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Abstract—Breadth-first search (BFS) is an essential
graph traversal strategy widely used in many computing
applications. Because of its irregular data access patterns,
BFS has become a non-trivial problem hard to parallelize
efficiently. In this paper, we introduce a parallelization
strategy that allows the load balancing of computation
resources as well as the execution of graph traversals in
hybrid environments composed of CPUs and GPUs. To
achieve that goal, we use a fine-grained task-based paral-
lelization scheme and the OmpSs programming model. We
obtain processing rates up to 2.8 billion traversed edges
per second with a single GPU and a multi-core processor.
Our study shows high processing rates are achievable
with hybrid environments despite the GPU communication
latency and memory coherence.

I. INTRODUCTION

In recent years, graph algorithm design has gained an
important role in science, as many emerging large-scale
scientific applications now require working with large
graphs in distributed networks. Breadth-First Search
(BFS) is of particular relevance because it is widely
used as a basis for multiple fields. Other common
graph applications also use Breadth-First Search as a
fundamental part of their algorithm. Some of the relevant
problems include flow network analysis, the shortest-
path problem, and other graph traversals, such as the
A* algorithm.

Due to their irregular nature, large graph traversals
have become a problem that is hard to parallelize ef-
ficiently. Such irregularity, where the memory access
pattern is not known a priori, and the necessity of
large data structures, have made I/O efficiency one of
the greatest hurdles to optimal performance. In addition
to such inconveniences, traditional performance opti-
mization strategies usually applied to memory-bound
applications are no longer effective because of a low
data reuse and lack of memory locality.

Disregarding memory optimization strategies, previ-
ous graph parallelization efforts have been oriented
toward masking the I/O problems with high doses of
aggressive parallelism and multi-threading. Cray XMT,

IBM Cell/BE, and NVIDIA GPUs are architectures that
exploit such advantage and prioritize bandwidth over
latency. Work on the mentioned platforms has shown
great performance improvements in overcoming the high
latencies incurred during graph explorations. The general
purpose GPU (GPGPU) architectures have the added
value of being an affordable solution while maintaining
high throughput and low power consumption levels.

While any of the previously mentioned platforms
offers massive parallel processing power, its performance
while traversing a graph will ultimately depend on its
connectivity properties, the architecture, and the mem-
ory subsystem. GPGPU architectures yield unmatched
performance if sufficient parallelism is available and the
graph fits on the GPU’s memory. But they fail to yield
the same performance otherwise, due to large overheads
and the impossibility of overlapping the communication
latencies with effective computation.

In this paper, we propose several hybrid strategies for
tackling Breadth-First Search graph traversals that aim
to balance such GPU shortcomings with the assistance
of multi-core CPUs. Through the use of heterogeneous
programming platforms, the deficiencies caused by the
limited available parallelism can be overcome and better
potential performance can be achieved. We introduce a
task-based parallelization strategy that provides several
performance benefits and propose two distinct hybrid
environment implementations. We then proceed to do a
performance evaluation of both implementations, reach-
ing processing rates up to 2.8 billion traversed edges per
second with a single GPU and a multi-core processor
under a comprehensive set of graph sizes which include
graphs that do not fit in the standard GPU main memory.

II. RELEVANT WORK

Since the early days of computer development, a
distributed approach has been widely accepted as the best
methodology to tackle big Breadth-First Search graph
traversals. Although prior works comprise BFS imple-
mentations on numerous kinds of platform systems, most
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of them share a common underlying PRAM strategy.
Bader et al. [2] took a fine-grained parallel approach

and succeeded in substantially speeding up irregular
graph traversals. By avoiding load-balancing queues and
relying on the massive multi-threaded architecture of
the Cray XMT, memory latencies were overlapped with
the computation of thousands of hardware threads. This
strategy proved to be effective, as the random locality
nature of the BFS prevents the use of memory access
optimizations.

GPGPU architectures are based on a philosophy sim-
ilar to that of the Cray massive multi-threaded systems.
Subsequent work on GPU-based BFS algorithms was
pioneered by Harish et al. [3], [4] , Merrill et al. [6]
and Luo et al. [8] . They suggest the use of GPUs as the
next milestone for BFS algorithms.

Harish et al. dismissed the use of queues to store
the vertices to be traversed (also known as vertex
frontier) due to the huge overhead caused by atomic
and synchronous operations on the GPU. Instead, their
approach checks every vertex to see if it belongs to the
current frontier. Because of this design decision, the time
complexity of the algorithm becomes much higher, as all
vertices must be checked at every level: Let L be the total
number of levels, then the time needed to exhaustively
check frontier vertices will be O(V L), making a total
of O(V L + E) when taking into account the time to
explore every edge. In the worst case scenario, when L =
O(V ), the complexity would turn into O(V 2); which is
less work-efficient than the O(V ) CPU implementation.
Hussein et al. [5] also described a vertex-oriented BFS
implementation using a similar quadratic strategy. Their
approach performed BFS solely on the GPU in order to
avoid communication overheads when transferring graph
data. In most cases, both algorithms will perform more
work than the standard sequential algorithm. Hong et al.
[9] introduced a vectorized approach to the same vertex-
oriented strategy by assigning vertices to an entire group
of threads. Their strategy allowed such group of threads
to cooperatively explore adjacencies, thus mitigating the
load unbalance caused by vertex exploration.

Nevertheless, other parallelization strategies for GPU
architectures were also studied. The work of Deng et al.
[7] introduced a second approach to GPU applications
in BFS algorithms. In this case, matrix-based data repre-
sentations were used. Each frontier could be transformed
into a matrix-vector multiplication. Even though it was
a novel approach, the worst case was still slower than
the sequential BFS version.

Deeming prior approaches ultimately inefficient, Luo
et al. [8] used queues in order to keep workload com-
plexity at the same level as the serial BFS algorithm.
Their approach is based on the use of efficient queue
structures to store new frontiers and hierarchical kernel

arrangements to reduce synchronization overhead, allow-
ing his best implementation to run significantly faster
than previous quadratic implementations. Merrill et al.
[6] also favored this kind of structure in their latest
proposal. Their work comprises a deep and thorough
study of several strategies for implementing BFS on
GPUs and multi-GPUs. To date, their implementation
is the fastest on this kind of architecture.

To our knowledge the work by Hong et al. [10] is
the only prior attempt to integrate CPUs and GPUs in
a hybrid environment by choosing dynamically between
three different implementations for each level of the BFS
algorithm.

Previous literature has shed some light on how to
design scalable algorithms for data-intensive applications
such as BFS. Such studies stress the huge advantage of
GPU computing over more traditional approaches as a
cost-effective parallel solution.

Other prior work has also focused on edge-oriented
partitioning strategies. Yoo et al. [1] proposed a 2D edge
partitioning algorithm and implemented a scalable dis-
tributed algorithm for the BlueGene supercomputer. On
Cray machines, Buluc et al. [11] presented also a two-
dimensional sparse matrix partitioning-based approach
that was aimed at reducing communication overheads
between processing nodes in a distributed memory envi-
ronment.

Multicore general purpose CPU techniques have been
also widely used and studied for graph algorithms.
Agarwal et al. [12] presented a thorough study that
used Intel Nehalem processors showing performance
comparable to that obtained with massive multi-threaded
machines such as the Cray XMT and the BlueGene/L.
Xia et al. [13] also achieved good results by using a
topologically adaptive parallel BFS algorithm on Intel
and AMD processors.

In this paper, we decouple the BFS problem from the
underlying hardware instead of examining it from the
perspective of a single specific architecture. This new
approach provides several performance benefits and new
ways to look at the problem, which are explained further
in the sections that follow.

III. BACKGROUND

A. The CUDA programming model

CUDA is a proprietary NVIDIA standard for general-
purpose parallel programming across NVIDIA-powered
GPUs. CUDA provides a low-level hardware abstraction
and a programming framework that allows the program-
mer to control massive multi-threaded GPUs. A CUDA
program will contain two kinds of code:

1) Code for the host CPU
2) Highly parallel code for the SPMD GPUs; also

known as CUDA kernels.



A normal execution of a CUDA kernel starts by
executing host CPU code. The execution is moved to
the GPU once a CUDA kernel is invoked, where the
programmer can take advantage of the massive parallel
architecture. The CUDA runtime creates thousands of
threads collectively grouped in blocks and grids. A ker-
nel may be launched synchronously or asynchronously.

Threads within a grid are organized in a two-level
hierarchy. A grid is divided into several blocks, while a
block is composed of a group of threads. The two levels
will have different synchronization properties, as threads
within a block can be synchronized together, while it is
not feasible to synchronize blocks at the grid level.

B. BFS problem characterization

Given an undirected graph G(V,E) and a source
vertex s0, a breadth-first search will traverse G starting
from s0 exploring all the vertices at a given distance d
from s0 before traversing vertices at a further range. As
a result, a spanning tree rooted to s0 with its connected
component from the root can be obtained. The work and
time complexity of the search will be O(V + E), since
every vertex and edge must be explored given the worst
case.
Input : Graph G(V,E) , s o u r c e node s0
Output : D i s t a n c e s from s0 Dist[1..|V |]
1 8v 2 V do :
2 dist[v] = 1
3 dist[s0] := 0
4 Q := ;
5 Q.enqueue(s0)
6 whi le Q 6= ; do
7 i := queue.dequeue()
8 f o r each n e i g h b o r v of i do
9 i f dist[v] = 1 t h e n
10 dist[v] := dist[i] + 1
11 Q.enqueue(v)
12 e n d i f
13 e n d f o r
14 e n d w h i l e

Algorithm 1: Serial BFS algorithm

Algorithm 1 presents a serial algorithm that uses
queues to maintain the order of the traversed vertices. It
starts by introducing the source vertex s0 in the empty
queue. Until this queue is depleted, the first vertex in it
will be extracted and its adjacencies explored. Each of
the unvisited adjacencies will be enqueued again.

The data structure used in this paper to describe the
undirected and unweighed graph is a Compact Sparse
Representation (CSR). CSRs include an array A that
contains all the adjacency lists that define a graph. In
addition, an extra array N with |V | + 1 positions is
needed to determine which adjacencies belong to which
vertex. Simply put, the elements stored in N are pointers
to A. Such pointers indicate the beginning and the end
of the adjacencies starting at the node. As an example,
a vertex n will have its adjacencies starting at N [n] and

Fig. 1. CSR graph representation

finishing at N [n+1]. Hence the need for |V |+1 positions
to describe the limits for |V | vertices. As a matter of fact,
N [|V |+ 1] = |E|.

IV. PARALLELIZATION STRATEGY

Our approach will follow a 1D level-synchronous
parallelization strategy, which is a straightforward paral-
lelization of the loop in line 6 of Algorithm 1. Ideally,
the n vertices of the graph will be distributed between
the different p processors uniformly.

Given a graph G(V,E), its vertices and outgoing
edges can be separated disjunctively, thus allowing no
data input overlap between the different processing
nodes. Following the CSR representation used, vertices
and edges can be grouped together in the way depicted
in Figure 2.

Fig. 2. Graph input division

We define such subdivision as a task. A graph can
potentially be divided into an arbitrary number of tasks,
independently of the number of parallel processing units
available. In our parallelization strategy, each task is also
the owner of the distance statuses of the vertices they
are assigned. A task becomes a logical division of the
graph space. During the execution of each BFS level
iteration, all logical tasks are assigned to a processing
node and their active vertex frontiers are to be traversed.
This binding is also illustrated in Figure 2, in addition



to the graph partitioning. Essentially, the task notion is
not different from the subdivision strategies proposed in
previous works. However, it is important to note that the
number of tasks is arbitrary and could be independent
from the number of processors. This subtle difference
allows several performance benefits explored further in
this paper.

Input : Graph G(V,E) , s o u r c e node s0
Output : D i s t a n c e s from s0 Dist[1..|V |]
1 8v 2 V do :
2 dist[v] = 1
3 dist[s0] := 0
4 VF:= ;
5 NVF:= ;
6 taskQueue := taskOwner(s0)
7 VF.enqueue(s0, taskQueue)
8 currentFrontier := 0
9 whi le VF6= ; do
10 f o r each i i n V F p a r a l l e l do
11 i := queue.dequeue()
12 dist[i] := currentFrontier
13 f o r each n e i g h b o r v of i do
14 i f VB[v] = 0 t h e n
15 VB[v] := 1
16 currentTask := taskOwner(v)
17 NVF.enqueue(v, currentTask)
18 e n d i f
19 e n d f o r
20 e n d P a r a l l e l f o r
21 S y n c h r o n i z a t i o n b a r r i e r ( )
22 currentFrontier := currentFrontier + 1
23 VF:=NVF
24 NVF:= ;
25 e n d w h i l e

Algorithm 2: Parallel task BFS algorithm

Algorithm 2 shows a high level description of a task-
parallel Breadth-First Search. Unlike the serial version,
Algorithm 2 introduces a number of new structures
aimed toward maintaining coherency. Because it follows
a 1D level-synchronous parallelization strategy, a vertex
frontier is needed. A vertex frontier is the subset of
vertices that are discovered for the first time in a level
iteration i and are to be expanded in the following
iteration i+1. Every BFS level execution will consume
a vertex frontier VF. At the same time, a new vertex
frontier NVF will be built and provided for the next
iteration. Three methods are given to interact with VF
and NVF: taskOwner, enqueue and dequeue. The
first provides the ID of the Task owning the vertex
while the other two interact with the vertex frontiers,
allowing the introduction and extraction of vertices. In
addition, a visited bitmap VB is maintained in order
to determine which vertices have already been visited.
A synchronization barrier is required to guarantee the
level synchronism between the different levels, which is
expressed with the variable currentFrontier.

Globally, a task must be interpreted as a unit of
processing with its disjunctive input and shared output.
At a given iteration, each task will explore its active

Fig. 3. Task input division

vertex frontier VF. A given task may discover nodes
that belong to other tasks. Therefore, the output must
be synchronized under shared data structures such as
queues. For the sake of clarity, NVF is presented in
Algorithm 2 as a unified structure and shared between
tasks. Regardless of the implementation methodology, it
is important to note its function as a point of communi-
cation between tasks. Figure 3 displays the data flow that
takes place during the processing of a graph traversal.

The task notion offers a high degree of flexibility. For
example, task divisions could be much more numerous
than processors. Given such a case, tasks could be
assigned dynamically to a processor unit to be executed.
This approach leads to several favorable properties.

1) Load Balance: If the task granularity is small
enough, tasks could be assigned dynamically to
the processing units, thus splitting the workload
equally between processor nodes.

2) Spatial locality: Tasks are contiguous subdivisions
of the graph. Therefore, two nodes processed con-
secutively in the same task may have a higher
chance of residing closely in memory.

3) Possibility to process tasks on hybrid environ-
ments: Since tasks are logical divisions, they could
be processed in heterogeneous environments and
synchronized thereafter.

V. STRATEGIES FOR TACKLING THE BFS PROBLEM
IN HETEROGENEOUS ENVIRONMENTS

Using the task division, we propose two graph traver-
sal strategies that take advantage of heterogeneous plat-
forms. CPUs and GPUs offer different execution prop-
erties when performing a graph traversal. Depending on
the graph topology and the size of the Vertex Frontier
for each iteration, one platform will be more suitable and
will yield better results than the other. As an example,



a GPU might offer a better performance if enough
parallelism is available. However, it will fail to out-
perform a multi-core CPU in big-diameter graphs with
low connectivity. Figure 4 demonstrates this contrast by
comparing the levels of performance of the CPU and
GPU implementations. It shows the processing times
of one CPU/GPU thread traversing a single task with
different Vertex Frontier sizes. For this specific graph,
the GPU task implementation already outperforms the
CPU counterpart when the size of the Vertex Frontier is
more than 7000 vertices.

Fig. 4. Single thread task performance comparison under a randomly
generated graph with 1M vertices and 16M edges

In this section, we describe several strategies for
taking advantage of both CPU and GPU components in
a hybrid environment.

A. Workload-aware hybrid BFS

We propose a first scheme that consists of an adaptive
algorithm. This algorithm adapts the execution flow
to the graph topology by redirecting it to the most
appropriate hardware. As an example of graph topology,
we show in Figure 5 the evolution of the vertex discovery
in a traversal of a randomly generated graph. It can be
observed from the chart that the number of discovered
vertices varies greatly from level to level. We obtain a
performance advantage from this by changing from CPU
to GPU or vice-versa depending on the size of the New
Vertex Frontier NVF.

In order to determine when to transfer a task between
GPU and CPU processing nodes we define a workload
limit �. If, for a given task, the number of vertices
to be traversed contained in the Vertex Frontier VF is
higher than �, the task will take advantage of the massive
parallelism offered by the GPU. Otherwise, the task will
be assigned to a CPU processing node in order to avoid

Fig. 5. Traversal evolution for a randomly generated graph with 4M
vertices and 32M edges

the unnecessary latency penalties and overhead inherent
to the GPU.

Figure 6 illustrates the state machine associated with
the adaptive algorithm. Executing the graph traversal in
a hybrid environment introduces the problem of memory
consistency, as it will require maintaining two disjunct
memory spaces when switching the execution flow from
CPU to GPU or vice versa. Several optimizations can
be used in order to minimize the transfer information
and latency, such as heavy caching and graph data
replication. For each task, the following information is
needed.

1) Graph portion if not already copied: O(|V |/t) for
the vertex array and potentially O(|E|) if the task
holds the entire edge array.

2) Distance statuses of the vertices owned by the task:
O(|V |/t)

Fig. 6. Workload-aware algorithm state machine



3) Active Vertex Frontier VF: potentially O(|V |/t) if
all nodes are explored at once.

4) Visited vertex Bitmap VB portion owned by the
task: O(|V |/t).

The � factor adds yet another parameter for the sake
of flexibility. At its extremes, the algorithm can be set to
be executed only in the CPU (� = |V |) or in the GPU
(� = 0); leaving a huge range of possibilities in the
middle. However, the appropriate � parameter depends
highly on the graph characteristics. Further details of the
adaptive algorithm will be shown in the Implementation
section.

B. Fixed-partitioned-space hybrid BFS
The previous scheme offered high hardware adaptation

to the graph topology requirements. However, it may
also carry a high potential transfer and synchronization
overhead because of the heterogeneous memory space,
and it only takes advantage one of the two components
at a time.

A second strategy can be aimed at using both CPU
and GPU simultaneously in a synchronized fashion at
the expense of also reducing the adaptation flexibility.
Instead of dynamically binding tasks to environments,
they can be assigned to two static disjunct sets of tasks
instead. Let {G} be a subset of the task set {T} bound to
be executed in the GPU, we can define {C} = {T}\{G}
as the subset bound to be executed in the CPU. Such
subsets will remain unchanged throughout the traversal
execution.

The fixed partitioned space hybrid BFS scheme con-
sists of two phases:

1) An execution phase: Both CPUs and GPU tra-
verse the assigned tasks in a parallel fashion. {C}
and {G} are formed by tasks that conserve the
parallelism and can be executed independently.
As a result of the level traversal, two disjunct
New Vertex Frontiers (NVFC and NVFG) and two
new Visited vertex Bitmaps (VBC and VBG) are
created.

2) A communication phase: The part of the NVFC

and the NVFG belonging to tasks bound for execu-
tion in the other environment must be transferred.
In addition, the Visited Bitmaps generated (VBC

and VBG) must also be unified and synchronized.
With the fixed partition scheme, only the New Vertex

Frontier and the Visited Bitmap need to be exchanged.
No synchronization is required for the vertex distance
status, as each task is responsible for maintaining the
distances of the owned vertices. Figure 7 shows the
proposed execution flow and synchronization scheme.

VI. IMPLEMENTATION

Our implementation relies on the OmpSs productivity
framework to handle the task subdivision and execution.

Fig. 7. Fixed-partitioned-space hybrid BFS execution schema

OmpSs is a programming model introduced by Ayguade
et al.[14] that stresses the use of effective workload
scheduling strategies as a key element for achieving bet-
ter overall performance in distributed algorithms. Among
other features, OmpSs integrates the task notion we have
introduced in this paper, as well as task executions in
heterogeneous environments like CPUs, GPGPUs and
Cell processors.

In this section, we will describe a specific task imple-
mentation for both GPU and CPU environments. Since
a task is a logical division that should be able to be exe-
cuted in any component, any task implementation should
be compliant with the inputs and outputs described in the
previous sections.

A. GPU task implementation

As stated in many prior works, the strategy for imple-
menting BFS on the GPU requires a different point of
view from implementations on the CPU. Developing a
new algorithm exclusively for the GPU is not the purpose
of this paper. In this section, we provide an implementa-
tion that combines several elements discussed in previous
studies [6]. However, under the task specification, any
implementation can be introduced as long as it meets
the input/output conditions.

OmpSs features a runtime that handles CUDA kernels
expressed in tasks. Despite the fact that tasks cannot be
launched concurrently in a GPU, they can be pipelined
or executed in multiple GPUs seamlessly if the depen-
dencies expressed in the task annotations allow it.

Algorithm 3 describes the GPU BFS task imple-
mentation using OmpSs terminology. OmpSs introduces
annotations to delimit task inputs and outputs. These
annotations are used afterwards by the runtime to dynam-
ically build a dependence task graph and schedule tasks
in a data flow way. Edges are traversed cooperatively



between all the threads in the same warp in order to
avoid load imbalance between threads. Until all edges
are traversed, threads vie for the control of the warp
(lines 9 to 15). When new vertices are discovered, they
are accumulated in a vertex mask VM. Once all the
tasks bound for that specific GPU are finished, the Vertex
Mask contains the newly discovered vertices. Then, it is
compacted and converted into the New Vertex Frontier
NVF by means of a scan and prefix sum. This step is
needed in order to meet the same output condition as the
CPU counterpart. Effectively, the Vertex Mask bitmap is
converted into the new vertex frontier for the next level
iteration.

Input : Task Graph p a r t i t i o n T (V,E) , A c t i v e
V er t e x F r o n t i e r VF , c u r r e n t f r o n t i e r cf

Output : Shared V er t e x Mask b i tmap VM
Input�Output : Shared V i s i t e d Bitmap VB,

P r o v i s i o n a l P a r t i a l d i s t a n c e v e c t o r
Dist[1..|V |]

#pragma omp t a r g e t d e v i c e ( cuda )
#pragma omp t a s k i n p u t ( T (V,E) , VF , cf ) o u t p u t

(dist ) i n o u t (VM,VB)
1 v o l a t i l e s h a r e d owner [NUMWARPS] [ 3 ]
2 tid := getThreadId()
3 i :=VF[tid]
4 range :=V[i]
5 range end :=V[i+ 1]
6 i f dist[i] = 1 t h e n
7 dist[i] := cf
8 e n d i f
9 whi le any(range end > range) do
10 i f range end > range t h e n
11 owner[warp id][0] := lane id
12 e n d i f
13 i f owner[warp id][0] = lane id t h e n
14 owner[warp id][1] := range
15 owner[warp id][2] := range end
17 range := range end
16 e n d i f
17 pointer := owner[warp id][1] + lane id
18 end := owner[warp id][2]
19 whi le pointer < end do
20 v := E[pointer]
21 i f VB[v] = 0 t h e n
22 VB[v] := 1
23 VM[v] := 1
24 e n d i f
25 e n d w h i l e
26 e n d w h i l e

Algorithm 3: GPU Task BFS

By using a Shared Vertex Mask, the GPU task imple-
mentation allows the accumulation of the newly discov-
ered Vertex Frontier without the overhead caused by the
access to shared queues by multiple GPU threads. Figure
8 depicts the execution flow of several tasks assigned to
the GPU.

B. CPU task implementation

The proposed task implementation tailored for the
CPU strongly resembles the generic serial BFS algo-

Fig. 8. GPU task implementation

rithm. However, it will have a task subdivision as an
input instead of an entire graph.

In contrast to the proposed GPU implementation, a
given CPU task will be of a serial nature, as the par-
allelism resides in the independent execution of several
tasks on a coarser level.
Input : Task Graph p a r t i t i o n T (V,E) , A c t i v e

V er t e x F r o n t i e r VF , c u r r e n t f r o n t i e r cf
Output : Shared Next V er t e x F r o n t i e r NVF
Input�Output : Shared V i s i t e d Bitmap VB,

P r o v i s i o n a l P a r t i a l d i s t a n c e v e c t o r
dist[1..|V |]

#pragma omp t a r g e t d e v i c e ( smp )
#pragma omp t a s k i n p u t ( T (V,E) , VF , cf )

o u t p u t (dist ) s h a r e d (NVF,VB)
1 whi le VF6= ; do
2 i :=VF.dequeue()
3 i f dist[i] = 1 t h e n dist[i] := cf
4 f o r each n e i g h b o r v of i do
5 i f VB[v] = 0 t h e n
6 VB[v] := 1
7 currentTask := taskOwner(v)
8 NVF.enqueue(v, currentTask)
9 e n d i f
10 e n d f o r
11 e n d w h i l e

Algorithm 4: CPU Task BFS

Algorithm 4 shows a description of the CPU BFS
task implementation. It takes many elements from
the parallel for loop’s body from Algorithm 2. As
a peculiarity, Algorithm 4 uses a task partition as
input, as well as the Active Vertex Frontier VF
owned by that task and the current frontier cf . cf
determines the actual distance from the source vertex s0.

VII. EXPERIMENTAL RESULTS

We examine our implementations and their perfor-
mance using a set of graphs generated with the Graph500



Benchmark [15] generator. Graph500 is a set of bench-
marks and performance metrics that provide useful in-
formation on the suitability of supercomputing systems
for data intensive applications. The generator is based
on a parallel Kronecker graph generator and is meant to
comply with the requirements of the Graph500 Search
benchmark. These requirements are aimed at producing
reproducible results for a given graph size and seed,
regardless of the level or type of parallelism in use.
The evaluated graphs cover sizes from 1 million to 8
million vertices and their arity range from 8 to 128. We
use a node from the Barcelona Supercomputing Center’s
MinoTauro cluster to test our implementations. Each
node is based on a dual socket system using Intel Xeon
E5649 processors. Each provides 6 cores running at 2,53
GHz and 12MB of shared cache memory. In addition,
one of the two NVIDIA Tesla M2090 GPUs with 512
CUDA Cores and 6GB of GDDR5 Memory is also used.
We use the measure of traversed edges processed per
second (TEPS) to gauge the performance of the proposed
implementations. The TEPS magnitude can be defined as

TEPS =
Edges traversed

T ime elapsed
(1)

Because of its implementation, the Graph500 genera-
tor does not output uniform and completely connected
graphs. For the experiments, we choose a source vertex
s0 that spans in a relatively comprehensive tree, covering
over 90% of the total number of edges in all graphs.

As an introductory note, Figure 9 illustrates the ben-
efits of the task subdivision strategy by showing the
evolution of the performance of a graph traversal while
increasing the number of tasks. This figure is based on a
CPU-only implementation when traversing a graph from
the set with 2 million vertices and an arity of 32 (64
million edges). For this particular experiment, only 6
cores (1 socket) were used with 6 threads. We obtain
a processing rate from 153 to 790 MEPS, noticing an
increasing performance with more available tasks; reach-
ing its peak around 128. Having more tasks available
allows a more fine-grained graph subdivision, providing
the beneficial side effects described in Section IV. For

this particular experiment, the overhead associated with
task management starts to be noticeable at 256 tasks,
making the performance drop afterwards.

Figure 10.a shows the performance and processing
rate of our workload-aware scheme when traversing the
benchmark set. All of the experiments were conducted
using a variable number of threads as well as a variety of
task subdivisions. The results show the performance of
the best combination of these variables in each case for
graphs between 1M and 8M vertices and an arity from 8
to 128. The lambda value was also tailored specifically
for each execution in order to obtain optimal efficiency.
As a general rule, the execution was moved to the GPU
before the vertex discovery rate became exponential. We
can distinguish three different patterns in our results
depending on the graph size. For graphs with fewer
than 256 million edges, the performance rate increases
with the arity and scales well with an increasing number
of vertices. It reaches a processing rate of 2.8 TEPS
for arities of 128 by benefiting from graph information
duplication in the GPU and task pipelining whenever
possible.

Unlike the CPU behavior, the synchronization over-
heads increase much faster with a growing number
of tasks in the GPU due to the high communication
latencies associated with them. Graphs with more than
256 million edges (4M nodes with 128 arity and 8M
nodes with 64 arity) need to be divided into a higher
number of tasks in order to fit correctly in the GPU
memory space. As a result, performance is severely
affected due to such synchronization overhead.

Finally, the largest graph (8M vertices with 128 arity)
also needs to be mentioned given its extremely low
processing rate of 100 Million TEPS. For this particular
case, the graph and the task information cannot be allo-
cated entirely in the GPU. Because of this, the OmpSs
runtime keeps evicting task information in order to allow
free space for upcoming tasks, thus losing the benefit
of graph information caching. As a result, the memory
bus becomes the limiting factor, making performance
drop. Save for this specific case, the hybrid scheme
outperforms the CPU-only implementation by a factor

Fig. 9. CPU-only implementation performance



Fig. 10. (a) Workload-aware hybrid BFS performance (b) Fixed-partitioned-space hybrid BFS performance

of 1.5 in the worst case. Depending on the graph arity,
the difference increases.

The fixed partitioning approach introduces the notion
of cooperative execution between components by assign-
ing a set of tasks to be executed in the CPU and another
bound to the GPU. Figure 10.b shows the performance
rates obtained with the fixed partitioning implementation
under the same experiment conditions. Contrary to our
initial expectations, the results obtained are much lower
than those obtained with our alternative scheme; ranging
from 200 Million to 1 Billion TEPS depending on the
graph and the available parallelism. It is also interesting
to note that, despite the poorer rates, the implementation
scales well with larger graphs.

The general drop is caused by a performance bottle-
neck associated with the asymmetric processing prop-
erties of both CPUs and GPUs. It has been assumed

in the paper that both components perform best under
a different sort of circumstances. We take advantage
of this fact in the first scheme by using the optimal
component every iteration. However, employing both
cooperatively in a synchronized fashion implies sum-
ming together the weaknesses as well as the virtues. In
effect, small vertex frontiers cause a high GPU overhead
when traversed, incurring a performance penalty. Large
vertex frontiers also cause an unbalanced execution,
where GPUs severely outperform CPUs. Because the
approach is level synchronous, the performance is seri-
ously unbalanced at every iteration. As a result, the CPU-
only implementation outperforms the fixed partitioning
scheme because of its superior efficiency when traversing
small vertex frontiers and the avoidance of GPU transfer
costs.

Along with OmpSs, the Barcelona Supercomputing

Fig. 11. Execution flow and load balancing during a graph traversal. Execution is shown in yellow and the idle time in blue



Center team also provides Paraver, a comprehensive
suite of analysis and profiling tools. Figure 11 shows
an execution diagram captured with Paraver that depicts
the evolution of a graph traversal with 6 iterations. For
illustrative purposes, the number of threads used for the
experiment is reduced to two. The first bar shows the task
executions (yellow) bound for CPU, while the second
displays the ones bound to the GPU. The idle time is
marked in sky blue. We can observe a remarkable load
imbalance in the suboptimal component every iteration.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce two strategies for tackling
the Breadth-First Search graph traversal using a hybrid
system composed of CPUs and GPGPUs. While one
approach proves to be more effective than the other,
we show that common problems associated with the
GPU can be overcome and high processing rates can
be achieved.

In addition, we decouple the parallelization strategy
from the underlying hardware by introducing the task
notion applied to graph traversals. The task subdivision
adds several beneficial side-effects to the graph traversal
problem, such as effective CPU load-balancing and an
intuitive solution to process graph explorations on hybrid
environments.

Adapting the hardware to the execution flow and the
graph requirements has proven to be a successful strategy
for tackling graph traversals despite the limitations GPG-
PUs show at present. Some of the shortcomings, such as
memory latencies and bandwidth capacities, are being
improved with new GPU generations, making hybrid
environments more effective and efficient.

It is also worth noting that our implementation sup-
ports the traversal of graphs that do not fit the GPU
main memory. Although the performance drops severely
in this case, it may become a viable and effective solution
if memory latencies improve in the foreseeable future.

Further research will be oriented toward exploring
new hybrid strategies and improving the coordination
between the CPU and GPU executions. One of the
aspects to be examined is the automatic tuning of the
lambda parameter to achieve optimal performance in
each execution case regardless of the graph topology.

With our approach, the BFS problem can be subdi-
vided and distributed through multiple processing nodes.
Even though we propose two strategies, more execution
schemes will be contemplated as part of the continua-
tion work, including the combination of the described
strategies and a dynamic load-balanced version of the
Fixed-partitioned-space hybrid BFS.
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