266

Special Issue

it 6/2011

4

Algorithm Engineering Challenges
in Multicore and Manycore Systems

Algorithm Engineering Herausforderungen bei Mehrkern- und Manycore-Systemen

Seunghwa Kang, David Ediger, David A. Bader, Georgia Institute of Technology, Atlanta, USA

Summary Modern multicore and manycore systems have
the strong potential to deliver both high performance and
high power efficiency. The large variance in memory ac-
cess latency, resource sharing, and the heterogeneity of
processor architectures in modern multicore and manycore
systems raise significant algorithm engineering challenges.
In this article, we overview important algorithm engineer-
ing issues for modern multicore and manycore systems,
and we present algorithm engineering techniques to ad-
dress such problems as a guideline for practitioners. »»»
Zusammenfassung Moderne Mehrkernsysteme und Many-

core Prozessoren erlauben nicht nur hohe Performance son-
dern auch geringen Energieverbrauch. Die groBe Varianz bei
Speicherzugriffszeiten, die Mdglichkeit gemeinsame Ressourcen
zu nutzen und die Heterogenitdt der Prozessorarchitekturen
in solchen Systemen erzeugen erhebliche Herausforderungen
fur den Bereich des Algorithm Engineering. In diesem Ar-
tikel geben wir eine Ubersicht der wichtigsten Belange des
Algorithm Engineering flir Mehrkern- und Manycore-Systeme
und stellen Methoden des Algorithm Engineerings vor, die
dem Praktiker als Leitlinien bei derartigen Problemen dienen
kénnen.

Keywords D.1.3 [Software: Programming Techniques: Parallel Programming]; performance tuning, GPU »p»

Schlagworter Parallele Programmierung, Algorithmen

1 Introduction
Multicore processors are replacing single-core processors
from smartphones to supercomputers. Manycore acceler-
ators, such as graphics processing units (GPUs), are also
becoming popular. Multicore processors and manycore
accelerators have the potential to deliver both high per-
formance and high power efficiency [1;11]. However,
to realize such potential, software must be parallelized
and tuned for these processors. This is the task for to-
day’s algorithm engineers. Algorithm engineering refers
to the process of transforming an algorithm on paper into
a robust and efficient implementation on today’s com-
puters [3]. There have been significant efforts to automate
this parallelization and tuning process (e. g., [4;12]), but
the problem remains a daunting challenge. Algorithm
engineering work for modern systems will largely remain
the programmer’s burden for the foreseeable future.
Parallelizing an algorithm, obtaining a good load bal-
ance across processors, and attaining a speed-up are

common challenges when using parallel machines; paral-
lelization becomes more challenging for parallel systems
with multi-core processors and accelerators than parallel
systems with single-core processors as the requirement
for parallelism increases. In addition to these, algorithm
engineering for multicore and manycore processors is
challenging for three major reasons: the large variance in
memory access latency, the sharing of system resources,
and heterogeneity. Even in a single-core system, mem-
ory access latency to the closest memory (registers) is
much smaller than the latency to the farthest memory
(e.g., DRAM). The variance becomes larger in computers
with multicore processors and manycore accelerators. For
a system with a traditional microprocessor (CPU) and an
additional GPU card, accessing the GPU’s memory from
the CPU side takes much longer than accessing the CPU’s
memory. In multicore systems, multiple cores often share
resources such as a cache and memory bandwidth. Mul-
tithreaded microprocessors can spawn multiple hardware

it — Information Technology 53 (2011) 6 / DOI 10.1524/itit. 20 L8R5 20 yEL@enbeusg Wassensshaftgyerttaghnologie KIT-Bibliothek

Authenticated
Download Date | 9/16/19 2:22 AM

threads on a single core, and in this case, the hardware
threads also share resources within a core. In each of
these cases, the microprocessor may have different ar-
chitectural features. For example, CPUs and GPUs both
support vector instructions, which apply a single instruc-
tion to multiple scalar values, but the vector units of
a CPU and a GPU have significantly different structures.
The CPU’s vector unit supports packing of sixteen 8-bit
operands in a single 128-bit execution unit while today’s
(NVIDIA) GPUs can process only one 8-bit operation
per 32-bit wide vector lane (an NVIDIA Fermi GPU’s
vector unit has sixteen vector lanes).

All the above factors affect the performance of a pro-
gram in different ways for different target systems. An
algorithm engineering approach that works well for one
system often does not work for another system or input
data set. To achieve high performance, programmers need

Chip Boundary

L1 Cache

L2 Cache

DRAM

Figure 1 Mlustration of the classical single-core memory hierarchy.

to understand the characteristics of their target system, as
well as their data, and properly tune their code for both.
This article aims to help programmers with the former.
We will give an overview of architectural characteristics
of modern multicore and manycore systems and present
algorithm engineering techniques for these systems.

2 Variance in Memory Access Latency

Typical modern computer systems, including single-core
systems, have a hierarchical memory subsystem. Assume
that a memory closer to an arithmetic logic unit (ALU)
resides in a higher position of the memory hierarchy.
Then the highest level memory (registers) is the smallest
in size but has the lowest latency and highest bandwidth.
As shown in Fig. 1, a typical single-core system has level 1
instruction and data caches, a level 2 cache, and a DRAM
in the lowest level. A lower level memory is larger but
has higher latency and lower bandwidth.

Computers with a multicore CPU have a more com-
plex memory subsystem. Data can reside in another core’s
cache that often has higher latency than the lower level
cache shared by the cores. In computers with multiple
multicore CPUs, data can reside in the cache of another
core of the same CPU or a cache of another CPU in
a different socket. The variation in DRAM access la-
tency also increases. Recent Intel and AMD CPUs adopt
the NUMA (Non-Uniform Memory Access) architecture.
In the NUMA architecture, each CPU has its own local
DRAM. The latency to the local DRAM is lower than the
latency to a remote DRAM (another CPU’s local DRAM).
In a CPU-GPU hybrid system, accessing the GPU’s
DRAM from the CPU side incurs even higher latency.

Figure 2 illustrates the memory hierarchy of a CPU-
GPU hybrid system with two CPUs and one GPU.

To access data in the same CPU, only on-chip com-
munication is required; on-chip communication typically
incurs much lower latency than off-chip communication.

SM SM

A

} 32 GBrs Ys20Bis

DRAM DRAM

L2$
SM SM SM
| e
¢l44GB/S
DRAM

Figure 2 llustration of the Memory Hierarchy of a CPU-GPU Hybrid System (Two Intel X5550 CPUs and an NVIDIA C2050 GPU).

Brought to you by | Karlsruher Institut fir Technologie KIT-Bibliothek

Authenticated
Download Date | 9/16/19 2:22 AM

267

Special Issue

y

In contrast, to access the GPU’s DRAM, off-board com-
munication between the mainboard and the GPU board
across the PCI Express bus is required. This incurs much
higher latency and often becomes a performance bottle-

neck [8].

2.1 Temporal and Spatial Locality
Due to the increase in the variance of memory ac-

cess latency, it is much more important for multicore
and manycore systems to minimize the impact of long-
latency, low-level memory accesses. One way to achieve
this is to increase the temporal and spatial locality of
data accesses. Temporal locality refers to the degree of
data reuse in a short time duration. If data are accessed
repeatedly in a short time duration, the data have a high =~ |2l faezesT
probability of residing in a small but low latency memory
(such as registers and level 1 cache), except during the |7 =" | =" |
first access. Say we need to apply operations a, b, and ¢ |z e e
to every element of matrix A. One way to implement this =~ ==
is to apply operation a to every element of matrix A first,
then apply operation b, and finally operation ¢ to every
element of matrix A. In this case, there is a significant time
gap betwee.n the accesses Ofa. matrix element. The secon.d Figure 3 Data access patterns without (top) and with (bottom) blocking.
approach is to apply operations a, b, and ¢ to a matrix
element before applying operations to the next element.
This approach has much higher temporal locality.
The well known blocking technique also improves the
temporal locality of data accesses. Say we are multiplying
m by n matrix A and n by I matrix B to compute m by
I matrix C using the elementary matrix-matrix multiply
algorithm. We can compute the matrix C’s ith row and

jth column element (Cj) as the following.

Assume the matrices are stored in row major order.

High temporal locality is even more important for
CPU-GPU hybrid systems. Once data are loaded to the
GPU side, GPUs often can process the data very quickly.
However, moving data between the CPU side and the

n
C,‘j %ZA,‘kaj,l <i<m and lfjfl
k=1
Figure 3 depicts the data access patterns with (bottom)
and without (top) blocking. Non-blocking matrix multi-
plication code computes C;; by accessing the ith row of
matrix A and the jth column of matrix B. If the code
updates Cy; first and Cj, second, Aj; is accessed first to
update C;; and is accessed again to update C, after all
the elements in the first row of matrix A are accessed. The
gap between two consecutive accesses is # elements. The

blocking approacb partitions matrix. A, B, and.C to small _ _
blocks. If we consider a block as a single matrix element, L
blocking matrix multiplication code accesses the blocks _— =
in the same way to the non-blocking code accesses the et e,
matrix elements. Also, when multiplying two blocks (one —_—
block from ma.tnx A 'and one block from matrix B) to L]
update a block in matrix C, the code accesses the elements s
in each block in the same way as the non-blocking code. == ===
In this case, assuming that the block size is b by b, the first P
element in the first row of matrix A’s block is accessed s =
once per every b element accesses. The gap between two
consecutive accesses is b instead of n. This significantly Figure4 Data access patterns without (top) and with (bottom) column
grouping. Assume the matrix is stored in row major order.

improves temporal locality if n is much larger than b.

Brought to you by | Karlsruher Institut fir Technologie KIT-Bibliothek
Authenticated

268
Download Date | 9/16/19 2:22 AM

GPU side across the PCI Express bus incurs high latency.
Algorithm engineering to achieve high temporal locality
becomes even more important in CPU-GPU hybrid sys-
tems due to the high off-loading overhead across the PCI
Express bus and the GPU’s high computing power.

Modern CPUs load and store data from DRAM to
cache or from cache to DRAM in a cache line granularity
(often 32 bytes, 64 bytes, or 128 bytes). If multiple data
elements in the same cache line are accessed in a short
time duration, then we can say the data accesses have high
spatial locality. We can often increase spatial locality by
reordering data accesses. Column grouping (e.g., [6]) is
an example. Figure 4 illustrates column grouping.

A particular algorithm may require us to sum the
elements of each column. The top figure in Fig. 4 de-
picts the data access pattern without column grouping.
If the matrix is stored in row-major order, consecutive
data accesses hit different cache lines. This data access
pattern has low spatial locality and low performance. We
can compute the same results by reordering data accesses
as shown in the bottom figure of Fig. 4; we can partially
update the sum of each column in a horizontal sweep of
a cache line instead of updating the sum of one column
after finishing the summation of the previous column.
This modification, or column grouping, leads to much
higher spatial locality.

2.2 Affinity

The affinity of computation and data is especially im-
portant for a system with multiple CPUs and the NUMA
architecture. In a NUMA system with two CPUs, each
CPU has its own local DRAM (such as the system de-
picted in Fig. 2). If a thread running on one CPU accesses
data in its local DRAM, the thread can directly access the
data using the local memory controller of the CPU that
the thread is currently running on. If the thread accesses
data in a remote DRAM, the thread needs to access the
data via another CPU, and this further increases mem-
ory access latency. We can reduce the number of remote
DRAM accesses by binding a thread and the thread’s
frequently accessed data to a CPU and its local DRAM.
The NUMA API [9] provides mechanisms to control the
binding to improve affinity.

It is often helpful to replicate read-only and heavily
read data in a system with multiple CPUs and the NUMA
architecture (e. g., [8]). If the data are significantly larger
than the cache size, the data need to be read multiple
times from DRAM. If the data are replicated — one copy
per CPU and its local DRAM pair — threads running
on a CPU can always read data from its local DRAM
instead of a remote DRAM. Initial replication cost can be
amortized if the data are read multiple times.

2.3 Latency Hiding

We can reduce a number of high latency memory accesses
by increasing the locality of data accesses. However, in
most practical cases, we cannot completely remove high

latency memory accesses. This necessitates a technique to
hide memory access latency. Two popular approaches to
hide latency are prefetching and multithreading.

Prefetching works for cases with predictable data ac-
cess patterns. As an example, we first process block A
and then block B. With prior knowledge that we will
access block B after processing block A, we can preload
block B while processing block A. Hardware prefetching
tracks data access patterns using hardware components.
Hardware prefetching does not require explicit software
control but works only for limited cases — e.g., a linear
scanning of an array with stride one. In many cases, high
level knowledge is necessary to predict future data ac-
cesses. In such cases, explicit software control is necessary
to preload data while processing another data, or in other
words, to overlap communication and computation.

Double buffering is a representative approach to over-
lap communication and computation. Double buffering
maintains two buffers. While processing the data in one
buffer, another buffer is filled. Implementing double
buffering requires an explicit mechanism to control data
transfer. Message Passing Interface (MPI) provides such
a mechanism, although it is used most often in large
compute clusters.

Prefetching is effective if future data access patterns are
predictable. However, many irregular applications have
unpredictable data access patterns even with high level
knowledge. Graph algorithms fall into this category. Fig-
ure 5 provides an example.

A thread may access vertex A, then vertex B, and fi-
nally vertex C in the figure. However, in many cases,
the thread does not know that it will access vertex B
until it has finished processing vertex A. Similarly, the
thread cannot predict that it will access vertex C before
processing vertex B. Prefetching will not work for this
type of problem. Multithreading is helpful in this case
if we can extract sufficient parallelism to hide the la-
tency of memory accesses. Several multicore processors
support multiple hardware threads on a single core. For
example, the Intel Nehalem architecture supports two

Figure 5 Unpredictable data access patterns in many graph algorithms.

Brought to you by | Karlsruher Institut fir Technologie KIT-Bibliothek

Authenticated
Download Date | 9/16/19 2:22 AM

269

270

4

Special Issue

threads per core. The Sun UltraSparc T1 and T2 support
four and eight threads per core, respectively. The IBM
Power7 supports four threads per core. The Cray XMT,
which is specially designed to support applications with
a large memory footprint and irregular data access pat-
terns, has 128 threads per core. The hardware threads
in a core share arithmetic logic units (ALUs) and other
execution units in the core. If there is only one thread per
core and the thread executes a large number of remote
memory accesses, the thread will spend a large fraction
of time waiting for remote memory accesses to finish
and does not have other instructions for the ALUs and
other execution units on the chip. The core suffers from
severe underutilization. If there are multiple threads, an
execution unit in the core can be utilized if at least one
thread has an instruction ready for the unit. If we can
implement an irregular application using multiple paral-
lel threads, hardware multithreading can effectively hide
the latency of distant memory accesses (see [2] for an
example).

3 Resource Sharing

In single-core systems, multiple threads can share the
resources of a core in a time-sharing fashion (often
referred as multi-tasking), but there is no resource shar-
ing among concurrently executing threads. In multicore
and manycore systems, multiple concurrent threads can
share resources in the system. Multiple hardware threads
running on a core share resources of the core such as in-
struction and data caches, execution units, and a level 2
cache if the core has its own level 2 cache. Modern
multicore processors often have a cache shared by all
of the threads running on a CPU. Memory bandwidth
and bandwidth between CPU sockets are also shared by
multiple threads. For a CPU-GPU hybrid system, the PCI
Express bus connecting the CPU board to the GPU board
is also shared by multiple threads. A GPU core, such as
NVIDIA’s streaming multiprocessor (SM), spawns a large
number of threads, and the threads share registers, shared
memory, level 1 cache, and execution units. This high de-
gree of sharing between threads significantly complicates
algorithm engineering for multicore and manycore sys-
tems.

DRAM and inter-CPU communication bandwidth of-
ten become a performance bottleneck in multicore and
manycore systems. Algorithm engineering techniques
that improve temporal and spatial locality reduce the
number of memory accesses that consume DRAM and
communication bandwidth. Such techniques reduce not
only memory access latency but also bandwidth con-
sumption. Optimization techniques that improve affinity
also reduce inter-CPU communication bandwidth con-
sumption and are effective in multicore and manycore
systems.

Many applications run a mix of compute-intensive
and bandwidth-intensive kernels. In some cases, it
is possible to run compute-intensive kernels and

bandwidth-intensive kernels at the same time. If we
run only compute-intensive kernels, DRAM bandwidth
will be significantly underutilized. In contrast, if we run
only bandwidth-intensive kernels, DRAM bandwidth be-
comes a performance bottleneck. Concurrently executing
compute-intensive and bandwidth-intensive kernels im-
proves overall performance within a given bandwidth
limitation, as demonstrated in [5].

Multiple threads typically share a cache memory in
multithreaded architectures. Threads in multicore pro-
cessors often share an on-chip cache. If there is no data
sharing among threads, the threads will compete for the
limited cache memory. This significantly reduces the ef-
fective cache size per thread. If there is a high degree
of data sharing among the threads, the threads can run
concurrently with little decrease in the effective cache size.
Thus, it is important to run a group of threads with a high
degree of data sharing on the same core (with hardware
multithreading) or the same CPU to best utilize a shared
cache memory.

In multithreaded CPUs, multiple hardware threads
share the resources of a core. There are two types of
hardware multithreading: temporal multithreading and
simultaneous multithreading. In microprocessors with
temporal multithreading support, a core can spawn mul-
tiple hardware threads but only one thread is active in
a given cycle. The hardware threads share a core in a time-
sharing fashion. With simultaneous multithreading (or
hyperthreading using Intel’s terminology), multiple hard-
ware threads are active in a single cycle, and the threads
can issue instructions if they have instructions ready and
there is an idle execution unit and an available instruction
issue port.

Temporal multithreading is effective in hiding the
impact of high latency instructions, especially remote
memory accesses. Simultaneous multithreading, in add-
ition to the benefit of temporal multithreading, is effective
in improving the utilization of a wide-issue core with
multiple execution units. For example, a core on the IBM
Power?7 architecture can issue eight instructions per cycle
and has twelve execution units. When only executing
independent instructions of a single thread’s instruction
stream (or in other words, by exploiting only Instruction
Level Parallelism (ILP)), we often cannot fully saturate
the core’s instruction issue ports or execution units. With
simultaneous multithreading an execution unit can be
utilized if at least one hardware thread on the core has
an instruction ready to be executed on the unit. This
can be especially effective for vector units. A vector in-
struction applies an operation to multiple scalar values.
Modern microprocessors need high vector unit utiliza-
tion to achieve high performance, but it can be very
difficult to optimize a single thread’s instruction stream
to fully utilize vector units. With simultaneous multi-
threading, a vector unit can be exploited if just a single
thread on the core has a vector instruction to be exe-
cuted.

Brought to you by | Karlsruher Institut fir Technologie KIT-Bibliothek

Authenticated
Download Date | 9/16/19 2:22 AM

Hardware multithreading is effective in many cases,
but if there is a low degree of data sharing among threads,
the memory footprint of the application will increase. If
a thread does not execute many high latency instructions
or is able to saturate a core by only exploiting ILP, hard-
ware multithreading will only increase the contention
for cache without a significant performance benefit.
The effect becomes more severe for bandwidth-bound
applications as the increased cache contention further in-
creases the bandwidth requirement. Given the possibility
for adverse effects, hardware multithreading needs to be
used only when it is necessary. If long-latency instruc-
tions and low core utilization become a performance
bottleneck, and the degree of cache contention is low,
hardware multithreading is effective. In the opposite case,
it may often be better to avoid hardware multithreading.

4 Heterogeneity in Microarchitectures

The increase in the heterogeneity among the microarchi-
tectures of current multicore and manycore processors
necessitates the use of algorithm engineering. In some
cases, programmers are allowed to build their own sys-
tem for their target applications; in this case, they need
to first select an appropriate combination of architec-
tures for their applications. Even given a heterogeneous
system, the work must be partitioned to best exploit the
distinct capabilities of the individual computing units in
the system. The application should be tuned differently
for different microarchitectures as well. To address these
issues, programmers need to understand the differences
among architectures and their impact on the perform-
ance of their applications. This section discusses such
issues and algorithm engineering methodologies focusing
on typical multicore CPUs and GPUs.

CPUs (such as the Intel Nehalem) and GPUs (the
NVIDIA Fermi) support vector instructions, but their
vector units have different structures. The Intel Ne-
halem’s vector unit is a single execution unit while the
Fermi’s vector unit is a group of 16 scalar execution units
(NVIDIA refers this scalar unit as a CUDA core). Pro-
grammers often need to use compiler intrinsics to exploit
the Nehalem’s vector unit. To use the Fermi’s vector
unit to apply operations to 1D, 2D, or 3D arrays, the
CUDA programming model allows programmers to map
a thread to each element in the array. Then, program-
mers only need to write code that describes a sequence of
operations for a thread without using hard-to-memorize
compiler intrinsics. The Nehalem’s vector unit width is
16 bytes while the Fermi’s vector unit width is 64 bytes!.
Achieving high utilization of vector units is import-
ant and often becomes a major performance tuning
issue [7;10;13].

Both microarchitectures work well in executing parts
of the code that can be fully vectorized. However, if the

UIntel’s Knights Family Many Integrated Core chip is expected to
have a 64 byte wide vector unit.

code cannot be fully vectorized, they work differently. The
Nehalem’s vector unit is either 100% utilized (if a vector
instruction is issued) or 0% utilized (if there is no vector
instruction to be issued) in each cycle. With simultaneous
multithreading, a vector unit can be utilized if just one
hardware thread on the core has a vector instruction for
the unit. The CUDA programming model for the Fermi
GPU groups 32 threads to form a thread group (or a warp
using NVIDIA’s terminology). To achieve 100% vector
unit utilization, every thread in a warp needs to be on
the same execution path. If not, such as with an if-else
statement, a vector unit is only partially utilized. Figure 6
illustrates the case.

It is often easier to program for the Fermi’s vector unit
than the Nehalem’s vector unit, but the Nehalem’s vector
unit is more flexible in applying one-byte and two-byte
granularity operations or supporting vector instructions
that use multiple scalar elements to compute the final
result. The Nehalem’s 16-byte wide vector unit can sup-
port 16 one-byte additions with a single instruction. The
Fermi’s 64-byte wide vector unit, in contrast, cannot sup-
port 64 one-byte additions in a single cycle. The Fermi’s
vector unit is also ineffective in supporting operations
that access multiple scalar elements in a single vector.

Intel Nehalem’s packed sum of absolute differences
(PSADBW) instruction provides an example. Assuming
two 16 byte input data, this instruction computes the ab-
solute differences of the bytes in the same position of the
two input data and sums the eight low differences and
eight high differences. The instruction performs 16 one-
byte granularity absolute difference computations and
sums two groups of eight scalar elements. The Fermi’s
vector unit cannot support this operation using a single
instruction.

A Nehalem core has separate scalar and vector units.
A Fermi core, in contrast, does not have a separate scalar
unit. Both the Nehalem core and Fermi core work well
for highly vectorizable code. If a Nehalem core needs
to execute an instruction stream with a mix of scalar
and vector operations, the core can execute the scalar
operations using scalar units and the vector operations
using vector units in the core. Registers can be used to
pass data between the scalar units and the vector units in
the core. Passing data using registers has very low latency.

If a Fermi core, on the other hand, needs to execute
an instruction stream with both scalar and vector op-
erations, the core needs to execute both the scalar and
vector operations using its vector units. A Fermi’s vec-
tor unit consists of 16 scalar units, but only one of the
16 units can be utilized in executing scalar operations.
This can significantly lower the performance as a Fermi
core has low single-threaded performance. For CPU-GPU
hybrid systems, an alternative approach is to run scalar
operations using a CPU and run vector operations using
a GPU. However, this requires communication between
CPU and GPU across the PCI Express bus. This has much
higher latency than passing data using registers as in the

Brought to you by | Karlsruher Institut fir Technologie KIT-Bibliothek

Authenticated
Download Date | 9/16/19 2:22 AM

271

272

4

Special Issue

Vector Width

Vector Width

\/

Time

A vector unit
in CPU

D Idle . Busy

A vector unit
in GPU (NVIDIA Fermi)

Figure 6 Vector unit utilization in CPU and GPU. A CPU (Nehalem)’s vector unit is either 100% utilized or 0% utilized. A GPU (Fermi)’s vector

unit can be partially utilized.

case of the Nehalem. As a result, the Fermi core does not
work well in executing instruction streams that frequently
switch between scalar operations and vector operations.
Programmers need to consider these differences when
selecting architectures for their applications or partition-
ing work for a heterogeneous system. GPUs are often
more effective for highly vectorizable code with mostly
four-byte and eight-byte operations. If their target appli-
cation needs to execute a large number of scalar instruc-
tions and many vector instructions for vectors with one-
byte or two-byte elements, the Nehalem or the forthcom-
ing Intel Knights family architecture could be a better fit.
The Fermi GPU architecture and typical CPUs have
different memory subsystems, and programmers should
also consider this difference. Typical CPUs have a cache-
based memory subsystem. A GPU based on the Fermi
architecture has a hybrid memory subsystem consisting
of a cache memory and a software-managed scratchpad
memory (or a shared memory using NVIDIA’s ter-
minology). Each GPU core has a 64 KB memory and
programmers can partition the memory into a 16 KB
cache memory and a 48 KB scratchpad memory or
a 48 KB cache memory and a 16 KB scratchpad memory.
The scratchpad memory is effective for workloads with
heavily accessed data shared by threads on a same Fermi
core and statically predictable data access patterns. If the
heavily accessed data fit into the scratchpad memory,
explicitly placing the data in the scratchpad memory is
desirable; this prevents heavily accessed data from being
evicted from the fast memory by a hardwired cache line
replacement mechanism which does not perfectly match
with application requirements. Cache memory is a better
choice if an application has irregular data access patterns,
a memory footprint larger than the scratchpad memory
size, and a certain degree of temporal or spatial locality.
Programmers need to adjust the partitioning of the hy-
brid memory and access data using an appropriate data
access mechanism to achieve the best performance.

5 Conclusions

Multicore and manycore systems are now ubiquitous in
the computing industry. Multicore and manycore pro-
cessors can enable high performance and power efficient
computing but also challenge algorithm engineers as we
have discussed in this article.

To achieve both high performance and high produc-
tivity, programmers should first understand the match
between application requirements and the different ar-
chitectures that are available. The match between an
application’s communication patterns and the memory
subsystem of the target platform is very important. Recall
that frequent CPU-GPU data transfers can easily offset
the high computing power of GPUs. Programmers also
need to consider the type of necessary operations and
how those operations can be supported by target platform
architectures, especially their vector units. Architecture
specific performance tuning — such as vectorization and
the use of architecture specific data transfer mechanisms —
often leads to significant performance boost as well but
at the cost of additional programming effort.

Algorithm engineering for modern multicore and
manycore systems is a multi-objective problem which
needs to balance performance, system cost, power, and
program development and maintenance cost. This article
aims to provide initial guidelines to effectively solve such
complex problems.

References

[1] K. Asanovic, R. Bodik, B.C. Catanzaro, J.]. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick. The landscape of parallel computing research:
A view from berkeley. Technical Report UCB/EECS-2006-183,
Dec 2006.

D. A. Bader and G. Cong. On the architectural requirements for
efficient execution of graph algorithms. In: Proc. of Int’] Conf. on
Parallel Processing, pages 547556, Oslo, Norway, Jun 2005.

[2

Brought to you by | Karlsruher Institut fir Technologie KIT-Bibliothek

Authenticated
Download Date | 9/16/19 2:22 AM

(3]

[4]

[6

[12

[13]

D. A. Bader, B.M.E. Moret, and P. Sanders. High-Performance
Algorithm Engineering for Parallel Computation. In: Experimental
Algorithmics, LNCS 2547, pages 1-23, 2002.

U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua. Auto-
matic program parallelization. In: Proc. of the IEEE, 81(2):211—
243, 1993.

A. Chandramowlishwaran, K. Madduri, and R. Vuduc. Diagnosis,
Tuning, and Redesign for Multicore Performance: A Case Study
of the Fast Multipole Method. In: Proc. of 2010 ACM/IEEE Int’l
Conf. on High Performance Computing, Networking, Storage
ansd Analysis, New Orleans, LA, USA, Nov 2010.

D. Chaver, M. Prieto, L. Pinuel, and F. Tirado. Parallel wavelet
transform for large scale image processing. In: Proc. of the Int’l
Parallel and Distributed Processing Symposium (IPDPS), pages 4—
9, Ft. Lauderdale, FL, USA, Apr 2002.

D. Chaver, C. Tenllado, L. Pifiuel, M. Prieto, and F. Tirado. 2-D
Wavelet Transform Enhancement on General-Purpose Micropro-
cessors: Memory Hierarchy and SIMD Parallelism Exploitation.
In: Proc. of Int’l Conf. on High Performance Computing, LNCS
2552, pages 9-21, Bangalore, India, Dec 2002.

S. Kang, D.A. Bader, and R. Vuduc. Understanding the design
trade-offs among current multicore systems for numerical com-
putations. In: Proc. of Int’l Symp. on Parallel and Distributed
Processing, Rome, Italy, May 2009.

A. Kleen. A NUMA API for Linux. Technical Report, Apr 2005.
J. Kurzak, W. Alvaro, and J. Dongarra. Optimizing matrix multi-
plication for a short-vector SIMD architecture — CELL processor.
In: Parallel Computing, 35(3):138-150, 2009.

T.Y.Morad, U.C. Weiser, A.Kolodnyt, M. Valero, and
E. Ayguadé. Performance, power efficiency and scalability of asym-
metric cluster chip multiprocessors. In: Computer Architecture
Letters, 5(1):14—17, 2006.

S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel.
Optimization of sparse matrix-vector multiplication on emerging
multicore platforms. In: Proc. of Int’l Conf. on Supercomputing,
Reno, NV, Nov 2007.

X.-L. Wu, Y. Zhuo, J. Gai, F. Lam, M. Fu, J. P. Haldar, W.-M. Hwu,
Z.-P. Liang, and B. P. Sutton. Advanced MRI reconstruction tool-
box with accelerating on GPU. In: Proc. of Conf. on Parallel
Processing for Imaging Applications, San Francisco, CA, Jan 2011.

Received: March 3, 2011

Seunghwa Kang completed his Ph.D. at Georgia
Institute of Technology in 2011 and joined Pacific
Northwest National Laboratory as a postdoctoral
researcher. He is also affiliated in Institute for Sys-
tems Biology. He has worked on optimizing var-
ious kernels and applications for multicore pro-
cessors and accelerators and analyzing the match
between various applications and programming
models and architectures. His recent research in-
terest is in solving computational biology prob-
lems by designing novel models and algorithms
and exploiting high-performance computing.

Address: Georgia Institute of Technology, 266
Ferst Drive, 30332 Atlanta, GA, USA

David Ediger is a Ph.D. student in Electrical and
Computer Engineering and a research assistant in
the High Performance Computing Lab at Georgia
Tech. He completed his B. S. in Computer Engin-
eering in 2008 under the direction of Dr. Tarek
El-Ghazawi at The George Washington Univer-
sity focusing on Unified Parallel C (UPC) and
reconfigurable systems and an M. S. in Electrical
and Computer Engineering from Georgia Tech in
2010. David is principal developer of GraphCT,
the graph characterization package for highly par-
allel, massive graph analysis.

Address: Georgia Institute of Technology, 266
Ferst Drive, 30332 Atlanta, GA, USA

David A. Bader is a Full Professor in the School
of Computational Science and Engineering, Col-
lege of Computing, at Georgia Institute of Tech-
nology, and Executive Director for High Per-
formance Computing. Dr. Bader is a lead scien-
tist in the DARPA Ubiquitous High Performance
Computing (UHPC) program. He received his
Ph.D. in 1996 from The University of Maryland,
and his research is supported through highly-
competitive research awards, primarily from NSF,
NIH, DARPA, and DOE. Dr. Bader serves on
the Research Advisory Council for Internet2 and
the steering committees of multiple international
conferences. Dr. Bader’s interests are at the in-
tersection of high-performance computing and
real-world applications, including computational
biology and genomics and massive-scale data
analytics. He is also a leading expert on multi-
core, manycore, and multithreaded computing
for data-intensive applications such as those in
massive-scale graph analytics. He has co-authored
over 100 articles in peer-reviewed journals and
conferences, and his main areas of research are
in parallel algorithms, combinatorial optimiza-
tion, massive-scale social networks, and compu-
tational biology and genomics. Prof. Bader is an
IEEE Fellow, a National Science Foundation CA-
REER Award recipient, and has received numer-
ous industrial awards from IBM, NVIDIA, Intel,
Sun Microsystems, and Microsoft Research. He
served as a member of the IBM PERCS team for
the DARPA High Productivity Computing Sys-
tems program, was a distinguished speaker in the
IEEE Computer Society Distinguished Visitors
Program, and has also served as Director of the
Sony-Toshiba-IBM Center of Competence for the
Cell Broadband Engine Processor.

Address: Georgia Institute of Technology, 266
Ferst Drive, 30332 Atlanta, GA, USA

Brought to you by | Karlsruher Institut fiir Technologie KIT-Bibliothek

Authenticated
Download Date | 9/16/19 2:22 AM

273

	1 Introduction
	2 Variance in Memory Access Latency
	2.1 Temporal and Spatial Locality
	2.2 Affinity
	2.3 Latency Hiding

	3 Resource Sharing
	4 Heterogeneity in Microarchitectures
	5 Conclusions
	References

