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Abstract—High energy consumption has become a critical 

problem for supercomputer systems. GPU clusters are becoming 
an increasingly popular architecture for building supercomput-
ers because of its great improvement in performance. In this 
paper, we first formulate the tasks mapping problem as a mini-
mal energy consumption problem with deadline constraint. Its 
optimizing object is very different from the traditional mapping 
problem which often aims at minimizing makespan or minimiz-
ing response time. Then a Waterfall Energy Consumption Model, 
which abstracts the energy consumption of one GPU cluster sys-
tem into several levels from high to low, is proposed to achieve an 
energy efficient tasks mapping for large scale GPU clusters. 
Based on our Waterfall Model, a new task mapping algorithm is 
developed which tries to apply different energy saving strategies 
to keep the system remaining at lower energy levels. Our map-
ping algorithm adopts the Dynamic Voltage Scaling, Dynamic 
Resource Scaling and β-migration for GPU sub-task to signifi-
cantly reduce the energy consumption and achieve a better load 
balance for GPU clusters. A task generator based on the real task 
traces is developed and the simulation results show that our 
mapping algorithm based on the Waterfall Model can reduce 
nearly 50% energy consumption compared with traditional ap-
proaches which can only run at a high energy level. Not only the 
task deadline can be satisfied, but also the task execution time of 
our mapping algorithm can be reduced.  
Keywords—mapping algorithm, Dynamic Voltage Scaling, GPU 
cluster 

I. INTRODUCTION 
Because of the lower cost, massively parallel hardware ar-

chitecture and higher computing capability, GPUs gradually 
are becoming the mainstream accelerators in the heterogene-
ous supercomputing environment. And the high performance 
of floating point arithmetic and memory operations on GPUs 
make them particularly well-suited to many of the scientific 
and engineering workloads that occupy GPU clusters [22] [23] 
[24].  

Beside the cost-efficiency of GPU cluster, it also has the 
potential to significantly reduce space, power, and cooling 
demands. Nvidia’s commercial “Tesla” GPU with four high 
performance GPU cores is particularly tailored for GPU clus-
ters. In addition, many modern supercomputers in the Top 500 
list are highly-tuned clusters using commodity processors 
combined with heterogeneous accelerators. Given all of the 
above, we can expect that GPU clusters will become the main 
stream of the future HPC cluster and supercomputer deploy-
ment.    

Over the past decade, many efforts are made to find effi-
cient task mapping algorithms for heterogeneous computing 
environments, such as in supercomputers or large scale HPC 
clusters. Following the terminology of the scheduling related 
research, the matching tasks to cluster nodes and scheduling 
the execution order (inside node) of these tasks are combined 
referred to as mapping. As we know, the task scheduling prob-
lem with data dependencies or without data dependencies has 
been proven to be NP-complete [27]. Therefore, many exist-
ing and well-known heuristics algorithms [8][15] [19][20][25] 
are proposed to achieve the near optimal results for some 
scheduling objectives, such as makespan of the schedulable 
tasks set (the overall completion time of these tasks),  Quality 
of Service (such as task deadlines or task priorities) ,  resource 
utilization and energy consumption.   

Recently, more research has focused on the mapping algo-
rithm in the hybrid system deploying several GPU cards. Qilin 
[6] features adaptive mapping technique in the hybrid system 
with only one CPU and one GPU by which the computation-
to-processor mapping is dynamically determined by the run-
time according to the problem size of the current task and the 
processor computing capability, choosing either the available 
CPU or GPU implementation. In [4][5], the authors designed 
a scheduling algorithm based on task speculation on multi-
GPU systems and this scheduler can dynamically map GPU 
tasks to accelerators with potentially heterogeneous architec-
tures. This scheduler does not consider the mapping problem 
combined with CPU applications or general tasks with both 
CPU and GPU implementations. In [14], the authors proposed 
a novel predictive scheduler based on past performance his-
tory for heterogeneous system with multiple GPUs. Besides, 
some works in [8], StarPU [11] also focus on the scheduling 
problem in multi-GPU systems.  

Those algorithms are efficient for their target platform; 
however, when the hardware system contains much more 
nodes and each with many CPUs and many GPUs such as 
GPU cluster deployments, new algorithms must be developed 
to take advantage of the new hardware features. The schedul-
ing problem in GPU clusters, and even in multi-GPU systems 
in the same machine, shows more difficulties and challenges 
than in the traditional heterogeneous system and we have not 
found published papers which pay attention to the scheduling 
problems in the large scale GPU cluster with many computing 
nodes. Some algorithms [6] mentioned the energy efficiency, 
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but they did not consider the energy saving from the overall 
system prospective. In fact, the huge energy consumption has 
become an outstanding and serious problem in the high per-
formance computing environment [25] and continues to 
plague the users and researchers in GPU clusters [24].  

In this paper, we provide the Waterfall Energy Consump-
tion Model (simply called Waterfall Model) which divides the 
energy consumption of overall system into three different lev-
els according to different energy saving strategies deployed. 
Compared with traditional systems without any energy saving 
mechanism, our model can achieve energy savings by em-
ploying both the coarse-grained method and fined-grained 
method together. The key idea of our mapping algorithm 
based on the Waterfall Model for GPU clusters is trying to 
apply different energy saving strategies to keep the system 
remaining at lower energy levels. More specifically, we make 
the following contributions. 

 We put forward and formulate the energy efficient map-
ping problem for independent tasks with deadline con-
straints on large scale GPU cluster systems.  

 We develop the Waterfall Model which abstracts the sys-
tem energy consumption into several energy levels and 
develop an efficient energy saving mapping algorithm for 
large scale GPU cluster systems based on this model 

 We take advantage of some coarse-grained and fine-
grained strategies together to reduce the energy consump-
tion of GPU clusters: DRS (Dynamic Resource Scaling) 
for computing nodes, DVS (Dynamic Voltage Scaling) for 
CPUs, and β-migration for GPU sub-tasks. 
As our simulation results show, our mapping algorithms 

with these strategies can provide much more benefits (nearly 
50% energy saving) in term of energy consumption.  

The rest of this paper is organized as follows. In section 2 
we introduce some related works on scheduling algorithms. 
We give the overview of the task mapping problem on GPU 
cluster in section 3. The Waterfall Model is described in sec-
tion 4. In section 5, we propose our scheduling algorithm in 
detail in a GPU cluster. Our simulation results are provided in 
section 6 and we conclude the paper in section 7.  

II. RELATED WORK 

A. Mapping Algorithms in Heterogeneous Systems 
The task mapping (defined as matching and scheduling) 

problem in heterogeneous systems is a classic problem and 
has been studied for many years. Because of its intractable 
nature, much of the research focuses on heuristics. For the 
case of tasks without data dependencies (called meta-task in 
some publications),   in [25], the authors summarize eleven 
static heuristics  for mapping a class of tasks onto heterogene-
ous systems, such as Opportunistic Load Balancing (OLB, 
which tries to keep every machine as busy as possible), Mini-
mum Execution Time (MET, select the best machine for each 
task), Minimum Completion Time (MCT, combines the bene-
fits of OLB and MET), Min-min heuristic (similar to Shortest 
Task First scheduling), Max-min heuristic (Longest Task 
First), etc. Many later mapping algorithms make some modifi-
cation and improvement based on these heuristics.  In [15], the 

authors compare the mapping algorithms between dynamic 
mapping and static mapping, online mode and batch mode. 
They introduce several typical algorithms for both dynamic 
and static, immediate mode and batch mode. In addition, they 
introduce some applications of these mapping algorithms. All 
of these discussions inspire us to solve the mapping problems 
for the GPU cluster.   

The Directed Acyclic Graph (DAG) tasks (tasks with data 
dependency) mapping problem is another significant topic in 
the heterogeneous computing. There are also many well-
known heuristics proposed. In [20], the authors present two 
scheduling algorithms for a bounded number of heterogeneous 
nodes, which are called the Heterogeneous Earliest-Finish-
Time (HEFT) algorithm and the Critical-Path-on-a-Processor 
(CPOP) algorithm. According to the evaluation results in [20], 
these two algorithms surpass other works in several metrics 
such as schedule length ratio, speedup, frequency of best re-
sults, and average scheduling time metrics.  These two algo-
rithms have already been applied to many systems and have 
significant impact in the research community [8][19][20]. 

B. Scheduling Algorithms on Multi-GPU systems 
Because of the importance of task scheduling algorithms, 

many scheduling algorithms are proposed in order to enhance 
the system performance at multiple GPUs platform. Below, 
we will introduce some related works.  
1) Qilin system : A DAG graph of kernels is created by a run-

time component as the program executes. Qilin features an 
adaptive mapping technique by which the computation-to-
processor mapping is dynamically determined by the run-
time, choosing either the available CPU or GPU imple-
mentation. However, Qilin only provides its results on one 
CPU-GPU pair system and we focus on large-scale GPU 
clusters where each node may have many CPU-GPU pairs.   

2) Scheduling based on Speculation: Harmony [4][5] provide 
an algorithm based on speculation on multi-GPU systems 
and this scheduler can dynamically map kernels to accel-
erators with potentially heterogeneous architectures. To 
achieve this, the software branch prediction coupled with 
the memory renaming mechanism is used to distinguish 
between the speculative and non-speculative state to en-
hance the program concurrency. However, this method fo-
cuses on multi-GPU system and it only considers the 
scheduling of GPU applications (called GPU computing 
kernels and no CPU instructions).      

3) Scheduling based on Performance History: A novel pre-
dictive scheduler based on past performance history on the 
CPU/GPU-like systems is proposed in [14]. It is stated that 
this approach can fully utilize all available processing re-
sources and achieve speed improvements ranging from 30% 
to 40% compared to the usage of the GPU alone in a single 
application mode. Like the Harmony, it only considers the 
GPU applications in some very simple scheduling situa-
tions, such as First Come First Served (FCFS), and sched-
uling based on past performance.    

 

III. OVERVIEW OF THE MAPPING PROBLEM  
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A. GPU cluster model 
Our mapping algorithm mainly focuses on the GPU cluster.  

Next we discuss a more accurate abstraction of the GPU clus-
ter.     

Many GPU clusters have been deployed in the past few 
years, such as the 160-node “DQ” GPU cluster at LANL [22] 
and the 16-node “QP”GPU cluster at NCSA [23]. In [24], the 
authors introduced two GPU cluster deployments in detail: the 
192-node cluster “Lincoln” and the 32-node cluster “AC”. 
This paper shows that a one-to-one ratio of CPU processors to 
GPUs , a much important feature in GPU deployment, may be 
desirable from the software perspective , as it greatly simpli-
fies the development of MPI-based applications  and also 
greatly simplifies the mapping algorithm. A one-to-one ratio 
of CPU processors to GPUs means that when a given task is 
pushed into a compute node, we can assign a CPU-GPU pair 
to execute this task to achieve high performance and much 
less energy consumption. Therefore, we assume that the num-
ber of CPUs (meaning CPU processor and one CPU may have 
multiple cores ) and GPUs are equal inside a compute node.  

In most of the GPU clusters mentioned above, every com-
puting node is homogeneous and has the same configuration. 
A k node GPU cluster can be formulated as a set  

{n1, n2, n3, …, nk} 
Here, for each node nh (1≤h≤k) in a GPU cluster which con-
sists of m CPUs (homogeneous) and m GPUs (homogeneous), 
the m CPUs are formulated as a CPU set for node nh , , , , , ,  
and the m GPUs for node nh are formulated  as  , , , , , ,  
We have in total m CPU-GPU pairs. All of the nodes are con-
nected in a fully connected topology using a high speed inter-
connect.    

We add two energy efficient properties for the GPU clus-
ters in our Waterfall Energy Consumption Model to further 
reduce the energy consumption. Dynamic Voltage Scaling 
(DVS) for CPU in a computing node and Dynamic Resource  
Scaling (DRS) for different volumes of tasks in a GPU cluster.  

 DVS enabled GPU Clusters: the DVS scheme is an effi-
cient way to reduce dynamic power consumption by ad-
justing the supply voltage in an appropriate manner. Much 
research has been done to power-aware cluster computing 
by using the DVS scheme [1][2][3][4]. We adopt the DVS 
feature of CPU (unavailable for GPU because currently 
none of such product is available) in the GPU clusters and  
will discuss the usage of above strategies for energy reduc-
tion  in later part. 

 DRS enabled GPU Clusters: Each node in a GPU cluster 
can be transitioned among three states, respectively busy, 
spare, and sleep. When all of CPUs or GPUs inside this 
node are executing some tasks, this node is in the busy 
state. When at least one of the CPU-GPU pair is free (but 
ready to execute a task immediately), this node is in the 
spare state. When a node in spare state does not have any 
task to run on any CPU-CPU pair, this node will be pow-
ered down and changes its state from spare to sleep. The 
node in the sleep state can significantly reduce the energy 

consumption. When more tasks arrive, the sleeping node 
can be woken up and its state will be changed from sleep 
to spare or busy. The DRS (Dynamic Resource Scaling) 
mechanism can dynamically adjust the number of working 
nodes to save energy.   

B. Tasks Model 
We assume that all the incoming tasks are independent 

with each other without data communication.  All the tasks 
may follow different distributions. For each task t, it has two 
sub-tasks, CPU-subtask tCPU and GPU-subtask tGPU. The CPU 
subtask is the part which is suitable for running on CPU and 
the GPU subtask is the part which is suitable for running on 
GPU. If we let w be the total processing volume of t and α be 
the percentage of the CPU subtask, then the processing vol-
ume of the CPU subtask should be w⋅α and the processing 
volume of the GPU subtask should be w⋅(1-α). Let r be the 
release time of task t, d be the required deadline of t. Then a 
task can be formulated as a tuple  

t =<α, w , r, d> 
All the μ tasks that are to be executed can be formulated as 

a set , , ,  
All the tasks can be freely assigned to any CPU-GPU pair 

in a given node as a whole. The CPU subtask and the GPU 
subtask of the same task will not be assigned to different 
nodes for simplicity and reduced overhead. For the same rea-
son, we adopt the non-preemptive scheduling mechanism 
which means that once a task is running on one selected CPU-
GPU pair, it will keep running to the end of this task, and 
even high priority tasks cannot replace it to run on this CPU-
GPU pair.  

C. Energy Consumption Model for GPU cluster 
With the appearance of large scale GPU clusters, there are 

increasing and even critical requirements on lowering the total 
system energy consumption. The main power consumption in 
CMOS circuits is composed of dynamic and static power for 
both CPU and GPU. The static power goes for the idle circuit 
which has no workload while the dynamic power goes for the 
circuit with executing tasks.  

ENh, the total energy consumption for computing node nh , 
can be expressed in Equation (1).  is the energy consump-
tion of ,  and  is the energy consumption of , . ENoverall, 
the overall energy consumption of a given GPU cluster is 
given in Equation (2). Recall that each node nh can have three 
states: busy which means that all the CPU-GPU pairs are run-
ning; spare which means that part of the CPU-GPU pairs are 
running and the other CPU-GPU pairs are idle; sleep which 
means that all of the CPU-GPU pairs are powered down (the 
energy consumption can be ignored). Thus, the energy con-
sumption only needs to consider the busy and spare nodes.  ∑                          (1) ∑                              (2) 

The CPU runtime power model is discussed in reference 
[18]. Here, let the static power consumption be power(C,s)  , 
the dynamic power consumption be power(C,d)  and the total 
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lasting time be  which includes execution time  and 
idle time . So we can calculate the ith CPU energy con-
sumption in node nh as follows: 

 , , ,
        , ,          3  

  
But for the DVS-enabled CPU processor, the energy con-
sumption E which is expressed in Equations (4) and (5) is 
related to the supply voltage V based on the well-known cube-
root rule for CMOS devices [1][2].   

 
2

eff CE C f V t= ⋅ ⋅ ⋅                                            (4)
 

Cf kV=                                                       (5) 
 

where Ceff is the effective switching capacitance of this chip, 
fC is the processing speed of the CPU, and t is the processing 
time.  

Like the CPU energy consumption model, in [13], the au-
thors also propose a novel GPU dynamic power model. When 
the static power consumption is power(G,s) and the dynamic 
power consumption is power(G,d) . We model the GPU en-
ergy consumption as follows:  

 , , ,
        , ,          6  

 

D. Formulation of the Energy Efficient Mapping Problem 
with Deadline Constraint 
Based on the GPU cluster model, task model and the en-

ergy consumption model, the energy efficient mapping prob-
lem can be formulated as an optimization problem with dead-
line constraint. It can be expressed in Equation (7). 

 :  . .  ,     7  
 
 In summary, we try to map all the incoming tasks onto a 

GPU cluster with minimal energy consumption where the 
deadline of each task must be satisfied.  

 

IV. CONCEPT OF THE WATERFALL MODEL 

A. Mapping Problem Overview 
The mapping heuristics can be grouped into two catego-

ries: immediate-mode and batch-mode. In the immediate-
mode, a task is mapped onto a machine as soon as it arrives at 
the mapper. In the batch mode, tasks are not mapped onto the 
machines as they arrive; instead they are collected into a set 
that is examined to execute mapping triggered by some map-
ping events. Because the batch-mode outperforms the imme-

diate-mode in most cases, we only consider the batch-mode in 
this paper.   

Consider μ ready tasks t1, t2, t3,…, tμ , that have to be proc-
essed on a GPU cluster.  Here, we adopt the common expres-
sion of ready tasks similar to reference [15]. For the vth map-
ping event, the ready tasks set Mv is mapped at time τv . The 
ready tasks set  Mv , for v > 0, consists of tasks that arrived 
after the last mapping event and the tasks that were mapped 
but did not start executing. Let b be the beginning execution 
time of tx. Mv can be expressed as follows:                  |                          |               (8) 

We propose some important parameters to simplify our 
mapping algorithm, respectively: 
1) Δ-value: we set Δ-value  for given task tx expressed as  

Δ(tx)=d(tx)-CompletionTime(tx)                     (9) 
where CompletionTime(tx) is the finishing time needed to 
run a given task tx on a idle CPU-GPU pair.  

2) Task distribution ratio θ: For a given task tx executing on a 
CPU-GPU pair, let ,  be the execution time of 
CPU subtask on CPU C and ,  be the execution 
time of GPU subtask on GPU G. The task distribution ratio 
depicts the processing volume distribution of this task be-
tween CPU and GPU. It can be expressed as:                                  ,,                               (10) 

3) Earliest available time for given node: The earliest com-
pletion time of any CPU-GPU pair in the node nh is ex-
pressed as ∼ . It depicts the earliest available time of 
one CPU-GPU pair for this computing node.  

4) Latest available time for node: The latest completion time 
of any CPU-GPU pair in the node nh is formulated as 
∼ . It gives the latest available time of one CPU-GPU 

pair for this computing node.  
5) Load Balance Displacement π: Let π(nh) be the load bal-

ance displacement for node nh which can be formulated as   
π(nh)= ∼ ∼                                       (11) 

Overall, there are two kinds of events to trigger a new 
scheduling procedure: task deadline triggered event and 
counter triggered event.  

1)  Deadline Triggered Event: we consider a hard real time 
system which must meet all incoming tasks’ deadline re-
quirements. When the deadline of a waiting task will not 
be met by any idle CPU-GPU pairs, a scheduling event 
occurs. We use the Δ-value of the task to measure this ur-
gency. When Δ(tx) ,       , a 
mapping event is triggered and the mapper must map this 
task into the appropriate CPU-GPU pair immediately.   

2) Counter Triggered Event: Besides the deadline triggered 
event, we set a Task Counter to trigger the mapping event. 
When an arriving task makes |Mv| greater than or equal to 
predetermined number Constant, a mapping event occurs. 
This value of Constant is a constant and it is related to the 
arrival rate and completion rate of the tasks.  

B. Prediction Performance Model 
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The assumption that these expected execution times are 
known is commonly made when studying mapping heuristics 
for heterogeneous computing systems. We also make this as-
sumption. 

The approaches to getting the CPU estimated execution 
times for a given task based on task profiling and analytical 
benchmarking have been proposed for many years, and are 
discussed in references [9][10]. Fortunately, like CPU imple-
mentations, there are also several current performance models 
to predict GPU execution time. In [12], the authors propose an 
analytical performance model which greatly depends on the 
GPU features and characteristics. Despite the accurate results 
guaranteed, this model greatly involves the details such as the 
GPU architecture and application implementations. So this 
model will incur more difficulties and overheads as the pro-
gram’s complexity grows. In the Qilin system, they exploit a 
linear fitting method to predict the execution time on GPU. 
They assume that the execution time is linear to the problem 
size of a task. But this is not true in many cases.   

In this paper, based on the core features of above ap-
proaches, we adopt another way to more practically and accu-
rately predict the execution time on GPU and CPU.  We inte-
grate and unify the features between CPU and GPU, and pro-
pose the normalized processing volume w(t) for a given task. 
Therefore, if the CPU processor speed is fC,i, 1≤i≤n; and GPU 
processor speed is fG,j, 1≤j≤m, then the expected time of task t 
on Ci and on Gj is expressed as follows: 

                 , , ,                                  (12) 

                 , , ,                                  (13) 

  where ( , ), ( , )S t i S t j  are constant factors which stand for the 
start up time on Ci and Gj for the given task t. 

C. Waterfall Energy Consumption Model 
Inspired by the features of a waterfall, which tries to drop 

down to lower potential energy level as soon as possible, we 
provide the Waterfall Model to express our basic idea on an 
energy efficient task mapping mechanism. 

Our Waterfall Model divides the system energy consump-
tion into three different energy level, high, middle and low 
energy levels. We define the traditional model as the one 
which does not adopt any energy efficient strategies and it will 
always keep the whole system in the high energy level. The 
system based on the Waterfall Model can employ some 
coarse-grained energy efficient strategies focusing on comput-
ing nodes, such as the DRS (Dynamic Resource Scaling) 
mechanism (a wakeup-sleep mechanism for computing nodes). 
Employing such coarse-grained strategies will keep the sys-
tem in the middle energy level which means that it can con-
sume less energy consumption than the traditional model, but 
still has the potential to improve the energy efficiency. Based 
on the coarse-grained strategies, we propose some other fine-
grained strategies focusing on the CPU-GPU pair, which will 
keep the system in low energy level, such as DVS strategies 
and β-migration for GPU subtasks. We summarize the Water-
fall Model in Fig.1. Our heuristic algorithm is designed based 
on this model.  

 

 

Fig. 1: Waterfall  Energy Consumption Model 

V. MAPPING ALGORITHMS 
Our mapping algorithm (mapper) targeting on GPU clus-

ters will experience three phases: in the first phase, the map-
per selects the appropriate task from the schedulable task set 
Mv and assigns it into the optimal CPU-GPU pair (Co, Go). In 
the second phase, the mapper employs the DRS mechanism to 
wake up or power down some nodes if necessary. In the third 
phase, the mapper takes the DVS mechanism and β-migration 
for GPU subtask to adjust the execution of this task.  

A. Matching Process  
The matching process is the core part in the mapping proc-

ess. It involves how to select appropriate CPU-GPU pair for 
every task and how to select a task from the ready task set.  
1) CPU-GPU pair selection: Firstly, we need to select he 

CPU-GPU pair for each task in the ready task set.   Here, 
let the available time of CPU and GPU be   and 

, where 1≤h≤k; 1≤i, j≤m. Therefore, the com-
pletion time for a task tx on CPU-GPU pair (Ci, Gj) on 
node h is given as follows: 

    , , · , , 
                                1 · ,     (14) 
We select the optimal CPU-GPU pair (Co, Go) to minimize 
the completion time of this task tx :                    ,  , ,      (15)  
In addition, there are still some things to be noted. If there 
are two nodes (nk, nh) with  ∼ = ∼   but π(nh)>π(nk), 
then we will select the CPU-GPU pair on node nh. Intui-
tively, this method can avoid creating larger unbalanced 
load on existing node so help to make more nodes transi-
tioned into  sleep state.  

2) Task selection based on Δ-value: As  mentioned be-
fore, the ready schedulable tasks currently are denoted as a 
set Mv. At time τv-1 the scheduling event occurs. For each 
task tx in the ready schedulable set Mv, in order to meet its 
deadline, the task tx with minimum Δ-value will be sched-
uled first. This strategy is inspired by the well-known Earli-
est Deadline First (EDF) [17] algorithm, but we combine 
the deadline and the completion time for a task and we al-
ways schedule the task with the minimum Δ-value firstly. 
Intuitively, our strategy tries to schedule more urgent task 
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(task with smaller Δ-value) at the same time considering the 
computing capability (completion time) of selected CPU-
GPU pairs.    

B. Dynamic Resource Scaling Algorithm  
Every computing node will transition between three states, 

respectively busy, spare and sleep. In order to reduce the en-
ergy consumption, we need to keep much fewer nodes execut-
ing more workload and try to place more nodes in sleep. In 
other words, we need make the number of nodes in spare state 
as small as possible. If the scale of the GPU cluster is large 
but the workload is too small, it is obviously unwise to power 
up all nodes to execute this work. Therefore, a Dynamic Re-
source (computing nodes) Scaling algorithm based on the Wa-
terfall Model is proposed. Although it is a relatively coarse-
grained method, many existing data centers exploit a similar 
method to reduce the energy consumption in the implementa-
tion of cloud computing or virtualization [16].  Our Dynamic 
Resource Scaling algorithm is illustrated in Fig. 2, where S(k) 
stands for the current state of the node nk and current sched-
uled task is a task in ReadyTaskSet with minimum Δ-value, as 
is discussed in task selection section.  

 
Dynamic Resource Scaling algorithm: 
1:   if  (d(tx)-ct(tx, Co, Go) <0)  

Means no busy or spare node can meet the deadline of tx  
2:   then wake up a new node nk whose S(k) = sleep 
3:                       change its state S(k) into spare 
4:                      schedule tx onto this node 
5:   else assigned tx onto the node nh with minimal  ∼   

and maximal π(nh) 
6:       if  all CPU-GPU pairs of node nh are busy 
7:       then   set S(h) = busy 
          endif 
8:  endif 
9:  for each node nh in the GPU cluster 
10:       if  all CPU-GPU pairs are idle  
11:          then   power down this node and set  S(h) = sleep 
12:       endif 
13:       if  some CPU-GPU pairs are idle and some are busy 
14:           then    set  S(h) = spare 
15:        endif 
16: end for 

Fig. 2: Dynamic Resource Scaling Algorithm 

C. Voltage selection based on DVS mechanism 
In real-time systems with QoS constraints, the DVS tech-

nique is used in order to save the energy consumption as well 
as to meet the task deadline. The basic idea is to slowdown the 
CPU speed and make the task completion moment just fit the 
task deadline. The DVS mechanism of CPU is exploited and 
applied ubiquitously for many years [1][2][3], but the DVS 
technology of GPU is still not possible.  Therefore, we adopt 
the DVS mechanism for the CPU processor only. We assume 
that the voltage levels in this paper are discrete from V1, to Vs 
(which satisfies V1<V2<…<Vs). According to the cube-root 

rule and DVS energy consumption in Equation (4), the lower 
the CPU voltage level, the less the energy consumption.   

Here, the task distribution ratio θ(tx) of CPU-GPU pair for 
the given task tx  is expressed as , ,  . Our 
mapping purpose is to achieve better load balance between 
CPU and GPU, which means the closer θ(tx) is approaching 1, 
the better the load balance is.   
     The dynamic DVS voltage selection algorithm is illustrated 
in Fig. 3, where Co stands for the CPU of the optimal CPU-
GPU pair for this task.  
 

Dynamic Voltage Scaling  algorithm: 
1:   for each supply voltage Vi  from Vs down to V1  
2:         do re-calculate the execution time at voltage Vi 
3:                     , ,    
4:    end for  
5:   Let Selected Voltage SV= Vs  
6:    for each supply voltage Vi from Vs-1 to V1  
7:          if  |θ(tx, Vi)-1|<|θ(tx, SV)-1| then  SV= Vi 
8:          endif 
9:    end for 

Fig. 3: DVS voltage selection algorithm. 

D. β-migration for GPU Sub-tasks  
As is mentioned before, the typical implementation of a 

task on GPU cluster contains two parts: CPU sub-task and 
GPU sub-task. According to the empirical facts and detailed 
application, CPU sub-task always includes some control-
ling/logical instructions, sequential instructions, some instruc-
tions with much higher loop execution overhead, or frequent 
I/O operation instructions, etc. The GPU sub-task always in-
cludes high data parallel instructions, and is executed on GPU 
to achieve a larger speedup, such as scientific computation 
with a high degree of data parallelism and much less commu-
nication.  

 

Fig. 4: β-migration for GPU Sub-task 

For the given task on the optimal CPU-GPU pair, the un-
equal completion time of the CPU sub-task the GPU sub-task 
will lead to wasted energy and computing resources. In most 
cases the CPU can execute certain portions of the GPU work, 
while the GPU cannot execute the CPU subtask because some 
CPU instructions are not supported by GPU. Therefore, we 
consider dividing the GPU sub-task and migrating β fraction 
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to the idle CPU in this CPU-GPU pair, as illustrated in Fig. 4. 
This strategy is called β-migration for GPU sub-task (shortly 
called β-migration). In the Qilin system, they adopt a similar 
method to divide the application into CPU and GPU parts.  

Next we discuss how to migrate β fraction of the GPU 
sub-task from GPU to CPU on optimal CPU-GPU pair. Let 
ct(tx , Co, Go) be the completion time for the task tx, and it is 
calculated by Equation (14).  After the β-migration, the frac-
tion of CPU sub-task is adjusted into (α+β(1-α)) and the frac-
tion of sub-task executing on GPU is (1-α)(1-β). Therefore the 
completion time of this task is changed into Equation (16).  
Then we select an optimal value of β to minimize the comple-
tion time of task tx, and we get the optimal β value given in 
Equation (17).         , , ,  1 , ,                          1 1 ,      (16) 

 , , ,                                  (17) 
 
Obviously, when 1, and 1 1 , are 

equal, this β achieves its optimal value, which means the sub-
tasks on CPU and GPU will be finished at the same time, 
when the task distribution ratio θ(tx) of CPU-GPU pair is accu-
rately equal to 1. Therefore, the load balance of the system is 
greatly improved. When β achieves its optimal value βoptimal ,  
we have 1. 

 
Task Mapping Algorithm for GPU clusters: 
1:  do until all tasks in Mv are mapped  
2:     Find the task tmin with minimum Δ(tx) in Mv 
3:     Apply the DRS algorithm for  tmin 
4:     Assign task tmin to the optimal CPU-GPU pair (Co,Go)  
5:     Apply the DVS algorithm for Co  
6:     Apply sub-task β-migration from Go to Co 
7:        Delete the task tmin from Mv 
8:  end do  

Fig.5: Task Mapping Algorithm in GPU cluster. 

E. Overall Task Mapping Algorithm 
Now, we propose the complete process of our mapping 

algorithm focusing on GPU cluster based on the above discus-
sion. The mapping process includes selecting the urgent task 
as current task to be scheduled, applying DRS for the current 
task, selecting optimal CPU-GPU pair (Co, Go) for current 
task, applying the DVS for Co, applying β-migration from Go 
to Co and updating the related parameters.  All of them are 
illustrated in Fig. 5. By applying the complete process, the 
system energy consumption can be dropped down from high 
to low level, as shown in Fig. 1. 

VI. EVALUATION AND SIMULATION RESULTS 

A. Simulation Methodology 
In a way, system performance such as high execution effi-

ciency is what traditional models focus on. Usually, the exe-
cution time of tasks will be considered the first metric of those 
traditional systems. In other words, tasks should be processed 
as soon as possible.  Instead, in the Waterfall Model the great-
est concern is the system’s energy performance on the premise 
that all tasks should be finished before their deadlines. 

It is known that the mapping strategies will adversely affect 
the systems’ performance. The object of the simulation is to 
quantify the difference on energy consumption between the 
system without energy saving strategies and the system adopt-
ing our energy efficient mapping strategies. Thus, two systems 
based on same hardware architecture will process the same 
tasks in our simulation test. This guarantees that the differ-
ences of the simulation results are only caused by the different 
strategies. 

B. Simulation Scenarios 
We conduct the simulation in Matlab R2009a. The simula-

tion scenario contains a Task Generator and the two compared 
system models, the traditional system model in high energy 
level and the Waterfall Model in lower energy level with both 
coarse-grained and fine-grained energy efficient strategies. 
The system running time in the simulation is set to be more 
than 24 hours. 

 

Fig. 6: The number of tasks  generated with time in the simulation 

In the real world, tasks usually distribute widely in scale 
(the processing volume for a task discussed before) even in a 
single day. We choose the statistic data of online tasks from 
the Modern Education Information Centre at Wuhan Univer-
sity of Science and Technology [28] as our experiment refer-
ence. According to the statistics, we fit the task’s scale in 24 
hours into Equation (18), that is to say, the TaskScale is a 
function of time x whose unit is second. (i.e., from 0:00:00 to 
24:00:00, x is converted to [0 , 1, 2, 3 … 86400]).  0.0001 0.0064 0.22512.9466 7.634 34.53 +174.7863                    (18) 

Besides, in reality, tasks are not arriving all the time.  
Similarly, the Task Generator does not produce tasks all the 
time; instead, it follows the binomial probability. The generat-
ing probability of the Task Generator, is 70%, that is to say, 
30% of the time, the Task Generator will not provide the sys-
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tem with any task. Tasks generated in the simulation are 
shown in Fig. 6. 

What’s more, every single task consists of a CPU sub-task 
and a GPU sub-task. The portion α of CPU sub-task to GPU 
sub-task is a random value between 0 and 1, conforming to 
normal distribution N(0.6, 0.05). In addition, every task tx has 
a  Δ-value to depict its deadline decided by Equation (9). Δ-
value obeys a normal distribution N(20, 3), The Δ-value di-
minishes one every second until it equals to zero. 

Both of the models have their own ReadyTaskSet and Task 
Counter. The ReadyTaskSet consists of the tasks generated by 
the Task Generator temporarily and the Task Counter will 
count every single task once entering into the ReadyTaskSet. 
Thus, the same tasks generated by Task Generator will be sent 
to the two system models’ ReadyTaskSets at the beginning. 
Moreover, two models have the same GPU cluster deploy-
ment, which consists of the same 100 Nodes, and each Node 
contains ten CPU-GPU pairs. CPUs are assumed to possess 
the DVS policy, and Table I shows the DVS configuration for 
CPUs in the Waterfall Model. 

TABLE I DVS CONFIGURATION OF CPUS IN WATERFALL MODEL 

CPU status 
Ci 

Normalized 
CPU Voltage 

Normalized 
Speedup of CPU 

Power

C1 1 1 95W 
C2 0.7 0.7 60W 
C3 0.3 0.3 40W 

Csleep 0 0 3W 

TABLE II SIMULATION PARAMETERS 

Parameters Description Values 
k (#node) The number of Nodes 100 
NumCPU #CPU in a node 10 
NumGPU #GPU in a node 10 

power(C, s) Power consumption when CPU is 
running no task 

30W 

power(C, d) Power consumption when CPU is 
running a task at full speed 

95W 

power(G, s) Power consumption when GPU is 
running no task 

110.13W 

power(G, d) Power consumption when GPU is 
running a task at full speed 

236W 

 
In addition, we refer to several GPU clusters hardware 

configuration in reality, such as Tianhe-1A [29], to calculate 
the CPU and GPU’s computing capability (for example the 
speedup over serial). The GPU’s spare state power is calcu-
lated according to the Qilin system. 

The Mapper will start to work when either of two condi-
tions is satisfied: a) the Task Counter counts to 10; b) the Δ-
value of any tasks in the ReadyTaskSet equals to 0. Mean-
while, once these tasks in ReadyTaskSet are sent to the Map-
per, the ReadyTaskSet is released and the Task Counter’s 
value returns to zero. 

Every time when tasks are transferred from the ReadyTas-
Set to the Mapper, we deal with these tasks in increasing order 
of the tasks’ current Δ-value. That is because a smaller Δ-
value indicates a closer time to the task deadline, i.e., the task 
is more urgent. 

C. Differences between Waterfall Model and Traditional 
Model 

There are three differences between the Waterfall Model 
and Traditional model. They are, a) separate scheduling poli-
cies; b) whether the node owns the Dynamic Resource Scaling 
(sleep-awake) mechanism; c) whether the CPU owns DVS 
policy and β-migration. In other words, Traditional Model in 
our simulation means the system owns the same hardware 
architecture as the Waterfall Model but without the DRS 
mechanism, the DVS policy and β-migration. 

To be specific, in the Waterfall Model, the right node nh 
will be chosen at first, which is the node awake with the 
minimum π(nh) (when two nodes with equal load balance dis-
placement π, we always select the node with larger ∼ ). 
However, if the minimum available time ∼  of all the 
CPU-GPU pairs in this node nh cannot meet the requirement 
of the task’s deadline, a sleep node will be woken up to per-
form the task. Then, the system will perform the Task Map-
ping Algorithm, choose the suitable CPU voltage (DVS strat-
egy) and calculate the exact β value (β-migration), and divide 
the GPU sub-task properly to obtain the minimum energy 
consumption.  

 

Fig. 7: β values in β-migration 

However, in the traditional Model, the task is simply deliv-
ered to the CPU-GPU pair owning the minimum available 
time without β-migration for GPU sub-task. CPU sub-task 
will be processed by CPU and GPU sub-task will be processed 
merely by GPU. Moreover, there are no DRS mechanisms for 
all the nodes and the DVS policy for CPU in the traditional 
model defined in the simulation, that is to say, all nodes’ 
CPUs of the traditional model only run in two states: one is 
the spare state and the other is the busy state with the fixed 
voltage. 

Fig. 7 shows all the β values in β-migration calculated in 
the Task Mapping Algorithm in our Waterfall Model. 

D. Energy Consumption Results and Discussion   
To some extent, the performance of the task scheduling al-

gorithm could affect a system’s total performance greatly. Our 
goal is to reduce the system’s energy consumption in the 
premise that tasks should be processed before their deadline. 
In our simulation, we choose the system power and the total 
system energy consumption as the metrics to evaluate the 
scheduling strategies. Simulation results on instant system 
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power and the total system energy consumption are shown in 
Fig. 8 and Fig. 9. 
 

 
Fig. 8:  System power curve over one day 

 
Fig. 9: System energy consumption curve over one day 

 
As we can see in Fig. 8 and Fig. 9, the task mapping algo-

rithm does contribute to reduce the system’s power apparently, 
especially when the task scale is relatively small (see between 
4:00:00 and 8:00:00). The reason is that our Waterfall Model 
will shut down nodes whose CPU-GPU pairs are in spare 
state to the sleep status (the percentage of sleep-level nodes 
showed in Fig. 10). Obviously, the smaller task scale, the 
more sleep nodes.  

 
Fig. 10: The percentage of sleep-state nodes curve over one day 

Even though the power consumption of Waterfall Model 
increases greatly with the task scale’s increasing (see be-
tween16:00:00 and 20:00:00), the Waterfall Model is still 
more energy efficient than the traditional model, since we 
have introduced both coarse-grained and fine-grained energy 
saving strategies into the system to keep a balance between 
task processing and energy consumption. Thus, in the simula-
tion, we have obtained a significant result, almost 50% energy 
savings in a day. 

Importantly, more spare-state CPU-GPU pairs could mean 
more energy consumptions (as showed in Fig. 11). In the Wa-
terfall Model, the node choosing strategy, choosing the node 
awake with the minimum π(nh) (when two nodes with equal 
load balance percentage π, we always select the node with 
larger ∼ ), is to reduce the interval the node stays in spare 
level because a large π value, for instance π(nh) equals to one, 
means that all the CPU-GPU pairs in the node will finish 
processing their task at the same moment when the node could 
enter into the sleep status immediately. 

 
Fig. 11: The percent of spare-state CPU-GPU pairs curve over one day 

E. Task Average Waiting Time and Average Processing Time 
Average Waiting Time and Average Processing Time of 

tasks should also be listed in the metrics of the scheduling 
strategies. Average Waiting Time indicates the period from 
the releasing of the task to the beginning when the task is ac-
tually being processed by the processors, and Average Proc-
essing Time indicates the period from the beginning of the 
task being processed by the processors to the accomplishing 
of the task.  

In most cases, the relation between system energy con-
sumption and system performance is like playing the teeter-
totter game. In other words, the energy savings is usually at 
the expense of weakening the system performance. 

 
Fig. 12: Task average waiting time curve over one day 

 
The simulation results in Fig. 12 show that task average 

waiting time of traditional system model is relatively stable 
but the situation is different for the Waterfall Model which 
possesses a strong volatility. This phenomenon could be ex-
plained by the DRS mechanism. Every time when the Δ-value 
of the task being scheduled is negative or equals to zero, 
which means that that task cannot be completed before its 
deadline in the current resource state, a sleeping node will be 
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woken up. Thus, new tasks would be added to this node until 
the node’s load balance percentage π(nh) is not the minimum. 
In this process, all tasks’ waiting time will be rather small 
since there is no task running in the latest awoken node at the 
beginning, leading to the decline of the average waiting time. 
In summary, the DRS mechanism leads to the volatile task 
waiting time. 

However, as we have discussed, the task processing time of 
the Waterfall Model will be less than that of the traditional 
model as the task mapping algorithm of the Waterfall Model 
obtains a balance of workloads between CPU and GPU. The 
simulation results on task average processing time are shown 
in Fig. 13. 

 
Fig. 13: Task average processing time curve over one day 

VII. CONCLUSIONS 
We have proposed an energy efficient task mapping algo-

rithm with much less energy consumption and better load bal-
ance in the large-scale GPU cluster. Our major contribution is 
to propose a Waterfall Energy Consumption Model to guide 
system designers to employ different energy-saving strategies 
to keep the system remaining the energy levels as low as pos-
sible. These energy efficient strategies include both a coarse-
grained method focusing on the computing nodes and fine-
grained mechanisms focusing on the CPU-GPU pair, such as 
Dynamic Resource Scaling, Dynamic Voltage Scaling and β-
migration for GPU sub-task. As the simulation results show, 
the energy savings in the low energy level compared with 
traditional model in the high energy level achieves nearly 50%.      
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