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Preface

This collection is related to the Workshop of the 10th DIMACS Implementa-
tion Challenge, which took place in Atlanta, Georgia (USA) on February 13-14,
2012. The purpose of DIMACS Implementation Challenges1 is to assess the prac-
tical performance of algorithms in a respective problem domain. These challenges
are scientific competitions in areas of interest where worst case and probabilistic
analysis yield unrealistic results. Where analysis fails, experimentation can provide
insights into realistic algorithm performance and thereby help to bridge the gap be-
tween theory and practice. For this purpose common benchmark instances, mostly
from real applications, are established. By evaluating different implementations on
these instances, the challenges create a reproducible picture of the state of the art
in the area under consideration. This helps to foster an effective technology trans-
fer within the research areas of algorithms, data structures, and implementation
techniques as well as a transfer back to the original applications.

The topics of the previous nine challenges are as follows (in chronological or-
der): Network Flows and Matching (1990-91), Maximum Clique, Graph Coloring
and Satisfiability (1992-93), Parallel Algorithms for Combinatorial Problems (1993-
94), Fragment Assembly and Genome Rearrangements (1994-95), Priority Queues,
Dictionaries, and Multi-Dimensional Point Sets (1995-96), Near Neighbor Searches
(1998-99), Semidefinite and Related Optimization Problems (1999-2000), The Trav-
eling Salesman Problem (2000-01), and Shortest Path Problems (2005-06).

1. Introducing the 10th Challenge –
Graph Partitioning and Graph Clustering

The 10th challenge considered the two related problems of partitioning and
clustering graphs. Both are ubiquitous subtasks in many application areas. Gen-
erally speaking, techniques for graph partitioning and graph clustering aim at the
identification of vertex subsets with many internal and few external edges. To
name only a few, problems addressed by graph partitioning and graph clustering
algorithms are:

• What are the communities within an (online) social network?
• How do I speed up a numerical simulation by mapping it efficiently onto

a parallel computer?
• How must components be organized on a computer chip such that they

can communicate efficiently with each other?
• What are the segments of a digital image?
• Which functions are certain genes (most likely) responsible for?

1http://dimacs.rutgers.edu/Challenges/

vii
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viii PREFACE

For a more detailed treatment of applications and solution techniques, the
interested reader is referred to the surveys of Fortunato2, Schaeffer3, and Schloegel
et al.4 on the different topics.

Within the algorithms community, techniques for solving the problems above
have been developed at least since the early 1970s—while some of the applications
are newer. Improving known and developing new solution techniques are aspects
of ongoing research.

The primary goal of this challenge was to create a reproducible picture of the
state of the art in the area of graph partitioning and graph clustering algorithms. To
this end, a standard set of benchmark instances was identified. Then participants
were invited to submit solutions to different challenge problems. This way differ-
ent algorithms and implementations were tested against the benchmark instances.
Thereby future researchers are enabled to identify techniques that are most effec-
tive for a respective partitioning or clustering problem—by using our benchmark
set and by comparing their results to the challenge results.

2. Key Results

The main results of the 10th DIMACS Implementation Challenge include:

• Extension of a file format used by several graph partitioning and graph
clustering libraries for graphs, their geometry, and partitions. Formats
are described on the challenge website.5

• Collection and online archival5 of a common testbed of input instances
and generators (including their description) from different categories for
evaluating graph partitioning and graph clustering algorithms. For the
actual challenge, a core subset of the testbed was chosen.
• Definition of a new combination of measures to assess the quality of a

clustering.
• Definition of a measure to assess the work an implemention performs in a

parallel setting. This measure is used to normalize sequential and parallel
implementations to a common base line.
• Experimental evaluation of state-of-the-art implementations of graph par-

titioning and graph clustering codes on the core input families.
• A nondiscriminatory way to assign scores to solvers that takes both run-

ning time and solution quality into account.
• Discussion of directions for further research in the areas of graph parti-

tioning and graph clustering.
• The paper Benchmarks for Network Analysis, which was invited as a con-

tribution to the Encyclopedia of Social Network Analysis and Mining.

The primary location of information regarding the 10th DIMACS Implementation
Challenge is the website http://www.cc.gatech.edu/dimacs10/.

2Santo Fortunato, Community detection in graphs, Physics Reports 486 (2010), no. 3–5,
75–174.

3Satu E. Schaeffer, Graph clustering, Computer Science Review 1 (2007), no. 1, 27–64.
4K. Schloegel, G. Karypis, and V. Kumar, Graph partitioning for high-performance scientific

simulations, Sourcebook of parallel computing (Jack Dongarra, Ian Foster, Geoffrey Fox, William
Gropp, Ken Kennedy, Linda Torczon, and Andy White, eds.) Morgan Kaufmann Publishers,
2003, pp. 491–541.

5http://www.cc.gatech.edu/dimacs10/downloads.shtml
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3. CHALLENGE DESCRIPTION ix

3. Challenge Description

3.1. Data Sets. The collection of benchmark inputs of the 10th DIMACS
Implementation Challenge includes both synthetic and real-world data. All graphs
are undirected. Formerly directed instances were symmetrized by making every
directed edge undirected. While this procedure necessarily loses information in a
number of real-world applications, it appeared to be necessary since most existing
software libraries can handle undirected graphs only. Directed graphs (or unsym-
metric matrices) are left for further work.

Synthetic graphs in the collection include random graphs (Erdős-Rényi, R-
MAT, random geometric graphs using the unit disk model), Delaunay triangula-
tions, and graphs that mimic meshes from dynamic numerical simulations. Real-
world inputs consist of co-author and citation networks, road networks, numerical
simulation meshes, web graphs, social networks, computational task graphs, and
graphs from adapting voting districts (redistricting).

For the actual challenge two subsets were chosen, one for graph partitioning
and one for graph clustering. The first one (for graph partitioning) contained 18
graphs, which had to be partitioned into 5 different numbers of parts each, yielding
90 problem instances. The second one (for graph clustering) contained 30 graphs.
Due to the choice of objective functions for graph clustering, no restriction on the
number of parts or their size was necessary in this category.

3.2. Categories. One of the main goals of the challenge was to compare dif-
ferent techniques and algorithmic approaches. Therefore participants were invited
to join different challenge competitions aimed at assessing the performance and
solution quality of different implementations. Let G = (V,E, ω) be an undirected
graph with edge weight function ω.

3.2.1. Graph Partitioning. Here the task was to compute a partition Π of the

vertex set V into k parts of size at most (1 + ε)� |V |
k �. The two objective functions

used to assess the partitioning quality were edge cut (EC, total number of edges
with endpoints in different parts) and maximum communication volume (CV). CV
sums for each part p and each vertex v therein the number of parts adjacent to v
but different from p. The final result is the maximum over each part.

For each instance result (EC and CV results were counted as one instance each),
the solvers with the first six ranks received a descending number of points (10, 6,
4, 3, 2, 1), a scoring system borrowed from former Formula 1 rules.

Three groups submitted solutions to the graph partitioning competition. Only
one of the submitted solvers is a graph partitioner by nature, the other two are
actually hypergraph partitioners. Both hypergraph partitioners use multilevel re-
cursive bisection. While their quality, in particular for the communication volume,
is generally not bad, the vast majority of best ranked solutions (139 out of 170) are
held by the graph partitioner KaPa.

3.2.2. Graph Clustering. The clustering challenge was divided into two separate
competitions with different optimization criteria. For the first competition the
objective modularity had to be optimized. Modularity has been a very popular
measure in the last years, in particular in the field of community detection. It
follows the intra-cluster-density vs. inter-cluster-sparsity paradigm. However, some
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x PREFACE

criticism has emerged recently.6 Also, solvers performing implicit optimization
based on the intra-cluster-density vs. inter-cluster-sparsity paradigm were supposed
to have a fair chance, too. That is why we developed a second competition with
a mix of four other clustering objectives. The rationale was that the combination
of these measures would lead to meaningful clusters and avoid pathological cases
of single measures. The exact definition of the objective functions can be found at
the challenge website.7

The modularity competition saw the largest number of entries, with 15 solvers
from eight groups. Two solvers led the field, CGGCi RG and VNS. Of the two,
CGGCi RG scored the most points and obtained the highest number of best ranked
solutions. The four solvers entering the mix clustering competition were submitted
by two groups (two each). Three solvers headed the top of the ranking, with a
slight advantage for the two community-el implementations.

3.2.3. Pareto Challenges. For all quality competitions there was one corre-
sponding Pareto challenge. The rationale of the Pareto challenges was to take
the work into account an algorithm requires to compute a solution. Hence, the
two dimensions considered here were quality and work. Work was normalized with
respect to the machine performance, measured by a graph-based benchmark. To
this end, we used the shortest path benchmark produced for the 9th DIMACS Im-
plementation Challenge. Participants were asked to run this sequential benchmark
on their machine. Both the performance obtained in the shortest path benchmark
and the number of processing cores (raised to the power of 0.9) used for the 10th
DIMACS Implementation Challenge were taken into account for normalizing the
amount of work invested for obtaining the solution.

For each challenge instance result, each submitted solver received a Pareto
dominance count, which expresses by how many other algorithms it was Pareto-
dominated in terms of work and running time; then algorithms were ranked by
this number (lower count = better) and received points according to the Formula 1
scoring scheme described above.

Several groups submitted solutions from more than one solver to the respective
Pareto challenges, making use of the fact that here a lower solution quality might be
compensated by a better running time and vice versa. Still, the Pareto challenges
were won in all cases by the same groups that also won the respective quality
competitions. We attribute this double success (i) to the superior quality which
could not be dominated in many cases and (ii) to the Formula 1 scoring scheme,
which might have given an advantage to groups who submitted solutions from
several solvers. More information on the challenge results are available online.8

3.3. URL to Resources. The main website of the 10th DIMACS Implemen-
tation Challenge can be found at its permanent location http://www.cc.gatech.

edu/dimacs10/. The following subdirectories contain:

• archive/data/: Testbed instances archived for long-term access.
• talks/: Slides of the talks presented at the workshop.
• papers/: Papers on which the workshop talks are based.

6Andrea Lancichinetti and Santo Fortunato, Limits of modularity maximization in commu-
nity detection, Phys. Rev. E 84 (2011), 066122.

7http://www.cc.gatech.edu/dimacs10/data/dimacs10-rules.pdf
8http://www.cc.gatech.edu/dimacs10/talks/orga-talk-dimacs-results.pdf
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4. CONTRIBUTIONS TO THIS COLLECTION xi

• results/: Partitions submitted as part of the challenge as well as code
for their evaluation and the resulting data

All respective files can be found and downloaded by following links from the home-
page. Researchers are particularly encouraged to download and use the graphs we
compiled and archived.

4. Contributions to this Collection

In this section we give a short overview of the papers that were selected for
this collection. All of them were presented at the Workshop of the 10th DIMACS
Implementation Challenge and contributed to the success of the event. Not all
solvers described in these papers actually entered the challenge. Also, not all solvers
that entered the challenge are part of this collection.

4.1. Graph Partitioning. The winner in terms of graph partitioning quality
was KaPa, by Sanders and Schulz, described in their paper High Quality Graph
Partitioning. KaPa combines the solutions of several related solvers developed by
the same authors. It is a set of algorithms which use a combination of strategies.
Among these strategies are network flows, evolutionary algorithms, edge ratings
for approximate maximum weighted matchings in the multilevel process, repeti-
tive improvement cycles, and problem-specific local search techniques based on the
Fiduccia-Mattheyses (FM) heuristic.

Abusing a Hypergraph Partitioner for Unweighted Graph Partitioning, by Fag-
ginger Auer and Bisseling, describes Mondriaan, a package for matrix and hyper-
graph partitioning, and its (ab)use for graph partitioning. While Mondriaan usually
computes worse edge cuts than state-of-the-art graph partitioners, the solutions are
generally acceptable.

In Parallel Partitioning with Zoltan: Is Hypergraph Partitioning Worth It?,
Rajamanickam and Boman describe a partitioner which is very powerful in that it
is designed for scalable parallelism on large asymmetric hypergraphs.

Çatalyürek, Deveci, Kaya, and Uçar present in UMPa: A Multi-objective,
multi-level partitioner a system doing recursive multi-objective hypergraph bipar-
titioning that takes the bottleneck communication volume as primary objective
function into account but also looks for solutions with small total communication.

The related task of repartitioning dynamic graphs is addressed by Meyerhenke
in Shape Optimizing Load Balancing for MPI-Parallel Adaptive Numerical Simula-
tions. Diffusive methods are employed to determine both how many elements have
to migrate between processors as well as which elements are chosen for migration.
The properties of the diffusive processes usually lead to nicely shaped partitions.

In Graph Partitioning for Scalable Distributed Graph Computations, by Bu-
luc and Madduri, the authors develop a method for partitioning large-scale sparse
graphs with skewed degree distribution. The approach aims to partition the graph
into balanced parts with low edge cuts, a challenge for these types of graphs, so that
they can be used on distributed-memory systems where communication is often a
major bottleneck in running time. The authors derive upper bounds on the com-
munication costs incurred for a two-dimensional partitioning during breadth-first
search. The performance results using the large-scale DIMACS challenge graphs
shows that reducing work and communication imbalance among partitions is more
important than minimizing the total edge cut.
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xii PREFACE

4.2. Graph Clustering. Using Graph Partitioning for Efficient Network
Modularity Optimization, by Djidjev and Onus, describes how to formulate modu-
larity maximization in graph clustering as a minimum cut problem in a complete
weighted graph. In general, the according graph contains also negative weights.
However, the resulting minimum cut problem can be attacked by applying modifi-
cations of existing powerful codes for graph partitioning.

The solver VNS, by Aloise, Caporossi, Hansen, Liberti, and Perron, performs
Modularity Maximization in Networks by Variable Neighborhood Search, a meta-
heuristic and variant of local search. A local search or improving heuristic consists
of defining a neighborhood of a solution, choosing an initial solution x, and then
moving to the best neighbor x′ of x if the objective function value is improved. If
no such neighbor exists, the heuristic stops, otherwise it is iterated. VNS improves
this simple technique to escape from local optima. To this end, it applies the idea
of neighborhood change. By increasing the neighborhood distance iteratively, even
”mountain tops” surrounding local optima can be escaped.

The algorithm family k-community, developed by Verma and Butenko in
Network Clustering via Clique Relaxations: A Community Based Approach, are
based on the relaxation concept of a generalized community. Instead of requiring
a community to be a perfect clique, a generalized k-community is defined as a
connected subgraph such that the incident vertices of every edge have at least k
common neighbors within the subgraph. The algorithm family computes clusters by
finding k-communities for large (variable) k and placing them in different clusters.

Identifying Base Clusters for Maximizing Modularity, by Srinivasan,
Chakraborty, and Bhowmick, introduces the concept of identifying base clusters
as a preprocessing step for agglomerative modularity maximization methods. Base
clusters are groups of vertices that are always assigned to the same community,
independent of the modularity maximization algorithm employed or the order in
which the vertices are processed. In a computational study on two agglomerative
modularity maximization methods, the CNM method introduced by Clauset et al.
and the Louvain method by Blondel et al., the effect of using base clusters as a
preprocessing is shown.

Complete Hierarchical Cut-Clustering: A Case Study on Expansion and Mod-
ularity, by Hamann, Hartmann, and Wagner, studies the behavior of the cut-
clustering algorithm of Flake et al., a clustering approach which is based on mini-
mum s-t-cuts. The algorithm uses a parameter that provides a quality guarantee on
the clusterings in terms of expansion. This is particularly interesting since expan-
sion is a measure which is already NP-hard to compute. While Flake et al. examine
their algorithm with respect to the semantic meaning of the clusters, Hamann et al.
systematically analyze the quality of the clusterings beyond the guaranteed bounds
with respect to the approved measures expansion and modularity.

In A Partitioning-based divisive clustering technique for maximizing the modu-
larity, by Çatalyürek, Kaya, Langguth and Uçar, the authors present a new, divisive
algorithm for computing high modularity clusterings. The approach is based upon
recursive bipartitions using graph partitioning subroutines, and steps for refining
the obtained clusters. The study includes an experimental evaluation. On a variety
of problem instances from the literature, this new method performs well, and in a
number of cases, finds the best known modularity scores on these test graphs.
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5. DIRECTIONS FOR FURTHER RESEARCH xiii

An Ensemble Learning Strategy for Graph Clustering, by Ovelgönne and Geyer-
Schulz, describes the heuristic CGGCi RG, whose main idea is to combine several
weak classifiers into a strong classifier. From the maximal overlap of clusterings
computed by weak classifiers, the algorithm searches for a solution with high quality.
This way difficult choices are deferred after easy decisions have been fixed, which
leads to a high quality due to a better control of the search space traversal. It turns
out that the quality of the initial clusterings is of minor importance for the quality
of the final result given enough iterations.

While graph partitioning is rooted in the parallel computing community, the
picture appears to be different for graph clustering as only two clustering papers
employ significant parallelism. The agglomerative algorithm in Parallel Community
Detection for Massive Graphs, by Riedy, Meyerhenke, Ediger, and Bader, starts
out with each vertex as its own cluster. In each following iteration, beneficial
cluster merges improving the objective function value are identified and performed
in parallel by means of weighted matchings. The implementation is capable of
clustering graphs with a few billion edges in less than 10 minutes on a standard
Intel-based server.

The second paper that uses considerable parallelism to accelerate the solution
process is Graph Coarsening and Clustering on the GPU, by Fagginger Auer and
Bisseling. This paper also uses an agglomerative approach with matchings. It
alleviates the problem of small matchings due to star subgraphs by merging siblings,
i. e., neighbors of neighbors that do not share an edge. High performance is achieved
by careful algorithm design, optimizing the interplay of the CPU and the employed
graphics hardware.

5. Directions for Further Research

In the field of graph partitioning, important directions for further research
mentioned at the workshop are the widespread handling of directed graphs (or un-
symmetric matrices in case of matrix partitioning) and an improved consideration of
the objective function maximum communication volume. One possible approach—
also presented at the workshop—is to use hypergraphs instead of graphs. But this
seems to come at the price of worse performance and/or worse edge cut quality. For
the related problem of repartitioning with migration minimization, highly scalable
tools with a good solution quality are sought.

An active graph clustering research area is the development of objective func-
tions whose optimization leads to realistic and meaningful clusterings. While mod-
ularity has been very popular over recent years, current studies show that its de-
ficiencies can be severe and hard to avoid. The analysis of massive graphs for
clustering purposes is still in its infancy. Only two submissions for the graph clus-
tering challenge made use of significant parallelism. And only one of them was able
to process the largest graph in the challenge core benchmark, a web graph with 3.3
billion edges. Considering the size of today’s online social networks and WWW (to
name a few), there is a need to scale the analysis algorithms to larger input sizes.
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High quality graph partitioning

Peter Sanders and Christian Schulz

Abstract. We present an overview over our graph partitioners KaFFPa (Karl-
sruhe Fast Flow Partitioner) and KaFFPaE (KaFFPa Evolutionary). KaFFPa
is a multilevel graph partitioning algorithm which on the one hand uses novel
local improvement algorithms based on max-flow and min-cut computations
and more localized FM searches and on the other hand uses more sophisticated

global search strategies transferred from multi-grid linear solvers. KaFFPaE is
a distributed evolutionary algorithm to solve the Graph Partitioning Problem.
KaFFPaE uses KaFFPa and provides new effective crossover and mutation
operators. By combining these with a scalable communication protocol we
obtain a system that is able to improve the best known partitioning results for
many inputs.

1. Introduction

Problems of graph partitioning arise in various areas of computer science, en-
gineering, and related fields. For example in route planning, community detection
in social networks and high performance computing. In many of these applications
large graphs need to be partitioned such that there are few edges between blocks
(the elements of the partition). For example, when you process a graph in parallel
on k processors you often want to partition the graph into k blocks of about equal
size so that there is as little interaction as possible between the blocks. In this
paper we focus on a version of the problem that constrains the maximum block size
to (1 + ε) times the average block size and tries to minimize the total cut size, i.e.,
the number of edges that run between blocks. It is well known that this problem
is NP-complete [5] and that there is no approximation algorithm with a constant
ratio factor for general graphs [5]. Therefore mostly heuristic algorithms are used in
practice. A successful heuristic for partitioning large graphs is the multilevel graph
partitioning (MGP) approach depicted in Figure 1 where the graph is recursively
contracted to achieve smaller graphs which should reflect the same structure as the
input graph. After applying an initial partitioning algorithm to the smallest graph,
the contraction is undone and, at each level, a local refinement method is used to
improve the partitioning induced by the coarser level.

Although several successful multilevel partitioners have been developed in the
last 13 years, we had the impression that certain aspects of the method are not
well understood. We therefore have built our own graph partitioner KaPPa [13]

2010 Mathematics Subject Classification. Primary 68W40, 68W10, 90C27, 05C70.
Partially supported by DFG SA 933/10-1.

c©2013 American Mathematical Society
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Figure 1. Multilevel graph partitioning.

(Karlsruhe Parallel Partitioner) with focus on scalable parallelization. Somewhat
astonishingly, we also obtained improved partitioning quality through rather simple
methods. This motivated us to make a fresh start putting all aspects of MGP on
trial. This paper gives an overview over our most recent work, KaFFPa [22] and
KaFFPaE [21]. KaFFPa is a classical matching based graph partitioning algorithm
with focus on local improvement methods and overall search strategies. It is a
system that can be configured to either achieve the best known partitions for many
standard benchmark instances or to be the fastest available system for large graphs
while still improving partitioning quality compared to the previous fastest system.

KaFFPaE is a technique which integrates an evolutionary search algorithm with
our multilevel graph partitioner KaFFPa and its scalable parallelization. It uses
novel mutation and combine operators which in contrast to previous evolutionary
methods that use a graph partitioner [8,23] do not need random perturbations of
edge weights. The combine operators enable us to combine individuals of different
kinds (see Section 5 for more details). Due to the parallelization our system is able
to compute partitions that have quality comparable or better than previous entries
in Walshaw’s well known partitioning benchmark within a few minutes for graphs
of moderate size. Previous methods of Soper et. al [23] required runtimes of up to
one week for graphs of that size. We therefore believe that in contrast to previous
methods, our method is very valuable in the area of high performance computing.

The paper is organized as follows. We begin in Section 2 by introducing basic
concepts which is followed by related work in Section 3. In Section 4 we present
the techniques used in the multilevel graph partitioner KaFFPa. We continue
describing the main components of our evolutionary algorithm KaFFPaE in Sec-
tion 5. A summary of extensive experiments to evaluate the performance of the
algorithm is presented in Section 6. We have implemented these techniques in the
graph partitioner KaFFPaE (Karlsruhe Fast Flow Partitioner Evolutionary) which
is written in C++. Experiments reported in Section 6 indicate that KaFFPaE is
able to compute partitions of very high quality and scales well to large networks
and machines.

2. Preliminaries

2.1. Basic concepts. Consider an undirected graph G = (V,E, c, ω) with
edge weights ω : E → R>0, node weights c : V → R≥0, n = |V |, and m = |E|.
We extend c and ω to sets, i.e., c(V ′) :=

∑
v∈V ′ c(v) and ω(E′) :=

∑
e∈E′ ω(e).

Γ(v) := {u : {v, u} ∈ E} denotes the neighbors of v. We are looking for blocks
of nodes V1,. . . ,Vk that partition V , i.e., V1 ∪ · · · ∪ Vk = V and Vi ∩ Vj = ∅ for
i 
= j. The balancing constraint demands that ∀i ∈ {1..k} : c(Vi) ≤ Lmax :=
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(1 + ε)c(V )/k + maxv∈V c(v) for some parameter ε. The last term in this equation
arises because each node is atomic and therefore a deviation of the heaviest node
has to be allowed. The objective is to minimize the total cut

∑
i<j w(Eij) where

Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}. A clustering is also a partition of the nodes,
however k is usually not given in advance and the balance constraint is removed. A
vertex v ∈ Vi that has a neighbor w ∈ Vj , i 
= j, is a boundary vertex. An abstract
view of the partitioned graph is the so called quotient graph, where vertices represent
blocks and edges are induced by connectivity between blocks. Given two clusterings
C1 and C2 the overlay clustering is the clustering where each block corresponds to a
connected component of the graph GE = (V,E\E) where E is the union of the cut
edges of C1 and C2, i.e. all edges that run between blocks in C1 or C2. We will need
the of overlay clustering to define a combine operation on partitions in Section 5.
By default, our initial inputs will have unit edge and node weights. However, even
those will be translated into weighted problems in the course of the algorithm.

A matching M ⊆ E is a set of edges that do not share any common nodes,
i.e., the graph (V,M) has maximum degree one. Contracting an edge {u, v} means
to replace the nodes u and v by a new node x connected to the former neighbors
of u and v. We set c(x) = c(u) + c(v) so the weight of a node at each level is
the number of nodes it is representing in the original graph. If replacing edges of
the form {u,w},{v, w} would generate two parallel edges {x,w}, we insert a single
edge with ω({x,w}) = ω({u,w}) + ω({v, w}). Uncontracting an edge e undoes its
contraction. In order to avoid tedious notation, G will denote the current state of
the graph before and after a (un)contraction unless we explicitly want to refer to
different states of the graph. The multilevel approach to graph partitioning consists
of three main phases. In the contraction (coarsening) phase, we iteratively iden-
tify matchings M ⊆ E and contract the edges in M . Contraction should quickly
reduce the size of the input and each computed level should reflect the structure
of the input network. Contraction is stopped when the graph is small enough to
be directly partitioned using some expensive other algorithm. In the refinement
(or uncoarsening) phase, the matchings are iteratively uncontracted. After uncon-
tracting a matching, a refinement algorithm moves nodes between blocks in order
to improve the cut size or balance.

3. Related Work

There has been a huge amount of research on graph partitioning so that we
refer the reader to [26] for more material on multilevel graph partitioning and to
[15] for more material on genetic approaches for graph partitioning. All general
purpose methods that are able to obtain good partitions for large real world graphs
are based on the multilevel principle outlined in Section 2. Well known software
packages based on this approach include, Jostle [26], Metis [14], and Scotch [20].
KaSPar [19] is a graph partitioner based on the central idea to (un)contract only
a single edge between two levels. KaPPa [13] is a ”classical” matching based MGP
algorithm designed for scalable parallel execution. MQI [16] and Improve [2] are
flow-based methods for improving graph cuts when cut quality is measured by
quotient-style metrics such as expansion or conductance. This approach is only
feasible for k = 2. Improve uses several minimum cut computations to improve
the quotient cut score of a proposed partition. Soper et al. [23] provided the first
algorithm that combined an evolutionary search algorithm with a multilevel graph
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4 PETER SANDERS AND CHRISTIAN SCHULZ

partitioner. Here crossover and mutation operators have been used to compute edge
biases, which yield hints for the underlying multilevel graph partitioner. Benlic et
al. [4] provided a multilevel memetic algorithm for balanced graph partitioning.
This approach is able to compute many entries in Walshaw’s Benchmark Archive
[23] for the case ε = 0. Very recently an algorithm called PUNCH [8] has been
introduced. This approach is not based on the multilevel principle. However, it
creates a coarse version of the graph based on the notion of natural cuts. Natural
cuts are relatively sparse cuts close to denser areas. They are discovered by finding
minimum cuts between carefully chosen regions of the graph. They introduced an
evolutionary algorithm which is similar to Soper et al. [23], i.e. using a combine
operator that computes edge biases yielding hints for the underlying graph parti-
tioner. Experiments indicate that the algorithm computes very good partitions for
road networks. For instances without a natural structure natural cuts are not very
helpful.

4. Karlsruhe Fast Flow Partitioner

The aim of this section is to provide an overview over the techniques used in
KaFFPa which is used by KaFFPaE as a base case partitioner. KaFFPa [22] is
a classical matching based multilevel graph partitioner. Recall that a multilevel
graph partitioner basically has three phases: coarsening, initial partitioning and
uncoarsening.

Coarsening. KaFFPa makes contraction more systematic by separating two
issues: A rating function indicates how much sense it makes to contract an edge
based on local information. A matching algorithm tries to maximize the sum of the
ratings of the contracted edges looking at the global structure of the graph. While
the rating function allows a flexible characterization of what a “good” contracted
graph is, the simple, standard definition of the matching problem allows to reuse
previously developed algorithms for weighted matching. Matchings are contracted
until the graph is “small enough”. In [13] we have observed that the rating function

expansion∗2({u, v}) := ω({u,v})2
c(u)c(v) works best among other edge rating functions, so

that this rating function is also used in KaFFPa.
KaFFPa employs the Global Path Algorithm (GPA) as a matching algorithm.

It was proposed in [17] as a synthesis of the Greedy algorithm and the Path Grow-
ing Algorithm [10]. This algorithm achieves a half-approximation in the worst
case, but empirically, GPA gives considerably better results than Sorted Heavy
Edge Matching and Greedy (for more details see [13]). GPA scans the edges in or-
der of decreasing weight but rather than immediately building a matching, it first
constructs a collection of paths and even cycles. Afterwards, optimal solutions are
computed for each of these paths and cycles using dynamic programming.

Initial Partitioning. The contraction is stopped when the number of remaining
nodes is below the threshold max (60k, n/(60k)). The graph is then small enough
to be partitioned by some initial partitioning algorithm. KaFFPa employs Scotch
as an initial partitioner since it empirically performs better than Metis.

Uncoarsening. Recall that the refinement phase iteratively uncontracts the
matchings contracted during the contraction phase. After a matching is uncon-
tracted, local search based refinement algorithms move nodes between block bound-
aries in order to reduce the cut while maintaining the balancing constraint. Local
improvement algorithms are usually variants of the FM-algorithm [12]. Our variant
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Figure 2. The construction of a feasible flow problem G′ is shown
on the top and an improved cut within the balance constraint in
G is shown on the bottom.

of the algorithm is organized in rounds. In each round, a priority queue P is used
which is initialized with all vertices that are incident to more than one block, in a
random order. The priority is based on the gain g(v) = maxP gP (v) where gP (v)
is the decrease in edge cut when moving v to block P . Ties are broken randomly if
there is more than one block that yields the maximum gain when moving v to it.
Local search then repeatedly looks for the highest gain node v. Each node is moved
at most once within a round. After a node is moved its unmoved neighbors become
eligible, i.e. its unmoved neighbors are inserted into the priority queue. When a
stopping criterion is reached all movements to the best found cut that occurred
within the balance constraint are undone. This process is repeated several times
until no improvement is found.

Max-Flow Min-Cut Local Improvement. During the uncoarsening phase
KaFFPa additionally uses more advanced refinement algorithms. The first method
is based on max-flow min-cut computations between pairs of blocks, i.e., a method
to improve a given bipartition. Roughly speaking, this improvement method is
applied between all pairs of blocks that share a non-empty boundary. The algo-
rithm basically constructs a flow problem by growing an area around the given
boundary vertices of a pair of blocks such that each min cut in this area yields a
feasible bipartition of the original graph within the balance constraint. We explain
how flows can be employed to improve a partition of two blocks V1, V2 without vi-
olating the balance constraint. That yields a local improvement algorithm. First
we introduce a few notations. Given a set of nodes B ⊂ V we define its border
∂B := {u ∈ B | ∃(u, v) ∈ E : v 
∈ B}. The set ∂1B := ∂B ∩ V1 is called left border
of B and the set ∂2B := ∂B ∩ V2 is called right border of B. A B induced subgraph
G′ is the node induced subgraph G[B] plus two nodes s, t that are connected to
the border of B. More precisely s is connected to all left border nodes ∂1B and
all right border nodes ∂2B are connected to t. All of these new edges get the edge
weight ∞. Note that the additional edges are directed. G′ has the cut property if
each (s,t)-min-cut induces a cut within the balance constraint in G.

The basic idea is to construct a B induced subgraph G′ having the cut property.
Each min-cut will then yield a feasible improved cut within the balance constraint
in G. By performing two Breadth First Searches (BFS) we can find such a set B.
Each node touched during these searches belongs to B. The first BFS is done in the
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6 PETER SANDERS AND CHRISTIAN SCHULZ

subgraph of G induced by V1. It is initialized with the boundary nodes of V1. As
soon as the weight of the area found by this BFS would exceed (1+ε)c(V )/2−c(V1),
we stop the BFS. The second BFS is done for V2 in an analogous fashion. The
constructed subgraph G′ has the cut property since the worst case new weight of
V2 is lower or equal to c(V2)+(1+ε)c(V )/2−c(V2) = (1+ε)c(V )/2. Indeed the same
holds for the worst case new weight of V1. There are multiple ways to improve this
method, i.e. iteratively applying the method, searching in larger areas for feasible
cuts and applying most balanced minimum cut heuristics. For more details we refer
the reader to [22].

Multi-try FM . The second novel method for improving a given partition is
called multi-try FM. This local improvement method moves nodes between blocks
in order to decrease the cut. Previous k-way methods were initialized with all
boundary nodes, i.e., all boundary nodes are eligible for movement at the beginning.
Our method is repeatedly initialized with a single boundary node, thus achieving
a more localized search. More details about k-way methods can be found in [22].
Multi-try FM is organized in rounds. In each round we put all boundary nodes
of the current block pair into a todo list T . Subsequently, we begin a k-way local
search starting with a single random node v of T if it is still a boundary node. Note
that the difference to the global k-way search is in the initialisation of the search.
The local search is only started from v if it was not touched by a previous localized
k-way search in this round. Either way, the node is removed from the todo list. A
localized k-way search is not allowed to move a node that has been touched in a
previous run. This assures that at most n nodes are touched during a round of the
algorithm. The algorithm uses the adaptive stopping criterion from KaSPar [19].

Global Search. KaFFPa extended the concept of iterated multilevel algorithms
which was introduced by [24]. The main idea is to iterate the coarsening and
uncoarsening phase. Once the graph is partitioned, edges that are between two
blocks are not contracted. An F-cycle works as follows: on each level we perform
at most two recursive calls using different random seeds during contraction and local
search. A second recursive call is only made the second time that the algorithm
reaches a particular level. Figure 3 illustrates a F-cycle. As soon as the graph
is partitioned, edges that are between blocks are not contracted. This ensures
nondecreasing quality of the partition since our refinement algorithms guarantee
no worsening and break ties randomly. These so called global search strategies are
more effective than plain restarts of the algorithm. Extending this idea will yield
the combine and mutation operators described in Section 5.

5. KaFFPa Evolutionary

We now describe the techniques used in KaFFPaE. The general idea behind
evolutionary algorithms (EA) is to use mechanisms which are highly inspired by
biological evolution such as selection, mutation, recombination and survival of the
fittest. An EA starts with a population of individuals (in our case partitions of the
graph) and evolves the population into different populations over several rounds.
In each round, the EA uses a selection rule based on the fitness of the individuals
(in our case the edge cut) of the population to select good individuals and combine
them to obtain improved offspring. Note that we can use the cut as a fitness function
since our partitioner almost always generates partitions that are within the given
balance constraint. Our algorithm generates only one offspring per generation.
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Figure 3. An F-cycle for the graph partitioning problem.

Such an evolutionary algorithm is called steady-state [7]. A typical structure of an
evolutionary algorithm is depicted in Algorithm 1.

For an evolutionary algorithm it is of major importance to keep the diversity
in the population high, i.e. the individuals should not become too similar, in
order to avoid a premature convergence of the algorithm. In classical evolutionary
algorithms, this is done using a mutation operator. It is also important to have
operators that introduce unexplored search space to the population. Through a new
kind of crossover and mutation operators, introduced in Section 5.1, we introduce
more elaborate diversification strategies which allow us to search the search space
more effectively.

Algorithm 1 A classic general steady-state evolutionary algorithm.

procedure steady-state-EA
create initial population P
while stopping criterion not fulfilled

select parents p1, p2 from P
combine p1 with p2 to create offspring o
mutate offspring o
evict individual in population using o

return the fittest individual that occurred

5.1. Combine Operators. We now describe the general combine operator
framework. This is followed by three instantiations of this framework. In contrast
to previous methods that use a multilevel framework our combine operators do not
need perturbations of edge weights since we integrate the operators into our parti-
tioner and do not use it as a complete black box. Furthermore all of our combine
operators assure that the offspring has a partition quality at least as good as the
best of both parents. Roughly speaking, the combine operator framework combines
an individual/partition P = V P

1 , ..., V P
k (which has to fulfill a balance constraint)

with a clustering C = V C
1 , ..., V C

k′ . Note that the clustering does not necessarily
has to fulfill a balance constraint and k′ is not necessarily given in advance. All
instantiations of this framework use a different kind of clustering or partition. The
partition and the clustering are both used as input for our multi-level graph parti-
tioner KaFFPa in the following sense. Let E be the set of edges that are cut edges,
i.e. edges that run between two blocks, in P or C. All edges in E are blocked during
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match contract

Figure 4. At the far left, a graph G with two partitions, the dark
and the light line, is shown. Cut edges are not eligible for the
matching algorithm. Contraction is done until no matchable edge
is left. The best of the two given partitions is used as initial par-
tition.

the coarsening phase, i.e. they are not contracted during the coarsening phase. In
other words these edges are not eligible for the matching algorithm used during
the coarsening phase and therefore are not part of any matching computed. An
illustration of this can be found in Figure 4.

The stopping criterion for the multi-level partitioner is modified such that it
stops when no contractable edge is left. Note that the coarsest graph is now exactly
the same as the quotient graph Q′ of the overlay clustering of P and C of G (see
Figure 5). Hence vertices of the coarsest graph correspond to the connected compo-
nents of GE = (V,E\E) and the weight of the edges between vertices corresponds
to the sum of the edge weights running between those connected components in
G. As soon as the coarsening phase is stopped, we apply the partition P to the
coarsest graph and use this as initial partitioning. This is possible since we did
not contract any cut edge of P. Note that due to the specialized coarsening phase
and this specialized initial partitioning we obtain a high quality initial solution on
a very coarse graph which is usually not discovered by conventional partitioning
algorithms. Since our refinement algorithms guarantee no worsening of the input
partition and use random tie breaking we can assure nondecreasing partition qual-
ity. Note that the refinement algorithms can effectively exchange good parts of
the solution on the coarse levels by moving only a few vertices. Figure 5 gives an
example.

When the offspring is generated we have to decide which solution should be
evicted from the current population. We evict the solution that is most similar
to the offspring among those individuals in the population that have a cut worse
or equal than the offspring itself. The difference of two individuals is defined as
the size of the symmetric difference between their sets of cut edges. This ensures
some diversity in the population and hence makes the evolutionary algorithm more
effective.

5.1.1. Classical Combine using Tournament Selection. This instantiation of the
combine framework corresponds to a classical evolutionary combine operator C1.
That means it takes two individuals P1, P2 of the population and performs the
combine step described above. In this case P corresponds to the partition having
the smaller cut and C corresponds to the partition having the larger cut. Random
tie breaking is used if both parents have the same cut. The selection process is
based on the tournament selection rule [18], i.e. P1 is the fittest out of two random
individuals R1, R2 from the population. The same is done to select P2. Note that in
contrast to previous methods the generated offspring will have a cut smaller or equal
to the cut of P. Due to the fact that our multi-level algorithms are randomized,
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Figure 5. A graph G and two bipartitions; the dotted and the
dashed line (left). Curved lines represent a large cut. The four
vertices correspond to the coarsest graph in the multilevel proce-
dure. Local search algorithms can effectively exchange v2 or v4 to
obtain the better partition depicted on the right hand side (dashed
line).

v

Figure 6. On top we see the computation natural cuts. A BFS
Tree starting at v is grown. The core is gray. The dashed line
is the natural cut. It is the minimum cut between the contracted
versions of the core and the ring (solid line). Several natural cuts
are detected (bottom).

a combine operation performed twice using the same parents can yield different
offspring.

5.1.2. Cross Combine / (Transduction). In this instantiation of the combine
framework C2, the clustering C corresponds to a partition of G. But instead of
choosing an individual from the population we create a new individual in the fol-
lowing way. We choose k′ uniformly at random in [k/4, 4k] and ε′ uniformly at
random in [ε, 4ε]. We then use KaFFPa to create a k′-partition of G fulfilling the
balance constraint max c(Vi) ≤ (1+ε′)c(V )/k′. In general larger imbalances reduce
the cut of a partition which then yields good clusterings for our crossover. To the
best of our knowledge there has been no genetic algorithm that performs combine
operations combining individuals from different search spaces.

5.1.3. Natural Cuts. Delling et al. [8] introduced the notion of natural cuts as
a preprocessing technique for the partitioning of road networks. The preprocessing
technique is able to find relatively sparse cuts close to denser areas. We use the
computation of natural cuts to provide another combine operator, i.e. combining
a k-partition with a clustering generated by the computation of natural cuts. We
closely follow their description: The computation of natural cuts works in rounds.
Each round picks a center vertex v and grows a breadth-first search (BFS) tree.
The BFS is stopped as soon as the weight of the tree, i.e. the sum of the vertex
weights of the tree, reaches αU , for some parameters α and U . The set of the
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10 PETER SANDERS AND CHRISTIAN SCHULZ

neighbors of T in V \T is called the ring of v. The core of v is the union of all
vertices added to T before its size reached αU/f where f > 1 is another parameter.
The core is then temporarily contracted to a single vertex s and the ring into a
single vertex t to compute the minimum s-t-cut between them using the given edge
weights as capacities. To assure that every vertex eventually belongs to at least one
core, and therefore is inside at least one cut, the vertices v are picked uniformly at
random among all vertices that have not yet been part of any core in any round.
The process is stopped when there are no such vertices left. In the original work
[8] each connected component of the graph GC = (V,E\C), where C is the union
of all edges cut by the process above, is contracted to a single vertex. Since we do
not use natural cuts as a preprocessing technique at this place we don’t contract
these components. Instead we build a clustering C of G such that each connected
component of GC is a block.

This technique yields the third instantiation of the combine framework C3

which is divided into two stages, i.e. the clustering used for this combine step is
dependent on the stage we are currently in. In both stages the partition P used
for the combine step is selected from the population using tournament selection.
During the first stage we choose f uniformly at random in [5, 20], α uniformly at
random in [0.75, 1.25] and we set U = |V |/3k. Using these parameters we obtain a
clustering C of the graph which is then used in the combine framework described
above. This kind of clustering is used until we reach an upper bound of ten calls
to this combine step. When the upper bound is reached we switch to the second
stage. In this stage we use the clusterings computed during the first stage, i.e. we
extract elementary natural cuts and use them to quickly compute new clusterings.
An elementary natural cut (ENC) consists of a set of cut edges and the set of nodes
in its core. Moreover, for each node v in the graph, we store the set of ENCs
N(v) that contain v in their core. With these data structures it is easy to pick a
new clustering C (see Algorithm 2) which is then used in the combine framework
described above.

Algorithm 2 computeNaturalCutClustering (second stage)

1: unmark all nodes in V
2: for each v ∈ V in random order do
3: if v is not marked then
4: pick a random ENC C in N(v)
5: output C
6: mark all nodes in C’s core

5.2. Mutation Operators. We define two mutation operators, an ordinary
and a modified F-cycle. Both mutation operators use a random individual from the
current population. The main idea is to iterate coarsening and refinement several
times using different seeds for random tie breaking. The first mutation operator M1

can assure that the quality of the input partition does not decrease. It is basically
an ordinary F-cycle which is an algorithm used in KaFFPa. Edges between blocks
are not contracted. The given partition is then used as initial partition of the
coarsest graph. In contrast to KaFFPa, we now can use the partition as input
to the partition in the very beginning. This ensures nondecreasing quality since
our refinement algorithms guarantee no worsening. The second mutation operator
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M2 works quite similar with the small difference that the input partition is not
used as initial partition of the coarsest graph. That means we obtain very good
coarse graphs but we cannot assure that the final individual has a higher quality
than the input individual. In both cases the resulting offspring is inserted into the
population using the eviction strategy described in Section 5.1.

5.3. Putting Things Together and Parallelization. We now explain the
parallelization and describe how everything is put together. Each processing ele-
ment (PE) basically performs the same operations using different random seeds (see
Algorithm 3). First we estimate the population size S: each PE performs a parti-
tioning step and measures the time t spent for partitioning. We then choose S such
that the time for creating S partitions is approximately ttotal/f where the fraction
f is a tuning parameter and ttotal is the total running time that the algorithm is
given to produce a partition of the graph. Each PE then builds its own population,
i.e. KaFFPa is called several times to create S individuals/partitions. Afterwards
the algorithm proceeds in rounds as long as time is left. With corresponding prob-
abilities, mutation or combine operations are performed and the new offspring is
inserted into the population. We choose a parallelization/communication protocol
that is quite similar to randomized rumor spreading [9]. Let p denote the number
of PEs used. A communication step is organized in rounds. In each round, a PE
chooses a communication partner and sends her the currently best partition P of
the local population. The selection of the communication partner is done uniformly
at random among those PEs to which P not already has been sent to. Afterwards, a
PE checks if there are incoming individuals and if so inserts them into the local pop-
ulation using the eviction strategy described above. If P is improved, all PEs are
again eligible. This is repeated log p times. Note that the algorithm is implemented
completely asynchronously, i.e. there is no need for a global synchronisation. The
process of creating individuals is parallelized as follows: Each PE makes s′ = |S|/p
calls to KaFFPa using different seeds to create s′ individuals. Afterwards we do the
following S − s′ times: The root PE computes a random cyclic permutation of all
PEs and broadcasts it to all PEs. Each PE then sends a random individual to its
successor in the cyclic permutation and receives a individual from its predecessor in
the cyclic permutation which is then inserted into the local population. When this
particular part of the algorithm (quick start) is finished, each PE has |S| partitions.

After some experiments we fixed the ratio of mutation to crossover operations
to 1 : 9, the ratio of the mutation operators M1 : M2 to 4 : 1 and the ratio of the
combine operators C1 : C2 : C3 to 3 : 1 : 1. Note that the communication step in the
last line of the algorithm could also be performed only every x iterations (where x is
a tuning parameter) to save communication time. Since the communication network
of our test system is very fast (see Section 6), we perform the communication step
in each iteration.

6. Experiments

Implementation. We have implemented the algorithm described above using
C++. Overall, our program (including KaFFPa and KaFFPaE) consists of about
22 500 lines of code. We use three configurations of KaFFPa: KaFFPaStrong,
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Algorithm 3 All PEs perform the same operations using different random seeds.

procedure locallyEvolve
estimate population size S
while time left

if elapsed time < ttotal/f then create individual and insert into local population
else

flip coin c with corresponding probabilities
if c shows head then

perform a mutation operation
else

perform a combine operation
insert offspring into population if possible

communicate according to communication protocol

KaFFPaEco and KaFFPaFast. KaFFPaFast is the fastest configuration, KaFF-
PaEco is a good tradeoff between quality and speed, and KaFFPaStrong is focused
on quality (see [22] for more details).

Systems. Experiments have been done on three machines. Machine A is a
cluster with 200 nodes where each node is equipped with two Quad-core Intel Xeon
processors (X5355) which run at a clock speed of 2.667 GHz. Each node has 2x4 MB
of level 2 cache each and runs Suse Linux Enterprise 10 SP 1. All nodes are attached
to an InfiniBand 4X DDR interconnect which is characterized by its very low latency
of below 2 microseconds and a point to point bandwidth between two nodes of
more than 1300 MB/s. Machine B has four Quad-core Opteron 8350 (2.0GHz),
64GB RAM, running Ubuntu 10.04. Machine C has two Intel Xeon X5550, 48GB
RAM, running Ubuntu 10.04. Each CPU has 4 cores (8 cores when hyperthreading
is active) running at 2.67 GHz. Experiments in Section 6.1 were conducted on
machine A. Shortly after these experiments were conducted the machine had a file
system crash and was not available for two weeks (and after that the machine was
very full). Therefore we switched to the much smaller machines B and C, focused
on a small subset of the challenge and restricted further experiments to k = 8.
Experiments in Section 6.2 have been conducted on machine B, and experiments in
Section 6.3 have been conducted on machine C. All programs were compiled using
GCC Version 4.4.3 and optimization level 3 using OpenMPI 1.5.3. Henceforth, a
PE is one core of a machine.

Instances. We report experiments on a subset of the graphs of the 10th DI-
MACS Implementation Challenge [3]. Experiments in Section 6.1 were done on all
graphs of the Walshaw Benchmark. Here we used k ∈ {2, 4, 8, 16, 32, 64} since they
are the default values in [25]. Experiments in Section 6.2 focus on the graph subset
depicted in Table 1 (except the road networks). In Section 6.3 we have a closer look
on all road networks of the Challenge. We finish the experimental evaluation with
Section 6.4 describing how we obtained the results on the challenge testbed and
comparing the performance of Metis and Scotch. Our default value for the allowed
imbalance is 3% since this is one of the values used in [25] and the default value in
Metis. Our default number of PEs is 16.

6.1. Walshaw Benchmark. 1 We now apply KaFFPaE to Walshaw’s bench-
mark archive [23] using the rules used there, i.e., running time is not an issue but

1see KaFFPaE [21] for more details on this experiment.
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HIGH QUALITY GRAPH PARTITIONING 13

Table 1. Basic properties of choosen subset (except Walshaw Instances).

graph n m

Random Geometric Graphs

rgg16 216 ≈342 K
rgg17 217 ≈729 K

Delaunay

delaunay16 216 ≈197 K
delaunay17 217 ≈393 K

Kronecker G500

kron simple 16 216 ≈2 M
kron simple 17 217 ≈5 M

Numerical

adaptive ≈6 M ≈14 M
channel ≈5 M ≈42 M
venturi ≈4 M ≈8 M
packing ≈2 M ≈17 M

2D Frames

hugetrace-00000 ≈5 M ≈7 M
hugetric-00000 ≈6 M ≈9 M

Sparse Matrices

af shell9 ≈500 K ≈9 M
thermal2 ≈1 M ≈4 M

Coauthor Networks

coAutCiteseer ≈227 K ≈814 K
coAutDBLP ≈299 K ≈978 K

Social Networks

cnr ≈326 K ≈3 M
caidaRouterLvl ≈192 K ≈609 K

Road Networks

luxembourg ≈144 K ≈120 K
belgium ≈1 M ≈2 M
netherlands ≈2 M ≈2 M
italy ≈7 M ≈7 M
great-britain ≈8 M ≈8 M
germany ≈12 M ≈12 M
asia ≈12 M ≈13 M
europe ≈51 M ≈54 M

we want to obtain minimal cut values for k ∈ {2, 4, 8, 16, 32, 64} and balance pa-
rameters ε ∈ {0, 0.01, 0.03, 0.05}. We focus on ε ∈ {1%, 3%, 5%} since KaFFPaE
(more precisely KaFFPa) is not made for the case ε = 0. We run KaFFPaE with
a time limit of two hours using 16 PEs (two nodes of the cluster) per graph, k and
ε. On the eight largest graphs of the archive we gave KaFFPaE eight hours per
graph, k and ε. KaFFPaE computed 300 partitions which are better than previous
best partitions reported there: 91 for 1%, 103 for 3% and 106 for 5%. Moreover,
it reproduced equally sized cuts in 170 of the 312 remaining cases. When only
considering the 15 largest graphs and ε ∈ {1.03, 1.05} we are able to reproduce or
improve the current result in 224 out of 240 cases. Overall our systems (including
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14 PETER SANDERS AND CHRISTIAN SCHULZ

KaPPa, KaSPar, KaFFPa, KaFFPaE) now improved or reproduced the entries in
550 out of 612 cases (for ε ∈ {0.01, 0.03, 0.05}).

6.2. Various DIMACS Graphs. In this Section we apply KaFFPaE (and
on some graphs KaFFPa) to a meaningful subset of the graphs of the DIMACS
Challenge. Here we use all cores of machine B and give KaFFPaE eight hours of
time per graph to compute a partition into eight blocks. When using KaFFPa to
create a partition we use one core of this machine. The experiments were repeated
three times. A summary of the results can be found in Table 2.

Table 2. Results achieved for k = 8 various graphs of the DI-
MACS Challenge. Results which were computed by KaFFPa are
indicated by *.

graph best avg.

rgg16 1 067 1 067
rgg17 1 777 1 778

delaunay16 1 547 1 547
delaunay17 2 200 2 203

kron simple 16∗ 1 257 512 1 305 207
kron simple 17∗ 2 247 116 2 444 925

cnr 4 687 4 837
caidaRouterLevel 42 679 43 659

coAutCiteseer 42 875 43 295

graph best avg.

coAutDBLP 94 866 95 866

channel∗ 333 396 333 396
packing∗ 108 771 111 255
adaptive 8 482 8 482
venturi 5 780 5 788

hugetrace-00000 3 656 3 658
hugetric-00000 4 769 4 785

af shell9 40 775 40 791
thermal2 6 426 6 426

6.3. Road Networks. In this Section we focus on finding partitions of the
street networks of the DIMACS Challenge. We implemented a specialized algo-
rithm, Buffoon, which is similar to PUNCH [8] in the sense that it also uses natural
cuts as a preprocessing technique to obtain a coarser graph on which the graph
partitioning problem is solved. For more information on natural cuts, we refer the
reader to [8]. Using our (shared memory) parallelized version of natural cut pre-
processing we obtain a coarse version of the graph. Note that our preprocessing
uses slightly different parameters than PUNCH (using the notation of [8], we use
C = 2, U = (1 + ε) n

2k , f = 10, α = 1). Since partitions of the coarse graph corre-
spond to partitions of the original graph, we use KaFFPaE to partition the coarse
version of the graph. After preprocessing, we gave KaFFPaE one hour of time to
compute a partition. In both cases we used all 16 cores (hyperthreading active) of
machine C for preprocessing and for KaFFPaE. We also used the strong configu-
ration of KaFFPa to partition the road networks. In both cases the experiments
were repeated ten times. Table 3 summarizes the results.

6.4. The Challenge Testbed. We now describe how we obtained the results
on the challenge testbed and evaluate the performance of kMetis and Scotch on
these graphs in the Pareto challenge.

Pareto Challenge. For this particular challenge we run all configurations of
KaFFPa (KaFFPaStrong, KaFFPaEco, KaFFPaFast, see [22] for details), KaFF-
PaE, Metis 5.0 and Scotch 5.1 on machine A. To compute a partition for an instance
(graph, k) we repeatedly run the corressponding partitioner (except KaFFPaE) us-
ing different random seeds until the resulting partition is feasable. We stopped the

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms
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Table 3. Results on road networks for k = 8: average and best
cut results of Buffoon (B) and KaFFPa (K) as well as average
runtime [m] (including preprocessing).

grp. algorithm/runtime t

Bbest Bavg tavg[m] Kbest Kavg tavg[m]

lux. 79 79 60.1 81 83 0.1
bel. 307 307 60.5 320 326 0.9
net. 191 193 60.6 207 217 1.2
ita. 200 200 64.3 205 210 3.9
gb. 363 365 63.0 381 395 6.5
ger. 473 475 65.3 482 499 11.3
asia. 47 47 67.6 52 55 6.4
eur. 526 527 131.5 550 590 76.1

Table 4. Pareto challenge results including Metis and Scotch (left
hand side) and original Pareto challenge results (right hand side).

Solver Points

KaFFPaFast 1372
Metis 1265
KaFFPaEco 1174
KaFFPaE 1134
KaFFPaStrong 1085
UMPa [6] 624
Scotch 361
Mondrian [11] 225

Solver Points

KaFFPaFast 1680
KaFFPaEco 1305
KaFFPaE 1145
KaFFPaStrong 1106
UMPa [6] 782
Mondrian [11] 462

process after one day of computation or after one hundred repetitions yielding un-
balanced partitions. The resulting partition was used for both parts of the challenge,
i.e. optimizing for edge cut and optimizing for maximum communication volume.
The runtime of each iteration was added if more then one iteration was needed to
obtain a feasable partition. KaFFPaE was given four nodes of machine A and a time
limit of eight hours for each instance. When computing partitions for the objective
function maximum communication volume we altered the fitness function to this
objective. This ensures that individuals having a better maximum communication
volume are more often selected for a combine operation. Using this methodology
KaFFPaStrong, KaFFPaEco, KaFFPaFast, KaFFPaE, Metis and Scotch were able
to solve 136, 150, 170, 130, 146 and 110 instances respectively. The resulting points
achieved in the Pareto challenge can be found in Table 4 (see [1] for a description on
how points are computed for the challenges). Note that KaFFPaFast gained more
points than KaFFPaEco, KaFFPaStrong and KaFFPaE. Since it is much faster
than the other KaFFPa configurations it is almost never dominated by them and
therefore scores a lot of points in this particular challenge. For some instances the
partitions produced by Metis always exceeded the balance constraint by exactly one
vertex. We assume that a small modification of Metis would increase the number
of instances solved and most probably also the score achieved.

Quality Challenge. Our quality submission KaPa (Karlsruhe Partitioners) as-
sembles the best solutions of the partitions obtained of our partitioners in the Pareto
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16 PETER SANDERS AND CHRISTIAN SCHULZ

challenge. Furthermore, on road networks we also run Buffoon to create partitions.
The resulting points achieved in the quality challenge can be found in Table 5.

Table 5. Original quality challenge results.

Solver Points

KaPa 1574
UMPa [6] 1066
Mondrian [11] 616

7. Conclusion and Future Work

We presented two approaches to the graph partitioning problem, KaFFPa and
KaFFPaE. KaFFPa uses novel local improvement methods and more sophisticated
global search strategies to tackle the problem. KaFFPaE is an distributed evo-
lutionary algorithm which uses KaFFPa as a base case partitioner. Due to new
crossover and mutation operators as well as its scalable parallelization it is able to
compute the best known partitions for many standard benchmark instances in only
a few minutes for graphs of moderate size. We therefore believe that KaFFPaE is
still helpful in the area of high performance computing. Regarding future work, we
want look at more DIMACS Instances, more values of k and more values of ε. In
particular we want to investigate at the case ε = 0.
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Abusing a hypergraph partitioner for unweighted graph
partitioning

B. O. Fagginger Auer and R. H. Bisseling

Abstract. We investigate using the Mondriaan matrix partitioner for un-
weighted graph partitioning in the communication volume and edge-cut met-
rics. By converting the unweighted graphs to appropriate matrices, we mea-
sure Mondriaan’s performance as a graph partitioner for the 10th DIMACS
challenge on graph partitioning and clustering. We find that Mondriaan can

effectively be used as a graph partitioner: w.r.t. the edge-cut metric, Mon-
driaan’s best results are on average within 13% of the best known results as
listed in Chris Walshaw’s partitioning archive, but it is an order of magnitude
slower than dedicated graph partitioners.

1. Introduction

In this paper, we use the Mondriaan matrix partitioner [22] to partition the
graphs from the 10th DIMACS challenge on graph partitioning and clustering [1].
In this way, we can compare Mondriaan’s performance as a graph partitioner with
the performance of the state-of-the-art partitioners participating in the challenge.

An undirected graph G is a pair (V,E), with vertices V , and edges E that are
of the form {u, v} for u, v ∈ V with possibly u = v. For vertices v ∈ V , we denote
the set of all of v’s neighbours by

Vv := {u ∈ V | {u, v} ∈ E}.
Note that vertex v is a neighbour of itself precisely when the self-edge {v, v} ∈ E.

Hypergraphs are a generalisation of undirected graphs, where edges can contain
an arbitrary number of vertices. A hypergraph G is a pair (V ,N ), with vertices V ,
and nets (or hyperedges) N ; nets are subsets of V that can contain any number of
vertices.

Let ε > 0, k ∈ N, and G = (V,E) be an undirected graph. Then a valid solution
to the graph partitioning problem for partitioning G into k parts with imbalance ε,
is a partitioning Π : V → {1, . . . , k} of the graph’s vertices into k parts, each part
Π−1({i}) containing at most

(1.1) |Π−1({i})| ≤ (1 + ε)

⌈
|V |
k

⌉
, (1 ≤ i ≤ k)

vertices.
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To measure the quality of a valid partitioning we use two different metrics. The
communication volume metric1 [1] is defined by

(1.2) CV(Π) := max
1≤i≤k

∑
v∈V

Π(v)=i

|Π(Vv) \ {Π(v)}|.

For each vertex v, we determine the number π(v) of different parts in which v has
neighbours, except its own part Π(v). Then, the communication volume is given
by the maximum over i, of the sum of all π(v) for vertices v belonging to part i.

The edge-cut metric [1], defined as

(1.3) EC(Π) := |{{u, v} ∈ E | Π(u) 
= Π(v)}|,
measures the number of edges between different parts of the partitioning Π.

Table 1. Overview of available software for partitioning graphs
(left) and hypergraphs (right), from [3, Table 12.1].

Name Ref. Sequential/
parallel

Chaco [13] sequential
METIS [14] sequential
Scotch [18] sequential
Jostle [23] parallel
ParMETIS [16] parallel
PT-Scotch [10] parallel

Name Ref. Sequential/
parallel

hMETIS [15] sequential
ML-Part [6] sequential
Mondriaan [22] sequential
PaToH [8] sequential
Parkway [21] parallel
Zoltan [12] parallel

There exist a lot of different (hyper)graph partitioners, which are summarised in
Table 1. All partitioners follow a multi-level strategy [5], where the (hyper)graph is
coarsened by generating a matching of the (hyper)graph’s vertices and contracting
matched vertices to a single vertex. Doing this recursively creates a hierarchy of
increasingly coarser approximations of the original (hyper)graph. After this has
been done, an initial partitioning is generated on the coarsest (hyper)graph in the
hierarchy, i.e. the one possessing the smallest number of vertices. This partitioning
is subsequently propagated to the finer (hyper)graphs in the hierarchy and refined
at each level (e.g. using the Kernighan–Lin algorithm [17]), until we reach the
original (hyper)graph and obtain the final partitioning.

2. Mondriaan

2.1. Mondriaan sparse matrix partitioner. The Mondriaan partitioner
has been designed to partition the matrix and the vectors for a parallel sparse
matrix–vector multiplication, where a sparse matrix A is multiplied by a dense
input vector v to give a dense output vector u = Av as the result. First, the
matrix partitioning algorithm is executed to minimise the total communication
volume LV(Π) of the partitioning, defined below, and then the vector partitioning
algorithm is executed with the aim of balancing the communication among the
processors. The matrix partitioning itself does not aim to achieve such balance,
but it is not biased in favour of any processor part either.

1We forgo custom edge and vertex weights and assume they are all equal to one, because
Mondriaan’s hypergraph partitioner does not support net weights.
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Table 2. Available representations of an m×n matrix A = (ai j)
by a hypergraph G = (V ,N ) in Mondriaan.

Name Ref. V N
Column-net [7] {r1, . . . , rm} {{ri | 1 ≤ i ≤ m, ai j 
= 0} | 1 ≤ j ≤ n}
Row-net [7] {c1, . . . , cn} {{cj | 1 ≤ j ≤ n, ai j 
= 0} | 1 ≤ i ≤ m}
Fine-grain [9] {vi j | ai j 
= 0} {{vi j |1 ≤ i ≤ m, ai j 
= 0} | 1 ≤ j ≤ n}︸ ︷︷ ︸

column nets

∪{{vi j |1 ≤ j ≤ n, ai j 
= 0} | 1 ≤ i ≤ m}︸ ︷︷ ︸
row nets

Mondriaan uses recursive bipartitioning to split the matrix or its submatrices
repeatedly into two parts, choosing the best of the row or column direction in the
matrix. The current submatrix is translated into a hypergraph by the column-net
or row-net model, respectively (see Table 2). Another possibility is to split the
submatrix based on the fine-grain model, and if desired the best split of the three
methods can be chosen. The outcome of running Mondriaan is a two-dimensional
partitioning of the sparse matrix (i.e., a partitioning where both the matrix rows
and columns are split). The number of parts is not restricted to a power of two, as
Mondriaan can split parts according to a given ratio, such as 2:1. After each split,
Mondriaan adjusts the weight balancing goals of the new parts obtained, as the
new part that receives the largest fraction of the weight will need to be stricter in
allowing an imbalance during further splits than the part with the smaller fraction.

The total communication volume of the parallel sparse matrix–vector multi-
plication is minimised by Mondriaan in the following manner. Because the total
volume is simply the sum of the volumes incurred by every split into two by the
recursive bipartitioning [22, Theorem 2.2], the minimisation is completely achieved
by the bipartitioning. We will explain the procedure for splits in the column di-
rection (the row direction is similar). When using Mondriaan as a hypergraph
partitioner, as we do for the DIMACS challenge, see Section 2.2, only the column
direction is used.

First, in the bipartitioning, similar columns are merged by matching columns
that have a large overlap in their nonzero patterns. A pair of columns j, j′ with
similar pattern will then be merged and hence will be assigned to the same proces-
sor part in the subsequent initial partitioning, thus preventing the communication
that would occur if two nonzeros aij and aij′ from the same row were assigned to
different parts. Repeated rounds of merging during this coarsening phase result in
a final sparse matrix with far fewer columns, and a whole multilevel hierarchy of
intermediate matrices.

Second, the resulting smaller matrix is bipartitioned using the Kernighan–Lin
algorithm [17]. This local-search algorithm with so-called hill-climbing capabili-
ties starts with a random partitioning of the columns satisfying the load balance
constraints, and then tries to improve it by repeated moves of a column from its
current processor part to the other part. To enhance the success of the Kernighan–
Lin algorithm and to prevent getting stuck in local minima, we limit the number of
columns to at most 200 in this stage; the coarsening only stops when this number
has been reached. The Kernighan–Lin algorithm is run eight times and the best
solution is taken.
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Third, the partitioning of the smaller matrix is propagated back to a partition-
ing of the original matrix, at each level unmerging pairs of columns while trying
to refine the partitioning by one run of the Kernighan–Lin algorithm. This fur-
ther reduces the amount of communication, while still satisfying the load balance
constraints.

If the input and output vector can be partitioned independently, the vector
partitioning algorithm usually has enough freedom to achieve a reasonable commu-
nication balancing. Each component vi of the input vector can then be assigned
to any of the processors that hold nonzeros in the corresponding column, and each
component ui of the output vector to any of the processors that hold nonzeros in
the corresponding row. If the matrix is square, and both vectors must be parti-
tioned in the same way, then there is usually little freedom, as the only common
element of row i and column i is the diagonal matrix element aii, which may or
may not be zero. If it is zero, it has no owning processor, and the set of processors
owning row i and that owning column i may be disjoint. This means that the total
communication volume must be increased by one for vector components vi and ui.
If the matrix diagonal has only nonzero elements, however, the vector partitioning
can be achieved without incurring additional communication by assigning vector
components vi and ui to the same processor as the diagonal matrix element aii.
More details on the matrix and vector partitioning can be found in [22]; improved
methods for vector partitioning are given in [4], see also [2].

2.2. Mondriaan hypergraph partitioner. Here, we will use Mondriaan as
a hypergraph partitioner, which can be done by choosing the column direction
in all splits, so that columns are vertices and rows are nets. This means that
we use Mondriaan in one-dimensional mode, as only rows will be split. Figure
1 illustrates this splitting procedure. Mondriaan has the option to use its own,
native hypergraph bipartitioner, or link to the external partitioner PaToH [8]. In
the present work, we use the native partitioner.

For the graph partitioning challenge posed by DIMACS, we try to fit the exist-
ing software to the aims of the challenge. One could say that this entails abusing
the software, as it was designed for a different purpose, namely matrix and hyper-
graph partitioning. Using a hypergraph partitioner to partition graphs will be at
the cost of some additional, unnecessary overhead. Still, it will be interesting to
see how the Mondriaan software performs in this unforeseen mode, and to compare
the quality of the generated partitionings to the quality of partitionings generated
by other software, in particular by graph partitioning packages.

In the situation of the challenge, we can only use the matrix partitioning of
Mondriaan and not the vector partitioning, as the vertex partitioning of the graph
is already completely determined by the column partitioning of the matrix. The
balance of the communication will then solely depend on the balance achieved by
the matrix partitioning.

Internally, Mondriaan’s hypergraph partitioner solves the following problem.
For a hypergraph G = (V ,N ) with vertex weights ζ : V → N, an imbalance
factor ε > 0, and a number of parts k ∈ N, Mondriaan’s partitioner produces a
partitioning Π : V → {1, . . . , k} such that

(2.1) ζ(Π−1({i})) ≤ (1 + ε)

⌈
ζ(V)

k

⌉
, (1 ≤ i ≤ k),
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(a) k = 1 (b) k = 2

(c) k = 4 (d) k = 1024

Figure 1. Mondriaan 1D column partitioning of the graph
fe tooth, modelled as a sparse matrix (cf. Theorem 2.1), into
k = 1, 2, 4, and 1024 parts with imbalance ε = 0.03. The rows
and columns of the matrices have been permuted for k > 1 to
Separated Block Diagonal form, see [24].

where the partitioner tries to minimise the (λ− 1)-volume

(2.2) LV(Π) :=
∑
n∈N

(|Π(n)| − 1).

We will now translate the DIMACS partitioning problems from Section 1 to the
hypergraph partitioning problem that Mondriaan is designed to solve, by creating
a suitable hypergraph G, encoded as a sparse matrix A in the row-net model.
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2.3. Minimising communication volume. Let G = (V,E) be a given graph,
k ∈ N, and ε > 0. Our aim will be to construct a matrix A from G such that min-
imising (2.2) subject to (2.1) enforces minimisation of (1.2) subject to (1.1).

To satisfy (1.1), we need to create one column in A for each vertex in V , such
that the hypergraph represented by A in the row-net model will have V = V . This is
also necessary to have a direct correspondence between partitionings of the vertices
V of the graph and the vertices V of the hypergraph. Setting the weights ζ of all
vertices/matrix columns to 1 will then ensure that (1.1) is satisfied if and only if
(2.1) is satisfied.

It is a little more tricky to match (1.2) to (2.2). Note that because of the
maximum in (1.2), we are not able to create an equivalent formulation. However,
as

(2.3) CV(Π) ≤
k∑

i=1

∑
v∈V

Π(v)=i

|Π(Vv) \ {Π(v)}| =
∑
v∈V

|Π(Vv) \ {Π(v)}|,

we can provide an upper bound, which we can use to limit CV(Π). We need to
choose the rows of A, corresponding to nets in the row-net hypergraph G = (V ,N ),
such that (2.3) and (2.2) are in agreement.

For a net n ∈ N , we have that n ⊆ V = V is simply a collection of vertices
of G, so |Π(n)| in (2.2) equals the number of different parts in which the vertices
of n are contained. In (2.3) we count, for a vertex v ∈ V , all parts in which v
has a neighbour, except Π(v). Note that this number equals |Π(Vv) \ {Π(v)}| =
|Π(Vv ∪ {v})| − 1.

Hence, we should pick N := {Vv ∪ {v} | v ∈ V } as the set of nets, for (2.3)
and (2.2) to agree. In the row-net matrix model, this corresponds to letting A be a
matrix with a row for every vertex v ∈ V , filled with nonzeros av v and au v for all
u ∈ Vv \ {v}. Then, for this hypergraph G, we have by (2.3) that CV(Π) ≤ LV(Π).
Note that since the communication volume is defined as a maximum, we also have
that kCV(Π) ≥ LV(Π).

Theorem 2.1. Let G = (V,E) be a given graph, k ∈ N, and ε > 0. Let A be
the |V | × |V | matrix with entries

au v :=

{
1 if {u, v} ∈ E or u = v,
0 otherwise,

for u, v ∈ V , and let G = (V ,N ) be the hypergraph corresponding to A in the row-net
model with vertex weights ζ(v) = 1 for all v ∈ V.

Then, for every partitioning Π : V → {1, . . . , k}, we have that Π satisfies (1.1)
if and only if Π satisfies (2.1), and

(2.4)
1

k
LV(Π) ≤ CV(Π) ≤ LV(Π).

2.4. Minimising edge cut. We will now follow the same procedure as in
Section 2.3 to construct a matrix A such that minimising (2.2) subject to (2.1) is
equivalent to minimising (1.3) subject to (1.1).

As in Section 2.3, the columns of A should correspond to the vertices V of G
to ensure that (2.1) is equivalent to (1.1).

Equation (1.3) simply counts all of G’s edges that contain vertices belonging
to two parts of the partitioning Π. Since every edge contains vertices belonging to
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at least one part, and at most two parts, this yields

EC(Π) =
∑
e∈E

(|Π(e)| − 1).

Choosing N := E will therefore give us a direct correspondence between (2.2) and
(1.3).

Theorem 2.2. Let G = (V,E) be a given graph, k ∈ N, and ε > 0. Let A be
the |E| × |V | matrix with entries

ae v :=

{
1 if v ∈ e,
0 otherwise,

for e ∈ E, v ∈ V , and let G = (V ,N ) be the hypergraph corresponding to A in the
row-net model with vertex weights ζ(v) = 1 for all v ∈ V.

Then, for every partitioning Π : V → {1, . . . , k}, we have that Π satisfies (1.1)
if and only if Π satisfies (2.1), and

(2.5) EC(Π) = LV(Π).

With Theorem 2.1 and Theorem 2.2, we know how to translate a given graph G
to a hypergraph that Mondriaan can partition to obtain solutions to the DIMACS
partitioning challenges.

3. Results

We measure Mondriaan’s performance as a graph partitioner by partitioning
graphs from the walshaw/ [20] category, as well as a subset of the specified par-
titioning instances of the DIMACS challenge test bed [1], see Tables 3 and 4.
This is done by converting the graphs to matrices, as described by Theorem 2.1
and Theorem 2.2, and partitioning these matrices with Mondriaan 3.11, using the
onedimcol splitting strategy (since the matrices represent row-net hypergraphs)
with the lambda1 metric (cf. (2.2)). The imbalance is set to ε = 0.03, the number
of parts k is chosen from {2, 4, . . . , 1024}, and we measure the communication vol-
umes and edge cuts over 16 runs of the Mondriaan partitioner (as Mondriaan uses
random tie-breaking). All results were recorded on a dual quad-core AMD Opteron
2378 system with 32GiB of main memory and they can be found in Tables 5–8 and
Figures 2 and 3. None of the graphs from Table 3 or 4 contain self-edges, edge
weights, or vertex weights. Therefore, the values recorded in Tables 5–8 satisfy ei-
ther (1.2) or (1.3) (which both assume unit weights), and can directly be compared
to the results of other DIMACS challenge participants.

Tables 5 and 6 contain the lowest communication volumes and edge cuts ob-
tained by Mondriaan in 16 runs for the graphs from Table 3. The strange dip in the
communication volume for finan512 in Table 5 for k = 32 parts can be explained
by the fact that the graph finan512 consists exactly of 32 densely connected parts
with few connections between them, see the visualisation of this graph in [11], such
that there is a natural partitioning with very low communication volume in this
case.

To determine how well Mondriaan performs as a graph partitioner, we have also
partitioned the graphs from Tables 3 and 4 using METIS 5.0.2 [14] and Scotch 5.1.12
[18]. For METIS we used the high-quality PartGraphKway option, while Scotch
was invoked using graphPart with the QUALITY and SAFETY strategies enabled.
We furthermore compare the results from Table 6 to the lowest known edge cuts

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



26 B. O. FAGGINGER AUER AND R. H. BISSELING

Table 3. Graphs G = (V,E) from the walshaw/ [1,20] category.

G |V | |E|
add20 2,395 7,462
data 2,851 15,093
3elt 4,720 13,722
uk 4,824 6,837
add32 4,960 9,462
bcsstk33 8,738 291,583
whitaker3 9,800 28,989
crack 10,240 30,380
wing nodal 10,937 75,488
fe 4elt2 11,143 32,818
vibrobox 12,328 165,250
bcsstk29 13,992 302,748
4elt 15,606 45,878
fe sphere 16,386 49,152
cti 16,840 48,232
memplus 17,758 54,196
cs4 22,499 43,858

G |V | |E|
bcsstk30 28,924 1,007,284
bcsstk31 35,588 572,914
fe pwt 36,519 144,794
bcsstk32 44,609 985,046
fe body 45,087 163,734
t60k 60,005 89,440
wing 62,032 121,544
brack2 62,631 366,559
finan512 74,752 261,120
fe tooth 78,136 452,591
fe rotor 99,617 662,431
598a 110,971 741,934
fe ocean 143,437 409,593
144 144,649 1,074,393
wave 156,317 1,059,331
m14b 214,765 1,679,018
auto 448,695 3,314,611

Table 4. Graphs G = (V,E) from the 10th DIMACS challenge
[1] partitioning instances.

G |V | |E|
1 delaunay n15 32,768 98,274
2 kron g500-simple-logn17 131,072 5,113,985
3 coAuthorsCiteseer 227,320 814,134
4 rgg n 2 18 s0 262,144 1,547,283
5 auto 448,695 3,314,611
6 G3 circuit 1,585,478 3,037,674
7 kkt power 2,063,494 6,482,320
8 M6 3,501,776 10,501,936
9 AS365 3,799,275 11,368,076

10 NLR 4,163,763 12,487,976
11 hugetric-00000 5,824,554 8,733,523
12 great-britain.osm 7,733,822 8,156,517
13 asia.osm 11,950,757 12,711,603
14 hugebubbles-00010 19,458,087 29,179,764

with 3% imbalance for graphs from the walshaw/ category, available from http://

staffweb.cms.gre.ac.uk/~wc06/partition/ [20]. These data were retrieved on
May 8, 2012 and include results from the KaFFPa partitioner, contributed by
Sanders and Schulz [19], who also participated in the DIMACS challenge. Results
for graphs from the DIMACS challenge, Tables 7 and 8, are given for the number
of parts k specified in the challenge partitioning instances, for a single run of the
Mondriaan, METIS, and Scotch partitioners.
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Table 5. Minimum communication volume, (1.2), over 16 Mon-
driaan runs, for graphs from the walshaw/ category, Table 3, di-
vided into k = 2, 4, . . . , 64 parts with imbalance ε = 0.03. A ‘-’
indicates that Mondriaan was unable to generate a partitioning
satisfying the balancing requirement, (1.1).

G 2 4 8 16 32 64

add20 74 101 118 141 159 -
data 63 84 80 78 65 -
3elt 45 65 59 65 53 49
uk 19 27 36 33 31 24
add32 9 21 29 24 20 22
bcsstk33 454 667 719 630 547 449
whitaker3 64 130 104 98 77 60
crack 95 97 123 100 78 64
wing nodal 453 593 523 423 362 256
fe 4elt2 66 94 97 85 69 60
vibrobox 996 1,080 966 887 663 482
bcsstk29 180 366 360 336 252 220
4elt 70 90 86 89 88 71
fe sphere 193 213 178 139 107 83
cti 268 526 496 379 295 200
memplus 2,519 1,689 1,069 720 572 514
cs4 319 492 409 311 228 161
bcsstk30 283 637 611 689 601 559
bcsstk31 358 492 498 490 451 400
fe pwt 120 122 133 145 148 132
bcsstk32 491 573 733 671 561 442
fe body 109 143 173 171 145 133
t60k 71 141 154 139 129 96
wing 705 854 759 594 451 324
brack2 231 650 761 635 562 458
finan512 75 76 137 141 84 165
fe tooth 1,238 1,269 1,282 1,066 844 703
fe rotor 549 1,437 1,258 1,138 944 749
598a 647 1,400 1,415 1,432 1,064 871
fe ocean 269 797 1,002 1,000 867 647
144 1,660 2,499 2,047 1,613 1,346 1,184
wave 2,366 2,986 2,755 2,138 1,640 1,222
m14b 921 2,111 2,086 2,016 1,524 1,171
auto 2,526 4,518 4,456 3,982 3,028 2,388
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Table 6. Minimum edge cut, (1.3), over 16 Mondriaan runs, for
graphs from the walshaw/ category, Table 3, divided into k =
2, 4, . . . , 64 parts with imbalance ε = 0.03. A ‘-’ indicates that
Mondriaan was unable to generate a partitioning satisfying the
balancing requirement, (1.1).

G 2 4 8 16 32 64

add20 680 1,197 1,776 2,247 2,561 -
data 195 408 676 1,233 2,006 -
3elt 87 206 368 639 1,078 1,966
uk 20 43 98 177 299 529
add32 21 86 167 247 441 700
bcsstk33 10,068 21,993 37,054 58,188 82,102 114,483
whitaker3 126 385 692 1,172 1,825 2,769
crack 186 372 716 1,169 1,851 2,788
wing nodal 1,703 3,694 5,845 8,963 12,870 17,458
fe 4elt2 130 350 616 1,091 1,770 2,760
vibrobox 10,310 19,401 28,690 37,038 45,877 53,560
bcsstk29 2,846 8,508 16,714 25,954 39,508 59,873
4elt 137 335 543 1,040 1,724 2,896
fe sphere 404 822 1,258 1,972 2,857 4,082
cti 318 934 1,786 2,887 4,302 6,027
memplus 5,507 9,666 12,147 14,077 15,737 17,698
cs4 389 1,042 1,654 2,411 3,407 4,639
bcsstk30 6,324 16,698 35,046 77,589 123,766 186,084
bcsstk31 2,677 7,731 14,299 25,212 40,641 65,893
fe pwt 347 720 1,435 2,855 5,888 9,146
bcsstk32 4,779 9,146 23,040 41,214 66,606 102,977
fe body 271 668 1,153 2,011 3,450 5,614
t60k 77 227 506 952 1,592 2,483
wing 845 1,832 2,843 4,451 6,558 8,929
brack2 690 2,905 7,314 12,181 19,100 28,509
finan512 162 324 891 1,539 2,592 10,593
fe tooth 3,991 7,434 12,736 19,709 27,670 38,477
fe rotor 1,970 7,716 13,643 22,304 34,515 50,540
598a 2,434 8,170 16,736 27,895 43,192 63,056
fe ocean 317 1,772 4,316 8,457 13,936 21,522
144 6,628 16,822 27,629 41,947 62,157 86,647
wave 8,883 18,949 32,025 47,835 69,236 94,099
m14b 3,862 13,464 26,962 46,430 73,177 107,293
auto 9,973 27,297 49,087 83,505 132,998 191,429
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Table 7. Communication volume, (1.2), for graphs from Table
4, divided into k parts with imbalance ε = 0.03 for one run of
Mondriaan, METIS, and Scotch. The numbering of the graphs is
given by Table 4.

G k Mon. MET. Sco.

1 8 228 238 250
16 180 169 202
32 154 134 137
64 110 112 94

128 94 72 88
2 2 38,565 46,225 49,273

4 38,188 61,833 56,503
8 73,739 62,418 60,600

16 82,356 47,988 61,469
32 88,273 43,990 74,956

3 4 11,063 10,790 20,018
8 9,652 9,951 14,004

16 7,216 6,507 9,928
32 4,732 4,480 6,684
64 3,298 3,111 4,273

4 8 749 710 837
16 522 640 665
32 524 437 455
64 342 359 348

128 285 238 326
5 64 2,423 2,407 2,569

128 1,774 1,634 1,766
256 1,111 1,120 1,248
512 786 717 824

1024 552 519 540
6 2 1,219 1,267 1,308

4 1,887 1,630 2,144
32 1,304 1,285 1,291
64 1,190 1,111 1,228

256 668 566 702
7 16 6,752 9,303 36,875

32 7,057 9,123 20,232
64 7,255 9,244 10,669

256 4,379 4,198 4,842
512 3,280 2,589 3,265

G k Mon. MET. Sco.

8 2 1,392 1,420 1,416
8 2,999 2,242 2,434

32 1,852 1,497 1,611
128 1,029 783 814
256 737 553 606

9 64 1,375 1,099 1,266
128 1,037 814 837
256 761 555 639
512 552 419 481

1024 374 299 330
10 8 2,508 2,707 3,104

32 1,659 1,620 1,763
128 1,056 820 895
256 728 624 713
512 596 464 478

11 2 1,222 1,328 1,408
4 2,536 2,668 2,693

32 1,175 1,224 1,168
64 1,022 985 893

256 594 467 510
12 32 235 214 191

64 228 133 149
128 194 130 138
256 135 95 115

1024 102 78 83
13 64 139 53 84

128 139 58 73
256 145 65 104
512 157 110 90

1024 127 124 109
14 4 3,359 3,283 3,620

32 2,452 2,139 2,462
64 1,864 1,592 1,797

256 1,143 847 1,040
512 737 621 704
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Table 8. Edge cut, (1.3), for graphs from Table 4, divided into k
parts with imbalance ε = 0.03 for one run of Mondriaan, METIS,
and Scotch. The numbering of the graphs is given by Table 4.

G k Mon. MET. Sco.

1 8 1,367 1,358 1,386
16 2,164 2,170 2,121
32 3,217 3,267 3,283
64 4,840 4,943 4,726

128 7,134 6,979 7,000
2 2 208,227 1,972,153 773,367

4 835,098 2,402,130 2,614,571
8 1,789,048 2,988,293 3,417,254

16 2,791,475 3,393,061 3,886,568
32 3,587,053 3,936,154 4,319,148

3 4 37,975 37,151 67,513
8 54,573 53,502 81,556

16 67,308 66,040 92,992
32 77,443 75,448 104,050
64 85,610 84,111 111,090

4 8 4,327 4,381 4,682
16 7,718 7,107 7,879
32 13,207 10,386 11,304
64 20,546 16,160 16,630

128 32,039 24,644 25,749
5 64 192,783 188,424 196,385

128 266,541 257,800 265,941
256 359,123 346,655 366,258
512 475,284 455,321 479,379

1024 621,339 591,928 629,085
6 2 1,370 1,371 1,339

4 3,174 3,163 3,398
32 14,326 14,054 14,040
64 24,095 22,913 25,434

256 58,164 57,255 60,411
7 16 136,555 132,431 279,808

32 204,688 219,370 370,494
64 339,620 351,913 462,030

256 653,613 662,569 694,692
512 774,477 755,994 814,142

G k Mon. MET. Sco.

8 2 2,949 2,869 2,827
8 15,052 14,206 14,622

32 39,756 35,906 36,795
128 81,934 78,824 80,157
256 117,197 114,413 114,800

9 64 56,009 53,557 54,835
128 81,768 78,055 79,193
256 119,394 113,171 114,758
512 167,820 163,673 165,078

1024 239,947 234,301 234,439
10 8 16,881 16,992 17,172

32 42,523 40,130 40,967
128 90,105 86,332 86,760
256 129,635 124,737 126,233
512 186,016 178,324 179,779

11 2 1,345 1,328 1,408
4 4,197 3,143 3,693

32 16,659 13,981 14,434
64 24,031 20,525 21,597

256 50,605 44,082 44,634
12 32 2,213 1,622 1,770

64 3,274 2,461 2,891
128 5,309 3,948 4,439
256 8,719 6,001 6,710

1024 19,922 14,692 15,577
13 64 1,875 623 1,028

128 3,246 1,106 1,637
256 5,381 2,175 2,938
512 9,439 4,157 5,133

1024 15,842 7,987 9,196
14 4 6,290 5,631 6,340

32 29,137 25,049 27,693
64 43,795 38,596 41,442

256 90,849 82,566 86,554
512 131,481 118,974 124,694
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Table 9. Comparison of the minimum communication volume,
(1.2), and edge cut, (1.3), for graphs from Table 3 (walshaw/ col-
lection) and Table 4 (DIMACS challenge collection). We compare
the Mondriaan, METIS, and Scotch partitioners using (3.1) with
X consisting of the graphs from either Table 3 or 4 and using either
the communication volume or the edge cut metric.

Communication volume Edge cut

Mon. MET. Sco. Mon. MET. Sco.
Walshaw Mon. - 0.98 0.95 Mon. - 1.02 1.01

MET. 1.02 - 0.98 MET. 0.98 - 1.00
Sco. 1.05 1.02 - Sco. 0.99 1.00 -

Mon. MET. Sco. Mon. MET. Sco.
DIMACS Mon. - 1.15 0.99 Mon. - 1.08 0.98

MET. 0.87 - 0.86 MET. 0.93 - 0.91
Sco. 1.01 1.16 - Sco. 1.02 1.10 -

Table 9 gives a summary of each partitioner’s relative performance with re-
spect to the others. To illustrate how we compare the quality of the partitionings
generated by Mondriaan, METIS, and Scotch, consider the following example. Let
X be a collection of graphs (e.g. the graphs from Table 3) on which we would like
to compare the quality of the Mondriaan and METIS partitioners in the communi-
cation volume metric. Let ΠMon

G and ΠMET
G denote the partitionings found for the

graph G ∈ X by Mondriaan and METIS, respectively. Then, we determine how
much better Mondriaan performs than METIS by looking at the average logarithm
of the ratios of the communication volumes for all partitionings of graphs in X ,

(3.1) κMon,MET(X ) := exp

(
1

|X |
∑
G∈X

log
CV(ΠMon

G )

CV(ΠMET
G )

)
,

which is equal to 0.98 in Table 9 for X = {graphs from Table 3}. If the value from
(3.1) is smaller than 1, Mondriaan outperforms METIS, while METIS outperforms
Mondriaan if it is larger than 1. We use this quality measure instead of simply
calculating the average of all CV(ΠMon

G )/CV(ΠMET
G ) ratios, because it gives us a

symmetric comparison of all partitioners, in the following sense:

κMon,MET(X ) = 1/κMET,Mon(X ).

Scotch is unable to optimise for the communication volume metric directly and
therefore it is not surprising that Scotch is outperformed by both Mondriaan and
METIS in this metric. Surprisingly, Mondriaan outperforms Scotch in terms of
edge cut for the graphs from Table 4. The more extreme results for the graphs
from Table 4 could be caused by the fact that they have been recorded for a single
run of the partitioners, while the results for graphs from Table 3 are the best in
16 runs. METIS yields lower average communication volumes and edge cuts than
both Mondriaan and Scotch in almost all DIMACS cases.

If we compare the edge cuts for graphs from Table 3 to the best-known results
from [20], we find that Mondriaan’s, METIS’, and Scotch’s best edge cuts obtained
in 16 runs are on average 13%, 10%, and 10% larger, respectively, than those from
[20].

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



32 B. O. FAGGINGER AUER AND R. H. BISSELING

10-2

10
-1

100

101

102

103

104

103 104 105 106 107 108

P
a
rt

it
io

n
in

g
 t

im
e 

(s
)

Number of graph edges

Partitioning time (communication volume)

Mondriaan (64)
Mondriaan (512)

METIS (64)
METIS (512)
Scotch (64)

Scotch (512)

10-2

10
-1

10
0

10
1

10
2

103

10
4

10
3

10
4

10
5

10
6

10
7

10
8

P
a
rt

it
io

n
in

g
 t

im
e 

(s
)

Number of graph edges

Partitioning time (edge cut)

Mondriaan (64)
Mondriaan (512)

METIS (64)
METIS (512)
Scotch (64)

Scotch (512)

Figure 2. The average partitioning time required by the Mondri-
aan, METIS, and Scotch partitioners to generate the partitionings
from Table 5–8 (for 64 and 512 parts).

In Figure 2, we plot the time required by Mondriaan, METIS, and Scotch to
create a partitioning for both communication volume and edge cut. Note that the
partitioning times are almost the same for both communication volume and edge
cut minimisation. METIS is on average 29× faster than Mondriaan for 64 parts
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Figure 3. The communication volume imbalance given by (3.2),
plotted for several graphs.

and Scotch is 12× faster. Note that only six (large) matrices are partitioned into
512 parts.

In the absence of self-edges, the number of nonzeros in the matrices from The-
orem 2.1 and Theorem 2.2 equals 2 |E|+ |V | and 2 |E|, respectively. However, the
matrix sizes are equal to |V | × |V | and |E| × |V |, respectively. Therefore, the num-
ber of nonzeros in matrices from Theorem 2.2 is smaller, but the larger number
of nets (typically |E| > |V |, e.g. rgg n 2 18 s0) will lead to increased memory
requirements for the edge-cut matrices.

We have also investigated Mondriaan’s communication volume imbalance, de-
fined for a partitioning Π of G into k parts as

(3.2)
CV(Π)

LV(Π)/k
− 1.

This equation measures the imbalance in communication volume and can be com-
pared to the factor ε for vertex imbalance in (1.1). We plot (3.2) for a selec-
tion of graphs in Figure 3, where we see that the deviation of the communica-
tion volume CV(Π) from perfect balance, i.e. from LV(Π)/k, is very small com-
pared to the theoretical upper bound of k − 1 (via (2.4)), for all graphs except
kron g500-simple-logn17. This means that for most graphs, at most a factor of
2–3 in communication volume per processor can still be gained by improving the
communication balance. Therefore, as the number of parts increases, the different
parts of the partitionings generated by Mondriaan are not only balanced in terms
of vertices, cf. (1.1), but also in terms of communication volume.

4. Conclusion

We have shown that it is possible to use the Mondriaan matrix partitioner as
a graph partitioner by constructing appropriate matrices of a given graph for ei-
ther the communication volume or edge-cut metric. Mondriaan’s performance was
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measured by partitioning graphs from the 10th DIMACS challenge on graph parti-
tioning and clustering with Mondriaan, METIS, and Scotch, as well as comparing
obtained edge cuts with the best known results from [20]: here Mondriaan’s best
edge cut in 16 runs was, on average, 13% higher than the best known. Mondriaan
is competitive in terms of partitioning quality (METIS’ and Scotch’s best edge cuts
are, on average, 10% higher than the best known), but it is an order of magnitude
slower (Figure 2). METIS is the overall winner, both in quality and performance.
In conclusion, it is possible to perform graph partitioning with a hypergraph par-
titioner, but graph partitioners are much faster.

To our surprise, the partitionings generated by Mondriaan are reasonably bal-
anced in terms of communication volume, as shown in Figure 3, even though Mon-
driaan does not perform explicit communication volume balancing during matrix
partitioning. We attribute the observed balancing to the fact that the Mondriaan
algorithm performs random tie-breaking, without any preference for a specific part
of the partitioning.

Fortunately, for the given test set of the DIMACS challenge, we did not need
to consider edge weights. However, for Mondriaan to be useful as graph partitioner
also for weighted graphs, we have to extend Mondriaan to take hypergraph net
weights into account for the (λ− 1)-metric, (2.2). We intend to add this feature in
a next version of Mondriaan.
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[21] A. Trifunović and W. J. Knottenbelt, Parallel multilevel algorithms for hypergraph parti-

tioning, Journal of Parallel and Distributed Computing 68 (2008), no. 5, 563–581. DOI
10.1016/j.jpdc.2007.11.002.

[22] Brendan Vastenhouw and Rob H. Bisseling, A two-dimensional data distribution method for
parallel sparse matrix-vector multiplication, SIAM Rev. 47 (2005), no. 1, 67–95 (electronic),
DOI 10.1137/S0036144502409019. MR2149102 (2006a:65070)

[23] C. Walshaw and M. Cross, JOSTLE: Parallel Multilevel Graph-Partitioning Software
– An Overview, Mesh Partitioning Techniques and Domain Decomposition Techniques
(F. Magoules, ed.), Civil-Comp Ltd., 2007, pp. 27–58.

[24] A. N. Yzelman and Rob H. Bisseling, Cache-oblivious sparse matrix-vector multiplication by
using sparse matrix partitioning methods, SIAM J. Sci. Comput. 31 (2009), no. 4, 3128–3154,
DOI 10.1137/080733243. MR2529783 (2011a:65111)

Mathematics Institute, Utrecht University, Budapestlaan 6, 3584 CD, Utrecht,

the Netherlands

E-mail address: B.O.FaggingerAuer@uu.nl

Mathematics Institute, Utrecht University, Budapestlaan 6, 3584 CD, Utrecht,

the Netherlands

E-mail address: R.H.Bisseling@uu.nl

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

http://www.ams.org/mathscinet-getitem?mr=2865011
http://www.ams.org/mathscinet-getitem?mr=2865011
http://www.ams.org/mathscinet-getitem?mr=1317066
http://www.ams.org/mathscinet-getitem?mr=1317066
http://www.ams.org/mathscinet-getitem?mr=1639073
http://www.ams.org/mathscinet-getitem?mr=1639073
http://www.ams.org/mathscinet-getitem?mr=2893224
http://www.ams.org/mathscinet-getitem?mr=2893224
http://www.ams.org/mathscinet-getitem?mr=2092958
http://www.ams.org/mathscinet-getitem?mr=2092958
http://www.ams.org/mathscinet-getitem?mr=2149102
http://www.ams.org/mathscinet-getitem?mr=2149102
http://www.ams.org/mathscinet-getitem?mr=2529783
http://www.ams.org/mathscinet-getitem?mr=2529783


Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



Contemporary Mathematics
Volume 588, 2013
http://dx.doi.org/10.1090/conm/588/11711

Parallel partitioning with Zoltan: Is hypergraph partitioning
worth it?

Sivasankaran Rajamanickam and Erik G. Boman

Abstract. Graph partitioning is an important and well studied problem in
combinatorial scientific computing, and is commonly used to reduce commu-
nication in parallel computing. Different models (graph, hypergraph) and
objectives (edge cut, boundary vertices) have been proposed. Hypergraph
partitioning has become increasingly popular over the last decade. Its main
strength is that it accurately captures communication volume, but it is slower
to compute than graph partitioning. We present an empirical study of the
Zoltan parallel hypergraph and graph (PHG) partitioner on graphs from the
10th DIMACS implementation challenge and some directed (nonsymmetric)

graphs. We show that hypergraph partitioning is superior to graph partition-
ing on directed graphs (nonsymmetric matrices), where the communication
volume is reduced in several cases by over an order of magnitude, but has no
significant benefit on undirected graphs (symmetric matrices) using current
parallel software tools.

1. Introduction

Graph partitioning is a well studied problem in combinatorial scientific com-
puting. An important application is the mapping of data and/or tasks on a parallel
computer, where the goals are to balance the load and to minimize communi-
cation [12]. There are several variations of graph partitioning, but they are all
NP-hard problems. Fortunately, good heuristic algorithms exist. Naturally, there
is a trade-off between run-time and solution quality. In parallel computing, parti-
tioning may be performed either once (static partitioning) or many times (dynamic
load balancing). In the latter case, it is crucial that the partitioning itself is fast.
Furthermore, the rapid growth of problem sizes in scientific computing dictates
that partitioning algorithms must be scalable. The multilevel approach developed
in the 1990s [3,11,17] provides a good compromise between run-time (complexity)
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and quality. Software packages based on this approach (Chaco [13], Metis [14],
and Scotch [19]) have been extremely successful. Even today, all the major paral-
lel software packages for partitioning in scientific computing (ParMetis [15], PT-
Scotch [20], and Zoltan [8,9]) use variations of the multilevel graph partitioning
algorithm.

The 10th DIMACS implementation challenge offers an opportunity to evaluate
the current (2012) state-of-the-art in partitioning software. This is a daunting task,
as there are several variations of the partitioning problem (e.g., objectives), several
software codes, and a large number of data sets. In this paper we limit the scope
in the following ways: We only consider parallel software since our focus is high-
performance computing. We focus on the Zoltan toolkit since its partitioner can
be used to minimize either the edge cut (graph partitioning) or the communication
volume (hypergraph partitioning). We include some baseline comparisons with
ParMetis, since that is the most widely used parallel partitioning software. We
limit the experiments to a subset of the DIMACS graphs. One may view this paper
as a follow-up to the 2006 paper that introduced the Zoltan PHG partitioner [9].

Contributions: We compare graph and hypergraph partitioners for both sym-
metric and unsymmetric inputs and obtain results that are quite different than
in [4]. For nonsymmetric matrices we see a big difference in communication volume
(orders of magnitude), while there is virtually no difference among the partitioners
for symmetric matrices. We exercise Zoltan PHG on larger number of processors
than before (up to 1024). We present results for impact of partitioning on an it-
erative solver. We also include results for the maximum communication volume,
which is important in practice but not an objective directly modeled by any current
partitioner.

2. Models and Metrics

The term “graph partitioning” can refer to several different problems. Most
often, it refers to the edge cut metric, though in practice the communication volume
metric is often more important. For the latter objective, it is useful to extend graphs
to hypergraphs. Here, we review the different models and metrics and explain how
they relate.

2.1. Graph Models. Given an undirected graph G = (V,E), the classic ver-
sion of graph partitioning is to partition V into k disjoint subsets (parts) such that
all the parts are approximately the same size and the total number of edges between
parts are minimized. More formally, let Π = {π0, . . . , πk−1} be a balanced partition
such that

|V (πi)| ≤ (1 + ε)
|V |
k

∀i,(1)

for a given ε > 0. The edge cut problem (EC) is then to minimize the cut set

C(G,Π) = {{(u, v) ∈ E}|Π(u) 
= Π(v)} .(2)

There are straight-forward generalizations for edge weights (minimize weighted
cuts) and vertex weights (balance is weighted).

Most algorithms and software attempt to minimize the edge cut. However,
several authors have shown that the edge cut does not represent communication in
parallel computing [4,12]. A key insight was that the communication is propor-
tional to the vertices along the part boundaries, not the cut edges. A more relevant
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metric is therefore the communication volume, which roughly corresponds to the
boundary vertices. Formally, let the communication volume for part p be

comm(πp) =
∑

v∈π(p)

(λ(v,Π)− 1) ,(3)

where λ(v,Π) denotes the number of parts that v or any of its neighbors belong to,
with respect to the partition Π.

We then obtain the following two metrics:

CVmax(G,Π) = max
p

comm(πp)(4)

CVsum(G,Π) =
∑
p

comm(πp)(5)

In parallel computing, this corresponds to the maximum communication volume
for any process and the total sum of communication volumes, respectively.

2.2. Hypergraph Models. A hypergraph H = (V,E) extends a graph since
now E denotes a set of hyperedges. An hyperedge is any non-empty subset of the
vertices V . A graph is just a special case of a hypergraph where each hyperedge
has cardinality two (since a graph edge always connects two vertices). Hyperedges
are sometimes called nets, a term commonly used in the (VLSI) circuit design
community.

Analogous to graph partitioning, one can define several hypergraph partitioning
problems. As before, the balance constraint is on the vertices. Several different cut
metrics have been proposed. The most straight-forward generalization of edge cut
to hypergraphs is:

C(H,Π) = {{e ∈ E}|Π(u) 
= Π(v) where u ∈ e, v ∈ e} .(6)

However, a more popular metric is the so-called (λ− 1) metric:

CV (H,Π) =
∑
e∈E

(λ(e,Π)− 1) ,(7)

where λ(e,Π) is the number of distinct parts that contain any vertex in e.
While graphs are restricted to structurally symmetric problems (undirected

graphs), hypergraphs make no such assumption. Furthermore, the number of ver-
tices and hyperedges may differ, making the model suitable for rectangular matrices.
The key advantage of the hypergraph model is that the hyperedge (λ−1) cut (CV)
accurately models the total communication volume. This was first observed in [4]
in the context of sparse matrix-vector multiplication. The limitations of the graph
model were described in detail in [12]. This realization led to a shift from the
graph model to the hypergraph model. Today, many partitioning packages use the
hypergraph model: PaToH [4], hMetis [16], Mondriaan [21], and Zoltan-PHG [9].

Hypergraphs are often used to represent sparse matrices. For example, using
row-based storage (CSR), each row becomes a vertex and each column becomes a
hyperedge. Other hypergraph models exist: in the “fine-grain” model, each non-
zero is a vertex [5]. For the DIMACS challenge, all input is symmetric and given
as undirected graphs. Given a graph G(V,E), we will use the following derived
hypergraph H(V,E′): for each vertex v ∈ V , create an hyperedge e ∈ E′ that
contains v and all its neighbors. In this case, it is easy to see that CV (H,Π) =
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CVsum(G,Π). Thus, we do not need to distinguish between communication volume
in the graph and hypergraph models.

2.3. Relevance of the Metrics. Most partitioners minimize either the total
edge cut (EC) or the total communication volume (CV-sum). A main reason for
this choice is that algorithms for these metrics are well developed. Less work has
been done to minimize the maximum communication volume (CV-max), though
in a parallel computing setting this may be more relevant as it corresponds to the
maximum communication for any one process.

In order to compare the three metrics and how they correspond to the actual
performance we use conjugate gradient (CG) iteration (from the Belos package [1])
as a test case. We used the matrices from the UF sparse matrix collection group of
the DIMACS challenge. As the goal is to compare the matrix-vector multiply time
in the CG iteration, we used no preconditioner as the performance characteristics
will be different depending on the preconditioners. As there is no preconditioner
and some of these problems are ill-conditioned the CG iteration might not converge
at all, so we report the solve time for 1000 iterations. We compare four different
row-based partitionings (on 12 processors): natural (block) partitioning, random
partitioning, graph partitioning with ParMetis, and hypergraph partitioning with
Zoltan hypergraph partitioner. We only change the data distribution, and do not
reorder the matrix, so the convergence of CG is not affected. The results are shown
in Table 1. As expected, random partitioning is worst since it just balances the
load but has high communication. In all but one case, we see that both graph
and hypergraph partitioning beat the simple natural (block) partitioning (which is
the default in Trilinos). For the audikw1 test matrix, the time is cut to less than
half. For these symmetric problems, the difference between graph and hypergraph
partitioning is very small in terms of real performance gains. We will show in Sec-
tion 4.2 that the partitioners actually differ in terms of the measured performance
metrics for three of the problems shown in Table 1. However, the difference in the
metrics do not translate to measurable real performance gain in the time for the
matrix-vector multiply.

Table 1. Solve time (seconds) for 1000 iterations of CG for dif-
ferent row partitioning options.

Matrix Name Natural Random ParMetis Zoltan PHG

audikw1 62.90 98.58 27.71 27.52
ldoor 22.18 72.09 18.24 18.08

G3 circuit 11.26 25.78 8.13 8.62
af shell10 20.09 84.51 21.29 21.17
bone010 24.33 84.07 24.92 25.39
geo 1438 25.35 106.36 25.53 25.78
inline 1 22.47 44.57 13.54 13.90
pwtk 4.30 11.88 4.34 4.37

3. Overview of the Zoltan Hypergraph Partitioner

Zoltan was originally designed as a toolkit for dynamic load-balancing [8]. It in-
cluded several geometric partitioning algorithms, plus interfaces to external (third-
party) graph partitioners, such as ParMetis. Later, a native parallel hypergraph
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vertices[
P0 P1 P2

P3 P4 P5

]
hyperedges

Figure 1. Example of the 2D layout for 2× 3 processes.

partitioner (PHG) was developed [9] and added to Zoltan. While PHG was de-
signed for hypergraph partitioning, it can also be used for graph partitioning but
it is not optimized for this use case. (Note: “PHG” now stands for Parallel Hyper-
graph and Graph partitioner.) Zoltan also supports other combinatorial problems
such as graph ordering and graph coloring [2].

Zoltan PHG is a parallel multilevel partitioner, consisting of the usual coars-
ening, initial partitioning, and refinement phases. The algorithm is similar to the
serial partitioners PaToH [4], hMetis [16] and Mondriaan [21], but Zoltan PHG is
parallel (based on MPI) so can run on both shared-memory and distributed-memory
systems. Note that Zoltan can partition data into k parts using p processes, where
k 
= p. Neither k nor p need be powers of two. We briefly describe the algorithm in
Zoltan PHG, with emphasis on the parallel computing aspects. For further details
on PHG, we refer to [9]. The basic algorithm remains the same, though several
improvements have been made over the years.

3.1. 2D Data Distribution. A novel feature of Zoltan PHG is that inter-
nally, the hypergraph is mapped to processes in a 2D block (checkerboard) fashion.
That is, the processes are logically mapped to a px by py grid, where p = pxpy.
The hypergraph is partitioned accordingly, when viewed as a sparse matrix (Fig. 1).
We do not attempt an optimal 2D Cartesian (checkerboard) distribution: The best
known algorithm requires multiconstraint hypergraph partitioning [6], which is even
harder than the partitioning problem we wish to solve.

The goal of this design is to reduce communication within the partitioner itself.
Instead of expensive all-to-all or any-to-any communication, all communication is
limited to process rows or columns. Thus, the collective communication is limited
to communicators of size px or py, which is O(

√
p) for squarish configurations. The

drawback of this design is that there are more synchronization points than if an
1D distribution had been used. Furthermore, neither vertices nor hyperedges have
unique owners, but are spread over multiple processes. This made the 2D parallel
implementation quite complex and challenging. 2D data distributions have recently
been used in several applications, such as sparse matrix-vector multiplication in
eigensolvers [22]. SpMV is a fairly simple kernel to parallelize. 2D distributions
are still rarely used in graph algorithms, probably due to the complexity of imple-
mentation and the lack of payoff for small numbers of processors.

3.2. Coarsening. The coarsening phase approximates the original hypergraph
via a succession of smaller hypergraphs. When the smallest hypergraph has fewer
vertices than some threshold (e.g., 100), the coarsening stops. Several methods have
been proposed for constructing coarser representations of graphs and hypergraphs.
The most popular methods merge pairs of vertices, but one can also aggregate
more than two vertices at a time. Intuitively, we wish to merge vertices that are
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similar and therefore more likely to be in the same partition in a good partition-
ing. Catalyurek and Aykanat [4] suggested a heavy-connectivity matching, which
measures a similarity metric between pairs of vertices. Their preferred similarity
metric, which was also adopted by hMETIS [16] and Mondriaan [21], is known as
the inner product or simply, heavy connectivity. The inner product between two
vertices is defined as the Euclidean inner product between their binary hyperedge
incidence vectors, that is, the number of hyperedges they have in common. (Edge
weights can be incorporated in a straight-forward way.) Zoltan PHG also uses the
heavy-connectivity (inner-product) metric in the coarsening. Originally only pairs
of vertices were merged (matched) but later vertex aggregation (clustering) that
allows more than two vertices to be merged was made the default as it produces
slightly better results.

Previous work have shown that greedy strategies work well in practice so op-
timal matching based on similarity scores (inner products) is not necessary. The
sequential greedy algorithm works as follows. Pick a (random) unmatched vertex
v. For each unmatched neighbor vertex u, compute the inner product < v, u >.
Select the vertex with the highest non-zero inner product value and match it with
v. Repeat until all vertices have been considered. If we consider the hypergraph as
a sparse matrix A, we essentially need to compute the matrix product ATA. We
can use the sparsity of A to compute only entries of ATA that may be nonzero.
Since we use a greedy strategy, we save work and compute only a subset of the
nonzero entries in ATA. This strategy has been used (successfully) in several serial
partitioners.

With Zoltan’s 2D data layout, this fairly simple algorithm becomes much more
complicated. Each processor knows about only a subset of the vertices and the
hyperedges. Computing the inner products requires communication. Even if A
is typically very sparse, ATA may be fairly dense. Therefore we cannot compute
all of ATA at once, but instead compute parts of it in separate rounds. In each
round, each processor selects a (random) subset of its vertices that we call candi-
dates. These candidates are broadcast to all other processors in the processor row.
This requires horizontal communication in the 2D layout. Each processor then
computes the inner products between its local vertices and the external candidates
received. Note that these inner products are only partial inner products; vertical
communication along processor columns is required to obtain the full (global) inner
products. One could let a single processor within a column accumulate these full
inner products, but this processor may run out of memory. So to improve load
balance, we accumulate inner products in a distributed way, where each processor
is responsible for a subset of the vertices.

At this point, the potential matches in a processor column are sent to the
master row of processors (row 0). The master row first greedily decides the best
local vertex for each candidate. These local vertices are then locked, meaning they
can match only to the desired candidate (in this round). This locking prevents
conflicts between candidates, which could otherwise occur when the same local
vertex is the best match for several candidates. Horizontal communication along
the master row is used to find the best global match for each candidate. Due to
our locking scheme, the desired vertex for each match is guaranteed to be available
so no conflicts arise between vertices. The full algorithm is given in [9].
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Observe that the full heavy connectivity matching is computationally intensive
and requires several communication phases along both processor rows and columns.
Empirically, we observed that the matching usually takes more time than the other
parts of the algorithm. Potentially, one could save substantial time in the coarsening
phase by using a cheaper heuristic that gives preference to local data. We have
experimented with several such strategies, but the faster run time comes at the
expense of the partitioning quality. Therefore, the default in Zoltan PHG is heavy
connectivity aggregation, which was also used in our experiments.

After the matching or aggregation has been computed, we build the coarser
hypergraph by merging matched vertices. Note that hyperedges are not contracted,
leading to unsymmetry. The matrix corresponding to the hypergraph becomes more
rectangular at every level of coarsening. The number of hyperedges is only reduced
in two ways: (a) hyperedges that become internal to a coarse vertex are simply
deleted, and (b) identical hyperedges are collapsed into a single hyperedge with
adjusted weight.

3.3. Initial Partitioning. The coarsening stops when the hypergraph is
smaller than a certain threshold. Since the coarsest hypergraph is small, we repli-
cate it on every process. Each processor runs a randomized greedy algorithm to
compute a different partitioning. We then evaluate the desired cut metric on each
processor and pick the globally best partitioning, which is broadcast to all processes.

3.4. Refinement. The refinement phase takes a partition assignment pro-
jected from a coarser hypergraph and improves it using a local optimization method.
The most successful refinement methods are variations of Kernighan–Lin (KL) [18]
and Fiduccia–Mattheyses (FM) [10]. These are iterative methods that move (or
swap) vertices from one partition to another based on gain values, that is, how
much the cut weight decreases by the move. While greedy algorithms are often
preferred in parallel because they are simpler and faster, they generally do not
produce partition quality as good as KL/FM. Thus, Zoltan PHG uses an FM-like
approach but made some changes to accomodate the 2D data layout.

Since Zoltan PHG uses recursive bisection, only two-way refinement is needed.
The main challenge with the 2D layout is that each vertex is shared among several
processes, making it difficult to compute gain values and also to decide which
moves to actually perform (as processes may have conflicting local information).
The strategy used in PHG is a compromise between staying faithful to the FM
algorithm and accomodating more concurrency in the 2D parallel setting. See
[9] for further details. Although the refinement in PHG works well on moderate
number of processors, the quality will degrade for very large number of processes.

3.5. Recursive Bisection. Zoltan PHG uses recursive bisection to partition
into k parts. Note that k can be any integer greater than one, and does not need
to be a power of two. Also, Zoltan can run on p processes, where k 
= p. However,
the typical use case is k = p.

An important design choice in the recursive bisection is whether the data is
left in-place or moved onto separate subsets of processors. The first approach
avoids some data movement but the latter reduces communication in the partitioner
and allows more parallelism. Initial experiments indicated that moving the data
and splitting into independent subproblems gave better performance, so this is the
default in Zoltan PHG.
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3.6. PHG as a Graph Partitioner. PHG was designed as a hypergraph
partitioner but can also do graph partitioning since a graph is just a special case
of a hypergraph. When PHG is used as a graph partitioner, each hyperedge is
of size two. When we coarsen the hypergraph, only vertices are coarsened, not
hyperedges. This means that the symmetry of graphs is destroyed already after
the first level of coarsening. We conjecture that PHG is not particularly efficient
as a graph partitioner because it does not take advantage of the special structure
of graphs (in particular, symmetry and constant size hyperedges). Still, we believe
it is interesting (and fair) to compare PHG as a graph partitioner because it uses
exactly the same code as the hypergraph partitioner, so any performance difference
is due to the model not the implementation.

4. Experiments

4.1. Software, Platform, and Data. Our primary goal is to study the be-
havior of Zoltan PHG as a graph and a hypergraph partitioner, using different
objectives and a range of data sets. We use Zoltan 3.5 (Trilinos 10.8) and ParMetis
4.0 as a reference for all the tests. The compute platform was mainly Hopper, a
Cray XE6 at NERSC. Hopper has 6,384 compute nodes, each with 24 cores (two
12-core AMD MagnyCours) and 32 GB of memory. The graphs for the tests are
from five test families of the DIMACS collection that are relevant to the compu-
tational problems we have encountered at Sandia. Within each family, we selected
some of the largest graphs that were not too similar. In addition we picked four
other graphs, two each from the street networks and clustering instances (which
also happened to be road networks), to compile our diverse 22 test problems.

The graphs are partitioned into 16, 64, 256, and 1024 parts. In the paral-
lel computing context, this covers everything from a multicore workstation to a
medium-sized parallel computer. Except where stated otherwise, the partitioner
had the same number of MPI ranks as the target number of parts.

Zoltan uses randomization, so results may vary slightly from run to run. How-
ever, for large graphs, the random variation is relatively small. Due to limited
compute time on Hopper, each partitioning test was run only once. Even with the
randomization, it is fair to draw conlusions based on several data sets, though one
should be cautious about overinterpreting any single data point.

4.2. Zoltan vs. ParMetis. In this section, we compare Zoltan’s graph and
hypergraph partitioning with ParMetis’s graph partitioning. We partition the
graphs into 256 parts with 256 MPI processes. The performance profile of the
three metrics – total edge cut (EC), the maximum communication volume (CV-
max) and the total communication volume (CV-sum) – for the 22 matrices is shown
in Figure 2.

The main advantage of the hypergraph partitioners is the ability to handle un-
symmetric problems and to reduce the communication volume for such problems
directly (without symmetrizing the problems). However, all the 22 problems used
for the comparisons in Figure 2 are symmetric problems from the DIMACS chal-
lenge set. We take this opportunity to compare graph and hypergraph partitioners
even for symmetric problems.

In terms of the edge cut metric ParMetis does better than Zoltan for 20 of
the matrices and Zoltan’s graph model does better for just two matrices. However,
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(a) Edge Cut (b) Communication Volume (Max)

(c) Communication Volume (Sum)

Figure 2. Zoltan Vs Parmetis: Comparing Zoltan’s partition-
ing with graph and hypergraph model with Parmetis for symmetric
problems for 256 parts and 256 MPI processes.

Zoltan’s graph model is within 15% of ParMetis’s edge cuts for 82% of the problems
(see Figure 2(a)). The four problems that cause trouble to Zoltan’s graph model
are the problems from the street networks and clustering instances.

In terms of the CV-sum metric Zoltan’s partitioning with the hypergraph
model, is able to do better than Zoltan’s graph model in all the instances, and
is better than ParMetis for 33% of the problems, and is within 6% or better of CV-
sum of the ParMetis for another 44% of the problems (see Figure 2(c)). Again the
street networks and the clustering instances are the ones that cause problems for
the hypergraph partitioning. In terms of the CV-max metric Zoltan’s hypergraph
partitioning is better than the other two methods for 27% of the problems, and
within 15% of the CV-max for another 42% of the problems (see Figure 2(b)).

From our results, we can see that even for symmetric problems hypergraph
partitioners can perform nearly as well as (or even better than) the graph parti-
tioners depending on the problems and the metrics one cares about. We also note
that three of these 22 instances (af shell10, audikw1 and G3 circuit) come from the
same problems we used in Section 2.3 and Zoltan does better in one problem and
ParMetis does better on other two problems in terms of the CV-max metric. In
terms of EC metric ParMetis does better for all these four problems. However, as
we can see from Table 1 the actual solution time is slightly better when we use
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the hypergraph partitioning for the three problems irrespective of which method is
better in terms of the metrics we compute. To be precise, we should again note
that the differences in actual solve time between graph and hypergraph partitioning
are minor for those three problems. We would like to emphasize that we are not
able to observe any difference in the performance of the actual application when
the difference in the metrics is a small percentage. We study the characteristics of
Zoltan’s graph and hypergraph partitioning in the rest of this paper.

Figure 3. Comparing Zoltan’s quality metrics with graph and
hypergraph models for 16 and 1024 parts.

(a) (b)

Figure 4. Comparing Zoltan’s partitioning with graph and hy-
pergraph (HG) model quality metrics for different part sizes.

4.3. Zoltan Graph vs. Hypergraph model. We did more extensive exper-
iments on the symmetric problems with the graph and hypergraph partitioning of
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(a) (b)

Figure 5. Comparing Zoltan’s partitioning with graph and hy-
pergraph (HG) model quality metrics for different part sizes.

Zoltan. For each of the test problems from we compute the three metrics (EC, CV-
max, CV-sum) for part sizes 16, 1024. All the experiments use the same number of
MPI processes as the part sizes. Figure 3 shows the three metrics for hypergraph
partitioning normalized to graph partitioner results for both 16 and 1024 parts.
The results show that based on the EC metric, Zoltan’s graph partitioning is the
best for most problems. In terms of the CV-sum metric the hypergraph partitioning
fares better. Neither of the algorithms optimize, CV-max metric and as expected
the results are mixed for this metric. The results for 64 and 256 parts were not
different from the results presented in Figure 3 and are not presented here.

Figure 4 shows the change in the partitioning quality with respect to the three
metrics for both graph and hypergraph partitionings for two problems – cage15 and
hugetrace-0020. The metrics are normalized with respect to the values for the 16
parts case in these figures. These results are for the “good” problems and from
the results we can see why we call these problems the “good” problems – EC and
CV-sum go up by a factor of 3.5 to 4.5 when going from 16 parts to 1024 parts. In
contrast, we also show the change in the metrics from one problem from the street
networks and clustering set each (road central and asia.osm) in Figure 5. Note
that for the some of these problems the metrics scale with similar values that the
lines overlap in the graph. These second set of problems are challenging for both
our graph and hypergraph partitioners as EC and CV-max go up by a factor 60-70
going from 16-1024 processes (for road central). The changes in these values are
mainly because of the structure of the graphs.

4.4. Zoltan scalability. Many of Zoltan’s users use Zoltan within their par-
allel applications dynamically, where the number of parts equals the number of
MPI processes. As a result it is important for Zoltan to have a scalable parallel
hypergraph partitioner. We have made several improvements within Zoltan over
the past few years and we evaluate our parallel scalabilty for the DIMACS problems
instances in this section. Note that having a parallel hypegraph partitioner also
enables us to solve large problems that does not fit into the memory of a compute
node. However, we were able to partition all the DIMACS instances except the
matrix europe.osm with 16 cores. We omit the europe.osm matrix and three small
matrices from the Walshaw group that get partitioned within two seconds even with
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16 cores, from these tests. The scalability results for the rest of the 18 matrices are
shown in Figure 6. We normalize the time for all the runs with time to compute
16 parts. Note that even though the matrix size remains the same, this is not a
traditional strong scaling test as the number of parts increases linearly with the
number of MPI processes. Since the work for the partitioner grows, it is unclear
what “perfect scaling” would be, but we believe this is a reasonable experiment as
it reflects a typical use case.

Even with the increase in the amount of work for large matrices like cage15
and hugebubbles-0020 we see performance improvements as we go to 1024 MPI
processes. However, for smaller problems like the auto or m14b the performance
remains flat (or degrades) as we go from 256 MPI processes to 1024 MPI processes.

The scalability of Zoltan’s graph partitioners is shown in Figure 7. We see
that the graph partitioner tends to scale well for most problems. Surprisingly, the
PHG hypergraph partitioner is faster than our graph partitioner in terms of actual
execution time for several of the problems. This may in part be due to the fact that
there are only n hyperedges in the hypergraph model compared to m edges in the
graph model. Recall that PHG treats graphs as hypergraphs, without exploiting
the special structure.

Figure 6. Scalability of Zoltan Hypergraph Partitioning time for
DIMACS challenge matrices normalized to the time for 16 MPI
processes and 16 parts.

4.5. Partitioning on a single node to improve quality. As discussed
before, Zoltan can compute a partitioning statically with different number of MPI
processes than number of parts. One strategy to obtain better partitioning quality
is therefore to partition for p parts on k cores, where k < p. This often results
in better quality than the dynamic approach where k = p. However, the users
have to retain the partition in this case for future use. We evaluate this case
for the symmetric matrices from the DIMACS collection for just the hypergraph
partitioning. We compute 1024 parts with 24 MPI processes. The assumption is
that the user will be willing to devote one compute node to compute the partition
he needs. The results of these experiments for the 22 DIMACS graphs in Figure 8.
On an average the edge cuts gets reduced by 10% and the CV-sum gets reduced
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Figure 7. Scalability of Zoltan Graph Partitioning time for DI-
MACS challenge matrices normalized to the time for 16 MPI pro-
cesses and 16 parts.

Figure 8. Improvement in the partitioning quality when comput-
ing 1024 parts with 24 MPI ranks instead of 1024 MPI ranks.

by 4% when partitioners 1024 parts with just 24 MPI processes instead of using
the 1024 MPI processes. This confirms our conjecture that using fewer cores (MPI
processes) gives higher quality results, and raises the possibility of using shared-
memory techniques to improve the quality in the future.

4.6. Nonsymmetric Data (Directed Graphs). The 10th DIMACS imple-
mentation challenge includes only undirected graphs, corresponding to structurally
symmetric matrices. This clearly favors graph partitioners. Many real-world prob-
lems are nonsymmetric, e.g., web link graphs, term-by-document matrices, and
circuit simulation. For such applications, it is well known in the partitioning com-
munity that it is better to work directly on the original (nonsymmetric) prob-
lem [4,12]. Remarkably, applications people who are not experts still overwhelm-
ingly use a graph partitioner with symmetrization (A+AT or ATA) and apply the
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result to the original unsymmetric problem. The difference in terms of the commu-
nication volume is presumed to be small. We compare hypergraph partitioning on
A against graph partitioning on the symmetrized graph/matrix. We measure the
communication volume on the original nonsymmetric problem, since this typically
corresponds to the communication cost for the user and show order of magnitudes
difference. For these experiments we partitioned the matrix rows, but results for
column partitioning were similar.

These experiments were run on a 12-core workstation. We ran Zoltan on 12
MPI processes and partitioned into 12 parts. The test matrices were taken from the
UF collection [7], and vary in their degree of symmetry from 0 to 95%. We see from
Table 2 that hypergraph partitioning directly on A gives communication volume at
least one order of magnitude smaller than graph partitioning on the symmetrized
version in half the test cases. This is substantially different from the 30 − 38%
average reduction observed in [4]. We arranged the matrices in decreasing degree
of symmetry. Observe that hypergraph partitioning performs relatively better on
the highly nonsymmetric matrices. Also note that there is essentially no difference
in quality between Zoltan PHG as a graph partitioner and ParMetis for these cases.
We conjecture the difference is neglible because the error made in the model by
symmetrizing the matrix is far greater than differences in the implementation.

Note that some of the problems in the 22 symmetric test problems were origi-
nally unsymmetric problems (like citeseer and DBLP data) but were symmetrized
for graph partitioning. We do not have the unsymmetric versions of these problems
so we could not use those here.

Table 2. Comparison of communication volume (CV-sum) for
nonsymmetric and the corresponding symmetrized matrices.PHG
was used as hypergraph partitioner on A and as a graph partitioner
on Asym ≡ (A + AT )

Matrix dim. avg. deg. symmetry PHG PHG ParMetis
(×103) on A on Asym on Asym

torso3 259 17.1 95% 27,083 48,034 51,193
stomach 213 14.2 85% 15,128 20,742 21,619
rajat21 411 4.6 76% 112,273 174,717 158,296
amazon0312 400 8.0 53% 81,957 846,011 851,793
web-stanford 281 8.2 28% 2,307 543,446 543,547
twotone 120 9.9 24% 6,364 19,771 20,145
wiki-Talk 2,394 2.1 14% 0 53,009 –
hamrle3 1,447 3.8 0% 18,748 1,446,541 1,447,388

5. Conclusions

We have evaluated the parallel performance of Zoltan PHG, both as a graph and
hypergraph partitioner on test graphs from the DIMACS challenge data set. We
also made comparisons to ParMetis, a popular graph partitioner. We observed that
ParMetis consistently obtained best edge cut (EC), as we expected. Surprisingly,
ParMetis also obtained lower communication volume (CV) in lot of the symmetric
problems. This raises the question: Is hypergraph partitioning worth it? A key
advantage of hypergraph partitioning is that it accurately minimizes communication
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volume [4, 12]. It appears that the superiority of the hypergraph model is not
reflected in current software. We believe that one reason Zoltan PHG does relatively
poorly on undirected graphs, is that symmetry is not preserved during coarsening,
unlike graph partitioners. Future research should consider hypergraph partitioners
with symmetric coarsening, to try combine the best of both methods.

We further showed that hypergraph partitioners are superior to graph parti-
tioners on nonsymmetric data. The reduction in communication volume can be one
or two orders of magnitude. This is a much larger difference than previously ob-
served. This may in part be due to the selection of data sets, which included some
new areas such as weblink matrices. A common approach today is to symmetrize
a nonsymmetric matrix and partition A + AT . We demonstrated this is often a
poor approach, and with the availability of the PHG parallel hypergraph parti-
tioner in Zoltan, we believe many applications could benefit from using hypergraph
partitioners without any symmetrization.

Our results confirm that it is important to use a hypergraph partitioner on
directed graphs (nonsymmetric matrices). However, for naturally undirected graphs
(symmetric matrices) graph partitioners perform better. If a single partitioner for
all cases is desired, then Zoltan-PHG is a reasonable universal partitioner.
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UMPa: A multi-objective, multi-level partitioner for
communication minimization

Ümit V. Çatalyürek, Mehmet Deveci, Kamer Kaya, and Bora Uçar

Abstract. We propose a directed hypergraph model and a refinement heuris-
tic to distribute communicating tasks among the processing units in a dis-
tributed memory setting. The aim is to achieve load balance and minimize the
maximum data sent by a processing unit. We also take two other communi-
cation metrics into account with a tie-breaking scheme. With this approach,
task distributions causing an excessive use of network or a bottleneck proces-
sor which participates in almost all of the communication are avoided. We
show on a large number of problem instances that our model improves the
maximum data sent by a processor up to 34% for parallel environments with
4, 16, 64 and 256 processing units compared to the state of the art which only
minimizes the total communication volume.

1. Introduction

In parallel computing, the problem of distributing communicating tasks among
the available processing units is important. To solve this problem, several graph
and hypergraph models are proposed [6, 7, 9, 12, 20]. These models transform
the problem at hand to a balanced partitioning problem. The balance restriction
on part weights in conventional partitioning corresponds to the load balance in
the parallel environment, and the minimized objective function corresponds to the
total communication volume between processing units. Both criteria are crucial
in practice for obtaining short execution times, using less power, and utilizing the
computation and communication resources better.

In addition to the total data transfer, there are other communication metrics
investigated before, e.g., the total number of messages sent [19], or maximum vol-
ume of messages sent and/or received by a processor [4, 19]. Even with perfect
load balancing and minimized total data transfer, there can be a bottleneck pro-
cessing unit which participates in most of the data transfers. This can create a
problem especially for data intensive applications where reducing the amount of
data transferred by the bottleneck processing unit can improve the total execution
time significantly.
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In this work, given a task graph, our main objective is distributing its tasks
evenly and minimizing the maximum amount of data sent by a processing unit.
Previous studies addressing different communication cost metrics (such as [4,19])
work in two phases. In the first phase, the total volume of communication is
reduced, and in the second phase the other metrics are addressed. We propose a
directed hypergraph model and partition the related hypergraph with a multi-level
approach and a novel K-way refinement heuristic. While minimizing the primary
objective function, our refinement heuristic also takes the maximum data sent and
received by a processing unit and the total amount of data transfer into account
by employing a tie-breaking scheme. Therefore, our approach is different from the
existing studies in that the objective functions are minimized all at the same time.

The organization of the paper is as follows. In Section 2, the background mate-
rial on graph and hypergraph partitioning is given. Section 2.3 shows the differences
of the graph and hypergraph models and describes the proposed directed hyper-
graph model. In Section 3, we present our multi-level, multi-objective partitioning
tool UMPa (pronounced as “Oompa”). Section 4 presents the experimental results,
and Section 5 concludes the paper.

2. Background

2.1. Hypergraph partitioning. A hypergraph H=(V ,N ) is defined as a set
of vertices V and a set of nets (hyperedges) N among those vertices. A net n ∈ N
is a subset of vertices and the vertices in n are called its pins. The number of pins
of a net is called the size of it, and the degree of a vertex is equal to the number of
nets it is connected to. In this paper, we will use pins[n] and nets[v] to represent
the pin set of a net n and the set of nets vertex v is connected to, respectively.
The vertices can be associated with weights, denoted with w[·], and the nets can
be associated with costs, denoted with c[·].

A K-way partition of a hypergraph H is denoted as Π={V1,V2, . . . ,VK} where

• parts are pairwise disjoint, i.e., Vk ∩ V� = ∅ for all 1 ≤ k < 
 ≤ K,
• each part Vk is a nonempty subset of V , i.e., Vk ⊆ V and Vk 
= ∅ for

1 ≤ k ≤ K,

• union of K parts is equal to V , i.e.,
⋃K

k=1 Vk =V .

Let Wk denote the total vertex weight in Vk (i.e., Wk =
∑

v∈Vk
w[v]) and Wavg

denote the weight of each part when the total vertex weight is equally distributed
(i.e., Wavg =(

∑
v∈V w[v])/K). If each part Vk ∈ Π satisfies the balance criterion

(2.1) Wk ≤Wavg(1 + ε), for k = 1, 2, . . . ,K

we say that Π is ε-balanced where ε represents the maximum allowed imbalance
ratio.

For a K-way partition Π, a net that has at least one pin (vertex) in a part is said
to connect that part. The number of parts connected by a net n, i.e., connectivity ,
is denoted as λn. A net n is said to be uncut (internal) if it connects exactly one
part (i.e., λn = 1), and cut (external), otherwise (i.e., λn > 1).

The set of external nets of a partition Π is denoted as NE . There are various
cutsize definitions [16] for hypergraph partitioning. The one that will be used in
this work, which is shown to accurately model the total communication volume [7],
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is called the connectivity metric and defined as:

χ(Π) =
∑
n∈N

c[n](λn − 1) .(2.2)

In this metric, each cut net n contributes c[n](λn − 1) to the cutsize. The hyper-
graph partitioning problem can be defined as the task of finding a balanced partition
Π with K parts such that χ(Π) is minimized. This problem is also NP-hard [16].

2.2. K-way partitioning and multi-level framework. Arguably, the multi-
level approach [3] is the most successful heuristic for the hypergraph partitioning
problem. Although, it has been first proposed for recursive-bisection based graph
partitioning, it also works well for hypergraphs [2,5,7,13,17]. In the multi-level
approach, a given hypergraph is coarsened to a much smaller one, a partition is
obtained on the the smallest hypergraph, and that partition is projected to the
original hypergraph. These three phases will be called the coarsening, initial par-
titioning, and uncoarsening phases, respectively. The coarsening and uncoarsening
phases have multiple levels. In a coarsening level, similar vertices are merged to
make the hypergraph smaller. In the corresponding uncoarsening level, the merged
vertices are split, and the partition of the coarser hypergraph is refined for the finer
one.

Most of the multi-level partitioning tools used in practice are based on recursive
bisection. In recursive bisection, the multi-level approach is used to partition a given
hypergraph into two. Each of these parts is further partitioned into two recursively
until K parts are obtained in total. Hence, to partition a hypergraph into K = 2k,
the recursive bisection approach uses K − 1 coarsening, initial partitioning, and
uncoarsening phases.

Several successful clustering heuristics are proposed to coarsen a hypergraph.
Although their similarity metrics aim to reduce the cutsize, they cannot find an
optimal solution, since the problem is NP-hard. Hence, an optimal partition of
the coarser hypergraph may not be optimal for the finer one. To obtain better
partitions, iterative-improvement-based heuristics are used to refine the coarser’s
partition after projecting it to finer. In practice, Kernighan-Lin (KL) [15] and
Fiduccia-Mattheyses (FM) [11] based refinement heuristics that depend on vertex
swaps and moves between two parts are used.

2.3. Task graph and communication volume metrics. Let A = (T , C)
be a task graph where T is the set of tasks to be executed, and C is the set of
communications between pairs of tasks. We assume that the execution time of
each task may differ, hence each task t ∈ T is associated with an execution time
exec(t). Each task ti ∈ T sends a different amount of data data(ti) to each tj
such that titj ∈ C. The communications between tasks may be uni-directional,
That is titj ∈ C does not imply tjti ∈ C. In our parallel setting, we assume
owner computes rule and hence, each task of A is executed by the processing unit
to which it is assigned. Let Ti be the set of tasks assigned to processing unit
Pi. Since it is desirable to distribute the tasks evenly, the computational load∑

t∈Ti
exec(t) should be almost the same for each Pi. In addition to that, two

heavily communicating tasks should be assigned to the same processing unit since
less data transfer over the network is needed in this case. The total amount of data
transfer throughout the execution of the tasks is called the total communication
volume (totV ). Note that when a task t ∈ Ti needs to send data to a set of tasks
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in Tj , the contribution to totV is data(t), since it is enough to send t’s data to Pj

only once.
Although minimizing the total communication volume is important, it is some-

times preferable to reduce other communication metrics [12]. For example, in the
context of one-dimensional partitioning of structurally unsymmetric sparse matri-
ces for parallel matrix-vector multiplies, Uçar and Aykanat used a communication
hypergraph model to reduce the maximum of number of messages and the maxi-
mum amount of data sent and received by a processor [19] (see also [4] and [18]
for other communication metrics).

Let SV [i] and RV [i] be the volumes of communication sent and received by Pi,
respectively. Hence, the total communication volume equals to totV =

∑
i SV[i] =∑

i RV[i]. In addition to totV , we are interested in two other communication met-
rics: maximum send volume (maxSV ), which equals to maxi (SV[i]); and maximum
send-receive volume (maxSRV ), which is maxi (SV[i] + RV[i]).

3. UMPa: A multi-objective partitioning tool for communication
minimization

3.1. Directed hypergraph model. We propose modeling the task graphs
with directed hypergraphs. Given a task graph A, we construct the directed hy-
pergraph model H = (V ,N ) as follows. For each task ti ∈ T , we have a corre-
sponding vertex vi ∈ V and a net ni ∈ N where pins[ni] = {vi} ∪ {vj | titj ∈ C},
w[vi] = exec(ti), and c[ni] = data(ti). In this directed hypergraph model, the com-
munication represented by a net n is flowing from its source vertex, which will be
denoted as s(n), to the target vertices pins[n] \ {s(n)}. Given a partition Π, let
δ(n,Vi) = 1 if n ∩ Vi 
= ∅, and 0, otherwise. Then the data sent and received by
Pi are equal to SV[i] =

∑
n,s(n)∈Vi

c[n](λn − 1) and RV[i] =
∑

n,s(n)/∈Vi
c[n]δ(n,Vi),

respectively. Our primary objective is to minimize maxSV , the maximum send
volume. While doing this, we also take the maximum send-receive volume and
the total communication volume into account. The total volume of communication
corresponds to the cutsize definition (2.2) as in the standard hypergraph model.
In other words, the sense of direction is not important for the total communica-
tion volume totV . On the other hand, the directions of the flow is crucial while
minimizing maxSV and maxSRV .

To optimize its metrics, UMPa follows the multi-level approach. Instead of a
recursive bisection, it adopts a direct K-way partitioning. Given the hypergraph,
UMPa gradually coarsens it, obtains an initial K-way partition for the coarsest
hypergraph, and projects it into the original one by uncoarsening and refinement
steps at each level.

3.2. Multi-level coarsening phase. In this phase, the original hypergraph
is gradually coarsened in multiple levels by clustering subsets of vertices at each
level. There are two types of clustering algorithms: matching-based ones and ag-
glomerative ones. The matching-based ones put at most two similar vertices in a
cluster, whereas the agglomerative ones allow any number of similar vertices. There
are various similarity metrics—see for example [1,7,14]. All these metrics are de-
fined only on two adjacent vertices (one of them can be a vertex cluster). Two
vertices are adjacent if they share a net and they can be in the same cluster if the
are adjacent.
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In this work, we use an agglomerative algorithm and the absorption clustering
metric using pins [1,8]. For this metric, the similarity between two adjacent vertices
u and v is ∑

n∈nets[u]∩nets[v]

c[n]

|pins[n]| − 1

This is also the default metric in PaToH [8], a well-known hypergraph partitioner.
In each level 
, we start with a finer hypergraph H� and obtain a coarser one H�+1.
If VC ⊂ V� is a subset of vertices deemed to be clustered, we create the cluster
vertex u ∈ V�+1 where nets[u] = ∪v∈VC

nets[v]. We also update the pin sets of the
nets in nets[u] accordingly.

Since we need the direction, i.e., source vertex information for each net to
minimize maxSV and maxSRV , we always store the source vertex of a net n ∈ N
as the first pin in pins[n]. To maintain this information, when a cluster vertex u
is formed in the coarsening phase, we put u to the head of pins[n] for each net n
whose source vertex is in the cluster.

3.3. Initial partitioning phase. To obtain an initial partition for the coars-
est hypergraph, we use PaToH [8], which is proven to produce high quality par-
titions with respect to the total communication volume metric [7]. We execute
PaToH ten times and get the best partition according to the maxSV metric. We
have several reasons to use PaToH. First, although our main objective is minimizing
maxSV , since we also take totV into account, it is better to start with an initial
partition having a good total communication volume. Second, since totV is the
sum of the send volumes of all parts, as we observed in our preliminary experi-
ments, minimizing it may also be good for both maxSV and maxSRV . Also, as
stated in [2], using recursive bisection and FM-based improvement heuristics for
partitioning the coarsest hypergraph is favorable due to small net sizes and high
vertex degrees.

3.4. K-way refinement of communication volume metrics. In an un-
coarsening level, which corresponds to the 
th coarsening level, we project the
partition Π�+1 obtained for H�+1 to H�. Then, we refine it by using a novel K-way
refinement heuristic which is described below.

Given a partition Π, let a vertex be a boundary vertex if it is in the pin set
of at least one cutnet. Let Λ(n, p) = |pins[n] ∩ Vp| be the number of pins of net
n in part p, and part[u] be the current part of u. The proposed heuristic runs in
multiple passes where in a pass it visits each boundary vertex u and either leaves
it in part[u], or moves it to another part according to some move selection policy.
Algorithm 1 shows a pass of the proposed refinement heuristic. For each visited
boundary vertex u and for each available part p other than part[u], the heuristic
computes how the communication metrics are affected when u is moved to p. This
is accomplished in three steps. First, u is removed from part[u], and the leave gains
on the send/receive volumes of the parts are computed (after line 1). Second, u
is put into a candidate part p and the arrival losses on the send/receive volumes
are computed (after line 2). Last, the maximum send, maximum send-receive, and
total volumes are computed for this move (after line 4).

3.4.1. Move selection policy and tie-breaking scheme. Our move selection policy
given in Algorithm 2 favors the moves with the maximum gain on maxSV and never
allows a move with negative gain on the same metric. To take other metrics into
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Algorithm 1: A pass for K-way refinement

Data: H = (V,N ), boundary[], part[], SV[], RV[],λ, Λ
for each unlocked u ∈ boundary do

receiveGain ← 0

uToPartU ← 0

sendGain[] ← 0

1 for each n ∈ nets[u] do
if s(n) = u then

sendGain[part[u]] ← sendGain[part[u]] + (λn − 1)c[n]

if Λ(n, part[u]) > 1 then
receiveGain ← receiveGain− c[n] uToPartU ← uToPartU + c[n]

else if Λ(n, part[u]) = 1 then
sendGain[part[s(n)]] ← sendGain[part[s(n)]] + c[n]

receiveGain ← receiveGain + c[n]

(bestMaxSV, bestMaxSRV, bestTotV ) ← (maxSV,maxSRV, totV )

bestPart ← part[u]

for each part p other than part[u] do
if p has enough space for vertex u then

receiveLoss ← 0

sendLoss[] ← 0

2 sendLoss[p] ← sendGain[part[u]] + uToPartU

3 for each n ∈ nets[u] do
if s(n) = u then

if Λ(n, p) > 0 then
sendLoss[p] ← sendLoss[p]− c[n]
receiveLoss ← receiveLoss− c[n]

else if Λ(n, p) = 0 then
sendLoss[part[s(n)]] ← sendLoss[part[s(n)]] + c[n]

receiveLoss ← receiveLoss+ c[n]

4 (moveSV,moveSRV ) ← (−∞,−∞)

5 for each part q do
ΔS ← sendLoss[q]− sendGain[q]

ΔR ← 0

if q = part[u] then
ΔR ← receiveGain

else if q = p then
ΔR ← receiveLoss

moveSV ← max(moveSV, SV[q] + ΔS)

moveSRV ← max(moveSRV, SV[q] + ΔS + RV[q] + ΔR)

moveV ← totV + receiveLoss− receiveGain

6 MoveSelect(moveSV,moveSRV,moveV, p,

bestMaxSV, bestMaxSRV, bestTotV, bestPart)

if bestPart �= part[u] then
move u to bestPart and update data structures accordingly
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account, we use a tie-breaking scheme which is enabled when two different moves of
a vertex u have the same maxSV gain. In this case, the move with maxSRV gain
is selected as the best move. If the gains on maxSRV are also equal then the move
with maximum gain on totV is selected. We do not allow a vertex move without
a positive gain on any of the communication metrics. As the experimental results
show, this move selection policy and tie-breaking scheme have positive impact on
all the metrics.

Algorithm 2: MoveSelect

Data: moveSV,moveSRV,moveV, p,
bestMaxSV, bestMaxSRV, bestTotV, bestPart

select ← 0

if moveSV < bestMaxSV then
select ← 1 �Main objective

1 else if moveSV = bestMaxSV then
if moveSRV < bestMaxSRV then

select ← 1 �First tie break

2 else if moveSV = bestMaxSV then
if moveSRV = bestMaxSRV then

if moveV < bestTotV then
select ← 1 �Second tie break

if select = 1 then
bestMaxSV ← moveSV

bestMaxSRV ← moveSRV

bestTotV ← moveV

bestPart ← p

Figure 1 shows a sample graph with 8 vertices and 13 edges partitioned into
3 parts. Assume that this is a partial illustration of boundary vertices, and any
move will not violate the balance criteria. Each row in the table contains a possible
vertex move and the changes on the communication volume metrics. In the initial
configuration, maxSV = 6, maxSRV = 9, and totV = 12. If we move v3 from the
partition V2 to the partition V3, we reduce all metrics by 1. On the other hand, if
we move v3 to V1, we decrease maxSV and maxSRV , but totV does not change.
In this case, since its gain on totV is better, the tie-breaking scheme favors the
move v3 to V3. Moreover, the moves v4 to V1, v6 to V3 and v7 to V3 are other move
examples where tie-breaking scheme is used. Note that we allow all the moves in
the first 13 rows of the table including these two. However, we do not allow the
ones in the last three rows.

3.4.2. Implementation details. During the gain computations, the heuristic uses
the connectivity information between nets and parts stored in data structures λ and
Λ. These structures are constructed after the initial partitioning phase, and then
maintained by the uncoarsening phase. Since the connectivity information changes
after each vertex move, when a vertex u is moved, we visit the nets of u and up-
date the data structures accordingly. Also, when new vertices become boundary
vertices, they are inserted into boundary array and visited in the same pass.
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Vertex Part maxSV maxSRV totV

v1 V1 −1 +1 −2
v1 V2 −2 −2 −3
v2 V2 0 −1 −1
v2 V3 −1 +1 0
v3 V1 −1 −1 0
v3 V3 −1 −1 −1
v4 V1 −1 −1 0
v4 V3 −1 +1 +1
v5 V3 0 0 −1
v6 V1 −1 0 +1
v6 V3 −1 0 0
v7 V1 −1 +1 0
v7 V3 −1 −1 0

v5 V2 +2 +2 −1
v8 V1 0 0 0
v8 V2 +2 +2 +1

Figure 1. A sample partitioning and some potential moves with
their effects on the communication volume metrics. The initial
values are maxSV = 6, maxSRV = 9 and totV = 12. A negative
value in a column indicates a reduction on the corresponding met-
ric.

If at least one move with a positive gain on maxSV is realized in a refinement
pass, the heuristic continues with the next pass. Otherwise, it stops. For efficiency
purposes, throughout the execution of a pass, we restrict the number of moves for
each vertex u. If this number is reached, we lock the vertex and remove it from the
boundary. In our experiments, the maximum number of moves per vertex is 4.

Let ρ =
∑

n∈N |pins[n]| be the number of pins in a hypergraph. The time

complexity of a pass of the proposed refinement heuristic is O(ρK + |V|K2) due
to the gain computation loops at lines 3 and 5. To store the numbers of pins per
part for each net, Λ, we use a 2-dimensional array. Hence, the space complexity is
O(K|N |). This can be improved as shown in [2].

4. Experimental results

UMPa is tested on a computer with 2.27GHz dual quad-core Intel Xeon CPUs
and 48GB main memory. It is implemented in C++ and compiled with g++ version
4.5.2.

To obtain our data set, we used several graphs from the testbed of 10th DI-
MACS implementation challenge [10]. We remove relatively small graphs contain-
ing less than 104 vertices, and also extremely large ones. There are 123 graphs
in our data set from 10 graph classes. For each graph, we execute UMPa and
other algorithms 10 times. The results in the tables are the averages of these 10
executions.

To see the effect of UMPa’s K-way partitioning structure and its tie-breaking
scheme, we compare it with two different refinement approaches and PaToH. The
first approach is partitioning the hypergraph into K with PaToH’s recursive bi-
section scheme and refining it by using the proposed K-way refinement algorithm

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



UMPA: A MULTI-OBJECTIVE, MULTI-LEVEL PARTITIONER 61

Table 1. The relative performance of UMPa and Pa-
ToH+refinement without tie breaking. The performance are com-
puted with respect to that of PaToH.

PaToH + Refinement UMPa UMPa
No tie breaking No tie breaking With tie breaking

K maxSV maxSRV totV maxSV maxSRV totV maxSV maxSRV totV

4 0.93 1.05 1.06 0.73 0.83 0.93 0.66 0.77 0.84
16 0.93 1.06 1.04 0.84 0.94 1.11 0.73 0.83 0.98
64 0.91 1.04 1.02 0.86 0.98 1.12 0.76 0.87 1.00
256 0.91 1.03 1.01 0.89 1.00 1.10 0.81 0.91 1.02

Avg. 0.92 1.05 1.03 0.83 0.93 1.06 0.74 0.84 0.96

without employing the tie-breaking scheme. The second approach is using UMPa
but again without tie breaking. To remove tie breaking, we remove the else state-
ments at lines labeled with 1 and 2 of Algorithm 2.

Table 1 gives the average performance of all these approaches normalized with
respect to PaToH’s performance. Without tie breaking, refining PaToH’s output
reduces the maximum send volume by 8%. However, it increases the maximum
send-receive and total volumes by 5% and 3%, respectively. Hence, we do not
suggest using the refinement heuristic alone and without tie breaking. On the
other hand, if it is used in the multi-level structure of UMPa, we obtain better
results even without a tie-breaking scheme.

Table 1 shows that UMPa’s multi-level structure helps to obtain 17% and 7%
less volumes than PaToH’s partitions in terms of maxSV and maxSRV , respec-
tively. But since PaToH minimizes the total communication volume, there is a 6%
overhead on the totV . Considering 17% reduction on maxSV , this overhead is
acceptable. However, we can still reduce all the communication metrics 9%-to-10%
more by employing the proposed tie-breaking scheme. For K = 4, this leads us to
a 34% better maximum send volume, which is impressive since even the total com-
munication volume is 16% less compared with PaToH. Actually, for all K values,
UMPa manages to reduce maxSV and maxSRV on the average. The percent of
improvement reduces with the increasing K. This may be expected since when K
is large, the total volume will be distributed into more parts, and the maximum
send or send-receive volume will be less. Still, on the average, the reductions on
maxSV , maxSRV , and totV are 26%, 16%, and 4%, respectively.

Tables 2 and 3 show performance of PaToH and UMPa in terms of the com-
munication metrics and time. There are 20 graphs in each table selected from 10
graph class in DIMACS testbed. For each graph class, we select the two (displayed
consecutively in the tables) for which UMPa obtains the best and worst improve-
ments on maxSV . The numbers given in the tables are averages of 10 different
executions. For all experiments with K = 16 parts, as Table 2 shows, UMPa ob-
tains a better maxSV value than PaToH on the average. When K = 4, 64, and
256, PaToH obtains a better average maxSV only for 16, 4, and 1 graphs, out of
123, respectively.

There are some instances in the tables for which UMPa improves maxSV sig-
nificantly. For example, for graph ut2010 in Table 2, the maxSV value is reduced
from 1506 to 330 with approximately 78% improvement. Furthermore, for the same
graph, the improvements on maxSRV and totV are 75% and 67%, respectively.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



62 ÜMIT V. ÇATALYÜREK, MEHMET DEVECI, KAMER KAYA, AND BORA UÇAR

Table 2. The maximum send and send-receive volumes, and the
total volume for PaToH and UMPa when K = 16. The times
are given in seconds. There are 20 graphs in the table where two
graphs with the best and the worst improvements on maxSV are
selected from each class. Each number is the average of 10 different
executions.

PaToH UMPa
Graph maxSV maxSRV totV Time maxSV maxSRV totV Time

coPapersDBLP 62,174 139,600 673,302 91.45 53,619 117,907 842,954 145.47
as-22july06 1,506 5,063 12,956 0.63 1,144 3,986 13,162 2.70
road central 500 999 3,926 112.64 279 576 2,810 27.85
smallworld 12,043 24,020 188,269 3.09 10,920 21,844 174,645 19.27
delaunay n14 119 235 1,500 0.19 115 236 1,529 0.88
delaunay n17 351 706 4,100 1.09 322 655 4,237 2.54
hugetrace-00010 2,113 4,225 25,809 93.99 2,070 4,144 28,572 43.39
hugetric-00020 1,660 3,320 20,479 60.96 1,601 3,202 22,019 29.51
venturiLevel3 1,774 3,548 19,020 27.41 1,640 3,282 20,394 16.01
adaptive 2,483 4,967 27,715 54.00 2,345 4,692 29,444 29.33
rgg n 2 15 s0 146 293 1,519 0.34 119 254 1,492 1.03
rgg n 2 21 s0 1,697 3,387 19,627 37.86 1,560 3,215 20,220 16.66
tn2010 2,010 3,666 13,473 1.26 1,684 3,895 56,780 1.54
ut2010 1,506 2,673 3,977 0.43 330 677 1,303 0.82
af shell9 1,643 3,287 17,306 14.83 1,621 3,242 18,430 8.64
audikw1 15,119 29,280 145,976 161.23 11,900 24,182 159,640 77.16
asia.osm 63 125 409 40.43 30 62 323 7.67
belgium.osm 141 281 1,420 4.80 120.6 243 1,406 1.96
memplus 986 7,138 7,958 0.23 686 3,726 10,082 0.72
t60k 155 310 1,792 0.29 148.5 297 1,890 0.99

When K = 256 (Table 3) for the graph memplus, UMPa obtains approximately
50% improvement on maxSV and maxSRV . Although totV increases 26% at the
same time, this is acceptable considering the improvements on the first two metrics.

Table 4 shows the relative performance of UMPa in terms of execution time
with respect to PaToH. As expected, due to the complexity of K-way refinement
heuristic, UMPa is slower than PaToH especially when the number of parts is large.

5. Conclusions and future work

We proposed a directed hypergraph model and a multi-level partitioner UMPa
for obtaining good partitions in terms of multiple communication metrics where the
maximum amount of data sent by a processing unit is the main objective function
to be minimized. UMPa uses a novel K-way refinement heuristic employing a tie-
breaking scheme to handle multiple communication metrics. We obtain significant
improvements on a large number of graphs for all K values.

We are planning to speed up UMPa and the proposed refinement approach
by implementing them on modern parallel architectures. We are also planning to
investigate partitioning for hierarchical memory systems, such as cluster of multi-
socket, multi-core machines with accelerators.
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Table 3. The maximum send and send-receive volumes, and the
total volume for PaToH and UMPa when K = 256. The times
are given in seconds. There are 20 graphs in the table where two
graphs with the best and the worst improvements on maxSV are
selected from each class. Each number is the average of 10 different
executions.

PaToH UMPa
Graph maxSV maxSRV totV Time maxSV maxSRV totV Time

coPapersCiteseer 7,854 16,765 577,278 224.09 5,448 11,615 579,979 658.21
coPapersDBLP 14,568 34,381 1,410,966 143.97 10,629 23,740 1,371,425 1038.86
as-22july06 1,555 7,128 28,246 1.01 617 4,543 33,347 12.62
smallworld 1,045 2,078 232,255 4.55 877 1,751 208,860 36.24
delaunay n20 301 600 57,089 17.98 279 566 58,454 68.85
delaunay n21 420 844 80,603 35.01 398 813 83,234 107.35
hugetrace-00000 407 814 74,563 55.51 415 831 80,176 123.66
hugetric-00010 502 1,004 91,318 92.45 477 955 97,263 167.69
adaptive 753 1,505 143,856 96.60 735 1,472 152,859 224.30
venturiLevel3 568 1,137 107,920 49.97 564 1,132 114,119 132.02
rgg n 2 22 s0 799 1,589 145,902 151.30 724 1,495 147,331 249.23
rgg n 2 23 s0 1,232 2,432 219,404 347.32 1,062 2,168 221,454 446.78
ri2010 3206 5,989 281,638 0.72 2,777 5,782 279,941 8.66
tx2010 5,139 9,230 124,033 8.47 3,011 7,534 117,960 15.55
af shell10 898 1,792 174,624 89.90 885 1,769 184,330 158.04
audikw1 4,318 8,299 680,590 322.57 3,865 7,607 692,714 822.73
asia.osm 72 146 4,535 72.37 66 135 4,484 18.79
great-britain.osm 104 209 11,829 50.52 82 168 11,797 25.51
finan512 199 420 36,023 2.75 192 437 36,827 27.70
memplus 1,860 7,982 15,785 0.49 946 4,318 19,945 8.25

Table 4. The relative performance of UMPa with respect to Pa-
ToH in terms of execution time. The numbers are computed by
using the results of 10 executions for each of the 123 graphs in our
data set.

K 4 16 64 256 Avg.
Relative time 1.02 1.29 2.01 5.76 1.98
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eds.), Lecture Notes in Computer Science, vol. 2869, Springer Berlin / Heidelberg, 2003,
pp. 926–933.
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Appendix A. DIMACS Challenge Results

Table 5. The best maximum send volumes for UMPa for the
challenge instances. X means UMPa failed to obtain a partition
with the desired imbalance value.

Parts
Graph 2 4 8 16 32 64 128 256 512 1,024

as365 1,080 790 590 421 316
asia.osm 41 46 60 92 93
auto 2,044 1,497 1,070 733 501
coauthorsciteseer 10,066 7,773 5,313 3,216 2,006
delaunay n15 189 154 121 90 70
er-fact1.5-scale23 5,707,503 3,933,216 2,091,986 1,154,276 622,913
g3 circuit 1,266 1,630 1,151 938 536
great-britain.osm 134 114 92 78 58
hugebubbles-00010 3,012 1,948 1,522 822 609
hugetric-00000 1,274 2,206 1,117 804 458
kkt power 6,162 6,069 4,508 3,078 2,088
kron g500-logn17 36,656 53,381 55,314 49,657 42,272
kron g500-logn21 459,454 351,785 245,355 168,870 X
m6 1,487 2,034 1,427 762 568
nlpkkt160 71,708 55,235 49,700 36,483 25,107
nlr 2,380 1,563 847 623 447
rgg n 2 18 s0 516 431 330 248 195
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Shape optimizing load balancing for
MPI-parallel adaptive numerical simulations

Henning Meyerhenke

Abstract. Load balancing is important for the efficient execution of numer-
ical simulations on parallel computers. In particular when the simulation do-
main changes over time, the mapping of computational tasks to processors
needs to be modified accordingly. Most state-of-the-art libraries addressing
this problem are based on graph repartitioning with a parallel variant of the
Kernighan-Lin (KL) heuristic. The KL approach has a number of drawbacks,
including the optimized metric and solutions with undesirable properties.

Here we further explore the promising diffusion-based multilevel graph
partitioning algorithm DibaP. We describe the evolution of the algorithm and
report on its MPI implementation PDibaP for parallelism with distributed
memory. PDibaP is targeted at small to medium scale parallelism with dozens
of processors. The presented experiments use graph sequences that imitate
adaptive numerical simulations. They demonstrate the applicability and qual-
ity of PDibaP for load balancing by repartitioning on this scale. Compared to
the faster ParMETIS, PDibaP’s solutions often have partitions with fewer ex-
ternal edges and a smaller communication volume in an underlying numerical
simulation.

1. Introduction

Numerical simulations are very important tools in science and engineering for
the analysis of physical processes modeled by partial differential equations (PDEs).
To make the PDEs solvable on a computer, they are discretized within the sim-
ulation domain, e. g., by the finite element method (FEM). Such a discretization
yields a mesh, which can be regarded as a graph with geometric (and possibly other)
information. Application areas of such simulations are fluid dynamics, structural
mechanics, nuclear physics, and many others [10].

The solutions of discretized PDEs are usually computed by iterative numerical
solvers, which have become classical applications for parallel computers. For effi-
ciency reasons the computational tasks, represented by the mesh elements, must
be distributed onto the processors evenly. Moreover, neighboring elements of the
mesh need to exchange their values in every iteration to update their own value.
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Due to the high cost of inter-processor communication, neighboring mesh elements
should reside on the same processor. A good initial assignment of subdomains to
processors can be found by solving the graph partitioning problem (GPP) [31].
The most common GPP formulation for an undirected graph G = (V,E) asks for
a division of V into k pairwise disjoint subsets (parts) such that all parts are no

larger than (1 + ε) · � |V |
k � (for small ε ≥ 0) and the edge-cut, i. e., the total number

of edges having their incident vertices in different subdomains, is minimized.
In many numerical simulations some areas of the mesh are of higher interest

than others. For instance, during the simulation of the interaction of a gas bubble
with a surrounding liquid, one is interested in the conditions close to the boundary
of the fluids. Another application among many others is the simulation of the
dynamic behavior of biomolecular systems [3]. To obtain an accurate solution, a
high resolution of the mesh is required in the areas of interest. To use the available
memory efficiently, one has to work with different resolutions in different areas.
Moreover, the areas of interest may change during the simulation, which requires
adaptations in the mesh and may result in undesirable load imbalances. Hence,
after the mesh has been adapted, its elements need to be redistributed such that
every processor has a similar computational effort again. While this can be done
by solving the GPP for the new mesh, the repartitioning process not only needs
to find new partitions of high quality. Also as few vertices as possible should be
moved to other processors since this migration causes high communication costs
and changes in the local mesh data structure.

Motivation. The most popular graph partitioning and repartitioning libraries
(for details see Section 2) use local vertex-exchanging heuristics like Kernighan-Lin
(KL) [18] within a multilevel improvement process to compute solutions with low
edge cuts very quickly. Yet, their deployment can have certain drawbacks. First
of all, minimizing the edge-cut with these tools does not necessarily mean to min-
imize the total running time of parallel numerical simulations [13,37]. While the
total communication volume can be minimized by hypergraph partitioning [4], syn-
chronous parallel applications need to wait for the processor computing longest.
Hence, the maximum norm (i. e., the worst part in a partition) of the simulation’s
communication costs is of higher importance. Moreover, for some applications,
the shape of the subdomains plays a significant role. It can be assessed by var-
ious measures such as aspect ratio [8], maximum diameter [26], connectedness,
or smooth boundaries. Optimizing partition shapes, however, requires additional
techniques (e. g., [8, 23, 26]), which are far from being mature. Finally, due to
their sequential nature, the most popular repartitioning heuristics are difficult to
parallelize—although significant progress has been made (see Section 2).

Our previously developed partitioning algorithm DibaP aims at computing
well-shaped partitions and uses disturbed diffusive schemes to decide not only how
many vertices move to other parts, but also which ones. It contains inherent paral-
lelism and overcomes many of the above mentioned difficulties, as could be shown
experimentally for static graph partitioning [23]. While it is much slower than
state-of-the-art partitioners, it often obtains better results.

Contribution. In this work we further explore the disturbed diffusive ap-
proach and focus on repartitioning for load balancing. First we present how the
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implementation of PDibaP has been improved and adapted for MPI-parallel repar-
titioning. With this implementation we perform various repartitioning experiments
with benchmark graph sequences. These experiments are the first using PDibaP

for repartitioning and show the suitability of the disturbed diffusive approach.
The average quality of the partitions computed by PDibaP is clearly better than
that of the state-of-the-art repartitioners ParMETIS and parallel Jostle, while
PDibaP’s migration volume is usually comparable. It is important to note that
PDibaP’s improvement concerning the partition quality for the graph sequences is
even higher than in the case of static partitioning.

2. Related Work

We give a short introduction to the state-of-the-art of practical graph repar-
titioning algorithms and libraries which only require the adjacency information
about the graph and no additional problem-related information. For a broader
overview the reader is referred to Schloegel et al. [31]. The most recent advances
in graph partitioning are probably best covered in their entirety by the proceedings
volume [2] the present article is part of.

2.1. Graph Partitioning. To employ local improvement heuristics effectively,
they need to start with a reasonably good initial solution. If such a solution is not
provided as input, the multilevel approach [12] is a very powerful technique. It
consists of three phases: First, one computes a hierarchy of graphs G0, . . . , Gl by
recursive coarsening in the first phase. Gl ought to be very small in size, but similar
in structure to the input graph G0. A very good initial solution for Gl is computed
in the second phase. After that, the solution is interpolated to the next-finer graph
recursively. In this final phase each interpolated solution is refined using the de-
sired local improvement algorithm. A very common local improvement algorithm
for the third phase of the multilevel process is based on the method by Fiduccia
and Mattheyses (FM) [9], a variant of the well-known local search heuristic by
Kernighan and Lin (KL) [18] with improved running time. The main idea of both
is to exchange vertices between parts in the order of the cost reductions possible,
while maintaining balanced partition sizes. After every vertex has been moved
once, the solution with the best gain is chosen. This is repeated several times until
no further improvements are found.

State-of-the-art graph partitioning libraries such as METIS [16,17] and Jos-

tle [38] use KL/FM for local improvement and edge-contractions based on match-
ings for coarsening. Recently, Holtgrewe et al. [14] presented a parallel library for
static partitioning called KaPPa. It attains very good edge cut results, mainly
by controlling the multilevel process using so-called edge ratings for approximate
matchings. Recently Sanders and Osipov [25] and Sanders and Schulz [27, 28]
have presented new sequential approaches for cut-based graph partitioning. They
mainly employ a radical multilevel strategy, flow-based local improvement, and
evolutionary algorithms, respectively.

2.2. Load Balancing by Repartitioning. To consider both a small edge-
cut and small migration costs when repartitioning dynamic graphs, different strate-
gies have been explored in the literature. To overcome the limitations of simple
scratch-remap and rebalance approaches, Schloegel et al. [32, 33] combine both
methods. They propose a multilevel algorithm with three main features. In the
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local improvement phase, two algorithms are used. On the coarse hierarchy levels,
a diffusive scheme takes care of balancing the subdomain sizes. Since this might af-
fect the partition quality negatively, a refinement algorithm is employed on the finer
levels. It aims at edge-cut minimization by profitable swaps of boundary vertices.

To address the load balancing problem in parallel applications, distributed
versions of the partitioners METIS, Jostle, and Scotch [6, 34, 39] have been
developed. Also, the tools Parkway [36], a parallel hypergraph partitioner, and
Zoltan [5], a suite of load balancing algorithms with focus on hypergraph parti-
tioning, need to be mentioned although they concentrate (mostly) on hypergraphs.
An efficient parallelization of the KL/FM heuristic that these parallel (hyper)graph
partitioners use is complex due to inherently sequential parts in this heuristic. For
example, one needs to ensure that during the KL/FM improvement no two neigh-
boring vertices change their partition simultaneously and destroy data consistency.
A coloring of the graph’s vertices is used by the parallel libraries ParMETIS [32]
and KaPPa [14] for this purpose.

2.3. Diffusive Methods for Shape Optimization. Some applications profit
from good partition shapes. As an example, the convergence rate of certain itera-
tive linear solvers can depend on the geometric shape of a partition [8]. That is why
in previous work [21,24] we have developed shape-optimizing algorithms based on
diffusion. Before that, repartitioning methods employed diffusion mostly for com-
puting how much load needs to be migrated between subdomains [30], not which
elements should be migrated. Generally speaking, a diffusion problem consists of
distributing load from some given seed vertex (or several seed vertices) into the
whole graph by iterative load exchanges between neighbor vertices. Typical diffu-
sion schemes have the property to result in the balanced load distribution, in which
every vertex has the same amount of load. This is one reason why diffusion has been
studied extensively for load balancing [40]. Our algorithms Bubble-FOS/C [24]
and the much faster DibaP [23] (also see Section 3) as well as a combination of
KL/FM and diffusion by Pellegrini [26] exploit that diffusion sends load entities
faster into densely connected subgraphs. This fact is used to distinguish dense
from sparse graph regions. In the field of graph-based image segmentation, similar
arguments are used to find well-shaped segments [11].

3. Diffusion-based Repartitioning with DibaP

The algorithm DibaP, which we have developed and implemented with shared
memory parallelism previously [23], is a hybrid multilevel combination of the two
(re)partitioning methods Bubble-FOS/C and TruncCons, which are both based
on disturbed diffusion. We call a diffusion scheme disturbed if it is modified such
that its steady state does not result in the balanced distribution. Disturbed diffu-
sion schemes can be helpful to determine if two graph vertices or regions are densely
connected to each other, i. e., if they are connected by many paths of small length.
This property is due to the similarity of diffusion to random walks and the notion
that a random walk is more likely to stay in a dense region for a long time before
leaving it via one of the few external edges. Before we explain the whole algorithm
DibaP, we describe its two main components for (re-)partitioning in more detail.

3.1. Bubble-FOS/C. In contrast to Lloyd’s related k-means algorithm [19],
Bubble-FOS/C partitions or clusters graphs instead of geometric inputs. Given
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a graph G = (V,E) and k ≥ 2, initial partition representatives (centers) are chosen
in the first step of the algorithm, one center for each of the k parts. All remaining
vertices are assigned to their closest center vertex. While for k-means one usually
uses Euclidean distance, Bubble-FOS/C employs the disturbed diffusion scheme
FOS/C [24] as distance measure (or, more precisely, as similarity measure). The
similarity of a vertex v to a non-empty vertex subset S is computed by solving the
linear system Lw = d for w, where L is the Laplacian matrix of the graph and d a
suitably chosen vector that disturbs the underlying diffusion system.1

After the assignment step, each part computes its new center for the next
iteration – again using FOS/C, but with a different right-hand side vector d. The
two operations assigning vertices to parts and computing new centers are repeated
alternately a fixed number of times or until a stable state is reached. Each operation
requires the solution of k linear systems with the matrix L, one for each partition.

It turns out that this iteration of two alternating operations yields very good
partitions. Apart from the distinction of dense and sparse regions, the final parti-
tions are very compact and have short boundaries. However, the repeated solution
of linear systems makes Bubble-FOS/C slow.

3.2. TruncCons. The algorithm TruncCons [23] (for truncated consolida-
tions) is also an iterative method for the diffusion-based local improvement of par-
titions, but it is much faster than Bubble-FOS/C. Within each TruncCons

iteration, the following is performed independently for each partition πc: First, the
initial load vector w(0) is set. Vertices of πc receive an equal amount of initial
load |V |/|πc|, while the other vertices’ initial load is set to 0. Then, this load is
distributed within the graph by performing a small number ψ of FOS (first order dif-
fusion scheme) [7] iterations. The final load vector w is computed as w = Mψw(0),
where M = I− αL denotes the diffusion matrix [7] of G. A common choice for α
is α := 1

(1+deg(G)) . The computation w = Mψw(0) could be realized by ψ matrix-

vector products. A more localized view of its realization is given by iterative load
exchanges on each vertex v with its neighbors. Then we get for 1 ≤ t ≤ ψ:

w(t)
v = w(t−1)

v − α
∑

{u,v}∈E
(w(t−1)

v − w(t−1)
u ).

After the load vectors have been computed this way independently for all k
parts, each vertex v is assigned to the partition it has obtained the highest load
from. This completes one TruncCons iteration, which can be repeated several
times (the total number is denoted by Λ subsequently) to facilitate sufficiently
large movements of the parts.

A vertex with the same amount of load as all its neighbors does not change its
load in the next FOS iteration. Due to the choice of initial loads, there are many
such inactive vertices in the beginning. In fact, only vertices incident to the cut
edges of the part under consideration are active initially. In principle each new
FOS iteration adds a new layer of active vertices similar to BFS frontiers. We keep

1In general L represents the whole graph. Yet, sparsifying the matrix in certain areas (also
called partial graph coarsening) is possible and leads to a significant acceleration without sacrificing
partitioning quality considerably [24]. While the influence of partial graph coarsening on the
partitioning quality is low, the solutions of the linear systems become distorted and more difficult
to analyze. Moreover, the programming overhead is immense. As the next section introduces
a simpler and faster way of diffusive partitioning, we do not consider partial graph coarsening
further here.
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track which vertices are active and which are not. Thereby, it is possible to forego
the inactive vertices when performing the local FOS calculations.

In our implementation the size of the matrix M for which we compute a matrix-
vector product locally in each iteration is not changed. Instead, inner products
involving inactive rows are not computed as we know their respective result does
not change in the current iteration. That way the computational effort is restricted
to areas close to the partition boundaries.

Figure 1. Sketch of
the combined multi-
level hierarchy and
the corresponding
repartitioning algo-
rithms used within
PDibaP.

3.3. The Hybrid Algorithm PDibaP.
The main components of PDibaP, the
MPI-parallel version of the original imple-
mentation of DibaP, are depicted in Fig-
ure 1. To build a multilevel hierarchy, the
fine levels are coarsened (1) by approxi-
mate maximum weight matchings. Once
the graphs are sufficiently small, the con-
struction mechanism can be changed. In
our sequential DibaP implementation, we
switch the construction mechanism (2) to
the more expensive coarsening based on al-
gebraic multigrid (AMG)—for an overview
on AMG cf. [35]. This is advantageous re-
garding running time because, after com-
puting an initial partition (3), Bubble-

FOS/C is used as local improvement algo-
rithm on the coarse levels (4). Since AMG
is well-suited as a linear solver within
Bubble-FOS/C, such a hierarchy would
be required for AMG anyway. In our par-
allel implementation PDibaP (cf. Sec-
tion 4), however, due to a significant re-
duction of the parallel programming effort,
we decided to coarsen by matchings, use a
conjugate gradient solver, and leave AMG
to future work.

Eventually, the partitions on the fine
levels are improved by the local improvement scheme TruncCons (5). PDibaP

includes additional components, e. g., for balancing partition sizes and smoothing
partition boundaries, see Section 4.3.

The rationale behind PDibaP can be explained as follows. While Bubble-

FOS/C computes high-quality graph partitions with good shapes, its similarity
measure FOS/C is very expensive to compute compared to established partitioning
heuristics. To overcome this problem, we use the simpler process TruncCons, a
truly local algorithm to improve partitions generated in a multilevel process. It
exploits the observation that, once a reasonably good solution has been found, al-
terations during a local improvement step take place mostly at the partition bound-
aries. The disturbing truncation within TruncCons allows for a concentration of
the computations around the partition boundaries, where the changes in subdo-
main affiliation occur. Moreover, since TruncCons is also based on disturbed
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diffusion, the good properties of the partitions generated by Bubble-FOS/C are
mostly preserved.

4. PDibaP: Parallel DibaP for Repartitioning

In this section we describe our parallel implementation of DibaP using MPI.
In particular we highlight some differences to the sequential (and thread-parallel)
version used for static partitioning [23].

4.1. Distributed Memory Parallelism. The foundation of our PDibaP

implementation (data structure, linear algebra routines, auxiliary functions) is to a
large extent based on the code described in more detail in our previous work [24] and
in Schamberger’s thesis [29]. PDibaP employs as graph data structure the stan-
dard distributed compressed sparse row (CSR) format with ghost (or halo) vertices.
The linear systems within Bubble-FOS/C are solved with a conjugate gradient
(CG) solver using the traditional domain decomposition approach for distributed
parallelism. That means that each system is distributed over all processors and
solved by all of them in parallel at the same time, which requires three communi-
cation operations per iteration within CG. The TruncCons process is executed in
a similar manner. To account for the inactive vertices, however, we do not perform
complete matrix-vector multiplications, but perform local load exchanges only if an
active vertex is involved. Both CG and TruncCons require a halo update after
each iteration. This communication routine is rather expensive, so that the number
of iterations should be kept small. The linear algebra routines within PDibaP do
not make use of external libraries. This is due to the fact that the solution process
in Bubble-FOS/C is very specialized [24,29].

4.2. Repartitioning. So far, PDibaP is targeted at repartitioning dynamic
graphs. The option for parallel static partitioning is still in its infancy due to a
limitation in the multilevel process, which we explain later on in this section.

When PDibaP is used for repartitioning instead of partitioning, one part of its
input is an initial partition. Based on this partition, the graph is distributed onto
the processors. We can assume that this partition is probably more unbalanced
than advisable. It might also contain some undesirable artifacts. Nevertheless, its
quality is not likely to be extremely bad. It is therefore reasonable to improve the
initial partition instead of starting from scratch. Moreover, a refinement limits the
number of migrated vertices as well, an important feature of dynamic repartitioning
methods.

In particular if the imbalance is higher than allowed, it is advisable to employ
the multilevel paradigm. Local improvements on the input graph would not result
in sufficiently large movements to a high quality solution. Therefore, a matching
hierarchy is constructed until only a few thousand vertices remain in the coarsest
graph. So far, only edges whose endpoints lie in the same part are considered to be
part of the matching. This simplifies the parallel implementation and is a viable
approach when repartitioning.

After constructing the hierarchy, the initial partition is projected downwards
the hierarchy onto the coarsest level. On the coarsest level the graph is repartitioned
with Bubble-FOS/C, starting with the projected initial solution. Going up the
multilevel hierarchy recursively, the result is then improved with either Bubble-

FOS/C or TruncCons, depending on the size of the level. After the refinement,
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the current solution is interpolated to the next level until the process stops at
the input level. Sometimes the matching algorithm has hardly coarsened a level.
This happens for example to avoid star-like subgraphs with strongly varying vertex
degrees. Limited coarsening results in two very similar adjacent levels. Local
improvement with TruncCons on both of these levels would result in similar
solutions with an unnecessary running time investment. That is why in such a case
TruncCons is skipped on the finer level of the two.

For static partitioning, which is still an ongoing effort, edges in the cut be-
tween parts on different processors should be considered as matching edges as well.
Otherwise, the multilevel hierarchy contains only a few levels after which no more
edges are found for the matching. The development and/or integration of such a
more general matching is part of future work.

4.3. Balancing Procedures. In general the diffusive processes employed by
PDibaP do not guarentee the nearly perfect balance required by numerical simu-
lations (say, for example, no part should be larger than the average part size plus
3%). That is why we employ two balancing procedures within PDibaP. The first
one called ScaleBalance is an iterative procedure that tries to determine for every
part 1 ≤ p ≤ k a scalar βp with which the diffusion load values are scaled. Suit-
able scalars are searched such that the assignment of vertices to parts based on
the load vector entries βpwp results in a balanced partition. More details can be
found in Meyerhenke et al. [24, p. 554]. While ScaleBalance works surprisingly
well in many cases within PDibaP, it also happens that it is not fully effective even
after a fairly large number of iterations. Then we employ a second approach, called
FlowBalance, whose basic idea is described in previous work as well [24, p. 554].
Here we highlight recent changes necessary to adapt the approach to the distributed
parallelism in PDibaP.

First, we solve a load balancing problem on the quotient graph of the partition
Π. The quotient graph Q contains a vertex for each part in Π and two vertices are
connected by an edge in Q if and only if their corresponding parts share a common
boundary in Π. The load balancing problem can be solved with diffusion [15]. The
solution yields the migrating flow that balances the partition. Hence, we know
how many vertices have to be moved from πi to πj , let us call this number nij .
It remains to be determined which vertices take this move. For quality reasons,
this decision should be based on the diffusion values in the respective load vectors
computed by Bubble-FOS/C or TruncCons. That is why we want to migrate
the nij vertices with the highest values in the load vector wj .

In our sequential and thread-parallel version of DibaP, we use a binary heap as
priority queue to perform the necessary selection, migration, and resulting updates
to the partition. Since parallel priority queues require a considerable effort to
obtain good scalability, we opt for a different approach in PDibaP. For ease of
implementation (and because the amount of computation and communication is
relatively small), each processor preselects its local vertices with the highest nij

load values in wj . These preselected load values are sent to processor pj , which
performs a sequential selection. The threshold value found this way is broadcast
back to all processors. Finally, all processors assign their vertices whose diffusion
loads in wj is higher than the threshold to part πj .

This approach might experience problems when the selected threshold value
occurs multiple times among the preselected candidate values. In such a case, the

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



SHAPE OPTIMIZING LOAD BALANCING 75

next larger candidate value is chosen as threshold. Another problem could be the
scheduled order in which migration takes place. It could happen that a processor
needs to move a number of vertices that it is about to obtain by a later move. To
address this, we employ a conservative approach and move rather fewer vertices
than too many. As a compensation, the whole procedure is repeated iteratively
until a balanced partition is found.

5. Experiments

Here we present some of our experimental results comparing our PDibaP im-
plementation to the KL/FM-based load balancers ParMETIS and parallel Jostle.

5.1. Benchmark Data. Our benchmark set comprises two types of graph
sequences. The first one consists of three smaller graph sequences with 51 frames
each, having between approximately 1M and 3M vertices, respectively. The second
group contains two larger sequences of 36 frames each. Each frame in this group
has approximately 4.5M to 16M vertices. These sequences result in 50 and 35
repartitioning steps, respectively. We choose to (re)partition the smaller sequences
into k = 36 and k = 60 parts, while the larger ones are divided into k = 60 and
k = 84 parts. These values have been chosen as multiples of 12 because one of our
main test machines has 12 cores per node.

All graphs of these five sequences have a two-dimensional geometry and have
been generated to resemble adaptive numerical simulations such as those occurring
in computational fluid dynamics. A visual impression of some of the data (in smaller
versions) is available in previous work [24, p. 562f.]. The graph of frame i + 1 in
a given sequence is obtained from the graph of frame i by changes restricted to
local areas. As an example, some areas are coarsened, whereas others are refined.
These changes are in most cases due to the movement of an object in the simulation
domain and often result in unbalanced subdomain sizes. For more details the reader
is referred to Marquardt and Schamberger [20], who have provided the generator
for the sequence data.2 Some of these frames are also part of the archive of the
10th DIMACS Implementation Challenge [1].

5.2. Hardware and Software Settings. We have conducted our experi-
ments on a cluster with 60 Fujitsu RX200S6 nodes each having 2 Intel Xeon X5650
processors at 2.66 GHz (results in 12 compute cores per node). Moreover, each node
has 36 GB of main memory. The interconnect is InfiniBand HCA 4x SDR HCA
PCI-e, the operating system Cent OS 5.4. PDibaP is implemented in C/C++.
PDibaP as well as ParMETIS and parallel Jostle have been compiled with In-
tel C/C++ compiler 11.1 and MVAPICH2 1.5.1 as MPI library. The number of
MPI processes always equals the number of parts k in the partition to be computed.

The main parameters controlling the running time and quality of the DibaP

algorithm are the number of iterations in the (re)partitioning algorithms Bubble-

FOS/C and TruncCons. For our experiments we perform 3 iterations within
Bubble-FOS/C, with one AssignPartition and one ComputeCenters operation,
respectively. The faster local approach TruncCons is used on all multilevel hierar-
chy levels with graph sizes above 12,000 vertices. For TruncCons, the parameter
settings Λ = 9 and ψ = 14 for the outer and inner iteration, respectively. These

2Some of the input data can be downloaded from the website http://www.upb.de/cs/

henningm/graph.html.
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settings provide a good trade-off between running time and quality. The allowed
imbalance is set to the default value 3% for all tools.

5.3. Results. In addition to the graph partitioning metrics edge-cut and com-
munication volume (of the underlying application based on the computed partition),
we are also interested in migration costs. These costs result from data changing
their processor after repartitioning. We count the number of vertices that change
their subdomain from one frame to the next as a measure of these costs. One could
also assign cost weights to the partitioning objectives and the migration volume to
evaluate the linear combination of both. Since these weights depend both on the
underlying application and the parallel architecture, we have not pursued this here.
We compare PDibaP to the state-of-the-art repartitioning tools ParMETIS and
parallel Jostle. Both competitors are mainly based on the vertex-exchanging KL
heuristic for local improvement. The load balancing toolkit Zoltan [5], whose in-
tegrated KL/FM partitioner is based on the hypergraph concept, is not included in
the detailed presentation. Our experiments with it indicate that it is not as suitable
for our benchmark set of FEM graphs, in particular because it yields disconnected
parts which propagate and worsen in the course of the sequence. We conclude that
currently the dedicated graph (as opposed to hypergraph) partitioners seem more
suitable for this problem type.

The partitioning quality is measured in our experiments by the edge cut (EC,
a summation norm) and the maximum communication volume (CVmax). CVmax

is the sum of the maximum incoming communication volume and the maximum
outgoing communication volume, taken over all parts, respectively. The values
are displayed in Table 1, averaged over the whole sequence and aggregated by the
different k. Very similar results are obtained for the geometric mean in nearly
all cases, which is why we do not show these data as well. The migration costs
are recorded in both norms and shown for each sequence (again aggregated) in
Table 2. Missing values for parallel Jostle (—) indicate program crashes on the
corresponding instance(s).

Table 1. Average edge cut and communication volume (max
norm) for repartitionings computed by ParMETIS, Jostle, and
PDibaP. Lower values are better, best values per instance are
written in bold.

Sequence ParMETIS Par. Jostle PDibaP

EC CVmax EC CVmax EC CVmax

biggerslowtric 11873.5 1486.7 9875.1 1131.9 8985.5 981.8

biggerbubbles 16956.8 2205.3 14113.2 1638.7 12768.3 1443.5

biggertrace 17795.6 2391.1 14121.3 1687.0 12229.2 1367.5

hugetric 34168.5 2903.0 28208.3 2117.6 24974.4 1766.2

hugetrace 54045.8 5239.7 – – 34147.4 2459.4

The aggregated graph partitioning metrics show that PDibaP is able to com-
pute the best partitions consistently. PDibaP’s advance is highest for the com-
munication volume. With about 12–19% on parallel Jostle and about 34–53%
on ParMETIS these improvements are clearly higher than the approximately 7%
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Table 2. Average migration volume in the 
1- and 
∞-norm for
repartitionings computed by ParMETIS, Jostle, and PDibaP.
Lower values are better, best values per instance are written in
bold.

Sequence ParMETIS Par. Jostle PDibaP

�∞ �1 �∞ �1 �∞ �1

biggerslowtric 60314.3 606419.1 64252.2 557608.7 65376.1 550427.0

biggerbubbles 77420.0 1249424.3 68865.1 791723.6 93767.5 1328116.1

biggertrace 54131.2 733750.4 49997.8 533809.2 46620.4 613071.2

hugetric 231072.8 2877441.8 244082.5 2932607.6 232382.6 2875302.5

hugetrace 175795.8 3235984.1 – – 189085.3 3308461.4

Figure 2. Number of migrating vertices (
∞-norm) in each frame
of the biggertrace sequence for PDibaP (circles), METIS (trian-
gles), and Jostle (squares). Lower values are better.

obtained for static partitioning [23], which is due to the fact that parallel KL
(re)partitioners often compute worse solutions than their serial counterparts for
static partitioning.

The results for the migration volume are not consistent. All tools have a sim-
ilar amount of best values. The fact that ParMETIS is competetitive is slightly
surprising when compared to previous results [22], where it compared worse. Also
unexpectedly, PDibaP shows significantly higher migration costs for the instance
biggerbubbles. Our experiments indicate that PDibaP has a more constant migra-
tion volume, while the values for parallel Jostle and ParMETIS show a higher
amplitude. It depends on the instance which strategy pays off. This behavior is
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shown in Figure 2. It displays the migration volumes in the 
∞-norm for each frame
within the benchmark sequence called slowrot, which is smaller but similar to the
ones used in our main experimental study.

These results lead to the conclusion that PDibaP’s implicit optimization with
the iterative algorithms Bubble-FOS/C and TruncCons focusses more on good
partitions than on small migration costs. In some cases the latter objective should
receive more attention. As currently no explicit mechanisms for migration opti-
mization are integrated, such mechanisms could be implemented if one finds in
other experiments that the migration costs become too high with PDibaP.

Table 3. Average running times in seconds for the benchmark
problems. Lower values are better, best values per instance are
written in bold. The values marked by ∗ denote averaged times
(or, in case of –, incomparable values) where parallel Jostle did
not finish the whole sequence due to a premature crash.

Sequence ParMETIS Par. Jostle PDibaP

k = 36 k = 60 k = 36 k = 60 k = 36 k = 60

biggerslowtric 0.27 0.22 0.50 0.88 8.71 10.38

biggerbubbles 0.38 0.30 0.79 1.24 15.02 19.19

biggertrace 0.33 0.26 0.56 0.59 9.27 10.77

k = 60 k = 84 k = 60 k = 84 k = 60 k = 84

hugetric 0.68 0.64 2.41∗ 4.68∗ 55.36 62.37

hugetrace 0.85 0.76 – – 50.56 56.69

It is interesting to note that further experiments indicate a multilevel approach
to be indeed necessary in order to produce sufficiently large partition movements
that keep up with the movements of the simulation. Partitions generated by mul-
tilevel PDibaP are of a noticeably higher quality regarding the graph partitioning
metrics than those computed by TruncCons without multilevel approach. Also,
maybe surprisingly, using a multilevel hierarchy results in steadier migration costs.

The running time of the tools, depicted in Table 3, for the dynamic graph
instances used in this study can be characterized as follows. ParMETIS is the
fastest, taking from a fraction of a second up to a few seconds for each frame, with
the average always being below one second. Parallel Jostle is approximately a
factor of 2-4 slower than ParMETIS (without counting sequences where parallel
Jostle crashed prematurely). PDibaP, however, is significantly slower than both
tools, with an average slowdown of about 28-97 compared to ParMETIS. It re-
quires from a few seconds up to a few minutes for each frame, with the average
being 10-20 seconds for the small benchmarks and about a minute for the large
ones.

The scalability of PDibaP is not good due to the linear dependence on k in
the running time. ParMETIS is able to profit somewhat from more processors
regarding execution time. PDibaP and parallel Jostle, however, become slower
with increasing k. Neglecting communication, the running time of PDibaP should
remain nearly constant for growing k when it computes a k-partitioning with k
processors. However, in this parallel setting the communication overhead yields
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growing running times. Therefore, one can conclude that PDibaP is more suitable
for simulations with a small number of processors.

We would like to stress that a high repartitioning quality is often very impor-
tant. Usually, the most time consuming parts of numerical simulations are the
numerical solvers. Hence, a reduced communication volume provided by an ex-
cellent partitioning can pay off unless the repartitioning time is extremely high.
Nevertheless, a further acceleration of shape-optimizing load balaincing is of ut-
most importance. Minutes for each repartitioning step might be problematic for
some targeted applications.

6. Conclusions

With this work we have demonstrated that the shape-optimizing repartitioning
algorithm DibaP based on disturbed diffusion can be a good alternative to tra-
ditional KL-based methods for balancing the load in parallel adaptive numerical
simulations. In particular, the parallel implementation PDibaP is very suitable
for simulations of small to medium scale, i. e., when the number of vertices and
edges in the dynamic graphs are on the order of several millions. While PDibaP is
still significantly slower than the state-of-the-art, it usually computes considerably
better solutions w. r. t. edge cut and communication volume. In situations where
the quality of the load balancing phase is more important than its running time –
e. g., when the computation time between the load balancing phases is relatively
high – the use of PDibaP is expected to pay off.

As part of future work, we aim at an improved multilevel process and faster par-
titioning methods. It would also be worthwhile to investigate if Bubble-FOS/C

and TruncCons can be further adapted algorithmically, for example to reduce the
dependence on k in the running time.
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Graph partitioning for
scalable distributed graph computations

Aydın Buluç and Kamesh Madduri

Abstract. Inter-node communication time constitutes a significant fraction

of the execution time of graph algorithms on distributed-memory systems.
Global computations on large-scale sparse graphs with skewed degree distri-
butions are particularly challenging to optimize for, as prior work shows that it
is difficult to obtain balanced partitions with low edge cuts for these graphs. In
this work, we attempt to determine the optimal partitioning and distribution of
such graphs, for load-balanced parallel execution of communication-intensive
graph algorithms. We use breadth-first search (BFS) as a representative ex-
ample, and derive upper bounds on the communication costs incurred with a
two-dimensional partitioning of the graph. We present empirical results for
communication costs with various graph partitioning strategies, and also ob-
tain parallel BFS execution times for several large-scale DIMACS Challenge
instances on a supercomputing platform. Our performance results indicate
that for several graph instances, reducing work and communication imbalance
among partitions is more important than minimizing the total edge cut.

1. Introduction

Graph partitioning is an essential preprocessing step for distributed graph com-
putations. The cost of fine-grained remote memory references is extremely high in
case of distributed memory systems, and so one usually restructures both the graph
layout and the algorithm in order to mitigate or avoid inter-node communication.
The goal of this work is to characterize the impact of common graph partitioning
strategies that minimize edge cut, on the parallel performance of graph algorithms
on current supercomputers. We use breadth-first search (BFS) as our driving ex-
ample, as it is representative of communication-intensive graph computations. It
is also frequently used as a subroutine for more sophisticated algorithms such as
finding connected components, spanning forests, testing for bipartiteness, maxi-
mum flows [10], and computing betweenness centrality on unweighted graphs [1].
BFS has recently been chosen as the first representative benchmark for ranking
supercomputers based on their performance on data intensive applications [5].
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Given a distinguished source vertex s, breadth-first search (BFS) systematically
explores the graph G to discover every vertex that is reachable from s. Let V and E
refer to the vertex and edge sets of G, whose cardinalities are n = |V | and m = |E|.
We assume that the graph is unweighted; equivalently, each edge e ∈ E is assigned a
weight of unity. A path of length l from vertex s to t is defined as a sequence of edges
〈ui, ui+1〉 (edge directivity assumed to be ui → ui+1 in case of directed graphs),
0 ≤ i < l, where u0 = s and ul = t. We use d(s, t) to denote the distance between
vertices s and t: the length of the shortest path connecting s and t. BFS implies
that all vertices at a distance k (or level k) from vertex s should be first visited
before vertices at distance k + 1. The distance from s to each reachable vertex is
typically the final output. In applications based on a breadth-first graph traversal,
one might optionally perform auxiliary computations when visiting a vertex for the
first time. Additionally, a breadth-first spanning tree rooted at s containing all the
reachable vertices can also be maintained.

Level-synchronous BFS implementations process all the vertices that are k hops
away from the root (at the kth level), before processing any further vertices. For
each level expansion, the algorithm maintains a frontier, which is the set of active
vertices on that level. The kth frontier is denoted by Fk, which may also include any
duplicates and previously-discovered vertices. The pruned frontier is the unique set
of vertices that are discovered for the first time during that level expansion.

In Section 2, we review parallel BFS on distributed memory systems. Sec-
tions 3 and 4 provide an analysis of the communication costs of parallel BFS, and
relate them to the metrics used by graph and hypergraph partitioning. We detail
the experimental setup for our simulations and real large-scale runs in Section 5.
Section 6 presents a microbenchmarking study of the collective communication
primitives used in BFS, providing evidence that the 2D algorithm has lower com-
munication costs. This is partly due to its better use of interconnection network
resources, independent of the volume of data transmitted. We present performance
results in Section 7 and summarize our findings in Section 8.

2. Parallel Breadth-first Search

Data distribution plays a critical role in parallelizing BFS on distributed-
memory machines. The approach of partitioning vertices to processors (along with
their outgoing edges) is the so-called 1D partitioning, and is the method employed
by Parallel Boost Graph Library [6]. A two-dimensional edge partitioning is im-
plemented by Yoo et al. [11] for the IBM BlueGene/L, and by us [2] for different
generations of Cray machines. Our 2D approach is different in the sense that it
does a checkerboard partitioning (see below) of the sparse adjacency matrix of the
underlying graph, hence assigning contiguous submatrices to processors. Both 2D
approaches achieved higher scalability than their 1D counterparts. One reason is
that key collective communication phases of the algorithm are limited to at most√
p processors, avoiding the expensive all-to-all communication among p processors.

Yoo et al.’s work focused on low-diameter graphs with uniform degree distribution,
and ours primarily studied graphs with skewed degree distribution. A thorough
study of the communication volume in 1D and 2D partitioning for BFS, which
involves decoupling the performance and scaling of collective communication oper-
ations from the number of words moved, has not been done for a large set of graphs.
This paper attempts to fill that gap.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



GRAPH PARTITIONING FOR SCALABLE DISTRIBUTED GRAPH COMPUTATIONS 85

The 1D row-wise partitioning (left) and 2D checkerboard partitioning (right)
of the sparse adjacency matrix of the graph are as follows:

(2.1) A1D =

⎛
⎝ A1

. . .
Ap

⎞
⎠ , A2D =

⎛
⎜⎝

A1,1 . . . A1,pc

...
. . .

...
Apr,1 . . . Apr,pc

⎞
⎟⎠

The nonzeros in the ith row of the sparse adjacency matrix A represent the
outgoing edges of the ith vertex of G, and the nonzeros in the jth column of A
represent the incoming edges of the jth vertex.

In 2D partitioning, processors are logically organized as a mesh with dimen-
sions pr × pc, indexed by their row and column indices. Submatrix Ai,j is assigned
to processor P (i, j). The indices of the submatrices need not be contiguous, and
the submatrices themselves need not be square in general. In 1D partitioning,
sets of vertices are directly assigned to processors, whereas in 2D, sets of vertices
are collectively owned by all the processors in one dimension. Without loss of
generality, we will consider that dimension to be the row dimension. These sets
of vertices are labeled as V1, V2, ..., Vpr

, and their outgoing edges are labeled as

Adj+(V1),Adj+(V2), ...,Adj+(Vpr
). Each of these adjacencies is distributed to pro-

cessors that are members of a row dimension: Adj+(V1) is distributed to P (1, :),
Adj+(V2) is distributed to P (2, :), and so on. The colon notation is used to index
a slice of processors, e.g. processors in the ith processor row are denoted by P (i, :).

Level-synchronous BFS with 1D graph partitioning comprises three main steps:

• Local discovery: Inspect outgoing edges of vertices in current frontier.
• Fold: Exchange discovered vertices via an All-to-all communication phase,

so that each processor gets the vertices that it owns after this step.
• Local update: Update distances/parents locally for newly-visited vertices.

The parallel BFS algorithm with 2D partitioning has four steps:

• Expand: Construct the current frontier of vertices on each processor by a
collective All-gather step along the processor column P (:, j) for 1 ≤ j ≤ pc.
• Local discovery: Inspect outgoing edges of vertices in the current frontier.
• Fold: Exchange newly-discovered vertices via an collective All-to-all step

along the processor row P (i, :), for 1 ≤ i ≤ pr.
• Local update: Update distances/parents locally for newly-visited vertices.

In contrast to the 1D case, communication in the 2D algorithm happens only
along one processor dimension. If Expand happens along one processor dimension,
then Fold happens along the other processor dimension. Detailed pseudo-code for
the 1D and 2D algorithms can be found in our earlier paper [2]. Detailed micro
benchmarking results in Section 6 show that the 2D algorithm has a lower commu-
nication cost than the 1D approach due to the decreased number of communicating
processors in collectives. The performance of both algorithms is heavily depen-
dent on the performance and scaling of MPI collective MPI Alltoallv. The 2D
algorithm also depends on the MPI AllGatherv collective.

3. Analysis of Communication Costs

In prior work [2], we study the performance of parallel BFS on synthetic Kro-
necker graphs used in the Graph 500 benchmark. We observe that the communica-
tion volume is O(m) with a random ordering of vertices, and a random partitioning
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of the graph (i.e., assigning m/p edges to each processor). The edge cut is also
O(m) with random partitioning. While it can be shown that low-diameter real-
world graphs do not have sparse separators [8], constants matter in practice, and
any decrease in the communication volume, albeit not asymptotically, may translate
into reduced execution times for graph problems that are typically communication-
bound.

We outline the communication costs incurred in 2D-partitioned BFS in this
section. 2D-partitioned BFS also captures 1D-partitioned BFS as a degenerate
case. We first distinguish different ways of aggregating edges in the local discovery
phase of the BFS approach:

(1) No aggregation at all, local duplicates are not pruned before fold.
(2) Local aggregation at the current frontier only. Our simulations in Section 7.1

follow this assumption.
(3) Local aggregation over all (current and past) locally discovered vertices by

keeping a persistent bitmask. We implement this optimization for gathering
parallel execution results in Section 7.2.

Consider the expand phase. If the adjacencies of a single vertex v are shared
among λ+ ≤ pc processors, then its owner will need to send the vertex to λ+ − 1
neighbors. Since each vertex is in the pruned frontier once, the total communication
volume for the expand phases over all iterations is equal to the communication
volume of the same phase in 2D sparse-matrix vector multiplication (SpMV) [4].
Each iteration of BFS is a sparse-matrix sparse-vector multiplication of the form
AT × Fk. Hence, the column-net hypergraph model of AT accurately captures the
cumulative communication volume of the BFS expand steps, when used with the
connectivity-1 metric.

Figure 1. Example illustrating communication in fold phase of
BFS: Partitioning of Adj−(v).

Characterizing communication for the fold phase is more complicated. Con-
sider a vertex v of in-degree 9, shown in Figure 1. In terms of the sparse matrix
representation of the graph discussed above, this corresponds to a column with 9
nonzeros. We label the adjacencies Adj−(v) with a superscript denoting the earliest
BFS iteration in which they are discovered. Vertex h in the figure belongs to F0,
vertices a and f to F1, and so on. Furthermore, assume that the adjacencies of
v span three processors, with the color of the edges indicating the partitions they
belong to. We denote non-local vertices with RemoteAdj−(v). Since v belongs to
the black partition, RemoteAdj−(v) is Adj−(v) \ {d, e, f} in this case.
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The communication cost of the fold phase is complicated to analyze due to the
space-time partitioning of edges in the graph in a BFS execution. We can annotate
every edge in the graph using two integers: the partition the edge belongs to, and
the BFS phase in which the edge is traversed (remember each edge is traversed
exactly once).

The communication volume due to a vertex v in the fold phase is at most∣∣RemoteAdj−(v)
∣∣, which is realized when every e ∈ RemoteAdj−(v) has a distinct

space-time partitioning label, i.e. no two edges are traversed by the same remote
process during the same iteration. The edgecut of the partitioned graph is the set
of all edges for which the end vertices belong to different partitions. The size of the
edgecut is equal to

∑
v∈V

∣∣RemoteAdj−(v)
∣∣, giving an upper bound for the overall

communication volume due to fold phases.
Another upper bound is O(diameter · (λ− − 1)), which might be lower than

the edgecut. Here, λ− ≤ pr is the number of processors among which Adj−(v) is
partitioned, and diameter gives the maximum number of BFS iterations. Conse-
quently, the communication volume due to discovering vertex v, comm(v), obeys
the following inequality: comm(v) ≤ min

(
diameter · (λ− − 1),

∣∣RemoteAdj−(v)
∣∣).

In the above example, this value is min (8, 6) = 6.

(a) 1st iteration, vol=1 (b) 2nd iteration, vol=1

(c) 3rd iteration, vol=2 (d) 4th iteration, vol=1

Figure 2. Partitioning of Adj−(v) per BFS iteration.

Figure 2 shows the space-time edge partitioning of Adj−(v) per BFS step.
In the first step, the communication volume is 1, as the red processor discovers
v through the edge (h, v) and sends it to the black processor for marking. In the
second step, both green and black processors discover v and communication volume
is 1 from green to black. Continuing this way, we see that the actual aggregate
communication in the fold phase of v is 5.
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The row-net hypergraph model of AT is an optimistic lower-bound on the overall
communication volume of the fold phases using the connectivity− 1 metric. On the
other hand, modeling the fold phase with the edgecut metric would be a pessimistic
upper bound (in our example, the graph model would estimate communication
due to v to be 6). It is currently unknown which bound is tighter in practice for
different classes of graphs. If we implement global aggregation (global replication of
discovered vertices), the total communication volume in the fold phase will decrease
all the way down to the SpMV case of (λ−−1). However, this involves an additional
communication step similar to the expand phase, in which processors in the column
dimension exchange newly-visited vertices.

4. Graph and Hypergraph Partitioning Metrics

We consider several different orderings of vertices and edges and determine the
incurred communication costs. Our baseline approach is to take the given ordering
of vertices and edges as-is (i.e., the natural ordering), and to partition the graph
into 1D or 2D (checkerboard) slices as shown in Equation 2.1. The second scenario
is to randomly permute vertex identifiers, and then partition the graph via the
baseline approach. These two scenarios do not explicitly optimize for an objective
function. We assume the load-balanced 2D vector distribution [2], which matches
the 2D matrix distribution for natural and random orderings. Each processor row
(except the last one) is responsible for t = �n/pr� elements. The last processor row
gets the remaining n − �n/pr�(pr − 1) elements. Within the processor row, each
processor (except the last) is responsible for �t/pc� elements.

We use the graph partitioner Metis [7] to generate a 1D row-wise partitioning
with balanced vertices per partition and simultaneously minimizing the number
of cut edges. Lastly, we experiment with hypergraph partitioning, which exactly
captures total communication costs of sparse matrix-dense vector multiplication in
its objective function [4]. We use PaToH [3] and report results with its row-wise
and checkerboard partitioning algorithms. Our objective is to study how graph
and hypergraph partitioning affect computational load balance and communication
costs. In both use cases of PaToH, we generate a symmetric permutation as output,
since input and output vectors have to be distributed in the same way to avoid data
shuffling after each iteration. PaToH distributes both the matrix and the vectors
in order to optimize the communication volume, and so PaToH runs might have an
unbalanced vector distribution.

We define V (d, p) to be the number of words sent by processor p in the dth BFS
communication phase, on a run with P processors that takes D level-synchronous
iterations to finish. We compute the following machine-independent counts that
give the incurred communication.

(1) Total communication over the course of BFS execution:

TotalVolume =
D∑

d=1

P∑
p=1

V (d, p).

(2) Sum of maximum communication volumes for each BFS step:

MaxVolume =

D∑
d=1

max
p∈{1...P}

Vexpand(d, p) +

D∑
d=1

max
p∈{1...P}

Vfold(d, p).
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Although we report the total communication volume over the course of BFS
iterations, we are most concerned with the MaxVolume metric. It is a better approx-
imation for the time spent on remote communication, since the slowest processor
in each phase determines the overall time spent in communication.

5. Experimental Setup

Our parallel BFS implementation is level-synchronous, and so it is primarily
meant to be applied to low-diameter graphs. However, to quantify the impact of
barrier synchronization and load balance on the overall execution time, we run our
implementations on several graphs, both low- and high-diameter.

We categorize the following DIMACS Challenge instances as low diameter: the
synthetic Kronecker graphs (kron g500-simple-logn and kron g500-logn fami-
lies), Erdős-Rényi graphs (er-fact1.5 family), web crawls (eu-2005 and others),
citation networks (citationCiteseer and others), and co-authorship networks
(coAuthorsDBLP and others). Some of the high-diameter graphs that we report
performance results on include hugebubbles-00020, graphs from the delaunay

family, road networks (road central), and random geometric graphs.
Most of the DIMACS test graphs are small enough to fit in the main memory of

a single machine, and so we are able to get baseline serial performance numbers for
comparison. We are currently using serial partitioning software to generate vertex
partitions and vertex reorderings, and this has been a limitation for scaling to larger
graphs. However, the performance trends with DIMACS graphs still provide some
interesting insights.

We use the k-way multilevel partitioning scheme in Metis (v5.0.2) with the
default command-line parameters to generate balanced vertex partitions (in terms
of the number of vertices per partition) minimizing total edge cut. We relabel
vertices and distribute edges to multiple processes based on these vertex partitions.
Similarly, we use PaToH’s column-wise and checkerboard partitioning schemes to
partition the sparse adjacency matrix corresponding to the graph. While we report
communication volume statistics related to checkerboard partitioning, we are still
unable to use these partitions for reordering, since PaToH edge partitions are not
necessarily aligned.

We report parallel execution times on Hopper, a 6392-node Cray XE6 system
located at Lawrence Berkeley National Laboratory. Each node of this system con-
tains two twelve-core 2.1 GHz AMD Opteron Magny-Cours processors. There are
eight DDR3 1333-MHz memory channels per node, and the observed memory band-
width with the STREAM [9] benchmark is 49.4 GB/s. The main memory capacity
of each node is 32 GB, of which 30 GB is usable by applications. A pair of com-
pute nodes share a Gemini network chip, and these network chips are connected
to form a 3D torus (of dimensions 17× 8× 24). The observed MPI point-to-point
bandwidth for large messages between two nodes that do not share a network chip
is 5.9 GB/s. Further, the measured MPI latency for point-to-point communication
is 1.4 microseconds, and the cost of a global barrier is about 8 microseconds. The
maximum injection bandwidth per node is 20 GB/s.

We use the GNU C compiler (v4.6.1) for compiling our BFS implementation.
For inter-node communication, we use Cray’s MPI implementation (v5.3.3), which
is based on MPICH2. We report performance results up to 256-way MPI pro-
cess/task concurrency in this study. In all experiments, we use four MPI tasks
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per node, with every task constrained to six cores to avoid any imbalances due to
Non-Uniform Memory Access (NUMA) effects. We did not explore multithreading
within a node in the current study. This may be another potential source of load
imbalance, and we will quantify this in future work. More details on multithreading
within a node can be found in our prior work on parallel BFS [2].

To compare performance across multiple systems using a rate analogous to
the commonly-used floating point operations per second, we normalize the serial
and parallel execution times by the number of edges visited in a BFS traversal
and present a Traversed Edges Per Second (TEPS) rate. For an undirected graph
with a single connected component, the BFS algorithm would visit every edge in
the component twice. We only consider traversal execution times from vertices
that appear in the largest connected component in the graph (all the DIMACS
test instances we used have one large component), compute the mean search time
(harmonic mean of TEPS) using at least 20 randomly-chosen sources vertices for
each benchmark graph, and normalize the time by the cumulative number of edges
visited to get the TEPS rate.

6. Microbenchmarking Collectives Performance

In our previous paper [2], we argue that the 2D algorithm has a lower com-
munication cost because the inverse bandwidth is positively correlated with the
communicator size in collective operations. In this section, we present a detailed
microbenchmarking study that provides evidence to support our claim. A sub-
communicator is a sub partition of the entire processor space. We consider the
2D partitioning scenario here. The 1D case can be realized by setting the column
processor dimension to one. We have the freedom to perform either one of the
communication phases (Allgatherv and Alltoallv) in contiguous ranks, where pro-
cesses in the same subcommunicator map to sockets that are physically close to
each other. The default mapping is to pack processes along the rows of the proces-
sor grid, as shown in Figure 3 (we refer to this ordering as contiguous ranks). The
alternative method is to reorder ranks so that they are packed along the columns
of the processor grid (referred to as spread-out ranks). The alternative remapping
decreases the number of nodes spanned by each column subcommunicator. This
increases contention, but can potentially increase available bandwidth.

Figure 3. Mapping of column subcommunicators from a 4 × 4
virtual process grid to a physical network connecting 4 nodes, each
having 4 sockets. Each column subcommunicator (shown with a
different color) spans multiple physical nodes. One MPI process
maps to one socket.
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We consider both the cases of spread-out and contiguous ranks on Hopper, and
microbenchmark Allgatherv and Alltoallv operations by varying processor grid con-
figurations. We benchmark each collective at 400, 1600, and 6400 process counts.
For each process count, we use a square

√
p×√p grid, a tall skinny (2

√
p)×(

√
p/2)

grid, and a short fat (
√
p/2)× (2

√
p) grid, making a total of nine different process

configurations for each of the four cases: Allgatherv spread-out, Alltoallv spread-
out, Allgatherv packed, Alltoallv packed. We perform linear regression on mean
inverse bandwidth (measured as microseconds/MegaBytes) achieved among all sub-
communicators when all subcommunicators work simultaneously. This mimics the
actual BFS scenario. We report the mean as opposed to minimum, because the
algorithm does not require explicit synchronization across subcommunicators.

In each run, we determine constants a, b, c that minimize the sum of squared
errors (SSres =

∑
(yobsd − yest)

2) between the observed inverse bandwidth and the
inverse bandwidth estimated via the equation β(pr, pc) = a pr+b pc+c. The results
are summarized in Table 1. If the observed t-value of any of the constants are below
the critical t-value, we force its value to zero and rerun linear regression. We have
considered other relationships that are linear in the coefficients, such as power series
and logarithmic dependencies, but the observed t-values were significantly below
the critical t-value for those hypotheses, hence not supporting them. We also list
r2, coefficient of determination, which shows the ratio (between 0.0 and 1.0) of
total variation in β that can be explained by its linear dependence on pr and pc.
Although one can get higher r2 scores by using higher-order functions, we opt for
linear regression in accordance to Occam’s razor, because it adequately explains
the underlying data in this case.

Table 1. Regression coefficients for β(pr, pc) = a pr + b pc + c.
Alltoallv (a2a) happens along the rows and Allgatherv (ag) along
the columns. Shaded columns show the runs with spread-out ranks.
Dash (‘–’) denotes uncorrelated cases.

Regression
coefficients

Pack along rows Pack along columns

βag βa2a βag βa2a

a 0.0700 0.0246 – 0.0428
b 0.0148 – – 0.0475
c 2.1957 1.3644 2.3822 4.4861
SSres 1.40 0.46 0.32 7.66
r2 0.984 0.953 0.633 0.895

We see that both the subcommunicator size (the number of processes in each
subcommunicator) and the total number of subcommunicators affect the perfor-
mance in a statistically significant way. The linear regression analysis shows that
the number of subcommunicators have a stronger effect on the performance than
the subcommunicator size for the Allgatherv operation on spread-out ranks (0.0700
vs 0.0148). For Alltoallv operation on spread-out ranks, however, their effects are
comparable (0.0428 vs 0.0475). Increasing the number of subcommunicators in-
creases both the contention and the physical distance between participating pro-
cesses. Subcommunicator size does not change the distance between each partic-
ipant in a communicator and the contention, but it can potentially increase the

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms
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available bandwidth by using a larger portion of the network. We argue that it
is that extra available bandwidth that makes subcommunicator size important for
the Alltoallv case, because it is more bandwidth-hungry than Allgatherv.

For Alltoallv runs with contiguous ranks, we find that the total number of sub-
communicators does not affect the inverse bandwidth in a statistically significant
way. We truncate the already-low coefficient to zero since its observed t-values
are significantly below the critical t-value. The subcommunicator size is positively
correlated with the inverse bandwidth. This supports our original argument that
larger subcommunicators degrade performance due to sub-linear network band-
width scaling. For Allgatherv runs with contiguous ranks, however, we see that
neither parameter affects the performance in a statistically significant way.

We conclude that the number of processors inversely affect the achievable band-
width on the Alltoallv collective used by both the 1D and 2D algorithms. Hence,
the 2D algorithm uses available bandwidth more effectively by limiting the number
of processors in each subcommunicator.

7. Performance Analysis and Results

7.1. Empirical modeling of communication. We first report machine-
independent measures for communication costs. For this purpose, we simulate
parallel BFS using a MATLAB script whose inner kernel, a single BFS step local to
a processor, is written in C++ using mex for speed. For each partition, the simulator
does multiple BFS runs (in order) starting from different random vertices to report
an accurate average, since BFS communication costs, especially the MaxVolume
metric, depend on the starting vertex. When reporting the ratio of TotalVolume
to the total number of edges in Table 2, the denominator counts each edge twice
(since an adjacency is stored twice).

Table 2. Percentage of TotalVolume for 1D row-wise partitioning
to the total number of edges (lower is better). N denotes the
natural ordering, R denotes the ordering with randomly-permuted
vertex identifiers, and P denotes reordering using PaToH.

p = 4 × 1 p = 16 × 1 p = 64 × 1Graph
N R P N R P N R P

coPapersCiteseer 4.7% 14.7% 1.9% 8.7% 47.9% 3.4% 10.8% 102.5% 4.8%
coAuthorsCiteseer 37.6% 79.9% 5.9% 59.3% 143.9% 11.3% 68.7% 180.3% 15.6%
citationCiteseer 64.8% 75.0% 7.8% 125.0% 139.0% 16.9% 164.9% 176.1% 29.0%
coPapersDBLP 7.6% 18.4% 3.7% 15.7% 58.2% 7.6% 21.0% 118.8% 11.7%
coAuthorsDBLP 45.2% 81.3% 10.9% 74.9% 148.9% 19.8% 90.1% 182.5% 27.2%
eu-2005 5.3% 23.2% 0.3% 8.7% 63.8% 1.9% 12.3% 107.4% 7.2%
kronecker-logn18 7.7% 7.6% 6.3% 22.7% 23.1% 19.5% 47.5% 53.4% 45.0%

delaunay n20 52.4% 123.7% 0.2% 59.3% 178.0% 0.6% 60.6% 194.4% 1.4%
rgg n 2 20 s0 0.2% 85.5% 0.1% 0.6% 160.1% 0.3% 2.5% 188.9% 0.6%

The reported communication volume for the expand phase is exact, in the sense
that a processor receives a vertex v only if it owns one of the edges in Adj+(v) and
it is not the owner of v itself. We count a vertex as one word of communication.
In contrast, in the fold phase, the discovered vertices are sent in 〈parent, vertex id〉
pairs, resulting in two words of communication per discovered edge. This is why
values in Table 2 sometimes exceed 100% (i.e. more total communication than the
number of edges), but are always less than 200%. For these simulations, we report
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numbers for both 1D row-wise and 2D checkerboard partitioning when partitioning
with the natural ordering, partitioning after random vertex relabeling, and parti-
tioning using PaToH. The performance trends obtained with 1D partitions gener-
ated using Metis (discussed in Section 7.2) are similar to the ones obtained with
PaToH partitions, and we do not report the Metis simulation counts in current
work.

For 1D row-wise partitioning, random relabeling increases the total commu-
nication volume (i.e., the edge cut), by a factor of up to 10× for low-diameter
graphs (realized in coPaperCiteseer with 64 processors) and up to 250× for high-
diameter graphs (realized in rgg n 2 20 s0 with 16 processors), compared to the
natural ordering. Random relabeling never decreases the communication volume.
PaToH can sometimes drastically reduce the total communication volume, as ob-
served for the graph delaunay n20 (15× reduction compared to natural ordering
and 45× reduction compared to random relabeling for 64 processors) in Table 2.
However, it is of little use with synthetic Kronecker graphs.

Table 3. Ratio of TotalVolume with 2D checkerboard partitioning
to the TotalVolume with 1D row-wise partitioning (less than 1
means 2D improves over 1D).

p = 2 × 2 p = 4 × 4 p = 8 × 8Graph
N R P N R P N R P

coPapersCiteseer 1.32 0.67 0.64 1.25 0.46 0.74 1.35 0.39 0.81
coAuthorsCiteseer 1.45 0.91 0.66 1.47 0.88 0.76 1.60 0.97 0.85
citationCiteseer 0.91 0.28 0.63 0.88 0.84 0.70 0.91 0.93 0.71
coPapersDBLP 1.13 0.68 0.64 1.01 0.48 0.66 1.07 0.42 0.72
coAuthorsDBLP 1.35 0.92 0.69 1.31 0.91 0.76 1.40 1.00 0.85
eu-2005 1.89 0.73 1.29 1.90 0.56 0.60 1.63 0.57 0.48
kronecker-logn18 0.71 0.73 0.52 0.51 0.51 0.42 0.43 0.39 0.34

delaunay n20 1.79 0.95 0.60 2.16 1.09 0.59 2.45 1.24 0.60
rgg n 2 20 s0 135.54 0.75 0.61 60.23 0.80 0.64 18.35 0.99 0.66

Table 3 shows that 2D checkerboard partitioning generally decreases total com-
munication volume for random and PaToH orderings. However, when applied to
the default natural ordering, 2D in general increases the communication volume.

Table 4. Ratio of P ·MaxVolume to TotalVolume for 1D row-wise
partitioning (lower is better).

p = 4 × 1 p = 16 × 1 p = 64 × 1Graph
N R P N R P N R P

coPapersCiteseer 1.46 1.01 1.23 1.81 1.02 1.76 2.36 1.07 2.44
coAuthorsCiteseer 1.77 1.02 1.55 2.41 1.06 2.06 2.99 1.21 2.86
citationCiteseer 1.16 1.02 1.39 1.33 1.07 2.17 1.53 1.21 2.93
coPapersDBLP 1.56 1.01 1.22 1.99 1.02 1.86 2.40 1.05 2.41
coAuthorsDBLP 1.84 1.01 1.39 2.58 1.05 1.85 3.27 1.13 2.43
eu-2005 1.37 1.10 1.05 3.22 1.28 3.77 7.35 1.73 9.36
kronecker-logn18 1.04 1.06 1.56 1.22 1.16 1.57 1.63 1.42 1.92

delaunay n20 2.36 1.03 1.71 3.72 1.13 3.90 6.72 1.36 8.42
rgg n 2 20 s0 2.03 1.03 2.11 4.70 1.13 6.00 9.51 1.49 13.34

The (P ·MaxVolume)/TotalVolume metric shown in Tables 4 and 5 show the
expected slowdown due to load imbalance in per-processor communication. This is
an understudied metric that is not directly optimized by partitioning tools. Random
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94 AYDIN BULUÇ AND KAMESH MADDURI

Table 5. Ratio of P ·MaxVolume to TotalVolume for 2D checker-
board partitioning (lower is better).

p = 2 × 2 p = 4 × 4 p = 8 × 8Graph
N R P N R P N R P

coPapersCiteseer 1.38 1.29 1.20 2.66 1.07 1.59 4.82 1.04 2.12
coAuthorsCiteseer 1.46 1.29 1.56 2.57 1.08 1.95 4.76 1.08 2.52
citationCiteseer 1.29 1.29 1.40 1.35 1.08 2.08 1.71 1.07 2.63
coPapersDBLP 1.40 1.29 1.28 2.35 1.07 1.81 4.00 1.03 1.96
coAuthorsDBLP 1.51 1.28 1.28 2.51 1.08 1.81 4.57 1.12 1.97
eu-2005 1.70 1.32 1.78 3.38 1.15 3.25 8.55 1.19 8.58
kronecker-logn18 1.31 1.31 2.08 1.14 1.12 1.90 1.12 1.09 1.93

delaunay n20 1.40 1.30 1.77 3.22 1.12 4.64 8.80 1.18 11.15
rgg n 2 20 s0 3.44 1.31 2.38 8.25 1.13 6.83 53.73 1.18 17.07

(a) 1D row-wise model (b) 2D checkerboard model

Figure 4. Maximum and average communication volume scaling
for various partitioning strategies. y-axis is in thousands of words
received.

relabeling of the vertices results in partitions that are load-balanced per iteration.
The maximum occurs for the eu-2005 matrix on 64 processors with 1D partitioning,
but even in this case, the maximum (1.73×) is less than twice the average. In
contrast, both natural and PaToH orderings suffer from imbalances, especially for
higher processor counts.

To highlight the problems with minimizing total (hence average) communica-
tion as opposed to the maximum, we plot communication volume scaling in Figure 4
for the Kronecker graph we study. The plots show that even though PaToH achieves
the lowest average communication volume per processor, its maximum communica-
tion volume per processor is even higher than the random case. This partly explains
the computation times reported in Section 7.2, since the maximum communication
per processor is a better approximation for the overall execution time.

Edge count imbalances for different partitioning strategies can be found in the
Appendix. Although they are typically low, they only represent the load imbalance
due to the number of edges owned by each processor, and not the number of edges
traversed per iteration.
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7.2. Impact of Partitioning on parallel execution time. Next, we study
parallel performance on Hopper for some of the DIMACS graphs. To understand
the relative contribution of intra-node computation and inter-node communication
to the overall execution time, consider the Hopper microbenchmark data illustrated
in Figure 5. The figure plots the aggregate bandwidth (in GB/s) with multi-node
parallel execution (and four MPI processes per node) and a fixed data/message size.
The collective communication performance rates are given by the total number of
bytes received divided by the total execution time. We also generate a random
memory references throughput rate (to be representative of the local computational
steps discussed in Section 2), and this assumes that we use only four bytes of every
cache line fetched. This rate scales linearly with the number of sockets. Assigning
appropriate weights to these throughput rates (based on the the communication
costs reported in the previous section) would give us a lower bound on execution
time, as this assumes perfect load balance.

Figure 5. Strong-scaling performance of collective communica-
tion with large messages and intra-node random memory accesses
on Hopper.

We report parallel execution time on Hopper for two different parallel concur-
rencies, p = 16 and p = 256. Tables 6 and 7 give the serial performance rates (with
natural ordering) as well as the relative speedup with different reorderings, for sev-
eral benchmark graphs. There is a 3.5× variation in serial performance rates, with
the skewed-degree graphs showing the highest performance and the high diameter
graphs road central and hugebubbles-00020 the lowest performance. For the
parallel runs, we report speedup over the serial code with the natural ordering.
Interestingly, the random-ordering variants perform best in all of the low-diameter
graph cases. The performance is better than PaToH- and Metis-partitioned vari-
ants in all cases. The table also gives the impact of checkerboard partitioning on
the running time. There is a moderate improvement for the random variant, but
the checkerboard scheme is slower for the rest of the schemes. The variation in rel-
ative speedup across graphs is also surprising. The synthetic low-diameter graphs

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms
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demonstrate the best speedup overall. However, the speedups for the real-world low-
diameter graphs are 1.5× lower, and the relative speedups for the high-diameter
graphs are extremely low.

Table 6. BFS performance (in millions of TEPS) for single-
process execution, and observed relative speedup with 16 MPI pro-
cesses (4 nodes, 4 MPI processes per node). The fastest variants
are highlighted in each case. M denotes Metis partitions.

Relative Rel. SpeedupPerf Rate
Speedup over 1D

p = 1 × 1 p = 16 × 1 p = 4 × 4Graph
N N R M P N R M P

coPapersCiteseer 24.9 5.6× 9.7× 8.0× 6.9× 0.4× 1.0× 0.4× 0.5×
eu-2005 23.5 6.1× 7.9× 5.0× 4.3× 0.5× 1.1× 0.5× 0.6×
kronecker-logn18 24.5 12.6× 12.6× 1.8× 4.4× 1.1× 1.1× 1.4× 0.8×
er-fact1.5-scale20 14.1 11.2× 11.2× 11.5× 10.0× 1.1× 1.2× 0.8× 1.1×

road central 7.2 3.5× 2.2× 3.5× 3.6× 0.6× 0.9× 0.5× 0.5×
hugebubbles-00020 7.1 3.8× 2.7× 3.9× 2.1× 0.7× 0.9× 0.6× 0.6×
rgg n 2 20 s0 14.1 2.5× 3.4× 2.6× 2.6× 0.6× 1.2× 0.6× 0.7×
delaunay n18 15.0 1.9× 1.6× 1.9× 1.3× 0.9× 1.4× 0.7× 1.4×

Table 7. BFS performance rate (in millions of TEPS) for single-
process execution, and observed relative speedup with 256 MPI
processes (64 nodes, 4 MPI processes per node).

Relative Rel. SpeedupPerf Rate
Speedup over 1D

p = 1 × 1 p = 256 × 1 p = 16 × 16Graph
N N R M P N R M P

coPapersCiteseer 24.9 10.8× 22.4× 12.9× 18.1× 0.5× 2.5× 0.7× 0.5×
eu-2005 23.5 12.9× 21.7× 8.8× 17.2× 0.6× 2.7× 0.6× 0.3×
kronecker-logn18 24.5 42.3× 41.9× 16.3× 23.9× 2.6× 2.6× 0.3× 1.1×
er-fact1.5-scale20 14.1 57.1× 58.0× 50.1× 50.4× 1.6× 1.6× 1.1× 1.2×

road central 7.2 1.2× 0.9× 1.3× 1.7× 1.9× 2.1× 1.1× 0.9×
hugebubbles-00020 7.1 1.6× 1.5× 1.6× 2.0× 1.5× 2.2× 2.0× 0.8×
rgg n 2 20 s0 14.1 1.5× 1.3× 1.6× 2.1× 1.2× 1.2× 1.3× 1.1×
delaunay n18 15.0 0.6× 0.4× 0.5× 0.8× 1.8× 1.9× 2.1× 1.6×

Figure 6 gives a breakdown of the average parallel BFS execution and inter-node
communication times for 16-processor parallel runs, and provides insight into the
reason behind varying relative speedup numbers. For all the low-diameter graphs,
at this parallel concurrency, execution time is dominated by local computation. The
local discovery and local update steps account for up to 95% of the total time, and
communication times are negligible. Comparing the computational time of random
ordering vs. Metis reordering, we find that BFS on the Metis-reordered graph
is significantly slower. The first reason is that Metis partitions are highly unbal-
anced in terms of the number of edges per partition for this graph, and so we can
expect a certain amount of imbalance in local computation. The second reason is
a bit more subtle. Partitioning the graph to minimize edge cut does not guarantee
that the local computation steps will be balanced, even if the number of edges per
process are balanced. The per-iteration work is dependent on the number of ver-
tices in the current frontier and their distribution among processes. Randomizing
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(a) kronecker-logn18 (total) (b) kronecker-logn18 (comm)

(c) eu-2005 (total) (d) eu-2005 (comm)

(e) coPapersCiteseer (total) (f) coPapersCiteseer (comm)

(g) road central (total) (h) road central (comm)

Figure 6. Average BFS execution time for various test graphs
with 16 MPI processes (4 nodes, 4 MPI processes per node).
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vertex identifiers destroys any inherent locality, but also improves local computa-
tion load balance. The partitioning tools reduce edge cut and enhance locality, but
also seem to worsen load balance, especially for skewed degree distribution graphs.
The PaToH-generated 1D partitions are much more balanced in terms of number
of edges per process (in comparison to the Metis partitions for Kronecker graphs),
but the average BFS execution still suffers from local computation load imbalance.
Next, consider the web crawl eu-2005. The local computation balance even after
randomization is not as good as the synthetic graphs. One reason might be that the
graph diameter is larger than the Kronecker graphs. 2D partitioning after random-
ization only worsens the load balance. The communication time for the fold step is
somewhat lower for Metis and PaToH partitions compared to random partitions,
but the times are not proportional to the savings projected in Table 4. This de-
serves further investigation. coPapersCiteseer shows trends similar to eu-2005.
Note that the communication time savings going from 1D to 2D partitioning are
different in both cases.

The tables also indicate that the level-synchronous approach performs ex-
tremely poorly on high-diameter graphs, and this is due to a combination of reasons.
There is load imbalance in the local computation phase, and this is much more ap-
parent after Metis and PaToH reorderings. For some of the level-synchronous
phases, there may not be sufficient work per phase to keep all 16/256 processes
busy. The barrier synchronization overhead is also extremely high. For instance,
observe the cost of the expand step with 1D partitioning for road central in Fig-
ure 6. This should ideally be zero, because there is no data exchanged in expand
for 1D partitioning. Yet, multiple barrier synchronizations of a few microseconds
turn out to be a significant cost.

Table 7 gives the parallel speedup achieved with different reorderings at 256-way
parallel concurrency. The Erdős-Rényi graph gives the highest parallel speedup for
all the partitioning schemes, and they serve as an indicator of the speedup achieved
with good computational load balance. The speedup for real-world graphs is up
to 5× lower than this value, indicating the severity of the load imbalance problem.
One more reason for the poor parallel speedup may be that these graphs are smaller
than the Erdős-Rényi graph. The communication cost increases in comparison to
the 16-node case, but the computational cost comprises 80% of the execution time.
The gist of these performance results is that for level-synchronous BFS, partitioning
has a considerable effect on the computational load balance, in addition to altering
the communication cost. On current supercomputers, the computational imbalance
seems to be the bigger of the two costs to account for, particularly at low process
concurrencies.

As highlighted in the previous section, partitioners balance the load with re-
spect to overall execution, that is the number of edges owned by each processor,
not the number of edges traversed per BFS iteration. Figure 7 shows the actual
imbalance that happens in practice due to the level-synchronous nature of the BFS
algorithm. Even though PaToH limits the overall edge count imbalance to 3%,
the actual per iteration load imbalances are severe. In contrast, random vertex
numbering yields very good load balance across MPI processes and BFS steps.
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Figure 7. Parallel BFS execution timeline for the eu-2005 graph
with PaToH and random vertex ordering (16 MPI processes, 4
nodes, 4 processes per node).

8. Conclusions and Future Work

Our study highlights limitations of current graph and hypergraph partition-
ers for the task of partitioning graphs for distributed computations. The crucial
limitations are:

(1) The frequently-used partitioning objective function, total communication vol-
ume, is not representative of the execution time of graph problems such as
breadth-first search, on current distributed memory systems.

(2) Even well-balanced vertex and edge partitions do not guarantee load-balanced
execution, particularly for real-world graphs. We observe a range of relative
speedups, between 8.8× to 50×, for low-diameter DIMACS graph instances.

(3) Although random vertex relabeling helps in terms of load-balanced parallel
execution, it can dramatically reduce locality and increase the communication
cost to worst-case bounds.

(4) Weighting the fold phase by a factor of two is not possible with two-phase
partitioning strategies employed in current checkerboard method in PaToH,
but it is possible with the single-phase fine grained partitioning. However,
fine grained partitioning arbitrarily assigns edges to processors, resulting in
communication among all processors instead of one processor grid dimension.

Although MaxVolume is a better metric than TotalVolume in predicting the
running time, BFS communication structure heavily depends on run-time informa-
tion. Therefore, a dynamic partitioning algorithm that captures the access patterns
in the first few BFS iterations and repartitions the graph based on this feedback
can be a more effective way of minimizing communication.

We plan to extend this study to consider additional distributed-memory graph
algorithms. Likely candidates are algorithms whose running time is not so heavily
dependent on the graph diameter. We are also working on a hybrid hypergraph-
graph model for BFS where fold and expand phases are modeled differently.
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Appendix on edge count per processor

Tables 8 and 9 show the per-processor edge count (non-zero count in the graph’s
sparse adjacency matrix, denoted as mi, i ∈ P in the table) load imbalance for 1D
and 2D checkerboard partitionings, respectively. The reported imbalances are for
the storage of the graph itself, and exclude the imbalance among the frontier ver-
tices. This measure affects memory footprint and local computation load balance.
1D row-wise partitioning gives very good edge balance for high-diameter graphs,
which is understandable due to their local structure. This locality is not affected
by any ordering either. For low-diameter graphs that lack locality, natural order-
ing can result in up to a 3.4× higher edge count on a single processor than the
average. Both the random ordering and PaToH orderings seem to take care of this
issue, though. On the other hand, 2D checkerboard partitioning exacerbates load
imbalance in the natural ordering. For both low and high diameter graphs, a high
imbalance, up to 10 − 16×, may result with natural ordering. Random ordering
lowers it to at most 11% and PaToH further reduces it to approximately 3− 5%.
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Table 8. Edge count imbalance: maxi∈P (mi)/averagei∈P (mi)
with 1D row-wise partitioning (lower is better, 1 is perfect bal-
ance).

p = 4 × 1 p = 16 × 1 p = 64 × 1Graph
N R P N R P N R P

coPapersCiteseer 2.11 1.00 1.00 2.72 1.02 1.00 3.14 1.06 1.00
coAuthorsDBLP 1.90 1.00 1.00 2.60 1.03 1.00 3.40 1.04 1.00
eu-2005 1.05 1.01 1.01 1.50 1.05 1.02 2.40 1.06 1.02
kronecker-logn18 1.03 1.02 1.01 1.10 1.08 1.02 1.29 1.21 1.02

rgg n 2 20 s0 1.01 1.00 1.03 1.02 1.00 1.02 1.02 1.00 1.02
delaunay n20 1.00 1.00 1.02 1.00 1.00 1.02 1.00 1.00 1.02

Table 9. Edge count imbalance: maxi∈P (mi)/averagei∈P (mi)
with 2D checkerboard partitioning (lower is better, 1 is perfect
balance).

p = 2 × 2 p = 4 × 4 p = 8 × 8Graph
N R P N R P N R P

coPapersCiteseer 3.03 1.01 1.02 7.43 1.00 1.03 15.90 1.02 1.02
coAuthorsDBLP 2.46 1.00 1.03 5.17 1.02 1.01 10.33 1.02 1.02
eu-2005 1.91 1.03 1.03 3.73 1.06 1.03 9.20 1.13 1.05
kronecker-logn18 1.03 1.01 1.01 1.06 1.04 1.03 1.15 1.11 1.03

rgg n 2 20 s0 2.00 1.00 1.04 4.01 1.00 1.04 8.05 1.01 1.03
delaunay n20 1.50 1.00 1.04 2.99 1.00 1.03 5.99 1.01 1.04
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Using graph partitioning for efficient
network modularity optimization

Hristo Djidjev and Melih Onus

Abstract. The paper reviews an approach for finding the communities of
a network developed by the authors [WAW’06, Lecture Notes in Computer
Science, Volume 4936/2008, 117-128, IEEE TPDS vol. PP, issue 99, 2012],
which is based on a reduction of the modularity optimization problem to the
minimum weighted cut problem, and gives an experimental evaluation of an
implementation based on that approach on graphs from the 10th DIMACS
Implementation Challenge Testbed. Specifically, we describe a reduction from

the problem of finding a partition of the nodes of a graph G that maximizes the
modularity to the problem of finding a partition that minimizes the weight of
the cut in a complete graph on the same node set as G, and weights dependent
on a random graph model associated with G. The resulting minimum cut
problem can then be solved by modifying existing codes for graph partitioning.
We compare the performance of our implementation based on the Metis graph
partitioning tool [SIAM J. Sci. Comp. 20, 359–392] against one of the best
performing algorithms described in this volume.

1. Introduction

One way to extract information about the structure of a network or a graph
and the relationships between its nodes is to divide it into communities, groups of
nodes with denser links within the same group and sparser links between nodes in
different groups. For instance, in a citation network, papers on related topics form
communities and, in social networks, communities may define groups of people with
similar interests.

The intuitive notion of communities given above is too vague as it is not specific
about how dense the in-group links and how sparse the between group links should
be. There are several formal definitions of communities, but the most popular
currently is the one based on the modularity of a partition. Modularity [31, 35]
is a measure of community quality of a partition of a network and measures the
difference between the fraction of the links with endpoints in the same set of the
partition and the expected fraction of that number in a network with a random
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placement of the links. Formally, let G = (V,E) be the graph representing the
network and P = {V1, . . . , Vk}, k ≥ 1, be a partition of V , i.e., such that V1 ∪ · · · ∪
Vk = V and Vi ∩ Vj = ∅ for i 
= j. We refer to the sets Vi as communities. Let G
be a random graph on the same set of nodes as G. Then the modularity of P with
respect to G is defined as

(1.1) mod(P, G, G) =
1

m

k∑
i=1

(|E(Vi)| − E(Vi,G)),

where m is the number of the edges of G, E(Vi) denotes the set of all edges of G
whose both endpoints are in Vi and E(Vi,G) denotes the expected number of edges
in G with endpoints in Vi.

There are two choices that have been most often used for the random graph
G. The random graph model G(n, p) of Erdös-Rényi [17] defines equal edge prob-
abilities between all pairs of nodes. If n is the number of the nodes of G, m is the
number of the edges, and p is chosen as m/n2, then the expected number of edges
of G(n, p) is m. The alternative and more often used choice for a random graph in
the definition of the modularity is based on the Chung and Lu model [10]. In that
graph model, the expected node degrees match the node degrees of G. It defines
an edge in G between nodes v and w of G with probability d(v)d(w)/(2m), where
by d(x) we denote the degree of node x.

By the definition of modularity, a higher modularity indicates a larger frac-
tion of in-community edges and, hence, a community structure of higher quality.
Hence, the community detection problem can be formally defined as a modularity
optimization problem, namely, given a graph G, find a partition of the nodes of G
with maximum modularity. The minimum value of the modularity for a given G
over the set of all partitions is called modularity of G, which we will denote by
mod(G, G). The modularity optimization problem has been shown to be NP-hard
[9].

Hence, polynomial algorithms for finding an exact solution are unlikely, and
various researchers have tried to construct heuristic algorithms for solving the mod-
ularity optimization problem. Clauset, Newman and Moore [11] construct an ag-
glomerative algorithm that starts with a partition where each node represents a
separate community and iteratively merge pairs of communities in order of max-
imum modularity gain, thereby building a dendrogram of the graph. They also
consruct a data structure that makes the search of the best pair to merge very
efficient. Guimerà and Amaral [22] use simulated annealing in a procedure that
iteratively updates an initial partitioning aiming at increasing modularity. Sim-
mulated annealing is used in order to try to avoid converging to a local minimum.
Another physics-based approach is employed by Reichardt and Bornholdt [38], who
simulate spin glass energy minimization for finding a community structure defined
as the configuration of minimum energy. White and Smyth [43] and Newman [33]
use a spectral approach by computing the eigenvector of the modularity matrix
defined as the adjacency matrix of the input graph, appropriately updated to take
into account the contribution of the random graph probabilities.

In this paper we describe a community detection method that reduces mod-
ularity optimization to the problem of finding a minimum weighted cut, which
latter problem can be solved efficiently by using methods and tools developed for
graph partitioning. Our approach was originally reported in [12–14], where we
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have compared our methods against the algorithms from [11,22,33,38] on artifi-
cial graphs and showed that our algorithm is comparable in accuracy with the most
accurate of these algorithms, while its scalability is significantly higher. In this pa-
per we will first review the reduction from modularity optimization to minimum
weighted cut, and then describe briefly how the resulting minimum cut problem can
be solved by modifying the Metis graph partitioning code. Then we will compare
the performance of the resulting algorithm against another algorithm described in
this volume, using data sets from the 10th DIMACS Implementation Challenge
collection.

2. Reduction of modularity optimization to minimum weighted cut

By the modularity definition (1.1) we have

m ·mod(G, G) = max
P
{

k∑
i=1

( |E(Vi)| − E(Vi,G) )}

= −min
P
{ −

k∑
i=1

( |E(Vi)| − E(Vi,G) )}

(2.1) = −min
P
{ (|E| −

k∑
i=1

|E(Vi)| )− (|E| −
k∑

i=1

E(Vi,G) )}.

The first term |E| −
∑k

i=1 |E(Vi)| of (2.1) is the number of the edges that
connect all pairs of nodes from different sets of the partition. A cut of a graph is
generally defined as a set C of edges whose removal divides the nodes of the graph
into two or more sets such that all edges in C connect nodes from different sets.
We extend this definition so that C = ∅ is also considered a valid cut, although it
corresponds to a partition of a single set containing all the nodes of the graph. (The
reason is that such partitions are also allowed in the definition of the modularity
and, in fact, are essential as they correspond to a graph with a modularity structure
of a single community.) We denote cut(P, G) = E(G)− ∪ki=1 E(Vi).

The second term |E|−
∑k

i=1 E(Vi,G) of (2.1), which we denote by Ecut(P, G, G),
corresponds to the expected value of the cut size of P in G. The assumption that
we make about the random graph model is that it preserves the expected number of
the edges, hence |E| is equal to the expected number of edges of G. The two random
graph models that we consider in this paper, the Erdös-Rényi and the Chung-Lu
models, have this property, as we show below.

Hence,

m ·mod(G, G) = −min
P
{ |cut(P, G)| − Ecut(P, G, G)},

which shows that the modularity optimization problem is equivalent to the problem
of finding a partition that minimizes the difference of two cut. In order to merge
the two cuts into a cut of a single graph, we define a new graph as follows.

We define a complete graph G′ with the same vertices as G and a weight on
each edge (v, w) defined by

(2.2) wt(v, w) =

{
1− p(v, w), if (v, w) ∈ E(G)
−p(v, w), if (v, w) 
∈ E(G),
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where p(v, w) is the probability of an edge between nodes v and w in G. Since G′

is complete, the cut set for P in G′ is cut(P, G′) = {(v, w) | v ∈ Vi, w ∈ Vj , i < j}
and its weight is

wt(cut(P, G′)) =
∑
i<j

∑
(v,w)∈Vi×Vj

wt(v, w)

=
∑
i<j

∑
(Vi×Vj)∩E

1 −
∑
i<j

∑
(v,w)∈Vi×Vj

p(v, w)

= |cut(P, G)| − Ecut(P, G, G).
Then

mod(G, G) = −min
P

wt(cut(P, G′))/m,

and, hence, the modularity optimization problem is equivalent to the problem of
finding a minimum weighted cut for G′.

In order to complete the reduction, we just need to show that the values of
p(v, w) for the two random graph models we consider satisfy the assumption about
the expected number of edges. For the Erdös-Rényi model, p(v, w) is typically
chosen as 2m/n2, which gives that the expected number of edges of G is

1

2

∑
(v,w)∈V ×V

p(v, w) =
n2p(v, w)

2
= m.

For the Chung-Lu model we have p(v, w) = d(v)d(w)/(2m), which gives for the
expected number of edges of G

1

2

∑
(v,w)∈V ×V

p(v, w) =
1

4m

∑
(v,w)∈V ×V

d(v)d(w)

=
1

4m

∑
v∈V

d(v)
∑
w∈V

d(w) =
(2m)2

4m
= m.

The above approach can be generalized in a straightforward manner to graphs
with positively weighted edges. For this end, in definition (1.1), m is replaced with
the sum M of all edge weights, |E(Vi)| with the sum of the weights of all edges
between nodes in Vi, and the expected number of edges in G corresponding to
E(Vi) with the expected weight of those edges. Finally, the random graph model G
is replaced by a complete graph with weighted edges. For instance, for the Erdös-
Rényi model, the probability p(v, w) of an edge between nodes v and w is replaced
by the weight wt(v, w), which is defined as wt(v, w) = 2M/n2 and in the Chung-Lu
model the weight is defined as D(v)D(w)/(2M), where D(v) denotes the sum of
the weights of all edges in G incident with v.

3. Implementation of the modularity optimization algorithm
based on the Metis package

In the previous section we showed that finding a partition in G maximizing
the modularity is equivalent to finding a minimum weighted cut in the complete
graph G′. While the minimum cut problem is polynomial-time solvable in the case
of nonnegative weights, this case does not apply to our problem as the weights of
G′ can be negative. The general decision version of the minimum cut problem is
NP-complete as the maximum cut problem, which is NP-complete [18, problem
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ND16, p.210], can be reduced to it. Hence one has to look for approximation or
heuristic based algorithms for the modularity optimization problem.

While different versions of the minimum cut problem have been widely re-
searched from theoretical point of view, much less attention has been paid to their
implementation. The graph partitioning (GP) problem, which is related to the
minimum cut problem, has received much greater attention from practitioners and
very efficient implementations have been developed. The reason is that GP has
important applications such as load balancing for high-performance computing and
VLSI circuit design. For that reason, we are using a GP tool as a basis of our
weighted minimum cut implementation, thereby solving the modularity optimiza-
tion problem.

The GP problem asks, given a graph and an integer k, to find a partitioning
of the vertices of the graph into equally sized (within difference at most one) sets
such that the number (or weight) of the edges between different sets is minimized.
Hence, GP is similar to the minimum cut problem, with the following differences:
(i) in GP the sizes of the parts have to be balanced, while in minimum cut they
can be arbitrary; (ii) in GP the number of the parts is an input variable given
by the user, while in minimum cut and modularity optimization it is subject to
optimization.

Any graph partitioning tool can be chosen as a basis for implementing (after
appropriate modifications) the modularity optimization algorithm. The specific
GP tool that we chose for our implementation is Metis [23,24]. The reason is that
Metis is considered an efficient and accurate tool for graph partitioning and that it
is publicly available as a source code.

Metis is using multilevel strategy to find a good solution in a scalable manner.
This type of multilevel strategy involves three phases: coarsening, partitioning, and
uncoarsening. In the coarsening phase the size of the original graph is reduced in
several stages, where at each stage connected subsets of nodes are contracted into
single nodes, reducing as a result the number of the nodes of the graph roughly
by half. The coarsening continues until the size of the resulting graph becomes
reasonably small, say about 100 nodes. The final small graph is partitioned during
the partitioning phase using some existing partitioning algorithms. In particular,
Metis uses a graph-growing heuristic where one constructs one set of the partition
by starting with a randomly selected node and then adding nodes to it in a breadth-
first manner. The uncoarsening phase involves projecting the found solution from
smaller graphs to larger ones, and refining the solution after each projection. This
refinement step is one of the most important and sensitive for the quality of the
final partition step. Metis implements it using the Kernighan-Lin algorithm. That
algorithm computes for each node a quantity called gain that is equal to the change
in the size (weight) of the cut if that node is moved from its current part to the other
one. Then nodes with maximum gains are exchanged between partitions, making
sure the balance between the sizes of the parts is maintained and also avoiding
some local minima by allowing a certain number of negative-gain node swaps. See
[23,24] for more details about the implementation of Metis.

The modifications to Metis that need to be made are of two types: first, ones
that take care of the above mentioned difference between GP and minimum cut
problems and, second, ones aiming at improving the efficiency of the algorithm.
Specifically, the minimum cut problem that we need to solve is on a complete
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graph G′, whose number of edges is of order Ω(n2), where n is the number of the
nodes of G, while the number of the edges of the original graph G is typically of
order O(n). We will briefly discuss these two types of modifications below.

Removing the GP restriction of balanced part sizes is easy; in Metis we have
just to omit checking the balance of the partition. Finding the right number of
parts can be done in the following recursive way. We divide the original graph into
two parts using the algorithm described above. If both parts are non-empty, we
recurse on each part, and, if one of the part is empty (and the other contains all
nodes), we are done. The latter case corresponds to the situation where the current
graph (or subgraph) contains a single community.

The final issue we discuss is how to avoid the necessity of working explicitly
with the edges of G′ that are not in G and, as a result, to avoid the Ω(n2) bound
on the running time. The idea is to use explicitly in the algorithm only the edges
of G, while handling implicitly the other ones by correcting the computed values
in constant time. For instance, suppose that we have a partition P of the nodes of
G′ in two sets of sizes n1 and n2, respectively, and we have computed the weight
of the corresponding cut in G, say wG. Our goal is to evaluate the corresponding
cut in G′. Assume that the random class model is G(n, p). Then the weight of the
cut corresponding to P in G′ is wG′ = wG−n1n2p by formula (2.2). Hence it takes
O(1) time to compute wG′ knowing wG′ . In a similar way one can compute the
weight of the cut in G′ in the case of the Chung-Li model, see [14] for details.

4. Comparison on DIMACS testbed graphs

We have tested our algorithm against the algorithm that was ranked at the top
in the DIMACS Challenge with respect to its accuracy. Although the Challenge

Table 1. Comparison of our algorithm with the algorithm of
Ovelgönne and Geyer-Schulz [37]

Network
Modularity Modularity Run Time Run Time
(Our Paper) (OG) (Our Paper) (OG)

as-22july06 0.6338 0.6776 3.26 25.28

astro-ph 0.7162 0.7424 1.14 36.48

caidaRouterLevel 0.8421 0.8719 8.67 324.36

celegans-metabolic 0.4224 0.4490 0.03 0.22

citationCiteseer 0.7732 0.8228 12.17 579.16

coAuthorsCiteseer 0.8844 0.9051 18.97 618.75

cond-mat-2005 0.7187 0.7460 3.54 111.34

email 0.5654 0.5802 0.08 0.81

G-n-pin-pout 0.3829 0.4998 6.12 680.77

kron-g500-logn16 0.0402 0.0533 12.42 4682.84

memplus 0.5913 0.7000 0.53 20.47

PGPgiantcompo 0.8750 0.8862 0.64 8.45

polblogs 0.4260 0.4269 0.14 0.64

power 0.9329 0.9397 0.19 1.92

rgg-n-2-7-s0 0.9732 0.9780 6.55 174.76

smallworld 0.7455 0.7930 17.61 267.86

coPapersDBLP 0.8309 0.8666 142.91 6388.64

in-2004 0.9717 0.9806 1321.52 1717.6
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website already contains ranking results for several of the algorithms [39], including
ours, those algorithms were not run on the same computer. Furthermore, the data
on the website has not been converted into an easy to read format. Therefore, we
believe it is worth including in this paper a direct comparison of our algorithm
against a top performing algorithm from the challenge.

Ovelgonne and Geyer-Schulz’s algorithm [37], ranked as number one in the
Challenge, exploits the idea of ensemble learning. It learns weak graph clusterings
and uses them to find a strong graph clustering. Table 1 compares the performance
of our algorithm with that algorithm.

The test graphs in our experiments are the Co-author and Citation Networks
and the Clustering Instances datasets of the DIMACS Challenge testbed [40], [2],
[4], [6], [8], [7], [42], [1], [32], [25], [29], [19], [26], [28], [16], [30], [41], [27],
[36], [34], [5], [21], [15], [20], and [3]. All experiments have been run on an
Intel(R) Core(TM) i3 CPU M370 2.40 GHz processor notebook computer with 4G
of memory.

For each experiment, the table shows the average running time and modularity
of the partition for each of the algorithms. The results show modularity of the
clusterings that our algorithm finds is 7% less on average, but our algorithm is 48
times faster on average. For one instance (kron-g500-logn16), our algorithm is 390
times faster.

One of the reasons that the modularities of our partitions are lower than the
modularities produced by the code of [37] is that our algorithm is based on a version
of Metis that is known to perform poorly on power law graphs. Hence our algorithm
inherits the same weakness. Most of the networks in the testbed have power law or
non-uniform degree distribution, which may explain some of the results. There is
a newer version of Metis that is claimed to partition power law graphs successfully
and it can be used for a new implementation of our algorithm.

5. Conclusion

We proved in this paper that the modularity optimization problem is equivalent
to the problem of finding a minimum cut of a complete graph with real edge weights.
We also showed that the resulting minimum cut problem can be solved based on
existing software for graph partitioning. Our implementation was based on Metis,
but we believe most other high-quality graph partitioning tools can be used for the
same purpose. Of particular interest will be using a parallel partitioner as this will
yield a parallel code for community detection.
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Modularity maximization in networks by variable
neighborhood search

Daniel Aloise, Gilles Caporossi, Pierre Hansen, Leo Liberti,
Sylvain Perron, and Manuel Ruiz

Abstract. Finding communities, or clusters, in networks, or graphs, has been
the subject of intense studies in the last ten years. The most used criterion
for that purpose, despite some recent criticism, is modularity maximization,
proposed by Newman and Girvan. It consists in maximizing the sum for all
clusters of the number of inner edges minus the expected number of inner
edges assuming the same distribution of degrees. Numerous heuristics, as
well as a few exact algorithms have been proposed to maximize modularity.
We apply the Variable Neighborhood Search metaheuristic to that problem.
Computational results are reported for the instances of the 10th DIMACS Im-
plementation Challenge. The algorithm presented in this paper obtained the
second prize in the quality modularity (sub)challenge of the referred competi-
tion, finding the best known solutions for 11 out of 30 instances.

1. Introduction

Clustering is an important chapter of data analysis and data mining with nu-
merous applications in natural and social sciences as well as in engineering and
medicine. It aims at solving the following general problem: given a set of entities,
find subsets, or clusters, which are homogeneous and/or well-separated. As the con-
cepts of homogeneity and of separation can be made precise in many ways, there are
a large variety of clustering problems [HJ,JMF,KR,M]. These problems in turn
are solved by exact algorithms or, more often and particularly for large data sets,
by heuristics, of which there are frequently a large variety. An exact algorithm pro-
vides, hopefully in reasonable computing time, an optimal solution together with a
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proof of its optimality. A heuristic provides, usually in moderate computing time,
a near optimal solution or sometimes an optimal solution but without proof of its
optimality.

In the last decade, clustering on networks, or graphs, has been extensively
studied, mostly in the physics and computer science communities, with recently
a few forays from operations research. Rather than using the term cluster, the
words module or community are often adopted in the physics literature. We use
below the standard notation and terminology for graphs, i.e, a graph G = (V,E, ω)
is composed of a set V of n vertices vj and a set E of m edges eij = {vi, vj}.
These edges may be weighted by the function ω({u, v}). If they are unweighted
ω({u, v}) = 1. A subgraph GC = (C,EC , ω) of a graph G = (V,E, ω) induced
by a set of vertices C ⊆ V is a graph with vertex set C and edge set EC equal
to all edges with both vertices in C. Such a subgraph corresponds to a cluster
(or module, or community) and many heuristics aim at finding a partition C of V
into pairwise disjoint nonempty subsets V1, V2, . . . , VN inducing subgraphs of G and
covering V . Various objective functions have been proposed for evaluating such a
partition. Among the best known are multiway cut [GH], normalized cut [SM],
ratio cut [AY] and modularity [NG]. Initially proposed by Girvan and Newman
in 2002 [GN] as a stopping rule for a hierarchical divisive heuristic, modularity
was considered later as an independent criterion allowing determination of optimal
partitions as well as comparison between partitions obtained by various methods.

Modularity aims at finding a partition of V which maximizes the sum, over all
modules, of the number of inner edges minus the expected number of such edges
assuming that they are drawn at random with the same distribution of degrees as
in G. The following precise definition of modularity is given in [NG]:

Q =
∑
C∈C

[aC − eC ] ,

where aC is the fraction of all edges that lie within module C and eC is the expected
value of the same quantity in a graph in which the vertices have the same expected
degrees but edges are placed at random. A maximum value of Q near to 0 indicates
that the network considered is close to a random one (barring fluctuations), while
a maximum value of Q near to 1 indicates strong community structure. Observe
that maximizing modularity gives an optimal partition together with the optimal
number of modules.

Let the weight vertex function be defined as:

ω(v) =

⎧⎪⎪⎨
⎪⎪⎩

∑
{u,v}∈E

ω({u, v}) if {v, v} /∈ E∑
{u,v}∈E,u 	=v

ω({u, v}) + 2ω({v, v}) if {v, v} ∈ E.

The modularity for a module C may be written as

(1) Q(C) =

∑
{u,v}∈EC

ω({u, v})

∑
e∈E

ω(e)
−

(∑
v∈VC

ω(v)

)2

4

(∑
e∈E

ω(e)

)2 .
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Let C be a partition of V . The sum over modules of their modularities can be
written as

(2) Q =

∑
C∈C

∑
{u,v}∈EC

ω({u, v})

∑
e∈E

ω(e)
−

∑
C∈C

(∑
v∈VC

ω(v)

)2

4

(∑
e∈E

ω(e)

)2 .

Numerous heuristics have been proposed to maximize modularity. They are
based on divisive hierarchical clustering, agglomerative hierarchical clustering, par-
titioning, and hybrids. They rely upon various criteria for agglomeration or division
[BGLL,CNM,DDA,N04,WT], simulated annealing [GA,MD,MAD], mean
field annealing [LH], genetic search [THB], extremal optimization [DA], label
propagation [BC,LM], spectral clustering [N06,RMP,SDJB], linear program-
ming followed by randomized rounding [AK], dynamical clustering [BILPR], mul-
tilevel partitioning [D], contraction-dilation [MHSWL], multistep greedy
search [SC], quantum mechanics [NHZW] and other approaches [BGLL,CFS,
FLZWD,KSKK,RZ,SDJB]. For a more detailed survey, see [F]. While other
metaheuristics have been applied to modularity maximization, it is the first time,
to the best of our knowledge, that the Variable Neighborhood Search (VNS) meta-
heuristic is used for that purpose. In particular, by using decomposition, we were
able to tackle larger problems than the previous metaheuristic approaches, reducing
the size of the problem in which VNS is applied.

The paper is organized as follows: in Section 2, after giving an outline of
the VNS metaheuristic, we discuss its application to modularity maximization. In
Section 3, we recall and extend to the weighted case an exact method for modularity
maximization which is used to evaluate the quality of the solutions obtained by our
variable neighborhood search metaheuristic. Experimental results are presented
in Section 4 in two tables corresponding to the results for Pareto and Quality
challenges respectively. Brief conclusions are drawn in the last section.

2. Description of the heuristic

2.1. Outline of the variable neighborhood search metaheuristic. Vari-
able Neighborhood Search (VNS) is a metaheuristic, or framework for building
heuristics, aimed at solving combinatorial and global optimization problems. Since
its inception, VNS has undergone many developments and has been applied in
numerous fields (see [HMP] for a recent survey).

Metaheuristics address the problem of escaping, as much as possible, from local
optima. A local maximum xL of an optimization problem is such that

(3) f(xL) ≥ f(x), ∀x ∈ N(xL)

where N(x) denotes the feasible neighborhood of x, which can be defined in many
different ways each one yielding a different neighborhood structure. In discrete
optimization problems, a neighborhood structure consists of all vectors obtained
from x by some simple modification. For instance, for x binary, one neighborhood
structure can be defined by the set of all vectors obtained from x by complementing
one of its components. Another possible neighborhood structure can be defined
as the set of all vectors obtained from x by complementing two complementary
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components of x (i.e., one component is set from 0 to 1 and the other goes from 1
to 0). A local search or improving heuristic consists of choosing an initial solution
x, and then moving to the best neighbor x′ ∈ N(x) in the case f(x′) > f(x). If no
such neighbor exists, the heuristic stops, otherwise it is iterated.

If many local maxima exist for a problem, the range of values they span may
be large. Moreover, the globaly optimum value f(x∗) may differ substantially from
the average value of a local maximum, or even from the best such value among
many, obtained by some simple randomized heuristic. In order to escape from
local maxima and, more precisely, the mountains of which they are the top, VNS
exploits the idea of neighborhood change. In fact, VNS relies upon the following
observations:

Fact 1: A local maximum with respect to one neighborhood structure is not
necessarily so for another ;

Fact 2: A global maximum is a local maximum with respect to all possible
neighborhood structures ;

Fact 3: For many problems local maxima with respect to one or several neigh-
borhoods are relatively close to each other.

Let us denote with Nt, (t = 1, . . . , tmax), a finite set of pre-selected neighbor-
hood structures, and with Nt(x) the set of solutions in the tth neighborhood of x.
We call x a local maximum with respect to Nt if there is no solution x′ ∈ Nt(x)
such that f(x′) > f(x).

In the VNS framework, the neighborhoods used correspond to various types
of moves, or perturbations, of the current solution, and are problem specific. The
current best solution x found is the center of the search. When looking for a
better one, a solution x′ is drawn at random in an increasingly far neighborhood
and a local ascent is performed from x′, leading to another local maximum x′′.
If f(x′′) ≤ f(x), x′′ is ignored and one chooses a new neighbor solution x′ in a
further neighborhood of x. If, otherwise, f(x′′) > f(x), the search is re-centered
around x′′ restarting with the closest neighborhood. If all neighborhoods of x have
been explored without success, one begins again with the closest one to x, until a
stopping condition (e.g. maximum CPU time) is satisfied.

As the size of neighborhoods tends to increase with their distance from the
current best solution x, close-by neighborhoods are explored more thoroughly than
far away ones. This strategy takes advantage of the three Facts 1–3 mentioned
above. Indeed it is often observed that most or all local maxima of combinatorial
problems are concentrated in a small part of the solution space. Thus, finding a
first local maximum x implies that some important information has been obtained:
to get a better, near-optimal solution, one should first explore its vicinity.

The algorithm proposed in this work has two main components: (i) an improve-
ment heuristic, and (ii) exploration of different types of neighborhoods for getting
out of local maxima. They are used within a variable neighborhood decomposition
search framework [HMP] which explores the structure of the problem concentrating
on small parts of it. The basic components as well as the decomposition framework
are described in the next sections.

2.2. Improvement heuristic. The improvement heuristic we used is the
LPAm+ algorithm proposed by Liu and Murata in [LM]. LPAm+ is composed
of a label propagation algorithm proposed by Barber and Clark [BC] and a com-
munity merging routine. A strong feature of this heuristic is that label propagation

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



MODULARITY MAXIMIZATION IN NETWORKS BY VNS 117

executes in near linear time (in fact, each iteration of label propagation executes
in time proportional to m), while one round of merging pairs of communities can
execute in O(m logn) [SC].

Label propagation is a similarity-based technique in which the label of a vertex
is propagated to adjacent vertices according to their proximity. Label propaga-
tion algorithms for clustering problems assume that the label of a node correspond
to its incumbent cluster index. Then, at each label propagation step, each ver-
tex is sequentially evaluated for label updating according to a propagation rule.
In [BC], the Barber and Clark propose a label propagation algorithm, called LPA,
for modularity maximization. Their label updating rule for vertex v is (see. [BC]
for details):

(4) 
v ← argmax
�

(
n∑

u=1

Buvδ(
u, 
)

)

where 
v is the label of vertex v, Buv = ω({u, v}) − (ω(u)ω(v))/2m, and δ(i, j) is
the Kronecker’s delta.

Moreover, the authors prove that the candidate labels for 
v in eq.(4) can be
confined to the labels of the vertices adjacent to v and an unused label. We decided
to use this fact in order to speedup LPA. Let us consider a vertex v∗ ∈ C, where C
is a module of the current partition, and let us suppose that the modules to which
its adjacent vertices belong have not changed since the last evaluation of v∗. In
this case, v∗ can be discarded for evaluation since no value has changed from the
last instantiation of eq.(4) since the last evaluation of v∗. With that in mind, we
decided to iterate over “labels” instead of over the vertices of the graph.

We used LPAm+ modified as follows. A list L of all labels is initialized with
the clusters indices of the current partition. Then, from L, we proceed by picking
a label 
 ∈ L until L is empty. Each time a label 
 is removed from L, we evaluate
by means of eq.(4) all its vertices for label updating. If the label of a vertex is
updated, yielding an improvement in the modularity value of the current partition,
the old and the new labels of that vertex, denoted 
old and 
new, are inserted in L.
Moreover, the labels of vertices which are connected to a node with label equal to
either 
old or 
new are also inserted in L. This modification induces a considerable
algorithmic speedup since only a few labels need to be evaluated as the algorithm
proceeds.

We then tested this modified LPAm+, and proceeded to improve it based on
empirical observations. In the final version, whenever a vertex relabeling yields an
improvement, the old and the new labels of that vertex are added to L but only
together with the labels of vertices which are adjacent to the relabeled vertex. This
version was selected to be used in our experiments due to its benefits in terms of
computing times and modularity maximization.

2.3. Neighborhoods for perturbations. In order to escape from local max-
ima, our algorithm uses five distinct neighborhoods for perturbing a solution. They
are:

(1) SINGLETON: all the vertices in a cluster are made singleton clusters.
(2) DIVISION: splits a community into two equal parts. Vertices are assigned

to each part randomly.
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(3) NEIGHBOR: relabels each vertex of a cluster to one of the labels of its
neighbors or to an unused label.

(4) EDGE: puts two linked vertices assigned to different clusters into one
neighboring cluster randomly chosen.

(5) FUSION: merges two or more clusters into a single one.
(6) REDISTRIBUTION: destroys a cluster and spreads each one of its vertices

to a neighboring cluster randomly chosen.

2.4. Variable Neighborhood Decomposition Search. Given the size of
the instances proposed in the 10th DIMACS Implementation Challenge, a decom-
position framework was used. It allows the algorithm to explore the search space
more quickly since just a small part of the solution is searched for improvement at
a time. This subproblem is isolated for improvement through selecting a subset of
the clusters in the incumbent solution.

The decomposition proposed here is combined with the five neighborhoods pre-
sented in the previous section within a variable neighborhood schema. Thus, the
decomposition executes over five distinct neighborhood topologies, with subprob-
lems varying their size according to the VNS paradigm. The pseudo-code of the
variable neighborhood decomposition search heuristic is given in Figure 1.

1 Algorithm VNDS(P )

2 Construct a random solution x ;

3 x ← LPAm+(x, P ) ;

4 s ← 1;

5 while stopping condition not satisfied do
6 Construct a subproblem S from x with a randomly selected

cluster and s− 1 neighboring clusters ;

7 Select randomly

α ∈ {singleton, division, neighbor, fusion, redistribution} ;

8 x′ ← shaking(x, α, S);

9 x′ ← LPAm+(x′, S) ;

10 if cost(x′) > cost(x) then
11 x ← LPAm(x′, P ) ;

12 s ← 1;

13 else
14 s ← s+ 1;

15 if s > min{MAX SIZE,#clusters(x)} then
16 s ← 1;

17 end

18 end

19 end

20 return x

Algorithm 1: Pseudo-code of the decomposition heuristic.

The algorithm VNDS starts with a random solution for an input problem P in
line 2. Then, in line 3 this solution is improved by applying our implementation of
LPAm+. Note that LPAm+ receives two input parameters, they are: (i) the solution
to be improved, and (ii) the space on which an improvement will be searched. In
line 3, the local search is applied in the whole problem space P , which means that
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all vertices are tested for label updating, and all clusters are considered for merging.
In line 4, the variable s which controls the current decomposition size is set to 1.

The central part of the algorithm VNDS consists of the loop executed in lines
5-19 until a stopping criterion is met (this can be the number of non improving
iterations for the Pareto Challenge or maximum allowed CPU time for the Quality
Challenge). This loop starts in line 6 by constructing a subproblem from a randomly
selected cluster and s− 1 neighboring clusters. Then, in line 7 a neighborhood α is
randomly selected for perturbing the incumbent solution x. Our algorithm allows
choosing α by specifying a probability distribution on the neighborhoods. Thus,
the most successful neighborhoods are more often selected. The shaking routine
is actually performed in line 8 in the chosen neigborhood α and in the search
space defined by subproblem S. In the following, the improving heuristic LPAm+
is applied over x′ in line 9 only in the current subproblem S. If the new solution
x′ is better than x in line 10, a faster version of the improving heuristic, denoted
LPAm, is applied in line 11 over x′ in the whole problem P . In this version, the
improving heuristic does not evaluate merging clusters. The resulting solution of
LPAm application is assigned to x in line 11 and s is reset to 1 in line 12. Otherwise,
if x′ is not better than x, the size of the decomposition is increased by one in line
14. This value is reset to 1 in line 16 if it exceeds the minimum between a given
parameter MAX SIZE and the number of clusters (i.e., #clusters(x)) in the current
solution x (line 15). Finally, a solution x is returned by the algorithm in line 20.

3. Description of the exact method

Column generation together with branch-and-bound can be used to obtain an
optimal partition. Column generation algorithms for clustering implicitly take into
account all possible communities (or, in other words, all subsets of the set of entities
under study). They replace the problem of finding simultaneously all communities
in an optimal partition by a sequence of optimization problems for finding one
community at a time, or more precisely and for the problem under study a com-
munity which improves the modularity of the current solution. In [ACCHLP],
several stabilized column generation algorithms have been proposed for modularity
maximization and compared on a series of well-known problems from the literature.
The column generation algorithm based on extending the mixed integer formula-
tion of Xu et al. [XTP] appears to be the most efficient. We summarize below an
adaptation of this algorithm for the case of weighted networks.

Column generation is a powerful technique of linear programming which allows
the exact solution of linear programs with a number of columns exponential in
the size of the input. To this effect, it follows the usual steps of the simplex
algorithm, apart from finding an entering column with a positive reduced cost in
case of maximization which is done by solving an auxiliary problem. The precise
form of this last problem depends on the type of problem considered. It is often
a combinatorial optimization or a global optimization problem. It can be solved
heuristically as long as a column with a reduced cost of the required sign can
be found. When this is no longer the case, an exact algorithm for the auxiliary
problem must be applied either to find a column with the adequate reduced cost
sign, undetected by the heuristic, or to prove that there remains no such column
and hence the linear programming relaxation is solved.
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For modularity maximization clustering, as for other clustering problems with
an objective function additive over the clusters, the columns correspond to the set
T of all subsets of V , i.e., to all nonempty modules, or in practice to a subset T ′

of T . To express this problem, define ait = 1 if vertex i belongs to module t and
ait = 0 otherwise. One can then write the model as

max
∑
t∈T

ctzt(5)

s.t.
∑
t∈T

aitzt = 1 ∀i = 1, . . . , n(6)

zt ∈ {0, 1} ∀t ∈ T,(7)

where ct corresponds to the modularity value of the module indexed by t with
t = 1 . . . 2n−1. The problem (5)-(7) is too large to be written explicitly. A reduced
problem with few columns, i.e., those with index t ∈ T ′, is solved instead. One
first relaxes the integrality constraints and uses column generation for solving the
resulting linear relaxation.

The auxiliary problem, for the weighted case, can be written as follows:

max
x∈Bm,D∈R

∑
e

∈ E
xe

M
−
(

D

2M

)2

−
∑
u∈V

λuyu

s.t. D =
∑
u∈V

ω(u)yu

xe ≤ yu ∀e = {u, v} ∈ E

xe ≤ yv ∀e = {u, v} ∈ E

where M =
∑

e∈E ω(e). Variable xe is equal to 1 if edge e belongs to the community
which maximizes the objective function and to 0 otherwise. Similarly, yu is equal to
1 if the vertex u belongs to the community and 0 otherwise. The objective function
is equal to the modularity of the community to be determined minus the scalar
product of the current value λu of the dual variables times the indicator variables
yu. As in [ACCHLP], the auxiliary problem is first solved with a VNS heuristic as
long as a column with a positive reduced cost can be found. When this is no more
the case, CPLEX is called to find such a column or prove that none remain. If the
optimal solution of the linear relaxation is not integer, one proceeds to branching
on the condition that two selected entities belong to the same community or to two
different ones.

4. Experimental Results

The algorithms were implemented in C++ and compiled by gcc 4.5.2. Limited
computational experiments allowed to set the parameters of the VNDS algorithm
as follows:

• MAX SIZE = 15
• Probability distribution for selecting α is drawn with:

– 30% of chances of selecting SINGLETON
– 30% of chances of selecting DIVISION
– 28% of chances of selecting NEIGHBOR
– 5% of chances of selecting EDGE
– 4% of chances of selecting FUSION
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– 3% of chances of selecting REDISTRIBUTION

The stopping condition in algorithm VNDS was defined depending on the chal-
lenge, Pareto or Quality, in which VNDS is used. Thus, the same algorithm is able
to compete in both categories by just modifying how it is halted.

4.1. Results for exactly solved instances. Exact algorithms provide a
benchmark of exactly solved instances which can be used to fine tune heuristics.
More precisely, the comparison of the symmetric differences between the optimal
solution and the heuristically obtained ones may suggest additional moves which
improve the heuristic under study.

In general, a sophisticated heuristic should be able to find quickly an opti-
mal solution for most or possibly all practical instances which can be solved ex-
actly with a proof of optimality. Our first set of experiments aims to verify the
effectiveness of the VNDS algorithm in the instances for which the optimal solu-
tion is proved by the exact method of Section 3. The instances tested here are
taken from the Clustering chapter of the 10th DIMACS Implementation Challenge
(http://www.cc.gatech.edu/dimacs10/archive/clustering.shtml).

Table 1 presents average solution values and CPU times (in seconds) obtained
from five independent runs of the VNDS algorithm in a Intel X3353 with a 2.66
Ghz clock and 24Gb of RAM memory. The first column refers to the instance. The
second and third columns refer to the number of nodes (n) and edges (m) of each
instance. Fourth and fifth column show the VNDS average results. Finally, the
sixth and seventh column present the optimal solution values proved by the exact
algorithm.

Table 1. VNDS average results and optimal modularity values
obtained by the exact algorithm of Section 3.

instance n m Qavg tavg Qopt |C|opt
karate 34 78 0.419790 0.00 0.419790 4
chesapeake 39 170 0.265796 0.00 0.265796 3
dolphins 62 159 0.528519 0.00 0.528519 5
lesmis 77 254 0.566688 0.00 0.566688 6
polbooks 105 441 0.527237 0.00 0.527237 5
adjnoun 112 425 0.312268 0.09 0.313367 7
football 115 613 0.604570 0.00 0.604570 10
jazz 198 2742 0.445144 0.01 0.445144 4

We note that VNDS finds the optimal solutions of instances karate, chesapeake,
dolphins, lesmis, polbooks, adjnoun, football, and jazz. Except for instance
adjnoun, where the optimal solution is found in 2 out of 5 runs, the optimal solu-
tions of the aforementioned instances are obtained in all runs.

4.2. Results for Pareto Challenge. The results presented in this section
and in the following one refers to the final modularity instances of the 10th DIMACS
Implementation Challenge. Particularly for this section, results are presented both
in terms of modularity values and CPU times, which are the two performance
dimensions evaluated in the Pareto challenge. Computational experiments were
performed on a Intel X3353 with a 2.66 Ghz clock and 24Gb of RAM memory.
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Instances kron g500-simple-logn20 (n = 1048576,m = 44619402), cage15 (n =
5154859,m = 47022346), uk-2002 (n = 18520486,m = 261787258), uk-2007-05
(n = 105896555,m = 3301876564), and Er-fact1.5-scale25 (log2 n = 25) were
not executed due to memory limitations.

In this challenge, VNDS stops whenever it attains either N iterations without
improving the incumbent solution or after 3 hours of CPU. For this challenge we
divided the instances into two categories. For the instances in category P1, VNDS
uses N = 1000, while for those in category P2, the algorithm uses N = 100.

Table 2 shows average computational results obtained in five independent runs
of algorithm VNDS. The results for one of these runs was sent to the DIMACS
Pareto challenge. The first column in the table refers to the category of the instance
indicated in the second column. The third and fourth columns refer to the number
of nodes (n) and edges (m) of each instance. The fifth and sixth columns refer to
average modularity values and computing times (in seconds), respectively. VNDS
is stopped due to CPU time limit in the instances for which the average computing
time tavg = 10800.00.

We remark from Table 2:

• Instances coPapersDBLP, audikw1, and ldoor are stopped due to our CPU
time limit in each one of the five independent runs.
• Considering all the instances presented in the table, VNDS was Pareto

dominated (see http://www.cc.gatech.edu/dimacs10/data/dimacs10-rules.
pdf) in the DIMACS challenge by at most 2 other algorithms in each in-
stance. It is worthy mentioning that the organizing committee left open
to the Pareto challenge participants the task of defining their own stop-
ping condition for their algorithms. Consequently, Pareto challenge scores
were sensitive to the strategy used by each team. For instance, consid-
ering only the instances we categorized in P1, which uses N = 1000 as
stopping condition, VNDS was dominated by at most 1 other algorithm.
• In 9 out of 25 instances in the table, VNDS was not Pareto dominated by

any other algorithm in the Pareto challenge.

4.3. Results for Quality challenge. Since the amount of work to compute
a solution is not taken into consideration for this challenge, the VNDS algorithm
was allowed to run for a longer period of time than before, the CPU time limit being
the unique stopping condition. In our set of experiments, the instances were split
into two different categories. The algorithm was allowed to run for 1800 seconds (30
minutes) for instances in category Qu1, and 18000 seconds (5 hours) for instances in
category Qu2. Furthermore, in order to overcome memory limitations, VNDS was
executed in a Intel Westmere-EP X5650 with a 2.66 Ghz clock and 48Gb of RAM
memory for the largest instances. This allowed the algorithm to obtain solutions
for instances kron g500-simple-logn20, cage15 and uk-2002.

Table 3 presents the computational results obtained in 10 independent runs
of algorithm VNDS. We chose to present here the same results submitted to the
DIMACS Implementation Challenge. The first column refers to the category of the
instance indicated in the second column. Third and fourth columns refer to the best
obtained modularity value and its corresponding number of clusters. Finally, the
last column shows the rank position of the referred solution among 15 participating
teams.
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Table 2. Average modularity results for the Pareto Challenge of
the 10th DIMACS Implementation Challenge.

category instance n m Qavg tavg
celegans metabolic 453 2025 0.452897 1.97
e-mail 1133 5451 0.427105 1.69
polblogs 1490 16715 0.582510 4.96
power 4941 6594 0.940460 11.87

P1

PGPgiantcompo 10680 24316 0.885451 28.03

astro-ph 16726 47594 0.738435 10.53
memplus 17758 54196 0.686220 78.44
as-22july06 22963 48436 0.676091 31.01
cond-mat-2005 40421 175691 0.739293 106.54
kron g500-simple-logn16 65536 2456071 0.061885 12.91
preferentialAttachment 100000 499985 0.314690 1972.50
smallworld 100000 499998 0.791905 33.82
G n pin pout 100000 501198 0.488209 2625.18
luxembourg.osm 114599 119666 0.989307 90.30
rgg n 2 17 s0 131072 728753 0.977417 214.53
caidaRouterLevel 192244 609066 0.867259 2037.24
coAuthorsCiteseer 227320 814134 0.901432 1754.33
citationCiteseer 268495 1156647 0.820164 9048.09
coPapersDBLP 540486 15245729 0.862878 10800.00
eu-2005 862664 16138468 0.941157 9914.73
audikw1 943695 38354076 0.918034 10800.00
ldoor 952203 22785136 0.968844 10800.00
in-2004 1382908 13591473 0.980509 9583.98
belgium.osm 1441295 1549970 0.994569 6549.13

P2

333SP 3712815 11108633 0.988247 10019.93

A few remarks are in order regarding the results shown in Table 3:

• The VNDS algorithm obtained the best solutions for 11 out of 30 instances
of the modularity challenge (i.e., approx. 37% of the instances). Moreover,
the algorithm figured in the first two positions in 25 out of 30 instances
(i.e., approx. 83%).
• The algorithm does not appear to have its effectiveness influenced by the

number of clusters. For example, the algorithm found the best solution for
instance celegans metabolic using 9 clusters as well as it obtained the
best result for instance kron g500-simple-logn16 using 10027 clusters.
• The algorithm was particularly bad for instance cage15. Actually, the

result submitted to the challenge corresponded to a simple LPAm+ appli-
cation. This was due to two combined reasons: (i) the instance was large
with n = 5154859 nodes and m = 47022346, and (ii) LPAm+ did not get
to decrease much the number of clusters (648819). This led to algorithm
abortion before executing its main computing part.

5. Conclusion

Several integer programming approaches and numerous heuristics have been
applied to modularity maximization. They are due mostly to the physics and com-
puter sciences research communities. We have applied the variable neighborhood

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



124 D. ALOISE, G. CAPOROSSI, P. HANSEN, L. LIBERTI, S. PERRON, AND M. RUIZ

Table 3. Modularity results for the Quality Challenge of the 10th

DIMACS Implementation Challenge.

category instance Qbest |C|best rank
celegans metabolic 0.453248 9 #1
e-mail 0.582828 10 #1
polblogs 0.427105 278 #1
power 0.940850 43 #1
PGPgiantcompo 0.886081 111 #2
astro-ph 0.74462 1083 #1
memplus 0.695284 64 #3
as-22july06 0.677575 42 #2
cond-mat-2005 0.745064 1902 #2

Qu1

kron g500-simple-logn16 0.065055 10027 #1
preferentialAttachment 0.315993 9 #1
smallworld 0.793041 242 #1
G n pin pout 0.499344 171 #2
luxembourg.osm 0.98962 275 #1
rgg n 2 17 s0 0.978323 133 #1
caidaRouterLevel 0.870905 477 #2
coAuthorsCiteseer 0.9039 297 #2
citationCiteseer 0.821744 201 #2
coPapersDBLP 0.865039 326 #2
eu-2005 0.941324 389 #2
audikw1 0.917983 34 #1
ldoor 0.969098 88 #2
in-2004 0.980537 1637 #2
belgium.osm 0.994761 580 #4
333SP 0.988365 229 #4
kron g500-simple-logn20 0.049376 253416 #2
cage15 0.343823 648819 #10

Qu2

uk-2002 0.990087 45165 #3

search metaheuristic to that problem and it proves to be very effective. For prob-
lems with known optimum values, the heuristic always found an optimal solution at
least once. For the DIMACS Implementation Challenge, the best know solution was
provided for 11 out of 30 instances. Overall, the proposed algorithm obtained the
second prize in the modularity Quality challenge and the fifth place in the Pareto
challenge.
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LIX, École Polytechnique, F-91128 Palaiseau, France

E-mail address: liberti@lix.polytechnique.fr
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Network clustering via clique relaxations: A community based
approach

Anurag Verma and Sergiy Butenko

ABSTRACT. In this paper, we present a general purpose network clustering algorithm
based on a novel clique relaxation concept of k-community, which is defined as a connected
subgraph such that endpoints of every edge have at least k common neighbors within the
subgraph. A salient feature of this approach is that it does not use any prior information
about the structure of the network. By defining a cluster as a k-community, the proposed
algorithm aims to provide a clustering of a network into k-communities with varying values
of k. Even though the algorithm is not designed to optimize any particular performance
measure, the computational results suggest that it performs well on a number of criteria
that are used in literature to evaluate the quality of a clustering.

1. Introduction

Network (graph) based data mining is an emerging field that studies network represen-
tations of data sets generated by an underlying complex system in order to draw meaningful
conclusions regarding the system’s properties. In a network representation of a complex
system, the network’s nodes typically denote the system’s entities, while the edges between
nodes represent a certain kind of similarity or relationship between the entities. Network
clustering, aiming to partition a network into clusters of similar elements, is an important
task frequently arising within this context. The form of each cluster in the partitioning
is commonly specified through a predefined graph structure. Since a cluster is typically
understood as a “tightly knit” group of elements, the graph theoretic concept of a clique,
which is a subset of nodes inducing a complete subgraph, is a natural formalization of a
cluster that has been used in many applications. This results in partitioning into clusters
with the highest possible level of cohesiveness one can hope for.

However, in many applications modeling clusters as cliques is excessively restrictive,
since a highly cohesive structure might not get identified as a cluster by the mere absence
of a few edges. In real life data sets, this is of critical importance because some edges
could be missing either naturally or due to erroneous data collection. Moreover, given that
networks arising in many important applications tend to be very large with respect to the
number of nodes and very sparse in terms of edge density, the clique clustering usually
results in meaninglessly large number of clusters in such situations. In addition, comput-
ing large cliques and good clique partitions are computationally challenging problems, as
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finding a maximum clique and a minimum clique partition in a graph are classical NP-hard
problems [8].

To circumvent these issues, researchers in several applied fields, such as social net-
work analysis and computational biology, have defined and studied structures that relax
some of the properties of cliques, and hence are called clique relaxations. Some of the
popular clique relaxations include s-plexes, which require each vertex to be connected to
all but s other vertices [11]; s-clubs, which require the diameter of the induced subgraph
to be at most s [2]; and γ-quasi-cliques, which require the density of the induced subgraph
to be at least γ [1]. It should be noted that each of 1-plex, 1-club and 1-clique trivially
represent a clique. By relaxing the properties of a clique, namely the degree, diameter,
and density, these clique relaxations capture clusters that are strongly but not completely
connected. However, like the clique model, these clique relaxations still suffer from the
drawback of being computationally expensive.

In 1983, Seidman [10] introduced the concept of a k-core that restricts the minimum
number k of direct links a node must have with the rest of the cluster. Using k-cores to
model clusters in a graph has considerable computational advantages over the other clique
clique relaxation models mentioned above. Indeed, the problem of finding the largest k-
core can be easily solved in polynomial time by recursively removing vertices of degree
less than k. As a result, the k-core model has gained significant popularity as a network
clustering tool in a wide range of applications. In particular, k-core clustering has been
used as a tool to visualize very large scale networks [4], to identify highly interconnected
subsystems of the stock market [9], and to detect molecular complexes and predict protein
functions[3, 5]. On the downside, the size of a k-core may be much larger than k, creating
a possibility of a low level of cohesion within the resulting cluster. Because of this, a
k-core itself may not be a good model of a cluster, however, it has been observed that k-
cores tend to contain other, more cohesive, clique relaxation structures, such as s-plexes,
and hence computing a k-core can be used as a scale-reduction step while detecting other
structures [6].

Most recently, the authors of the current paper proposed yet another clique relax-
ation model of a cluster, referred to as k-community, that aims to benefit from the positive
properties of k-cores while ensuring a higher level of cohesion [12]. More specifically,
a k-community is a connected subgraph such that endpoints of every edge have at least
k common neighbors within the subgraph. The k-community structure has proven to be
extremely effective in reducing the scale of very large, sparse instances of the maximum
clique problem [12]. This paper explores the potential of using the k-community structure
as a network clustering tool. Even though the proposed clustering algorithm does not aim
to optimize any of the quantitative measures of clustering quality, the results of numerical
experiments show that, with some exceptions, it performs quite well with respect to most
of such measures available in the literature.

The remainder of this paper is organized as follows. Section 2 provides the necessary
background information. Section 3 outlines the proposed network clustering algorithm.
Section 4 reports the results of numerical experiments on several benchmark instances,
and Section 5 concludes the paper.

2. Background

In this paper, a network is described by a simple (i.e., with no self-loops or multi-
edges) undirected graph G = (V,E) with the set V = {1,2, . . . ,n} of nodes and the set
E of edges. We call an unordered pair of nodes u and v such that {u,v} ∈ E adjacent
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Algorithm 1 k−Community(G): Algorithm to find the k-Communities of G

Input: G,k
Output: maximum k-community of G

1: repeat
2: for every {i, j} ∈ E do
3: if |NG(i)∩NG( j)|< k then
4: E← E \{{i, j}}
5: end if
6: end for
7: until No edge is removed in the current iteration
8: G(Vk,Ek)← Ge[E] /* Edge induced subgraph */
9: return Vk ← Connected components of G(Vk,Ek). /* Each set of connected vertices

forms a k-community*/

or neighbors. For a node u, let NG(u) = {v : {u,v} ∈ E} denote the neighborhood of u
in G. Then the degree degG(u) of u in G is given by the number of elements in NG(u).
Let δ (G) denote the minimum degree of a node in G. For a subset C of nodes, G[C] =
(C,E∩ (C×C)) denotes the subgraph induced by C. Next we define two clique relaxation
concepts, namely k-core and k-community, that play a key role in this paper.

DEFINITION 2.1 (k-core). A subset of nodes C is called a k-core if G[C] is a connected
graph and δ (G[C])≥ k.

Before defining a k-community, we need the following two preliminary definitions.

DEFINITION 2.2 (Neighbor of an edge). A node t ∈V is a neighbor of an edge {u,v} ∈
E if it is connected to both u and v, i.e., {v, t} ∈ E and {u, t} ∈ E.

DEFINITION 2.3 (Edge induced subgraph). An edge induced subgraph, denoted by
Ge[F ] is given by Ge[F ] = (V (F),F), where V (F) = {u ∈V : ∃{u,v} ∈ F}, i.e., Ge[F] is a
subset of edges F of a graph G together with all the incident vertices.

We are now ready to define a k-community, which can be seen as an edge analogue of
the k-core as follows.

DEFINITION 2.4 (k-Community). A k-Community of a graph G is the set of nodes in
the connected edge induced subgraph Ge[Ek] with each edge in Ek having at least k neigh-
boring vertices in the subgraph Ge[Ek]. If Ge[Ek] is disconnected, then each component
forms a k-community by itself.

Given a positive integer k, both of these structures find a cluster of vertices that sat-
isfies some minimum node degree requirements. In the case of k-core, the presence of
each node has to be supported by the presence of at least k neighbors, while in the case of
k-community, the presence of each edge has to be supported by the presence of at least k al-
ternative edge-disjoint paths of length two. It is instructive to note that every k-community
is also a (k +1)-core, but the converse is not true.

Given a positive integer k, all the maximal k-communities of a graph G can be easily
computed as outlined in Algorithm 1.

3. Clustering Algorithm

The algorithm described in this section is based on the idea of finding k-communities
for large k and placing them in different clusters. To this end, we identify the largest k′ such
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Algorithm 2 Basic k-Community Clustering(G): Basic algorithm to find clusters in
G
Input: G,k, l
Output: k-community clustering C of G

1: G′ ← G
2: C ← /0
3: repeat
4: k← highest integer such that k-community(G′) is non-empty.
5: Find all the k-Communities in G′ and add them to C .
6: Find the set of vertices L that are not yet clustered.
7: G′ ← G[L].
8: until k ≤ l or G′ is empty
9: for every v ∈ L do

10: Add v to the cluster C ∈ C which maximizes |N(v)∩C|.
11: end for
12: return C

Algorithm 3 Enhanced k-Community Clustering(G): Enhanced algorithm to find
clusters in G
Input: G,k, l,u
Output: k-community clustering C of G

1: G′ ← G
2: C ← /0, best mod←−1/2
3: repeat
4: k← highest integer such that k-community(G′) is non-empty.
5: Find all the k-Communities in G′ and add them to C .
6: Find the set of vertices L that are not yet clustered.
7: G′ ← G[L].
8: if k ≤ u then
9: C k← C

10: for every v ∈ L do
11: Add v to the cluster Ck ∈ C k which maximizes |N(v)∩Ck|.
12: end for
13: if Modularity(C k) < best mod then
14: C ← C k−1

15: break
16: else
17: best mod← Modularity(C k)
18: end if
19: end if
20: until k=l or G′ is empty
21: for every v ∈ L do
22: Add v to the cluster C ∈ C which maximizes the increase in Modularity(C ).
23: end for
24: LocalSearch(C )
25: return C
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FIGURE 1. Clustering found by Algorithm 2 using the k-core and k-
community-based approaches on some illustrative graphs. The diagram
highlights the cases where community based approach is better than the
core-based approach, and also when none of them perform well.

that the k′-community of G is non-empty, and place all k′-communities formed in distinct
clusters. Once this has been done, all the nodes that have been placed in clusters are
removed from G and the whole procedure is repeated till either k becomes small (reaches
a lower bound l provided by the user) or no vertices are left to cluster. If any vertex is left
to cluster, we attach it to the cluster that contains the most neighbors of that vertex. This
basic procedure is described in Algorithm 2.

In this algorithm, we stop when k becomes small enough so that a k-community be-
comes meaningless. For example, any set of vertices that induce a tree will form a 0-
community. While in some cases this might be the best possible option (the original graph
is a forest), for most clustering instances we would like the vertices in a cluster to share
more than just one edge with the remaining nodes. For this paper, the lower bound l was
set to 1 in Algorithm 2.
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It should be noted that the clustering provided by Algorithm 2 does not aim to optimize
any criteria provided such as modularity, performance, average isolated inter-cluster con-
ductance (aixc), average isolated inter-cluster expansion (aixe), and minimum intra-cluster
density (mid) as described in the DIMACS 2011 challenge [7].

3.1. Enhancements. If optimizing a given measure is indeed the aim, an enhanced
version of the basic algorithm is provided in Algorithm 3. The description of the enhanced
Algorithm 3 uses modularity as a measure, but can as well have any other measure. A major
improvement in Algorithm 3 over Algorithm 2 is that the decision of the what k is too small
to be used for finding k-communities as clusters is made dynamically. Given a range [l,u],
the algorithm checks the modularity of the clustering found at each k≤ u and stops as soon
as reducing k also reduces modularity. In this manner, the formation of k-communities
for small k that don’t contribute to increasing modularity can be avoided. Furthermore,
local search is done to increase modularity by moving vertices from one cluster to another
cluster such that the increase in modularity is maximized. For the results in this paper,
the range [l,u] was set to [1,6], and the time spent in local search was restricted to 10,000
seconds.

An advantage of both these algorithms is that they do not use any prior information
about the graph such as the number of clusters, degree distribution, etc. This makes it a
very general approach that is applicable even when no information about the structure of
the graph is available. Furthermore, although we use k-core and k-community to define
clusters, new structures that fit the users description of a cluster can be incorporated into
the algorithm fairly easily.

In both the Algorithms 2 & 3, we can replace k-community in steps 4-5 with k-core,
with the remaining steps of the algorithm as they are, to obtain a k-core-based clustering
algorithm.

Some illustrations of clusterings found by the k-core and k-community approach de-
scribed in this section are provided in Figure 1. It should be noted that, although k-
communities are strictly stronger relaxations, the clustering formed by the core-based ap-
proach can in some cases be better than that obtained using the community-based approach.

4. Computational Results

In this section we provide computational results obtained by using the k-community
and k-core clustering on the graph sets provided in the DIMACS 2011 challenge [7]. The
computational results were obtained on a desktop machine (Intel Xeon E5620@2.40GHz,
16 cores, 12GB RAM). All computations except for the final steps of attaching leftover
vertices to already formed clusters and the local search used only one core. The local
search and attaching leftover vertices were parallelized using OpenMP with 16 threads.

Table 1 presents the modularity and number of clusters found by Algorithm 2 using
the k-core and k-community clustering for 27 graphs. For each graph, the higher of the
two modularities as found be the two methods is highlighted in bold. It can be seen that
k-community clustering is better on about half of the instances (14 of the 27 graphs tested).
However, a closer look suggests that when the k-community based clustering significantly
outperforms (difference in modularity more than 0.2) k-core clustering in 5 of those 14 in-
stances, while k-community based clustering is significantly outperformed by k-core clus-
tering only once out of the remaining 13 instances. Some noteworthy examples are the
preferentialAttachment, smallworld, luxembourg.osm and belgium.osm graphs, where the
almost all nodes in the graph are identified as 4-, 6-, 1- & 1-cores respectively and placed
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TABLE 1. Modularity of clustering found by the basic Algorithm 2 us-
ing the k-community based and k-core based approaches. The modular-
ity that is higher between the two methods is highlighted in bold.

Graphs n m Method Mod Clusters Time (s)

celegans metabolic 453 2025 core 0.267 19 0.00
comm 0.331 30 0.02

email 1133 5451 core 0.342 15 0.03
comm 0.394 72 0.03

polblogs 1490 16715 core 0.243 8 0.03
comm 0.219 32 0.06

power 4941 6594 core 0.295 24 0.05
comm 0.851 189 0.09

PGPgiantcompo 10680 24316 core 0.755 398 0.47
comm 0.732 655 0.64

astro-ph 16706 121251 core 0.539 918 1.70
comm 0.538 1480 1.95

memplus 17758 54196 core 0.555 1238 0.56
comm 0.554 1256 0.58

as-22july06 22963 48436 core 0.473 33 0.41
comm 0.519 162 0.59

cond-mat-2005 40421 175691 core 0.509 2469 3.85
comm 0.508 4016 4.99

kron g500-simple-logn16 65536 2456071 core -0.018 6 15.31
comm -0.013 28 38.60

preferentialAttachment 100000 499985 core 0.000 1 1.01
comm 0.145 299 14.85

G n pin pout 100000 501198 core 0.065 2 4.23
comm 0.136 4479 33.93

smallworld 100000 499998 core 0.000 4 0.48
comm 0.570 11129 9.64

luxembourg.osm 114599 119666 core 0.000 1 10.50
comm 0.955 68 95.47

rgg n 2 17 s0 131072 728753 core 0.752 7539 9.91
comm 0.612 15572 13.64

caidaRouterLevel 192244 609066 core 0.625 5436 55.83
comm 0.605 6005 78.57

coAuthorsCiteseer 227320 814134 core 0.701 17185 102.99
comm 0.690 23562 127.65

citationCiteseer 268495 1156647 core 0.481 2145 91.69
comm 0.433 11499 194.66

coPapersDBLP 540486 15245729 core 0.670 31213 1429.25
comm 0.669 34267 1557.58

eu-2005 862664 16138468 core 0.304 18403 1965.33
comm 0.404 30380 2570.01

audikw1 943695 38354076 core 0.241 10190 550.23
comm 0.389 22076 1151.01

ldoor 952203 22785136 core 0.091 361 20.23
comm 0.392 2 42.06

kron g500-simple-logn20 1048576 44619402 core -0.026 5 1554.64
comm -0.025 1788 3155.71

in-2004 1382908 13591473 core 0.632 29528 2774.93
comm 0.625 43454 3416.69

belgium.osm 1441295 1549970 core 0.000 2 889.65
comm 0.983 2326 7118.33

cage15 5154859 47022346 core 0.813 4958 14451.30
comm 0.544 174163 259.33
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in one huge cluster by the k-core clustering. On the other hand, the k-community cluster-
ing is able to identify a more meaningful clustering. The examples provided in Figure 1
point to some potential reasons why k-cores are not able to cluster these graphs as well as
k-communities do.

TABLE 2. Modularity of clustering found by the enhanced Algorithm 3
using the k-community based and k-core based approaches. The modu-
larity that is higher between the two methods is highlighted in bold. The
improvement in modularity when compared to the basic Algorithm 2 and
the time taken are also provided.

Graphs n m Method Mod Improv Time (s)

celegans metabolic 453 2025 core 0.360 0.092 0.16
comm 0.402 0.071 0.17

email 1133 5451 core 0.477 0.134 0.98
comm 0.542 0.148 0.62

polblogs 1490 16715 core 0.419 0.176 2.75
comm 0.426 0.206 0.16

power 4941 6594 core 0.759 0.464 0.55
comm 0.860 0.009 0.50

PGPgiantcompo 10680 24316 core 0.835 0.080 1.54
comm 0.848 0.116 1.59

astro-ph 16706 121251 core 0.651 0.112 25.93
comm 0.646 0.108 6.94

memplus 17758 54196 core 0.537 -0.017 4.62
comm 0.537 -0.017 4.45

as-22july06 22963 48436 core 0.513 0.041 113.67
comm 0.603 0.084 43.85

cond-mat-2005 40421 175691 core 0.625 0.116 273.29
comm 0.620 0.112 16.13

kron g500-simple-logn16 65536 2456071 core 0.023 0.040 10019.40
comm 0.014 0.027 1700.88

preferentialAttachment 100000 499985 core 0.000 0.000 22.00
comm 0.243 0.097 10041.40

G n pin pout 100000 501198 core 0.065 0.000 131.02
comm 0.212 0.076 10047.00

smallworld 100000 499998 core 0.000 0.000 19.63
comm 0.753 0.184 43.99

luxembourg.osm 114599 119666 core 0.000 0.000 29.00
comm 0.958 0.003 233.72

rgg n 2 17 s0 131072 728753 core 0.871 0.119 35.77
comm 0.800 0.188 72.29

caidaRouterLevel 192244 609066 core 0.776 0.151 5447.02
comm 0.821 0.216 340.88

coAuthorsCiteseer 227320 814134 core 0.823 0.122 397.66
comm 0.817 0.127 211.66

citationCiteseer 268495 1156647 core 0.639 0.157 10142.10
comm 0.709 0.276 483.39

coPapersDBLP 540486 15245729 core 0.716 0.046 2581.11
comm 0.715 0.046 2720.36

eu-2005 862664 16138468 core 0.671 0.367 15205.00
comm 0.757 0.353 11874.90

audikw1 943695 38354076 core 0.325 0.084 10826.60
comm 0.637 0.248 11231.10

ldoor 952203 22785136 core 0.092 0.001 6130.62
comm 0.392 0.000 847.84

kron g500-simple-logn20 1048576 44619402 core -0.024 0.002 11626.20
comm 0.010 0.036 13737.80

in-2004 1382908 13591473 core 0.924 0.292 6033.33
comm 0.926 0.302 5887.41

belgium.osm 1441295 1549970 core 0.000 0.000 55142.10
comm 0.983 0.000 7112.92

cage15 5154859 47022346 core 0.816 0.004 25787.80
comm 0.709 0.165 71808.90
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TABLE 3. The modularity (Mod), coverage (Cov), mirror coverage
(MCov), performance (Perf), average isolated inter-cluster conductance
(Aixc), average isolated inter-cluster expansion (Aixe), and minimum
intra-cluster density (Mid) found by the basic Algorithm 2 and enhanced
Algorithm 3 using k-community. The higher Mod, Perf, Aixc, Aixe, and
Mid entries amongst the two algorithms are highlighted in bold.

Graph Method Mod Cov Mcov Perf Aixc Aixe Mid

celegans metabolic Alg. 2 0.33 0.57 0.86 0.85 0.50 3.25 0.05
Alg. 3 0.40 0.58 0.88 0.87 0.34 2.17 0.06

email Alg. 2 0.39 0.44 0.96 0.96 0.58 5.26 0.02
Alg. 3 0.54 0.62 0.93 0.93 0.38 3.15 0.03

polblogs Alg. 2 0.22 0.39 0.91 0.91 0.09 1.79 0.02
Alg. 3 0.43 0.93 0.68 0.68 0.01 0.04 0.04

power Alg. 2 0.85 0.86 0.99 0.99 0.16 0.48 0.02
Alg. 3 0.86 0.87 0.99 0.99 0.15 0.44 0.02

PGPgiantcompo Alg. 2 0.73 0.74 1.00 1.00 0.21 0.96 0.01
Alg. 3 0.85 0.89 0.95 0.95 0.11 0.52 0.00

astro-ph Alg. 2 0.54 0.54 1.00 1.00 0.39 2.85 0.04
Alg. 3 0.65 0.66 1.00 1.00 0.58 1.89 0.01

memplus Alg. 2 0.55 0.63 0.99 0.99 0.24 1.09 0.01
Alg. 3 0.54 0.83 0.76 0.76 0.21 1.21 0.00

as-22july06 Alg. 2 0.52 0.72 0.86 0.86 0.33 1.17 0.00
Alg. 3 0.60 0.73 0.90 0.90 0.32 1.08 0.00

cond-mat-2005 Alg. 2 0.51 0.51 1.00 1.00 0.45 2.40 0.01
Alg. 3 0.62 0.62 1.00 1.00 0.71 1.92 0.01

kron g500-simple-logn16 Alg. 2 -0.01 0.33 0.73 0.72 0.00 0.17 0.00
Alg. 3 0.01 0.67 0.47 0.47 0.00 0.06 0.00

preferentialAttachment Alg. 2 0.15 0.47 0.56 0.56 0.90 24.23 0.00
Alg. 3 0.24 0.38 0.88 0.87 0.77 7.30 0.00

G n pin pout Alg. 2 0.14 0.52 0.60 0.60 0.80 8.79 0.00
Alg. 3 0.21 0.47 0.74 0.74 0.75 7.72 0.00

smallworld Alg. 2 0.57 0.57 1.00 1.00 0.49 4.91 0.13
Alg. 3 0.75 0.75 1.00 1.00 0.28 2.81 0.02

luxembourg.osm Alg. 2 0.96 0.99 0.96 0.96 0.03 0.07 0.00
Alg. 3 0.96 0.99 0.96 0.96 0.02 0.06 0.00

rgg n 2 17 s0 Alg. 2 0.61 0.61 1.00 1.00 0.45 4.71 0.20
Alg. 3 0.80 0.80 1.00 1.00 0.22 2.50 0.06

caidaRouterLevel Alg. 2 0.61 0.62 0.99 0.99 0.38 1.81 0.00
Alg. 3 0.82 0.85 0.97 0.97 0.96 2.13 0.00

coAuthorsCiteseer Alg. 2 0.69 0.69 1.00 1.00 0.31 1.83 0.01
Alg. 3 0.82 0.82 1.00 1.00 0.17 1.38 0.00

citationCiteseer Alg. 2 0.43 0.45 0.98 0.98 0.48 3.69 0.00
Alg. 3 0.71 0.72 0.99 0.99 0.29 2.49 0.00

coPapersDBLP Alg. 2 0.67 0.67 1.00 1.00 0.44 9.65 0.15
Alg. 3 0.72 0.72 1.00 1.00 0.30 8.75 0.10

eu-2005 Alg. 2 0.40 0.41 0.99 0.99 0.67 21.32 0.00
Alg. 3 0.76 0.81 0.98 0.98 0.23 6.69 0.00

audikw1 Alg. 2 0.39 0.51 0.90 0.90 0.83 51.18 0.00
Alg. 3 0.64 0.77 0.87 0.87 0.04 2.96 0.00

ldoor Alg. 2 0.39 1.00 0.39 0.39 0.00 0.11 0.00
Alg. 3 0.39 1.00 0.39 0.39 0.00 0.11 0.00

kron g500-simple-logn20 Alg. 2 -0.03 0.37 0.79 0.79 0.01 0.53 0.00
Alg. 3 0.01 0.67 0.59 0.59 0.00 0.01 0.00

in-2004 Alg. 2 0.62 0.63 1.00 1.00 0.40 12.63 0.00
Alg. 3 0.93 0.94 0.99 0.99 0.19 2.33 0.00

belgium.osm Alg. 2 0.98 0.98 1.00 1.00 0.04 0.11 0.00
Alg. 3 0.98 0.98 1.00 1.00 0.04 0.11 0.00

cage15 Alg. 2 0.54 0.55 1.00 1.00 0.67 10.87 0.00
Alg. 3 0.71 0.71 1.00 1.00 0.48 9.58 0.00
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In addition, Table 1 also reports the time taken by the two approaches on each of the
graphs. It can be seen that our approach scales well for large graphs, with graphs with up
to 5 million vertices solved in reasonable time on a desktop machine.

Table 2 presents the modularity and number of clusters found by Algorithm 3 using the
k-core and k-community clustering for the same 27 graphs. It can be seen that k-community
based clustering outperforms k-core based clustering in 19 of the 27 instances. On an
average, the improvement in the modularity was 0.099 for the k-core based clustering and
0.122 for the k-community based clustering. The time required for clustering increases,
but is still within reasonable limit. A user can decide for or against using enhancements
depending on the trade-off between the extra time required and the increase in modularity.

Table 3 presents the modularity, coverage, mirror coverage, performance, average
isolated inter-cluster conductance, average isolated inter-cluster expansion, and minimum
intra-cluster density for the clusterings found by the basic Algorithm 2 and the enhanced
Algorithm 3 using the k-community based approach. For each graph, the table highlights
the higher modularity, performance, average isolated inter-cluster conductance, average
isolated inter-cluster expansion, and minimum intra-cluster density entries amongst the
respective columns. It can be noted that while the enhanced Algorithm 3 increases the
modularity, it has an adverse effect on the other clustering measures. This is an impor-
tant observation that suggests that modularity maximization should not be used as the sole
measure of good clustering.

5. Conclusion

This paper introduces k-community clustering, which can be thought of as something
between k-core clustering and clique partitioning. The use of polynomially computable
k-community not only provides a faster approach, but also provides a more effective clus-
tering method by being able to identify cohesive structures that might not be cliques. k-
Community clustering also provides advantages over k-core clustering due to the more
cohesive nature of a k-community. As our computational results show, both the k-core and
k-communities perform well for certain graphs, but k-community approach outperforms
the k-core approach in general.
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Identifying base clusters and their application to maximizing
modularity

Sriram Srinivasan, Tanmoy Chakraborty, and Sanjukta Bhowmick

Abstract. Modularity maximization is an effective technique for identifying

communities in networks that exhibit a natural division into tightly connected
groups of vertices. However, not all networks possess a strong enough commu-
nity structure to justify the use of modularity maximization. We introduce the
concept of base clusters—that is group of vertices that form the kernel of each
community and are always assigned together independent of the community
detection algorithm used or the permutation of the vertices. If the number of
vertices in the base clusters is high then the network is likely to have distinct
communities and is suitable for the modularity maximization approach. We
develop an algorithm for obtaining these base clusters and show that identify-
ing base clusters as a preprocessing step can help in improving the modularity
values for agglomerative methods.

1. Introduction

Many complex networks, such as those arising in biology [V], social sciences [B1]
and epidemiology [B3] exhibit community structure, that is, there exists a natu-
ral division of groups of vertices that are tightly connected within themselves and
sparsely connected across the groups. Identifying such naturally occurring commu-
nities is an important operation in analyzing complex networks. A popular method
for obtaining good communities is by optimizing the modularity of the network.
The higher the modularity, generally the better the distribution into communities.
Therefore, many community detection algorithms are designed with the objective
function of improving the modularity.

There exists several issues in using modularity as a metric for community de-
tection. Finding the maximum modularity is a NP-complete problem [B5] and
therefore like other combinatorial optimization problems, the ordering of the ver-
tices in the network can significantly affect the results. Although high modularity
values often indicate good divisions into communities, the highest modularity value
need not reflect the best community division, as in examples exhibiting the reso-
lution limit [G1]. Similarly a near-optimal modularity does not necessarily mean
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the division is also near-optimal. However, this metric has been effective in find-
ing communities in networks, where there exists an inherent and strong commu-
nity structure–the key proposition being that the network can be naturally divided
into distinct communities. Most community detection algorithms, that are based
on modularity optimization, however, do not contain any mechanism to ascertain
whether the network indeed has a modularity structure. This is a ”chicken-and-
egg” problem because in order to discover communities, we first have to make sure
that they exist.

In this paper, we propose a solution to this problem by introducing the concept
of base clusters in communities. Base clusters consist of sets of vertices that form
the kernel of each community in the network, and are groups of vertices that are al-
ways assigned to the same community, independent of the modularity maximization
algorithm employed or the order in which the vertices are processed.

A naive, but effective method for identifying these base clusters of vertices
would be to execute different community detection methods, and different vertex
orderings and then comparing the groupings to find vertices that are always assigned
to the same cluster. This approach has been implemented in [O] as part of their
ensemble learning and recently in [L1] where they are called consensus clusters.
However this technique is expensive because it requires executing all the algorithms
in the set, and the effect of a bad permutation may persist over several of the
methods. We propose an orthogonal method of finding base clusters that is based
only on the topology of the network.

In addition to indicating whether a network indeed posseses community struc-
ture, base clusters can also be used as a preprocessing step to modularity maximiza-
tion. First the base clusters are identified and assigned to the same community,
because they are guaranteed to be in the same group, and then modularity maxi-
mization is applied to the smaller network. Combining base clusters as an initial
step helps bias the network to move towards the correct community division and
generally also increases modularity. In this paper, we study the effect of preprocess-
ing using base clustering on two agglomerative modularity maximization methods–
(i) proposed by Clauset et. al. in [C] (henceforth referred to as the CNM method)
and (ii) proposed by Blondel et. al. in [B2] (henceforth referred to as the Louvain
method). These two methods are both based on a greedy approach of combining
pairs of vertices at each step that lead to the most increase in modularity.

The remainder of this paper is arranged as follows. In Section 2, we provide
a brief overview of the network terminology used in this paper, short descriptions
and a comparison of the CNM and Louvain methods and discussion on a few other
preprocessing algorithms for modularity maximization. In Section 3, we present
our main contribution–an algorithm to find base clusters in networks. In Section
4, we present experimental results of using base clusters as a preprocessing step
to modularity maximization and discuss the effectiveness of this technique. We
conclude in Section 5 with a discussion of future research.

2. Background

Terminology: A network (or graph) G = (V,E) consists of a set of vertices
V and a set of edges E. An edge e ∈ E is defined by two vertices {u, v} which are
called its endpoints. A vertex u is a neighbor of v if they are share an edge. The
degree of a vertex u is the number of its neighbors. A path, of length l, in a graph
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G is an alternating sequence of v0, e1, v1, e2, . . . , el, vl vertices and edges, such that
for j = 1, . . . , l; vj−1 and vj are the endpoints of edge ej , with no edges or internal
vertices repeated. The distance of a vertex to another is the length of the shortest
path between these vertices.

The clustering coefficient of a vertex indicates whether a vertex is part of a dense
module. This value is computed as the ratio of the edges between the neighbors of
a vertex to the total possible connections between the neighbors. If a vertex has a
large clustering coefficient then all its neighbors are connected, therefore the vertex
is part of a clique. Another metric related to the clustering coefficient is the fill-in.
The fill-in of a vertex is the number of extra edges required such that the vertex
and its neighbors form a clique. The fill-in of a vertex is computed as the total
possible connections between the neighbors - the edges between the neighbors.

Clustering algorithms for networks are based on identifying tightly connected
groups of vertices. However, mere comparison of edges within and outside groups
is not always an appropriate measure for communities. This is because certain
areas real-world complex networks, particularly those based on social sciences also
exhibit random connections, and the effect of these random subnetworks have to
be taken into account. The metric of modularity was proposed by Newman and
Girvan [N2] and is based on the idea that there are no strong communities within
random networks.

Modularity Maximization: Modularity on undirected graphs is computed
as follows; Given a partition of a network into M groups, let Cij represent the
fraction of total links starting at a node in group i and ending at a node in group
j. Let ai =

∑
j Cij correspond to the fraction of links connected to subgroup i.

Under random connections, the probability of links that begin at a node in i, is ai,
and the probability of links that end at a node in j, aj . Thus, the expected number
of within-community links, between nodes with group i, is a2i . The actual fraction
of links within each group is Cii. So, a comparison of the actual and expected
values, summed over all groups of the partition gives us the modularity, which is
the deviation of the partition from random connections: Q =

∑
(Cii − a2i ). Maxi-

mizing modularity is a popular method for finding good communities in networks.
However finding the optimal modularity is an NP-hard problem [B5]. There exist
many heuristics for maximizing modularity including spectral partitioning, divisive
and agglomerative methods [P]. We now discuss the two agglomerative modularity
maximization algorithms used in this paper;

The CNM method is a greedy agglomerative algorithm developed by Clauset et.
al. [C]. This method initially considers every vertex in the network as an individual
community. At each iteration, the pair of communities with the highest increase in
modularity are merged. The process is repeated until there exists no combination
of vertices that increase modularity. The runtime of the CNM method is improved
by using heaps to store the edges and their associated increase in modularity.

The Louvain method, developed by Blondel et. al. [B2], also uses a greedy
approach and initially assigns each vertex to an individual community. However,
instead of a search over all edges, the Louvain method executes a local search over
the edges of each vertex. Each vertex is combined with the neighbor that most
increases its modularity, although in subsequent steps of the iteration, the neighbor
itself can be detached from its original community to join a new one. Thus in one
pass through the network the algorithm can identify multiple local communities and
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reduce the number of iterations. Additionally, by allowing vertices to be removed
from earlier communities, the Louvain method provides a mechanism for correcting
initial bad choices. This process of reassigning communities is repeated over several
iterations (called the inner iteration), until modularity is increased. Once this
first-phase allocation of communities is determined, the Louvain method joins the
vertices within a community into supervertices (in the outer iteration). The inner
iteration is then repeated over these supervertices. The steps of the inner and outer
iterations are executed repeatedly until the number of communities is suitably small
and the modularity cannot be increased any further.

The CNM method is generally the slower of the two, because it finds the maxi-
mum over all edges per iteration as opposed to the Louvain method which executes
a combination for each vertex if possible. However, if the increase in modularity
is equal over most of the edges in the network, the inner iterations in the Louvain
method can spend many steps needlessly moving from one community to another.
An advantage of the Louvain method over the CNM method is the opportunity to
backtrack from a community if necessary, so long as it is within the same inner
iteration. Despite these apparent differences, both the CNM and Louvain method
are based on the same principle—a greedy combination of communities to maximize
modularity. We posit that the difference is in the implementation of the methods.
For example if the number of loops per inner iteration is set to 1, then the Louvain
method would be exactly like the CNM method—combining pairs of community
and not backtracking. Because of their similarity, we use two methods to compare
the effectiveness of base clustering.

Comparsion Between Two Community Partitions Although modularity max-
imization is the designated objective function of the algorithms, comparing the
values may not always give a clear picture about the community structure. This
is because in certain networks two different partition schemes can give identical
modularity values. One method of comparing across two partitions (obtained from
different algorithms) is by using the Rand Index [R1]. Given two different parti-
tions of a network, the Rand Index is computed as follows; Let a be the pair of
vertices that are present in the same community over both the partitions, let b be
the pair of nodes that were in different communities for both the partitions, then
the Rand Index is computed as the ratio of the sum of a and b over all possible
pairs of vertices. A high Rand Index (maximum value 1) indicates that the two
partitions are equal and a low Rand Index indicates that they are very dissimilar.

Preprocessing For Modularity Maximization: Since the value of mod-
ularity is affected by implementation factors such as the vertex orderings, there
exist several preprocessing techniques to improve the results, including simple but
effective methods such as pruning the outlying (generally degree 1) vertices. The
methods most similar to the base clustering approach include a seeded community
method by Reidy et. al. [R2], an iterated random walk strategy by Liu et. al. [L2]
and an ensemble learning based approach by Ovelgonne et. al. [O]. In the seeded
community method, an initial set of seed vertices are given as input and the com-
munities are grown outwardly from these seeds. The random walk method is based
on the observation that given a network with community structure, a random walk
generally remains within a community. In the preprocessing step several random
walks are performed to obtain a better estimate of the vertices in the same com-
munity. The ensemble learning based approach executes a base algorithm several
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times to get a consensus of the smaller clusters. Once these clusters are obtained,
then the base algorithm is executed over the entire graph. Note that all these three
preprocessing steps are variations of finding a kernel community, like our proposed
method of base clusters. Our method differs in that we try to estimate to base
clusters based only on the topology of the network and instead of presupposing
the existence of a communities, we use base clusters to estimate wether a network
indeed has good community structure. Our clusters should ideally be invariant for
a given network because they are not based on random selections such as the seeded
method and the random walk nor on the effect of an underlying algorithm as in
the case of the ensemble learning method. However, this is not always possible
practically, and the benefits and issues of the base clustering method are discussed
in Section 3.

Other works, not on preprocessing, but dealing with core communities include
a study statistically significant communities by perturbing the connectivity of the
network and then comparing change in community structures by Karrer et. al. [K1]
and a recent work by Fortunato et. al. [L1] that looks at the consensus communities
over different community detection algorithms on synthetically generated networks
of varying degrees of community structure.

3. Finding Base Clusters in Complex Networks

Given a network, our objective is to estimate whether the network indeed poss-
eses distinct communities. It has been observed that the permutation of the vertex
order can change the partition to communities, and if the network does not have a
strong community structure these partitions can significantly vary. We conducted
a preliminary experiment for finding consensus communities—that is groups of ver-
tices that are always grouped together over different permutations. As shown in
Figure 1, the number of consensus communities, by using the CNM method, keep
on increasing with the number of permutations of the vertices for the networks,
Jazz (network of jazz musicians) [G2] and Power (network of a power grid) [W].
However, in spite of the relatively large number of different consensus groups, the
bulk of the nodes (172 out of total of 198)of Jazz are concentrated in three large
communities and the rest communities are composed of 2-3 vertices each. This
result highlights that Jazz has a strong community structure and also that a small
percentage of its nodes are not strictly attached to any of the major communities.
In contrast only 72 of the 4941 nodes of the Power graph are in the three largest
communities and the rest are scattered in groups of 3-4 over the rest of the smaller
communities. Clearly the community structure of Power is not as strong as that
of Jazz. However, both these networks are common benchmarks for evaluating
modularity maximization algorithms.

We consider communities to have a kernel, that grows outwards to form the
community. The vertices at the edge of the community are most likely to be the ones
that migrate over different permutations, and the inner vertices form the consensus
communities. We will focus on finding these kernels, which we call base clusters
to distinguish that they do not represent the entire consensus community. We
conjecture that the base clusters are the most tightly connected groups of vertices
in the network which facilitates larger communities to be built around them.

A naive method for identifying these base clusters might be to search for densely
connected set of vertices, preferably large cliques. However as shown in Figure 2a,
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Figure 1. Increase of Consensus Communities with Ver-
tex Permutations. The X-axis is the number of different per-
mutations applied to the network and the Y-axis is the number
of consensus communities under the CNM method. Jazz shows a
relatively slow increase, indicating good community structure as
compared to Power.

Figure 2. Division of network into communities. Figure 2a.
combines a large clique, but with greater external pull. Figure 2b.
distributes the pull amongst the communities.

members of cliques may not always fall in the same community. In the example
vertices (2,3,4,5) form a clique. But a partition of the six vertices as ({1}, {2,3,4,5},
{6}) gives a negative modularity of -.06 This is because the even though the vertices
in the clique are tightly connected amongst themselves, each subgroup (2,3) and
(4,5) also have a strong connection to an external community. For example (2,3)
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has two edges to the external vertex (1) and also two edges to the internal vertex
(4). Thus after (2,3) is combined it is equally likely that it can combine with (1)
or with (4) or with (5).

Ideally, each subgroup within a base community should have more internal con-
nections than external ones, to resist the pull from vertices outside the group. But
it is expensive to find groups of vertices that satisfy this condition. We therefore
temporize and look for clusters where the number of internal connections is consid-
erable greater than the external connections. In the results presented in this paper
we set the parameters such that the number of external connections is less than
half the number of internal connections. However unless the network has extremely
well-defined communities, even this condition is not always prevalent.

To accommodate base clusters with more external edges, we note that having
more external edges is not necessarily bad so long as the external connections are
to different communities. This way the ”pull” from other communities is reduced,
even though there are more outside connections. Figure 2b gives an example where
the network is partitioned such that despite having more external edges, the ”pull”
is dissipated amongst different communities. The problem however, is that we have
not yet grouped the vertices into communities. Therefore, we do not know which
of edges point to the same community.

We use the community diameter to estimate the kernels. We define a commu-
nity to have diameter d, if the shortest path between two vertices in that community
is d. We assume that consensus communities have diameters of at least 2. Then, if
a base cluster is composed of a core vertex and its distance-1 neighbors, the neigh-
bors of neighbors, i.e. vertices at distance 2 from the core vertex are first ones that
can be on the edge of the community. We identify base clusters such that these
distance-2 vertices exert less pull on the distance-1 neighbors as follows;

We compute the fill-in of the vertices in the network and identify ones with low
fill-in (generally 0-2). We form a temporary base community C composed of the
vertex v and its neighbors. If the number of internal connections of each vertex in
C is more than twice the number of external (to the core) connections then C is
designated as a base community.

Otherwise, we consider set N of the distance-2 neighbors of v, that are not ele-
ments of C. The edges in N can be classified as follows; (i) one endpoint connected
to a vertex in community C (type X); (ii) both endpoints connected to vertices in
community N (type Y) and (iii) one end point connected to a vertex that is niether
in C nor N (type Z). A vertex in C is considered to be suitable for the base cluster,
if that vertex; (a) has fewer edges of type X than of type Y and (b)has fewer edges
of type X and Y together than of type Z. Condition (a) ensures that the distance-2
neighbors do not have significantly more connections to the vertices in the base
cluster to pull them out and condition (b) ensures that the set of external vertices
has a larger ”pull” from external communities other than C and therefore it is likely
that they will not exert as much ”pull” on the vertices within C.

It is possible that a vertex can be designated to be in multiple base clusters. If
a vertex has multiple affiliations to several communities, we remove them. A side
effect of removing these vertices is that the size of the base clusters now depends
on the vertex ordering and the base clusters also become smaller. However this
procedure reduces the ambiguity of the clusters, so we apply it for the current
version of the algorithm. The pseudocode of our heuristic is shown in Algorithm 1.
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Algorithm 1 Identifying Base Clusters in Networks.

Input: A graph G = (V,E). Output: Set of base clusters C1, C2, . . .Cn.

1: procedure Finding Base Clusters

2: Set max fill to the Fill-In threshold � Generally set from 0-2
3: for all v ∈ V do
4: Compute Fill-In of v
5: if Fill-In of v ≤ max fill then
6: Create cluster Cv of v and its neighbors
7: In Edge=Internal Edges of Cv � Both endpoints are in Cv

8: Ex Edge=External Edges of Cv � Only one endpoint in Cv

9: if Ex Edge ≤ In Edge/2 then
10: Associate cluster id v for each vertex in Cv

11: Mark Cv as base cluster
12: else
13: Create set N of n where, n is a distance-2 neighbor of v
14: Y Edge=Edges with both endpoints in N
15: for all u ∈ Cv do
16: X Edge=Edges with one endpoint in N and other in u
17: Z Edge=Edges with one endpoint in N and other not in u
18: if X Edge ≤ Y Edge AND (X Edge+ Y Edge) ≤ Z Edge then
19: if Vertex u does not have a cluster id then
20: Associate cluster id v with u
21: Mark u as a vertex in base cluster

Our algorithm focuses on finding the innermost kernel of the consensus commu-
nities, and as such the size of the base clusters is likely to be considerably smaller
than the ones found by the other preprocessing methods discussed in Section 2.
However, recall that the primary objective of our algorithm is to check whether
community structure at all exists in the network. In this respect, we are more
successful than the other methods because our algorithm will not return any base
community if there is no community in the network of diameter larger than two.
For example, our method returns zero base clusters for the Delaunay meshes, which
ideally do not have community structure. Our method also returns zero base clus-
ters for the Football graph (network of American college football) [G1]. This is
interesting because Football is known to have distinct communities. However, the
diameters of the communities are in most cases at most two and the lowest fill-in
of the vertices is more than 10. Due to the absence of tight kernels our algorithm
cannot find any base clusters. The ratio of the number of vertices in base clusters
to the total vertices provides an estimate of the strength of the communities in the
network.

4. Modularity Maximization Using Base Clusters

Base clusters can also be used as a preprocessing step to improve the results of
modularity maximization. The vertices with the same base cluster id are assigned
to the same community and then a modularity maximization algorithm is applied
to the transformed network. In this section we demonstrate the results of using
this preprocessing technique combined with the CNM and Louvain methods.

Test Suites. Our test-suite consists of eight unweighted and undirected net-
works obtained from the clustering instances in the DIMACs website [D1]. These
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are;(i) Karate (network of member in a Zachary’s karate club [Z] (V=34, E=78), (ii)
Jazz (network of jazz musicians) [G2](V=198, E=2742), (iii) PolBooks (network of
books about USA politics) [K2](V=105, E=441)), (iv) Celegans (metabolic network
of C. elegans) [D2] (V=453, E=2025), (v) (social network of dolphins) [L3](V=62,
E=159), (vi) Email (the network of e-mail interchanges between members of the
Univeristy Rovira i Virgili) [G3](V=1133, E=5451), (vii) Power(topology of power
grid in the western states of USA) [W](V=4941, E=6594) and (vii) PGP (compo-
nent of the network of users of the Pretty-Good-Privacy algorithm) [B4] (V=10680,
E=24316).

Algorithm Implementation. Although our underlying modularity maximization
methods CNM and Louvain are extensively used in the network community, the
available codes do not include provisions for preprocessing. We also could not
find any easy to modify open source code that implements both the methods.
Therefore to include the preprocessing step and to ensure a fair comparison we
implemented the methods (in STL C++) along with the additional preprocessing
for finding base clusters. The primary purpose of the code was to understand
how using base clusters affect modularity maximization. Therefore although the
results match the original versions, performance issues, such as execution time, are
not optimized in our implementation. We anticipate in future to develop a faster
version of the algorithm. Here we highlight some of the special characteristics of
our implementation.

Unlike, most other implementations which uses adjacency lists, we use a com-
pressed sparse row (CSR) structure to store the network. CSR is a standard format
for storing sparse matrices. We used this storage because in future versions we plan
to use matrix operations on the network. Additionally, even though the networks
are undirected we store both directions of the edges (i.e. {v,w} as well as {w,v}).
This is done to accommodate the code for directed networks when required. These
features make the implementation slower than other versions of the algorithm.
However, we are building towards a general software, not just an algorithm for base
clusters. In these set of experiments time was used only to compare the different
methods against each other in the same environment.

In the CNM code we implemented a heap, as is popularly used, to find the high-
est change in modularity. However, as the iterations progressed the heap continued
to collect obsolete values associated with edges whose endpoints have merged to
the same or different communities. The solution was either to recreate the heap
after each iteration or to verify that the highest value in the heap with the value
stored in the network, and continue until a valid value was obtained. Both these
options are computationally expensive. We implemented a compromise where the
heap is recreated only if a certain number of misses (top of the heap not being a
valid value) is encountered. We set this value to 2.

In the Louvain implementation provided by the authors, there is a function
for generating a random permutation of the vertices. The random permutation is
not an essential part of the algorithm itself as it is described in [B2], but rather,
we think, is included to ameliorate the effect of vertex perturbations. However,
in our experiments we specifically want to see the effect of vertex permutations
and compare its effects across the CNM and Louvain methods and their variations
using base clusters. Therefore we did not include the random permutation within
the Louvain implementation. The Louvain method also recreates a compressed
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Table 1. Comparison of the Modularity Values Obtained
by Using the CNM Method and Base Cluster Preprocess-
ing. The CNM columns tabulate results obtained by using only
the CNM method and the Base columns tabulate results obtained
through base cluster preprocessing and then applying CNM. The
Std Deviation column gives the standard deviation of the values
over 60 permutations. The last column gives the percentage of
vertices found to be in base clusters.

Name Avg Modularity Max Modularity Std Deviation Base
CNM Base CNM Base CNM Base Cluster %

Karate .3938 .4022 .4156 .4197 .006 .015 29%
Jazz .43877 .4234 .4388 .4442 2e-05 .015 26%
PolBooks .5019 .5140 .5019 .5260 3e-04 .011 27%
Celegans .4046 .4231 .4149 .4327 .005 .004 30%
Dolphin .4802 .4904 .5094 .5242 .012 .021 22%
Email .4715 .4908 .5201 .5462 .118 .135 27%
Power .8997 .9148 .9221 .9200 .117 .003 9%
PGP .8628 .8616 .8696 .8716 .003 .003 ≈ 40%

Table 2. Comparison of the Modularity Values Obtained
by Using the Louvain Method and Base Cluster Prepro-
cessing. The LVN columns tabulate results obtained by using
only the LVN method and the Base columns tabulate results ob-
tained through base cluster preprocessing and then applying Lou-
vain. The Std Deviation column gives the standard deviation of
the values over 60 permutations. The last column gives the best
results of modularity as reported by [N1](O), [L2](R) and [O] (E).

Name Avg Modularity Max Modularity Std Deviation Best
LVN Base LVN Base LVN Base Value

Karate .4156 .4170 .4198 .4198 .007 .005 .4198(R)
Jazz .4427 .4435 .445 .445 .002 .002 .445 (O)
Polbooks .5258 .5266 .5268 .5268 .002 .002 .527 (O)
Celegans .4355 .4320 .4421 .4447 .005 .006 .4501 (E)
Dolphins .5202 .5200 . 5233 .5241 .002 .002 .529 (O)
Email .5671 .5664 .5555 .5745 .003 .005 .5801 (E)
Power .9360 .9359 .9365 .9370 .0003 .0004 .9396 (E)
PGP .8776 .8775 .8807 .8796 .001 .002 .8861 (E)

network at the end of each outer loop. This process reduces the performance
time significantly as the subsequent operations are executed on a much smaller
network. In our code, we keep use the final community allocation of the vertices
to identify which are compressed into a supernode, but retain the original network.
Consequently, our execution times for the larger networks are substantially slower
than compared to the code provided by the authors.

Empirical Results We applied 60 permutations to each of the networks in the
test suite. The permutation orders were created using a random number generator.
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Figure 3. Effect of Vertex Permutation on Computing
Modularity. Top Figure: The Dolphin Network. Bottom Fig-
ure: The Power Grid. CNM methods generally produce a lower
value than Louvain methods. However, for networks with stronger
community structure in certain permutations can produce equiva-
lent modularity to the Louvain method.

For each permutation we applied the CNM and the Louvain method as well as
the methods after finding and combining the base clusters. The statistics of the
modularity obtained by these four methods is given in Tables 1 and 2.

We see that in general using base clustering increases the average modularity
value as well as the highest one. There are a few exceptions, such as in average
for Jazz and maximum for power in CNM and average for Email and Celegans and
max for PGP in Louvain. In general, the improvement is higher for CNM, than
for the Louvain methods. We believe that this is due to the backtracking feature
of the Louvain algorithm. We also compare the standard deviations of the values
across the different perturbations. The range of values in Louvain is not as affected
by using base clusters as those of CNM. This phenomena once again points to the
backtracking feature of the Louvain method, which automatically the process to
adjust from any initial position to a good community partition. This leads us to
conclude that the base clustering preprocessing would be most effective when the
underlying algorithm does not contain self-adjusting steps.
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The last column in Table 1 gives the percentage of vertices in the base clusters
to the total number of vertices. We see that compared to other networks in the
set the percentage is rather low (9%) for the Power network, which indicates poor
community structure and also matches with our observations in Figure 1. The
PGP network also has a low percentage (4%) of base cluster vertices, but since
the network was large we only sampled 10% of the total vertices for fill-in. If the
sample percentage is adjusted, the percentage of base clusters can go upto (40%).

The last column in Table 2 compares the best known modularity value obtained
using other preprocessing methods. The ensemble strategy is denoted by (E), the
random walk strategy by (R) and for networks where preprocessing was not used
we tabulated the best known values listed in [N1] and denoted these as (O for
other). For networks with well defined community structures (karate and jazz)
base clustering can come very close to the highest modularity, but not so much for
the others. We believe this is because (i) base clusters try to find the kernels of the
communities and is therefore independent of modularity and (ii) due to the much
smaller size of the base clusters.

Figure 3 plots the change in modularity over all the permutations of the Dolphin
and the Power networks. In the Dolphin network we can see that using base clusters
gives a significant boost to the CNM method. Also observe that although, in
general, the Louvain methods can produce higher modularity, there exists certain
case where the CNM with base communities method is equivalent to the Louvain
method. This points to the importance of obtaining good permutations for a given
algorithm and also indicates that the Dolphin network posses community structure.
In contrast, the values in the Power network are well separated. As we know, Power
network does not have as strong a community structure so perhaps separation of
values by two algorithms is an indication of that. We plan to further investigate
this phenomena in future.

Table 3 compares the difference in community structure across the original and
the method with base cluster preprocessing using the Rand Index. Most of the
values (with an exception in Email) are quite high (over 77%). However the values
are generally higher for the Louvain method, once again reflecting the effect of self
adjustment. Table 4 gives the average time (in seconds) to compute the original
methods, the original methods with preprocessing and the time for only prepro-
cessing. The codes were compiled with GNU-g++ and the experiments were run
on a Xeon dual-core processor with 2.7GHz speed and a 32 GB RAM. We see that
in some cases preprocessing helps reduce the overall agglomeration time, however
finding the base clusters is generally as expensive as is our current implementation
of modularity maximization. But that since the base clusters depend only on the
network topology, finding them can be a one time operation. After that we can
reuse the clusters for any underlying algorithm. Although, not implemented in this
paper, this technique can help make base cluster preprocessing more cost effective.

It would also be instructive to compare how good our base cluster algorithm is
in finding kernels of the consensus communities. However to analyze this we would
have to compute the consensus communities themselves, such as by comparing the
common groups over multiple perturbations. This is possible for small networks,
but not for large ones like PGP–because as the number of vertices grows it is
important to check out large number of perturbations (as close to n! as possible) to
cover as much of the search space as possible. In this paper we have computed the
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Table 3. Comparison Between the Communities formed
by using the Original Method and the Ones using Prepro-
cessing. The values of the Rand Index is generally high indicating
similarity except at a few points. The similarity between the clus-
ters obtained using the Louvain based methods is higher.

Name CNM vs Base LVN vs Base
Avg Max Min Avg Max Min

Karate .8873 .9643 .8146 .9599 1 .8823
Jazz .9217 .9702 .8891 .9851 1 .9368
Polbooks .8572 .9153 .9945 .9139 1 .9175
Celegans .7966 .8236 .7707 .9068 1 .8829
Dolphins .8344 .8773 .7911 .9810 1 .9074
Email .8163 .8993 .6500 .9363 .9636 .8992
Power .9804 .9839 .9759 .9889 .9926 .9834
PGP .9682 .9757 .9567 .9976 1 .9947

Table 4. Comparison of the Execution Time (In Seconds)
of the Different Methods and the Time to Identify Base
Clusters. Using base cluster preprocessing can sometimes reduce
the execution time. However, in some cases, obtaining base clus-
ters can be as expensive as the agglomeration method. The per-
formance of the algorithms can be improved by sampling selected
vertices or using base clusters as a one time preprocessing opera-
tion for multiple methods.

Name CNM CNM+Base LVN LVN+Base Base Only

Jazz 1.50 1.51 .57 .68 .45
Polbooks .085 .067 .06 .05 .04
Celegans 3.67 1.80 1.35 1.50 .86
Dolphins .01 .018 .003 .005 8e-04
Email 32.31 18.6 11.84 10.31 3.15
Power 52.59 50.19 24.12 24.68 31.4
PGP 760.78 757.25 579.88 577.87 25.79

consensus communities for Jazz, Dolphin and Power. Jazz has 86% of its vertices in
the three highest consensus communities (our base cluster found 26%) and Dolphin
has 74% of its vertices in the three highest consensus communities (our base cluster
found 22%). These numbers are encouraging because we are only looking at the
kernel —not the entire community and on inspecting the base clusters obtained,
that in most cases they indeed belong to the same consensus cluster. However there
are some false positives in that if nodes of two clusters are closely attached–they
can appear as a base cluster. This happens for some permutations in Jazz and
Dolphins, and those are the ones where the modularity is not as high. For example
out of 53 of vertices, in Jazz, denoted to be in the base communities 5 were false
positives. We found that the Louvain method is less forgiving of the false positives
than the CNM method. In order to reduce the chances of false positives, for the
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Louvain method, we only used cluster sizes ranging from 2-4. In future we plan
to further modify the base cluster identification algorithm to reduce these false
positives.

The Power network has just 1% of its vertices in the largest three consensus
communities, yet by our method we were able to find 9% of the nodes. On inspection
we found that this happened because the base cluster method picked up many of
the smaller communities, that were built around a vertex with low fill-in. Once
again, we need more stringent conditions in our algorithm to avoid picking up very
small communities.

5. Discussion and Future Work

In this paper, we have attempted to answer the question–”how can we know
whether a network indeed posses community structure ?”. As an initial step in this
investigation we proposed finding core kernels of communities, which we call base
clusters, and developed an algorithm to identify these clusters. The percentage of
vertices in a base cluster can give an estimate of the strength of the community
of the network. This conjecture is supported by comparing the vertices in base
clusters to the ones in large consensus communities. Additionally our algorithm
returns zero base clusters for networks not known to have community structures.

Base clusters can also be used as a preprocessing step to improve the the value
of modularity. We used this preprocessing in conjunction with two agglomerative
methods, the CNM and the Louvain on 60 permutations per network. The improve-
ment to CNM is higher than the improvement to the Louvain method, perhaps due
to its self adjusting feature. We however note that the base clusters are identified
orthogonal of any modularity values, and therefore the increase is perhaps due to
the cluster representing a core kernel.

Our algorithm for identifying base clusters has room for improvement. First, we
are only considering a vertex and its distance-1 neighbors as the base cluster. This
kernel can be expanded to include vertices at longer distances to create a stronger
base cluster. Additionally, we have observed that our method picks up some false
positives if vertices of two nearby consensus communities are tightly connected.
We plan to improve the conditions on the base cluster to reduce the false positives.
Finally comparing base clusters over all vertices is still very expensive, particularly
for large graphs and we are investigating better implementation practices to reduce
the time.
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Complete hierarchical cut-clustering: A case study on
expansion and modularity

Michael Hamann, Tanja Hartmann, and Dorothea Wagner

Abstract. In this work we study the hierarchical cut-clustering approach
introduced by Flake et al., which is based on minimum s-t-cuts. The resulting
cut-clusterings stand out due to strong connections inside the clusters, which
indicate a clear membership of the vertices to the clusters. The algorithm
uses a parameter which controls the coarseness of the resulting partition and
which can be used to construct a hierarchy of cut-clusterings. The parameter
further provides a quality guarantee in terms of expansion, a quality measure
for clusterings which in general is NP-hard to compute.

We conduct an experimental study on the expansion of cut-clusterings
revealing that, compared to a trivial bound, the given guarantee allows for a
deeper insight. Our experiment further documents that the true expansion
even exceeds the guarantee. In a second experiment we investigate the quality
of cut-clusterings with respect to the widely used measure modularity. In this
study the cut-clustering algorithm competes surprisingly well with a greedy
modularity-based heuristic, although it is not designed to optimize modularity.
This attests a high trustability of the cut-clustering approach confirming that
the cut-clustering algorithm returns nice clusterings if such clusterings are
clearly indicated by the graph structure.

1. Introduction

The aim of graph clustering is to identify subgraphs of high internal connectivity
that are only sparsely interconnected. This vague notion lead to countless attempts
of formalizing properties that characterize a set of good clusters. The resulting
variety of different quality measures still affects the design of algorithms, although
for many measures the sufficiency of the underlying properties is not examined yet
or has been even disproven. This is, a good clustering according to a non-sufficient
quality measure might be still implausible with respect to the given graph structure.
For example, Montgolfier et al. [4] showed that the asymptotic modularity of grids
is 1, which is maximum since modularity ranges whithin [−0.5, 1]. However, by
intuition the uniform structure of grids does not support any meaningful clustering,
and thus, also a clustering of high modularity can not be plausible. Furthermore,
common quality measures are most generally hard to optimize. Thus, heuristics
are often used in practice.
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Motivated by these drawbacks of established clustering algorithms, we focus
on a different approach postulated by Flake et al. [5]. Their algorithm exploits
properties of minimum s-t-cuts in order to find clusterings where the membership
of each set of vertices to a cluster is clearly indicated by the graph structure. More
precisely, there are clusterings desired where each subset of a cluster is at least as
strongly connected to the remaining vertices inside the cluster as to the vertices
outside the cluster — a property that is not expressed by any of the common
measures. The clusterings resulting from the cut-clustering approach are called cut-
clusterings. This concept of cut-based clustering leads to a relatively strict behavior
in the sense that vertices that can not be clearly assigned to any cluster remain
unclustered, i.e., form singleton clusters. Such a behavior particularly prevents an
arbitrary assignment of vertices to clusters, which is highly desirable for example in
sociology applications where it is essential that ambiguous scenarios are interpreted
by human experts instead of automated routines.

The algorithm of Flake et al. depends on a parameter, which controls the coarse-
ness of the resulting clustering. Different parameter values result in at most n− 1
different cut-clusterings. Those clusterings form a hierarchy where low parameter
values create large clusters and high values result in fine clusterings. Having such
a hierarchy at hand, it is then possible to choose the best clustering with respect
to modularity, which is a feasible quality measure in this context, since the con-
struction of the clusterings already guarantees their plausibility with respect to the
graph structure. A high modularity value additionally implies nice properties, like
for example decent and balanced cluster sizes.

The parameter finally also constitutes a guarantee on intra-cluster expansion
and inter-cluster expansion1, which are both cut-based quality indices. This is
particularly remarkable since at least intra-cluster expansion is hard to compute.

Contribution. Flake et al. tested their algorithm on a citation network and
a network of linked web pages with respect to the semantic meaning of the clus-
ters. In this work we present an experimental analysis of the general behavior of
cut-clusterings on benchmark instances proclaimed within the 10th DIMACS Im-
plementation Challenge on Graph Partitioning and Graph Clustering [2]. After
presenting a direct description of the cut-clustering algorithm in Section 2.2, we
investigate the guaranteed expansion of the cut-clusterings in Section 3.1 as well
as the modularity values that are reached by cut-clusterings in Section 3.2. Since
intra-cluster expansion is hard to compute, we consider lower bounds in the anal-
ysis. Our study gives evidence that trivial bounds do not match up to the given
guarantee. The analysis of a special non-trivial bound further indicates that the
true intra-cluster expansion of the cut-clusterings even surpasses the guarantee.
Also the inter-cluster expansion turns out to be better, i.e., lower than guaranteed.

Within the modularity analysis of the cut-clusterings we additionally consider
reference clusterings obtained from a common modularity-based heuristic [12]. We
took the implementation of this heuristical approach from Lisowski [10]. Our study
documents that for many of the tested graphs the cut-clusterings reach modularity
values quite close to the references. On the other hand the cut-clustering algorithm

1The inter-cluster expansion considered in this work is defined slightly different from the
common inter-cluster expansion. The latter normalizes by the number of vertices on the smaller
cut side while we count the vertices on the side that does not induce the cluster.
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returns only fine clusterings with low modularity values if there are no other plau-
sible clusterings supported by the graph structure. Based on this result we claim
modularity applied to cut-clusterings as a good measure for how well a graph can
be clustered.

2. Preliminaries

Throughout this work we consider a simple, undirected, weighted graph G =
(V,E, c) with vertex set V , edge set E and a non-negative edge cost function c. In
unweighted graphs we assign cost 1 to each edge. We denote the number of vertices
(edges) by n := |V | (m := |E|) and the costs of a set E′ ⊆ E by c(E′) :=

∑
e∈E′ c(e).

Whenever we consider the degree deg(v) of v ∈ V , we implicitly mean the sum of
all edge costs incident to v. With S, T ⊂ V , S ∩ T = ∅, we write c(S, T ) for the
costs of all edges having one endpoint in S and one in T . If S, T induce a cut in G,
i.e., S ∪ T = V , c(S, T ) describes the costs of this cut.

Our understanding of a clustering Ω(G) is a partition of the vertex set V
into subsets C1, . . . , Ck, which define vertex-induced subgraphs, called clusters. A
cluster is called trivial if it corresponds to a connected component. A vertex that
forms a non-trivial singleton cluster we consider as unclustered. A clustering is
trivial if it consists of trivial clusters or if k = n, i.e., all vertices are unclustered.
A hierarchy of clusterings is a sequence Ω1(G) ≤ · · · ≤ Ωr(G) such that Ωi(G) ≤
Ωj(G) implies that each cluster in Ωi(G) is a subset of a cluster in Ωj(G). We say
Ωi(G) ≤ Ωj(G) are hierarchically nested.

2.1. Quality Measures. A quality measure for clusterings is a mapping to
real numbers. Depending on the measure, either high or low values correspond to
high quality. In this work we consider three quality measures, modularity, intra-
cluster expansion and inter-cluster expansion. The former two indicate high quality
by high values. Inter-cluster expansion indicates good quality by low values.

Modularity was first introduced by Newman and Girvan [11] and is based on
the total edge costs covered by clusters. The values range between −0.5 and 1
and express the significance of a given clustering compared to a random clustering.
Formally, the modularity M(Ω) of a clustering Ω is defined as

M(Ω) :=
∑
C∈Ω

c(EC)/c(E)−
∑
C∈Ω

(
∑
v∈C

deg(v))2/4c(E)2,

where EC denotes the set of edges with both endpoints in C.
The inter-cluster expansion of a cluster C is given by the costs for cutting off

the cluster from the remaining graph divided by the number of vertices outside the

cluster, i.e., Φ(C) := c(C,V \C)
|V \C| . The inter-cluster expansion Φ(Ω) of a clustering Ω

is the maximum inter-cluster expansion of all clusters in Ω.
The intra-cluster expansion of a clustering derives from the expansion defined

for cuts. The expansion Ψ(S,C \S) of a cut (S,C \ S) in a cluster C evaluates the
costs of the cut per vertex on the smaller cut side, i.e.,

Ψ(S,C \ S) :=
c(S,C \ S)

min{|S|, |C \ S|} .

The intra-cluster expansion Ψ(C) of a cluster equals the minimum expansion of all
cuts in C. Note that intra-cluster expansion is not defined for singleton clusters.
The intra-cluster expansion Ψ(Ω) of a clustering finally is the minimum intra-cluster
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Algorithm 1: CutC

Input: Graph Gα = (Vα, Eα, cα)
1 Ω← ∅
2 while ∃ u ∈ Vα \ {t} do
3 Cu ← community of u in Gα w.r.t. t

4 r(Cu)← u

5 forall the Ci ∈ Ω do
6 if r(Ci) ∈ Cu then Ω← Ω \ {Ci}
7 Ω← Ω ∪ {Cu} ; Vα ← Vα \ Cu

8 return Ω

expansion of all non-singleton clusters in Ω. Unfortunately, computing Ψ(C), and
thus, also Ψ(Ω), is known to be NP-hard. Thus, in our analysis we consider bounds
instead. These are introduced in Section 3.1.

2.2. The Hierarchical Cut-Clustering Algorithm. In this section we re-
view the parametric cut-clustering approach of Flake et al., which returns hier-
archically ordered clusterings for varying parameter values. In [5] Flake et al.
develop their parametric cut-clustering algorithm step by step using an idea involv-
ing Gomory-Hu trees [7]. The final approach, however, just uses special minimum
s-t-cuts, so called community-cuts in order to identify clearly indicated clusters in
the graph structure. Let G denote a graph and (S, T ) a minimum s-t-cut in G, with
s ∈ S, t ∈ T . The cut (S, T ) is the community cut of s with respect to t if |S| is
minimum for all minimum s-t-cuts in G. The set S is the unique community of s,
and s is a representative of S, denoted by r(S). Representatives are not necessarily
unique. Communities of different vertices with respect to the same vertex t are
either disjoint or nested. Otherwise either the intersection or the difference of the
communities would be a smaller community for one of the considered vertices (for
a detailed proof see [7] or [5]).

Based on this definition of communities we give a more direct description of the
cut-clustering algorithm, to which we refer by CutC in the following. Given a graph
G = (V,E, c) and a parameter α > 0, as a preprocessing step, augment G by insert-
ing an artificial vertex t and connecting t to each vertex in G by an edge of costs α.
Denote the resulting graph by Gα = (Vα, Eα, cα). Then apply CutC: iterate V and
for each vertex u not yet contained in a previously computed community compute
a community in Gα with respect to t. The vertex u becomes the representative of
the newly computed community (cp. Algorithm 1, line 4 ). Since communities are
either disjoint or nested we finally get a set Ω of (inclusion)maximal communities.
Together these communities decompose V and thus induce a clustering for G.

Since the clusters in a cut-clustering are communities in Gα, each cluster C
satisfies the significance-property, formally defined below, which says that any set S
of vertices in C that does not contain the representative r(C) is clearly assigned
to C by connections into C that are at least as strong as those to the outside of C.
Due to this property the membership of S to C is clearly indicated by the graph
structure:

∃ r ∈ C : c(S,C \ S) ≥ c(S, V \ C), ∀S ⊆ C \ {r} (significance-property)
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Figure 1. Clustering hierarchy after applying CutC iteratively.
Note, that αmax < α0 whereas Ωmax > Ω0.

Otherwise, there would exist a set S ⊆ C\{r(C)} such that c(S,C\S) < c(S, V \C).
This implies that the cut (C \ S, V \ (C \ S)) is a cheaper r(C)-t-cut in Gα than
the cut (C, V \ C), which induces the cluster C. This contradicts the fact that C
is the community of r(C) in Gα. The costs of these cuts in Gα are

c(C \ S, V \ (C \ S)) + α|C \ S| =

c(C \ S, S) + c(C \ S, V \ C) + α|C \ S| < c(S, V \ C) + c(C \ S, V \ C) + α|C|
= c(C, V \ C) + α|C|.

With similar arguments Flake et al. have further proven that the parameter
value α that was used to construct the augmented graph Gα constitutes a guarantee
on intra-cluster expansion and inter-cluster expansion:

Ψ(Ω) ≥ α ≥ Φ(Ω).

Applying CutC iteratively with decreasing parameter values yields a hierarchy
of at most n different clusterings (cp. Fig. 1). This is due to a further nesting
property of communities, which is proven by Gallo et al. [6] as well as Flake et al. [5]:
Let C1 denote the community of a fixed vertex u in Gα1

and C2 the community
of u in Gα2

. Then it is C1 ⊆ C2 if α1 ≥ α2. The hierarchy is bounded by two
trivial clusterings, which we already know in advance. The clustering at the top
consists of the connected components of G and is returned by CutC for αmax = 0,
the clustering at the bottom consists of singletons and comes up if we choose α0

equal to the maximum edge cost in G.
The crucial point with the construction of such a clustering hierarchy, however,

is the choice of α. If we choose the next value too close to a previous one, we get a
clustering we already know, which implies unnecessary effort. If we choose the next
value too far from any previous value, we possibly miss a meaningful clustering. In
our experiments we thus use a simple parametric search approach that returns a
complete hierarchy without fail. For a detailed description of this approach see [8].
In order to find all different levels in the hierarchy, this approach constructs the
breakpoints in the continuous parameter range between consecutive levels. This is,
each clustering Ωi is assigned to an interval [αi, αi−1) where CutC returns Ωi. The
breakpoint αi marks the border to the next higher clustering Ωi+1, whereas αi−1

is the breakpoint between Ωi and the previous level Ωi−1. Thus the guarantee on
expansion given by the parameter can be extended to

Ψ(Ωi) ≥ αi−1 > αi ≥ Φ(Ωi)

for each cut-clustering Ωi in the complete hierarchy. We call [αi, αi−1) the guarantee
interval of Ωi.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



162 MICHAEL HAMANN, TANJA HARTMANN, AND DOROTHEA WAGNER

Table 1. Testbed encompassing real-world networks and ran-
domly generated graphs.

graph n m graph n m
karate 34 78 dolphins 62 159
lesmis 77 254 polbooks 105 441
adjnoun 112 425 football 115 613
jazz 198 2742 celegansneural 297 2148
celegans metabolic 453 2025 delaunay n10 1024 3056
email 1133 5451 polblogs 1490 16715
netscience 1589 2742 delaunay n11 2048 6127
bo cluster 2114 2203 data 2851 15093
delaunay n12 4096 12264 dokuwiki org 4416 12914
power 4941 6594 hep-th 8361 15751
PGPgiantcompo 10680 24316 astro-ph 16706 121251
cond-mat 16726 47594 as-22july06 22963 48436
cond-mat-2003 31163 120029 rgg n 2 15 s0 32768 160240
cond-mat-2005 40421 175691 G n pin pout 100000 501198

3. Experimental Study

The experiments in this work aim at two questions. The first question asks
how much more information the given guarantee on expansion provides, compared
to a trivial intra-cluster expansion bound that is easy to compute. Recall that
computing the intra-cluster expansion of a clustering is NP-hard, and thus, bounds
give at least an idea of the true values. Since we are nevertheless interested in the
actual intra-cluster expansion of cut-clusterings, we consider a further, non-trivial
lower bound, which is more costly to compute but also more precise than the trivial
bound. Finally we also look at the inter-cluster expansion, which can be efficiently
computed for a clustering. The second question focuses on the modularity values
that can be reached by cut-clusterings, and the plausibility of these values with
respect to the graph structure.

For our experiments we use real world instances as well as generated instances.
Most instances are taken from the testbed of the 10th DIMACS Implementation
Challenge [1], which provides benchmark instances for partitioning and clustering.
Additionally, we consider the protein interaction network bo cluster published by
Jeong et al. [9], a snapshot of the linked wiki pages at www.dokuwiki.org, which
we gathered ourselves, and 275 snapshots of the email-communication network of
the Department of Informatics at KIT [2]. The latter have around 200 up to 400
vertices. The sizes of the remaining instances are listed in Table 1. Our analysis
considers only one cut-clustering per instance, namely the cut-clustering with the
best modularity value of all clusterings in the complete hierarchy. The results for
the snapshots of the email network are depicted separately from the remaining
instances in the following figures, for the sake of a better readability. Furthermore,
the instances are decreasingly ordered by the amount of unclustered vertices in
the cut-clusterings, which corresponds to an increasing order by coarseness. The
instances, respectively their clusterings, are associated with points on the x-axis.
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3.1. Expansion Analysis of Cut-Clusterings. We consider the true inter-
cluster expansion, which is easy to compute, and two lower and one upper bound on
intra-cluster expansion, since the true intra-cluster expansion is hard to compute.
For a cluster C the first lower bound B�(C) and the upper bound Bu(C) are trivially
obtained from a global minimum cut (M,C \M) in C:

B�(C) :=
c(M,C \M)

�|C|/2� ≤ Ψ(C) ≤ c(M,C \M)

min{|M |, |C \M |} =: Bu(C).

Note that Bu(C) is just the expansion of the global minimum cut. The correspond-
ing bounds B�(Ω) and Bu(Ω) for a whole clustering Ω are given by the respective
minimum of all clusters. Figure 2 shows how these bounds behave compared to
the guarantee interval; more precisely, to the upper interval boundary, which we
normalized to 1 for a better comparability. All further values are displayed pro-
portionally. The upper part of Figure 2 further shows the inter-cluster expansion
Φ(Ω) of the clusterings of the listed instances. Comparing these values to the lower
boundary of the guarantee interval proves many clusterings to have a better inter-
cluster quality than guaranteed. This particularly holds for the snapshots of the
email network, but also for instances like ”lesmis”, ”power” or ”netscience”. Due
to a better readability, we omitted the presentation of the inter-cluster expansion
for the snapshots of the email network.

Regarding the intra-cluster quality, we observe that for most instances the
trivial lower bound B�(Ω) stays below the upper boundary of the guarantee interval.
This reveals a true advantage from knowing the guarantee besides the trivial bound.
The few exceptions, see for example the ”polbooks” instance, can be explained by
the shape of the found cut-clusterings. If the clustering contains only small clusters,
the value of the minimum cut in each cluster is only divided by a few vertices when
computing the trivial lower bound. Particularly in unweighted graphs this often
yields a value bigger than 1, i.e., bigger than the maximum edge costs. The upper
boundary of the guarantee interval, however, can not exceed the maximum edge
costs in the graph.

Whenever the upper bound Bu(Ω) meets the guarantee interval, the guarantee
even equals the true intra-cluster expansion. These instances are marked by a star
in the upper part of Figure 2. For the snapshots of the email network we counted
3.6% of the instances where the exact intra-cluster expansion is known. However, in
most cases there is still a large gap between the guaranteed intra-cluster expansion
and the upper bound.

In order to explore this gap, we further consider an alternative non-trivial lower
bound A�(Ω) on intra-cluster expansion. This bound results from individually ap-
plying the hierarchical cut-clustering algorithm to the subgraphs induced by the
clusters in Ω. The algorithm returns a complete clustering-hierarchy of the sub-
graph, thereby finding the breakpoint between the most upper hierarchy level, which
consists of connected components, and the next lower level. This breakpoint is the
largest parameter value where CutC still returns connected components. Since Ω
is a cut-clustering, the considered subgraph is connected. Otherwise it would not
be induced by a cluster of Ω. Thus, there is only one cluster in the most upper
hierarchy level corresponding to the whole subgraph. Hence, the found breakpoint
constitutes a non-trivial lower bound A�(C) on the intra-cluster expansion of the
considered cluster in Ω. This bound again expands to the whole clustering Ω by
taking the minimum value of all clusters. Since this method considers the clusters as
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275 snapshots of the email network of the Departme nt of Informarics at KIT.

A Buguarantee interval Bcut-clusterings:

Figure 2. Expansion Analysis of Cut-Clusterings: Inter-cluster
expansion (Φ) and bounds on intra-cluster expansion (B�, Bu triv-
ial lower and upper bound based on minimum cut, A� alternative
non-trivial lower bound). The upper boundary of the guarantee in-
terval is normalized to 1, further values are displayed proportional.
Instances where Bu meets the guarantee are marked by *. For the
sake of readability Φ is omitted in the lower chart. Regarding
the first four instances, the hierarchical cut-clustering algorithm
returns only singletons, for which intra-cluster expansion is not
defined.

independent instances ignoring the edges between the clusters, the resulting bound
A�(Ω) potentially lies above the guarantee interval, which is also confirmed by our
experiment (cp. Figure 2). This is, most of the cut-clusterings are even better than
guaranteed. Besides, by reaching the upper bound Bu(Ω) in some further cases, the
bound A�(Ω) increases the amount of instances for which we know the intra-cluster
expansion for sure to 20%.

3.2. Modularity Analysis. In the following we examine the modularity val-
ues of the best cut-clusterings in the cut-clustering hierarchies. In order to justify
whether a given modularity value is a good value in general, i.e., how far it is from a
possibly better value of another clustering, we use a modularity-based greedy multi-
level approach [12] to generate reference clusterings with generally good modularity
values. This approach is widely used and has turned out to be reliable in former
experiments. It starts with an initial clustering consisting of singleton clusters
and moves vertices between clusters as long as this operation increases modularity.
Then the found clusters are contracted and the algorithm continues on the next
level. Finally the different levels are expanded top-down and the algorithm again

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



COMPLETE HIERARCHICAL CUT-CLUSTERING: A CASE STUDY 165

allows single vertices to move in order to further increase modularity. Note, that
computing a modularity-optimal clustering is NP-hard [3].

Since high modularity values are known to be misleading in some cases, we fur-
ther establish a plausibility check by testing whether the clusters of the reference
clusterings satisfy the significance-property, which guarantees that they are clearly
indicated by the graph structure. Recall that the clusters of the cut-clusterings own
this property due to their construction. Figure 3 shows the percentage amount of
significant clusters, i.e., clusters with the significance-property, for the reference
clusterings. To get also a better idea of the structure of the cut-clusterings, we
present the percentage amount of unclustered vertices in these clusterings. Unclus-
tered vertices may occur due to the strict behavior of the cut-clustering algorithm,
which is necessary in oder to guarantee the significance-property. Note that in
contrast none of the reference clusterings contains unclustered vertices. As a last
structural information on the clusterings, Figure 3 depicts the cluster sizes in terms
of whisker-bars.

With this bunch of information at hand we can say the following: In some cases
the modularity of the cut-clusterings is quite low, however, it increases with the
amount of clustered vertices and the size of the clusters. It also reaches very high
values, in particular for the snapshots of the email network and the ”netscience”
instance. This is a rather unexpected behavior since the cut-clustering algorithm
is not designed to optimize modularity. We further observe a gap between the
modularity values of many cut-clusterings and those of the according reference
clusterings. We conjecture that this is caused more by an implausibility of the
modularity values of the reference clusterings than by an implausibility of the cut-
clusterings. Our conjecture is based on the observation, that the more significant
the clusters in the reference clustering are, the closer comes the references modu-
larity to the modularity of the cut-clustering, suggesting that the cut-clusterings
are more trustable.

Furthermore, the Delaunay triangulations and the snapshots of the email net-
work are nice examples that also vividly reveal the meaningfulness and plausibility
of the cut-clusterings. The latter consider emails that were sent at most 72 hours
ago. In contrast to other email networks, which consider a longer period of time,
this makes the snapshots very sparse and stresses recent communication links, which
yields clear clusters of people that recently work together. Thus, we would expect
any feasible clustering approach to return meaningful non-trivial clusters. This is
exactly what the cut-clustering algorithm as well as the modularity-based greedy
approach do. In contrast, the Delaunay triangulations generated from random
points in the plane are quite uniform structures. By intuition significant clusters
are rare therein. The cut-clustering algorithm confirms our intuition by leaving
all vertices unclustered. This explains the low modularity values of these clus-
terings and indicates that the underlying graph can not be clustered well. The
modularity-based reference clusterings, however, contradict the intuition, as they
consist of large clusters containing at least 20 vertices.

3.3. Expansion Analysis of Modularity-Based Clusterings. For reasons
of completeness and fairness we also examine whether the modularity-based greedy
clusterings outperform the cut-clusterings in terms of intra-cluster expansion. To
this end we study the same lower and upper bounds for these clusterings as con-
sidered in Section 3.1 for the cut-clusterings.
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275 snapshots of the email network of the Departme nt of Informarics at KIT.
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Figure 3. Modularity Analysis: Results for the best cut-
clusterings and the modularity-based greedy clusterings. The up-
per charts in both parts of the figure show the ratio of unclustered
vertices in the cut-clusterings and the ratio of nontrivial clusters
that fulfill the significance-property in the modularity-based clus-
terings. In the upper part the cluster sizes for both types of cluster-
ings (f.l.t.r. cut-clusterings and modularity-based clusterings) are
shown by whisker-bars with maximum (+) and minimum (•) of
the outliers. Values greater than 20 are placed at the edge of the
displayed range. Due to the high number of email snapshots, we
omitted whisker-bars there.
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275 snapshots of the email network of theDepartment of Informarics at KIT.

B Buguarantee interval Areference clusterings:

Figure 4. Expansion Analysis of Modularity-Based Clusterings:
Guarantee interval and non-trivial bound (A�) for cut-clusterings,
and bounds on intra-cluster expansion for the modularity-based
references (B�, Bu trivial lower and upper bound based on mini-
mum cut, A� alternative non-trivial lower bound); B� for the refer-
ences and A� for the cut-clusterings are omitted in the upper and
lower part, respectively. The upper boundary of the guarantee in-
terval is normalized to 1, further values are displayed proportional.
Instances where Bu drops below A� for the cut-clusterings in the
upper part are marked by *. Regarding the first four instances,
the hierarchical cut-clustering algorithm returns only singletons,
for which intra-cluster expansion is not defined.

Figure 4 compares the guarantee interval and the alternative non-trivial lower
bound A�(Ω) for the cut-clusterings (already seen in Section 3.1) to the bounds for
the modularity-based clusterings. Regarding the snapshots of the email network
we omit depicting A�(Ω) for the cut-clusterings.

We observe that the trivial lower bound B�(Ω) stays clearly below the guar-
antee, and compared to the trivial bound for the cut-clusterings in Section 3.1
(cp. Figure 2) this behavior is even more evident. For the instances different from
the snapshots of the email network the values of B�(Ω) are so low so that we omit
depicting them.

In contrast, the alternative non-trivial lower bound A�(Ω) for the modularity-
based clusterings often exceeds the guarantee interval, particularly for the snap-
shots. Nevertheless, it does rarely reach the corresponding bound for the cut-
clusterings. For 85% of the instances it rather stays below the best lower bound
for the cut-clustering. Thus, with respect to the lower bounds, there is no evidence
that the intra-cluster expansion of the modularity-based clusterings surpasses that
of the cut-clusterings. The upper bound Φ(Ω), which drops below the best lower
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bound for the cut-clusterings in 23% of the cases, even proves a lower intra-cluster
expansion for these clusterings. The according instances in the upper part of Fig-
ure 4 are marked by a star.

4. Conclusion

In this work we examined the behavior of the hierarchical cut-clustering algo-
rithm of Flake et al. [5] in the light of expansion and modularity. Cut-clusterings
are worth being studied since, in contrast to the results of other clustering ap-
proaches, they provide a guaranteed intra-cluster expansion and inter-cluster ex-
pansion and are clearly indicated by the graph structure. The latter materializes
in the significance-property, which says that each set of vertices in a cluster is at
least as strongly connected to the remaining vertices in the cluster as to the vertices
outside the cluster.

Our experiments document that the given guarantee on intra-cluster expansion
provides a deeper insight compared to a trivial bound that is easy to compute.
The true intra-cluster expansion and inter-cluster expansion turned out to be even
better than guaranteed. An analog analysis of the expansion of modularity-based
clusterings could further give no evidence that modularity-based clusterings surpass
cut-clusterings in terms of intra-cluster expansion. On the contrary, around one
fourth of the considered modularity-based clusterings could be proven to be worse
than the cut-clusterings.

Within the modularity analysis we could reveal that, although it is not designed
to optimize modularity, the hierarchical cut-clustering algorithm fairly reliably finds
clusterings of good modularity if those clusterings are structurally indicated. Other-
wise, if no good clustering is clearly indicated, the cut-clustering algorithm returns
only clusterings of low modularity. This confirms a high trustability of the cut-
clustering algorithm and justifies the use of modularity applied to cut-clusterings
as a feasible measure for how well a graph can be clustered.
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A partitioning-based divisive clustering technique
for maximizing the modularity

Ümit V. Çatalyürek, Kamer Kaya, Johannes Langguth, and Bora Uçar

Abstract. We present a new graph clustering algorithm aimed at obtaining
clusterings of high modularity. The algorithm pursues a divisive clustering
approach and uses established graph partitioning algorithms and techniques
to compute recursive bipartitions of the input as well as to refine clusters.
Experimental evaluation shows that the modularity scores obtained compare

favorably to many previous approaches. In the majority of test cases, the
algorithm outperformed the best known alternatives. In particular, among 13
problem instances common in the literature, the proposed algorithm improves
the best known modularity in 9 cases.

1. Introduction

Clustering graphs into disjoint vertex sets is a fundamental challenge in many
areas of science [3, 16, 22, 23]. It has become a central tool in network analysis.
With the recent rise in the availability of data on large scale real-world networks,
the need for fast algorithms capable of clustering such instances accurately has
increased significantly.

There is no generally accepted notion of what constitutes a good clustering,
and in many cases the quality of a clustering is application specific. However, there
are several widely accepted measurements for clustering quality called clustering
indices. Among the most widespread clustering indices are expansion, conductance,
and modularity. In the following, we will focus on modularity. See [23] for a
discussion of the former two indices.

Modularity was proposed in [32] to analyze networks, and has recently grown in
popularity as a clustering index [15,18–20,27,37]. In addition, several heuristics
based on greedy agglomeration [11, 29] and other approaches [30, 34] have been
proposed for the problem. Although it was shown in [7] that these provide no
approximation guarantee, for small real world instances the solutions produced by
these heuristics are usually within a very small factor of the optimum.

In general there are two algorithmic approaches to community detection which
are commonly known as agglomerative and divisive (see [28] for a short survey
of general techniques). Agglomerative approaches start with every vertex in a
separate cluster and successively merge clusters until the clustering can no longer
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be improved by merging pairs of clusters. The divisive approaches on the other
hand consider removing edges to detect the communities. They start with the
entire graph as a cluster and successively split clusters until further splitting is no
longer worthwhile. We follow the divisive approach by making extensive use of
graph partitioning algorithms and techniques. A similar approach which reduces
the clustering problem to a variant of the well-known MinCut problem was recently
proposed [14].

Finding a clustering that maximizes a clustering index is often NP-hard. In
particular, finding a clustering of the maximum modularity in a graph was shown
to be NP-hard [7]. It remains NP-hard even if the number of clusters is limited to
2. In addition, APX-hardness was established recently [12].

The remainder of this paper is organized as follows. We give some background
in the next section. Section 3 contains the proposed divisive clustering method.
The algorithm that we propose uses most of the standard ingredients of a graph (or
hypergraph) partitioning tool: bisection, bisection refinement, and cluster refine-
ment. We carefully put these together and explore the design space of a divisive
clustering algorithm which makes use of those ingredients. In the same section,
we discuss a contrived example which shows that the divisive approaches can be
short-sighted. We evaluate the proposed divisive clustering algorithm in Section 4
with different parameter settings to explore the design space. We compare the re-
sulting modularity scores with the best known ones from the literature. Section 5
concludes the paper. Some more results from the challenge data set are provided
in the Appendix A.

2. Background

2.1. Preliminaries. In the following, G = (V,E, ω) is a weighted undirected
graph with ω : E → R+ as the weight function. A clustering C = {C1, . . . , CK} is a
partition of the vertex set V . Each Ci is called a cluster. We use G(Ck) to denote
the subgraph induced by the vertices in Ck, that is G(Ck) = (Ck, Ck × Ck ∩E,ω).

We define the weight of a vertex as the sum of the weights of its incident edges:
ψ(v) =

∑
u∈V,{u,v}∈E ω(u, v), and we use ψ(C�) to denote the sum of the weights of

all vertices in a cluster C�. The sum of edge weights between two vertex sets U and
T will be denoted by ω(U, T ), that is ω(U, T ) =

∑
{u,v}∈U×T∩E ω(u, v). The sum of

the weights of all edges is denoted by ω(E), and the sum of the weights of the edges
whose both endpoints are in the same cluster C� is denoted as ω(C�). Furthermore,
by cut(C) we denote the sum of the weights of all edges having vertices in two
different clusters of C.

2.2. Coverage and Modularity. We first define the coverage of a clustering,
i.e., the fraction of edges that connect vertices in the same cluster:

(2.1) cov(C) =

∑
Ci∈C

ω(Ci)

ω(E)
.

We can equivalently write that cov(C) = 1 − cut(C)/ω(E). Obviously, a good
clustering should have high coverage. However, since the number of clusters is not
fixed, coverage can trivially be maximized by a clustering that consists of a single
cluster. It is therefore not a suitable clustering index. By adding a penalty term
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for larger clusters, we obtain the modularity score of a clustering:

(2.2) p(C) = cov(C)−

∑
Ci∈C

ψ(Ci)2

4× ω(E)2

The penalty term is such that the trivial clustering, i.e., C = {C1}, C1 = V , has
a modularity of 0. Like other clustering indices, modularity captures the inherent
trade-off between increasing the number of clusters and keeping the size of the cuts
between clusters small. Almost all clustering indices require algorithms to face such
a trade-off.

3. Algorithms

We follow the divisive approach to devise an algorithm for obtaining a clustering
with high modularity. The main motivation for choosing this approach is that for a
clustering C with two clusters, the coverage is just 1− cut(C)/ω(E) and the second
term in (2.2) is minimized when clusters have equal weights. In other words, in
splitting a graph into two clusters so as to maximize the modularity, heuristics
for the NP-complete minimum bisection problem should be helpful (a more formal
discussion is given by Brandes et al. [7, Section 4.1]). We can therefore harness
the power and efficiency of the existing graph and hypergraph (bi-)partitioning
routines such as MeTiS [25], PaToH [10], and Scotch [33] in a divisive approach
to clustering for modularity.

Algorithm 1 Divisive clustering approach using graph/hypergraph bisection
heuristics

Input: An edge weighted graph G = (V,E, ω)
Output: K�: the number of clusters; C� = {C�1 , C�2 , . . . , C�K�}: the clusters;

p�: the modularity score
1: K ← 1; p← 0
2: C ← {C1 = {v1, v2, . . . , vn}} � a single cluster
3: while there is an eligible cluster to consider do
4: Let Ck be an eligible cluster with the largest vertex weight
5: 〈Ck1

, Ck2
〉 ←Bisect(Ck, G)

6: if
ω(Ck1

,Ck2
)

ω(E) <
ψ(Ck)

2−ψ(Ck1
)2−ψ(Ck2

)2

4×ω(E)2 then

7: K ← K + 1

8: p← p− ω(Ck1
,Ck2

)

ω(E) +
ψ(Ck)

2−ψ(Ck1
)2−ψ(Ck2

)2

4×ω(E)2 � update the modularity

9: C ← C \ {Ck} ∪ {Ck1
, Ck2
} � replace Ck with two clusters

10: else
11: Mark Ck as ineligible for Bisect

12: 〈K�, C�, p�〉 ←RefineClusters(G,K, C, p)
13: return 〈K�, C�, p�〉

Algorithm 1 displays the proposed approach. The algorithm accepts a weighted
graph G = (V,E, ω), and returns the number of clusters K� and the clustering
C� = {C�1 , C�2 , . . . , C�K�}. It uses a bisection heuristic to compute a clustering of the
given graph. Initially, all the vertices are in a single cluster. At every step, the
heaviest cluster, say Ck, is selected and split into two (by the subroutine Bisect),
if |Ck| > 2. If the bisection is acceptable, that is if the bisection improves the
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Figure 1. Clustering C. All edges have weight 1. Vertex weights
are given.

modularity (see the line 6), the cluster Ck is replaced by the two clusters resulting
from the bisection. If not, the cluster Ck remains as is. The algorithm then proceeds
to another step to pick the heaviest cluster. The clustering C found during the
bisections is then refined in the subroutine RefineClusters that starts just after
the bisections.

The computational core of the algorithm is the Bisect routine. This routine
accepts a graph and splits that graph into two clusters using existing tools that are
used for the graph/hypergraph bisection problem. We have instrumented the code
in such a way that one can use MeTiS, PaToH, or Scotch quite effectively at this
point.

Unfortunately, there is no guarantee that it is sufficient to stop bisecting a
cluster as soon as a split on it reduced the modularity score. As finding a bipartition
of maximum modularity is NP-hard [7], it is possible that a Bisect step which
reduces modularity can be followed by a second Bisect step that increases it beyond
its original value. As an example, consider the graph in Fig. 1 which shows a
clustering, albeit a suboptimal one, that we will call C where C = {C1, C2}. This
clustering has the following modularity score

p(C) =
5

10
− (3 + 4)2 + (2 + 3 + 3 + 3 + 2)2

4× 102
= − 18

400
.

Since a trivial clustering {V } has modularity p({V }) = 0, we can easily see that
the clustering C reduces the modularity to negative. Now, consider the clustering
C′ = {C1, C21 , C22} which is obtained via a bipartition of C2 as shown in Fig. 2.
Clustering C′ has the following modularity:

p(C′) =
4

10
− (3 + 4)2 + (2 + 3 + 3)2 + (3 + 2)2

4× 102
=

22

400
.

Thus, clustering C2 has higher modularity than the initial trivial clustering {V }.
Of course, this effect is due to the suboptimal clustering C. However, since the
bipartitioning algorithm provides no approximation guarantee, we cannot preclude
this. Therefore, not bisecting a cluster anymore when a Bisect operation on it
reduces the modularity score has its drawbacks.

3.1. The bisection heuristic. Our bisection heuristic is of the form shown
in Algorithm 2 whose behavior is determined by a set of four parameters: a, imb,
b, and e. The first one, a, chooses which algorithm to use as a bisector. We have
integrated MeTiS, PaToH, and Scotch as bisectors. The bisection heuristics in
PaToH and Scotch accept a parameter imb that defines the allowable imbalance
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Figure 2. Clustering C′. All edges have weight 1. Vertex weights
are given.

between the part weights. We modified a few functions in the MeTiS 4.0 library
to make the bisection heuristics accept the parameter imb. The other parameters
are straightforwardly used as follows: the bisection heuristic (Algorithm 2) applies
the bisector b times, refines each bisection e times and chooses the one that has the
best modularity.

Algorithm 2 The bisection heuristics Bisect(U,G)

Input: A vertex set U , an edge weighted graph G = (V,E, ω)
Output: 〈L�, R�〉 a bisection of the vertices U into two parts L� and R�

1: mostIncrease ← −∞
2: for imb ∈ {0.05, 0.10, 0.20, 0.40} do
3: for i = 1 to b do
4: 〈L,R〉 ← apply Bisector a to G with imbalance tolerance imb
5: for j = 1 to e do
6: 〈L,R〉 ← RefineBisection(L,R,G(U))

7: if ψ(U)2−ψ(L)2−ψ(R)2

4×ω(E)2 − ω(L,R)
ω(E) > mostIncrease then

8: mostIncrease ← ψ(U)2−ψ(L)2−ψ(R)2

4×ω(E)2 − ω(L,R)
ω(E)

9: 〈L�, R�〉 ← 〈L,R〉

As shown in Algorithm 1, the bisection heuristic is called for a cluster Ck of a

clustering C with the modularity score p. Note that Ck contributes ω(Ck)
ω(E) −

ψ(Ck)
2

4×ω(E)2

to the modularity score. When we bisect Ck into Ck1
and Ck2

, the coverage of the
clustering C ← C \ {Ck} ∪ {Ck1

, Ck2
} becomes ω(Ck1

, Ck2
) less than the coverage of

C, and the new clusters Ck1
and Ck2

contribute
ω(Ck1

)+ω(Ck2
)

ω(E) − ψ(Ck1
)2+ψ(Ck2

)2

4×ω(E)2 to

the modularity score. The difference between the modularity scores is therefore the
formula used at line 7 of Algorithm 2.

The vertex weights that are passed to the bisectors are simply the weights ψ(·)
defined on the original graph. Balancing the sums of weights of the vertices in the
two parts will likely reduce the squared part weights and will likely yield better
modularity. This however, is not guaranteed, as the increase in the modularity
score is also affected by the cut of the bisection. That is why trying a few imbalance
parameters (controlled by imb), running the bisector multiple times (controlled by
b) with the same imbalance parameter, and refining those bisections (controlled by
e) is a reasonable approach.
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The algorithm RefineBisection(L,R,G = (L∪R,E)) is a variant of Fiduccia-
Mattheyses [17] (FM) heuristic. Given two clusters, FM computes a gain associated
with moving a vertex from one cluster to the other one. The efficiency of the method
is achieved by keeping these gains up-to-date after every move. In the standard
application of this refinement heuristic (for the graph and hypergraph bipartitioning
problems, see e.g., [9,24]), moving a vertex changes the gains associated with the
adjacent vertices only. This is not true during the refinement process for improving
the the modularity score. Consider a given weighted graph G = (V,E, ω) and a
bipartition L,R of V . The contribution of the clusters L and R to the modularity
score is

(3.1)
ω(L) + ω(R)

ω(E)
− ψ(L)2 + ψ(R)2

4× ω(E)2
.

When we move a vertex v from L to R, the new modularity score becomes

(3.2)
ω(L \ {v}) + ω(R ∪ {v})

ω(E)
− ψ(L \ {v})2 + ψ(R ∪ {v})2

4× ω(E)2
.

Subtracting (3.1) from (3.2) we obtain the gain of moving v from L to R
(3.3)

gain(v, L �→ R) =

∑
u∈R ω(v, u)−

∑
u∈L ω(v, u)

ω(E)
+ 2× ψ(v)

ψ(L) + ψ(R)− ψ(v)

4× ω(E)2
.

As the gain of a move includes the cluster weights, a single move necessitates gain
updates for all vertices. Thus, it is not very practical to choose the move with
the highest gain in modularity at every step. We therefore designed the following
alternative. We keep two priority queues, one for each side of the partition, where
the key values of the moves are the reduction in the cut size (that is, the key values
are the standard FM gains). Assuming uniform vertex weights, among the moves
of the form L �→ R, the one with the maximum gain in the modularity will be the
vertex move with the maximum gain in the cut size. This is due to the fact that
the second term in (3.3) will be the same for all vertices in L. Similarly, among the
moves of the form R �→ L, the one with the maximum gain in the cut size will be
the one with the maximum gain in the modularity. Since vertex weights are not
uniform, we need to be a little careful about choosing which vertex to move. Every
time we look for a vertex move, we check the first move of both priority queues and
compute the actual gain (3.3) and perform the better move tentatively. Realizing
the maximum gain sequence of these tentative moves is done in the same way as in
the standard FM heuristic.

The bisectors (MeTiS, PaToH, or Scotch) are generally accepted to be of linear
time complexity. The time complexity of the RefineBisection is, due to the use of
priority queues and gain update operations, O(|E| log |V |) for a graph G = (V,E).
Therefore, the running time of bisection step is O(|E| log |V |). However, we should
note that depending on the parameter settings the constant hidden in the formula
can be large.

3.2. Refining the clustering. The last ingredient of the proposed clustering
algorithm is RefineClusters(G,K, C, p). It aims to improve the clustering found
during the bisections. Unlike the RefineBisection algorithm, this algorithm visits
the vertices in random order. At each vertex v, the gain values associated with
moving v from its current cluster to all others are computed. Among all those
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moves, the most beneficial one is performed if doing so increases the modularity
score. If not, the vertex v remains in its own cluster. We repeat this process several
times (we use m as a parameter to control the number of such passes). The time
complexity of a pass is O(|V |K + |E|) for a K-way clustering of a graph with |V |
vertices and |E| edges.

4. Experiments

We perform a series of experiments to measure the effect of the various param-
eters on the modularity scores of the solutions produced by the algorithm, and to
evaluate overall performance of the approach.

To this end, we use a set of 29 popular test instances which have been used
in the past to study the modularity scores achieved by clustering algorithms. The
instances are from various resources [1,2,4–6,21,31,35,36] and are available at
http://www.cc.gatech.edu/dimacs10/.

We first test the algorithm using the standard parameter combination. It con-
sists of m=5 refinement rounds at the end and a bipartition parameter of b=1. No
refinements are performed during the algorithm (e=0). The results using PaToH,
MeTiS, and Scotch partitioning are shown in Table 1 below.

As expected, the results for each instance are very close, with a maximum
difference of less than 0.04. All partitioners provide good results, with PaToH
delivering somewhat higher modularity scores. However, using MeTiS consistently
yielded slightly inferior results. The same was true in preliminary versions of the
experiments described below. Thus, MeTiS was not considered in the following
experiments.

The slightly higher scores of PaToH can be explained by the fact that unlike
SCOTCH, it uses randomization. Even though this is not intended by the algorithm
design, when performing multiple partitioning runs during the Bisect routine, the
randomized nature of the PaToH gives it a slightly higher chance to find a superior
solution, which is generally kept by the algorithm.

In the next experiment, we investigate the effect of the refinement algorithm
RefineClusters on the final result. Table 2 shows the refined modularity scores
using a maximum of m = 5 refinement steps at the end of Algorithm 1 for PaToH
and Scotch partitioning, as opposed to the unrefined results (m = 0). On aver-
age, the effect of the clustering refinement step (RefineClusters) amounts to
an improvement of about 0.01 for Scotch and 0.0042 for PaToH. Our preliminary
experiments showed that increasing the number of refinement steps beyond m = 5
improves the end result only marginally in both cases. Although the improvement
for Scotch is slightly larger, the difference is not sufficient to completely equalize the
gap between the unrefined results for PaToH and Scotch. Since the computational
cost of the refinement heuristic is low, we will continue to use it in the following
experiments.

Furthermore, we investigate the influence of the number of repetitions of the
Bisector step on the modularity score by increasing the parameter b from 1 to 5.
Results are shown in Table 3 where we observe a slight positive effect for b = 5 as
compared to b = 1. It is interesting to note that even though PaToH is random-
ized, selecting the best out of 5 bisections has almost no effect. This is partially
because the RefineClusters operation finds the same improvements. Due to the
refinement, the total effect can even be negative since a different clustering might
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Table 1. Modularity scores obtained by the basic algorithm be-
fore the refinement. The difference between PaToH, MeTiS, and
Scotch is visible. The best modularity for each row is marked as
bold.

Modularity score
Instance Vertices Edges PaToH Scotch MeTiS

adjnoun 112 425 0.2977 0.2972 0.2876
as-22july06 22963 48436 0.6711 0.6578 0.6486
astro-ph 16706 121251 0.7340 0.7238 0.7169
caidaRouterLevel 192244 609066 0.8659 0.8540 0.8495
celegans metabolic 453 2025 0.4436 0.4407 0.4446
celegansneural 297 2148 0.4871 0.4939 0.4754
chesapeake 39 170 0.2595 0.2624 0.2595
citationCiteseer 268495 1156647 0.8175 0.8119 0.8039
cnr-2000 325557 2738969 0.9116 0.9026 0.8819
coAuthorsCiteseer 227320 814134 0.8982 0.8838 0.8853
coAuthorsDBLP 299067 977676 0.8294 0.8140 0.8117
cond-mat 16726 47594 0.8456 0.8343 0.8309
cond-mat-2003 31163 120029 0.7674 0.7556 0.7504
cond-mat-2005 40421 175691 0.7331 0.7170 0.7152

dolphins 62 159 0.5276 0.5265 0.5246
email 1133 5451 0.5776 0.5748 0.5627
football 115 613 0.6046 0.6046 0.6019
G n pin pout 100000 501198 0.4913 0.4740 0.4825
hep-th 8361 15751 0.8504 0.8409 0.8342
jazz 198 2742 0.4450 0.4451 0.4447
karate 34 78 0.4198 0.4198 0.3843
lesmis 77 254 0.5658 0.5649 0.5656
netscience 1589 2742 0.9593 0.9559 0.9533
PGPgiantcompo 10680 24316 0.8831 0.8734 0.8687
polblogs 1490 16715 0.4257 0.4257 0.4257
polbooks 105 441 0.5269 0.5269 0.4895
power 4941 6594 0.9398 0.9386 0.9343
preferentialAttachment 100000 499985 0.3066 0.2815 0.2995
smallworld 100000 499998 0.7846 0.7451 0.7489

Average 0.6507 0.6430 0.6373

preclude a particularly effective refinement. Overall, we conclude that b = 5 is
worthwhile for Scotch, but not for PaToH.

We also study the influence of applying the refinement process during the al-
gorithm, as opposed to the standard refinement after termination of the main al-
gorithm. This is done by setting the parameter e = 5, i.e., we use 5 passes of
RefineBisection after each call of Bisector in Algorithm 2. Results that are
displayed in Table 4 show that this approach does not help to improve modularity.
Most likely, improvements that can be found in this manner can also be found by
calling RefineClusters at the end of the algorithm. In addition, this technique
is computationally expensive, and therefore it should not be used.

Finally, we compare modularity scores obtained by our algorithm with previous
results found in literature. We compare the best score found by our algorithms
with the best score found in the literature. These results are shown in Table 5.
Compared to previous work, our algorithms perform quite well. For the small
instances dolphins, karate, polbooks, and football the previous values are optimal,
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Table 2. Modularity scores and improvement after the applica-
tion of the RefineClusters algorithm at m = 5. Improvements
for Scotch partitioning are larger than those for PaToH. The im-
provements are given in the column “Improv.”. The best modu-
larity for each row is marked as bold.

PaToH Scotch
Instance Unrefined Refined Improv. Unrefined Refined Improv.

adjnoun 0.2945 0.2977 0.0033 0.2946 0.2972 0.0026

as-22july06 0.6683 0.6711 0.0028 0.6524 0.6578 0.0054
astro-ph 0.7295 0.7340 0.0046 0.7183 0.7238 0.0055
caidaRouterLevel 0.8641 0.8659 0.0019 0.8506 0.8540 0.0035
celegans metabolic 0.4318 0.4436 0.0118 0.4343 0.4407 0.0064
celegansneural 0.4855 0.4871 0.0016 0.4905 0.4939 0.0034
chesapeake 0.2495 0.2595 0.0100 0.2624 0.2624 0.0000
citationCiteseer 0.8160 0.8175 0.0015 0.8094 0.8119 0.0025
cnr-2000 0.9116 0.9116 0.0000 0.8981 0.9026 0.0045
coAuthorsCiteseer 0.8976 0.8982 0.0005 0.8826 0.8838 0.0012
coAuthorsDBLP 0.8281 0.8294 0.0013 0.8115 0.8140 0.0025
cond-mat-2003 0.8443 0.8456 0.0013 0.8329 0.8343 0.0013
cond-mat-2005 0.7651 0.7674 0.0023 0.7507 0.7556 0.0049
cond-mat 0.7293 0.7331 0.0038 0.7084 0.7170 0.0086
dolphins 0.5155 0.5276 0.0121 0.5265 0.5265 0.0000
email 0.5733 0.5776 0.0043 0.5629 0.5748 0.0120
football 0.6009 0.6046 0.0037 0.6009 0.6046 0.0037
G n pin pout 0.4565 0.4913 0.0347 0.3571 0.4740 0.1169
hep-th 0.8494 0.8504 0.0010 0.8392 0.8409 0.0016
jazz 0.4330 0.4450 0.0120 0.4289 0.4451 0.0162
karate 0.4188 0.4198 0.0010 0.4188 0.4198 0.0010
lesmis 0.5658 0.5658 0.0000 0.5540 0.5649 0.0108
netscience 0.9593 0.9593 0.0000 0.9559 0.9559 0.0000
PGPgiantcompo 0.8830 0.8831 0.0001 0.8726 0.8734 0.0008

polblogs 0.4257 0.4257 0.0000 0.4247 0.4257 0.0010
polbooks 0.5266 0.5269 0.0004 0.5242 0.5269 0.0027
power 0.9394 0.9398 0.0003 0.9384 0.9386 0.0002
preferentialAttachment 0.3013 0.3066 0.0053 0.2461 0.2815 0.0353
smallworld 0.7838 0.7846 0.0008 0.7061 0.7451 0.0390

Average 0.6465 0.6507 0.0042 0.6329 0.6430 0.0101

and the algorithms come quite close, deviating by only 0.00047 from the optimum
values on average. The instance lesmis is a weighted graph and was treated as
such here. Therefore the modularity score obtained is higher than the unweighted
optimum computed in [8]. It is included here for the sake of completeness, but it
is not considered for the aggregated results.

For larger instances, obtaining optimum values is computationally infeasible.
Thus, the scores given here represent the best value found by other clustering
algorithms. Our algorithm surpasses those in 9 out of 13 instances, and its aver-
age modularity score surpasses the best reported values by 0.01. Naturally, most
clustering algorithms will be quite close in such a comparison, which renders the
difference quite significant.

Summing up, we conclude that the optimum configuration for our algorithm
uses PaToH for partitioning with RefineClusters at m = 5. For the bipartition
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Table 3. Comparison between bipartition parameter setting of
b = 1 and b = 5. Using 5 steps improves the end result slightly.
The best modularity for each tool with b = 1 and b = 5 is marked
as bold.

PaToH Scotch
Instance b=1 b=5 Difference b=1 b=5 Difference

adjnoun 0.2977 0.2990 0.0012 0.2972 0.2999 0.0027
as-22july06 0.6711 0.6722 0.0011 0.6578 0.6503 -0.0075
astro-ph 0.7340 0.7353 0.0012 0.7238 0.7261 0.0023
caidaRouterLevel 0.8659 0.8677 0.0018 0.8540 0.8576 0.0035
celegans metabolic 0.4436 0.4454 0.0017 0.4407 0.4467 0.0060
celegansneural 0.4871 0.4945 0.0074 0.4939 0.4942 0.0004
chesapeake 0.2595 0.2624 0.0029 0.2624 0.2624 0.0000
citationCiteseer 0.8175 0.8166 -0.0009 0.8119 0.8141 0.0022
cnr-2000 0.9116 0.9119 0.0003 0.9026 0.9052 0.0026
coAuthorsCiteseer 0.8982 0.8994 0.0012 0.8838 0.8872 0.0033
coAuthorsDBLP 0.8294 0.8306 0.0011 0.8140 0.8180 0.0040
cond-mat 0.8456 0.8469 0.0013 0.8343 0.8378 0.0035
cond-mat-2003 0.7674 0.7692 0.0018 0.7556 0.7593 0.0037
cond-mat-2005 0.7331 0.7338 0.0007 0.7170 0.7248 0.0078

dolphins 0.5276 0.5265 -0.0011 0.5265 0.5265 0.0000
email 0.5776 0.5768 -0.0008 0.5748 0.5770 0.0022
football 0.6046 0.6046 0.0000 0.6046 0.6046 0.0000
G n pin pout 0.4913 0.4915 0.0002 0.4740 0.4844 0.0104
hep-th 0.8504 0.8506 0.0002 0.8409 0.8425 0.0017
jazz 0.4450 0.4450 0.0000 0.4451 0.4451 0.0000
karate 0.4198 0.4198 0.0000 0.4198 0.4198 0.0000
lesmis 0.5658 0.5658 0.0000 0.5649 0.5649 0.0000
netscience 0.9593 0.9593 0.0000 0.9559 0.9591 0.0032
PGPgiantcompo 0.8831 0.8834 0.0004 0.8734 0.8797 0.0063
polblogs 0.4257 0.4257 0.0000 0.4257 0.4257 0.0000
polbooks 0.5269 0.5269 0.0000 0.5269 0.5269 0.0000
power 0.9398 0.9397 -0.0001 0.9386 0.9398 0.0012
preferentialAttachment 0.3066 0.3065 -0.0001 0.2815 0.2887 0.0073
smallworld 0.7846 0.7850 0.0004 0.7451 0.7504 0.0053

Average 0.6507 0.6514 0.0008 0.6430 0.6455 0.0025

parameter, exceeding b = 1 is hardly worthwhile. In this configuration, RefineBi-

section should not be used, i.e., e = 0 should be selected.

5. Conclusion

We have presented a new algorithm for finding graph clusterings of high mod-
ularity. It follows a divisive approach by applying recursive bipartition to clusters.
In addition, it makes use of a standard refinement heuristic. It can be implemented
efficiently by making use of established partitioning software.

We experimentally established that the best modularity scores can be obtained
by choosing the best out of multiple partitionings during the bipartitioning step and
applying the refinement heuristic at the end of the algorithm. The modularity scores
obtained in this manner surpass those of previously known clustering algorithms.

A possible variant of the proposed algorithm that can be further studied would
accept bipartitions of inferior modularity for a limited number of recursion steps,
thereby alleviating the problem described in Section 3.
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Table 4. Modularity scores for refinement steps during the al-
gorithm. After every bisection, up to 5 refinement steps are per-
formed. The best modularity for each tool with e = 0 and e = 5
is marked as bold.

PaToH Scotch
Instance e=0 e=5 Diff. e=0 e=5 Diff.

adjnoun 0.2977 0.3014 0.0037 0.2972 0.2941 -0.0031
as-22july06 0.6711 0.6653 -0.0058 0.6578 0.6581 0.0003
astro-ph 0.7340 0.7283 -0.0058 0.7238 0.7204 -0.0034
caidaRouterLevel 0.8659 0.8627 -0.0033 0.8540 0.8483 -0.0058
celegans metabolic 0.4436 0.4430 -0.0007 0.4407 0.4433 0.0026
celegansneural 0.4871 0.4945 0.0074 0.4939 0.4944 0.0005
chesapeake 0.2595 0.2658 0.0063 0.2624 0.2658 0.0034
citationCiteseer 0.8175 0.8145 -0.0030 0.8119 0.8088 -0.0031
cnr-2000 0.9116 0.9050 -0.0066 0.9026 0.9019 -0.0007
coAuthorsCiteseer 0.8982 0.8971 -0.0011 0.8838 0.8829 -0.0009
coAuthorsDBLP 0.8294 0.8276 -0.0018 0.8140 0.8106 -0.0033
cond-mat 0.8456 0.8424 -0.0031 0.8343 0.8333 -0.0010
cond-mat-2003 0.7674 0.7643 -0.0031 0.7556 0.7532 -0.0023
cond-mat-2005 0.7331 0.7309 -0.0022 0.7170 0.7142 -0.0028

dolphins 0.5276 0.5265 -0.0011 0.5265 0.5265 0.0000
email 0.5776 0.5748 -0.0028 0.5748 0.5647 -0.0101
football 0.6046 0.6032 -0.0013 0.6046 0.6032 -0.0013
G n pin pout 0.4913 0.4921 0.0009 0.4740 0.4872 0.0132
hep-th 0.8504 0.8472 -0.0031 0.8409 0.8412 0.0003
jazz 0.4450 0.4451 0.0001 0.4451 0.4271 -0.0181
karate 0.4198 0.4198 0.0000 0.4198 0.4198 0.0000
lesmis 0.5658 0.5658 0.0000 0.5649 0.5652 0.0003
netscience 0.9593 0.9551 -0.0042 0.9559 0.9558 -0.0001
PGPgiantcompo 0.8831 0.8791 -0.0040 0.8734 0.8732 -0.0002
polblogs 0.4257 0.4257 0.0000 0.4257 0.4257 0.0000
polbooks 0.5269 0.5108 -0.0161 0.5269 0.5108 -0.0161
power 0.9398 0.9373 -0.0024 0.9386 0.9346 -0.0040
preferentialAttachment 0.3066 0.3058 -0.0008 0.2815 0.2952 0.0137
smallworld 0.7846 0.7851 0.0005 0.7451 0.7857 0.0406

Average 0.6507 0.6488 -0.0018 0.6430 0.6429 0.0001
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Table 5. Comparison between modularity score obtained by our
algorithm and and scores reported in previous work. An asterisk
indicates that this instances has been solved optimally. The best
modularity for each row is marked as bold.

Best found Best known

Instance Modularity Modularity Source Difference

adjnoun 0.3014 0.3080 [26] -0.0066
caidaRouterLevel 0.8677 0.8440 [13] 0.0237
celegans metabolic 0.4467 0.4350 [8] 0.0117
celegansneural 0.4945 0.4010 [26] 0.0935
citationCiteseer 0.8175 0.8037 [13] 0.0138
cnr-2000 0.9119 0.9130 [13] -0.0011
coAuthorsDBLP 0.8306 0.8269 [13] 0.0037

dolphins∗ 0.5276 0.5290 [8] -0.0014
email 0.5776 0.5738 [15] 0.0038
football∗ 0.6046 0.6050 [8] -0.0004
jazz 0.4451 0.4452 [15] -0.0001
karate∗ 0.4198 0.4198 [8] 0.0000
lesmis∗ 0.5658 0.5600 [8] 0.0058
netscience 0.9593 0.9540 [26] 0.0053
PGPgiantcompo 0.8834 0.8550 [8] 0.0284
polblogs 0.4257 0.4260 [26] -0.0003
polbooks∗ 0.5269 0.5270 [8] -0.0001
power 0.9398 0.9390 [8] 0.0008

Average 0.6414 0.6314 0.0100
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Appendix A. DIMACS Challenge results

After DIMACS Challenge was completed, we run the proposed divisive cluster-
ing algorithm on the challenge instances (we skipped a few of the largest graphs).
In these runs, we did not try to explicitly optimize the other challenge metrics.
Doing so would require some trivial changes to the proposed framework for each
metric: the evaluation functions measuring the modularity, the functions that up-
date the modularity score, and the refinement functions should now measure the
desired metric(s). Without doing these changes, we measured the other clustering
scores (of the partitions that took the modularity score as the criterion). The re-
sults are shown in Table 6. The proposed algorithm is referred to as ParMod in
this appendix.

Table 6. The clustering scores of the partitions.

Instance mod mid aixc aixe perf cov cov

333SP 0.989095 0.000218 0.006843 0.040992 1.991958 0.993118 1.991960
as-22july06 0.673605 0.000712 0.205813 0.740325 1.846038 0.768127 1.846236
astro-ph 0.736729 0.007728 0.022127 0.294091 1.934897 0.788472 1.935894
audikw1 0.917323 0.002133 0.050979 4.163516 1.936944 0.948903 1.937029
belgium.osm 0.994887 0.000411 0.003260 0.007006 1.996223 0.996795 1.996224
cage15 0.898534 0.000072 0.080895 1.479740 1.950329 0.924107 1.950333
caidaRouterLevel 0.868406 0.000655 0.039705 0.204044 1.956779 0.896955 1.956814
celegans metabolic 0.446655 0.062234 0.402824 3.488044 1.729581 0.590123 1.752573
citationCiteseer 0.818692 0.000417 0.107262 0.793361 1.911682 0.872232 1.911715
coAuthorsCiteseer 0.899906 0.000602 0.074358 0.483233 1.977108 0.911773 1.977142
cond-mat-2005 0.738004 0.001516 0.017326 0.132351 1.935902 0.787838 1.936149
coPapersDBLP 0.858850 0.002412 0.125238 4.922138 1.968125 0.881037 1.968238
email 0.579957 0.045179 0.344470 3.140532 1.800371 0.692350 1.809870
eu-2005 0.940386 0.000286 0.029615 1.500914 1.927900 0.971262 1.927942
G n pin pout 0.493583 0.001623 0.492139 4.914818 1.968009 0.509639 1.968155
in-2004 0.980272 0.000232 0.005798 0.082436 1.987802 0.993129 1.987816
kron g500-simple-logn16 0.064586 0.000284 0.734346 59.815302 1.556555 0.287037 1.558008
kron g500-simple-logn20 0.048710 0.000059 0.807405 68.818142 1.706426 0.200393 1.706548
ldoor 0.969370 0.002566 0.019954 0.954162 1.976477 0.981167 1.976527
luxembourg.osm 0.989312 0.002636 0.006909 0.014389 1.992082 0.993331 1.992100

memplus 0.697240 0.003627 0.282562 1.806004 1.939520 0.742195 1.939931
PGPgiantcompo 0.884130 0.007515 0.059229 0.218017 1.947627 0.924864 1.948063
polblogs 0.425691 0.020995 0.077119 1.843465 0.998813 0.927430 0.999905
power 0.940119 0.011169 0.035545 0.092199 1.944968 0.968759 1.945495
preferentialAttachment 0.308605 0.000310 0.566181 5.665209 1.749771 0.433877 1.749903
rgg n 2 17 s0 0.977658 0.006684 0.014969 0.166193 1.984094 0.985676 1.984179
smallworld 0.787234 0.010091 0.210331 2.103284 1.992484 0.791019 1.992605
uk-2002 0.976712 0.000003 0.042345 0.663675 1.973205 0.978745 1.973207

A comparison of the modularity scores obtained in the implementation chal-
lenge by the three best algorithms is shown in Table 7. Even though our ParMod
algorithm provides the best score only for two instances, the differences in compar-
ison to the scores of the best ranked algorithm CGGCi RG are very small. In fact
they are smaller than the impact of several of the parameters studied in Section
4. The second ranked algorithm, VNS quality provides many top ranked results.
However, due to an extreme outlier for the instance cage15, the average value is
lower than that of the other algorithms. When disregarding the outlier, the average
lies between those of ParMod and CGGCi RG. We also give the execution time of
ParMod for some small challenge instances in Table 8.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms
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Table 7. The modularity scores of our algorithm ParMod in com-
parison to the two best ranked submissions CGGCi RG and
VNS quality.

Instance ParMod CGGCi RG VNS quality

333SP 0.9891 0.9887 0.9884
as-22july06 0.6736 0.6783 0.6776
astro-ph 0.7367 0.7438 0.7446
audikw1 0.9173 0.9174 0.9180
belgium.osm 0.9949 0.9949 0.9948
cage15 0.8985 0.9032 0.3438
caidaRouterLevel 0.8684 0.8720 0.8709
celegans metabolic 0.4467 0.4521 0.4532
citationCiteseer 0.8187 0.8239 0.8217
coAuthorsCiteseer 0.8999 0.9053 0.9039
cond-mat-2005 0.7380 0.7463 0.7451
coPapersDBLP 0.8589 0.8668 0.8650
email 0.5800 0.5819 0.5828
eu-2005 0.9404 0.9416 0.9413

G n pin pout 0.4936 0.5001 0.4993
in-2004 0.9803 0.9806 0.9805
kron g500-simple-logn16 0.0646 0.0637 0.0651
kron g500-simple-logn20 0.0487 0.0504 0.0494
ldoor 0.9694 0.9689 0.9691
luxembourg.osm 0.9893 0.9895 0.9896
memplus 0.6972 0.7005 0.6953
PGPgiantcompo 0.8841 0.8866 0.8861
polblogs 0.4257 0.4271 0.4271
power 0.9401 0.9403 0.9409
preferentialAttachment 0.3086 0.3023 0.3160
rgg n 2 17 s0 0.9777 0.9781 0.9783
smallworld 0.7872 0.7930 0.7930
uk-2002 0.9767 0.9903 0.9901

Average 0.7466 0.7496 0.7297

Table 8. The execution time of ParMod for a few challenge in-
stances. The times are the averages of 5 executions and given for
reference purposes.

Instance Time(sec) Instance Time(sec)

celegans metabolic 1.02 email 4.02
power 11.18 polblogs 6.40
PGPgiantcompo 27.44 as-22july06 58.73
astro-ph 112.45 cond-mat-2005 232.82
preferentialAttachement 524.85 smallworld 397.49
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An ensemble learning strategy for graph clustering

Michael Ovelgönne and Andreas Geyer-Schulz

Abstract. This paper is on a graph clustering scheme inspired by ensemble
learning. In short, the idea of ensemble learning is to learn several weak
classifiers and use these weak classifiers to form a strong classifier. In this
contribution, we use the generic procedure of ensemble learning and determine
several weak graph clusterings (with respect to the objective function). From
the partition given by the maximal overlap of these clusterings (the cluster
cores), we continue the search for a strong clustering. We demonstrate the
performance of this scheme by using it to maximize the modularity of a graph
clustering. We show, that the quality of the initial weak clusterings is of
minor importance for the quality of the final result of the scheme if we iterate

the process of restarting from maximal overlaps. In addition to the empirical
evaluation of the clustering scheme, we will link its search behavior to global
analysis. With help of Morse theory and a discussion of the path space of the
search heuristics we explain the superior search performance of this clustering
scheme.

1. Introduction

Graph clustering, i.e. the identification of cohesive submodules or ’natural’
groups in graphs, is an important technique in several domains. The identification
of functional groups in metabolic networks [GA05] and the identification of social
groups in friendship networks are two popular application areas of graph clustering.

Here we define graph clustering as the task of simultaneously detecting the num-
ber of submodules in a graph and detecting the submodules themselves. In contrast,
we use the term graph partitioning for the problem of identifying a parametrized
number of partitions where usually additional restrictions apply (usually, that all
submodules are of roughly equal size). Two recent review articles on graph cluster-
ing by Schaeffer [Sch07] and Fortunato [For10] provide a good overview on graph
clustering techniques as well as on related topics like evaluating and benchmarking
clustering methods.

Graph clustering by optimizing an explicit objective function became popular
with the introduction of the modularity measure [NG04]. Subsequently, a number
of variations of modularity [MRC05,LZW+08] have been proposed to address
shortcomings of modularity such as its resolution limit [FB07]. The identification
of a graph clustering by finding a graph partition with maximal modularity is NP-
hard [BDG+08]. Therefore, finding clusterings of a problem instance with more
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than a few hundred vertices has to be based on good heuristics. A large number of
modularity optimization heuristics has been proposed in recent years, but most of
them have a poor optimization quality.

The objective of this contribution is to present a new graph clustering scheme,
called the Core Groups Graph Clustering (CGGC) scheme, which is able to find
high quality clustering by using an ensemble learning approach. In [OGS10] we
presented an algorithm called RG+ for maximizing the modularity of a graph par-
tition via an intermediate step of first identifying core groups of vertices. The RG+
algorithm was able to outperform all previously published heuristics in terms of
optimization quality. This paper deals with a generalization of this optimization
approach.

The paper has been organized in the following way. First, we briefly discuss
ensemble learning in Section 2. Then, we introduce the CGGC scheme in Section
3 and modularity maximization algorithms in Section 4. In Section 5, we evaluate
the performance of the CGGC scheme using modularity maximization algorithms
within the scheme. We discuss the scheme from the viewpoint of global analysis in
Section 6. Finally, a short conclusion follows in Section 7.

2. Ensemble Learning

Ensemble based systems have been used in decision making for quite some time.
Ensemble learning is a paradigm in machine learning, where several intermediate
classifiers (called weak or base classifiers) are generated and combined to finally get
a single classifier. The algorithms used to compute the weak classifiers are called
weak learners. An important notion is, that even if a weak learner has only a slightly
better accuracy than random choice, by combining several classifiers created by this
weak learner, a strong classifier can be created [Sch90]. For a good introduction
to this topic, see the review article by Polikar [Pol06].

Two examples of ensemble learning strategies are bagging and boosting. A bag-
ging algorithm for supervised classification trains several classifiers from bootstraps
of the training data. The combined classifier is computed by simple majority voting
of the ensemble of base classifiers, i.e. a data item gets the label the majority of
base classifiers assigns to that data item. A simple boosting algorithm (following
[Pol06]) works with classifiers trained from three subsets of the training data. The
first dataset is a random subset of the training data of arbitrary size. The second
dataset is created so that the classifier trained with the first dataset classifies half
of the data items correctly and the other half wrong. The third dataset consists of
the data items the classifiers trained by the first and the second dataset disagree
on. The strong classifier is the majority vote of the three classifiers.

Another ensemble learning strategy called Stacked Generalization has been
proposed by Wolpert [Wol92]. This strategy is based on the assumption that some
data points are more likely to be misclassified than others, because they are near
to the boundary that separates different classes of data points. First, an ensemble
of classifiers is trained. Then, using the output of the classifiers a second level of
classifiers is trained with the outputs of the ensemble of classifiers. In other words,
the second level of classifiers learns for which input a first level classifier is correct
or how to combine the “guesses” of the first level classifiers.

An ensemble learning strategy for clustering has been used by Fred and Jain
[FJ05], first. They called this approach evidence accumulation. They worked on
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clustering data points in an Euclidean space. Initially, the data points are clustered
several times based on their distance and by means of an algorithm like k-means.
The ensemble of generated clusterings is used to create a new distance matrix
called the co-association matrix. The new similarity between two data points is the
fraction of partitions that assign both data points to the same cluster. Then, the
data points are clustered on basis of the co-association matrix.

3. Core Groups Graph Clustering Scheme

Let us restrict our considerations to the problem of whether a pair of vertices
should belong to the same cluster or to different clusters. Making this decision is
complicated. Many algorithms get misled during their search so that sometimes bad
decisions are made. But what if we have one or more algorithms that find several
clusterings with fair quality but still a lot of non-optimal decisions on whether a
pair of vertices belongs to the same cluster? If all clusterings agree on whether a
pair of vertices belongs to the same cluster, we can be pretty sure that this decision
is correct. However, if the clusterings disagree, we should have a second look at
this pair.

Based on these considerations, we propose the CGGC scheme. We use the
agreements of several clusterings with fair quality to decide whether a pair of ver-
tices should belong to the same cluster. The groups of vertices which are assigned
to the same cluster in every clustering (i.e. the maximal overlaps of the clusterings)
are denoted as core groups. To abstract from any specific quality measure, we use
the term good partition for a partition that has a good quality according to an
arbitrary quality measure. The CGGC scheme consists of the following steps:

(1) Create a set S of k good partitions of G with base algorithm Ainitial

(2) Identify the partition P̂ of the maximal overlaps in S

(3) Create a graph Ĝ induced by the partition P̂

(4) Use base algorithm Afinal to search for a good partition of Ĝ

(5) Project partition of Ĝ back to G

Initially, a set S of k partitions of G is created. That means, one non-
deterministic clustering algorithm is started k times to create the graph partitions,
k deterministic but different algorithms are used or a combination of both is used.
In terms of ensemble learning, the used algorithms are the base algorithms or weak
learners and the computed clusterings are the weak classifiers.

Next, we combine the information of the weak classifiers: We calculate the
maximal overlap of the clusterings in S. Let cP (v) denote the cluster that vertex v
belongs to in partition P . We create from a set S of partitions {P1, . . . , Pk} of V a

new partition P̂ of V so that

∀v, w ∈ V : (

k∧
i=1

cPi
(v) = cPi

(w))⇔ cP̂ (v) = cP̂ (w)

Extracting the maximum overlap of an ensemble of partitions creates an inter-
mediate solution which is used as the starting point for the base algorithm Afinal

to calculate the final clustering. The base algorithm used in this phase could be
an algorithm used in step 1 or any other algorithm appropriate to optimize the ob-
jective function. For example, algorithms that are not able to cluster the original
network in reasonable time could be used to cluster the smaller graph Ĝ = (V̂ , Ê)
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190 MICHAEL OVELGÖNNE AND ANDREAS GEYER-SCHULZ

induced by P̂ . To create the induced graph, all vertices in a cluster in P̂ are merged
to one vertex in Ĝ. Accordingly, Ĝ has as many vertices as there are clusters in P̂ .
An edge (v, w) ∈ Ê has the weight of the combined weights of all edges in G that

connect vertices in the clusters represented by v and w. Then, the clustering of Ĝ
would have to be projected back to G to get a clustering of the original graph.

Agglomerative hierarchical optimization schemes often show the best scalability
for clustering algorithms as they usually make local decisions. A partial explanation
is that the number of partitions of n nodes in k classes grows as a Stirling number

of the second kind S(n, k) = 1
k!

∑k
j=0(−1)j

(
k
r

)
(k − r)n and that this implies that

growth of the search space is smaller in the bottom-up direction than in the top-
down direction [Boc74, p. 110]. For the example shown in Figure 1, we have
10 partitions (5 objects in 4 clusters) for the first bottom-up decision versus 15
partitions (5 objects in 2 clusters) for the first top-down decision.

While using only local information increases the scalability, it is a source of
globally poor decisions, too. Extracting the overlap of an ensemble of clusterings
provides a more global view. Figure 1 shows the complete merge lattice of an
example graph of 5 vertices. An agglomerative hierarchical algorithm always starts
with the partition into singletons (shown at the bottom) and merges in some way
the clusters until only one cluster containing all vertices remains (shown at the
top). Every merge decision means going one level up in the lattice. Restarting the
search at the maximal overlap of several partitions in an ensemble means to go back
to a point in the lattice from which all of the partitions in this ensemble can be
reached. If we restart the search for a good partition from this point, we will most
probably be able to reach other good partitions than those in the ensemble, too. In
fact, reaching other good or even better partitions than those in the ensemble will
be easier than starting from singletons as poor cluster assignments in the ensemble
have been leveled out.

3.1. The Iterated Approach. Wolpert [Wol92] discussed the problem that
some data points are harder to assign to the correct cluster than others. Data
points at the natural border of two clusters are harder to assign than those inside.
For the specific case of modularity maximization with agglomerative hierarchical
algorithms, we discussed the influence of prior merge decision on all later merges
in [OGS12]. Often, the order of the merge operations influences which side of the
border a vertex is assigned to. Node 3 in Figure 1 is an example for this effect.

With the help of the maximal overlaps of the CGGC scheme we try to separate
the cores of the cluster from the boundaries. The harder decisions on which clusters
contain the vertices at the boundaries are made, when the knowledge of the cores
provides additional information. This idea of separating cores and boundaries can
be iterated in the following way (subsequently denoted as the CGGCi scheme):

(1) Set P best to the partition into singletons and set Ĝ to G

(2) Create a set S of k (fairly) good partitions of Ĝ with base algorithm Ainitial

(3) Identify the partition P̂ of the maximal overlaps in S

(4) If P̂ is a better partition than P best, set P best = P̂ , create the graph Ĝ

induced by P̂ and go back to step 2
(5) Use base algorithm Afinal to search for a good partition of Ĝ

(6) Project partition of Ĝ back to G
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Figure 1. Graph G with 5 vertices and its merge lattice. The
edges indicate the possible merge paths of hierarchical clustering
algorithms (not all edges drawn). The stroked edges indicate paths
leading through the saddle point (1 2) 3 (4 5) to the two local
maxima. The dotted edges and italic partitions can be neglected as
they correspond to merging clusters that are not adjacent. Merging
non-adjacent clusters will always decrease the modularity.

In every new clustering P best some more vertices or groups of vertices have been
merged or rearranged. So, every new clustering is likely to provide more accurate
information on the structure of the graph for the succeeding iterations.

4. Modularity and its Optimization

Modularity is a popular objective function for graph clustering that measures
the non-randomness of a graph partition. Let G = (V,E) be an undirected, un-
weighted graph, n := |V | the number of vertices, m := |E| the number of edges and
P = {C1, . . . , Ck} a partition of V , i.e. ∪ki=1Ci = V and ∀i 	=j∈{1,...,k}Ci ∩ Cj = ∅.
The modularity Q of the partition P of graph G is defined as

(1) Q(G,P ) =
1

2m

∑
vx,vy

(
wxy −

sxsy
2m

)
δ(cP (vx), cP (vy))

where wxy is an element in the adjacency matrix of G, sx is the degree of vertex vx,
cP (vx) is the cluster of vx in partition P and the Kronecker symbol δ(c(vx), c(vy)) =
1 when vx and vy belong to the same cluster and δ(c(vx), c(vy)) = 0 otherwise.

Research on modularity maximization algorithms has been very popular in the
last years and a lot of heuristic algorithms have been proposed. In the following,
we discuss a randomized greedy and a label propagation algorithm in detail, as
we will use them exemplarily to evaluate the CGGC scheme. We will give a brief
summary of other algorithms which could be used as base algorithms for the CGGC
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scheme as well. For an extensive overview on modularity maximization algorithms,
see [For10].

4.1. Randomized Greedy (RG). Newman [New04] proposed the first al-
gorithm to be used to identify clusterings by maximizing modularity. The hierar-
chical agglomerative algorithm starts with a partition into singletons and merges
in each step one pair of clusters that causes the maximal increase in modularity.
The result is the cut of the dendrogram with the maximal modularity. This al-
gorithm is slow, as it considers to merge every pair of adjacent clusters in every
step. The complete search over all adjacent pairs also leads to an unbalanced merge
process. Some clusters grow faster than others and the size difference is a bias for
later merge decisions. Large clusters are merged with many small clusters in their
neighborhood, whether this is good from a global perspective or not [OGS12].

The randomized greedy algorithm [OGS10] is a fast agglomerative hierarchical
algorithm that has a very similar structure to Newman’s algorithm but does not
suffer from an unbalanced merge process. This algorithm selects in every step
a small sample of k vertices and determines the best merge involving one of the
vertices in the sample (see Algorithm 1). Because of the sampling, the algorithm can
be implemented quite efficiently and has a complexity of O(m lnn) (see [OGS10]).

Algorithm 1: Randomized Greedy (RG) algorithm

Input: undirected, connected graph G = (V,E), sample size k
Output: clustering
� Initialize

forall the v ∈ V do
forall the neighbors n of v do

e[v, n]← 1/(2 ∗ edgecount);
a[v]← rowsum(e[v])

� Build Dendrogram (Randomized Greedy)
for i = 1 to rank(e)-1 do

maxDeltaQ ← −∞;

for j = 1 to k do //search among k communities for best join
c1← random community;

for all communities c2 connected to c1 do
deltaQ← 2(e[c1, c2]− (a[c1] ∗ a[c2]));

if deltaQ > maxDeltaQ then
maxDeltaQ← deltaQ;

nextjoin← (c1, c2);

join(nextjoin);

joinList ← joinList + nextjoin;

clusters ← extractClustersFromJoins(joinList) ;

In [OGS10] we also introduced the RG+ (improved randomized greedy) algo-
rithm, which we generalized to the CGGC scheme in this contribution. The RG+
algorithm uses the RG algorithm as its base clustering algorithm to create the weak
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Algorithm 2: Label Propagation (LP) algorithm

Input: undirected, connected graph G = (V,E) set of labels LP
Output: clustering
� Initialize

forall the v ∈ V do
label[v] ← getUniqueID(LP );

� Propagate Labels
majorityLabelCount← 0;

while majorityLabelCount 
= |V | do
majorityLabelCount← 0;

forall the v ∈ V at random do
label[v]← argmax

l∈LP

∑
n∈neighbors(v) δ(l, label[n]) ;

if
∑

n∈N(v) δ(label[v], label[n]) ≥ |V |/2 then

majorityLabelCount← majorityLabelCount + 1;

classifiers and for the final clustering starting from the maximal overlap of these
partitions. To obtain a standardized naming of all other CGGC scheme algorithms
in this article we will denote this algorithms as CGGCRG in the following.

4.2. Label Propagation (LP). Raghavan et al. [RAK07] proposed a label
propagation algorithm for graph clustering. This algorithm initializes every vertex
of a graph with a unique label. Then, in iterative sweeps over the set of vertices
the vertex labels are updated. A vertex gets the label that the maximum number
of its neighbors have. Ties are broken arbitrarily. The procedure is stopped when
every vertex has the label that at least half of its neighbors have. The pseudocode
of the LP algorithm is shown in Algorithm 2.

This procedure does not explicitly or implicitly maximize modularity. It is
especially interesting, because it has a near linear time complexity. Every sweep
has a complexity of O(m) and Raghavan et al. report that 95% of the vertices have
a label the majority of its neighbors have in only about 5 iterations.

As we will show in Section 5, the CGGC scheme is able to find good final
clusterings from weak results of intermediate runs of base algorithms. It does not
matter if the algorithm is stopped prior to its originally defined stopping criterion.

4.3. Other Modularity Maximization Algorithms. A very fast agglom-
erative hierarchical algorithm has been developed by Blondel et al. [BGLL08].
The algorithm starts with singleton clusters. Every step of the algorithm consists
of two phases. At first, all vertices are sequentially and iteratively moved between
their current and a neighboring cluster, if this increases the modularity. In the
case that several moves have a positive influence on the modularity, the one with
the highest modularity increase is chosen. To speed up this process, a threshold is
introduced to determine, when to stop the first phase based on the relative increase
in modularity. In the second phase of each step, the result of the first phase is
used to create a new graph, where all vertices that have been assigned to the same
cluster in the first phase are represented by one vertex. The edge weights between
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the original vertices are summed up and give the new edge weights between the
new vertices. Then, the algorithm returns to the first phase and moves the new
vertices between clusters.

Noack and Rotta [NR09] experimentally investigated a framework of hierar-
chical agglomerative modularity optimization algorithms. While most algorithms
only use the modularity increase as the priority criterion, they analyzed several
other priority criteria that weight modularity increase in some way. Furthermore,
they considered merging more than one pair of vertices in every step and locally
refining the intermediate partitions regularly during the merging process (multi-
level refinement). With the best configuration of their framework Noack and Rotta
achieve significantly better results than Blondel et al. [BGLL08] at the price of a
much higher runtime.

Another well performing algorithm is the MOME algorithm by Zhu et al.
[ZWM+08]. In a first phase, the coarsening phase, the algorithm recursively cre-
ates a set of graphs. Starting with the input graph, each vertex of the graph will
be merged with the neighbor that yields the maximal increase in modularity. If the
modularity delta is negative for all neighbors, the vertex will be left as it is. The
resulting graph will be recursively processed until the graph can not be contracted
any more. Subsequently, in the uncoarsening phase, the set of successively col-
lapsed graphs will be expanded while the clustering gets refined by moving vertices
between neighboring clusters.

Many other algorithms have been proposed. For practical usage and to be used
within the CGGC scheme most of them are of no interest due to their inferior per-
formance in terms of modularity maximization or runtime efficiency. Among these
algorithms are several spectral algorithms ([WS05], [New06], [RZ07], [RZ08])
and algorithms based on generic meta heuristics like iterated tabu search [MLR06],
simulated annealing [MAnD05], or mean field annealing [LH07]. Formulations of
modularity maximization as an integer linear program (e.g. [AK08], [BDG+07])
allow finding an optimal solution without enumerating all possible partitions. How-
ever, processing networks with as few as 100 vertices is already a major problem
for current computers.

4.3.1. Refinement. The results of most modularity maximization algorithms
can be improved by a local vertex mover strategy. Noack and Rotta [NR09] sur-
veyed the performance of several strategies inspired by the famous Kernighan-Lin
algorithm [KL70]. We employ the fast greedy vertex movement strategy to the re-
sults of all evaluated algorithms, because all other strategies scale much worse with-
out providing significant improvements in quality. The fast greedy vertex mover
strategy sweeps iteratively over the set of vertices as long as moving a vertex to
one of its neighboring clusters improves modularity.

5. Evaluation

The clustering scheme is evaluated by means of real-world and artificial net-
works from the testbed of the 10th DIMACS implementation challenge on graph
partitioning and graph clustering. Memory complexity is a bigger issue than time
complexity for our algorithms and we had to omit the two largest datasets from
the category Clustering Instances because of insufficient main memory. We also
omitted the small networks with less than 400 vertices where many algorithms are
able to find the optimal partitions [OGS10].
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Figure 2. Average modularity of 30 test runs of the CGGC- and
CGGCi-scheme using LP as the base algorithm subject to the en-
semble size k for the dataset caidaRouterLevel.

Before we conducted the evaluation, we first determined the best choice for
the number of partitions in the ensembles. The results of our tests (see Figure 3)
show that the ensemble size should be roughly lnn for all algorithms but CGGCLP .
When using LP as the base algorithm, the quality improves with increasing ensem-
ble size for the iterated scheme but heavily decreases for the non-iterated scheme
(see Figure 2). This seems to be a result of the weak learning quality of LP. A
larger ensemble size results in more and smaller core groups in the maximal overlap
partition. LP is not able to find a good clustering from finer decompositions when
not iteratively applied as in the CGGCi scheme.

The results in Table 2 show the average optimization quality and therefore the
quality we can expect when using the algorithm in a practical context. In Table
1 we show the boundary of the scheme, i.e. the best optimization quality we were
able to achieve using the scheme given much time.

While the iterated CGGCi scheme does not provide much improvement com-
pared to the non-iterated scheme when used with the RG algorithm (CGGCiRG

vs. CGGCRG), its improvement for the LP algorithm is significant (CGGCiLP

vs. CGGCLP ). There is still a difference between the CGGCiRG and CGGCiLP .
But for most networks, CGGCiLP achieves better results than the standalone RG
algorithm which showed to be a quite competitive algorithm [OGS10] among non-
CGGC scheme algorithms.

A notable result is that the LP algorithm performs extremely bad on the pref-
erentialAttachment network (pref.Attach.). This network is the result of a random
network generation process where iteratively edges are added to the network and
the probability that an edge is attached to one vertex depends on the current degree
of the vertex. The average modularity for the standalone LP on the preferentialAt-
tachment network is extremely low as the algorithm identified only in 1 of 100 test
runs a community structure. In all other cases the identified clusterings were parti-
tions into singletons. Therefore, using LP within the CGGC scheme failed as well.
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Figure 3. Average modularity of 30 test runs of the
CGGC/CGGCi-scheme algorithms subject to the ensemble size k
for the two datasets PGPgiantcompo and caidaRouterLevel. The
dotted vertical line shows the value of ln n (where n is the number
of vertices)
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Table 1. Best modularity of a clustering computed for networks
from the DIMACS testbed categories Clustering Instances and
Coauthors. All partitions have been identified with help of the
CGGCi scheme and the denoted base algorithm.

Network Max Modularity Alg. Network Max Modularity Alg.

celegans metabolic 0.4526664838 RG eu-2005 0.9415630621 RG
Email 0.5828085954 RG in-2004 0.9806076266 RG
PGPgiantcompo 0.8865501696 RG road central 0.9976280448 RG
as-22july06 0.6783599573 RG road usa 0.9982186002 RG
astro-ph 0.7444262906 RG caidaRouterLevel 0.8720295371 RG
cond-mat 0.8530972563 RG pref.Attach. 0.3048516381 RG
cond-mat-2003 0.7786823470 RG smallworld 0.7930994465 LP
cond-mat-2005 0.7464446826 RG G n pin pout 0.5002934104 LP
hep-th 0.8565536355 RG citationCiteseer 0.8241257861 RG
netscience 0.9598999889 RG coAuthorsCiteseer 0.9053559700 RG
polblogs 0.4270879141 RG coAuthorsDBLP 0.8415177919 RG
power 0.9404810777 RG coPapersCiteseer 0.9226201646 RG
cnr-2000 0.9131075546 RG coPapersDBLP 0.8667751453 RG

However, we can argue that trying to find a significant community structure in a
random network should fail.

The clustering process of the iterated CGGC scheme is shown by example in
Figure 4. The LP algorithm is a much weaker learner than the RG algorithm and
initially finds clusterings with very low modularity. But after a few iterations the
modularity of the core groups partitions of both base algorithms are about the
same. But although the quality of the final core groups for both base algorithms
is similar, the core groups are different. The final core groups identified from the
ensemble generated with the LP algorithm are a weaker restart point than those
identified with RG. If we use RG as the base algorithm for the final clustering
(Afinal) to start from the LP core groups, the identified partitions have about the
same modularity than those identified with LP. Because of page limitations we omit
detailed results.

In Table 3 runtime results for the base algorithm RG are shown. Due to
ensemble learning approach the CGGC/CGGCi scheme has a runtime that is a
multiple of the runtime of the base algorithm. However, our implementation does
not make use of parallelization. Because all partitions for the ensembles can be
computed independently, parallelization is straightforward.

6. A Global Analysis View on the CGGC Scheme

We already gave an intuitive explanation of the way the CGGC scheme works
in Section 3. Now, we want to provide a link to global analysis and Morse theory.

The merge lattice shown in Figure 1 shows the space of all paths an agglom-
erative hierarchical algorithm can follow. The level number k corresponds to the
number of clusters of the partition(s) at level k in the merge lattice: from the sin-
gleton partition (the inf of the lattice) at level k = n to the partition with a single
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Table 2. Average modularity of the results of 100 test runs (10
test runs for very large networks marked with *) on networks from
the DIMACS testbed categories Clustering Instances and Coau-
thors. CGGCX and CGGCiX denote the usage of an base algo-
rithm X within the CGGC and the iterated CGGC scheme, re-
spectively.

RG CGGCRG CGGCiRG LP CGGCLP CGGCiLP

celegans metabolic 0.43674 0.45021 0.45019 0.37572 0.43856 0.44343

Email 0.57116 0.57986 0.58012 0.41595 0.55750 0.55668

PGPgiantcompo 0.86436 0.88616 0.88617 0.76512 0.85431 0.88565

as-22july06 0.66676 0.67742 0.67747 0.54930 0.61205 0.67316

astro-ph 0.69699 0.74275 0.74277 0.67511 0.70272 0.74143

cond-mat 0.82975 0.85240 0.85242 0.75661 0.79379 0.85116

cond-mat-2003 0.75715 0.77754 0.77755 0.67852 0.70551 0.77524

cond-mat-2005 0.72203 0.74543 0.74550 0.64184 0.67453 0.74199

hep-th 0.83403 0.85577 0.85575 0.76102 0.80614 0.85463

netscience 0.94037 0.95975 0.95974 0.92477 0.95375 0.95933

polblogs 0.42585 0.42678 0.42680 0.42610 0.42635 0.42633

power 0.92818 0.93962 0.93966 0.72124 0.79601 0.93794

cnr-2000 0.91266 0.91302 0.91309 0.86887 0.90603 0.91284

eu-2005 0.93903 0.94114 0.94115 0.85291 0.90610 0.93982

in-2004 0.97763 0.97832 0.98057 0.92236 0.97086 0.97791

road central* 0.99716 0.99761 0.99767 0.70863 0.94351 0.99749

road usa* 0.99786 0.99821 0.99825 0.72234 0.94682 0.99812

caidaRouterLevel 0.86136 0.86762 0.87172 0.76353 0.81487 0.87081

pref.Attach. 0.27984 0.29389 0.30099 0.00202 0.00000 0.00000

smallworld 0.78334 0.79289 0.79300 0.66687 0.69181 0.79307

G n pin pout 0.47779 0.49991 0.50006 0.30609 0.34639 0.50023

citationCiteseer 0.80863 0.82333 0.82336 0.66184 0.72256 0.82064

coAuthorsCiteseer 0.89506 0.90507 0.90509 0.79549 0.83862 0.90360

coAuthorsDBLP 0.82081 0.83728 0.84055 0.71502 0.75108 0.83661

coPapersCiteseer 0.91626 0.92168 0.92221 0.85653 0.89921 0.92162

coPapersDBLP 0.85383 0.86471 0.86655 0.77918 0.82674 0.86540
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Figure 4. The clustering process of the iterated CGGCi scheme
on the cond-mat-2005 dataset for the base algorithms RG (top)
and LP (bottom). All points but the last one are core groups,
i.e. maximal overlaps of the k partitions in the ensemble. The last
points are the results for the final clustering run and after applying
the refinement procedure.
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Table 3. Average runtime results (in sec.) for selected networks.

#Vertices #Edges RG CGGCRG CGGCiRG

polblogs 1490 16715 0.02 0.11 0.16
power 4941 6594 0.02 0.12 0.49
cond-mat-2005 31163 120029 0.53 6.18 24.0
caidaRouterLevel 192244 609066 2.23 30.1 83.0
eu-2005 862664 16138468 32.1 466 505

cluster (the sup of the lattice) at level k = 1. For a partition with k clusters we

have k(k−1)
2 merge choices.

In each iteration of the CGGCi scheme, the search starts at some partition
P at level kP and goes up in the lattice to identify several new local maxima
(the partitions in the ensemble S). For example, the algorithm starts twice at the
partition 1 2 3 4 5 at level 5 in Figure 1 and reaches the two local maxima (1 2
3)(4 5) and (1 2)(3 4 5) at level 2. Then the algorithm goes down in the lattice to

the maximal overlap partition P̂ at a level kP̂ ≤ kP . In the example, this is the
partition (1 2) 3 (4 5) at level 3. In the worst case, when the ensemble of partitions
S created starting at P does not agree on any vertex, the maximal overlap is again
P and the core groups search stops. Otherwise, when the ensemble agrees on how
to merge at least one vertex, a new core groups partition is identified at a level
kP̂ < kP .

If a local optimum P has been reached by a hill-climbing method, all partitions
that have been visited on the way through the merge lattice to P have a lower
objective function value than the local optima. As can be seen from the merge
lattice given in Figure 1, there are usually many paths to get from the bottom
partition on level n to any other partition.

A path in the merge lattice can be identified by an ordered set of partitions. Let
FPi

denote the set of all paths that connect the singleton partition to the partition
Pi, let Ω denote all partitions of a set of vertices V , and S be a set of partitions.
Then, P(S) = {P ∈ Ω | ∀Pi ∈ S ∃D ∈ FPi

: P ∈ D} is the set of all partitions that
are included in at least one path to each partition in S. In other words, P(S) is the
set of all branch points from which all partitions in S can be reached. P(S) always
contains at least the singleton partition which all paths share as the starting point.
The maximal overlap P̂ of the ensemble of partitions in S is the partition in P(S)

with the minimal number of clusters. That means, P̂ is the latest point from where
a hierarchical agglomerative algorithm can reach all partitions in the ensemble. We
see that the core groups partition of the maximal overlap is a special partition as
it is a branching point in the merge path of the ensemble S.

For a moment, we put the merge path discussion aside and discuss Morse theory
which originates from the work of Morse on the topology of manifolds [Mor34].
Although the theory originally has been developed for continuous function spaces,
and we are dealing with discrete optimization, Morse theory provides a suitable
means to understand the topology of high-dimensional non-linear functions. In
the following, we assume that the discrete points (the partitions of a graph) are
embedded in a continuous space in such a way that the critical points (maxima,
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Figure 5. Graph (a) and respective level line (b). The levels
marked with * are critical levels with Karush-Kuhn-Tucker points.

minima, saddle-points) of the discrete modularity maximization problem are also
critical points in the continuous version of the problem.

Following the discussion in [JJT00], let us assume we have a continuous func-
tion f : R2 → R as in Figure 5a. The inverse of f , f−1, then gives the level line of
all points having the same value of f . We denote f−1(y) as the level line at level y.
While the level line is continuously deformed while going along y, whenever a level
passes a stationary or Karush-Kuhn-Tucker point (local minimum, local maximum
or saddle point), its topology changes. Figure 5b shows the level lines at critical
levels of the function in Figure 5a. At level 5 the level line connected at lower levels
separates into the lines A and B, i.e. at level 5 the two lines are glued together by
the saddle point and above level 5 they are unconnected.

This analysis of the level lines is important for optimization, as a greedy algo-
rithm starting at level 6 can potentially reach any point, while for a hill-climbing
algorithm starting from a point at level 5 the starting point determines the reach-
able parts of the search space. The separated level lines (A and B) create basins of
attraction for the respective local optima (A* and B*). At level 5, the only point
with a gradient path to both local maxima is the saddle point. Let us assume we
have a deterministic, hill-climbing algorithm. Then, the result of the algorithm is
determined by the starting point. Each local optimum has a basin of attraction,
i.e. a non-empty set of points from which the algorithm goes to the respective local
optimum.

In Figure 6 we show the basins of attraction for two functions in R1 and R2.
Consider the bounded non-linear function in R1 shown in Figure 6a. Maxima
and minima alternate when going from one end of the interval to the other. The
minima are critical points for gradient algorithms, because they separate the basins
of attraction (labeled A-D). Starting at a minimum, a gradient algorithm can reach
either the maximum to its left or the one to its right. In addition, the intermediate
value theorem tells us that in between two maxima, there must be at least one
minimum.

In Figure 6b a similar situation in R2 is shown. In contrast to the situation
in R1, for the higher dimensional space the borders of the basins of attraction are
glued together at saddle points. Again, these saddle points are important starting
points for randomized gradient algorithms, because when starting from these points
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Figure 6. Basins of attraction for a non-linear function f in R1

(a) and for a non-linear function f in R2 (b). In (b) the broken
arrows indicate the trajectories to the saddle points, the full arrows
the trajectories to the local maxima A∗, B∗, C∗, and D∗ (rough
sketch). They separate the (open) basins of attraction A, B, C,
and D. We call this graph a Morse Graph. The dotted arrow in
D goes from the local minimum to a saddle point. (Subfigure (b)
is a variation of [JJT00, Fig. 1.4.2])

Table 4. Properties of strict critical points. Let Ck(M,R) be the
space of k-times continuously differentiable functions on M with
M open and N(·) be the join neighborhood of a partition. Df(x) is

the row vector of the gradient
(

δ
δx1

f(x), . . . δ
δxn

f(x),
)

and D2f(x)

is the Hessian matrix
(

δ2

δxiδxj
f(x)

)
i,j=1,...,n

.

Ck(M,R), k > 2 Merge lattice of partitions
Local maximum Df(xc) = 0 ∀x ∈ N(xc) : f(xc) > f(x)

D2f(xc) negative definite

Local minimum Df(xc) = 0 ∀x ∈ N(xc) : f(xc) < f(x)
D2f(xc) positive definite

Saddle point
Df(xc) = 0
D2f(xc) non degenerate
and not positive definite

xc is a point at which the
merge paths to more than
one critical point split

different local optima can be reached depending on the direction the randomized
gradient algorithm follows. In contrast, gradient algorithms starting at points in
the interior of basins of attraction lead to one local maximum - even if they are
randomized.

Table 4 compares the properties of strict critical points for at least 2-times
continuously differentiable spaces with the properties of critical points in the merge
lattice of agglomerative hierarchical modularity clustering algorithms. Note, that
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Figure 7. Rugged mountain saddle and its Morse graph

saddle points are characterized as split points of algorithm paths to critical points.
In Figure 1 such a path split occurs at the partition (1 2) 3 (4 5) with two paths
leading to the two local maxima (1 2 3)(4 5) and (1 2)(3 4 5).

Thus, the core groups partitions correspond to saddle points as in the path
space of a graph the core groups are branch points where the join-paths to local
maxima separate. As the core groups partitions correspond to saddle points, they
are good start points for randomized greedy algorithms. For other classifiers, e.g.
the label propagation algorithm, core groups partitions work well as long as the
classifiers reach points in different basins of attraction which is a weaker condition
than the requirement of reaching a local maximum. Obviously, in order to be a
good restart point in the CGGC scheme, other local optima need to be reachable
from a core group than those used to create the core groups, too. The rugged
mountain saddle shown in Figure 7 is a familiar example for such a branch point
in R3. By iteratively identifying core groups of increasing modularity, we identify
saddle points that lead to higher and higher local maxima.

In summary, through the theoretical considerations of this section (and sup-
ported by the evaluation in Section 5) our explanation for the high optimization
quality of the CGGC scheme is:

• The operation of forming core groups partitions from sets of locally (al-
most) maximal partitions identifies (some) critical points on the merge
lattice of partitions.
• Core group partitions are good points for restarting randomized greedy al-

gorithms, because a core groups partition is a branch point (saddle point)
in the search space where different basins of attraction meet.

7. Conclusion

In this paper we have shown that learning several weak classifiers has a number
of advantages for graph clustering. The maximal overlap of several weak classifiers
is a good restart point for further search. Depending on the viewpoint, this ap-
proach can be regarded as a way to make first the ’easy’ decisions on which pairs of
vertices belong together and make ’harder’ decisions not before the unambiguous
ones have been made. When looking at the search space, maximal overlaps seem
to be capable of identifying those critical points from which especially randomized
gradient algorithms can find good local maxima.

As it turned out, when using the CGGCi scheme, the choice of base algorithm
has no major impact on the clustering quality. This is an important notion. Using
the core groups scheme, the base algorithm(s) can be selected because of other
considerations. For example, for most so far developed algorithms for modularity
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maximization an efficient implementation for distributed computer environments
(e.g. a Hadoop cluster) would be very hard. However, the label propagation algo-
rithm seems to be very suitable for this kind of environment. Propagating labels
requires only to pass the label information between the nodes of a computer clus-
ter. Thus, this algorithm can be used in the CGGCi scheme and in a distributed
computing environment to find high quality clusterings of billion-edge networks.

For greedy base algorithms, we showed that the CGGC scheme explores the
Morse graph of critical points. That explains why the scheme is able to achieve
high optimization performance even in huge graphs with modest effort.

However, an open question is the theoretical justification of the size of the
ensemble which is used for the determination of the maximal overlap partition.

References

[AK08] G. Agarwal and D. Kempe,Modularity-maximizing graph communities via mathemat-
ical programming, Eur. Phys. J. B 66 (2008), no. 3, 409–418, DOI 10.1140/epjb/e2008-
00425-1. MR2465245 (2009k:91130)

[BDG+07] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin Hoefer, Zoran
Nikoloski, and Dorothea Wagner, On finding graph clusterings with maximum modu-
larity, Graph-theoretic concepts in computer science, Lecture Notes in Comput. Sci.,
vol. 4769, Springer, Berlin, 2007, pp. 121–132, DOI 10.1007/978-3-540-74839-7 12.
MR2428570 (2009j:05215)

[BDG+08] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoefer, Zoran
Nikoloski, and Dorothea Wagner, On modularity clustering, IEEE Transactions on
Knowledge and Data Engineering 20 (2008), no. 2, 172–188.

[BGLL08] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre,
Fast unfolding of communities in large networks, Journal of Statistical Mechanics:
Theory and Experiment 2008 (2008), no. 10, P10008.

[Boc74] Hans Hermann Bock, Automatische Klassifikation, Vandenhoeck & Ruprecht,
Göttingen, 1974. Theoretische und praktische Methoden zur Gruppierung und
Strukturierung von Daten (Cluster-Analyse); Studia Mathematica/Mathematische
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Parallel community detection
for massive graphs

E. Jason Riedy, Henning Meyerhenke, David Ediger, and David A. Bader

Abstract. Tackling the current volume of graph-structured data requires par-
allel tools. We extend our work on analyzing such massive graph data with
a massively parallel algorithm for community detection that scales to current
data sizes, clustering a real-world graph of over 100 million vertices and over
3 billion edges in under 500 seconds on a four-processor Intel E7-8870-based
server. Our algorithm achieves moderate parallel scalability without sacri-

ficing sequential operational complexity. Community detection partitions a
graph into subgraphs more densely connected within the subgraph than to
the rest of the graph. We take an agglomerative approach similar to Clauset,
Newman, and Moore’s sequential algorithm, merging pairs of connected inter-
mediate subgraphs to optimize different graph properties. Working in parallel
opens new approaches to high performance. We improve performance of our
parallel community detection algorithm on both the Cray XMT2 and OpenMP
platforms and adapt our algorithm to the DIMACS Implementation Challenge
data set.

1. Communities in Graphs

Graph-structured data inundates daily electronic life. Its volume outstrips the
capabilities of nearly all analysis tools. The Facebook friendship network has over
845 million users [9]. Twitter boasts over 140 million new messages each day [34],
and the NYSE processes over 300 million trades each month [25]. Applications
of analysis range from database optimization to marketing to regulatory monitor-
ing. Global graph analysis kernels at this scale tax current hardware and software
architectures due to the size and structure of typical inputs.

One such useful analysis kernel finds smaller communities, subgraphs that lo-
cally optimize some connectivity criterion, within these massive graphs. We extend
the boundary of current complex graph analysis by presenting the first algorithm
for detecting communities that scales to graphs of practical size, over 100 million
vertices and over three billion edges in less than 500 seconds on a shared-memory
parallel architecture with 256 GiB of memory.
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Community detection is a graph clustering problem. There is no single, uni-
versally accepted definition of a community within a social network. One popular
definition is that a community is a collection of vertices more strongly connected
than would occur from random chance, leading to methods based on modular-
ity [22]. Another definition [28] requires vertices to be more connected to others
within the community than those outside, either individually or in aggregate. This
aggregate measure leads to minimizing the communities’ conductance. We con-
sider disjoint partitioning of a graph into connected communities guided by a local
optimization criterion. Beyond obvious visualization applications, a disjoint par-
titioning applies usefully to classifying related genes by primary use [36] and also
to simplifying large organizational structures [18] and metabolic pathways [29].
We report results for maximizing modularity, although our implementation also
supports minimizing conductance.

Contributions. We present our previously published parallel agglomerative
community detection algorithm, adapt the algorithm for the DIMACS Implemen-
tation Challenge, and evaluate its performance on two multi-threaded platforms.
Our algorithm scales to practical graph sizes on available multithreaded hardware
while keeping the same sequential operation complexity as current state-of-the-art
algorithms. Our approach is both natively parallel and simpler than most current
sequential community detection algorithms. Also, our algorithm is agnostic towards
the specific criterion; any criterion expressible as individual edge scores can be op-
timized locally with respect to edge contractions. Our implementation supports
both maximizing modularity and minimizing conductance.

Capability and performance. On an Intel-based server platform with four
10-core processors and 256 GiB of memory, our algorithm extracts modular commu-
nities from the 105 million vertex, 3.3 billion edge uk-2007-05 graph in under 500
seconds. A 2 TiB Cray XMT2 requires around 2 400 seconds on the same graph.
Our edge-list implementation scales in execution time up to 80 OpenMP threads
and 64 XMT2 processors on sufficiently large graphs.

Outline. Section 2 presents our high-level algorithm and describes our current
optimization criteria. Section 3 discusses implementation and data structure details
for our two target threaded platforms. Section 4 considers parallel performance and
performance on different graph metrics for two of the DIMACS Implementation
Challenge graphs; full results are in the workshop report [32]. Section 5 discusses
related work, and Section 6 considers future directions.

2. Parallel Agglomerative Community Detection

Agglomerative clustering algorithms begin by placing every input graph ver-
tex within its own unique community. Then neighboring communities are merged
to optimize an objective function like maximizing modularity [2,21,22] (internal
connectedness) or minimizing conductance (normalized edge cut) [1]. Here we sum-
marize the algorithm and break it into primitive operations. Section 3 then maps
each primitive onto our target threaded platforms.

We consider maximizing metrics (without loss of generality) and target a local
maximum rather than a global, possibly non-approximable, maximum. There are a
wide variety of metrics for community detection [12]. We discuss two, modularity
and conductance, in Section 2.1.
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Our algorithm maintains a community graph where every vertex represents
a community, edges connect communities when they are neighbors in the input
graph, and weights count the number of input graph edges either collapsed into
a single community graph edge or contained within a community graph vertex.
We currently do not require counting the vertices in each community, but such an
extension is straight-forward.

From a high level, our algorithm repeats the following steps until reaching some
termination criterion:

(1) associate a score with each edge in the community graph, exiting if no
edge has a positive score,

(2) greedily compute a weighted maximal matching using those scores, and
(3) contract matched communities into a new community graph.

Each step serves as our primitive parallel operations.
The first step scores edges by how much the optimization metric would change

if the two adjacent communities merge. Computing the change in modularity and
conductance requires only the weight of the edge and the weight of the edge’s adja-
cent communities. The change in conductance is negated to convert minimization
into maximization.

The second step, a greedy approximately maximum weight maximal matching,
selects pairs of neighboring communities where merging them will improve the com-
munity metric. The pairs are independent; a community appears at most once in the
matching. Properties of the greedy algorithm guarantee that the matching’s weight
is within a factor of two of the maximum possible value [27]. Any positive-weight
matching suffices for optimizing community metrics. Some community metrics, in-
cluding modularity [6], form NP-complete optimization problems. Additional work
computing our heuristic by improving the matching may not produce better results.
Our approach follows existing parallel algorithms [15, 20]. Differences appear in
mapping the matching algorithm to our data structures and platforms.

The final step contracts the community graph according to the matching. This
contraction primitive requires the bulk of the time even though there is little com-
putation. The impact of contraction’s intermediate data structure on improving
multithreaded performance is explained in Section 3.

Termination occurs either when the algorithm finds a local maximum or accord-
ing to external constraints. If no edge score is positive, no contraction increases
the objective, and the algorithm terminates at a local maximum. In our experi-
ments with modularity, our algorithm frequently assigns a single community per
connected component, a useless local maximum. Real applications will impose ad-
ditional constraints like a minimum number of communities or maximum commu-
nity size. Following the DIMACS Implementation Challenge rules [3], Section 4’s
performance experiments terminate once at least half the initial graph’s edges are
contained within the communities, a coverage ≥ 0.5.

Assuming all edges are scored in a total of O(|Ec|) operations and some heavy
weight maximal matching is computed in O(|Ec|) [27] where Ec is the edge set
of the current community graph, each iteration of our algorithm’s loop requires
O(|E|) operations. As with other algorithms, the total operation count depends
on the community growth rates. If our algorithm halts after K contraction phases,
our algorithm runs in O(|E| · K) operations where the number of edges in the
original graph, |E|, bounds the number of edges in any community graph. If the
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community graph is halved with each iteration, our algorithm requires O(|E| ·
log |V |) operations, where |V | is the number of vertices in the input graph. If
the graph is a star, only two vertices are contracted per step and our algorithm
requires O(|E| · |V |) operations. This matches experience with the sequential CNM
algorithm [35].

2.1. Local optimization metrics. We score edges for contraction by mod-
ularity, an estimate of a community’s deviation from random chance [2, 22], or
conductance, a normalized edge cut [1]. We maximize modularity by choosing the
largest independent changes from the current graph to the new graph by one of
two heuristics explained below. Minimization measures like conductance involve
maximizing changes’ negations.

Modularity. Newman [21]’s modularity metric compares the connectivity
within a collection of vertices to the expected connectivity of a random graph with
the same degree distribution. Let m be the number of edges in an undirected
graph G = G(V,E) with vertex set V and edge set E. Let S ⊂ V induce a graph
GS = G(S,ES) with ES ⊂ E containing only edges where both endpoints are
in S. Let mS be the number of edges |ES |, and let mS be an expected number
of edges in S given some statistical background model. Define the modularity
of the community induced by S as QS = 1

m (mS −mS ). Modularity represents
the deviation of connectivity in the community induced by S from an expected
background model. Given a partition V = S1 ∪ S2 ∪ · · · ∪ Sk, the modularity of

that partitioning is Q =
∑k

i=1 QSi
.

Newman [21] considers the specific background model of a random graph with
the same degree distribution as G where edges are independently and identically
distributed. If xS is the total number of edges in G where either endpoint is in
S, then we have QS = (mS − x2

S/4m)/m as in [2]. A subset S is considered a
module when there are more internal edges than expected, QS > 0. The mS term
encourages forming large modules, while the xS term penalizes modules with excess
external edges. Maximizing QS finds communities with more internal connections
than external ones. Expressed in matrix terms, optimizing modularity is a quadratic
integer program and is an NP-complete optimization problem [6]. We compute a
local maximum and not a global maximum. Different operation orders produce
different locally optimal points.

Section 3’s implementation scores edges by the change in modularity produced
by contracting that one edge, analogous to the sequential CNM algorithm. Merg-
ing the vertex U into a disjoint set of vertices W ∈ C, requires that the change
ΔQ(W,U) = QW∪U − (QW + QU ) > 0. Expanding the expression for modularity,

m ·ΔQ(W,U) = m (QW∪U − (QW + QU ))

= (mW∪U − (mW + mU )−
(mW∪U − (mW + mU ))

= mW↔U − (mW∪U − (mW + mU )),

where mW↔U is the number of edges between vertices in sets W and U . Assuming
the edges are independent and identically distributed across vertices respecting
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their degrees [8],

(mW∪U − (mW + mU )) = m · xW

2m
· xU

2m
, and

ΔQ(W,U) =
mW↔U

m
− xW

2m
· xU

2m
.(1)

We track mW↔U and xW in the contracted graph’s edge and vertex weights, re-
spectively. The quantity xW equals the sum of W ’s degrees or the volume of W .
If we represent the graph G by an adjacency matrix A, then ΔQ is the rank-one
update A/m − (v/2m) · (v/2m)T restricted to non-zero, off-diagonal entries of A.
The data necessary for computing the score of edge {i, j} are A(i, j), v(i), and v(j),
similar in spirit to a rank-one sparse matrix-vector update.

Modularity can be defined slightly differently depending on whether you double-
count edges within a community by treating an undirected graph as a directed graph
with edges in both directions. The DIMACS Implementation Challenge uses this
variation, and we have included an option to double-count edges.

Modularity has known limitations. Fortunato and Barthélemy [11] demonstrate
that global modularity optimization cannot distinguish between a single community
and a group of smaller communities. Berry et al. [4] provide a weighting mechanism
that overcomes this resolution limit. Instead of this weighting, we compare CNM
with the modularity-normalizing method of McCloskey and Bader [2]. Lancichinetti
and Fortunato [17] show that multi-resolution modularity can still have problems,
e.g. merging small clusters and splitting large ones.

McCloskey and Bader’s algorithm (MB) only merges vertices into the commu-
nity when the change is deemed statistically significant against a simple statistical
model assuming independence between edges. The sequential MB algorithm com-
putes the mean ΔQ(W, :) and standard deviation σ(ΔQ(W, :)) of all changes adja-
cent to community W . Rather than requiring only ΔQ(W,U) > 0, MB requires a

tunable level of statistical significance with ΔQ(W,U) > ΔQ(W, :)+k·σ(ΔQ(W, :)).
Section 4 sets k = −1.5. Sequentially, MB considers only edges adjacent to the ver-
tex under consideration and tracks a history for wider perspective. Because we
evaluate merges adjacent to all communities at once by matching, we instead filter
against the threshold computed across all current potential merges.

Conductance. Another metric, graph conductance, measures a normalized
cut between a graph induced by vertex set S and the graph induced by the remaining
vertices V \ S. Denote the cut induced by a vertex set S ⊂ V by

∂(S) = {{u, v}|{u, v} ∈ E, u ∈ S, v /∈ S},

and the size of the cut by |∂(S)|. Then the conductance of S is defined [1] as

(2) φ(S) =
|∂(S)|

min{Vol(S),Vol(V \ S)} .

If S = V or S = ∅, let φ(S) = 1, the largest obtainable value.
The minimum conductance over all vertex sets S ⊂ V is the graph’s conduc-

tance. Finding a subset with small conductance implies a bottleneck between the
subset’s induced subgraph and the remainder. Random walks will tend to stay
in the induced subgraph and converge rapidly to their stationary distribution [5].
Given a partition V = S1 ∪ S2 ∪ · · · ∪ Sk, we evaluate the conductance of that

partitioning as
∑k

i=1 φ(Si).
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We score an edge {i, j} by the negation of the change from old to new, or
φ(Si)+φ(Sj)−φ(Si ∪Sj). We again track the edge multiplicity in the edge weight
and the volume of the subgraph in the vertex weight.

3. Mapping the Agglomerative Algorithm to Threaded Platforms

Our implementation targets two multithreaded programming environments, the
Cray XMT [16] and OpenMP [26], both based on the C language. Both provide
a flat, shared-memory view of data but differ in how they manage parallelism.
However, in our use, both environments intend that ignoring the parallel directives
produces correct although sequential C code. The Cray XMT environment focuses
on implicit, automatic parallelism, while OpenMP requires explicit management.

The Cray XMT architecture tolerates high memory latencies from physically
distributed memory using massive multithreading. There is no cache in the pro-
cessors; all latency is handled by threading. Programmers do not directly control
the threading but work through the compiler’s automatic parallelization with oc-
casional pragmas providing hints to the compiler. There are no explicit parallel
regions. Threads are assumed to be plentiful and fast to create. Current XMT
and XMT2 hardware supports over 100 hardware thread contexts per processor.
Unique to the Cray XMT are full/empty bits on every 64-bit word of memory. A
thread reading from a location marked empty blocks until the location is marked
full, permitting very fine-grained synchronization amortized over the cost of mem-
ory access. The full/empty bits permit automatic parallelization of a wider variety
of data dependent loops. The Cray XMT provides one additional form of parallel
structure, futures, but we do not use them here.

The widely-supported OpenMP industry standard provides more traditional,
programmer-managed threading. Parallel regions are annotated explicitly through
compiler pragmas. Every loop within a parallel region must be annotated as a
work-sharing loop or else every thread will run the entire loop. OpenMP supplies
a lock data type which must be allocated and managed separately from reading or
writing the potentially locked memory. OpenMP also supports tasks and methods
for interaction, but our algorithm does not require them.

3.1. Graph representation. We use the same core data structure as our
earlier work [30, 31] and represent a weighted, undirected graph with an array
of triples (i, j, w) for edges between vertices i and j with i 
= j. We accumulate
repeated edges by adding their weights. The sum of weights for self-loops, i = j,
are stored in a |V |-long array. To save space, we store each edge only once, similar
to storing only one triangle of a symmetric matrix.

Unlike our initial work, however, the array of triples is kept in buckets defined
by the first index i, and we hash the order of i and j rather than storing the strictly
lower triangle. If i and j both are even or odd, then the indices are stored such
that i < j, otherwise i > j. This scatters the edges associated with high-degree
vertices across different source vertex buckets.

The buckets need not be sequential. We store both beginning and ending in-
dices into the edge array for each vertex. In a traditional sparse matrix compressed
format, the entries adjacent to vertex i + 1 would follow those adjacent to i. Per-
mitting non-sequential buckets reduces synchronization within graph contraction.
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Storing both i and j enables direct parallelization across the entire edge array. Be-
cause edges are stored only once, edge {i, j} can appear in the bucket for either i
or j but not both.

A graph with |V | vertices and |E| non-self, unique edges requires space for
3|V |+ 3|E| 64-bit integers plus a few additional scalars to store |V |, |E|, and other
book-keeping data. Section 3.4 describes cutting some space by using 32-bit integers
for some vertex information.

3.2. Scoring and matching. Each edge’s score is an independent calculation
for our metrics. An edge {i, j} requires its weight, the self-loop weight for i and j,
and the graph’s total weight. Parallel computation of the scores is straight-forward,
and we store the edge scores in an |E|-long array of 64-bit floating point data.

Computing the heavy maximal matching is less straight-forward. We repeat-
edly sweep across the vertices and find the best adjacent match until all vertices are
either matched or have no potential matches. The algorithm is non-deterministic
when run in parallel. Different executions on the same data may produce different
matchings. This does not affect correctness but may lead to different communities.

Our earlier implementation iterated in parallel across all of the graph’s edges on
each sweep and relied heavily on the Cray XMT’s full/empty bits for synchroniza-
tion of the best match for each vertex. This produced frequent hot spots, memory
locations of high contention, but worked sufficiently well with nearly no program-
ming effort. The hot spots crippled an explicitly locking OpenMP implementation
of the same algorithm on Intel-based platforms.

We have updated the matching to maintain an array of currently unmatched
vertices. We parallelize across that array, searching each unmatched vertex u’s
bucket of adjacent edges for the highest-scored unmatched neighbor, v. Once each
unmatched vertex u finds its best current match, the vertex checks if the other side
v (also unmatched) has a better match. If the current vertex u’s choice is better, it
claims both sides using locks or full/empty bits to maintain consistency. Another
pass across the unmatched vertex list checks if the claims succeeded. If not and
there was some unmatched neighbor, the vertex u remains on the list for another
pass. At the end of all passes, the matching will be maximal. Strictly this is not
an O(|E|) algorithm, but the number of passes is small enough in social network
graphs that it runs in effectively O(|E|) time.

If edge {i, j} dominates the scores adjacent to i and j, that edge will be found by
one of the two vertices. The algorithm is equivalent to a different ordering of exist-
ing parallel algorithms [15,20] and also produces a maximal matching with weight
(total score) within a factor of 0.5 of the maximum. Our non-deterministic algo-
rithm matches our shared-memory execution platform and does not introduce syn-
chronization or static data partitioning to duplicate deterministic message-passing
implementations.

Social networks often follow a power-law distribution of vertex degrees. The
few high-degree vertices may have large adjacent edge buckets, and not iterat-
ing across the bucket in parallel may decrease performance. However, neither the
Cray XMT nor OpenMP implementations currently support efficiently composing
general, nested, light-weight parallel loops. Rather than trying to separate out
the high-degree lists, we scatter the edges according to the graph representation’s
hashing. This appears sufficient for high performance in our experiments.
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Our improved matching’s performance gains over our original method are mar-
ginal on the Cray XMT but drastic on Intel-based platforms using OpenMP. The
original method followed potentially long chains of pointers, an expensive operation
on Intel-based platforms. Scoring and matching together require |E|+ 4|V | 64-bit
integers plus an additional |V | locks on OpenMP platforms.

3.3. Graph contraction. Contracting the agglomerated community graph
requires from 40% to 80% of the execution time. Our previous implementation was
relatively efficient on the Cray XMT but infeasible on OpenMP platforms. We use
the bucketing method to avoid locking and improve performance for both platforms.

Our current implementation relabels the vertex endpoints and re-orders their
storage according to the hashing. We then roughly bucket sort by the first stored
vertex in each edge. If a stored edge is (i, j;w), we place (j;w) into a bucket
associated with vertex i but leave i implicitly defined by the bucket. Within each
bucket, we sort by j and accumulate identical edges, shortening the bucket. The
buckets then are copied back out into the original graph’s storage, filling in the i
values. This requires |V |+1+2|E| storage, more than our original implementation,
but permits much faster operation on both the XMT2 and Intel-based platforms.

Because the buckets need not be stored contiguously in increasing vertex order,
the bucketing and copying do not need to synchronize beyond an atomic fetch-and-
add. Storing the buckets contiguously requires synchronizing on a prefix sum to
compute bucket offsets. We have not timed the difference, but the technique is
interesting.

3.4. DIMACS adjustments. Our original implementation uses 64-bit inte-
gers to store vertex labels. All of the graphs in the DIMACS Implementation Chal-
lenge, however, require only 32-bit integer labels. Halving the space required for ver-
tex labels fits the total size necessary for the largest challenge graph, uk-2007-05,
in less than 200 GiB of RAM. Note that indices into the edge list must remain 64-
bit integers. We also keep the edge scores in 64-bit binary floating-point, although
only 32-bit floating-point may suffice.

Surprisingly, we found no significant performance difference between 32-bit
and 64-bit integers on smaller graphs. The smaller integers should decrease the
bandwidth requirement but not the number of memory operations. We conjecture
our performance is limited by the latter.

The Cray XMT’s full/empty memory operations work on 64-bit quantities, so
our Cray XMT2 implementation uses 64-bit integers throughout. This is not a
significant concern with 2 TiB of memory.

4. Parallel Performance

We evaluate parallel performance on two different threaded hardware architec-
tures, the Cray XMT2 and an Intel-based server. We highlight two graphs, one real
and one artificial, from the Implementation Challenge to demonstrate scaling and
investigate performance properties. Each experiment is run three times to capture
some of the variability in platforms and in our non-deterministic algorithm. Our
current implementation achieves speed-ups of up to 13× on a four processor, 40-
physical-core Intel-based platform. The Cray XMT2 single-processor times are too
slow to evaluate speed-ups on that platform.
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Table 1. Sizes of graphs used for performance evaluation.

Graph |V | |E|
uk-2002 18 520 486 261 787 258

kron g500-simple-logn20 1 048 576 44 619 402

4.1. Evaluation platforms. The next generation Cray XMT2 is located
at the Swiss National Supercomputing Centre (CSCS). Its 64 processors run at
500 MHz and support four times the memory density of the Cray XMT for a total
of 2 TiB. These 64 processors support over 6 400 hardware thread contexts. The
improvements over the XMT also include additional memory bandwidth within a
node, but exact specifications are not yet officially available.

The Intel-based server platform is located at Georgia Tech. It has four ten-
core Intel Xeon E7-8870 processors running at 2.40 GHz with 30 MiB of L3 cache
per processor. The processors support HyperThreading, so the 40 physical cores
appear as 80 logical cores. This server, mirasol, is ranked #17 in the November
2011 Graph 500 list and is equipped with 256 GiB of 1 067 MHz DDR3 RAM.

Note that the Cray XMT allocates entire processors, each with at least 100
threads, while the OpenMP platforms allocate individual threads which are mapped
to cores. Results are shown per-Cray-XMT processor and per-OpenMP-thread. We
run up to the number of physical Cray XMT processors or logical Intel cores. Intel
cores are allocated in a round-robin fashion across sockets, then across physical
cores, and finally logical cores.

4.2. Test graphs. We evaluate on two DIMACS Implementation Challenge
graphs. Excessive single-processor runs on highly utilized resources are discour-
aged, rendering scaling studies using large graphs difficult. We cannot run the
larger graph on a single XMT2 processor within a reasonable time. Table 1 shows
the graphs’ names and number of vertices and edges. The workshop report [32]
contains maximum-thread and -processor timings for the full DIMACS Implemen-
tation Challenge. Additionally, we consider execution time on the largest Challenge
graph, uk-2007-05. This graph has 105 896 555 vertices and 3 301 876 564 edges.

4.3. Time and parallel speed-up. Figure 1 shows the execution time as a
function of allocated OpenMP thread or Cray XMT processor separated by platform
and graph. Figure 2 translates the time into speed-up against the best single-thread
execution time on the Intel-based platform. The execution times on a single XMT2
processor are too large to permit speed-up studies on these graphs. The results
are the best of three runs maximizing modularity with our parallel variant of the
Clauset, Newman, and Moore heuristic until the communities contain at least half
the edges in the graph. Because fewer possible contractions decrease the conduc-
tance, minimizing conductance requires three to five times as many contraction
steps and a proportionally longer time.

Maximizing modularity on the 105 million vertex, 3.3 billion edge uk-2007-05

requires from 496 seconds to 592 seconds using all 80 hardware threads of the Intel
E7-8870 platform. The same task on the Cray XMT2 requires from 2 388 seconds
to 2 466 seconds.
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Figure 1. Execution time against allocated OpenMP threads or
Cray XMT processors per platform and graph. The best single-
processor and overall times are noted in the plot. The dashed lines
extrapolate perfect speed-up from the time on the least number of
processors.

4.4. Community quality. Computing communities quickly is only good if
the communities themselves are useful. Full details are in the workshop report [32].
Figure 3 shows the results from two different modularity-maximizing heuristics
and one conductance-minimizing heuristic. The real-world uk-2002 graph shows
non-trivial community structure, but the artificial kron g500-simple-logn20 lacks
such structure [33]. There appears to be a significant trade-off between modular-
ity and conductance which should be investigated further. Subsequent work has
improved modularity results through better convergence criteria than coverage.

5. Related Work

Graph partitioning, graph clustering, and community detection are tightly re-
lated topics. A recent survey by Fortunato [12] covers many aspects of community
detection with an emphasis on modularity maximization. Nearly all existing work
of which we know is sequential and targets specific contraction edge scoring mech-
anisms. Many algorithms target specific contraction edge scoring or vertex move
mechanisms [14]. Our previous work [30, 31] established and extended the first
parallel agglomerative algorithm for community detection and provided results on
the Cray XMT. Prior modularity-maximizing algorithms sequentially maintain and
update priority queues [8], and we replace the queue with a weighted graph match-
ing. Separately from this work, Fagginger Auer and Bisseling developed a similar
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Figure 2. Parallel speed-up relative to the best single-threaded
execution. The best achieved speed-up is noted on the plot. The
dotted line denotes perfect speed-up matching the number of pro-
cessors.

modularity-optimizing clustering algorithm [10]. Their algorithm uses more mem-
ory, is more synchronous, and targets execution on GPUs. Fagginger Auer and
Bisseling’s algorithm performs similarly to ours and includes an interesting star
detection technique.

Zhang et al. [37] recently proposed a parallel algorithm that identifies com-
munities based on a custom metric rather than modularity. Gehweiler and Meyer-
henke [13] proposed a distributed diffusive heuristic for implicit modularity-based
graph clustering. Classic work on parallel modular decompositions [24] finds a
different kind of module, one where any two vertices in a module have identical
neighbors and are somewhat indistinguishable. This could provide a scalable pre-
processing step that collapses vertices that will end up in the same community,
although removing the degree-1 fringe may have the same effect.

Work on sequential multilevel agglomerative algorithms like [23] focuses on
edge scoring and local refinement. Our algorithm is agnostic towards edge scoring
methods and can benefit from any problem-specific methods. The Cray XMT’s
word-level synchronization may help parallelize refinement methods, but we leave
that to future work.

6. Observations

Our algorithm and implementation, the first published parallel algorithm for
agglomerative community detection, extracts communities with apparently high
modularity or low conductance in a reasonable length of time. Finding modularity-
maximizing communities in a graph with 105 million vertices and over 3.3 billion
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Figure 3. Coverage, modularity, and average conductance for
the two graphs. The graphs are split vertically by platform and
horizontally by scoring method. Here “cnm” and “mb” are the
Clauset-Newman-Moore and McCloskey-Bader modularity maxi-
mizing heuristics, and “cond” minimizes the conductance.
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edges requires a little over eight minutes on a four processor, Intel E7-8870-based
server. Our implementation can optimize with respect to different local optimiza-
tion criteria, and its modularity results are comparable to a state-of-the-art se-
quential implementation. By altering termination criteria, our implementation can
examine some trade-offs between optimization quality and performance. As a twist
to established sequential algorithms for agglomerative community detection, our
parallel algorithm takes a novel and naturally parallel approach to agglomeration
with maximum weighted matchings. That difference appears to reduce differences
between the CNM and MB edge scoring methods. The algorithm is simpler than ex-
isting sequential algorithms and opens new directions for improvement. Separating
scoring, choosing, and merging edges may lead to improved metrics and solutions.
Our implementation is publicly available1.

Outside of the edge scoring, our algorithm relies on well-known primitives that
exist for many execution models. Much of the algorithm can be expressed through
sparse matrix operations, which may lead to explicitly distributed memory imple-
mentations through the Combinatorial BLAS [7] or possibly cloud-based imple-
mentations through environments like Pregel [19]. The performance trade-offs for
graph algorithms between these different environments and architectures remain
poorly understood.

Besides experiments with massive real-world data sets, future work includes the
extension of the algorithm to a streaming scenario. In such a scenario, the graph
changes over time without an explicit start or end. This extension has immediate
uses in many social network applications but requires algorithmic changes to avoid
costly recomputations on large parts of the graph.
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Graph coarsening and clustering on the GPU

B. O. Fagginger Auer and R. H. Bisseling

Abstract. Agglomerative clustering is an effective greedy way to generate
graph clusterings of high modularity in a small amount of time. In an ef-
fort to use the power offered by multi-core CPU and GPU hardware to solve
the clustering problem, we introduce a fine-grained shared-memory parallel
graph coarsening algorithm and use this to implement a parallel agglomera-
tive clustering heuristic on both the CPU and the GPU. This heuristic is able
to generate clusterings in very little time: a modularity 0.996 clustering is
obtained from a street network graph with 14 million vertices and 17 million
edges in 4.6 seconds on the GPU.

1. Introduction

We present a fine-grained shared-memory parallel algorithm for graph coars-
ening and apply this algorithm in the context of graph clustering to obtain a fast
greedy heuristic for maximising modularity in weighted undirected graphs. This is
a follow-up to [8], which was concerned with generating weighted graph matchings
on the GPU, in an effort to use the parallel processing power offered by multi-core
CPUs and GPUs for discrete computing tasks, such as partitioning and clustering
of graphs and hypergraphs. Just as generating graph matchings, graph coarsening
is an essential aspect of both graph partitioning [4,9,12] and multi-level clustering
[22] and therefore forms a logical continuation of the research done in [8].

Our contribution is a parallel greedy clustering algorithm, that scales well with
the number of available processor cores, and generates clusterings of reasonable
quality in very little time. We have tested this algorithm, see Section 5, against a
large set of clustering problems, all part of the 10th DIMACS challenge on graph
partitioning and clustering [1], such that the performance of our algorithm can
directly be compared with the state-of-the-art clustering algorithms participating
in this challenge.

An undirected graph G is a pair (V,E), with vertices V , and edges E that are
of the form {u, v} for u, v ∈ V with possibly u = v. Edges can be provided with
weights ω : E → R>0, in which case we call G a weighted undirected graph. For
vertices v ∈ V , we denote the set of all of v’s neighbours by

Vv := {u ∈ V | {u, v} ∈ E} \ {v}.

2010 Mathematics Subject Classification. Primary 68R10, 68W10; Secondary 91C20, 05C70.
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A matching of G = (V,E) is a subset M ⊆ E of the edges of G, satisfying that any
two edges in the matching are disjoint. We call a matching M maximal if there does
not exist a matching M ′ of G with M � M ′ and we call it perfect if 2 |M | = |V |. If
G = (V,E, ω) is weighted, then the weight of a matching M of G is defined as the
sum of the weights of all edges in the matching: ω(M) :=

∑
e∈M ω(e). A matching

M of G which satisfies ω(M) ≥ ω(M ′) for every matching M ′ of G is called a
maximum-weight matching.

Clustering is concerned with partitioning the vertices of a given graph into sets
consisting of vertices related to each other, e.g. to isolate communities in graphs
representing large social networks [2,14]. Formally, a clustering of an undirected
graph G is a collection C of subsets of V , where elements C ∈ C are called clusters,
that forms a partition of G’s vertices, i.e.

V =
⋃
C∈C

C, as a disjoint union.

Note that the number of clusters is not fixed beforehand, and that there can be
a single large cluster, or as many clusters as there are vertices, or any number of
clusters in between. A quality measure for clusterings, modularity, was introduced
in [16], which we will use to judge the quality of the generated clusterings.

Let G = (V,E, ω) be a weighted undirected graph. We define the weight ζ(v)
of a vertex v ∈ V in terms of the weights of the edges incident to this vertex as

(1.1) ζ(v) :=

⎧⎪⎪⎨
⎪⎪⎩

∑
{u,v}∈E

ω({u, v}) if {v, v} /∈ E,∑
{u,v}∈E

u 	=v

ω({u, v}) + 2ω({v, v}) if {v, v} ∈ E.

Then, the modularity, cf. [1], of a clustering C of G is defined by

(1.2) mod(C) :=

∑
C∈C

∑
{u,v}∈E

u,v∈C

ω({u, v})

∑
e∈E

ω(e)
−

∑
C∈C

(∑
v∈C

ζ(v)

)2

4

(∑
e∈E

ω(e)

)2 ,

which is bounded by − 1
2 ≤ mod(C) ≤ 1, as we show in the appendix.

Finding a clustering C which maximises mod(C) is an NP-complete problem, i.e.
ascertaining whether there exists a clustering that has at least a fixed modularity
is strongly NP-complete [3, Theorem 4.4]. Hence, to find clusterings that have
maximum modularity in reasonable time, we need to resort to heuristic algorithms.
Many different clustering heuristics have been developed, for which we would like
to refer the reader to the overview in [19, Section 5] and the references contained
therein: there are heuristics based on spectral methods, maximum flow, graph
bisection, betweenness, Markov chains, and random walks. The clustering method
we present belongs to the category of greedy agglomerative heuristics [2,5,15,17,
22]. Our overall approach is similar to the parallel clustering algorithm discussed
by Riedy et al. in [18] and a detailed comparison is included in Section 5.

2. Clustering

We will now rewrite (1.2) to a more convenient form. Let C ∈ C be a cluster
and define the weight of a cluster as ζ(C) :=

∑
v∈C ζ(v), the set of all internal edges
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as int(C) := {{u, v} ∈ E | u, v ∈ C}, the set of all external edges as ext(C) :=
{{u, v} ∈ E | u ∈ C, v /∈ C}, and for another cluster C ′ ∈ C, the set of all cut edges
between C and C ′ as cut(C,C ′) := {{u, v} ∈ E | u ∈ C, v ∈ C ′}. Let furthermore
Ω :=

∑
e∈E ω(e) be the sum of all edge weights.

With these definitions, we can reformulate (1.2) as (see the appendix):

(2.1) mod(C) =
1

4 Ω2

∑
C∈C

⎛
⎜⎜⎝ζ(C) (2 Ω− ζ(C))− 2 Ω

∑
C′∈C
C′ 	=C

ω(cut(C,C ′))

⎞
⎟⎟⎠ .

This way of looking at the modularity is useful for reformulating the agglomerative
heuristic in terms of graph coarsening, as we will see in Section 2.1.

For this purpose, we also need to determine what effect the merging of two
clusters has on the clustering’s modularity. Let C be a clustering and C,C ′ ∈ C. If
we merge C and C ′ into one cluster C ∪C ′, then the clustering C′ := (C \{C,C ′})∪
{C ∪ C ′} we obtain, has modularity (see the appendix)

(2.2) mod(C′) = mod(C) +
1

2 Ω2

(
2 Ωω(cut(C,C ′))− ζ(C) ζ(C ′)

)
,

and the new cluster has weight

(2.3) ζ(C ∪ C ′) =
∑
v∈C

ζ(v) +
∑
v∈C′

ζ(v) = ζ(C) + ζ(C ′).

2.1. Agglomerative heuristic. Equations (2.1), (2.2), and (2.3) suggest an
agglomerative heuristic to generate a clustering [15,18,22]. Let G = (V,E, ω, ζ) be
a weighted undirected graph, provided with edge weights ω and vertex weights ζ as
defined by (1.1), for which we want to calculate a clustering C of high modularity.

We start out with a clustering where each vertex of the original graph is a
separate cluster, and then progressively merge these clusters to increase the modu-
larity of the clustering. This process is illustrated in Figure 1. The decision which
pairs of clusters to merge is based on (2.2): we generate a weighted matching in
the graph with all the current clusters as vertices and the sets {C,C ′} for which
cut(C,C ′) 
= ∅ as edges. The weight of such an edge {C,C ′} is then given by (2.2),
such that a maximum-weight matching will result in pairwise mergings of clusters
for which the increase of the modularity is maximal.

We do this formally by, starting with G, constructing a sequence of weighted
graphs Gi = (V i, Ei, ωi, ζi) with surjective maps πi : V i → V i+1,

G = G0 π0

→ G1 π1

→ G2 π2

→ . . .

These graphs Gi correspond to clusterings Ci of G in the following way:

Ci := {{v ∈ V | (πi−1 ◦ · · · ◦ π0)(v) = u} | u ∈ V i}, i = 0, 1, 2, . . .

Each vertex of the graph Gi will correspond to precisely one cluster in Ci: all
vertices of G that were merged together into a single vertex in Gi via π0, . . . , πi−1,
are considered as a single cluster. (In particular for G0 = G each vertex of the
original graph is a separate cluster.)

From (2.3) we know that weights ζ(·) of merged clusters should be summed,
while for calculating the modularity, (2.1), and the change in modularity due to
merging, (2.2), we only need the total edge weight ω(cut(·, ·)) of the collection of
edges between two clusters, not of individual edges. Hence, when merging two

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



226 B. O. FAGGINGER AUER AND R. H. BISSELING

(a) G0 (b) G11 (c) G21

(d) G26 (e) G33 (f) Best clustering (G21).

Figure 1. Clustering of netherlands into 506 clusters with mod-
ularity 0.995.

clusters, we can safely merge the edges in Gi that are mapped to a single edge in
Gi+1 by πi, provided we sum their edge weights. This means that the merging
of clusters in Gi to obtain Gi+1 corresponds precisely to coarsening the graph
Gi to Gi+1. Furthermore, weighted matching in the graph of all current clusters
corresponds to a weighted matching in Gi where we consider edges {ui, vi} ∈ Ei to
have weight 2 Ωωi({ui, vi})− ζi(ui) ζi(vi) during matching. This entire procedure
is outlined in Algorithm 1, where we use a map μ : V → N to indicate matchings
M ⊆ E by letting μ(u) = μ(v) ⇐⇒ {u, v} ∈M for vertices u, v ∈ V .

3. Coarsening

Graph coarsening is the merging of vertices in a graph to obtain a coarser
version of the graph. Doing this recursively, we obtain a sequence of increasingly
coarser approximations of the original graph. Such a multilevel view of the graph
is useful for graph partitioning [4,9,12], but can also be used for clustering [22].

Let G = (V,E, ω, ζ) be an undirected graph with edge weights ω and vertex
weights ζ. A coarsening of G is a map π : V → V ′ together with a graph G′ =
(V ′, E′, ω′, ζ ′) satisfying the following properties:

(1) π(V ) = V ′,
(2) π(E) = {{π(u), π(v)} | {u, v} ∈ E} = E′,
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Algorithm 1 Agglomerative clustering heuristic for a weighted undirected graph
G = (V,E, ω, ζ) with ζ given by (1.1). Produces a clustering C of G.

1: modbest ← −∞
2: G0 = (V 0, E0, ω0, ζ0)← G
3: i← 0
4: C0 ← {{v} | v ∈ V }
5: while |V i| > 1 do

6: if mod(G, Ci) ≥ modbest then

7: modbest ← mod(G, Ci)
8: Cbest ← Ci
9: μ←match clusters(Gi)

10: (πi, Gi+1)← coarsen(Gi, μ)
11: Ci+1 ← {{v ∈ V | (πi ◦ · · · ◦ π0)(v) = u} | u ∈ V i+1}
12: i← i + 1
13: return Cbest

(3) for v′ ∈ V ′,

(3.1) ζ ′(v′) =
∑
v∈V

π(v)=v′

ζ(v),

(4) and for e′ ∈ E′,

(3.2) ω′(e′) =
∑

{u,v}∈E

{π(u),π(v)}=e′

ω({u, v}).

Let μ : V → N be a map indicating the desired coarsening, such that vertices
u and v should be merged into a single vertex precisely when μ(u) = μ(v). Then
we call a coarsening π compatible with μ if for all u, v ∈ V it holds that π(u) = π(v)
if and only if μ(u) = μ(v). The task of the coarsening algorithm is, given G and μ,
to generate a graph coarsening π, G′ that is compatible with μ.

As noted at the end of Section 2.1, the map μ can correspond to a matching M ,
by letting μ(u) = μ(v) if and only if the edge {u, v} ∈M . This ensures that we do
not coarsen the graph too aggressively, only permitting a vertex to be merged with
at most one other vertex during coarsening. Such a coarsening approach is also
used in hypergraph partitioning [20]. For our coarsening algorithm, however, it is
not required that μ is derived from a matching: any map μ : V → N is permitted.

3.1. Star-like graphs. The reason for permitting a general μ (i.e. where
more than two vertices are contracted to a single vertex during coarsening), instead
of a map μ arising from graph matchings is that the recursive coarsening process
can get stuck on star-like graphs [6, Section 4.3].

In Figure 2(a), we see a star graph in which a maximum matching is indicated.
Coarsening this graph by merging the two matched vertices will yield a graph with
only one vertex less. In general, with a k-pointed star, coarsening by matching will
reduce the total number of vertices from k+ 1 to k, requiring k coarsening steps to
reduce the star to a single vertex. This is slow compared to a graph for which we can
find a perfect matching at each step of the coarsening, where the total number of
vertices is halved at each step and we require only log2 k coarsening steps to reduce
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(a) (b) (c) (d)

Figure 2. Merging vertices in star-like graphs: by matching in
(a), by merging vertices with the same neighbours in (b), and by
merging more than two vertices in (c). In (d) we see a star-like
graph with a centre clique of 3 vertices and 4 satellites.

the graph to a single vertex. Hence, star graphs increase the number of coarsening
iterations at line 5 of Algorithm 1 we need to perform, which increases running
time and has an adverse effect on parallelisation, because of the few matches that
can actually be made in each iteration.

A way to remedy this problem is to identify vertices with the same neighbours
and match these pairwise, see Figure 2(b) [7, 10]. When maximising clustering
modularity however, this is not a good idea: for clusters C,C ′ ∈ C without any
edges between them, cut(C,C ′) = ∅, merging C and C ′ will change the modularity
by −1

2Ω2 ζ(C) ζ(C ′) ≤ 0.
Because of this, we will use the strategy from Figure 2(c), and merge multiple

outlying vertices, referred to as satellites from now on, to the centre of the star
simultaneously. To do so, however, we need to be able to identify star centres and
satellites in the graph.

As the defining characteristic of the centre of a star is its high degree, we will
use the vertex degrees to measure to what extent a vertex is a centre or a satellite.
We propose, for vertices v ∈ V , to let

(3.3) cp(v) :=
deg(v)2∑

u∈Vv

deg(u)
,

be the centre potential of v. Here, the degree of a vertex v ∈ V is defined as
deg(v) := |Vv|. Note that for satellites the centre potential will be small, because a
satellite’s degree is low, while the centre to which it is connected has a high degree.
On the other hand, a star centre will have a high centre potential because of its
high degree. Let us make this a little more precise.

For a regular graph where deg(v) = k for all v ∈ V , the centre potential will
equal cp(v) = k2/k2 = 1 for all vertices v ∈ V . Now consider a star-like graph,
consisting of a clique of l vertices in the centre which are surrounded by k satellites
that are connected to every vertex in the clique, but not to other satellites (Figure
2(d) has l = 3 and k = 4), with 0 < l < k. In such a graph, deg(v) = l for satellites
v and deg(u) = l − 1 + k for vertices u in the centre clique. Hence, for satellites v

cp(v) =
l2

l (l − 1 + k)
≤ l

l − 1 + l + 1
=

1

2
,
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while for centre vertices u

cp(u) =
(l − 1 + k)2

(l − 1) (l− 1 + k) + k l
= 1 +

(
k − 1

2 l − 1 + (l−1)2

k

)
≥ 4

3
.

If we fix l > 0 and let the number of satellites k →∞, we see that

cp(v)→ 0 and cp(u)→∞.

Hence, the centre potential seems to be a good indicator for determining
whether vertices v are satellites, cp(v) ≤ 1

2 , or centres, cp(v) ≥ 4
3 .

In Algorithm 1, we will therefore, after line 9, use cp(v) to identify all satellites
in the graph and merge these with the neighbouring non-satellite vertex that will
yield the highest increase of modularity as indicated by (2.2). This will both provide
greedy modularity maximisation, and stop star-like graphs from slowing down the
algorithm.

4. Parallel implementation

In this section, we will demonstrate how the different parts of the clustering
algorithm can be implemented in a style that is suitable for the GPU.

To make the description of the algorithm more explicit, we will need to deviate
from some of the graph definitions of the introduction. First of all, we consider
arrays in memory as ordered lists, and suppose that the vertices of the graph
G = (V,E, ω, ζ) to be coarsened are given by V = (1, 2, . . . , |V |). We index such
lists with parentheses, e.g. V (2) = 2, and denote their length by |V |. Instead of
storing the edges E and edge weights ω of a graph explicitly, we will store for each
vertex v ∈ V the set of all its neighbours Vv, and include the edge weights ω in this
list. We will refer to these sets as extended neighbour lists and denote them by V ω

v

for v ∈ V .
Let us consider a small example: a graph with 3 vertices and edges {1, 2}

and {1, 3} with edge weights ω({1, 2}) = 4 and ω({1, 3}) = 5. Then, for the
parallel coarsening algorithm we consider this graph as V = (1, 2, 3), together with
V ω
1 = ((2, 4), (3, 5)) (since there are two edges originating from vertex 1, one going

to vertex 2, and one going to vertex 3), V ω
2 = ((1, 4)) (as ω({1, 2}) = 4), and

V ω
3 = ((1, 5)) (as ω({1, 3}) = 5).

In memory, such neighbour lists are stored as an array of indices and weights
(in the small example, ((2, 4), (3, 5), (1, 4), (1, 5))), with for each vertex a range in
this array (in the small example range (1, 2) for vertex 1, (3, 3) for 2, and (4, 4)
for 3). Note that we can extract all edges together with their weights ω directly
from the extended neighbour lists. Hence, (V,E, ω, ζ) and (V, {V ω

v | v ∈ V }, ζ) are
equivalent descriptions of G.

We will now discuss the parallel coarsening algorithm described by Algorithm
2, in which the parallel * functions are slight adaptations of those available in
the Thrust template library [11]. The for . . . parallel do construct indicates a
for-loop of which each iteration can be executed in parallel, independent of all other
iterations.

We start with an undirected weighted graph G with vertices V = (1, 2, . . . , |V |),
vertex weights ζ, and edges E with edge weights ω encoded in the extended neigh-
bour lists as discussed above. A given map μ : V → N indicates which vertices
should be merged to form the coarse graph.
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Algorithm 2 Parallel coarsening algorithm on the GPU. Given a graph G with
V = (1, 2, . . . , |V |) and a map μ : V → N, this algorithm creates a graph coarsening
π, G′ compatible with μ.

1: ρ← V
2: (ρ, μ)← parallel sort by key(ρ, μ)
3: μ← parallel adjacent not equal(μ)
4: π−1 ← parallel copy index if nonzero(μ)
5: V ′ ← (1, 2, . . . , |π−1|)
6: append(π−1, |V |+ 1)
7: μ← parallel inclusive scan(μ)
8: π ← parallel scatter(ρ, μ)
9: for v′ ∈ V ′ parallel do {Sum vertex weights.}

10: ζ ′(v′)← 0
11: for i = π−1(v′) to π−1(v′ + 1)− 1 do
12: ζ ′(v′)← ζ ′(v′) + ζ(ρ(i))
13: for v′ ∈ V ′ parallel do {Copy neighbours.}
14: V ′ω′

v′ ← ∅
15: for i = π−1(v′) to π−1(v′ + 1)− 1 do
16: for (u, ω) ∈ V ω

ρ(i) do

17: append(V ′ω′

v′ , (π(u), ω))
18: for v′ ∈ V ′ parallel do {Compress neighbours.}
19: V ′ω′

v′ ← compress neighbours(V ′ω′

v′ )

Algorithm 2 starts by creating an ordered list ρ of all the vertices V , and sorting
ρ according to μ. The function parallel sort by key(a, b) sorts b in increasing or-
der and applies the same sorting permutation to a, and does so in parallel. Consider
for example a graph with 12 vertices and a given μ:

ρ 1 2 3 4 5 6 7 8 9 10 11 12
μ 9 2 3 22 9 9 22 2 3 3 2 4

Then applying parallel sort by key will yield

ρ 2 8 11 3 9 10 12 1 5 6 4 7
μ 2 2 2 3 3 3 4 9 9 9 22 22

We then apply the function parallel adjacent not equal(a) which sets a(1) to 1,
and for 1 < i ≤ |a| sets a(i) to 1 if a(i) 
= a(i− 1) and to 0 otherwise. This yields

ρ 2 8 11 3 9 10 12 1 5 6 4 7
μ 1 0 0 1 0 0 1 1 0 0 1 0

Now we know where each group of vertices of G that needs to be merged together
starts. We will store these numbers in the ‘inverse’ of the projection map π, such
that we know, for each coarse vertex v′, what vertices v in the original graph are
coarsened to v′. The function parallel copy index if nonzero(a) picks out the
indices 1 ≤ i ≤ |a| for which a(i) 
= 0 and stores these consecutively in a list, π−1

in this case, in parallel.

ρ 2 8 11 3 9 10 12 1 5 6 4 7
μ 1 0 0 1 0 0 1 1 0 0 1 0
π−1 1 4 7 8 11
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This gives us the number of vertices in the coarse graph as |π−1| = 5, so V ′ =
(1, 2, . . . , |π−1|). To make sure we get a valid range for the last vertex in G′, at line
6 we append |V |+1 to π−1. Now, we want to create the map π : V → V ′ relating the
vertices of our original graph to the vertices of the coarse graph. We do this by re-
enumerating μ using an inclusive scan. The function parallel inclusive scan(a)
keeps a running sum s, initialised as 0, and updates for 1 ≤ i ≤ |a| the value
s← s + a(i), storing a(i)← s.

ρ 2 8 11 3 9 10 12 1 5 6 4 7
μ 1 1 1 2 2 2 3 4 4 4 5 5
π−1 1 4 7 8 11 13

From these lists, we can see that vertices 3, 9, 10 ∈ V are mapped to the vertex
2 ∈ V ′ (so, we should have π(3) = π(9) = π(10) = 2), and from 2 ∈ V ′ we can
recover 3, 9, 10 ∈ V by looking at values of ρ in the range π−1(2), . . . , π−1(2+1)−1.
From the construction of ρ and μ we know that we should have that π(ρ(i)) = μ(i)
for our map π : V → V ′. Note that ρ(i) is the original vertex in V and μ(i) is the
current vertex in V ′. Hence, we use the c = parallel scatter(a, b) function, which
sets c(a(i))← b(i) for 1 ≤ i ≤ |a| = |b| in parallel, to obtain π. Now we know both
how to go from the original to the coarse graph (π), and from the coarse to the
original graph (π−1 and ρ). This permits us to construct the extended neighbour
lists of the coarse graph.

Let us look at this from the perspective of a single vertex v′ ∈ V ′ in the coarse
graph. All vertices v in the fine graph that are mapped to v′ by π are given by
ρ(π−1(v′)), . . . , ρ(π−1(v′ + 1) − 1). All vertex weights (line 9) ζ(v) of these v are
summed to satisfy (3.1). By considering all extended neighbour lists V ω

v (line 13),

we can construct the extended neighbour list V ′ω′

v′ of v′. Every element in the
neighbour list is a pair (u, ω) ∈ V ω

v . In the coarse graph, π(u) will be a neighbour

of v′ in G′, so we add (π(u), ω) to the extended neighbour list V ′ω′

v′ of v′.
After copying all the neighbours, we compress the neighbour lists of each vertex

in the coarse graph by first sorting elements (u′, ω) ∈ V ′ω′

v′ of the extended neighbour

list by u′, and then merging ranges ((u′, ω1), (u
′, ω2), . . . , (u

′, ωk)) in V ′ω′

v′ to a single
element (u′, ω1 + ω2 + . . . + ωk) with compress neighbours. This ensures that
we satisfy (3.2).

Afterwards, we have V ′, {V ′ω′

v′ | v′ ∈ V ′}, and ζ ′, together with a map π : V →
V ′ compatible with the given μ.

4.1. Parallelisation of the remainder of Algorithm 1. Now that we know
how to coarsen the graph in parallel in Algorithm 1 by using Algorithm 2, we will
also look at parallelising the other parts of the algorithm. We generate matchings
μ on the GPU using the algorithm from [8], where we perform weighted matching
with edge weight 2 Ωω({u, v})− ζ(u) ζ(v) (cf. (2.2)), for each edge {u, v} ∈ E.

Satellites can be marked and merged in parallel as described by Algorithm 3,
where the matching algorithm indicates that a vertex has not been matched to any
other vertex by using a special value for μ, such that the validity of |μ−1({μ(v)})| =
1 can be checked very quickly. Note that in this case the gain of merging a satellite
with a non-satellite as described by (2.2) is only an approximation, since we can
merge several satellites simultaneously in parallel.

In Algorithm 1 (line 11), we can also keep track of clusters in parallel. We
create a clustering map κ : V → N that indicates the cluster index of each
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Algorithm 3 Algorithm for marking and merging unmatched satellites in a given
graph G = (V,E, ω, ζ), extending a map μ : V → N.

1: for v ∈ V parallel do {Mark unmatched satellites.}
2: if |μ−1({μ(v)})| = 1 and cp(v) ≤ 1

2 then
3: σ(v)← true
4: else
5: σ(v)← false
6: for v ∈ V parallel do {Merge unmatched satellites.}
7: if σ(v) then
8: ubest ←∞
9: wbest ← −∞

10: for u ∈ Vv do
11: w ← 2 Ωω({u, v})− ζ(u) ζ(v)
12: if w > wbest and not σ(u) then
13: wbest ← w
14: ubest ← u
15: if ubest 
=∞ then
16: μ(v)← μ(ubest)

vertex of the original graph, such that for i = 0, 1, . . ., our clustering will be
Ci = {{v ∈ V | κi(v) = k} | k ∈ N} (i.e. vertices u and v belong to the same
cluster precisely when κi(u) = κi(v)). Initially we assign all vertices to a differ-
ent cluster by letting κ0(v) ← v for all v ∈ V . After coarsening, the clustering is
updated at line 11 by setting κi+1(v) ← πi(κi(v)). We do this in parallel using
c← parallel gather(a, b), which sets c(i)← b(a(i)) for 1 ≤ i ≤ |a| = |c|.

Note that unlike [17,22], we do not employ a local refinement strategy such as
Kernighan–Lin [13] to improve the quality of the obtained clustering from Algo-
rithm 1, because such an algorithm does not lend itself well to parallelisation. This
is primarily caused by the fact that exchanging a single vertex between two clusters
changes the total weight of both clusters, leading to a change in the modularity gain
of all vertices in both the clusters. A parallel implementation of the Kernighan–Lin
algorithm for clustering is therefore even more difficult than for graph partitioning
[9,12], where exchanging vertices only affects the vertex’s neighbours. Remedying
this is an interesting avenue for further research.

To improve the performance of Algorithm 1 further, we make use of two addi-
tional observations. We found during our clustering experiments that the modular-
ity would first increase as the coarsening progressed and then would decrease after
a peak value was obtained, as is also visible in [16, Figures 6 and 9]. Hence, we
stop Algorithm 1 after the current modularity drops below 95% (to permit small
fluctuations) of the highest modularity encountered thus far.

The second optimisation makes use of the fact that we do not perform un-
coarsening steps in Algorithm 1 (although with the data generated by Algorithm 2
this is certainly possible), which makes it unnecessary to store the entire hierarchy
G0, G1, G2, . . . in memory. Therefore, we only store two graphs, G0 and G1, and
coarsen G0 to G1 as before, but then we coarsen G1 to G0, instead of a new graph
G2, and alternate between G0 and G1 as we coarsen the graph further.
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5. Results

Algorithm 1 was implemented using NVIDIA’s Compute Unified Device Ar-
chitecture (CUDA) language together with the Thrust template library [11] on
the GPU and using Intel’s Threading Building Blocks (TBB) library on the CPU.
The experiments were performed on a computer equipped with two quad-core 2.4
GHz Intel Xeon E5620 processors with hyperthreading (we use 16 threads), 24 GiB
RAM, and an NVIDIA Tesla C2075 with 5375 MiB global memory. All source
code for the algorithms, together with the scripts required to generate the bench-
mark data, has been released under the GNU General Public Licence and are freely
available from https://github.com/BasFaggingerAuer/Multicore-Clustering.
It is important to note that the clustering times listed in Table 1, 2, and Figure
3 do include data transfer times from CPU to GPU, but not data transfer from
hard disk to CPU memory. On average, 5.5% of the total running time is spent on
CPU–GPU data transfer. The recorded time and modularity are averaged over 16
runs, because of the use of random numbers in the matching algorithm [8]. These
are generated using the TEA-4 algorithm [21] to improve performance.

The modularity of the clusterings generated by the CPU implementation is
generally a little higher (e.g. eu-2005) than those generated by the GPU. The dif-
ference between both algorithms is caused by the matching stage of Algorithm
1. For the GPU implementation, we always generate a maximal matching to
coarsen the graph as much as possible, even if including some edges {u, v} ∈
E for which 2 Ωω({u, v}) − ζ(u) ζ(v) < 0 will decrease the modularity. This
yields a fast algorithm, but has an adverse effect on the obtained modularity.
For the CPU implementation, we only include edges {u, v} ∈ E which satisfy
2 Ωω({u, v})− ζ(u) ζ(v) ≥ 0 in the matching, such that the modularity can only be
increased by each matching stage. This yields higher modularity clusterings, but
will slow down the algorithm if only a few modularity-increasing edges are available
(if there are none, we perform a single matching round where we consider all edges).

Comparing Table 1 with modularities from [17, Table 1] for karate (0.412),
jazz (0.444), email (0.572), and PGPgiantcompo (0.880), we see that Algorithm
1 generates clusterings of lesser modularity. We attribute this to the absence of a
local refinement strategy in Algorithm 1, as noted in Section 4.1. The modularity
of the clusterings of irregular graphs from the kronecker/ categories is an order of
magnitude smaller than those of graphs from other categories. We are uncertain
about what causes this behaviour.

Algorithm 1 is fast: for the road central graph with 14 million vertices and 17
million edges, the GPU generates a clustering with modularity 0.996 in 4.6 seconds,
while for uk-2002, with 19 million vertices and 262 million edges, the CPU generates
a clustering with modularity 0.974 in 30 seconds. In particular, for clustering of
nearly regular graphs (i.e. where the ratio

(
maxv∈V deg(v)

)
/
(
minv∈V deg(v)

)
is

small) such as street networks, the high bandwidth of the GPU enables us to find
high-quality clusterings in very little time (Table 2). Furthermore, Figure 3(a)
suggests that in practice, Algorithm 1 scales linearly with the number of edges of
the graph, while Figure 3(b) shows that the parallel performance of the algorithm
scales reasonably with the number of available cores, increasingly so as the size
of the graph increases. Note that with dual quad-core processors, we have eight
physical cores available, which explains the smaller increase in performance when
the number of threads is extended beyond eight via hyperthreading.
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Figure 3. In (a), we show the clustering time required by Al-
gorithm 1 for graphs from the 10th DIMACS challenge [1] test
set (categories clustering/, streets/, coauthor/, kronecker/,
matrix/, random/, delaunay/, walshaw/, dyn-frames/, and
redistrict/), for both the CUDA and TBB implementations.
For large graphs, clustering time scales almost linearly with the
number of edges. In (b), we show the parallel scaling of the TBB
implementation of Algorithm 1 as a function of the number of
threads, normalised to the time required by a single-threaded run
for graphs rgg n 2 k s0 with 2k vertices, from the random/ cate-
gory. We compare this to ideal, linear, scaling. The test system
has 8 cores and up to 16 threads with hyperthreading.

From Figure 3(a), we see that while the GPU performs well for large, |E| ≥ 106,
nearly regular graphs, the CPU handles small and irregular graphs better. This
can be explained by the GPU setup time that becomes dominant for small graphs,
and by the fact that for large irregular graphs, vertices with a higher-than-average
degree keep one of the threads occupied, while the threads treating the other, low-
degree, vertices are already done, leading to a low GPU occupancy (i.e. where
only a single of the 32 threads in a warp is still doing actual work). On the CPU,
varying vertex degrees are a much smaller problem because threads are not launched
in warps: they can immediately start working on a new vertex, without having to
wait for other threads to finish. This results in better performance for the CPU on
irregular graphs.

The most costly per-vertex operation is compress neighbours, used during
coarsening. We therefore expect the GPU to spend more time, for irregular graphs,
on coarsening than on matching. For the regular graph asia (GPU 3.4× faster),
the GPU (CPU) spends 68% (52%) of the total time on matching and 16% (41%) on
coarsening. For the irregular graph eu-2005 (CPU 4.7× faster), the GPU (CPU)
spends 29% (39%) on matching and 70% (57%) on coarsening, so coarsening indeed
becomes the bottleneck for the GPU when the graph is irregular.

The effectiveness of merging unmatched satellites can also be illustrated using
these graphs: for asia the number of coarsenings performed in Algorithm 1 is
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Table 1. For graphs G = (V,E), this table lists the average mod-
ularities mod1,2, (1.2), of clusterings of G generated in an average
time of t1,2 seconds by the CUDA1 and TBB2 implementations of
Algorithm 1. The ‘%1’ column indicates the percentage of time
spent on CPU–GPU data transfer. Results are averaged over 16
runs. A ‘-’ indicates that the test system ran out of memory in one
of the runs. This table lists graphs from the clustering/ category
of the 10th DIMACS challenge [1].

G |V | |E| mod1 t1 %1 mod2 t2
karate 34 78 0.363 0.020 13 0.387 0.004
dolphins 62 159 0.453 0.027 7 0.485 0.007
chesapeake 39 170 0.186 0.024 7 0.220 0.005
lesmis 77 254 0.444 0.023 8 0.528 0.006
adjnoun 112 425 0.247 0.032 5 0.253 0.009
polbooks 105 441 0.437 0.034 6 0.472 0.008
football 115 613 0.412 0.033 5 0.455 0.009
c...metabolic 453 2,025 0.374 0.055 3 0.394 0.013
celegansneural 297 2,148 0.390 0.055 3 0.441 0.011
jazz 198 2,742 0.314 0.048 4 0.372 0.010
netscience 1,589 2,742 0.948 0.060 4 0.955 0.040
email 1,133 5,451 0.440 0.078 2 0.479 0.021
power 4,941 6,594 0.918 0.066 3 0.925 0.033
hep-th 8,361 15,751 0.795 0.093 2 0.809 0.070
polblogs 1,490 16,715 0.330 0.129 1 0.396 0.039
PGPgiantcompo 10,680 24,316 0.809 0.095 3 0.842 0.040
cond-mat 16,726 47,594 0.788 0.122 2 0.798 0.083
as-22july06 22,963 48,436 0.607 0.184 1 0.629 0.036
cond-mat-2003 31,163 120,029 0.674 0.195 2 0.690 0.103
astro-ph 16,706 121,251 0.588 0.219 1 0.611 0.085
cond-mat-2005 40,421 175,691 0.624 0.248 2 0.639 0.113
pr...Attachment 100,000 499,985 0.214 1.177 0 0.216 0.217
smallworld 100,000 499,998 0.636 0.468 2 0.663 0.175
G n pin pout 100,000 501,198 0.241 0.851 1 0.246 0.231
caida...Level 192,244 609,066 0.768 0.506 2 0.791 0.198
cnr-2000 325,557 2,738,969 0.828 2.075 1 0.904 0.342
in-2004 1,382,908 13,591,473 0.946 4.403 3 0.974 1.722
eu-2005 862,664 16,138,468 0.816 8.874 1 0.890 1.854
road central 14,081,816 16,933,413 0.996 4.562 11 0.996 13.058
road usa 23,947,347 28,854,312 - -.- - 0.997 20.227
uk-2002 18,520,486 261,787,258 - -.- - 0.974 29.958

reduced from 47 to 37 (1.1× speedup), while for eu-2005 it is reduced from 10,343
to 25 (55× speedup), with similar modularities. This explains the good speedup of
our algorithm over [18] in Table 3 for eu-2005, while we do not obtain a speedup
for belgium.

In the remainder of this section, we will compare our method to the existing
clustering heuristic developed by Riedy et al. [18]. We use the same global greedy

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



236 B. O. FAGGINGER AUER AND R. H. BISSELING

Table 2. Continuation of Table 1: remaining graphs of the DI-
MACS clustering challenge instances. From top to bottom, we list
graphs from the streets/, coauthor/, kronecker/, numerical/,
matrix/, walshaw/, and random/ categories.

G |V | |E| mod1 t1 %1 mod2 t2
luxembourg 114,599 119,666 0.986 0.125 6 0.987 0.138
belgium 1,441,295 1,549,970 0.992 0.440 10 0.993 1.106
netherlands 2,216,688 2,441,238 0.994 0.615 13 0.995 1.716
italy 6,686,493 7,013,978 0.997 1.539 13 0.997 5.256
great-britain 7,733,822 8,156,517 0.997 1.793 13 0.997 5.995
germany 11,548,845 12,369,181 0.997 2.818 14 0.997 9.572
asia 11,950,757 12,711,603 0.998 2.693 15 0.998 9.325
europe 50,912,018 54,054,660 - -.- - 0.999 45.205
coA...Citeseer 227,320 814,134 0.837 0.420 3 0.848 0.225
coA...DBLP 299,067 977,676 0.748 0.592 3 0.761 0.279
cit...Citeseer 268,495 1,156,647 0.643 0.894 2 0.682 0.315
coP...DBLP 540,486 15,245,729 0.640 6.427 1 0.666 2.277
coP...Citeseer 434,102 16,036,720 0.746 6.490 2 0.774 2.272
kron...logn18 262,144 10,582,686 0.025 13.598 0 0.025 2.315
kron...logn19 524,288 21,780,787 0.023 28.752 0 0.023 5.007
kron...logn20 1,048,576 44,619,402 - -.- - 0.022 10.878
kron...logn21 2,097,152 91,040,932 - -.- - 0.020 23.792
333SP 3,712,815 11,108,633 0.983 2.712 7 0.984 4.117
ldoor 952,203 22,785,136 0.945 6.717 2 0.950 2.956
audikw1 943,695 38,354,076 - -.- - 0.857 4.878
cage15 5,154,859 47,022,346 - -.- - 0.682 13.758
memplus 17,758 54,196 0.635 0.160 1 0.652 0.043
rgg n 2 20 s0 1,048,576 6,891,620 0.974 1.614 5 0.977 1.383
rgg n 2 21 s0 2,097,152 14,487,995 0.978 3.346 4 0.980 2.760
rgg n 2 22 s0 4,194,304 30,359,198 - -.- - 0.983 5.799
rgg n 2 23 s0 8,388,608 63,501,393 - -.- - 0.986 12.035
rgg n 2 24 s0 16,777,216 132,557,200 - -.- - 0.988 25.139

matching and coarsening scheme (Algorithm 1) to obtain clusters as [18]. How-
ever, our algorithm is different in the following respects. Stopping criterion: in
[18] clusters are only merged if this results in an increase in modularity and if no
such merges exist, the algorithm is terminated. We permit merges that decrease
modularity to avoid getting stuck in a local maximum and continue coarsening as
long as the modularity is within 95% of the highest encountered modularity so far.
Matching: in [18] a 1

2 -approximation algorithm is used to generate matchings, while
we use the randomised matching algorithm from [8]. Coarsening: in addition to
merging matched edges, we propose a centre potential to treat star-like subgraphs
efficiently, which is not done in [18]. Data storage: [18] uses a clever bucketing
approach to only store each edge once as a triplet, while we use adjacency lists
(Section 4), thus storing every edge twice. A direct comparison of the performance
of the DIMACS versions of both algorithms is given in Table 3. We outperform the
algorithm from [18] in terms of quality. A fair comparison of computation times is
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Table 3. Comparison between Algorithm 1 and the algorithm
from [18], using raw, single-run results for large graphs from the
10th DIMACS modularity Pareto benchmark, http://www.cc.

gatech.edu/dimacs10/results/. Here, ·1 and ·2 refer to our
CUDA and TBB implementations, while ·O and ·X refer to the
OpenMP and Cray XMT implementations of the algorithm from
[18]. Timings have been recorded on different test systems.

G mod1 t1 mod2 t2 modO tO modX tX
caida...Level 0.764 0.531 0.792 0.185 0.540 0.188 0.540 3.764
in-2004 0.955 4.554 0.976 1.887 0.475 55.986 0.488 294.420
eu-2005 0.829 9.072 0.886 1.981 0.420 90.012 0.425 1074.488
uk-2002 - -.- 0.974 31.121 0.473 181.346 0.478 772.359
uk-2007-05 - -.- - -.- 0.476 496.390 0.480 36229.531
belgium.osm 0.992 0.447 0.993 1.187 0.660 0.562 0.643 10.571
coP...DBLP 0.641 6.612 0.668 2.367 0.496 1.545 0.501 9.492
kron...logn20 0.021 59.144 0.022 13.897 0.001 538.060 0.001 8657.181
333SP 0.983 2.712 0.985 4.321 0.515 1.822 0.512 27.790
ldoor 0.944 6.799 0.950 3.071 0.542 1.348 0.611 10.510
audikw1 0.847 15.341 0.858 5.180 0.560 1.635 0.558 9.957
cage15 0.640 32.804 0.677 14.308 0.513 4.846 0.512 48.747
memplus 0.635 0.175 0.654 0.038 0.519 0.034 0.520 0.903
rgg n 2 17 s0 0.958 0.247 0.963 0.174 0.619 0.102 0.619 1.949

hard because of the different test systems that have been used: we (t1 and t2) used
two quad-core 2.4 GHz Intel Xeon E5620 processors with a Tesla C2050, while the
algorithm from [18] used four ten-core 2.4 GHz Intel Xeon E7-8870 processors (tO)
and a Cray XMT2 (tX).

6. Conclusion

In this paper we have presented a fine-grained shared-memory parallel algo-
rithm for graph coarsening, Algorithm 2, suitable for both multi-core CPUs and
GPUs. Through a greedy agglomerative clustering heuristic, Algorithm 1, we try
to find graph clusterings of high modularity to measure the performance of this
coarsening method. Our parallel clustering algorithm scales well for large graphs
if the number of threads is increased, Figure 3(b), and can generate clusterings of
reasonable quality in very little time, requiring 4.6 seconds to generate a modularity
0.996 clustering of a graph with 14 million vertices and 17 million edges.

An interesting direction for future research would be the development of a
local refinement method for clustering that scales well with the number of available
processing cores, and can be implemented efficiently on GPUs. This would greatly
benefit the quality of the generated clusterings.

7. Appendix

7.1. Reformulating modularity. Our first observation is that for every clus-
ter C ∈ C, by (1.1):

(7.1) ζ(C) = 2ω(int(C)) + ω(ext(C)).
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Now we rewrite (1.2) using the definitions we gave before:

mod(C) =

∑
C∈C

ω(int(C))

Ω
−

∑
C∈C

ζ(C)2

4 Ω2

=
1

4 Ω2

∑
C∈C

(
4 Ωω(int(C))− ζ(C)2

)
(7.1)
=

1

4 Ω2

∑
C∈C

(
4 Ω

[
1

2
ζ(C)− 1

2
ω(ext(C))

]
− ζ(C)2

)
.

Therefore, we arrive at the following expression,

(7.2) mod(C) =
1

4 Ω2

∑
C∈C

(
ζ(C) (2 Ω− ζ(C))− 2 Ωω(ext(C))

)
.

As

ext(C) = {{u, v} ∈ E | u ∈ C, v /∈ C} =
⋃

C′∈C
C′ 	=C

cut(C,C ′),

as a disjoint union, we find (2.1).

7.2. Merging clusters. Let C,C ′ ∈ C be a pair of different clusters, set
C ′′ = C ∪ C ′ and let C′ := (C \ {C,C ′}) ∪ {C ′′} be the clustering obtained by
merging C and C ′.

Then ζ(C ′′) = ζ(C) + ζ(C ′) by (2.3). Furthermore, as cut(C,C ′) = ext(C) ∩
ext(C ′), we have that

(7.3) ω(ext(C ′′)) = ω(ext(C)) + ω(ext(C ′))− 2ω(cut(C,C ′)).

Using this, together with (7.2), we find that

4 Ω2(mod(C′)−mod(C)) = −ζ(C) (2 Ω− ζ(C)) + 2 Ωω(ext(C))

− ζ(C ′) (2 Ω− ζ(C ′)) + 2 Ωω(ext(C ′))

+ ζ(C ′′) (2 Ω− ζ(C ′′))− 2 Ωω(ext(C ′′))

(7.3)
= −ζ(C) (2 Ω− ζ(C)) + 2 Ωω(ext(C))

− ζ(C ′) (2 Ω− ζ(C ′)) + 2 Ωω(ext(C ′))

+ (ζ(C) + ζ(C ′)) (2 Ω− (ζ(C) + ζ(C ′)))

− 2 Ω
[
ω(ext(C)) + ω(ext(C ′))− 2ω(cut(C,C ′))

]
= 4 Ωω(cut(C,C ′))− 2 ζ(C) ζ(C ′).

So merging clusters C and C ′ from C to obtain a clustering C′, leads to a change
in modularity given by (2.2).

7.3. Proof of the modularity bounds. Here, we contribute a generalisation
of [3, Lemma 3.1] (where the bounds are established for unweighted graphs) to the
weighted case. Let G = (V,E, ω) be a weighted graph and C a clustering of G, we
will show that

−1

2
≤ mod(C) ≤ 1.
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From (1.2),

mod(C) ≤

∑
C∈C

∑
{u,v}∈E

u,v∈C

ω({u, v})

∑
e∈E

ω(e)
− 0 ≤

∑
{u,v}∈E

u,v∈V

ω({u, v})

∑
e∈E

ω(e)
= 1,

which shows one of the inequalities. For the other inequality, note that for every
C ∈ C we have 0 ≤ ω(int(C)) ≤ Ω− ω(ext(C)), and therefore

mod(C) =
1

4 Ω2

∑
C∈C

(
4 Ωω(int(C))− ζ(C)2

)
(7.1)
=

1

4 Ω2

∑
C∈C

(
4 Ωω(int(C))− 4ω(int(C))2 − 4ω(int(C))ω(ext(C))

− ω(ext(C))2
)

=
1

4 Ω2

∑
C∈C

(
4ω(int(C)) [Ω− ω(ext(C))− ω(int(C))]− ω(ext(C))2

)

≥ 1

4 Ω2

∑
C∈C

(
0− ω(ext(C))2

)
= −

∑
C∈C

(
ω(ext(C))

2 Ω

)2

.

Enumerate C = {C1, . . . , Ck} and define xi := ω(ext(Ci))
2Ω for 1 ≤ i ≤ k to obtain

a vector x ∈ Rk. Note that 0 ≤ xi ≤ 1
2 (as 0 ≤ ω(ext(Ci)) ≤ Ω) for 1 ≤

i ≤ k, and because every external edge connects precisely two clusters, we have∑k
i=1 ω(ext(Ci)) ≤ 2 Ω, so

∑k
i=1 xi ≤ 1. By the above, we know that

mod(C) ≥ −‖x‖22,
hence we need to find an upper bound on ‖x‖22, for x ∈ [0, 1

2 ]k satisfying
∑k

i=1 xi ≤
1. For all k ≥ 2, this upper bound equals ‖( 12 ,

1
2 , 0, . . . , 0)‖22 = 1

2 , so mod(C) ≥ − 1
2 .

The proof is completed by noting that for a single cluster, mod({V }) = 0 ≥ − 1
2 .
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Groups and Model Theory, 2012

575 Yunping Jiang and Sudeb Mitra, Editors, Quasiconformal Mappings, Riemann
Surfaces, and Teichmüller Spaces, 2012

574 Yves Aubry, Christophe Ritzenthaler, and Alexey Zykin, Editors, Arithmetic,
Geometry, Cryptography and Coding Theory, 2012

573 Francis Bonahon, Robert L. Devaney, Frederick P. Gardiner, and Dragomir
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Graph partitioning and graph clustering are ubiquitous subtasks in many applications where
graphs play an important role. Generally speaking, both techniques aim at the identification
of vertex subsets with many internal and few external edges. To name only a few, problems
addressed by graph partitioning and graph clustering algorithms are:

• What are the communities within an (online) social network?

• How do I speed up a numerical simulation by mapping it efficiently onto a parallel
computer?

• How must components be organized on a computer chip such that they can commu-
nicate efficiently with each other?

• What are the segments of a digital image?

• Which functions are certain genes (most likely) responsible for?

The 10th DIMACS Implementation Challenge Workshop was devoted to determining
realistic performance of algorithms where worst case analysis is overly pessimistic and
probabilistic models are too unrealistic. Articles in the volume describe and analyze various
experimental data with the goal of getting insight into realistic algorithm performance in
situations where analysis fails.
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