
Tracking Structure of
Streaming Social Networks

David Ediger Jason Riedy David A. Bader Henning Meyerhenke
College of Computing

Georgia Institute of Technology
Atlanta, GA, USA

Abstract—Current online social networks are massive
and still growing. For example, Facebook has over 500 mil-
lion active users sharing over 30 billion items per month.
The scale within these data streams has outstripped
traditional graph analysis methods. Real-time monitoring
for anomalies may require dynamic analysis rather than
repeated static analysis. The massive state behind multiple
persistent queries requires shared data structures and
flexible representations. We present a framework based
on the STINGER data structure that can monitor a
global property, connected components, on a graph of
16 million vertices at rates of up to 240 000 updates per
second on 32 processors of a Cray XMT. For very large
scale-free graphs, our implementation uses novel batching
techniques that exploit the scale-free nature of the data
and run over three times faster than prior methods. Our
framework handles, for the first time, real-world data
rates, opening the door to higher-level analytics such as
community and anomaly detection.

I. INTRODUCTION

Online social networking has expanded to massive
scale in recent years. For example, Facebook has grown
three orders of magnitude in just over three years and,
as of December 2010, has over 500 million active
users [1]. An average degree of 130 translates into 32.5
billion edges in the “friendship” graph. Considering
other content like photos, Facebook claims over 30
billion items shared per month.

Automatic analysis of these data supports analysts
in various areas, including “friend” recommendations,
online advertising, anomaly detection, and informa-
tion dissemination. Questions of interest include which
nodes are most important in a network, how the net-
work’s communities are structured, and which nodes
change their behavior over time. Analyzing dynamic
graphs through static snapshots suffices only for small
networks with low rates of change. Moreover, many
static graph algorithms are difficult to scale to massive,
real-world data and do not use parallel architectures
efficiently. Both the size of real-world data and the rate
of change present challenges for analysis.

Online social networks like Facebook and Twitter,
as well as many other networks observed in nature
and human society, have the scale-free property [2].
Scale-free graphs have a low diameter, and the number
of neighbors follows a power law distribution. Many
vertices have a small number of neighbors, while a few
vertices are connected with a large part of the graph.
Parallelizing algorithms on these graphs is challenging
because of the lack of a small separator and the dy-
namically changing edges. The degree distribution also
creates workload imbalance when scheduling vertices
among processors.

Answering the questions of interest for massive scale-
free networks requires establishing suitable data struc-
tures and algorithmic kernels. This paper’s example
kernel monitors the network’s connected components.
This problem is a well-studied graph analytical metric
representative of both the graph’s structure as well
as the vertices’ connectivity. As edges are inserted
into and deleted from the graph, the number of con-
nected components, the mapping between vertices and
components, the size distribution of components, and
when components merge and separate over time become
characteristics of interest.

A. Shortcomings of Previous Work

For general graphs, insertions must only check the
component membership of their endpoints to determine
if two components have merged. Deletions are much
more difficult to handle as the endpoints do not contain
information about the topology of the component or
any other paths that may reconnect the two vertices.
Enumerating all of the possible edge deletions that
would separate components, in light of the constant
stream of new edges being inserted in the graph, is
infeasible. Several algorithms have been proposed that
handle deletions using breadth-first searches. Even and
Shiloach [3] spawn two breadth-first searches for each
edge deletion. One looks to verify that the component

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.326

1690

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.326

1686

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.326

1686

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.326

1686

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.326

1686

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.326

1691

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.326

1691

remains intact while the other looks to determine that
the component has been separated. Another algorithm
stores the graph as a sequence of graphs that are
created with each subsequent insertion [4]. A Union-
Find or Least Common Ancestor algorithm establishes
connectivity. Henzinger et al. [5] also use a sequence of
graphs and a coloring during a connected components
computation to determine that a new component has
been created after a batch of deletions.

These algorithms do not expose enough parallelism to
support the analysis of the massive graphs of interest on
massively parallel architectures. In a scale-free graph,
a single breadth-first search is an expensive operation
that quickly consumes the entire graph. Running one or
more traversals for each edge deletion, when a deletion
is unlikely to have caused a change in the component
structure, will not support the high data rates of today’s
input streams.

Another approach utilizes partitions of the graph in
order to determine components. Henzinger and King [6]
create a spectrum of partitions from dense to sparse
subgraphs. After a deletion, a search begins within
the densest level to re-establish connectivity between
the two endpoints. Failure to find a link moves to a
sparser level until connectivity is ruled out. Eppstein et
al. [7] use partitions according to the average degree
and sparsification techniques to maintain a minimum
spanning forest of components.

For the social networks of interest, it would be
difficult to create a spectrum of subgraphs from dense to
sparse. Facebook, with 500 million vertices and average
degree 130, is already very sparse. Using the Henzinger
and King method, one will only create two levels of sub-
graphs with the majority of the graph in the first level.
Most edge deletions cause what amounts to a static
recomputation of connected components. Partitioning
according to average degree is difficult because of the
power law distribution in the vertex degree. For space
and performance reasons, we wish to avoid maintaining
extra data structures like a minimum spanning forest
in favor of tracking connected components from the
common graph data structure.

B. Our New Approach

To motivate our approach, we would like to answer,
in a persistent manner, the question “do vertex u and
vertex v lie in the same component?” while at the same
time supporting the ability to insert and delete edges
presented as a batch in parallel. We focus our efforts
on scale-free networks like those of social networks
and other biological networks and capitalize on their

structural properties. Unlike prior approaches, our new
framework manufactures large amounts of parallelism
by considering the input data stream in batches. All
of the edge actions within the batch are processed
in parallel. Applying any of the breadth-first search-
based algorithms to a batch of deletions would result in
thousands of concurrent graph traversals, exhausting the
memory and computational resources of the machine.

In Section II we present our algorithmic approach
for tracking connected components given a stream of
edge insertions and deletions. Optimizations afforded
by the scale-free nature of the graph are highlighted
there, too. As an example, we take advantage of the
low diameter by intersecting neighborhood bit arrays to
quickly re-establish connectivity using triangles. Also,
our algorithm uses a breadth-first search of the signifi-
cantly smaller component graph, whose size is limited
by number of insertions and deletions in the batch being
processed. The scale-free nature of the input data means
that most edges in the batch do not span components, so
the number of non-self-edges in the component graph
for a given batch is very small.

Our techniques fully utilize the fine-grained syn-
chronization primitives of the Cray XMT to look for
triangles in the edge deletions and quickly rule out most
of the deletions as inconsequential without performing a
single breadth-first search. All of the neighbor intersec-
tions can be computed concurrently, providing sufficient
parallelism for the architecture. More details about the
implementation of our algorithm on the Cray XMT are
given in Section III.

Experimental results on the Cray XMT are presented
in Section IV. Despite the challenges posed by the
input data, we show that the scale-free structure of
social networks can be exploited to accelerate graph
connectivity queries in light of a stream of deletions.
On a synthetic social network with over 16 million
vertices and 135 million edges, we are able to maintain
persistent queries about the connected components of
the graph with an input rate of 240 000 updates per
second, a three-fold increase over previous methods.

Hence, our new framework for incremental computa-
tion, rather than recomputation, enables scaling to very
large data sizes on massively parallel, multithreaded
supercomputing architectures. Note that in this paper we
add the monitoring of a global component, whereas our
previous work [8] was concerned with local clustering
coefficients, which are easier to handle due to their lo-
cality. As a next step, studying massive dynamic graphs
with more complex methods based on our algorithmic
kernels will lead to insights about community and

1691168716871687168716921692

anomaly detection unavailable within smaller samples.
To summarize, the main contributions of this paper

are:

1) a novel parallel framework for maintaining a
global property by batching the input stream,

2) the replacement of breadth-first search with effi-
cient parallel triangle counting, and

3) a faster approach to tracking connected compo-
nents in massive scale-free graphs.

II. TRACKING CONNECTED COMPONENTS IN

SCALE-FREE GRAPHS

A. Problem Structure

Given an edge to be inserted into a graph and an
existing labeling of the connected components, one can
quickly determine if it has joined two components.
Given a deletion, however, recomputation (through
breadth-first search or s − t connectivity) is the only
known method with subquadratic space complexity to
determine if the deleted edge has cleaved one compo-
nent into two. If the number of deletions that actually
cause structural change is very small compared to the
total number of deletions (such as in the case of a scale-
free network), our goal will be to quickly rule out those
deletions that are “safe” (i.e. does not split a compo-
nent). The framework we propose for this computation
will establish a threshold for the number of deletions
we have not ruled out between recomputations.

Our approach for tracking components is motivated
by several assumptions about the input data stream.
First, a very small subset of the vertices are involved in
any series of insertions and deletions. Insertions that
alter the number of components will usually join a
small component to the large component. Likewise, a
deletion that affects the structure of the graph typically
cleaves off a relatively small number of vertices. We
do not anticipate seeing the big component split into
two large components. The small diameter implies that
connectivity between two vertices can be established in
a small number of hops, but the low diameter and power
law distribution in the number of neighbors also implies
that a breadth-first search quickly consumes all vertices
in the component.

Second, we adopt the massive streaming data an-
alytics model [8]. We assume that the incoming data
stream of edge insertions and deletions is infinite,
with no start or end. We store as much of the recent
graph topology as can be held in-memory alongside the
data structures for the computation. The graph contains
inherent error arising from the noisy data of a social

network containing false edges as well as missing edges.
As a result, we will allow a small amount of error
at times during the computation, so long as we can
guarantee correct results at specific points. The interval
between these points will depend on the tolerance for
error. We process the incoming data stream as batches
of edge insertions and deletions, but do not go back and
replay the data stream.

B. Algorithm

The pseudocode of our algorithm appears in Algo-
rithm 1. The algorithm consists of four phases that are
executed for each batch of edge insertions and deletions
that is received. These phases can be summarized as
follows: First, the batch of edges is sorted by source
and destination vertices. Second, the edges are inserted
and/or deleted in the STINGER data structure. Third,
edge deletions are evaluated for their effect on connec-
tivity. Finally, insertions are processed and the affected
components are merged.

We will consider unweighted, undirected graphs, as
social networks generally require links to be mutual.
The graph data structure, the batch of incoming edges
currently being processed, and the metadata used to
answer queries fit completely within the memory. We
can make this assumption in light of the fact that current
high-end computing platforms, like the Cray XMT,
provide shared memories on the order of terabytes. We
will now examine, in detail, each phase of the algorithm.

In the sort phase, we are given a batch of edges to
be inserted and deleted. In our experiments, the size of
this batch may range from 1,000 to 1 million edges.
We use a negative vertex ID to indicate a deletion.
The batch must first be sorted by source vertex and
then by destination vertex. On the Cray XMT, we
bucket sort by source using atomic fetch-and-add to
determine the size of the buckets. Within each bucket,
we can sort by destination vertex using an arbitrary
sequential sorting algorithm, processing each bucket in
parallel. At the end of the sort phase, each vertex’s
operations are clustered within the batch into a group
of deletions and a group of insertions pertaining to
that vertex. At this stage, one could carefully reconcile
matching insertions with deletions, which is especially
important for multigraphs. For our experiments, we will
skip reconciliation, processing each inserted and deleted
edge, and allowing only the existence or non-existence
of a single edge between each pair of vertices.

In Phase 2, the data structure update phase, the
STINGER data structure is given the batch of insertions
and deletions to be processed. For each vertex, deletions

1692168816881688168816931693

Algorithm 1 A parallel algorithm for tracking connected components.
Input: Batch B of edges 〈u, v〉 to be inserted and deleted, component membership M , threshold Rthresh, number

of relevant deletions R, bit array A, component graph C
Output: Updated component membership M ′

1: Sort(B) . Phase 1: Prepare batch
2: for all b ∈ B in parallel do
3: if b is deletion then
4: Push(Qdel, b)
5: else
6: Push(Qins, b)
7: StingerDeleteAndInsertEdges(B) . Phase 2: Update data structure
8: for all b ∈ Qdel in parallel do . Phase 3: Process deletions
9: 〈u, v〉 ← b

10: Au ← ~0 . All bits set to zero
11: for all n ∈ Neighbors(u) in parallel do
12: Set bit n in Au to 1
13: F ← 0
14: for all n ∈ Neighbors(v) in parallel do
15: if bit n in Au = 1 then
16: F ← 1 . Triangle found
17: if F = 0 then
18: atomic R← R + 1 . No triangles found
19: if R > Rthresh then
20: R← 0
21: M ′ ← ConnectedComponents(G)
22: else . Phase 4: Process insertions
23: C ← ∅
24: for all b ∈ Qins in parallel do
25: 〈u, v〉 ← b
26: Add 〈M [u], M [v]〉 to C

27: T ← ConnectedComponents(C)
28: for all v ∈ V in parallel do
29: M ′[v]← T [v]

are handled first, followed by insertions. This ordering
creates space in the data structure before insertions are
added, minimizing the number of new blocks that must
be allocated in the data structure and thereby reducing
overhead.

After updating the graph, edge deletions identified
earlier are checked to see if they disrupt connectivity
in Phase 3. We create a bit array, in which each bit
represents a vertex in the graph, for each unique source
vertex in the batch of edge deletions. A bit set to 1
indicates that the vertex represented by that bit is a
neighbor. Because of the scale-free nature of the graph,
the number of bit arrays required for a batch is much
less than the number of vertices. Since vertices can

be involved in many edge deletions, the fine-grained
synchronization available on the Cray XMT enables
parallelism in the creation phase and re-use of the bit
arrays in the query phase. We compute the intersection
of neighbor sets by querying the neighbors of the sink
vertices in the source bit array. Given that a social
network is a scale-free graph, the rationale is that this
intersection will quickly reveal that most of the edge
deletions do not disrupt connectivity. Regarding running
time and memory consumption, note that a common
case bit array intersection for vertices with small degree
can be handled by a quick lookup in the sorted list of
neighbors and the bit matrix intrinsics of the Cray XMT.

At this point, we can take the remaining edge deletion

1693168916891689168916941694

candidates and further process them to rule out or verify
component structure change, likely using a breadth-
first search. Otherwise, we will store the number of
relevant deletions R seen thus far. After this number
has reached a given threshold Rthresh determined by
the tolerance for inconsistency before recomputation,
we will re-compute the static connected components
to determine the updated structure of the graph given
the deletions that have taken place since the last static
recomputation.

If we did not exceed Rthresh in the previous phase,
the insertions must now be processed in Phase 4. For
each edge being inserted, we look up the vertex end-
points in the current component mapping and replace
them with the component ID to which they belong.
In effect, we have taken the batch of insertions and
converted it into a component graph. As this is a scale-
free network, many of the insertions will now be self-
edges in the component graph. The remaining edges
will indicate components that have merged. Although
it is unlikely, chains of edges, as well as duplicate
edges, may exist in the batch. The order of merges is
determined by running a static connected components
computation on the new component graph1. The result
is an updated number of components in the graph and
an updated vertex-component mapping.

In both the static connected components case and
when finding the connected components of the com-
ponent graph, we use an algorithm similar to Kahan’s
algorithm [9]. Its first stage, performed from all vertices
in the graph, greedily colors neighboring vertices using
integers. The second stage repeatedly absorbs higher
labeled colors into lower labeled neighbors. Colors
are relabeled downward as another series of parallel
breadth-first searches. When collisions between colors
are no longer produced, the remaining colors specify
the components.

III. IMPLEMENTATION ON THE CRAY XMT

The experiments that are presented in Section IV
consist of two codes, which we describe in more detail
in this section: the tracking connected components
application and the STINGER data structure implemen-
tation. Each takes advantage of the unique features of
the Cray XMT in different ways.

The Cray XMT [10] is a supercomputing platform
designed to accelerate massive graph analysis codes.

1In our implementation we use a compressed sparse row (CSR)
representation, rather than creating a new graph data structure, as this
only requires a sort of the batch of edges and a prefix sum, both done
in parallel.

The architecture tolerates high memory latencies using
massive multithreading. Fine-grained synchronization
constructs are supported through full-empty bits as
well as atomic fetch-and-add instructions. A large fully
shared memory enables the analysis of graphs on the
order of one billion vertices using a well-understood
programming model.

Each Threadstorm processor within a Cray XMT
contains 128 hardware streams. Streams may block
temporarily while waiting for a long-latency instruction,
such as a memory request, to return. The processor will
execute one instruction per cycle from hardware streams
that have instructions ready to execute. The Cray XMT
does not require locality to obtain good performance.
Instead, latency to memory is tolerated entirely by
hardware multithreading, making this machine a good
candidate for memory-intensive codes like those found
in graph analysis.

The Cray XMT used for these experiments is located
at Pacific Northwest National Lab and contains 128
Threadstorm processors running at 500 MHz. These 128
processors support over 12 thousand hardware thread
contexts. The globally addressable shared memory to-
tals 1 TiB. Memory addresses are hashed globally to
break up locality and reduce hot-spotting.

The bit array is a fast data structure that, with the
support of fine-grained synchronization, can be built
and queried in parallel. To build a bit array for a graph
with 224 vertices will require 2 MiB per array. The
scale-free nature of the graph means that it suffices
to construct relatively few bit arrays. Although there
are 16 million vertices, we pre-allocate only 10,000
bit arrays at a cost of about 20 GiB. If the graph
were not scale-free, and if the platform lacked sufficient
memory, we would likely not have the space to do this
for such a large graph. Since high degree vertices will
likely be touched by each batch, a learning algorithm
could be used to identify these vertices, update their
bit arrays, and reuse the bit array from batch to batch,
amortizing the creation cost. If the graph were less
sparse or memory footprint is a concern, a Bloom
filter (or another low-cost insert/delete representation)
could be used to conserve space while introducing the
probability for error [11]. A Bloom filter, however,
could not be reused since it does not support deletions.

The bucket sort implementation takes advantage of
the compiler’s ability to automatically identify and
parallelize reductions and linear recurrences such as
parallel prefix sums. These are used to find the size
of the buckets in parallel and then reserve space in the
output array.

1694169016901690169016951695

Prior work on the Cray XMT has shown that batching
of the update stream is required to create adequate par-
allelism for the thousands of user hardware streams [8].
Processing in batches has the additional benefit that it
bounds the size of temporary arrays needed for making
the calculation. By using these space bounds to pre-
allocate data structures before the computation begins,
costly calls to the memory allocator are eliminated.

STINGER is the data structure on which our con-
nected components experiments are built [12]. The data
structure must provide the ability to easily and effi-
ciently accept edge insertions and edge deletions from a
scale-free graph while also permitting fast querying of
neighbor information and other metadata about vertices
and edges.

The data structure consists of a hybrid of arrays
in memory that are linked through pointers. The size
of the blocks can be adjusted based on the degree
distribution of the data and the concurrency required
by the machine. Deletion consists only of negating
a neighbor’s vertex ID in the edge block. Insertion
requires finding an open space in an existing edge block
or allocating a new block. The data structure supports
timestamps and other historical metadata as well as
vertex and edge types, although none of these are used
explicitly for this experiment.

The STINGER specification does not specify consis-
tency; the programmer must assume that the graph can
change underneath the application. The programmer is
provided routines to extract a snapshot of a vertex’s
neighbor list, alleviating this concern at the expense of
an additional buffer in memory.

Our STINGER implementation provides a function
that gathers the edge list from the various blocks and
returns it to the application in an array. This has the
double benefit of isolating the application from changes
in the data structure as well as making it easy to convert
existing static codes that utilize the popular compressed
sparse row format to work with STINGER. In the course
of developing the connected components code, we ob-
served that this “copy out” strategy resulted in identical
or better performance for static codes using STINGER
versus the compressed sparse row representation.

IV. EXPERIMENTS

A. Experimental Settings

The experimental results presented in this paper use
synthetic R-MAT [13] input graphs derived by sampling
from a Kronecker product. We generate two data files
from each R-MAT graph with parameters a = 0.55,
b = 0.1, c = 0.1, and d = 0.25. The first is an initial

graph with 220 ≈ 1 million vertices or 224 ≈ 16 million
vertices, both with an edge factor of 8 (meaning the
number of edges is 8 times the number of vertices).
The second is an input stream of edge actions (both
insertions and deletions) that, by construction, favors
the same vertices as the initial graph. It is this input
stream that we will divide into batches. When creating
this input stream, we sample from the distribution to
create edge insertions. With a probability of 1/16, we
add an edge insertion to a delete queue. We choose
an edge from the delete queue to be an edge deletion,
rather than choosing a new edge to be inserted, with
probability 1/16.

In a real online social network, edge deletions are not
independent but are often guided by a kind of pruning
based on distance, time, or importance.

On the Cray XMT, we load the initial graph into
memory and create our STINGER data structure. We
run a static computation of connected components to
establish the initial vertex-component mapping, number
of components, and size of components. In effect we
have entered the infinite data stream at some interme-
diate point to begin tracking connected components.
We measure the time it takes for each batch to be
processed, the data structure to be updated, and the new
component information to be calculated. We report this
performance metric in terms of updates per second.

On the 128 processor Cray XMT, we conduct our
experiments using 32 processors for two reasons. First,
the input graph of 16 million vertices is small relative to
the size of the machine. Second, we imagine tracking
connected components alongside of other higher-level
analysis kernels that subscribe to the results of this
computation to aid in their own computation. This frees
up resources for other computations to be taking place
at the same time. One example is a kernel that samples
vertices to create an ongoing approximation of a metric
of interest. The kernel may want to ensure that it is
sampling vertices from all components or that it samples
in proportion to the size of each component. In this
way, it is running at the same time as the connected
components kernel and receiving the results into its own
computation.

B. Experimental Results

Looking closely at the algorithm, one will note that
when handling insertions only, the graph data structure
does not need to be accessed. We can track the number
of components and their sizes using only the vertex-
component mapping. The insertions-only algorithm is
very fast as the number of “vertices” in the component

1695169116911691169116961696

Batch Size (edges)
10,000 100,000 250,000 1,000,000

Insertions Only 21,000 168,000 311,000 931,000
Insertions + STINGER 16,700 113,000 191,000 308,000
Insertions + STINGER + Bit Array 11,800 88,300 147,000 240,000
STINGER + Static Connected Components 1,070 10,200 22,400 78,600

Fig. 1. Updates per second on a graph starting with 16M vertices and approximately 135M edges on 32 processors of a Cray XMT.

graph is small compared to the size of the original
graph. Additionally, the number of “edges” in the com-
ponent graph is bounded by the batch size. We observe
insertions-only performance of up to 3 million updates
per second on a graph with 1 million vertices and nearly
1 million updates per second on the larger graph with
16 million vertices – see Figure 1 for more data on the
larger graph.

STINGER, the data structure, inevitably contributes
a small overhead to the processing of updates, but
it is scalable with larger batches. The update rate of
insertions and the data structure can be viewed as an
upper bound on the processing rate once deletions are
introduced. One method that has been used for handling
temporal updates is to re-compute static connected com-
ponents after each edge or batch of edges. This update
rate can be viewed as a lower bound on processing
once deletions are introduced. Any method that will
decrease the number or frequency of recomputations
will increase the rate at which streaming edges can be
processed.

We introduce the bit array intersection method as
a means to rule out a large number of deleted edges
from the list of deletions that could possibly affect the
number of connected components. In the algorithm, we
set a threshold Rthresh meaning that we will tolerate
up to Rthresh deletions in which the structure of the
graph may have been affected before recomputing static
connected components. The performance results for
insertions plus STINGER plus the bit array intersection
represent the update rate if Rthresh = ∞. Choosing
Rthresh will determine performance between the lower
bound and this rate. In practice, reasonable values of
Rthresh will produce performance closer to the upper
rate than the lower bound.

As an example of the effect of the bit array on the
number of possibly relevant deletions, our synthetic
input graph with 16 million vertices produces approx-
imately 6,000 edge deletions per batch of 100,000
actions. The 12,000 endpoints of these deletions con-
tain only about 7,000 unique vertices. Using a bit
array to perform an intersection of neighbors, all but

approximately 750 of these vertices are ruled out as
having no effect on the graph. Performing a neighbor of
neighbors intersection would likely reduce this number
considerably again at the cost of increased complexity.
As it is, the synthetic graph used for these experiments
has an edge factor of 8 making it extremely sparse
and a worst-case scenario for our algorithm. A real-
world social network like Facebook would have an edge
factor of greater than 100. In a scale-free network, this
would reduce the diameter considerably making our
bit array intersection more effective. In our graph, less
than 1 percent of deletions cleave off vertices from
the big component, while our bit array intersection
algorithm rules out almost 90 percent of deletions at
a small cost in performance. Given that we can tolerate
Rthresh deletions between costly static recomputations,
a reduction in the growth rate of R, the number of
unsafe deletions, will increase the time between recom-
putations, increasing throughput accordingly.

The left plot in Figure 2 depicts update rates on a
synthetic, scale-free graph with approximately 1 million
vertices and 8 million edges. Looking at insertions only,
or solely component merges without accessing the data
structure, peak performance is in excess of 3 million
updates per second. The STINGER implementation
incurs a small penalty with small batches that does not
scale as well as the insertions-only algorithm. The bit
array optimization calculation has a very small cost and
its performance tracks that of the data structure. Here
we see that the static recomputation, when considering
very large batches, is almost as fast as the bit array. In
this particular test case, we started with 8 million edges,
and we process an additional 1 million edge insertions
and/or deletions with each batch.

On Figure 2’s right, we consider a similar synthetic,
scale-free graph with approximately 16 million vertices
and 135 million edges. The insertions only algorithm
outpaces the data structure again, but by a smaller factor
with the larger graph. The bit array performance again
closely tracks that of the data structure. At this size, we
can observe that the static recomputation method is no

1696169216921692169216971697

Block size

U
p
d
a
te

s
 p

e
r

s
e
c
o
n
d

10
3.5

10
4

10
4.5

10
5

10
5.5

10
6

10
6.5

Scale 20

l

l

l

l

l

l l
l

l
l

l l
l

l
l

10
4

10
4.5

10
5

10
5.5

10
6

Scale 24

l

l

l

l

l

l

l l

l
l

l l
l

ll

10
4

10
4.5

10
5

10
5.5

10
6

Algorithm

l Insertions only

STINGER

Bit array

Static recomputation

Fig. 2. Update performance for a synthetic, scale-free graph with 1 million vertices (left) and 16 million vertices (right) and edge factor 8
on 32 processors of a 128 processor Cray XMT.

longer feasible, even for large batches. At this size, there
is an order of magnitude difference in performance be-
tween the static connected components re-computation
and the insertions-only algorithm.

We observe a decrease in performance in all four
experiments as the size of the graph increases from 1
million to 16 million vertices. There are several prop-
erties of the graph that change and affect performance.
The larger graph has a larger diameter. Longer paths
in the graph increase the running time of breadth-first
search. As a result, the static connected computations
recomputation time increases. With more vertices to
consider, the insertions only algorithm slows down
when merging and relabeling components. The larger
graph has a higher maximum degree, so walking the
edge list of a vertex in STINGER will require additional
time. Likewise, although the average degree remains
fixed at 8, there are more vertices with degree larger
than 8. Retrieving their neighbor list and performing
the neighbor intersection will also see a performance
penalty. Given that these steps are O(n) in the worst
case and are easily parallelized, we would expect good
scalability with increasing graph size. In our experi-
ments, the bit array optimization slowed by a factor of
2 when the graph grew by a factor of 16. The connected
components recomputation slowed by a factor of 6 for

the same increase in graph size.

V. CONCLUSIONS AND FUTURE WORK

We have proposed a parallel algorithm for tracking
the connected components of a graph derived from
a scale-free social network when the graph is given
as an infinite stream of edge insertions and deletions.
We process this edge stream as a sequence of batches
and we maintain the connected components information
from batch to batch. From prior work in the literature,
we can see that the goal of any streaming connected
components algorithm should be to minimize the num-
ber of graph traversals that must be done in order to
establish or verify connectivity following a deletion. We
have contributed a bit array intersection method as an
optimization that can be used to drastically reduce the
number of deletions that may cause structural change
to the graph.

We have shown through experimentation on synthetic
graphs with millions of vertices and hundreds of mil-
lions of edges that the use of bit array intersection is
done at a small cost relative to the cost of static recom-
putation. The bit array intersection within our connected
components algorithm enables graph processing to op-
erate at speeds comparable to those that do not handle
deletions at all. We have demonstrated the performance
of these algorithms on a massive graph running on the

1697169316931693169316981698

Cray XMT and their scalability with increasing batch
sizes. By comparing performance for each algorithm
on two sizes of graphs, we have established that the
running time of our algorithms increases significantly
slower than the growth of the graph.

Our connected components algorithm is built atop
a framework for analyzing massive streaming graphs
when the cost of processing a deletion is high compared
to the cost of an insertion. When we tolerate a small
amount of error in our analytic, we can handle deletions
lazily and proceed at insertion speed. If few deletions
actually change the analytic and we can quickly rule
out those that do not, we can further extend the time
between recomputation.

Although we have presented results focusing on the
Cray XMT, our software is portable to other platforms
and can be compiled with OpenMP parallelization on
multicore systems.

Further work is needed to identify fast data-
dependent methods to further isolate only those dele-
tions that cause structural change in the graph. For
a given batch of insertions and deletions, the over-
whelming majority of new or deleted edges cause no
change in the number or size of connected components.
Additional heuristics could be developed to approximate
component size and distribution without requiring ex-
pensive graph traversals that are the predominant cost
in establishing connectivity after a deletion.

ACKNOWLEDGMENTS

This work was supported in part by the Pacific
Northwest National Lab (PNNL) Center for Adaptive
Supercomputing Software for MultiThreaded Architec-
tures (CASS-MT) and NSF Grant CNS-0708307. We
thank PNNL and Cray for providing access to Cray
XMT systems.

REFERENCES

[1] Facebook, “User statistics,” December 2010, http:
//www.facebook.com/press/info.php?statistics.

[2] M. Newman, “The structure and function of com-
plex networks,” SIAM Review, vol. 45, no. 2, pp.
167–256, 2003.

[3] Y. Shiloach and S. Even, “An on-line edge-deletion
problem,” J. ACM, vol. 28, no. 1, pp. 1–4, 1981.

[4] L. Roditty and U. Zwick, “A fully dynamic reacha-
bility algorithm for directed graphs with an almost
linear update time,” in Proc. of ACM Symposium
on Theory of Computing, 2004, pp. 184–191.

[5] M. R. Henzinger, V. King, and T. Warnow, “Con-
structing a tree from homeomorphic subtrees, with
applications to computational evolutionary biol-
ogy,” in Algorithmica, 1999, pp. 333–340.

[6] M. R. Henzinger and V. King, “Randomized fully
dynamic graph algorithms with polylogarithmic
time per operation,” J. ACM, vol. 46, p. 516, 1999.

[7] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nis-
senzweig, “Sparsification—a technique for speed-
ing up dynamic graph algorithms,” J. ACM,
vol. 44, no. 5, pp. 669–696, 1997.

[8] D. Ediger, K. Jiang, J. Riedy, and D. A.
Bader, “Massive streaming data analytics: A case
study with clustering coefficients,” in Workshop
on Multithreaded Architectures and Applications
(MTAAP), Atlanta, Georgia, Apr. 2010.

[9] J. Berry, B. Hendrickson, S. Kahan, and
P. Konecny, “Software and algorithms for graph
queries on multithreaded architectures,” in Proc.
Workshop on Multithreaded Architectures and Ap-
plications, Long Beach, CA, March 2007.

[10] P. Konecny, “Introducing the Cray XMT,” in Proc.
Cray User Group meeting (CUG 2007). Seattle,
WA: CUG Proceedings, May 2007.

[11] B. H. Bloom, “Space/time trade-offs in hash
coding with allowable errors,” Commun. ACM,
vol. 13, no. 7, pp. 422–426, 1970.

[12] D. A. Bader, J. Berry, A. Amos-Binks,
D. Chavarría-Miranda, C. Hastings, K. Madduri,
and S. C. Poulos, “STINGER: Spatio-Temporal
Interaction Networks and Graphs (STING)
Extensible Representation,” Georgia Institute of
Technology, Tech. Rep., 2009.

[13] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-
MAT: A recursive model for graph mining,” in
Proc. 4th SIAM Intl. Conf. on Data Mining (SDM).
Orlando, FL: SIAM, Apr. 2004.

1698169416941694169416991699

