaluated the proposed online algorithms also

using web search as an example. Prior to this work, similar

models have been studied in [8][9][10][11], which assumed

a linear quality function for jobs with different priorities. All

these results do not consider energy since the speed of the

processor is assumed to be fixed.

Scheduling under a Power Budget: Many prior works on

energy-efficient scheduling does not assume a power budget

for DVFS-enabled systems. In practice, the total power is

often constrained by the chip design and its cooling system.

Prior work in [3][7] focused on the strict scheduling model

on a single core with a power budget, and proposed online

algorithms that achieve competitive performance for both

quality and energy. Isci et al. [16] considered global power

management for multicore systems based on the per-core

load and a given power budget. Baek and Chilimbi [2]

proposed a framework that trade off quality and energy by

supporting different approximations for interactive services.

Although their results are also based on partial executions,

they did not consider scheduling and DVFS. To the best of

our knowledge, no prior work studies scheduling interactive

jobs that support partial evaluation with the objective of both

quality maximization and energy minimization.

VII. CONCLUSION

In this paper, we have proposed a new performance metric

〈quality, energy〉 to measure the performance of scheduling

algorithms with both quality and energy considerations. We

have presented the DES algorithm for scheduling best-effort

interactive services on multicore systems with a power budget.

We showed that the algorithm can exploit the application

features and can take advantage of the core-level DVFS
architecture to enable new advances in quality improvement

and energy saving. Simulation results demonstrate the benefits

of DES in achieving high service quality with low energy

consumption. Validation on a real system also verifies the

accuracy and reliability of our simulation results.

ACKNOWLEDGMENT

We would like to thank Prof. Rong Ge of Marquette Univer-

sity for providing the PowerPack environment for conducting

validation on real systems. This research is supported in

part by National Natural Science Foundation of China (No.

61272087, No. 61073008, No. 60773148 and No. 60503039),

Beijing Natural Science Foundation (No. 4082016 and No.

4122039), NSF Grants OCI-0904461 and OCI-1051537.

REFERENCES

[1] S. Albers, F. Müller, and S. Schmelzer. Speed scaling on
parallel processors. In ACM Symposium on Parallelism in Al-
gorithms and Architectures(SPAA), pages 289–298, San Diego,
USA, 2007.

[2] W. Baek and T. M. Chilimbi. Green: a framework for
supporting energy-conscious programming using controlled ap-
proximation. In ACM SIGPLAN conference on Programming
Language Design and Implementation (PLDI), pages 198–209,
2010.

[3] N. Bansal, H. L. Chan, T. W. Lam, and L. K. Lee. Scheduling
for speed bounded processors. In International Colloquium on
Automata, Languages and Programming (ICALP), pages 409–
420, 2008.

[4] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage
energy and temperature. Journal of the ACM, 54(1):3:1–3:39,
2007.

647647

[5] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan,
L. Rosier, D. Shasha, and F. Wang. On the competitiveness of
on-line real-time task scheduling. Real-Time Systems, 4(2):125–
144, 1992.

[6] S. Boyd and L. Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004.

[7] H.-L. Chan, W.-T. Chan, T.-W. Lam, L.-K. Lee, K.-S. Mak, and
P. W. H. Wong. Energy efficient online deadline scheduling. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
795–804, 2007.

[8] E.-C. Chang and C. Yap. Competitive on-line scheduling with
level of service. Journal of Scheduling, 6(3):251–267, 2003.

[9] F. Y. L. Chin and S. P. Y. Fung. Online scheduling with
partial job values: Does timesharing or randomization help.
Algorithmica, 37:149–164, 2003.

[10] F. Y. L. Chin and S. P. Y. Fung. Improved competitive algo-
rithms for online scheduling with partial job values. Theoretical
Computer Science, 325(3):467–478, 2004.

[11] M. Chrobak, L. Epstein, J. Noga, J. Sgall, R. van Stee, T. Tichý,
and N. Vakhania. Preemptive scheduling in overloaded systems.
Journal of Computer and System Sciences, 67(1):183–197,
2003.

[12] M. Ehrgott. A characterization of lexicographic max-ordering
solutions. In Proceedings of the 6th Workshop of the DGOR
Working-Group Multicriteria Optimization and Decision The-
ory, pages 193–202, 1997.

[13] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K.W.
Cameron. Powerpack: Energy profiling and analysis of high-
performance systems and applications. IEEE Transactions on
Parallel and Distributed Systems, 21(5):658–671, 2010.

[14] Y. He, S. Elnikety, J. Larus, and C. Yan. Zeta: scheduling
interactive services with partial execution. In Proceedings of
the Third ACM Symposium on Cloud Computing, 2012.

[15] Y. He, S. Elnikety, and H. Sun. Tians scheduling: Using
partial processing in best-effort applications. In International
Conference on Distributed Computing Systems(ICDCS), pages
434–445, 2011.

[16] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and
M. Martonosi. An analysis of efficient multi-core global power
management policies: Maximizing performance for a given
power budget. In IEEE/ACM International Symposium on
Microarchitecture, pages 347–358, 2006.

[17] C.-Y. Koo, T.-W. Lam, T.-W. Ngan, K. Sadakane, and K.-K.
To. On-line scheduling with tight deadlines. Mathematical
Foundations of Computer Science (MFCS), 295(1-3):251–261,
2003.

[18] G. Koren and D. Shasha. Dover: An optimal on-line scheduling
algorithm for overloaded uniprocessor real-time systems. SIAM
Journal on Computing, 24(2):318–339, 1995.

[19] E. L. Lawler. A dynamic programming algorithm for preemp-
tive scheduling of a single machine to minimize the number
of late jobs. Annals of Operations Research, 26(1-4):125–133,
1991.

[20] J. Li and J. F. Martı́nez. Power-performance considerations of
parallel computing on chip multiprocessors. ACM Transactions
on Architecture and Code Optimization, 2(4):397–422, 2005.

[21] M. Li, A. Yao, and F. Yao. Discrete and continuous min-energy
schedules for variable voltage processors. National Academy
of Sciences, 103:3983–3987, 2006.

[22] A. Naveh, E. Rotem, A. Mendelson, S. Gochman, R. Chabuk-
swar, K. Krishnan, and A. Kumar. Power and thermal manage-
ment in the intel core duo processor. Intel Technology Journal,
10(2):109–122, 2006.

[23] Z. Shi, C. Beard, and K. Mitchell. Competition, cooperation,
and optimization in multi-hop CSMA networks. In ACM
symposium on Performance Evaluation of Wireless Ad Hoc,
Sensor, and Ubiquitous Networks (PE-WASUN), 2011.

[24] J. Stankovic, M. Spuri, K. Ramamritham, and G. C. Buttazzo.
Deadline Scheduling for Real-Time systems - EDF and related
algorithms. Academic Publishers, 1998.

[25] F. Yao, A. Demers, and S. Shenker. A scheduling model for
reduced CPU energy. In IEEE Symposium on Foundations of
Computer Science (FOCS), pages 374–382, 1995.

[26] X. Zhang, K. Shen, S. Dwarkadas, and R. Zhong. An evaluation
of per-chip nonuniform frequency scaling on multicores. In
USENIX Annual Technical Conference (USENIX ATC), pages
19–19, 2010.

[27] X. Zhao and N. Jamali. Fine-grained per-core frequency
scheduling for power efficient-multicore execution. In Interna-
tional Green Computing Conference (IGCC), pages 1–8, 2011.

648648

