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Abstract

Maximum parsimony (MP) methods aim to reconstruct the phylogeny of extant species by finding the most parsimonious
evolutionary scenario using the species’ genome data. MP methods are considered to be accurate, but they are also
computationally expensive especially for a large number of species. Several disk-covering methods (DCMs), which
decompose the input species to multiple overlapping subgroups (or disks), have been proposed to solve the problem in a
divide-and-conquer way. We design a new DCM based on the spectral method and also develop the COGNAC (Comparing
Orders of Genes using Novel Algorithms and high-performance Computers) software package. COGNAC uses the new DCM
to reduce the phylogenetic tree search space and selects an output tree from the reduced search space based on the MP
principle. We test the new DCM using gene order data and inversion distance. The new DCM not only reduces the number
of candidate tree topologies but also excludes erroneous tree topologies which can be selected by original MP methods.
Initial labeling of internal genomes affects the accuracy of MP methods using gene order data, and the new DCM enables
more accurate initial labeling as well. COGNAC demonstrates superior accuracy as a consequence. We compare COGNAC
with FastME and the combination of the state of the art DCM (Rec-I-DCM3) and GRAPPA . COGNAC clearly outperforms
FastME in accuracy. COGNAC –using the new DCM–also reconstructs a much more accurate tree in significantly shorter time
than GRAPPA with Rec-I-DCM3.
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Introduction

Maximum parsimony (MP) [1,2] methods enumerate candidate

trees for the input species and select the most parsimonious tree as

an output tree by processing the input species’ genome data (such

as nucleotide sequence data or gene order data). MP methods are

considered to be accurate, but finding the most parsimonious tree

is often computationally very expensive. Even with an efficient

branch and bounding strategy and for a relatively small number of

species, MP methods need to evaluate a large number of candidate

tree topologies. The number becomes prohibitively large for many

species.

Ranking different tree topologies is much more expensive for

gene order data than nucleotide sequence data. For gene order

data, there is no known algorithm to find the most parsimonious

labeling of the internal genomes in a tree to compute the tree’s

parsimony score if the tree has more than three leaf genomes [3].

Even heuristics [4] to score a topology are NP-hard assuming a

linear-time computable pairwise distance metric (e.g. breakpoint

distance, inversion distance, and DCJ distance). Computing the

distance between two genomes can be NP-hard as well based on

the definition of distance [4]. A large number of candidate trees is

even more problematic for gene order data as a result.

Warnow and her group [5–7] have proposed several disk-

covering methods (DCMs) to reduce the candidate tree search

space. DCMs decompose the input genomes to multiple

overlapping disks; find a tree topology for each disk; and merge

the topologies to reconstruct a tree for the entire set of input

genomes. Rec-I-DCM3 [7], which is the most recently published

DCM, recursively decomposes the input genomes to further

reduce the search space and iterates the process multiple times to

refine the reconstructed tree. However, existing DCMs have

several shortcomings. Computing a disk decomposition is

expensive for the original DCM [5] and DCM2 [6]. Rec-I-

DCM3 computes a decomposition faster but requires multiple

iterations to achieve high accuracy. The existing DCMs place a

significant number of genomes in the overlapping region, and this

also increases computing time.

This paper presents a new DCM that improves on existing

techniques. We observe that phylogenetic tree reconstruction

problems resemble graph bi-partitioning and clustering problems.

Every edge in a phylogenetic tree bi-partitions the leaf genomes in

the tree. A phylogenetic tree often includes multiple sets of close

genomes–or clusters–as well. The spectral method [8,9], followed

by heuristics to refine the initial result, is one of the most successful

methods in solving graph bi-partitioning and clustering problems.

The new DCM is based on the spectral method and uses the

pairwise distances between leaf genomes to find a disk decompo-

sition. The spectral method computes the second smallest

eigenvalue and an N|1 eigenvector for the eigenvalue assuming
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N input genomes. The method initially places a genome in one

partition or the other based on the sign of the corresponding

eigenvector element. The magnitude of the vector element

indicates the confidence level of the decision, and the new DCM

uses this information to refine the initial bi-partitioning.

The MP principle is effective in many cases due to the strong

correlation between the parsimony score of a tree topology and the

topology’s accuracy. However, the most parsimonious tree is not

always the most accurate tree. Long branch attraction (LBA)

[10,11] is one circumstance in which trees that seem more

parsimonious can be less accurate. LBA becomes significant if a

tree that best describes the phylogenetic relationships of the input

species has a mix of long and short edges; if we can bi-partition the

input species over a long edge in the tree, this can reduce the

impact of LBA in reconstructing a sub-topology for a subset of the

input genomes. If there is no long uninterrupted edge in the

evolutionary history of the input species, finding an overlapping

decomposition is better for accurate reconstruction. The gap

between the minimum positive eigenvector element and the

maximum negative eigenvector element is large if there is a long

uninterrupted edge in a tree that best depicts the evolutionary

history, and the new DCM exploits this information to find a close

to ideal decomposition.

A new computer program, COGNAC (Comparing Orders of

Genes using Novel Algorithms and high-performance Computers),

recursively decomposes a disk using the new DCM till three or

fewer genomes are left and builds a binary disk tree. After building

a binary disk tree, COGNAC , based on the MP principle,

reconstructs sub-topologies of the leaf disks in the disk tree and

recursively merges the sub-topologies to reconstruct a tree for the

complete set of input genomes.

COGNAC uses the pairwise distances and the new DCM to

reduce the candidate tree search space and uses the GRAPPA

method [12] (which is based on the MP principle) to select an

output tree from the reduced set of candidate tree topologies. This

approach enables high accuracy in addition to fast execution time.

The new DCM not only reduces the number of candidate tree

topologies but also excludes erroneous tree topologies that can

result from original MP methods. Initial labeling of internal

genomes affects the accuracy of MP methods using gene order

data, and the new DCM enables accurate initial labeling as well.

We provide two examples to illustrate this in this paper using gene

order data and inversion distance.

To experimentally evaluate COGNAC , we use simulators ([13],

[14], and [15]) to generate model trees and apply inversion

mutations based on the model trees to generate test data. We first

compare COGNAC with FastME . We use GRAPPA ’s EDE [16]

to correct the pairwise distances for multiple mutation events and

provide the corrected distance matrix as the FastME input data.

We also compare COGNAC with the combination of Rec-I-DCM3

, the state of the art DCM, and GRAPPA [12] which is known to

be one of the most accurate methods for phylogenetic tree

reconstruction using gene order data. COGNAC clearly outper-

forms FastME in accuracy though COGNAC , in general, runs

slower than FastME . However, considering that COGNAC is an

MP method for gene order data and FastME is a distance method,

the gap in execution time is significantly smaller than typical cases.

We also use the combination of Rec-I-DCM3 and GRAPPA using

the FastME output tree as a guide tree, but this approach returns

less accurate trees than even the FastME output tree and runs

multiple orders of magnitude slower than COGNAC . COGNAC and

data sets used in this paper are freely available from http://code.

google.com/p/cognac in accordance with a report from an NSF

funded software sustainability and reusability workshop [17].

Methods

Gene Order Data, Genome Rearrangement, Inversion
Distance, GRAPPA, Median Problem, and Distance
Correction

Assume a set of n genes (g1,g2,:::,gn) common to all the input

genomes. Gene order data represent each input genome as a

sequence of the n genes. A gene in gene order data has a sign

(either z or {) based on the gene’s strandedness. Genome

rearrangement events reorder genes in gene order data and also

change the strandedness of genes [18,19]. Inversion mutations are

one of the genome rearrangement events that reorganize the order

of genes, and many organellar genomes as well as eukaryotic

lineages ([18–20]) evolve with inversion as a main evolutionary

mechanism. An inversion reverses the order and the sign of genes.

Assume a genome (say G) represented by the following order of

genes: g1 g2:::gi{1 gi giz1:::gj{1 gj gjz1:::gn. An inversion be-

tween the ith and the jth genes transforms G to

G’~g1 g2:::gi{1{gj{gj{1:::{giz1{gi gjz1:::gn. The length of

an inversion is the number of genes involved in the inversion event

(j{iz1 in the example). The inversion distance between two

genomes is the minimum number of inversions required to

transform one genome to the other. A phylogenetic tree

reconstructed using inversion distance is often more accurate than

a tree reconstructed using breakpoint distance [21]. We refer

readers to [4] and [22] for further details about gene order data

and genome rearrangement events.

GRAPPA [12], along with MGR [23], is the most accurate and

widely used software for reconstructing a phylogenetic tree using

gene order data. GRAPPA supports inversion distance as well.

GRAPPA exhaustively searches the entire candidate tree space

((2N{5)!!~(2N{5)|(2N{7)| � � � 5|3|1 unrooted tree to-

pologies for N genomes); enumerates candidate tree topologies

with the branch-and-bound technique; scores the enumerated

candidate tree topologies; and selects the trees with the lowest

parsimony score. To score a tree topology, GRAPPA repeatedly

solves median problems till the score of the topology converges. A

median problem finds a median genome of three genomes, and a

median genome of three genomes is a genome that minimizes the

sum of distances between the genome and the three input

genomes.

The inversion distance between two genomes saturates if the

true number of inversions between the two genomes exceeds a

certain threshold value–for two genomes with n genes, the

inversion distance between the two genomes cannot exceed

nz1. This lowers the accuracy of reconstructed trees. Common

adjacencies of genes in two genomes saturate significantly later

than the inversion distance between the two genomes, and

GRAPPA ’s EDE [16] exploits this information to estimate the

true number of inversions between two genomes even after the

inversion distance between the two genomes saturates.

The Spectral Method
The spectral method has been widely used in solving graph bi-

partitioning [8] and clustering [9] problems. Assume a graph with

vertices and edges–each vertex has some computation and the

weight of an edge is proportional to the amount of communication

between the two vertices connected by the edge. To process the

graph using a parallel computer by distributing vertices (and

associated computations) to multiple computing nodes, it is

important to balance the amount of computing in each computing

node while minimizing the communication between two different

computing nodes. Graph bi-partitioning aims to satisfy the

requirement by finding a bi-partition that minimizes the sum of

Fast Tree Reconstruction Using the Spectral Method
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the edge weights between two partitions (the sum corresponds to

the amount of communication) while balancing the number of

vertices in each partition. The goal of clustering is to partition the

input data points to multiple highly similar subgroups. Assume

another graph with vertices and edges–each vertex represents a

data point and an edge weight is proportional to the similarity

between the two vertices. To solve a clustering problem, one needs

to partition the graph with two (or more) subgroups with a large

sum of the edge weights within a subgroup (to maximize the

similarity) while minimizing the sum of the edge weights between

two different subgroups (to minimize the similarity). The spectral

method has been very successful in finding an initial solution for

these problems, and we apply the method to decompose the input

genomes. We briefly explain the spectral method first before

presenting our algorithm in detail.

The spectral method first constructs a Laplacian matrix;

computes the second smallest eigenvalue and an eigenvector for

the eigenvalue; and bi-partitions the input data points using the

eigenvector. Assume the weighted adjacency matrix W , where

Wij~sij (sij is the similarity value between the ith and the jth input

data points, and the similarity value can be computed using the

distance between the two data points). Let D denotes the diagonal

degree matrix (Dii~Sj~1toNWij ) as well. Then there are several

ways to construct a Laplacian matrix using W and D, and L
(~D{W ), Lsym (~D{1=2LD{1=2), and Lrw (~D{1L) are widely

used Laplacian matrices. L is commonly used to solve graph bi-

partitioning problems, while Lsym or Lrw can work better for

clustering problems [9]; note that L maximizes the dissimilarity

between two partitions while Lsym and Lrw maximizes both the

similarity within a partition and the dissimilarity between different

partitions [9]. An eigenvalue (say l) and an eigenvector (say v) of

matrix A satisfies Av~lv. To bi-partition the input genomes, the

spectral method finds the second smallest eigenvalue of the

Laplacian matrix and an eigenvector for the eigenvalue. The

spectral method bi-partitions the input data points using the sign of

the eigenvector elements; the ith element of the eigenvector

determines whether the ith data point belongs to one partition or

the other. The magnitude of an eigenvector element provides the

level of confidence for the decision and a larger magnitude

suggests a higher level of confidence. This information is especially

valuable in finding an overlapping decomposition of the input

genomes in solving our problem; we place the genomes with a

small magnitude eigenvector element in the overlapping region–

the specifics will be presented later in this paper. This bi-

partitioning algorithm is commonly used for graph partitioning. k-

means algorithm is often used instead of using the sign of

eigenvector elements for clustering problems [9]. Clustering

problems often partitions the input data points to more than two

groups, and in this case, they use the third smallest (and larger)

eigenvalues and corresponding eigenvectors in addition to an

eigenvector for the second smallest eigenvalue. Our experiments

show that partitioning the input genomes to more than two groups

is less accurate than bi-partitioning the input genomes; thus, we

focus on bi-partitioning the input genomes in this paper.

A High-level Overview of Rec-DCM-Eigen
This section provides a high-level informal overview of the new

discovering method, Rec-DCM-Eigen, before providing an in-

depth description of the algorithm. There are (2N{5)!!~
(2N{5)|(2N{7)| � � � 3|1 possible (unrooted) topologies for

N input genomes. The number grows rapidly with an increasing

number of genomes or in other words, the number decreases

rapidly with a decreasing number of genomes. Disk-covering

methods aim to find a tree by first decomposing the entire set of

input genomes to multiple subgroups; fixing a topology for each

subgroup (note that the number of possible topologies for each

subgroup with a smaller number genomes is much smaller than

the number of possible topologies for the entire set of input

genomes); and merging the topologies for the subgroups. We can

apply this process recursively to further reduce the tree topology

search space.

The effectiveness of disk-covering methods highly depends on

the quality of disk decompositions. Several existing researches

show that we can find an accurate tree if we can find the bi-

partition over a long uninterrupted edge in the evolutionary

history–see the next section for additional details. The two groups

of genomes separated by a long uninterrupted edge are highly

dissimilar–assuming that the similarity of two genomes is inversely

proportional to the evolutionary distance between the two

genomes. If we construct a fully connected graph with its vertices

representing genomes and an edge weight representing the

similarity between the two genomes connected by the edge, the

spectral method is effective in finding a bi-partition with the high

dissimilarity between two partitions; this coincides with the bi-

partition over a long uninterrupted edge. However, there may not

exist a long uninterrupted edge in the evolutionary history. The

magnitude of eigenvector elements, which represents the confi-

dence level of the bi-partitioning decision, becomes useful in this

case. We bi-partition if the magnitude of every eigenvector

element is large. If there are multiple eigenvector elements with a

small magnitude value, we bi-partition excluding the genomes

corresponding to the small magnitude eigenvector elements first

and places the genomes with a low level of confidence in the

overlapping region.

Recursively applying this process largely reduces the tree

topology search space. This can also increase the accuracy of a

reconstruction method if the tree topology search space excludes

erroneous tree topologies which can be selected by suboptimal

methods. The newly designed disk-covering method, Rec-DCM-

Eigen, achieves this goal. Figure 1 depicts our new DCM in high-

level and the remainder of this section presents details of the

algorithm.

Figure 1. An overview of the new DCM.
doi:10.1371/journal.pone.0022483.g001
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A New Disk-Covering Method Based on the Spectral
Method

We define compatible, (incompatible but) recoverable, and

irrecoverable disk decompositions first before presenting our new

DCM. A disk decomposition is compatible if there was a

speciation event in the evolutionary history (or if there is an edge

in the model tree used for the simulation) that separates the

genomes in the exclusive region of one disk from the genomes in

the exclusive region of the other disk. Genomes in the overlapping

region do not affect the compatibility. If a disk decomposition is

incompatible but the incompatibility can be recovered in the

merging step, then the disk decomposition is recoverable. See

Figure 2 for an example.

In Figure 2, there is no edge separating A0, C1, C2, C3, and C4

from A2, A3, B2, B3, and B4; the decomposition is incompatible.

Yet, if we reconstruct the correct sub-topology for each disk, we

can reconstruct the correct topology for the entire set of genomes

by merging the two sub-topologies without changing the sub-

topologies; the decomposition is recoverable. If a decomposition is

incompatible and is not recoverable, then the decomposition is

irrecoverable. Our new DCM decomposes the input genomes to

two disks (each disk contains a subset of the input genomes) and

aims to find a compatible or at least recoverable disk decompo-

sition.

If we can find the bi-partition over a long uninterrupted edge in

the evolutionary history, this improves the accuracy of a

reconstructed tree while reducing the tree topology search space.

Atteson [24] proved that even the computationally inexpensive

neighbor-joining (NJ) method [25] reconstructs a tree with 100%

topological accuracy if the maximum gap between the additive

distance (the sum of the edge lengths in the path between two

genomes in a tree that best captures the evolutionary history) and

the pairwise distance between two genomes in the input genomes

is smaller than one half of the shortest edge in the tree to

reconstruct. The gap is nearly zero for close genomes and we can

reconstruct a tree with 100% topological accuracy for close

genomes unless there is a very short edge in the tree. Bi-

partitioning over a long edge significantly reduces the maximum

pairwise distance between the genomes in each partition. Bi-

partitioning over a long edge also prevents the long edge from

disturbing the accurate reconstruction of the phylogeny for the

genomes in the two subsets in each side of the edge [11,26,27]. If

there is a long uninterrupted edge in the evolutionary history,

detecting such a signal and finding the bi-partition over the long

edge is the second goal of our new DCM.

A good disk decomposition method needs to decompose the

input genomes even when there is no long uninterrupted edge in

the evolutionary history if one wishes to reconstruct a phylogenetic

tree for a large number of species. If there is no long edge in the

evolutionary history, however, finding a bi-partition can be error

prone. Bi-partitioning over a short edge often creates a longer edge

which can negatively impact the accuracy of the tree as well. In

this case, placing several genomes near the partition boundary in

both disks improves the accuracy of a reconstructed tree. Our new

DCM aims to include genomes that are necessary for the accurate

reconstruction of the phylogeny of the genomes in the exclusive

regions.

Constructing a Laplacian matrix for our DCM. There

are two questions to be answered when constructing a

Laplacian matrix. The first question is about defining a

similarity metric. The second question is what type of a

Laplacian matrix to use. One simple way to define a similarity

metric is using the inverse of a pairwise distance. von Luxburg

[9] suggested using the Gaussian similarity function instead

(sij~e{d2
ij=2s2

, where dij is the pairwise distance between the ith
and the jth input genomes). Using just the inverse of dij is

problematic as most similarity values can have only very small

values or only very large values based on the distribution of the

pairwise distances. We can control the distribution of similarity

values by changing s for the Gaussian similarity function, and

we adopt the function and set s to dmax|s’ (dmax is the

maximum pairwise distance between any two genomes in a disk

to decompose, and we set s’ to 0.125 in our experiments).

There are several types of Laplacian matrices such as L, Lrw,

and Lsym. Lsym is inappropriate. von Luxburg [9] showed that if u
is an eigenvector of Lrw with eigenvalue l then D1=2u is an

eigenvector of Lsym for the same eigenvalue. In other words, the

eigenvector element for a genome with many close neighboring

genomes has a larger magnitude with Lsym than Lrw. This is

undesirable for our purpose because genomes near the partition

boundary should have a lower magnitude regardless of whether

there are similar genomes or not. Figure 3 illustrates the point.

In the figure, L, Lrw, and Lsym suggest the same bi-partitioning

if we bi-partition the genomes based on the sign of eigenvector

elements. L and Lrw also assign small magnitude values to the

genomes near the partition boundary, but Lsym assigns large

magnitude values to the genomes near the partition boundary as

the genomes near the boundary has many close neighbors. As we

use the magnitude of the eigenvector element to decide whether to

place a genome in the overlapping region or not, this is

undesirable; we reject Lsym.

We discard Lrw next. L focuses on minimizing the dissimilarity

between two partitions while Lrw attempts to maximize the

similarity within a partition as well [9]. Lrw is more desirable for

many clustering problems as maximizing the similarity within a

cluster is an important objective of those problems. The key

objective of our disk decomposition problem is not maximizing the

similarity within a partition but finding the bi-partition over a long

edge. Lrw often returns an inferior decomposition than L in this

perspective. Figure 4 provides an example.

In the figure, L suggests the bi-partition over the longest edge

while Lrw suggests the disk decomposition that places A0 and A1
Figure 2. An incompatible but recoverable disk decomposition.
doi:10.1371/journal.pone.0022483.g002
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in one partition and C0 and C1 in the other. B has a very small

magnitude and will be included in both disks. L suggests a better

bi-partition for our purpose, and we use L in our experiments.

The perturbation theory also supports the use of L (and Lrw)

over Lsym. The theory states that for a perturbed matrix (say

A’= A+H , A is a noise free matrix and H is a noise matrix), the

error due to H in computing an eigenvector is not significant

unless the norm of H is very large for a Laplacian matrix [9]. This

is especially true for L and Lrw but this does not hold for Lsym if

there are low degree vertices [9]. In our problem, the non-

additivity of the pairwise distance between two genomes

corresponds to noise as the gap (H ) between the ideal Laplacian

matrix constructed using additive distances (A, note that we can

construct a 100% accurate topology if we can find the additive

pairwise distances between the input genomes [24]) and a

Laplacian matrix constructed using computed distances (A’)
increases as the pairwise distances between the input genomes

become more non-additive. If we use inversion distance but the

input genomes evolve via a mix of inversions and transpositions,

this also increases the level of noise. L is robust to such noise, and

this also justifies the use of L over Lsym.

Finding a disk decomposition using an eigenvector. The

spectral method provides a reasonable initial solution in solving

graph bi-partitioning and clustering problems, but the method

often requires a refinement step to find a higher quality solution

for such problems [28,29]. In the context of disk decomposition for

phylogenetic tree reconstruction, a refinement step is necessary if

there is no long edge in a tree that best captures the phylogenetic

Figure 3. An example showing an advantage of using L and Lrw

over Lsym. The trees above show the phylogenetic relationships of
twelve genomes. The value next to a genome name is the genome’s
eigenvector element computed using L (top), Lrw (middle), and Lsym

(bottom), respectively.
doi:10.1371/journal.pone.0022483.g003

Figure 4. An example showing an advantage of using L over
Lrw. The trees above show the phylogenetic relationships of five
genomes. The value next to a genome name is the genome’s
eigenvector element computed using L (top) and Lrw (bottom),
respectively.
doi:10.1371/journal.pone.0022483.g004
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relationships of the input species. The spectral method suggests a

bi-partition that has high dissimilarity between the two resulting

partitions. If there is a long uninterrupted edge in the evolutionary

history, the two groups of genomes in each side of the edge are

highly dissimilar, and the spectral method is effective in finding the

bi-partition over such a long edge. If there is no long uninterrupted

edge, it is often very difficult to bi-partition the leaf genomes to two

highly dissimilar subsets. In this case, bi-partitioning the input

genomes based on the sign of an eigenvector element can often

lead to an incompatible disk decomposition as the spectral method

bi-partitions based on the weak dissimilarity signal in the input

genomes. However, if we place genomes near the partition

boundary in the overlapping region, the error can be recovered.

An eigenvector element of a genome near the partition boundary

has a small magnitude. Our DCM exploits this. It sorts the input

genomes using their eigenvector element as a key; finds an initial

bi-partition by placing the genomes with a negative eigenvector

element in one disk and the genomes with a positive eigenvector

element in the other; computes the difference between the smallest

positive eigenvector element and the largest negative eigenvector

element; places the genomes with a small magnitude eigenvector

element in the overlapping region if the gap is smaller than a

certain threshold value (say a). The algorithm visits genomes in

each partition starting from the partition boundary in the sorted

list until the gap between a current genome and the next genome

exceeds another threshold value (say b). All the visited genomes

are placed in the overlapping region. Using b prevents placing

only a subset of very close genomes in one partition. We use Intel

MKL as an eigensolver. Intel MKL returns a normalized

eigenvector, and a and b also need to be scaled based on the

number of genomes in a disk to partition. For a disk with N
genomes, we use 0:08|

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100=N

p
for a and 0:005|

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100=N

p
for

b, respectively.

Placing too many genomes in the overlapping region is

problematic as this increases the redundancy of computing. If

there are two long edges separating two small groups of genomes

from the remaining genomes, the algorithm described above

places a large number of genomes in the overlapping region–

genomes in the two small groups have large magnitude

eigenvector elements and the remaining genomes have eigenvector

elements close to zero. Figure 5 provides an example. A2, B0, B1,

B2, B3, B4, B5, B6, B7, and C2 have an eigenvector element with

a very small magnitude, but placing these genomes in the

overlapping region is problematic.

In this case placing one of the two small groups (A0 and A1 or

C0 and C1 in the figure) in one partition and the remaining

genomes in the other is a better decomposition. To detect this,

COGNAC decomposes the two child disks (say Disk 0 and Disk 1)

again. If one of the two child disks is decomposed to two non-

overlapping disks (say Disk 2 and Disk 3) with one (assume Disk 2)

of the two holding all the genomes in the overlapping region of

Disk 0 and Disk 1, COGNAC places the genomes in Disk 3 in one

partition and the remaining genomes in the other instead of

placing a large number of genomes in the overlapping region.

The Time Complexity and the Space Complexity of the

new DCM. To build a binary disk tree, COGNAC computes the

pairwise distances between the input genomes first and then

recursively applies the new DCM. For N genomes with n genes

per genome, computing the pairwise distances costs

O(N2)|disttime(n) (disttime(n) is the time complexity of

computing a pairwise distance) operations and O(N|n) (to

store the input data)+O(N2) (to store the pairwise distance

matrix)+distspace(n) (distspace(n) is the space complexity of a

pairwise distance computation) space. disttime(n) and distspace(n)

are O(n) for inversion distance [30]; this leads to the overall time

and space complexities of O(N2n) and O(N2)zO(Nn),
respectively.

In computing a single disk decomposition for a disk with N

genomes, the time complexity is O(N3) (Intel MKL dsyevr eigensolver

is the most expensive part in an asymptotic sense) and the space

complexity is O(N2). In the theoretical worst case, every disk

composition can place only one genome in the two exclusive regions

and all the remaining genomes in the overlapping region. In this case,

the overall time complexity to build a binary disk tree becomes

O(N2n)+Si~0 to (N{4)2
i|O((N{i)3) and the space complexity is

O(N2)+O(Nn)+Si~0 to (N{3)2
i|O(N{i) (the last term to store the

binary disk tree). In practice, only a small fraction of the genomes in a

disk is placed in the overlapping region (and COGNAC provides

configuration parameters to control the size of the overlapping region

such as a and b). The height of a binary disk tree is O(logN) (instead

of O(N) in the worst case) and the size of a disk nearly halves in each

decomposition in most practical cases. The O(N2n) term to compute

the pairwise distances takes much longer than the

Si~0 to (N{4)2
i|O((N{i)3) term in our experiments. COGNAC

builds a binary disk tree in a few seconds or less in all the experiments

in this paper while the time spent in processing the binary disk tree is

highly input data dependent due to its NP-hard worst case time

complexity (evaluating a single topology requires solving multiple NP-

hard median problems and COGNAC needs to evaluate multiple tree

topologies to process the binary disk tree).

Our Merging Algorithm
Our DCM largely reduces the tree topology search space but

does not reconstruct a complete tree. Our merging algorithm fixes

Figure 5. An example illustrating the necessity of a heuristic to
avoid placing a large number of genomes in the overlapping
region. The tree above depicts the phylogenetic relationships of the
input genomes and the eigenvector element computed using L follows
a genome name. Two long edges separate A0 and A1 and C0 and C1
from the remaining genomes in the center. The eigenvector elements
for the genomes in the center are very small.
doi:10.1371/journal.pone.0022483.g005
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details–using the MP principle–to reconstruct a tree for the whole

input genomes. To reconstruct a tree of the genomes in a parent

disk, our code enumerates candidate tree topologies by merging

the sub-topologies of the two child disks; scores those trees by

solving median problems; and selects the trees with the lowest

parsimony score. Our code has different merging routines for non-

overlapping disks and overlapping disks.

Merging two non-overlapping disks. To merge two trees

in two non-overlapping disks, COGNAC first computes the pairwise

distances between the genomes–both internal and leaf genomes–in

one tree and the genomes in the other tree and finds the pair that

minimizes the distance. COGNAC enumerates candidate trees by

connecting all the neighboring edges of the two vertices. In

merging two sub-trees, our algorithm enumerates at most nine

topologies unless there is a tie in the minimum distance.

This significantly reduces the number of topologies to be

evaluated. Say if a disk with N genomes is decomposed to two

non-overlapping disks with N1 and N2 genomes (N = N1+N2),

respectively. For N genomes, we need to consider (2N25)!!

topologies with N leaf genomes per topology. With the above

decomposition, we need to consider 9 or fewer topologies with N
leaf genomes (unless there is a tie in the minimum distance),

(2N125)!! topologies with N1 leaf genomes, and (2N225)!!

topologies with N2 leaf genomes. Assume N , N1, and N2 are 10,

5, and 5, respectively. Without the decomposition, we need to

consider 2,027,025 topologies with 10 leaf genomes. With the

decomposition, we need to consider only 9 topologies with 10 leaf

genomes and 2|15 topologies with 5 leaf genomes. A recursive

application of the new DCM further reduces the candidate tree

search space.

Merging two overlapping disks. In order to merge two

overlapping disks, our algorithm compares the two disks’ topology

for the genomes in the overlapping region. If there is a conflicting

edge, our algorithm collapses the edge similar to [5]. After

collapsing all the conflicting edges, our algorithm merges the two

sub-trees. Then, our algorithm expands collapsed edges for every

possible bifurcating scenario to enumerate candidate tree

topologies. As the size of the overlapping region and the number

of conflicting edges in the overlapping region increase, the

candidate tree search space reduces in a slower rate. COGNAC

provides configuration parameters (e.g. a and b) to reduce the size

of the overlapping region at the possible risk of lower accuracy.

Illustrative Examples
Our new DCM not only reduces the number of candidate tree

topologies but also excludes erroneous tree topologies which can

be selected by original MP methods. The new DCM enables more

accurate initial labeling as well. These improve the accuracy of

COGNAC as a consequence, and this section provides two

examples to illustrate this.

Figure 6 depicts a model tree used to generate test data and two

reconstructed trees using an original MP method (the GRAPPA

method) and COGNAC . For the result, the length of an edge is

identical to the inversion distance between the two genomes in

each side of the edge–this is smaller than the number of inversions

that happened in the edge if there is a parallel mutation within the

edge. Each genome has 150 genes and inversion lengths used to

generate test data follow the gamma distribution (a~1:0 and

c~5:0). The original MP method returns four erroneous trees,

and the figure depicts one of the four. The tree joins two long

edges together, and this topology is vulnerable to long branch

attraction. COGNAC does not include the topology in the search

space. Our DCM first places A in one partition and the remaining

genomes in the other partition. After reconstructing a tree for the

genomes in the other partition, COGNAC enumerates candidate

trees by first finding the genome closest to A–the immediate

ancestor of B is closest to A–and connecting A to the genome’s

three neighboring edges. No tree in the search space joins the

external edges to A and D. Our DCM not only reduces the search

space but also improves the accuracy by excluding many

erroneous trees from the search space.

The new DCM often leads to better initialization of internal

genomes as well. Figure 7 depicts a model tree adopted from

Figure 8 of Bhutkar et al. ’s paper [20]. The paper does not provide

the length of the external edge to D. willistoni (Dwil in Figure 7) and

we set the edge length to a large number. We also scale down the

edge lengths to experiment with significantly non-additive trees

while limiting the execution time. We set the number of genes in

each gene order data to 2000 first and reduce the number by 200

till COGNAC or the original MP method does not finish within a

practical time limit. For 1200 genes, the original MP method runs

for 7.3 hours and returns two erroneous trees (one false positive

and two false negatives for one tree and two false positives and two

false negatives for the other tree). COGNAC finishes in 40

milliseconds and retrieves the 100% accurate topology. The

original MP method does not finish within a practical limit for

1000 or less genes. COGNAC reconstructs the 100% accurate

topology even for 800 genes (in 2.2 hours).

This is mainly due to better initialization. If there are only a

small number of evolutionary events among a set of genomes, it is

often not very difficult to accurately reconstruct the evolutionary

events and the ancestral genomes. If there are a large number of

events among a set of genomes, reconstructing the evolutionary

events and the ancestral genomes becomes much more challeng-

ing. With the new DCM, we can initialize internal genomes using

closer genomes, which is generally more accurate than initializing

internal genomes using distant genomes. Without the new DCM,

it is difficult to find the best order to initialize the internal

genomes, and the original MP method initializes the internal

genomes using the three nearest leaf genomes. For example, to

initialize the immediate ancestor of Dwil, the GRAPPA method

finds the median genome of Dwil and two more leaf genomes (e.g.

Dmel and Dvir). COGNAC first places Dwil in one partition and

the remaining genomes in the other partition. To merge the two

partitions, COGNAC finds the genome closest to Dwil and breaks

the genome’s three neighboring edges to connect Dwil. At this

time, all the internal genomes except for the immediate ancestor of

Dwil are already initialized. COGNAC can initialize the immediate

ancestor of Dwil by finding the median genome of Dwil and the

Dwil’s immediate ancestor’s two neighboring internal genomes.

The new DCM forces to initialize the internal genomes in a

desirable order which is difficult to find in the case of the original

MP method.

Results and Discussion

Experimental Setup
We test our new method using gene order data generated using

various simulators and assuming inversion distance. We run our

code on a system with two 2.4 GHz quad-core Intel Nehalem-EP

processors (E5330) and 12 GB DRAM. COGNAC is multi-threaded

(using Intel Thread Building Block), but we configure COGNAC to

use only one core in the system to compare with other single-

threaded software packages.

We generate model trees using simulators used in Tang and

Moret’s work [13] and Lin et al. ’s work [14]. Tang and Moret [13]

ran tests using uniform-random trees and birth-death trees in their

DCM-GRAPPA paper (for birth-death trees, they used the r8s

Fast Tree Reconstruction Using the Spectral Method

PLoS ONE | www.plosone.org 7 August 2011 | Volume 6 | Issue 8 | e22483



software package [15] developed by Sanderson). They generated

trees with identical edge lengths (all the edges in a single tree have

an identical edge length) of 2, 4, and 8. This is less realistic, and it

is also easy to reconstruct the model tree if all the edges in a model

tree have an identical edge length. We set an edge length by

randomly sampling an integer number between 0 and 16 instead.

We also use model trees with skewed edge length distributions (a

small number of long edges and many short edges) using the

simulator introduced in [14]. The simulator generates birth-death

trees using the R statistics package first (using the birth-rate of

0.001 and the death rate of 0) and modifies the edge lengths to

generate non-ultrametric trees. To modify an edge length, the

simulator randomly samples a floating point number (say c)

between 22 and 2 and multiplies e{c to the edge length. After

modifying all the edge lengths, the simulator uniformly scales the

edge lengths to generate a tree with a specific diameter. We use

1|n (the number of genes in a genome, 100 in our experiments)

and 2|n as diameters of the generated trees. We generate leaf

genomes by applying inversions to a common ancestral genome

with 100 genes. The number of inversions applied in each edge is

identical to the length of an edge, and the inversion lengths follow

the uniform distribution. We use the generated leaf genomes as

input data.

There are several software packages to reconstruct a phyloge-

netic tree for a large number of genomes using gene order data.

FastME is a widely used program based on use of distance

methods. Distance methods’ performance depends on the quality

of the input distance matrix. We use GRAPPA ’s EDE to correct

inversion distance to better estimate the true number of inversions

happened in the evolutionary history and feed the corrected

distances as FastME input data. We also test with uncorrected

distances and CDCJ [31] corrected distances, but GRAPPA ’s

EDE produces the best results. We present the results with the

EDE in this paper. FastME has several options, and we use the NJ

initialization, BNNI, and SPR as this combination produces the

most accurate trees in our experiments.

DCM2 and Rec-I-DCM3 are options for MP methods. Tang

et al. [13] presented experimental results using the combination of

DCM2 and GRAPPA in their DCM-GRAPPA paper. They used

trees with identical edge lengths as mentioned in the previous

paragraph, and DCM-GRAPPA ran for ten hours to two days and

reconstructed trees (640 leaf genomes) with approximately 10 false

positives (when edge length is 2), 1 false positive (when edge length

is 4), and close to 0 false positive (when edge length is 8) on

average. COGNAC reconstructs nearly 100% accurate topologies in

seconds to minutes for such trees. It is easy to reconstruct an

accurate tree if all the edges in a model tree have an equal length,

and as DCM-GRAPPA ran much slower than COGNAC to return

less accurate trees even in this case, we do not further compare

COGNAC with DCM-GRAPPA . Instead, we compare COGNAC

with the combination of the state of the art DCM (Rec-I-DCM3)

and GRAPPA . We use the FastME output trees as a guide tree for

Rec-I-DCM3 . We set the maximum subset size to 8 and the

iteration count to 3 in reconstructing trees using Rec-I-DCM3 .

We set maximum execution time to 24 hours, and if the execution

time exceeds 24 hours, we mark the computation as unfinished.

Experimental Results and Analysis
Figure 8 summarizes experimental results for uniform-random

trees with the edge lengths between 0 and 16, birth-death trees

with the edge lengths between 0 and 16, birth-death trees with a

skewed edge length distribution and the diameter of 1|n, and

birth-death trees with a skewed edge length distribution and the

diameter of 2|n, respectively. See Tables 1, 2, 3, and 4 for

additional details. FastME in the figure and tables represents the

combination of GRAPPA ’s EDE and FastME using the options

described above. Rec-I-DCM3 in the figure and tables represents

the combination of Rec-I-DCM3 and GRAPPA using the FastME

output tree as a guide tree. If COGNAC returns more than one tree,

we randomly select one of the returned trees. FastME returns a

tree with edge lengths in a floating point number. If an edge is

shorter than 0.5, we consider the edge as a zero length edge in

computing the topological accuracy. We count errors for only

internal edges–assigning length zero for a non-zero external edge

in the model tree or assigning non-zero length to a zero-length

external edge in the model tree does not increase the number of

false positives or false negatives.

We generate 10 model trees for each test case. The number of

false positives (FP), the number of false negatives (FN), and the

execution time (time) in the figure and tables are the average of the

finished computations out of 10 trials using 10 different model

trees. h, m, and s in the tables are hours, minutes, and seconds,

respectively.

COGNAC clearly outperforms FastME and Rec-I-DCM3 in

accuracy. COGNAC also consistently reconstructs accurate trees

Figure 6. A model tree (left) and two reconstructed trees using an original MP method (the GRAPPA method) (center) and COGNAC
(right). Numbers on top of edges are edge lengths.
doi:10.1371/journal.pone.0022483.g006

Figure 7. A model tree used to demonstrate the superiority of
COGNAC in initializing internal nodes. The figure depicts a model
tree adopted from a biology paper [20].
doi:10.1371/journal.pone.0022483.g007
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regardless of model tree types. In contrast, FastME is less accurate

for birth-death trees than uniform-random trees, and FastME ’s

accuracy drops significantly for birth-death trees with a larger

diameter and a large number of genomes. Rec-I-DCM3 fails to

improve the accuracy of the input guide tree especially for trees

with a skewed edge length distribution. In reconstructing trees for

640 input genomes, COGNAC reconstrus a tree with 15 false

positives and 13 false negatives in the worst case (this happens with

Figure 8. A summary of the experimental results. The figures plot (FP+FN)/2 (FP is the number of false positives and FN is the number of false
negatives) for a varying number of genomes (20, 40, 80, 160, 320, 640). The numbers are the average of the finished computations. Missing points
indicate that no computation finished within 24 hours. See Tables 1, 2, 3, and 4 for additional details.
doi:10.1371/journal.pone.0022483.g008

Table 1. Experimental results for uniform-random trees with the edge lengths between 0 and 16.

COGNAC FastME Rec-I-DCM3

N finished FP FN time finished FP FN time finished FP FN time

20 10 0 0.1 0.17 s 10 0.8 0.3 0.11 s 10 1 2.4 51 m

40 10 0.5 0.2 0.51 s 10 1.6 0.5 0.099 s 8 2.88 6.75 6.8 h

80 10 1.8 0.9 4.9 s 10 3.1 0.9 0.13 s 2 8.5 18.5 3.1 h

160 10 2.8 2.1 19 s 10 7.7 3.5 0.26 s 1 9 22 7.0 h

320 10 4.1 3 1.1 m 10 11.5 5.8 1.8 s 0 N/A N/A N/A

640 10 8.4 6.6 3.4 m 10 25.1 11.1 46 s 0 N/A N/A N/A

We generate 10 model trees for a given number of genomes (N). The number of false positives (FP), the number of false negatives (FN), and the execution time (time) in
a cell are the average of the finished computations (finished: the number of finished computations within 24 hours) out of 10 trials using 10 different model trees. h, m,
and s in the tables are hours, minutes, and seconds, respectively.
doi:10.1371/journal.pone.0022483.t001
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a birth-death tree with the edge lengths between 0 and 16), while

FastME returns a tree with 34 false positives and 64 false negatives

(this is for a birth-death tree with the diameter of 2|n and edge

lengths in a skewed distribution) and Rec-I-DCM3 retunrs a tree

with 166 false positives and 384 false negatives (this is for a birth-

death tree with the diameter of 1|n and edge lengths in a skewed

distribution, Rec-I-DCM3 fails to output any tree for a model tree

with the diameter of 2|n within the time limitation) in the worst

case; this shows the robustness of COGNAC .

COGNAC is much faster than Rec-I-DCM3 (both are based on

the MP principle) but is slower than FastME which is a distance

method. The most expensive routine in both COGNAC and Rec-I-

DCM3 (in combination with GRAPPA) is a median solver. A

median solver solves a median problem which finds a median

genome of three genomes. The execution time to find a median

genome highly depends on the distances between the three

genomes. If the genomes become more distant than a certain

threshold, the execution time increases very fast [32] (note that the

worst case time complexity of Caprara’s median solver–both

COGNAC and GRAPPA use Caprara’s median solver–is NP-hard).

COGNAC ’s DCM places a smaller number of genomes–often 0–in

the overlapping region. COGNAC also decomposes disks till three

or fewer genomes are left while Rec-I-DCM3 requires the

minimum disk size larger than a certain threshold to be accurate.

Rec-I-DCM3 requires multiple iterations as well. COGNAC needs

to solve fewer median problems for closer genomes as a

consequence, and this explains COGNAC ’s faster execution time.

MP methods for gene order data generally run multiple orders

of magnitude slower than distance methods. Even though

COGNAC runs slower than FastME , the difference is much less

than the difference between typical MP and distance methods

using gene order data. COGNAC is reasonably fast in most cases

but becomes very slow if COGNAC needs to find a median genome

of three distant genomes (COGNAC ’s execution time to reconstruct

a phylogenetic tree for 640 genomes varies from less than

30 seconds to over 24 hours); this is not an artifact of our newly

developed DCM but a shortcoming of the median algorithm used

in COGNAC . There are faster median solvers in the literature– e.g.

[32–34] for inversion median and [35] for DCJ median, but even

those become very slow for very distant genomes. This necessitates

the development of faster median solvers.

Conclusions and Future Work
We design a new DCM based on the spectral method and also

develop the COGNAC software package which uses the new DCM.

COGNAC demonstrates both high accuracy and fast execution

time, and our new DCM plays a significant role in COGNAC ’s

superior accuracy and fast execution time. The new DCM

significantly reduces the candidate tree search space. If the new

DCM excludes a tree that best captures the phylogenetic

relationships from the search space, however, this significantly

lowers the value of the new DCM. In obtaining all the results presented

in the previous section, our new DCM never returns an incompatible

decomposition; thus, the new DCM never excludes the model tree topology from

Table 2. Experimental results for birth-death trees with the edge lengths between 0 and 16.

COGNAC FastME Rec-I-DCM3

N finished FP FN time finished FP FN time finished FP FN time

20 10 0.2 0 0.16 s 10 0.7 0.1 0.23 s 10 0.9 2.4 1.5 h

40 10 0.5 0.3 0.75 s 10 1.8 0.9 0.22 s 5 4.8 12.2 8.7 h

80 10 1.6 1 7.9 s 10 4.4 1.9 0.23 s 1 15 24 23 h

160 10 2.2 1 23 s 10 8.3 4.4 0.66 s 0 N/A N/A N/A

320 10 5.4 3 1.3 m 10 19 10.5 3.3 s 0 N/A N/A N/A

640 10 10.3 7.2 4.8 m 10 37 22.2 25 s 0 N/A N/A N/A

We generate 10 model trees for a given number of genomes (N). The number of false positives (FP), the number of false negatives (FN), and the execution time (time) in
a cell are the average of the finished computations (finished: the number of finished computations within 24 hours) out of 10 trials using 10 different model trees. h, m,
and s in the tables are hours, minutes, and seconds, respectively.
doi:10.1371/journal.pone.0022483.t002

Table 3. Experimental results for birth-death trees with the diameter of 1|n and edge lengths in a skewed distribution.

COGNAC FastME Rec-I-DCM3

N finished FP FN time finished FP FN time finished FP FN time

20 10 0.7 0.7 0.18 s 10 1.4 1.4 0.16 s 9 2.33 5.11 1.3 h

40 10 0.5 0.9 0.21 s 10 1.4 3.2 0.23 s 9 5.33 16.2 5.5 h

80 10 0.7 1.1 0.91 s 10 2 3.7 0.27 s 9 13.6 36.7 2.5 h

160 10 0.9 1.3 2.4 s 10 2.5 4.7 0.57 s 7 42.7 93.1 6.0 h

320 10 2.1 3.5 19 s 10 2.1 5.4 2.0 s 7 82.1 183 8.9 h

640 10 2.6 5.7 2.9 m 10 2.8 8.3 13 s 6 155 355 6.2 h

We generate 10 model trees for a given number of genomes (N). The number of false positives (FP), the number of false negatives (FN), and the execution time (time) in
a cell are the average of the finished computations (finished: the number of finished computations within 24 hours) out of 10 trials using 10 different model trees. h, m,
and s in the tables are hours, minutes, and seconds, respectively. n is the number of genes in a genome, which is 100 in our experiments.
doi:10.1371/journal.pone.0022483.t003
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the search space. We perform intensive tests to find a case our new

DCM returns an incompatible decomposition–we run experiments

using both uniform-random trees and birth-death trees with

various edge length distributions (e.g. the average edge length of 2,

4, 8 and using various deviations from the average length) and also

using manually created trees to challenge our DCM. We find our

new DCM sometimes returns an incompatible decomposition–

though very rarely–if the model tree of the genomes to decompose

has only short edges (e.g. if every edge has the length of 2). Even in

this case, most of the incompatible decompositions are recoverable

and actually recovered (if the tree has only short edges, most

reasonable reconstruction methods find a very accurate tree). Our

new DCM returns an irrecoverable decomposition in extremely

rare cases; when the input genomes consists of multiple highly

distant groups (if such groups are very distant and all the

phylogenetic signals between the groups are lost, no method can

reconstruct the phylogeny) or statistically very unlikely events

happen (e.g. if the model tree has only a small number of short

edges but the tree has many parallel mutations). All the errors in

the experimental results obtained using COGNAC in this paper are

introduced in the merging step.

The new DCM significantly improves the speed and accuracy of

COGNAC , but there are still remaining challenges to reconstruct

accurate phylogenetic trees within a practical time limit–most

importantly, finding a more accurate and flexible distance metric

(than inversion distance) and designing a median solver with a

bounded complexity. Especially COGNAC currently supports only

inversion and assigns the weight of 1 to every inversion regardless

of their length. Ideally phylogenetic tree reconstruction software

needs to support various types of chromosome-level mutations

(such as inversion, translocation, transposition, fusion, fission,

insertion, deletion, and duplication). Most currently available

distance metrics also assign a same weight for a same type of

mutations–with an exception of [36]. This is more due to

computational efficiency rather than biological fidelity. A flexible

distance metric that allows users to assign different weights based

on the type and length of a mutation and possibly the significance

of the genes (or other genetic markers) involved in the mutational

event is highly desirable. The newly designed DCM significantly

reduces the number of median problems to be solved and pairwise

distances to be computed while the use of a large scale

supercomputer and high-performance computing techniques can

provide a much larger computing capacity; this enables us to

adopt a computationally more expensive but more flexible and

biologically justifiable distance metric. We will focus on addressing

remaining problems by adopting new effective algorithms designed

by many other researchers in the community, designing new

algorithms by ourselves, and using parallel computers (including a

leadership scale supercomputer) and performance optimization

techniques. All these combined, COGNAC will evolve towards a

highly flexible and powerful tool to assist biologists to better

understand the evolutionary history of living species using gene

order data.
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