
A Waterfall Model to Achieve Energy
Efficient Tasks Mapping for Large

Scale GPU Clusters
Wenjie Liu1, Zhihui Du1*, Yu Xiao2, David A. Bader3, and Chen Xu2
1Tsinghua National Laboratory for Information Science and Technology

Department of Computer Science and Technology, Tsinghua University, 100084, Beijing, China
*Corresponding Author’s Email: duzh@tsinghua.edu.cn

2 Beijing University of Posts and Telecommunications, China
3College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332, USA

Abstract—High energy consumption has become a critical

problem for supercomputer systems. GPU clusters are becoming
an increasingly popular architecture for building supercomput-
ers because of its great improvement in performance. In this
paper, we first formulate the tasks mapping problem as a mini-
mal energy consumption problem with deadline constraint. Its
optimizing object is very different from the traditional mapping
problem which often aims at minimizing makespan or minimiz-
ing response time. Then a Waterfall Energy Consumption Model,
which abstracts the energy consumption of one GPU cluster sys-
tem into several levels from high to low, is proposed to achieve an
energy efficient tasks mapping for large scale GPU clusters.
Based on our Waterfall Model, a new task mapping algorithm is
developed which tries to apply different energy saving strategies
to keep the system remaining at lower energy levels. Our map-
ping algorithm adopts the Dynamic Voltage Scaling, Dynamic
Resource Scaling and β-migration for GPU sub-task to signifi-
cantly reduce the energy consumption and achieve a better load
balance for GPU clusters. A task generator based on the real task
traces is developed and the simulation results show that our
mapping algorithm based on the Waterfall Model can reduce
nearly 50% energy consumption compared with traditional ap-
proaches which can only run at a high energy level. Not only the
task deadline can be satisfied, but also the task execution time of
our mapping algorithm can be reduced.
Keywords—mapping algorithm, Dynamic Voltage Scaling, GPU
cluster

I. INTRODUCTION
Because of the lower cost, massively parallel hardware ar-

chitecture and higher computing capability, GPUs gradually
are becoming the mainstream accelerators in the heterogene-
ous supercomputing environment. And the high performance
of floating point arithmetic and memory operations on GPUs
make them particularly well-suited to many of the scientific
and engineering workloads that occupy GPU clusters [22] [23]
[24].

Beside the cost-efficiency of GPU cluster, it also has the
potential to significantly reduce space, power, and cooling
demands. Nvidia’s commercial “Tesla” GPU with four high
performance GPU cores is particularly tailored for GPU clus-
ters. In addition, many modern supercomputers in the Top 500
list are highly-tuned clusters using commodity processors
combined with heterogeneous accelerators. Given all of the
above, we can expect that GPU clusters will become the main
stream of the future HPC cluster and supercomputer deploy-
ment.

Over the past decade, many efforts are made to find effi-
cient task mapping algorithms for heterogeneous computing
environments, such as in supercomputers or large scale HPC
clusters. Following the terminology of the scheduling related
research, the matching tasks to cluster nodes and scheduling
the execution order (inside node) of these tasks are combined
referred to as mapping. As we know, the task scheduling prob-
lem with data dependencies or without data dependencies has
been proven to be NP-complete [27]. Therefore, many exist-
ing and well-known heuristics algorithms [8][15] [19][20][25]
are proposed to achieve the near optimal results for some
scheduling objectives, such as makespan of the schedulable
tasks set (the overall completion time of these tasks), Quality
of Service (such as task deadlines or task priorities) , resource
utilization and energy consumption.

Recently, more research has focused on the mapping algo-
rithm in the hybrid system deploying several GPU cards. Qilin
[6] features adaptive mapping technique in the hybrid system
with only one CPU and one GPU by which the computation-
to-processor mapping is dynamically determined by the run-
time according to the problem size of the current task and the
processor computing capability, choosing either the available
CPU or GPU implementation. In [4][5], the authors designed
a scheduling algorithm based on task speculation on multi-
GPU systems and this scheduler can dynamically map GPU
tasks to accelerators with potentially heterogeneous architec-
tures. This scheduler does not consider the mapping problem
combined with CPU applications or general tasks with both
CPU and GPU implementations. In [14], the authors proposed
a novel predictive scheduler based on past performance his-
tory for heterogeneous system with multiple GPUs. Besides,
some works in [8], StarPU [11] also focus on the scheduling
problem in multi-GPU systems.

Those algorithms are efficient for their target platform;
however, when the hardware system contains much more
nodes and each with many CPUs and many GPUs such as
GPU cluster deployments, new algorithms must be developed
to take advantage of the new hardware features. The schedul-
ing problem in GPU clusters, and even in multi-GPU systems
in the same machine, shows more difficulties and challenges
than in the traditional heterogeneous system and we have not
found published papers which pay attention to the scheduling
problems in the large scale GPU cluster with many computing
nodes. Some algorithms [6] mentioned the energy efficiency,

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.129

78

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.129

78

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.129

78

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.129

78

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.129

78

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.129

82

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.129

82

but they did not consider the energy saving from the overall
system prospective. In fact, the huge energy consumption has
become an outstanding and serious problem in the high per-
formance computing environment [25] and continues to
plague the users and researchers in GPU clusters [24].

In this paper, we provide the Waterfall Energy Consump-
tion Model (simply called Waterfall Model) which divides the
energy consumption of overall system into three different lev-
els according to different energy saving strategies deployed.
Compared with traditional systems without any energy saving
mechanism, our model can achieve energy savings by em-
ploying both the coarse-grained method and fined-grained
method together. The key idea of our mapping algorithm
based on the Waterfall Model for GPU clusters is trying to
apply different energy saving strategies to keep the system
remaining at lower energy levels. More specifically, we make
the following contributions.

 We put forward and formulate the energy efficient map-
ping problem for independent tasks with deadline con-
straints on large scale GPU cluster systems.

 We develop the Waterfall Model which abstracts the sys-
tem energy consumption into several energy levels and
develop an efficient energy saving mapping algorithm for
large scale GPU cluster systems based on this model

 We take advantage of some coarse-grained and fine-
grained strategies together to reduce the energy consump-
tion of GPU clusters: DRS (Dynamic Resource Scaling)
for computing nodes, DVS (Dynamic Voltage Scaling) for
CPUs, and β-migration for GPU sub-tasks.
As our simulation results show, our mapping algorithms

with these strategies can provide much more benefits (nearly
50% energy saving) in term of energy consumption.

The rest of this paper is organized as follows. In section 2
we introduce some related works on scheduling algorithms.
We give the overview of the task mapping problem on GPU
cluster in section 3. The Waterfall Model is described in sec-
tion 4. In section 5, we propose our scheduling algorithm in
detail in a GPU cluster. Our simulation results are provided in
section 6 and we conclude the paper in section 7.

II. RELATED WORK

A. Mapping Algorithms in Heterogeneous Systems
The task mapping (defined as matching and scheduling)

problem in heterogeneous systems is a classic problem and
has been studied for many years. Because of its intractable
nature, much of the research focuses on heuristics. For the
case of tasks without data dependencies (called meta-task in
some publications), in [25], the authors summarize eleven
static heuristics for mapping a class of tasks onto heterogene-
ous systems, such as Opportunistic Load Balancing (OLB,
which tries to keep every machine as busy as possible), Mini-
mum Execution Time (MET, select the best machine for each
task), Minimum Completion Time (MCT, combines the bene-
fits of OLB and MET), Min-min heuristic (similar to Shortest
Task First scheduling), Max-min heuristic (Longest Task
First), etc. Many later mapping algorithms make some modifi-
cation and improvement based on these heuristics. In [15], the

authors compare the mapping algorithms between dynamic
mapping and static mapping, online mode and batch mode.
They introduce several typical algorithms for both dynamic
and static, immediate mode and batch mode. In addition, they
introduce some applications of these mapping algorithms. All
of these discussions inspire us to solve the mapping problems
for the GPU cluster.

The Directed Acyclic Graph (DAG) tasks (tasks with data
dependency) mapping problem is another significant topic in
the heterogeneous computing. There are also many well-
known heuristics proposed. In [20], the authors present two
scheduling algorithms for a bounded number of heterogeneous
nodes, which are called the Heterogeneous Earliest-Finish-
Time (HEFT) algorithm and the Critical-Path-on-a-Processor
(CPOP) algorithm. According to the evaluation results in [20],
these two algorithms surpass other works in several metrics
such as schedule length ratio, speedup, frequency of best re-
sults, and average scheduling time metrics. These two algo-
rithms have already been applied to many systems and have
significant impact in the research community [8][19][20].

B. Scheduling Algorithms on Multi-GPU systems
Because of the importance of task scheduling algorithms,

many scheduling algorithms are proposed in order to enhance
the system performance at multiple GPUs platform. Below,
we will introduce some related works.
1) Qilin system : A DAG graph of kernels is created by a run-

time component as the program executes. Qilin features an
adaptive mapping technique by which the computation-to-
processor mapping is dynamically determined by the run-
time, choosing either the available CPU or GPU imple-
mentation. However, Qilin only provides its results on one
CPU-GPU pair system and we focus on large-scale GPU
clusters where each node may have many CPU-GPU pairs.

2) Scheduling based on Speculation: Harmony [4][5] provide
an algorithm based on speculation on multi-GPU systems
and this scheduler can dynamically map kernels to accel-
erators with potentially heterogeneous architectures. To
achieve this, the software branch prediction coupled with
the memory renaming mechanism is used to distinguish
between the speculative and non-speculative state to en-
hance the program concurrency. However, this method fo-
cuses on multi-GPU system and it only considers the
scheduling of GPU applications (called GPU computing
kernels and no CPU instructions).

3) Scheduling based on Performance History: A novel pre-
dictive scheduler based on past performance history on the
CPU/GPU-like systems is proposed in [14]. It is stated that
this approach can fully utilize all available processing re-
sources and achieve speed improvements ranging from 30%
to 40% compared to the usage of the GPU alone in a single
application mode. Like the Harmony, it only considers the
GPU applications in some very simple scheduling situa-
tions, such as First Come First Served (FCFS), and sched-
uling based on past performance.

III. OVERVIEW OF THE MAPPING PROBLEM

79797979798383

A. GPU cluster model
Our mapping algorithm mainly focuses on the GPU cluster.

Next we discuss a more accurate abstraction of the GPU clus-
ter.

Many GPU clusters have been deployed in the past few
years, such as the 160-node “DQ” GPU cluster at LANL [22]
and the 16-node “QP”GPU cluster at NCSA [23]. In [24], the
authors introduced two GPU cluster deployments in detail: the
192-node cluster “Lincoln” and the 32-node cluster “AC”.
This paper shows that a one-to-one ratio of CPU processors to
GPUs , a much important feature in GPU deployment, may be
desirable from the software perspective , as it greatly simpli-
fies the development of MPI-based applications and also
greatly simplifies the mapping algorithm. A one-to-one ratio
of CPU processors to GPUs means that when a given task is
pushed into a compute node, we can assign a CPU-GPU pair
to execute this task to achieve high performance and much
less energy consumption. Therefore, we assume that the num-
ber of CPUs (meaning CPU processor and one CPU may have
multiple cores) and GPUs are equal inside a compute node.

In most of the GPU clusters mentioned above, every com-
puting node is homogeneous and has the same configuration.
A k node GPU cluster can be formulated as a set

{n1, n2, n3, …, nk}
Here, for each node nh (1≤h≤k) in a GPU cluster which con-
sists of m CPUs (homogeneous) and m GPUs (homogeneous),
the m CPUs are formulated as a CPU set for node nh , , , , , ,
and the m GPUs for node nh are formulated as , , , , , ,
We have in total m CPU-GPU pairs. All of the nodes are con-
nected in a fully connected topology using a high speed inter-
connect.

We add two energy efficient properties for the GPU clus-
ters in our Waterfall Energy Consumption Model to further
reduce the energy consumption. Dynamic Voltage Scaling
(DVS) for CPU in a computing node and Dynamic Resource
Scaling (DRS) for different volumes of tasks in a GPU cluster.

 DVS enabled GPU Clusters: the DVS scheme is an effi-
cient way to reduce dynamic power consumption by ad-
justing the supply voltage in an appropriate manner. Much
research has been done to power-aware cluster computing
by using the DVS scheme [1][2][3][4]. We adopt the DVS
feature of CPU (unavailable for GPU because currently
none of such product is available) in the GPU clusters and
will discuss the usage of above strategies for energy reduc-
tion in later part.

 DRS enabled GPU Clusters: Each node in a GPU cluster
can be transitioned among three states, respectively busy,
spare, and sleep. When all of CPUs or GPUs inside this
node are executing some tasks, this node is in the busy
state. When at least one of the CPU-GPU pair is free (but
ready to execute a task immediately), this node is in the
spare state. When a node in spare state does not have any
task to run on any CPU-CPU pair, this node will be pow-
ered down and changes its state from spare to sleep. The
node in the sleep state can significantly reduce the energy

consumption. When more tasks arrive, the sleeping node
can be woken up and its state will be changed from sleep
to spare or busy. The DRS (Dynamic Resource Scaling)
mechanism can dynamically adjust the number of working
nodes to save energy.

B. Tasks Model
We assume that all the incoming tasks are independent

with each other without data communication. All the tasks
may follow different distributions. For each task t, it has two
sub-tasks, CPU-subtask tCPU and GPU-subtask tGPU. The CPU
subtask is the part which is suitable for running on CPU and
the GPU subtask is the part which is suitable for running on
GPU. If we let w be the total processing volume of t and α be
the percentage of the CPU subtask, then the processing vol-
ume of the CPU subtask should be w⋅α and the processing
volume of the GPU subtask should be w⋅(1-α). Let r be the
release time of task t, d be the required deadline of t. Then a
task can be formulated as a tuple

t =<α, w , r, d>
All the μ tasks that are to be executed can be formulated as

a set , , ,
All the tasks can be freely assigned to any CPU-GPU pair

in a given node as a whole. The CPU subtask and the GPU
subtask of the same task will not be assigned to different
nodes for simplicity and reduced overhead. For the same rea-
son, we adopt the non-preemptive scheduling mechanism
which means that once a task is running on one selected CPU-
GPU pair, it will keep running to the end of this task, and
even high priority tasks cannot replace it to run on this CPU-
GPU pair.

C. Energy Consumption Model for GPU cluster
With the appearance of large scale GPU clusters, there are

increasing and even critical requirements on lowering the total
system energy consumption. The main power consumption in
CMOS circuits is composed of dynamic and static power for
both CPU and GPU. The static power goes for the idle circuit
which has no workload while the dynamic power goes for the
circuit with executing tasks.

ENh, the total energy consumption for computing node nh ,
can be expressed in Equation (1). is the energy consump-
tion of , and is the energy consumption of , . ENoverall,
the overall energy consumption of a given GPU cluster is
given in Equation (2). Recall that each node nh can have three
states: busy which means that all the CPU-GPU pairs are run-
ning; spare which means that part of the CPU-GPU pairs are
running and the other CPU-GPU pairs are idle; sleep which
means that all of the CPU-GPU pairs are powered down (the
energy consumption can be ignored). Thus, the energy con-
sumption only needs to consider the busy and spare nodes. ∑ (1) ∑ (2)

The CPU runtime power model is discussed in reference
[18]. Here, let the static power consumption be power(C,s) ,
the dynamic power consumption be power(C,d) and the total

80808080808484

lasting time be which includes execution time and
idle time . So we can calculate the ith CPU energy con-
sumption in node nh as follows:

 , , ,
 , , 3

But for the DVS-enabled CPU processor, the energy con-
sumption E which is expressed in Equations (4) and (5) is
related to the supply voltage V based on the well-known cube-
root rule for CMOS devices [1][2].

2

eff CE C f V t= ⋅ ⋅ ⋅ (4)

Cf kV= (5)

where Ceff is the effective switching capacitance of this chip,
fC is the processing speed of the CPU, and t is the processing
time.

Like the CPU energy consumption model, in [13], the au-
thors also propose a novel GPU dynamic power model. When
the static power consumption is power(G,s) and the dynamic
power consumption is power(G,d) . We model the GPU en-
ergy consumption as follows:

 , , ,
 , , 6

D. Formulation of the Energy Efficient Mapping Problem
with Deadline Constraint
Based on the GPU cluster model, task model and the en-

ergy consumption model, the energy efficient mapping prob-
lem can be formulated as an optimization problem with dead-
line constraint. It can be expressed in Equation (7).

 : . . , 7

 In summary, we try to map all the incoming tasks onto a

GPU cluster with minimal energy consumption where the
deadline of each task must be satisfied.

IV. CONCEPT OF THE WATERFALL MODEL

A. Mapping Problem Overview
The mapping heuristics can be grouped into two catego-

ries: immediate-mode and batch-mode. In the immediate-
mode, a task is mapped onto a machine as soon as it arrives at
the mapper. In the batch mode, tasks are not mapped onto the
machines as they arrive; instead they are collected into a set
that is examined to execute mapping triggered by some map-
ping events. Because the batch-mode outperforms the imme-

diate-mode in most cases, we only consider the batch-mode in
this paper.

Consider μ ready tasks t1, t2, t3,…, tμ , that have to be proc-
essed on a GPU cluster. Here, we adopt the common expres-
sion of ready tasks similar to reference [15]. For the vth map-
ping event, the ready tasks set Mv is mapped at time τv . The
ready tasks set Mv , for v > 0, consists of tasks that arrived
after the last mapping event and the tasks that were mapped
but did not start executing. Let b be the beginning execution
time of tx. Mv can be expressed as follows: | | (8)

We propose some important parameters to simplify our
mapping algorithm, respectively:
1) Δ-value: we set Δ-value for given task tx expressed as

Δ(tx)=d(tx)-CompletionTime(tx) (9)
where CompletionTime(tx) is the finishing time needed to
run a given task tx on a idle CPU-GPU pair.

2) Task distribution ratio θ: For a given task tx executing on a
CPU-GPU pair, let , be the execution time of
CPU subtask on CPU C and , be the execution
time of GPU subtask on GPU G. The task distribution ratio
depicts the processing volume distribution of this task be-
tween CPU and GPU. It can be expressed as: ,, (10)

3) Earliest available time for given node: The earliest com-
pletion time of any CPU-GPU pair in the node nh is ex-
pressed as ∼ . It depicts the earliest available time of
one CPU-GPU pair for this computing node.

4) Latest available time for node: The latest completion time
of any CPU-GPU pair in the node nh is formulated as
∼ . It gives the latest available time of one CPU-GPU

pair for this computing node.
5) Load Balance Displacement π: Let π(nh) be the load bal-

ance displacement for node nh which can be formulated as
π(nh)= ∼ ∼ (11)

Overall, there are two kinds of events to trigger a new
scheduling procedure: task deadline triggered event and
counter triggered event.

1) Deadline Triggered Event: we consider a hard real time
system which must meet all incoming tasks’ deadline re-
quirements. When the deadline of a waiting task will not
be met by any idle CPU-GPU pairs, a scheduling event
occurs. We use the Δ-value of the task to measure this ur-
gency. When Δ(tx) , , a
mapping event is triggered and the mapper must map this
task into the appropriate CPU-GPU pair immediately.

2) Counter Triggered Event: Besides the deadline triggered
event, we set a Task Counter to trigger the mapping event.
When an arriving task makes |Mv| greater than or equal to
predetermined number Constant, a mapping event occurs.
This value of Constant is a constant and it is related to the
arrival rate and completion rate of the tasks.

B. Prediction Performance Model

81818181818585

The assumption that these expected execution times are
known is commonly made when studying mapping heuristics
for heterogeneous computing systems. We also make this as-
sumption.

The approaches to getting the CPU estimated execution
times for a given task based on task profiling and analytical
benchmarking have been proposed for many years, and are
discussed in references [9][10]. Fortunately, like CPU imple-
mentations, there are also several current performance models
to predict GPU execution time. In [12], the authors propose an
analytical performance model which greatly depends on the
GPU features and characteristics. Despite the accurate results
guaranteed, this model greatly involves the details such as the
GPU architecture and application implementations. So this
model will incur more difficulties and overheads as the pro-
gram’s complexity grows. In the Qilin system, they exploit a
linear fitting method to predict the execution time on GPU.
They assume that the execution time is linear to the problem
size of a task. But this is not true in many cases.

In this paper, based on the core features of above ap-
proaches, we adopt another way to more practically and accu-
rately predict the execution time on GPU and CPU. We inte-
grate and unify the features between CPU and GPU, and pro-
pose the normalized processing volume w(t) for a given task.
Therefore, if the CPU processor speed is fC,i, 1≤i≤n; and GPU
processor speed is fG,j, 1≤j≤m, then the expected time of task t
on Ci and on Gj is expressed as follows:

 , , , (12)

 , , , (13)

 where (,), (,)S t i S t j are constant factors which stand for the
start up time on Ci and Gj for the given task t.

C. Waterfall Energy Consumption Model
Inspired by the features of a waterfall, which tries to drop

down to lower potential energy level as soon as possible, we
provide the Waterfall Model to express our basic idea on an
energy efficient task mapping mechanism.

Our Waterfall Model divides the system energy consump-
tion into three different energy level, high, middle and low
energy levels. We define the traditional model as the one
which does not adopt any energy efficient strategies and it will
always keep the whole system in the high energy level. The
system based on the Waterfall Model can employ some
coarse-grained energy efficient strategies focusing on comput-
ing nodes, such as the DRS (Dynamic Resource Scaling)
mechanism (a wakeup-sleep mechanism for computing nodes).
Employing such coarse-grained strategies will keep the sys-
tem in the middle energy level which means that it can con-
sume less energy consumption than the traditional model, but
still has the potential to improve the energy efficiency. Based
on the coarse-grained strategies, we propose some other fine-
grained strategies focusing on the CPU-GPU pair, which will
keep the system in low energy level, such as DVS strategies
and β-migration for GPU subtasks. We summarize the Water-
fall Model in Fig.1. Our heuristic algorithm is designed based
on this model.

Fig. 1: Waterfall Energy Consumption Model

V. MAPPING ALGORITHMS
Our mapping algorithm (mapper) targeting on GPU clus-

ters will experience three phases: in the first phase, the map-
per selects the appropriate task from the schedulable task set
Mv and assigns it into the optimal CPU-GPU pair (Co, Go). In
the second phase, the mapper employs the DRS mechanism to
wake up or power down some nodes if necessary. In the third
phase, the mapper takes the DVS mechanism and β-migration
for GPU subtask to adjust the execution of this task.

A. Matching Process
The matching process is the core part in the mapping proc-

ess. It involves how to select appropriate CPU-GPU pair for
every task and how to select a task from the ready task set.
1) CPU-GPU pair selection: Firstly, we need to select he

CPU-GPU pair for each task in the ready task set. Here,
let the available time of CPU and GPU be and

, where 1≤h≤k; 1≤i, j≤m. Therefore, the com-
pletion time for a task tx on CPU-GPU pair (Ci, Gj) on
node h is given as follows:

 , , · , ,
 1 · , (14)
We select the optimal CPU-GPU pair (Co, Go) to minimize
the completion time of this task tx : , , , (15)
In addition, there are still some things to be noted. If there
are two nodes (nk, nh) with ∼ = ∼ but π(nh)>π(nk),
then we will select the CPU-GPU pair on node nh. Intui-
tively, this method can avoid creating larger unbalanced
load on existing node so help to make more nodes transi-
tioned into sleep state.

2) Task selection based on Δ-value: As mentioned be-
fore, the ready schedulable tasks currently are denoted as a
set Mv. At time τv-1 the scheduling event occurs. For each
task tx in the ready schedulable set Mv, in order to meet its
deadline, the task tx with minimum Δ-value will be sched-
uled first. This strategy is inspired by the well-known Earli-
est Deadline First (EDF) [17] algorithm, but we combine
the deadline and the completion time for a task and we al-
ways schedule the task with the minimum Δ-value firstly.
Intuitively, our strategy tries to schedule more urgent task

82828282828686

(task with smaller Δ-value) at the same time considering the
computing capability (completion time) of selected CPU-
GPU pairs.

B. Dynamic Resource Scaling Algorithm
Every computing node will transition between three states,

respectively busy, spare and sleep. In order to reduce the en-
ergy consumption, we need to keep much fewer nodes execut-
ing more workload and try to place more nodes in sleep. In
other words, we need make the number of nodes in spare state
as small as possible. If the scale of the GPU cluster is large
but the workload is too small, it is obviously unwise to power
up all nodes to execute this work. Therefore, a Dynamic Re-
source (computing nodes) Scaling algorithm based on the Wa-
terfall Model is proposed. Although it is a relatively coarse-
grained method, many existing data centers exploit a similar
method to reduce the energy consumption in the implementa-
tion of cloud computing or virtualization [16]. Our Dynamic
Resource Scaling algorithm is illustrated in Fig. 2, where S(k)
stands for the current state of the node nk and current sched-
uled task is a task in ReadyTaskSet with minimum Δ-value, as
is discussed in task selection section.

Dynamic Resource Scaling algorithm:
1: if (d(tx)-ct(tx, Co, Go) <0)

Means no busy or spare node can meet the deadline of tx
2: then wake up a new node nk whose S(k) = sleep
3: change its state S(k) into spare
4: schedule tx onto this node
5: else assigned tx onto the node nh with minimal ∼

and maximal π(nh)
6: if all CPU-GPU pairs of node nh are busy
7: then set S(h) = busy
 endif
8: endif
9: for each node nh in the GPU cluster
10: if all CPU-GPU pairs are idle
11: then power down this node and set S(h) = sleep
12: endif
13: if some CPU-GPU pairs are idle and some are busy
14: then set S(h) = spare
15: endif
16: end for

Fig. 2: Dynamic Resource Scaling Algorithm

C. Voltage selection based on DVS mechanism
In real-time systems with QoS constraints, the DVS tech-

nique is used in order to save the energy consumption as well
as to meet the task deadline. The basic idea is to slowdown the
CPU speed and make the task completion moment just fit the
task deadline. The DVS mechanism of CPU is exploited and
applied ubiquitously for many years [1][2][3], but the DVS
technology of GPU is still not possible. Therefore, we adopt
the DVS mechanism for the CPU processor only. We assume
that the voltage levels in this paper are discrete from V1, to Vs
(which satisfies V1<V2<…<Vs). According to the cube-root

rule and DVS energy consumption in Equation (4), the lower
the CPU voltage level, the less the energy consumption.

Here, the task distribution ratio θ(tx) of CPU-GPU pair for
the given task tx is expressed as , , . Our
mapping purpose is to achieve better load balance between
CPU and GPU, which means the closer θ(tx) is approaching 1,
the better the load balance is.
 The dynamic DVS voltage selection algorithm is illustrated
in Fig. 3, where Co stands for the CPU of the optimal CPU-
GPU pair for this task.

Dynamic Voltage Scaling algorithm:
1: for each supply voltage Vi from Vs down to V1
2: do re-calculate the execution time at voltage Vi
3: , ,
4: end for
5: Let Selected Voltage SV= Vs
6: for each supply voltage Vi from Vs-1 to V1
7: if |θ(tx, Vi)-1|<|θ(tx, SV)-1| then SV= Vi
8: endif
9: end for

Fig. 3: DVS voltage selection algorithm.

D. β-migration for GPU Sub-tasks
As is mentioned before, the typical implementation of a

task on GPU cluster contains two parts: CPU sub-task and
GPU sub-task. According to the empirical facts and detailed
application, CPU sub-task always includes some control-
ling/logical instructions, sequential instructions, some instruc-
tions with much higher loop execution overhead, or frequent
I/O operation instructions, etc. The GPU sub-task always in-
cludes high data parallel instructions, and is executed on GPU
to achieve a larger speedup, such as scientific computation
with a high degree of data parallelism and much less commu-
nication.

Fig. 4: β-migration for GPU Sub-task

For the given task on the optimal CPU-GPU pair, the un-
equal completion time of the CPU sub-task the GPU sub-task
will lead to wasted energy and computing resources. In most
cases the CPU can execute certain portions of the GPU work,
while the GPU cannot execute the CPU subtask because some
CPU instructions are not supported by GPU. Therefore, we
consider dividing the GPU sub-task and migrating β fraction

83838383838787

to the idle CPU in this CPU-GPU pair, as illustrated in Fig. 4.
This strategy is called β-migration for GPU sub-task (shortly
called β-migration). In the Qilin system, they adopt a similar
method to divide the application into CPU and GPU parts.

Next we discuss how to migrate β fraction of the GPU
sub-task from GPU to CPU on optimal CPU-GPU pair. Let
ct(tx , Co, Go) be the completion time for the task tx, and it is
calculated by Equation (14). After the β-migration, the frac-
tion of CPU sub-task is adjusted into (α+β(1-α)) and the frac-
tion of sub-task executing on GPU is (1-α)(1-β). Therefore the
completion time of this task is changed into Equation (16).
Then we select an optimal value of β to minimize the comple-
tion time of task tx, and we get the optimal β value given in
Equation (17). , , , 1 , , 1 1 , (16)

 , , , (17)

Obviously, when 1, and 1 1 , are

equal, this β achieves its optimal value, which means the sub-
tasks on CPU and GPU will be finished at the same time,
when the task distribution ratio θ(tx) of CPU-GPU pair is accu-
rately equal to 1. Therefore, the load balance of the system is
greatly improved. When β achieves its optimal value βoptimal ,
we have 1.

Task Mapping Algorithm for GPU clusters:
1: do until all tasks in Mv are mapped
2: Find the task tmin with minimum Δ(tx) in Mv
3: Apply the DRS algorithm for tmin
4: Assign task tmin to the optimal CPU-GPU pair (Co,Go)
5: Apply the DVS algorithm for Co
6: Apply sub-task β-migration from Go to Co
7: Delete the task tmin from Mv
8: end do

Fig.5: Task Mapping Algorithm in GPU cluster.

E. Overall Task Mapping Algorithm
Now, we propose the complete process of our mapping

algorithm focusing on GPU cluster based on the above discus-
sion. The mapping process includes selecting the urgent task
as current task to be scheduled, applying DRS for the current
task, selecting optimal CPU-GPU pair (Co, Go) for current
task, applying the DVS for Co, applying β-migration from Go
to Co and updating the related parameters. All of them are
illustrated in Fig. 5. By applying the complete process, the
system energy consumption can be dropped down from high
to low level, as shown in Fig. 1.

VI. EVALUATION AND SIMULATION RESULTS

A. Simulation Methodology
In a way, system performance such as high execution effi-

ciency is what traditional models focus on. Usually, the exe-
cution time of tasks will be considered the first metric of those
traditional systems. In other words, tasks should be processed
as soon as possible. Instead, in the Waterfall Model the great-
est concern is the system’s energy performance on the premise
that all tasks should be finished before their deadlines.

It is known that the mapping strategies will adversely affect
the systems’ performance. The object of the simulation is to
quantify the difference on energy consumption between the
system without energy saving strategies and the system adopt-
ing our energy efficient mapping strategies. Thus, two systems
based on same hardware architecture will process the same
tasks in our simulation test. This guarantees that the differ-
ences of the simulation results are only caused by the different
strategies.

B. Simulation Scenarios
We conduct the simulation in Matlab R2009a. The simula-

tion scenario contains a Task Generator and the two compared
system models, the traditional system model in high energy
level and the Waterfall Model in lower energy level with both
coarse-grained and fine-grained energy efficient strategies.
The system running time in the simulation is set to be more
than 24 hours.

Fig. 6: The number of tasks generated with time in the simulation

In the real world, tasks usually distribute widely in scale
(the processing volume for a task discussed before) even in a
single day. We choose the statistic data of online tasks from
the Modern Education Information Centre at Wuhan Univer-
sity of Science and Technology [28] as our experiment refer-
ence. According to the statistics, we fit the task’s scale in 24
hours into Equation (18), that is to say, the TaskScale is a
function of time x whose unit is second. (i.e., from 0:00:00 to
24:00:00, x is converted to [0 , 1, 2, 3 … 86400]). 0.0001 0.0064 0.22512.9466 7.634 34.53 +174.7863 (18)

Besides, in reality, tasks are not arriving all the time.
Similarly, the Task Generator does not produce tasks all the
time; instead, it follows the binomial probability. The generat-
ing probability of the Task Generator, is 70%, that is to say,
30% of the time, the Task Generator will not provide the sys-

0:00:00 4:00:00 8:00:00 12:00:00 16:00:00 20:00:00 0:00:00
0

1000

2000

3000

4000

5000

6000

System execution time

T
as

k
sc

al
e

84848484848888

tem with any task. Tasks generated in the simulation are
shown in Fig. 6.

What’s more, every single task consists of a CPU sub-task
and a GPU sub-task. The portion α of CPU sub-task to GPU
sub-task is a random value between 0 and 1, conforming to
normal distribution N(0.6, 0.05). In addition, every task tx has
a Δ-value to depict its deadline decided by Equation (9). Δ-
value obeys a normal distribution N(20, 3), The Δ-value di-
minishes one every second until it equals to zero.

Both of the models have their own ReadyTaskSet and Task
Counter. The ReadyTaskSet consists of the tasks generated by
the Task Generator temporarily and the Task Counter will
count every single task once entering into the ReadyTaskSet.
Thus, the same tasks generated by Task Generator will be sent
to the two system models’ ReadyTaskSets at the beginning.
Moreover, two models have the same GPU cluster deploy-
ment, which consists of the same 100 Nodes, and each Node
contains ten CPU-GPU pairs. CPUs are assumed to possess
the DVS policy, and Table I shows the DVS configuration for
CPUs in the Waterfall Model.

TABLE I DVS CONFIGURATION OF CPUS IN WATERFALL MODEL

CPU status
Ci

Normalized
CPU Voltage

Normalized
Speedup of CPU

Power

C1 1 1 95W
C2 0.7 0.7 60W
C3 0.3 0.3 40W

Csleep 0 0 3W

TABLE II SIMULATION PARAMETERS

Parameters Description Values
k (#node) The number of Nodes 100
NumCPU #CPU in a node 10
NumGPU #GPU in a node 10

power(C, s) Power consumption when CPU is
running no task

30W

power(C, d) Power consumption when CPU is
running a task at full speed

95W

power(G, s) Power consumption when GPU is
running no task

110.13W

power(G, d) Power consumption when GPU is
running a task at full speed

236W

In addition, we refer to several GPU clusters hardware

configuration in reality, such as Tianhe-1A [29], to calculate
the CPU and GPU’s computing capability (for example the
speedup over serial). The GPU’s spare state power is calcu-
lated according to the Qilin system.

The Mapper will start to work when either of two condi-
tions is satisfied: a) the Task Counter counts to 10; b) the Δ-
value of any tasks in the ReadyTaskSet equals to 0. Mean-
while, once these tasks in ReadyTaskSet are sent to the Map-
per, the ReadyTaskSet is released and the Task Counter’s
value returns to zero.

Every time when tasks are transferred from the ReadyTas-
Set to the Mapper, we deal with these tasks in increasing order
of the tasks’ current Δ-value. That is because a smaller Δ-
value indicates a closer time to the task deadline, i.e., the task
is more urgent.

C. Differences between Waterfall Model and Traditional
Model

There are three differences between the Waterfall Model
and Traditional model. They are, a) separate scheduling poli-
cies; b) whether the node owns the Dynamic Resource Scaling
(sleep-awake) mechanism; c) whether the CPU owns DVS
policy and β-migration. In other words, Traditional Model in
our simulation means the system owns the same hardware
architecture as the Waterfall Model but without the DRS
mechanism, the DVS policy and β-migration.

To be specific, in the Waterfall Model, the right node nh
will be chosen at first, which is the node awake with the
minimum π(nh) (when two nodes with equal load balance dis-
placement π, we always select the node with larger ∼).
However, if the minimum available time ∼ of all the
CPU-GPU pairs in this node nh cannot meet the requirement
of the task’s deadline, a sleep node will be woken up to per-
form the task. Then, the system will perform the Task Map-
ping Algorithm, choose the suitable CPU voltage (DVS strat-
egy) and calculate the exact β value (β-migration), and divide
the GPU sub-task properly to obtain the minimum energy
consumption.

Fig. 7: β values in β-migration

However, in the traditional Model, the task is simply deliv-
ered to the CPU-GPU pair owning the minimum available
time without β-migration for GPU sub-task. CPU sub-task
will be processed by CPU and GPU sub-task will be processed
merely by GPU. Moreover, there are no DRS mechanisms for
all the nodes and the DVS policy for CPU in the traditional
model defined in the simulation, that is to say, all nodes’
CPUs of the traditional model only run in two states: one is
the spare state and the other is the busy state with the fixed
voltage.

Fig. 7 shows all the β values in β-migration calculated in
the Task Mapping Algorithm in our Waterfall Model.

D. Energy Consumption Results and Discussion
To some extent, the performance of the task scheduling al-

gorithm could affect a system’s total performance greatly. Our
goal is to reduce the system’s energy consumption in the
premise that tasks should be processed before their deadline.
In our simulation, we choose the system power and the total
system energy consumption as the metrics to evaluate the
scheduling strategies. Simulation results on instant system

0:00:00 4:00:00 8:00:00 12:00:00 16:00:00 20:00:00 0:00:00
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

System excution time

V
al

ue
s

of

85858585858989

power and the total system energy consumption are shown in
Fig. 8 and Fig. 9.

Fig. 8: System power curve over one day

Fig. 9: System energy consumption curve over one day

As we can see in Fig. 8 and Fig. 9, the task mapping algo-

rithm does contribute to reduce the system’s power apparently,
especially when the task scale is relatively small (see between
4:00:00 and 8:00:00). The reason is that our Waterfall Model
will shut down nodes whose CPU-GPU pairs are in spare
state to the sleep status (the percentage of sleep-level nodes
showed in Fig. 10). Obviously, the smaller task scale, the
more sleep nodes.

Fig. 10: The percentage of sleep-state nodes curve over one day

Even though the power consumption of Waterfall Model
increases greatly with the task scale’s increasing (see be-
tween16:00:00 and 20:00:00), the Waterfall Model is still
more energy efficient than the traditional model, since we
have introduced both coarse-grained and fine-grained energy
saving strategies into the system to keep a balance between
task processing and energy consumption. Thus, in the simula-
tion, we have obtained a significant result, almost 50% energy
savings in a day.

Importantly, more spare-state CPU-GPU pairs could mean
more energy consumptions (as showed in Fig. 11). In the Wa-
terfall Model, the node choosing strategy, choosing the node
awake with the minimum π(nh) (when two nodes with equal
load balance percentage π, we always select the node with
larger ∼), is to reduce the interval the node stays in spare
level because a large π value, for instance π(nh) equals to one,
means that all the CPU-GPU pairs in the node will finish
processing their task at the same moment when the node could
enter into the sleep status immediately.

Fig. 11: The percent of spare-state CPU-GPU pairs curve over one day

E. Task Average Waiting Time and Average Processing Time
Average Waiting Time and Average Processing Time of

tasks should also be listed in the metrics of the scheduling
strategies. Average Waiting Time indicates the period from
the releasing of the task to the beginning when the task is ac-
tually being processed by the processors, and Average Proc-
essing Time indicates the period from the beginning of the
task being processed by the processors to the accomplishing
of the task.

In most cases, the relation between system energy con-
sumption and system performance is like playing the teeter-
totter game. In other words, the energy savings is usually at
the expense of weakening the system performance.

Fig. 12: Task average waiting time curve over one day

The simulation results in Fig. 12 show that task average

waiting time of traditional system model is relatively stable
but the situation is different for the Waterfall Model which
possesses a strong volatility. This phenomenon could be ex-
plained by the DRS mechanism. Every time when the Δ-value
of the task being scheduled is negative or equals to zero,
which means that that task cannot be completed before its
deadline in the current resource state, a sleeping node will be

0:00:00 4:00:00 8:00:00 12:00:00 16:00:00 20:00:00 0:00:00
0

100

200

300

400

500

600

System execution time

P
ow

er
 (

ki
lo

w
at

t)

Traditional Model
Waterfall Model

0:00:00 4:00:00 8:00:00 12:00:00 16:00:00 20:00:00 0:00:00
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

7

System execution time

S
ys

te
m

 e
ne

rg
y

co
ns

um
pt

io
n

(J
)

Traditional Model
Waterfall Model

0:00:00 4:00:00 8:00:00 12:00:00 16:00:00 20:00:00 0:00:00

0

20

40

60

80

100

System execution time

S
le

ep
-le

ve
l n

od
es

 p
or

tio
n

(%
)

0:00:00 4:00:00 8:00:00 12:00:00 16:00:00 20:00:00 0:00:00

0

20

40

60

80

100

System execution time

S
pa

re
-le

ve
l C

P
U

-G
P

U
 p

ai
rs

 p
or

tio
n

(%
)

Traditional Model
Waterfall Model

0:00:00 4:00:00 8:00:00 12:00:00 16:00:00 20:00:00 0:00:00
0

1000

2000

3000

4000

5000

6000

System execution time

T
as

k
av

er
ag

e
w

ai
tin

g
tim

e
(s

ec
on

d)

Traditional Model
Waterfall Model

86868686869090

woken up. Thus, new tasks would be added to this node until
the node’s load balance percentage π(nh) is not the minimum.
In this process, all tasks’ waiting time will be rather small
since there is no task running in the latest awoken node at the
beginning, leading to the decline of the average waiting time.
In summary, the DRS mechanism leads to the volatile task
waiting time.

However, as we have discussed, the task processing time of
the Waterfall Model will be less than that of the traditional
model as the task mapping algorithm of the Waterfall Model
obtains a balance of workloads between CPU and GPU. The
simulation results on task average processing time are shown
in Fig. 13.

Fig. 13: Task average processing time curve over one day

VII. CONCLUSIONS
We have proposed an energy efficient task mapping algo-

rithm with much less energy consumption and better load bal-
ance in the large-scale GPU cluster. Our major contribution is
to propose a Waterfall Energy Consumption Model to guide
system designers to employ different energy-saving strategies
to keep the system remaining the energy levels as low as pos-
sible. These energy efficient strategies include both a coarse-
grained method focusing on the computing nodes and fine-
grained mechanisms focusing on the CPU-GPU pair, such as
Dynamic Resource Scaling, Dynamic Voltage Scaling and β-
migration for GPU sub-task. As the simulation results show,
the energy savings in the low energy level compared with
traditional model in the high energy level achieves nearly 50%.

ACKNOWLEDGMENT
This research is supported in part by National Natural Sci-

ence Foundation of China ((No. 61073008, 60773148 and
No.60503039), Beijing Natural Science Foundation (No.
4082016), NSF Grants CNS-0708307, IIP-0934114, OCI-
0904461 (Bader), and the Center for Adaptive Supercomput-
ing Software for Multithreaded Architectures (CASS-MT).

REFERENCES
[1] N. Kappiah, V. W. Freeh, and D. K.Lowenthal, “Just In Time Dynamic

Voltage Scaling: Exploiting Inter-Node Slack to Save Energy in MPI
Programs”, Proceedings of the ACM/IEEE SC 2005, Seattle, USA,
November 2005.

[2] R. Ge, X. Feng, and K. W. Cameron, “Performance-constrained Distri-
buted DVS Scheduling for Scientific Applications on Power-aware
Clusters,” Proceedings of the ACM/IEEE SC 2005, Seattle, USA, No-
vember2005.

[3] C. Hsu and W. Feng, A Power-Aware Run-Time System for High-
Performance Computing, Proceedings of the ACM/IEEE SC2005,
Seattle, USA, November 2005.

[4] G. Diamos and S. Yalamanchili, “Harmony: An execution model and
Runtime for heterogeneous many core systems,” in HPDC’08. Boston,
Massachusetts, USA: ACM, June 2008.

[5] G. Diamos and S. Yalamanchili, “Speculative Execution on Multi-GPU
Systems,” in 24th IEEE International Parallel & Distributed
Processing Symposium, Atlanta, Georgia, USA, April, 2010.

[6] C. Luk, S. Hong, and H. Kim, “Qilin: Exploiting parallelism on Hete-
rogeneous multiprocessors with adaptive mapping,” in MICRO 42:
Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 45---55, New York, NY, USA, December,
2009. ACM.

[7] Y. Hotta, M. Sato, H. Kimura, S. Matsuoka, T. Boku, and D. Takaha-
shi, Profile-based Optimization of Power Performance by using Dy-
namic Voltage Scaling on a PC cluster,” Proceedings of 20th IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS),
Rhodes Island,Greece,April2006.

[8] S. Ghiasi,T. Keller, and F. Rawson. Scheduling for Heterogeneous
Processors in Server Systems. In Proceedings of the 2nd Conference on
Computing Frontiers, May, 2005, pp. 199–210.

[9] M. Maheswaran, T. D. Braun, and H. J. Siegel, Heterogeneous distri-
buted computing, in Encyclopedia of Electrical and Electronics Engi-
neering' (J. G. Webster, Ed.), Vol. 8, pp. 679-690, Wiley, NewYork,
1999.

[10] H. J. Siegel, H. G. Dietz, and J. K. Antonio, Software support for hete-
rogeneous computing, in The Computer Science and Engineering
Handbook (A. B. Tucker, Jr. ,Ed.), pp. 1886-1909, CRC Press, Boca-
Raton, FL, 1997.

[11] C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier. StarPU: a
unified platform for task scheduling on heterogeneous multicore archi-
tectures, in Proceedings of the 15th EuroPar Conference 2009, Vol.
5704 of Lecture Notes in Computer Science, pp. 863–874, Springer,
Delft, The Netherlands.

[12] S. Hong, H. Kim. An analytical model for a GPU Architecture with
memory-level and thread-level parallelism awareness. In Proceeding of
ACM International Symposium Computer Architecture (ISCA’ 2009),
pp. 152---163, Austin, TX, USA, June 2009.

[13] S. Hongand H. Kim. An integrated GPU power and performance model.
In Proceeding of ACM International Symposium Computer Architec-
ture (ISCA 2010), pp. 280---289. June 19-23, 2010, Saint-Malo, France,
USA.

[14] V. Jiménez, L. Vilanova, I. Gelado, M. Gil, G. Fursin, and N. Navarro.
Predictive Runtime Code Scheduling for Heterogeneous Architectures.
In Proceeding of the 4th International Conference on High Perfor-
mance Embedded Architectures and Compilers (HiPEAC 2009), pp. 19
– 33. Berlin, Heidelberg, 2009. Springer-Verlag.

[15] H. J. Siegel, S. Ali. Techniques for mapping tasks to machines in hete-
rogeneous computing systems. Journal of Systems Architecture.
2000;46 (8): 627-639.

[16] M. Armbrust, et al, “Above the Clouds: A Berkeley View of Cloud
Computing”, UCB/EECS -2009-28, Berkeley, Feb, 10, 2009.

[17] F. F. Yao, A. J. Demers, S. Shenker, A scheduling model for reduced
cpu energy. In Proceedings of the 36th IEEE Symposium on Founda-
tions of Computer Science (1995), 374–382.

[18] C. Isciand, M. Martonosi. Runtime power monitoring in high-end
processors: Methodology and empirical data. In Proceedings of the
36th International Symposium on Microarchitecture (MICRO, 2003),
pp. 93-104, December 2003.

[19] T. N'Takpe, F. Suter, H. Casanova. A Comparison of Scheduling Ap-
proaches for Mixed-Parallel Applications on Heterogeneous Platforms.
Sixth International Symposium on Parallel and Distributed Computing
(ISPDC’07). 2007:35-35.

[20] T. N’Takpé and F. Suter. Critical Path and Area Based Scheduling of
Parallel Task Graphs on Heterogeneous Platforms. In 12th Int. Conf.
on Parallel and Distributed Systems (ICPADS), pages 3–10, July 2006.

[21] H. Topcuoglu, S. Hariri, and M. Wu. Performance-effective and low-
complexity task scheduling for heterogeneous computing. Parallel and
Distributed Systems, IEEE Transactions on, vol. 13(3): pp. 260-274,
Mar 2002.

0:00:00 4:00:00 8:00:00 12:00:00 16:00:00 20:00:00 0:00:00

500

1000

1500

2000

2500

3000

System execution time

T
as

k
av

er
ag

e
pr

oc
es

si
ng

 t
im

e
(s

ec
on

d)

Traditional Model
Waterfall Model

87878787879191

[22] D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, S. Buijssen,
M. Grajewski, and S. Tureka, “Exploring weak scalability for FEM
calculations on a GPU-enhanced cluster,” Parallel Computing, vol. 33,
pp. 685-699, Nov 2007.

[23] M. Showerman, J. Enos, A. Pant, V. Kindratenko, C. Steffen, R. Pen-
nington, W. Hwu, “QP: A Heterogeneous Multi-Accelerator Cluster,”
in Proc. 10th LCI International Conference on High-Performance
Clustered Computing, 2009.

[24] V.V. Kindratenko, J.J. Enos, G. Shi, et al. GPU clusters for high-
performance computing. 2009 IEEE International Conference on Clus-
ter Computing and Workshops. 2009:1-8.

[25] R. Bryce. Power struggle. Interactive Week, December 2000.
http://www.zdnet.com/intweek/, found under stories/news/0, 4164,
2666038, 00.html.

[26] D. Braun, J. Siegel, N. Beck, etc. A Comparison of Eleven Static Heu-
ristics for Mapping a Class of Independent Tasks onto Heterogeneous
Distributed Computing Systems. Journal of Parallel and Distributed
Computing. 2001;61(6):810-837.

[27] D. Fernandez- Baca, Allocating modules to processors in a distributed
system, IEEE Trans. Software Engineering. 15, 1 (Nov.1989), 1427-
1436.

[28] Modern Education Information Centre at Wuhan University of Science
and Technology is available: http://its.wust.edu.cn/123.htm.

[29] Chinese top petaFLOPS supercomputer: Tianhe I:
http://en.wikipedia.org/wiki/Tianhe-I

Wenjie Liu is a MS candidate in the Department of Computer Science
and Technology at Tsinghua University, China. He is doing some re-
search in the High Performance Computing Institute at Tsinghua Uni-
versity. His research interests include scheduling algorithm design on
heterogeneous systems, energy efficient algorithm on multi-
core/many-core systems.

Zhihui Du received the BE degree in 1992 in computer department
from Tianjian University. He received the MS and PhD degrees in
computer science, respectively, in 1995 and 1998, from Peking Uni-
versity. From 1998 to 2000, he worked at Tsinghua University as a
postdoctor. From 2001 to current, he worked at Tsinghua University as
an associate professor in the Department of Computer Science and
Technology. His research areas include high performance computing
and grid computing.

Yu Xiao is an undergraduate in the Automation School at Beijing Uni-
versity of Posts and Telecommunications, China. He is doing some
research as an intern in the High Performance Computing Institute at
Tsinghua University. His main research interests are wireless sensor
networks and system simulation design.

David A. Bader is a professor in the School of Computational Science
and Engineering and executive director of high performance compu-
ting at Georgia Institute of Technology. He received the PhD degree in
1996 from the University of Maryland and was awarded a US National
Science Foundation (NSF) Postdoctoral Research Associateship in
Experimental Computer Science. From 1998 to 2005, he served on the
faculty at the University of New Mexico. He is a fellow of the IEEE and
a member of the ACM. Prof. Bader has coauthored more than 100
articles in journals and conferences, and his main areas of research
are in parallel algorithms, combinatorial optimization, and computa-
tional biology and genomics.

Chen Xu is a candidate for Dual Degree Bachelors in Telecommunica-
tions Engineering and Management at Beijing University of Posts and
Telecommunications and University of London. She is doing some
research as an intern in the High Performance Computing Institute at
Tsinghua University. Her main research interests are mobile networks
and scheduling algorithm.

88888888889292

