
H

Half Vector Length

�Metrics

Hang

�Deadlocks

Harmful Shared-Memory Access

�Race Conditions

Haskell

�Glasgow Parallel Haskell (GpH)

Hazard (in Hardware)

�Dependences

HDF

Quincey Koziol
The HDF Group, Champaign, IL, USA

Synonyms
Hierarchical data format

Definition
HDF [] is a data model, software library, and file
format for storing and managing data.

Discussion

Introduction
The HDF technology suite is designed to organize,
store, discover, access, analyze, share, and preserve
diverse, complex data in continuously evolving hetero-
geneous computing and storage environments. It sup-
ports an unlimited variety of datatypes, and is designed
for flexible and efficient I/O and for high volume and
complex data. The HDF library and file format are
portable and extensible, allowing applications to evolve
in their use of HDF. The HDF technology suite also
includes tools and applications for managing, manipu-
lating, viewing, and analyzing data in the HDF format.

Originally designed within the National Center for
Supercomputing Applications at the University of Illi-
nois at Urbana-Champaign [], HDF is now primarily
developed and maintained by The HDF Group [], a
nonprofit organization dedicated to ensuring the sus-
tainable development of HDF technologies and the
ongoing accessibility of data stored in HDF files. HDF
builds on lessons learned from other data storage
libraries and file formats, such as the original HDF
file format (now known as HDF []), netCDF [],
TIFF [], and FITS [], while adding unique features
and extending the boundaries of prior data storage
models.

Data Model
HDF implements a simple but versatile data model,
which has two primary components: groups and
datasets. Group objects in an HDF file contain a col-
lection of named links to other objects in an HDF
file. Dataset objects in HDF files store arrays of arbi-
trary element types and are themainmethod for storing
application data.

Groups, which are analogous to directories in a tra-
ditional file system, can contain an arbitrary number of
uniquely named links. A link can connect a group to
another object in the same HDF file; include a named

David Padua (ed.), Encyclopedia of Parallel Computing, DOI ./----,
© Springer Science+Business Media, LLC 

http://dx.doi.org/10.1007/978-0-387-09766-4_69
http://dx.doi.org/10.1007/978-0-387-09766-4_282
http://dx.doi.org/10.1007/978-0-387-09766-4_36
http://dx.doi.org/10.1007/978-0-387-09766-4_46
http://dx.doi.org/10.1007/978-0-387-09766-4_172
http://dx.doi.org/10.1007/978-0-387-09766-4_2156

 H HDF

path to an object in the HDF file, which may not exist
currently; or refer to an object in another HDF file.
Unlike links in a traditional file system, HDF links can
be used to create fully cyclic directed graph structures.
Each group contains one or more B-tree data structures
as indices to its collection of links, which are stored in a
heap structure within the HDF file.

Dataset objects store application data in an HDF
file as a multidimensional array of elements. Each
dataset is primarily defined by the description of how
many dimensions its array has and the size of those
dimensions, called a “dataspace”; and the description of
the type of element to store at each location in the array,
called a “datatype.”

An HDF dataspace describes the number of
dimensions for an array, as well as the current and
maximum number of elements in each dimension. The
maximum number of elements in an array dimension
can be specified as “unlimited,” allowing an array to
be extended over time. An HDF dataspace can have
multiple dimensions that have unlimited maximum
dimensions, allowing that array to be extended in any
or all of those dimensions.

AnHDF datatype describes the type of data to store
in each element of an array and can be one of the fol-
lowing classes: integer, floating-point, string, bitfield,
opaque, compound, reference, enum, variable-length
sequence, and array.These classes generally correspond
to the analogous computer science concepts, but the
reference and variable-length sequence datatypes are
unusual. Reference datatypes contain links to HDF
objects, allowing HDF applications to create datasets
that act like groups. The former contain references
or pointers to HDF objects, allowing HDF applica-
tions to create datasets that can act as lookup tables
or indices. Variable-length sequence datatypes allow a
dynamic number of elements of a base datatype to be
stored as an element and are one mechanism for cre-
ating datasets that represent ragged arrays. All of the
HDF datatypes can be combined in any arbitrary way,
allowing for great flexibility in how an application stores
its data.

The elements of an HDF dataset can be stored
in different ways, allowing an application to choose
between various I/O access performance trade-offs.

Dataset elements can be stored as a single sequence
in the HDF file, called “contiguous” storage, which

allows for constant time access to any element in the
array and no storage overhead for locating the elements
in the dataset. However, contiguous data storage does
not allow a dataset to use a dataspace with unlimited
dimensions or to compress the dataset elements.

The dataspace for a dataset can also be decomposed
into fixed-size sub-arrays of elements, called “chunks,”
which are stored individually in the file.This “chunked”
data storage requires an index for locating the chunks
that store the data elements. Datasets that have a data
space with unlimited dimensions must use chunked
data storage for storing their elements.

Using chunked data storage allows an application
that will be accessing sub-arrays of the dataset to tune
the chunk size to its sub-array size, allowing for much
faster access to those sub-arrays than would be possible
with contiguous data storage. Additionally, the elements
of datasets that use chunked data storage can be com-
pressed or have other operations, like checksums, etc.,
applied to them.

The advantages of chunked data storage are bal-
anced by some limitations, however. Using an index
formapping dataset element coordinates to chunk loca-
tions in the file can slowdownaccess to dataset elements
if the application’s I/O access pattern does not line
up with the chunk’s sub-array decomposition. Further-
more, there is additional storage overhead for storing an
index for the dataset, along with extra I/O operations to
access the index data structure.

Datasets with very small amounts of element data
can store their elements as part of the dataset descrip-
tion in the file, avoiding any extra I/O accesses to
retrieve the dataset elements, since the HDF library
will read them when accessing the dataset description.
This “compact” data storage must be very small (less
than  KB), and may not be used with a dataspace that
has unlimited dimensions or when dataset elements are
compressed.

Finally, a dataset can store its elements in a different,
non-HDF, file.This “external” data storagemethod can
be used to share dataset elements between an HDF
application and a non-HDF application. As with con-
tiguous data storage, external data storage does not
allow adataset to use a dataspacewith unlimited dimen-
sions or compress the dataset elements.

HDF also allows application-defined metadata
to be stored with any object in an HDF file.

HDF H 

H

These “attributes” are designed to store information
about the object they are attached to, such as input
parameters to a simulation, the name of an instrument
gathering data, etc. Attributes are similar to datasets in
that they have a dataspace, a datatype, and elements val-
ues. Attributes require a name that is unique among the
attributes for an object, similar to link names within
groups. Attributes are limited to dataspaces that do
not use unlimited maximum dimensions and cannot
have their data elements compressed, but can use any
datatype for their elements.

Examples of Using HDF
The following C code example shows how to use the
HDF library to store a large array. In the example
below, the data to be written to the file is a three-
dimensional array of single-precisionfloating-point val-
ues, with dimensions of  elements along each axis:

 float data[][][];

 hid_t file_id, dataspace_id, dataset_id;

 hsize_t dims[] = {, , };



 < . . .acquire or assign data values. . . >



 file_id = HFcreate(“example.h”,
HF_ACC_TRUNC, HP_DEFAULT,
HP_DEFAULT);

 dataspace_id = HScreate_simple(, dims,
NULL);

 dataset_id = HDcreate(file_id, “/Float_data”,
HT_NATIVE_FLOAT, dataspace_id,
HP_DEFAULT, HP_DEFAULT, HP_DEFAULT);



 HDwrite(dataset_id, HT_NATIVE_FLOAT,
dataspace_id, dataspace_id, HP_DEFAULT,
data);



 HDclose(dataset_id);

 HSclose(dataspace_id);

 HFclose(file_id);

In this example, lines – declare the variables
needed for the example, including the -D array of
data to store. Line  represents the application’s pro-
cess of filling the data array with information. Lines –
create a new HDF file, a new dataspace describ-
ing a fixed-size three-dimensional array of dimensions
 ×  × , and a new dataset using a single-
precision floating-point datatype and the dataspace cre-
ated. Line  writes the entire GB array to the file in a
single I/O operation, and lines – close the objects
created earlier. Several of the calls use HP_DEFAULT
as a parameter, which is a placeholder for an HDF
property list object, which can control more compli-
cated properties of objects or operations.

The next C code example creates an identically
structured file, but adds the necessary calls to open
the file with  processes in parallel and to perform a
collective write to the dataset created.

 float data[][][];

 hid_t file_id, file_dataspace_id,
mem_dataspace
_id, dataset_id, fa_plist_id, dx_plist_id;

 hsize_t file_dims[] = {, , };

 hsize_t mem_dims[] = {, , };



 < . . .acquire or assign data values. . . >



 fa_plist_id = HPcreate(HP_FILE_ACCESS);

 HPset_fapl_mpio(fa_plist_id,
MPI_COMM_WORLD, MPI_INFO_NULL);

 file_id = HFcreate(“example.h”, HF_ACC_
TRUNC, HP_DEFAULT, fa_plist_id);

 HPclose(fa_plist_id);

 file_dataspace_id = HScreate_simple(,
file_dims, NULL);

 dataset_id = HDcreate(file_id, “/Float_data”,
HT_NATIVE_FLOAT, file_dataspace_id,
HP_DEFAULT, HP_DEFAULT, HP_DEFAULT);



 mem_dataspace_id = HScreate_simple(,
mem_dims, NULL);

 H HDF



 < . . .select process’s elements in file
dataspace. . . >



 dx_plist_id = HPcreate(HP_DATASET_XFER);

 HPset_dxpl_mpio(dx_plist_id,
HFD_MPIO_COLLECTIVE);

 HDwrite(dataset_id, HT_NATIVE_FLOAT,
mem_dataspace_id, file_dataspace_id,
dx_plist_id, data);



 HPclose(dx_plist_id);

 HDclose(dataset_id);

 HSclose(mem_dataspace_id);

 HSclose(file_dataspace_id);

 HFclose(file_id);

In this updated example, the size of the data array
on line  has been changed to be only one eighth of the
total array size, to allow for each of the eight processes to
write a portion of the total array in the file. Lines –
have been updated to create a file access property list,
change the file driver for opening the file to useMPI-I/O
and collectively open the file with all processes, using
the file access property list. Lines – create the dataset
in the file in the same way as the previous example. Line
 creates a dataspace for each process’s portion of the
dataset in the file, and line  represents a section of code
for selecting the part of the file’s dataspace that each
process will write to (which is omitted due to space con-
straints). Lines – create a dataset transfer property
list, set the I/O operation to be collective, and perform
a collective write operation where each process writes a
different portion of the dataset in the file. Finally, lines
– release resources used for the example.

This example shows some ways that property lists
can be used to modify the operation of HDF API calls,
as well as demonstrating a simple example of parallel
I/O using HDF API calls.

Higher-Level Data Models Built on HDF
HDF provides a set of generic higher-level data
models that describe how to store images and tables as

datasets and describe the coordinates of dataspace ele-
ments. A scientific user community can also use HDF
as the basis for exchanging data among its members
by creating a standardized domain-specific data model
that is relevant to their area of interest. Domain-specific
datamodels specify the names ofHDF groups, datasets
and attributes, the dataspace and datatype for the
datasets and attributes, etc. Frequently, a domain’s user
community also creates a “wrapper library” that calls
HDF library routines while enforcing the domain’s
standardized data model.

Library Interface
Software applications create, modify, and delete HDF
objects through an object-oriented library interface that
manipulates the objects in HDF files. Applications can
use the HDF library to operate directly on the base
HDF objects or use a domain-specific wrapper library
that operates at a higher level of abstraction. The core
software library for accessing HDF files is written in
C, but library interfaces for the HDF data model have
been created for many programming languages, includ-
ing Fortran, C++, Java, Python, Perl, Ada, and C#.

File Format
Objects in the HDF data model created by the library
interface are stored in files whose structure is defined
by theHDF file format.TheHDFfile format hasmany
unique aspects, some of which are: a mechanism for
storing non-HDF formatted data at the beginning of a
file, a method of “micro-versioning” file data structures
that makes incremental changes to the format possible,
and data structures that enable constant-time lookup
of data within the file in situations which previously
required a logarithmic number of operations.

The HDF file format is designed to be flexible
and extensible, allowing for evolution and expansion of
the data model in an incremental and structured way.
This allows new releases of the HDF software library
to continue to access all previous versions of the HDF
file format. This capability empowers application devel-
opers to create HDF files and access data contained
within them over very long periods of time.

Tools
HDF is distributed with command-line utilities that
can inspect and operate on HDF files. Operations pro-
vided by command-line utilities include copying HDF

HDF H 

H

objects from one file to another, compacting internally
fragmented HDF files to reduce their size, and com-
paring two HDF files to determine differences in the
objects contained within them. The latter differencing
utility, called “hdiff”, is also provided as a parallel
computing application that uses the MPI programming
interface to quickly compare two files using multiple
processes.

Many other applications, both commercial and open
source, can access data stored in HDF files. Some of
these applications include MATLAB [], Mathematica
[], HDFView [], VisIt [], and EnSight []. Some of
these applications provide generic browsing and modi-
fication of HDF files, while others provide specialized
visualization of domain-specific data models stored in
HDF files.

Parallel File I/O
Applications that use the MPI programming interface
[] can use the HDF library to access HDF files
in parallel from multiple concurrently executing pro-
cesses. Internally, the HDF library uses the MPI inter-
face for coordinating access to the HDF file as well as
for performing parallel operations on the file. Efficiently
accessing an HDF file in parallel requires storing the
file on a parallel file system designed for access through
the MPI interface.

Two methods of accessing an HDF file in parallel
are possible: “independent” and “collective.” Indepen-
dent parallel access to an HDF file is performed by a
process in a parallel application without coordination
with or cooperation from the other processes in the
application. Collective parallel access to an HDF file is
performed with all the processes in the parallel appli-
cation cooperating and possibly communicating with
each other.

The following discussion of HDF library capabili-
ties describes parallel I/O features in the current release
at the time this entry was written, release ... The par-
allel I/O features in the HDF library are continually
improving and evolving to address the ongoing changes
in the landscape of parallel computing. Unless other-
wise stated, limitations in the capabilities of the HDF
library are not inherent to the HDF data model or file
format and may be addressed in future library releases.

The HDF library requires that operations that cre-
ate, modify, or delete objects in an HDF file be per-
formed collectively. However, operations that only open

objects for reading can be performed independently.
Requiring collective operations for modifying the file’s
structure is currently necessary so that all processes in
the parallel application keep a consistent view of the
file’s contents.

Reading or writing the elements of a dataset can
be performed independently or collectively. Accessing
the elements of a dataset with independent or collective
operations involves different trade-offs that application
developers must balance.

Using independent operations requires a parallel
application to create the overall structure of the HDF
file at the beginning of its execution, or possibly with
a nonparallel application prior to the start of the paral-
lel application. The parallel application can then update
elements of a dataset without requiring any synchro-
nization or coordination between the processes in the
application. However, the application must subdivide
the portions of the file accessed from each process to
avoid race conditions that would affect the contents of
the file. Additionally, accessing a file independently may
cause the underlying parallel file system to perform very
poorly, due to its lack of a global perspective on the
overall access pattern, which prevents the file system
from taking advantage of many caching and buffering
opportunities available with collective operations.

Accessing HDF dataset elements collectively
requires that all processes in the parallel application
cooperate when performing a read or write operation.
Collective operations use the MPI interface within the
HDF library to describe the region(s) of the file to
access from each process, and then use collective MPI
I/O operations to access the dataset elements. Collec-
tively accessing HDF dataset elements allows the MPI
implementation to communicate between processes in
the application to determine the best method of access-
ing the parallel file system, which can greatly improve
performance of the I/O operation. However, the com-
munication and synchronization overhead of collec-
tive access can also slow down an application’s overall
performance.

To get good performance when accessing an HDF
dataset, it is important to choose a storage method
that is compatible with the type of parallel access cho-
sen. For example, compact data storage requires all
writes to dataset elements be performed collectively,
while external data storage requires all dataset element
accesses be performed independently.

 H HDF

Collective and independent element access also
involves the MPI and parallel file system layers, and
those layers add their own complexities to the equation.
HDF application developersmust carefully balance the
trade-offs of collective and independent operations to
determine when and how to use them.

High performance access to HDF files is a strongly
desired feature of application developers, and the HDF
library has been designed with the goal of provid-
ing performance that closely matches the performance
possible when an application accesses unformatted
data directly. Considerable effort has been devoted to
enhancing theHDF library’s parallel performance, and
this effort continues as new parallel I/O developments
unfold.

Significant Parallel Applications and
Libraries That Use HDF
Many applications and software libraries that use HDF
have become significant software assets, either commer-
cially or as open source projects governed by a user
community. HDF’s stability, longevity, and breadth of
features have attracted many developers to it for storing
their data, both for sequential and parallel computing
purposes.

Thefirst software library to useHDFwas developed
collaboratively by developers at the US Department
of Energy’s (DOE) Lawrence Livermore, Los Alamos
and Sandia National Laboratories. This effort was called
the “Sets and Fields” (SAF) library [] and was devel-
oped to give the parallel applications that dealt with
large, complex finite element simulations on the high-
est performing computers of the time away to efficiently
store their data.

Many large scientific communities worldwide have
adopted HDF for storing data with parallel applica-
tions. Some significant examples include the FLASH
software for simulating astrophysical nuclear flashes
from the University of Chicago [], the Chombo pack-
age for solving finite difference equations using adap-
tive mesh refinement from Lawrence Berkeley National
Laboratory [], and the open source NeXus software
and data format for interchanging data in the neutron,
x-ray, and muon science communities [].

netCDF, PnetCDF, and HDF
Another significant software library that uses HDF
is the netCDF library [], developed at the Unidata

Program Center for the University Corporation for
Atmospheric Research (UCAR). Originally designed
for the climate modeling community, netCDF has since
been embraced by many other scientific communi-
ties. netCDF has adopted HDF as its principal storage
method, as of version ., in order to take advantage
of several features in HDF that its previous file for-
mat did not provide, including data compression, a
wider array of types for storing data elements, hierar-
chical grouping structures, and more flexible parallel
operations.

Created prior to the development of netCDF-,
parallel-netCDF or “PnetCDF” [] was developed by
Argonne National Laboratory. PnetCDF allows parallel
applications to access netCDF format files with col-
lective data operations. PnetCDF does not extend the
netCDF data model or format beyond allowing larger
objects to be stored in netCDF files. Files written by
PnetCDF and versions of the netCDF library prior to
netCDF- do not use the HDF file format and instead
store data in the “netCDF classic” format [].

Future Directions
Both the primary development team atTheHDFGroup
and the user community that has formed around the
HDF project are constantly improving it. HDF con-
tinues to be ported to new computer systems and
architectures and has its performance improved and
errors corrected over time. Additionally, the HDF
data model is expanding to encompass new develop-
ments in the field of high performance storage and
computing.

Some improvements being designed or imple-
mented as of this entry’s writing include: increasing the
efficiency of small file I/O operations through advanced
caching mechanisms, finding ways to allow parallel
applications to create HDF objects in a file with inde-
pendent operations, and implementing new chunked
data storage indexing methods to improve collective
access performance.

Additionally, HDF continues to lead the scientific
data storage field in its adoption of asynchronous file
I/O for improved performance, journaled file updates
for improved resiliency, and methods for improving
concurrency by allowing different applications to read
and write to the same HDF file without using a locking
mechanism.

High-Performance I/O H 

H

Related Entries
�File Systems
�MPI (Message Passing Interface)
�NetCDF I/O Library, Parallel

Bibliographic Notes and Further
Reading
HDF has been under development since , a short
history of its development is recorded at The HDF
Group web site [].

Datasets in HDF files are analogous to sections
of trivial fiber bundles [], where the HDF datas-
pace corresponds to a fiber bundle’s base space, the
HDF datatype corresponds to the fiber, and the dataset,
a variable whose value is the totality of the data ele-
ments stored, represents a section through the total
space (which is the Cartesian product of the base space
and the fiber).

HDF datatypes can be very complex and many
more details are found in reference [].

The HDF file format is documented in [].
Many more applications and libraries use HDF

than are discussed in this entry. A partial list can be
found in [].

Bibliography
. HDF, http://www.hdfgroup.org/HDF/
. National Center for Supercomputing Application at the Univer-

sity of Illinois at Urbana-Champaign, http://www.ncsa.illinois.
edu/

. The HDF group, http://www.hdfgroup.org/
. HDF, http://www.hdfgroup.org/products/hdf/
. netCDF, http://www.unidata.ucar.edu/software/netcdf/
. TIFF, http://partners.adobe.com/public/developer/tiff/index.

html
. FITS, http://fits.gsfc.nasa.gov/
. MATLAB, http://www.mathworks.com/products/matlab/
. Mathematica, http://www.wolfram.com/products/mathematica/

index.html
. HDFView, http://www.hdfgroup.org/hdf-java-html/hdfview/
. VisIt, https://wci.llnl.gov/codes/visit/
. EnSight, http://www.ensight.com/
. MPI, http://www.mpi-forum.org/
. Miller M et al () Enabling interoperation of high perfor-

mance, scientific computing applications: modeling scientific
data with the sets & fields (SAF) modeling system. ICCS – ,
May, part II, San Francisco. Lecture Notes in Computer Science,
vol . Springer, Heidelberg, pp –

. FLASH, http://flash.uchicago.edu/web/
. Chombo, https://seesar.lbl.gov/anag/chombo/index.html

. NeXus, http://www.nexusformat.org/Main_Page
. PnetCDF, http://trac.mcs.anl.gov/projects/parallel-netcdf
. netCDF file formats, http://www.unidata.ucar.edu/software/

netcdf/docs/netcdf/File-Format.html
. A history of the HDF group, http://www.hdfgroup.org/about/

history.html
. Fiber bundle definition, http://mathworld.wolfram.com/

FiberBundle.html
. HDF user guide, Chapter : datatypes, http://www.hdfgroup.

org/HDF/doc/UG/UG_frameDatatypes.html
. HDF file format specification, http://www.hdfgroup.org/HDF/

doc/H.format.html
. Summary of software using HDF, http://www.hdfgroup.org/

products/hdf_tools/SWSummarybyName.htm

HEP, Denelcor

�Denelcor HEP

Heterogeneous Element
Processor

�Denelcor HEP

Hierarchical Data Format

�HDF

High Performance Fortran (HPF)

�HPF (High Performance Fortran)

High-Level I/O Library

�NetCDF I/O Library, Parallel

High-Performance I/O

�I/O

http://dx.doi.org/10.1007/978-0-387-09766-4_188
http://dx.doi.org/10.1007/978-0-387-09766-4_222
http://dx.doi.org/10.1007/978-0-387-09766-4_235
http://www.hdfgroup.org/HDF5/
http://www.ncsa.illinois.edu/
http://www.ncsa.illinois.edu/
http://www.hdfgroup.org/
http://www.hdfgroup.org/products/hdf4/
http://www.unidata.ucar.edu/software/netcdf/
http://partners.adobe.com/public/developer/tiff/index.html
http://partners.adobe.com/public/developer/tiff/index.html
http://fits.gsfc.nasa.gov/
http://www.mathworks.com/products/matlab/
http://www.wolfram.com/products/mathematica/index.html
http://www.wolfram.com/products/mathematica/index.html
http://www.hdfgroup.org/hdf-java-html/hdfview/
https://wci.llnl.gov/codes/visit/
http://www.ensight.com/
http://www.mpi-forum.org/
http://flash.uchicago.edu/web/
https://seesar.lbl.gov/anag/chombo/index.html
http://www.nexusformat.org/Main_Page
http://trac.mcs.anl.gov/projects/parallel-netcdf
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf/File-Format.html
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf/File-Format.html
http://www.hdfgroup.org/about/history.html
http://www.hdfgroup.org/about/history.html
http://mathworld.wolfram.com/FiberBundle.html
http://mathworld.wolfram.com/FiberBundle.html
http://www.hdfgroup.org/HDF5/doc/UG/UG_frame11Datatypes.html
http://www.hdfgroup.org/HDF5/doc/UG/UG_frame11Datatypes.html
http://www.hdfgroup.org/HDF5/doc/H5.format.html
http://www.hdfgroup.org/HDF5/doc/H5.format.html
http://www.hdfgroup.org/products/hdf5_tools/SWSummarybyName.htm
http://www.hdfgroup.org/products/hdf5_tools/SWSummarybyName.htm
http://dx.doi.org/10.1007/978-0-387-09766-4_220
http://dx.doi.org/10.1007/978-0-387-09766-4_220
http://dx.doi.org/10.1007/978-0-387-09766-4_44
http://dx.doi.org/10.1007/978-0-387-09766-4_224
http://dx.doi.org/10.1007/978-0-387-09766-4_235
http://dx.doi.org/10.1007/978-0-387-09766-4_290

 H Homology to Sequence Alignment, From

Homology to Sequence
Alignment, From

Wu-Chun Feng,, Heshan Lin
Virginia Tech, Blacksburg, VA, USA
Wake Forest University, Winston-Salem, NC, USA

Discussion
Two sequences are considered to be homologous
if they share a common ancestor. Sequences are
either homologous or nonhomologous, but not in-
between []. Determining whether two sequences are
actually homologous can be a challenging task, as it
requires inferences to be made between the sequences.
Further complicating this task is the potential that the
sequencesmay appear to be related via chance similarity
rather than via common ancestry.

One approach toward determining homology entails
the use of sequence-alignment algorithms that maxi-
mize the similarity between two sequences. For homol-
ogy modeling, these alignments could be used to
obtain the likely amino-acid correspondence between
the sequences.

Introduction
Sequence alignment identifies similarities between a
pair of biological sequences (i.e., pairwise sequence
alignment) or across a set of multiple biological
sequences (i.e., multiple sequence alignment). These
alignments, in turn, enable the inference of functional,
structural, and evolutionary relationships between
sequences. For instance, sequence alignment helped
biologists identify the similarities between the SARS
virus and the more well-studied coronaviruses, thus
enhancing the biologists’ ability to combat the new virus.

Pairwise Sequence Alignment
There are two types of pairwise alignment: global align-
ment and local alignment. Global alignment seeks to
align a pair of sequences entirely to each other, i.e.,
from one end to the other. As such, it is suitable for
comparing sequences with roughly the same length,
e.g., two closely homologous sequences. Local align-
ment seeks to identify significantmatches betweenparts
of the sequences. It is useful to analyze partially related

sequences, e.g., protein sequences that share a common
domain.

Many approaches have been proposed for aligning
a pair of sequences. Among them, dynamic program-
ming is a common technique that can find optimal
alignments between sequences.Dynamic programming
can be used for both local alignment and global align-
ment. The algorithms in both cases are quite similar.
The scoring model of an alignment algorithm is given
by a substitution matrix and a gap-penalty function.
A substitution matrix stores a matching score for every
possible pair of letters. A matching score is typically
measured by the frequency that a pair of letters occurs
in the known homologous sequences according a cer-
tain statistical model. Popular substitution matrices
include PAM and BLOSUM, an example of which is
shown in Fig. . A gap-penalty function defines how
gaps in the alignments are weighed in alignment scores.
For instance, with a linear gap-penalty function, the
penalty score grows linearly with the length of a gap.
With an affine gap-penalty function, the penalty fac-
tors are differentiated for the opening and the extension
of a gap.

The following discussion will focus on the basic
algorithm and its parallelization of Smith–Waterman,
a popular local-alignment tool based on dynamic pro-
gramming. (For more advanced techniques to compute
pairwise sequence alignment, the reader should consult
the “Bibliographic Notes and Further Reading” section
at the end of this entry.)

Case Study: Smith–Waterman Algorithm
Given two sequences S = aa⋯am and S = bb⋯bn ,
the Smith–Waterman algorithm uses an m by n scor-
ing matrix H to calculate and track the alignments.
A cell Hi,j stores the highest similarity score that can be
achieved by any possible alignment ending at ai and bj.
The Smith–Waterman algorithm has three phases: ini-
tialization,matrix filling, and traceback.

The initialization phase simply assigns a value of
 to each of the matrix cells in the first row and the
first column. In the matrix-filling phase, the problem of
aligning the two whole sequences is broken into smaller
subproblems, i.e., aligning partial sequences. Accord-
ingly, a cell Hi,j is updated based on the values of its
preceding neighbors. For the sake of illustration, the rest
of the discussion assumes a linear gap-penalty function

Homology to Sequence Alignment, From H 

H

C 9
S −1 4
T −1 1 4
P −3 −1 1 7
A 0 1 −1 −1 4
G −3 0 1 −2 0 6
N −3 1 0 −2 −2 0 6
D −3 0 1 −1 −2 −1 1 6
E −4 0 0 −1 −1 −2 0 2 5
Q −3 0 0 −1 −1 −2 0 0 2 5
H −3 −1 0 −2 −2 −2 1 1 0 0 8
R −3 −1 −1 −2 −1 −2 0 −2 0 1 0 5
K −3 0 0 −1 −1 −2 0 −1 1 1 −1 2 5
M −1 −1 −1 −2 −1 −3 −2 −3 −2 0 −2 −1 −1 5
I −1 −2 −2 −3 −1 −4 −3 −3 −3 −3 −3 −3 −3 1 4
L −1 −2 −2 −3 −1 −4 −3 −4 −3 −2 −3 −2 −2 2 2 4
V −1 −2 −2 −2 0 −3 −3 −3 −2 −2 −3 −3 −2 1 3 1 4
F −2 −2 −2 −4 −2 −3 −3 −3 −3 −3 −1 −3 −3 0 0 0 −1 6
Y −2 −2 −2 −3 −2 −3 −2 −3 −2 −1 2 −2 −2 −1 −1 −1 −1 3 7
W −2 −3 −3 −4 −3 −2 −4 −4 −3 −2 −2 −3 −3 −1 −3 −2 −3 1 2 11

C S T P A G N D E Q H R K M I L V F Y W

Homology to Sequence Alignment, From. Fig.  BLOSUM substitution matrix

where the penalty of a gap is equal to a constant factor
g (typically negative) times the length of the gap.

There are three possible alignment scenarios where
Hi,j is derived from its neighbors: () ai and bj are asso-
ciated, () there is a gap in sequence S, and () there is
a gap in sequence S. As such, the scoring matrix can be
filled according to (). The first three terms in () corre-
spond to the three scenarios; the zero value ensures that
there are no negative scores. S(ai,bj) is the matching
score derived by looking up the substitution matrix.

Hi,j = max

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

Hi−,j− + S(ai,bj)

Hi−,j + g

Hi,j− + g



()

When a cell is updated, the direction from which
the maximum score is derived also needs to be stored
(e.g., in a separate matrix). After the matrix is filled,
a traceback process is used to recover the path of the
best alignment. It starts from the cell with the highest
score in the matrix and ends at a cell with a value of ,
following the direction information recorded earlier.

The majority of execution time is spent on the
matrix-filling phase in Smith–Waterman. Algorithm 
shows a straightforward implementation of the matrix

Algorithm Matrix Filling in Smith–Waterman

for i =  tom do
for j =  to n do
max = Hi−,j− + S(ai,bj) > Hi−,j + g ? Hi−,j−+

S(ai,bj) : Hi−,j + g
if Hi,j− + g > max then
Hi,j = Hi,j− + g

else
Hi,j = max

end if
end for

end for

filling. In the inner loop of the algorithm, the cell cal-
culated in one iteration depends on the value updated
in the previous iteration, resulting in a “read-after-
write” hazard (see [] for details), which can reduce
the instruction-level parallelism that can be exploited by
pipelining, and hence, adversely impact performance.
In addition, this algorithm is difficult to directly par-
allelize because of the data dependency between itera-
tions in the inner loop.

As depicted in Fig. , the calculation of a particular
cell depends on its west, northwest, and north neigh-
bors. However, the updates of individual cells along
an anti-diagonal are independent. This observation

 H Homology to Sequence Alignment, From

Homology to Sequence Alignment, From. Fig.  Data

dependency of matrix filling

motivates a wavefront-filling algorithm [], where the
matrix cells on an anti-diagonal can be updated simul-
taneously. That is, because there is no dependency
between two adjacent cells along an anti-diagonal, this
algorithm greatly reduces read-after-write hazards, and
in turn, increases the execution efficiency and ease of
parallelization. For example, in a shared-memory envi-
ronment, individual threads can compute a subset of
cells along an anti-diagonal. However, synchronization
between threads must occur after computing each anti-
diagonal.

Since a scoring matrix is typically stored in “row
major” order, as shown in Algorithm , the above wave-
front algorithm may have a large memory footprint
when computing an anti-diagonal, thus limiting the
benefits of processor caches. One improvement entails
partitioning the matrix into tiles and having each paral-
lel processing unit fill a subset of the tiles, as shown in
Fig. . By carefully choosing the tile size, data processed
by a thread can fit in the processor cache. Further-
more, when parallelized in distributed environments,
the tiled approach can effectively reduce internode
communication, as compared to the fine-grained wave-
front approach, because only elements at the borders of
individual tiles need to be exchanged between different
compute nodes.

With the wavefront approach, the initial amount of
parallelism in the algorithm is low. It gradually increases

P0 P1 P2 P3

P0 P1 P2 P3

P0 P1 P2

P0 P1

P0

P4

Homology to Sequence Alignment, From. Fig.  Tiled

implementation

along each successive anti-diagonal until reaching the
maximum parallelism along the longest anti-diagonal,
and then monotonically decreases thereafter. A trade-
off needs to be made in choosing the tile size. If the
tile size is too large, there is not sufficient parallelism
to exploit at the beginning of the wavefront computa-
tion, which results in idle resources in systems with a
large number processing units. On the other hand, too
small a tile size will incur much more synchronization
and communication overhead. Nonetheless, the wave-
front approach may generate imbalanced workloads on
different processors, especially at the beginning and end
of the computation. It is worth noting that there is
an alternative parallel algorithm that uses prefix-sum
to compute the scoring matrix row by row (or col-
umn by column) [], which can generate uniform task
distribution among all processors.

The above discussion assumes a simple linear gap-
penalty function. In practice, the Smith–Waterman
algorithm uses an affine gap-penalty scheme, which
requires maintaining three scoring matrices in order
to track the gap opening and extension. Consequently,
both the time and space usages increase by a factor of
three in implementation using affine gap penalties.

Sequence Database Search
With the proliferation of public sequence data, sequence
database search has become an important task in
sequence analysis. For example, newly discovered

Homology to Sequence Alignment, From H 

H

sequences are typically searched against a database of
sequences with known genes and known functions in
order to help predict the functions of the newly dis-
covered sequences. A sequence database-search tool
compares a set of query sequences against all sequences
in a database with a pairwise alignment algorithm
and reports the matches that are statistically signifi-
cant. Although dynamic-programming algorithms can
be used for sequence database search, the algorithms
are too computationally demanding to keep up with the
database growth. Consequently, heuristic-based algo-
rithms, such as BLAST [, ] and FASTA [], have
been developed for rapidly identifying similarities in
sequence databases.

BLAST is the most widely used sequence database-
search tool. It reduces the complexity of alignment
computation by filtering potential matches with com-
mon words, called k-mers. Specifically, there are four
stages in comparing a query sequence and a database
sequence.

● Stage : The query and the database sequences are
parsed into words of length k (k is  for protein
sequences and  for DNA sequences by default).
The algorithm then matches words between the
query sequence and the database sequence and cal-
culates an alignment score for each matched word,
based on a substitution matrix (e.g., BLOSUM).
Only matched words with alignment scores higher
than a threshold are kept for the next stage.

● Stage : For a high-scoringmatchedword, ungapped
alignment is performed by extending the matched
word in both directions. An alignment score will
be calculated along the extension. The extension
stops when the alignment score stops increasing
and slightly drops off from the maximum alignment
score (controlled by another threshold).

● Stage : Ungapped alignments with scores larger
than a given threshold obtained from stage  are
chosen as seed alignments. Gapped alignments are
then performed on the seed alignments using a
dynamic-programming algorithm, following both
forward and backward directions.

● Stage : Traceback is performed to recover the paths
of gapped alignments.

BLAST calculates the significance of result alignments
using Karlin–Altschul statistics. The Karlin–Altschul

theory uses a statistic called the e-value (E) to mea-
sure the likelihood that an alignment is resulted from
matches by chance (i.e., matches between random
sequences) as compared to true homologous relation-
ships. The e-value can be calculated according to ():

E = Kmn⋅e−λS ()

where K and λ are the Karlin–Altschul parameters,
m and n are the query length and the total length of
all database sequences, and S is the alignment score.
The e-value indicates howmany alignments with a score
higher than S can be found by chance in the search
space, i.e., the multiple of the query sequence length
and the database length.The lower the e-value, themore
significant is an alignment. The alignment results of a
query sequence are sorted in the order of e-value.

A sequence database-search job needs to compute
M × N pairwise sequence alignments, whereM and N
are the numbers of the query and database sequences,
respectively. This computation can be parallelized with
a coarse-grained approach, where the alignments of
individual pairs of sequences are assigned to different
processing units.

Early parallel sequence-search software adopted a
query segmentation approach, where a sequence-search
job is parallelized by having individual compute nodes
concurrently search disjoint subsets of query sequences
against the whole sequence database. Since the searches
of individual query sequences are independent, this
embarrassingly parallel approach is easy to implement
and scales well. However, the size of sequence databases
is growingmuch faster than thememory size of a typical
single computer. When the database cannot fit in mem-
ory, data will be frequently swapped in and out of the
memory when searching multiple queries, thus caus-
ing significant performance degradation, because disk
I/O is several orders of magnitude slower than mem-
ory access. Query segmentation can improve the search
throughput, but it does not reduce the response time
taken to search a single query sequence.

Database segmentation is an alternative paralleliza-
tion approach, where large databases are partitioned
and cached in the aggregate memory of a group of com-
pute nodes. By doing so, the repeated I/O overhead of
searching large databases is avoided. Database segmen-
tation also improves the search response time since a

 H Homology to Sequence Alignment, From

compute node searches only a portion of the database.
However, database segmentation introduces computa-
tional dependencies between individual nodes because
the distributed results generated at different nodes need
to be merged and sorted to produce the final output.
The parallel overhead of merging and sorting increases
as the system size grows.

With the astronomical growth of sequence databases,
today’s large-scale sequence search jobs can be very
resource demanding. For instance, BLAST search-
ing in a metagenomics project can consume sev-
eral millions of processor hours. Massively parallel
sequence-search tools, such as mpiBLAST [, , ]
and ScalaBLAST [], have been developed to acceler-
ate large-scale sequence search jobs on state-of-the-art
supercomputers.These tools use a combination of query
segmentation and database segmentation to offer mas-
sive parallelism needed to scale on a large number of
processors.

Case Study: mpiBLAST
mpiBLAST is an open-source parallelization of NCBI
BLAST that has been designed for petascale deploy-
ment. Adopting a scalable, hierarchical design,mpiBLAST
parallelizes a search job via a combination of query
segmentation and database segmentation. As shown
in Fig. , processors in the system are organized into

equal-sized partitions, which are supervised by a ded-
icated supermaster process. The supermaster is respon-
sible for assigning tasks to different partitions and
handling inter-partition load balancing. Within each
partition, there is one master process and many worker
processes. The master is responsible for coordinat-
ing both computation and I/O scheduling in a parti-
tion. The master periodically fetches a subset of query
sequences from the supermaster and assigns them to
workers, and it coordinates output processing of queries
that have been processed in the partition. The sequence
database is partitioned into fragments and replicated
to workers in the system. This hierarchical design
avoids creating scheduling bottlenecks in large sys-
tems by distributing scheduling workloads to multiple
masters.

Large-scale sequence searches can be highly data-
intensive, and as such, the efficiency of data man-
agement is critical to the program scalability. For the
input data, having thousands of processors simultane-
ously load database fragments from shared storage may
overwhelm the I/O subsystem. To address this, mpi-
BLAST designates a set of compute nodes as I/O prox-
ies, which read database fragments from the file system
in parallel and replicate them to other workers using
the broadcasting mechanism in MPI [, ] libraries.
In addition, mpiBLAST allows workers to cache

Supermaster

f1 f2 f1 f1f1f2 f2f2

Partition 1

P14P13P12P11

qi1 qi1

MasternMaster1

Pn1 Pn2 Pn3 Pn4

Partition n

qj1 qj1

Qi Qj

Homology to Sequence Alignment, From. Fig.  mpiBLAST hierarchical design. Qi and Qj are query batches fetched

from the supermaster to masters, and qi and qj are query sequences that are assigned by masters to their workers. In this

example, the database is segmented into two fragments f and f and replicated twice within each partition

Homology to Sequence Alignment, From H 

H

assigned database fragments in the memory or local
storage, and it uses a task-scheduling algorithm that
takes into account data locality to minimize repeated
loading of database fragments.

With database segmentation, result alignments of
different database fragments are usually interleaved in
the global output because those alignments need to
be sorted by e-values. Consequently, the output data
generated at each worker is noncontiguous in the out-
put file. Straightforward noncontiguous I/O with many
seek-and-write operations is slow on most file systems.
This type of I/O can be optimized with collective
I/O [, , ], which is available in parallel I/O
libraries such as ROMIO []. Collective I/O uses a
two-phase process. In the first phase, involved pro-
cesses exchange data with each other to form large
trunks of contiguous data, which are stored as mem-
ory buffers in individual processes. In the second phase,
the buffered data is written to the actual file sys-
tem. Collective I/O improves I/O performance because
continuous data accesses are much more efficient
than noncontiguous ones. Traditional collective I/O
implementations require synchronization between all
involved processes for each I/O operation. This
synchronization overhead will adversely impact
sequence-search performance when computation is

imbalanced across different processes. To address this
issue, mpiBLAST introduces a parallel I/O technique
called asynchronous, two-phase I/O (ATIO), which
allows worker processes to rearrange I/O data with-
out synchronizing with each other. Specifically, mpi-
BLAST appoints a worker as the write leader for each
query sequence. The write leader aggregates output
data from other workers via nonblocking MPI com-
munication and carries out the write operation to
the file system. ATIO overlaps I/O reorganization and
sequence-search computation, thus improving the over-
all application performance. Figure  shows the dif-
ference between collective I/O and ATIO within the
context of mpiBLAST.

Multiple Sequence Alignment
Multiple sequence alignment (MSA) identifies similar-
ities among three or more sequences. It can be used to
analyze a family of related sequences to reveal phyloge-
netic relationships. Other usages of multiple sequence
alignment include detection of conserved biological
features and genome sequencing. Multiple sequence
alignment can also be global or local.

Like pairwise sequence alignment, multiple
sequence alignment can be computed using dynamic

qi

qi+1

qi

qi+1

qi

qi+1

Worker 1 Worker 2 Worker 3

Search
Idle

1
Write 2
Exchange

2

11

2 2

Output of qi

qi

qi+1

qi

qi+1 qi+1

qi

Worker 1 Worker 2 Worker 3

Output file Output of qi

ATIOCollective I/O

Output file

Search

1

Write 2

Exchange

1
1

2

Homology to Sequence Alignment, From. Fig.  Collective I/O and ATIO. Collective I/O requires synchronization and

introduces idle waiting in worker processes. ATIO uses a write leader to aggregate noncontiguous data from other

workers in an asynchronous manner

 H Homology to Sequence Alignment, From

programming algorithms. Although these algorithms
can find optimal alignments, the required resources for
these algorithms grow exponentially as the number of
sequences increases. Suppose there areN sequences and
the average sequence length is L, the time and space
complexities are both O(LN). Thus, it is computation-
ally impractical to use dynamic programming to align a
large number of sequences.

Many heuristic approaches have been proposed
to reduce the computational complexity of multi-
ple sequence alignment. Progressive alignment methods
[, , , , ] use guided pairwise sequence align-
ment to rapidly construct MSA for a large number of
sequences.Thesemethods first build a phylogenetic tree
based on all-to-all pairwise sequence alignments using
neighbor joining [] or UPGMA [] techniques.
Guided by the phylogenetic tree, the most similar
sequences are first aligned, the less similar sequences are
then progressively added to the initial MSA. One prob-
lem with progressive methods is that errors that occur
in early aligning stages are propagated to the final
alignment results. Iterative alignment methods [, ]
address this problem by introducing “correction” mech-
anisms during the MSA construction process. These
methods incrementally align sequences as progressive
methods, but continuously adjust the structure of the
phylogenetic tree and previously computed alignments
according to a certain objective function.

Case Study: ClustalW
ClustalW [] is a widely used MSA program based on
progressive methods. The ClustalW algorithm includes
three stages: () distance matrix computation, ()
guided tree construction, and () progressive align-
ment. Due to the popularity of ClustalW, its paral-
lelization has been well studied on clusters [, ] and
multiprocessor systems [, ].

In the first stage, ClustalW computes a distance
matrix by performing all-to-all pairwise alignment over
input sequences. This requires a total of N(N−)

 com-
parison for N sequences since the alignment of a pair
of sequences is symmetric. ClustalW allows users to
choose between two alignment algorithms: a faster
k-mer matching algorithm and a slower but more accu-
rate dynamic programming algorithm. This stage of
the algorithm is embarrassingly parallel. Alignments of
individual pairs of sequences can be statically assigned

or dynamically assigned with a greedy algorithm to
different processing units. Additional parallelism can
be exploited by parallelizing the alignment of a sin-
gle pair of sequences, similar to the Smith–Waterman
algorithm.

In the second stage, a guided tree is constructed
using a neighbor-joining algorithm based on the
alignment scores in the distance matrix. Initially all
sequences are leaf nodes of a star-like tree. The algo-
rithm iteratively selects a pair of nodes and joins them
into a new internal node until there are no nodes left
to join, at which point a bifurcated tree is created.
Algorithm  gives the pseudocode of this process. Sup-
pose there are a total of M nodes at an iteration, there
are n(n−)

 possible pairs of nodes.The pair of nodes that
results in the smallest length of branches will be selected
to join. An example of neighbor-joining process with
four sequences is given in Fig. .

In Algorithm , the outermost loop cannot be par-
allelized because one iteration of neighbor joining is
dependent on the previous one. However, within an
iteration of neighbor joining, the calculation of branch
lengths of all pairs of nodes can be performed in par-
allel. Since the number of available nodes reduces after
each joining operation, the parallelism level decreases
as the iteration advances in the outermost loop.

Algorithm  Construction of Guided Tree

while there are nodes to join do
Let n be the number of current available nodes
Let D be the current distance matrix
Let Lmin be the smallest length of the tree branches
for i =  to n do
for j =  to i −  do
L(i, j) = (n − )Di,j −∑

n
k= Di,k −∑

n
k= Dj,k

if L(i, j) < Lmin then
Lmin = L(i, j)

end if
end for

end for
Combine nodes i, j that result in Lmin into a new
node
Update distance matrix with the new node

end while

Homology to Sequence Alignment, From H 

H

1

2

3

4

Step 1a

1–2

3

4

Step 2

1–2 3–4

Step 3

1

2

3

4

Treeb c d

Homology to Sequence Alignment, From. Fig.  Neighbor-joining example

In the third stage, the sequence is progressively
aligned according to the guided tree. For instance, in the
tree shown in Fig. (d), sequences  and  are aligned
first, followed by  and . Finally, the alignment results
of <  −  > and <  −  > are aligned. Note that the
alignment on a node can only be performed after both
of its children are aligned, but the alignments at the
same level of the tree can be performed simultaneously.
The level of parallelism of the algorithm depends heav-
ily on the tree structure. In the best case, the guided tree
is a balanced tree. At the beginning, all the leaves can
be aligned in parallel. The number of concurrent align-
ments decreases by a half at each higher level toward the
root of the tree.

Case Study: T-Coffee
T-Coffee [] is another popular progressive align-
ment algorithm. Compared to other typical progres-
sive alignment tools, T-Coffee improves the alignment
accuracy by adopting a consistency-based scoring func-
tion, which uses similarity information among all input
sequences to guide the alignment progress. T-Coffee
consists of two main steps: library generation and pro-
gressive alignment. The first step constructs a library
that contains a mixture of global and local align-
ments between every pair of input sequences. In the
library, an alignment is represented as a list of pairwise
constraints. Each constraint stores a pair of matched
residues along with an alignment weight, which is
essentially a three-tuple < Sxi , Syj,w >, where Sxi is
the ith residue of sequence Sx and w is the weight.
T-Coffee incorporates pairwise global alignments gen-
erated by ClustalW as well as top ten nonintersecting
local alignments reported by Lalign from the FASTA
package []. T-Coffee can also take alignment informa-
tion from otherMSA software.The pairwise constraints
of a same pair of matched residues from various sources
(e.g., global and local alignments) will be combined to

remove duplication. Constructing the library requires
N(N−)

 global and local alignments and thus is highly
compute-intensive.

After all pairwise alignments are incorporated in the
library, T-Coffee performs library extension, a proce-
dure that incorporates transitive alignment information
to the weighing of pairwise constraints. Basically, for
a pair of sequences x and y, if there is a sequence z
that aligns to both x and y, then constraints between
x and y will be reweighed by combining the weights
of the corresponding constraints between x and z as
well as y and z. Suppose the average sequence length
is L, since for each pair of sequences, the extension
algorithm needs to scan the rest of N −  sequences,
and there are at most L constraints between a pair of
sequences, the worst computation complexity of library
extension is O(NL).

In the second step, T-Coffee performs progressive
alignment guided by a phylogenetic tree built with
the neighbor-joining method, similar to the ClustalW
algorithm. However, T-Coffee uses the weights in
the extended library to align residues when grouping
sequences/alignments. Since those weights bear com-
plete alignment information from all input sequences,
the progressive alignment in T-Coffee can reduce errors
caused by the greediness of classic progressive methods.

Parallel T-Coffee (PTC) is a parallel implementation
of T-Coffee in cluster environments []. PTC adopts a
master–worker architecture and usesMPI to communi-
cate between different processes. As mentioned earlier,
the library generation in T-Coffee needs to compute
all-to-all global and local alignments. The computa-
tion tasks of these alignments are independent of each
other. PTC uses guided self-scheduling (GSS) [] to
distribute alignment tasks to different worker nodes.
GSS first assigns a portion of the tasks to the workers.
Eachworkermonitors its performancewhenprocessing
the initial assignments; this performance information is

 H Homology to Sequence Alignment, From

then sent to the master and used for dynamic schedul-
ing for subsequent assignments.

After pairwise alignments are finished, duplicated
constraints generated on distributed workers need to
be combined. PTC implements this with parallel sort-
ing. Each constraint is assigned to a bucket resident at
a worker. Each worker can then concurrently combine
duplicated constraints within its own bucket. The con-
straints in the library are then transformed into a
three-dimensional lookup table, with rows and columns
indexed by sequences and residues, respectively. Each
element in the lookup table stores all constraints for a
residue of a sequence. The lookup table will be accessed
by all processors during the progressive alignment. PTC
evenly distributes the lookup table by rows to all pro-
cessors and allows table entries to be accessed by other
processors through one-sided remote memory access.
An efficient caching mechanism is also implemented to
improve lookup performance.

During the progressive alignment, PTC schedules
tree nodes to a processor according to their readiness; a
tree node that has a fewer number of unprocessed child
nodes has a higher scheduling priority. For tree nodes
that have all child nodes processed, PTC gives higher
priority to the ones with shorter estimated execution
time. Similar to ClustalW, the parallelism of progress
alignment in PTC can be limited if the guided tree is
unbalanced. To address this issue, Orobitg et al. pro-
posed a heuristic approach that can construct a more
balanced guided tree by allowing a pair of nodes to
be grouped if their similarity value is smaller than the
average similarity value between all sequences in the
distance matrix [].

Related Entries
�Bioinformatics
�Genome Assembly

Bibliographic Notes and Further
Reading
As discussed in the case study of Smith–Waterman,
typical sequence-alignment algorithms require O(mn)
space and time, where m and n are the lengths of
compared sequences. Such a space requirement can
be impractical for computing alignments of large
sequences (e.g., those with a length of multiple

megabytes) on commodity machines. To address this
issue, Mayers and Miller introduced a space-efficient
alignment algorithm [] adapted from the Hirschberg
technique [], which was originally developed for
finding the longest common subsequence between
two strings. By recursively dividing the alignment
problem into subproblems at a “midpoint” along the
middle column of the scoring matrix, Mayers and
Miller’s approach can find the optimal alignment within
O(m + n) space but still O(mn) time. Huang showed
that a straightforward parallelization of the Hirschberg
algorithm would require more than linear aggregate
space [], i.e., each processor needed to store more
thanO(m+np) data, where p is the number of concurrent
processors. In turn, Huang proposed an improved algo-
rithm that recursively divides the alignment problem
at the midpoint along the middle anti-diagonal of the
scoringmatrix. By doing so,Huang’s algorithm required
only O(mn

p) space per processor but with an increased

time complexity ofO((m+n)


p). Aluru et al. presented an
alternative space-efficient parallel algorithm [] that is
more time efficient (O(mn

p)) but also consumes more

space (O(m + n
p) ,m ≤ n) than Huang’s approach. In

their approach, an O(mn) algorithm is first used to
partition the scoring matrix into p vertical slices, and
the last column of each slice as well as its intersection
with the optimal alignment is stored. Each processor
then takes a slice and uses a Hirschberg-based algo-
rithm to compute the optimal alignment within the
slice. In a subsequent study, Aluru et al. proposed an
improved parallel algorithm [] that requires O(mn

p)

time and O(m+np) space, when p = O(n
log n) proces-

sors are used. In other words, such a parallel algorithm
achieves “optimal” time and space complexities because
this algorithm delivers a linear speedup with respect to
the best known sequential algorithm.

The computational intensity of sequence-alignment
algorithms has motivated studies in parallelizing these
algorithms on accelerators. Various algorithms have
been accelerated using the SIMD instruction extensions
of commodity processors [, ], field-programmable
gate array (FPGA) [, ], Cell Broadband Engine
[, , ], and graphics processing units (GPUs)
[–, , , , ]. Developing and optimizing
applications on traditional accelerators is much more

http://dx.doi.org/10.1007/978-0-387-09766-4_110
http://dx.doi.org/10.1007/978-0-387-09766-4_402

Homology to Sequence Alignment, From H 

H

difficult than on CPUs, which may partially explain
why accelerator-based solutions have not been widely
adopted even if these solutions have demonstrated very
promising performance results. However, the contin-
uing improvement of software environments on com-
modity GPUs has made them increasingly popular for
accelerating sequent alignments. To copewith the astro-
nomical growth of sequence data, cloud-based solu-
tions [, ] have also been developed to enable users
to tackle large-scale problems with elastic compute
resources from public clouds such as Amazon EC.

Bibliography
. Aji AM, FengW, Blagojevic F, NikolopoulosDS () Cell-SWat:
modeling and scheduling wavefront computations on the cell
broadband engine. In: CF ’: Proceedings of the th conference
on computing frontiers. ACM, New York, pp –

. Altschul S, Gish W, Miller W, Myers E, Lipman D () Basic
local alignment search tool. J Mol Biol ():–

. Altschul S, Madden T, Schffer A, Zhang J, Zhang Z, Miller W,
Lipman D () Gapped BLAST and PSI-BLAST: a new gen-
eration of protein database search programs. Nucleic Acids Res
():–

. Aluru S, Futamura N, Mehrotra K () Parallel biological
sequence comparison using prefix computations. J Parallel Dis-
trib Comput :–

. Chaichoompu K, Kittitornkun S, Tongsima S () MT-
ClustalW: multithreading multiple sequence alignment. In: Inter-
national parallel and distributed processing symposium. Rhodes
Island, Greece, p 

. Darling A, Carey L, Feng W () The design, implementation,
and evaluation of mpiBLAST. In: Proceedings of the Cluster-
World conference and Expo, in conjunction with the th inter-
national conference on Linux clusters: The HPC revolution ,
San Jose

. Di Tommaso P, Orobitg M, Guirado F, Cores F, Espinosa T,
Notredame C () Cloud-Coffee: implementation of a parallel
consistency-based multiple alignment algorithm in the T-Coffee
package and its benchmarking on the Amazon Elastic-Cloud.
Bioinformatics ():–

. DoCB,MahabhashyamMS, BrudnoM, Batzoglou S () Prob-
Cons: probabilistic consistency-based multiple sequence align-
ment. Genome Res ():–

. Ebedes J, Datta A ()Multiple sequence alignment in parallel
on a workstation cluster. Bioinformatics ():–

. Edgar R ()MUSCLE: amultiple sequence alignment method
with reduced time and space complexity. BMC Bioinformatics
():

. Edmiston EE, Core NG, Saltz JH, Smith RM () Parallel
processing of biological sequence comparison algorithms. Int J
Parallel Program :–

. Feng DF, Doolittle RF () Progressive sequence alignment
as a prerequisite to correct phylogenetic trees. J Mol Evol
():–

. FitchW, Smith T () Optimal sequences alignments. Proc Natl
Acad Sci :–

. Hennessy JL, Patterson DA () Computer architecture: a
quantitative approach, th edn. Morgan Kaufmann Publishers,
San Francisco

. Hirschberg DS () A linear space algorithm for com-
puting maximal common subsequences. Commun ACM :
–

. Huang X () A space-efficient parallel sequence comparison
algorithm for a message-passing multiprocessor. Int J Parallel
Program :–

. Li K () W-MPI: ClustalW analysis using distributed and
parallel computing. Bioinformatics ():–

. Li I, Shum W, Truong K () -fold acceleration of the
Smith-Waterman algorithm using a field programmable gate
array (FPGA). BMC Bioinformatics ():

. Lin H,Ma X, Chandramohan P, Geist A, Samatova N () Effi-
cient data access for parallel BLAST. In: Proceedings of the th
IEEE international parallel and distributed processing sympo-
sium (IPDPS’). IEEE Computer Society, Los Alamitos

. Lin H,Ma X, FengW, Samatova NF () Coordinating compu-
tation and I/O in massively parallel sequence search. IEEE Trans
Parallel Distrib Syst :–

. Lipman D, PearsonW () Improved toolsW,HT for biological
sequence comparison. Proc Natl Acad Sci ():–

. Liu W, Schmidt B, Voss B, Müller-Wittig W () GPU-
ClustalW: using graphics hardware to accelerate multiple
sequence alignment, Chapter  In: Robert Y, Parashar M,
Badrinath R, Prasanna VK (eds) High performance computing –
HiPC . Lecture notes in computer science, vol . Springer,
Berlin/Heidelberg, pp –

. Liu Y, Maskell D, Schmidt B () CUDASW++: optimizing
Smith-Waterman sequence database searches for CUDA-enabled
graphics processing units. BMC Res Notes ():

. Liu Y, Schmidt B, Maskell DL () MSA-CUDA: multiple
sequence alignment on graphics processing units with CUDA. In:
ASAP ’: Proceedings of the  th IEEE international con-
ference on application-specific systems, architectures and proces-
sors, Washington, DC. IEEE Computer Society, Los Alamitos,
California, USA, pp –

. LuW, Jackson J, Barga R () AzureBlast: a case study of cloud
computing for science applications. In: st workshop on scien-
tific cloud computing, co-located with ACM HPDC  (High
performance distributed computing). Chicago, Illinois, USA

. Mahram A, Herbordt MC () Fast and accurate NCBI
BLASTP: acceleration with multiphase FPGA-based prefiltering.
In: Proceedings of the th ACM international conference on
supercomputing. Tsukuba, Ibaraki, Japan

. May J () Parallel I/O for high performance computing. Mor-
gan Kaufmann Publishers, San Francisco

. Message Passing Interface Forum () MPI: message-passing
interface standard

 H Horizon

. Message Passing Interface Forum () MPI- extensions to the
message-passing standard

. MikhailovD, CoferH,Gomperts R () Performance optimiza-
tion of Clustal W: parallel Clustal W, HT Clustal, and MULTI-
CLUSTAL. White Papers, Silicon Graphics, Mountain View

. Myers EW, Miller W () Optimal alignments in linear space.
Comput Appl Biosci (CABIOS) ():–

. Notredame C () T-coffee: a novel method for fast and accu-
rate multiple sequence alignment. J Mol Biol ():–

. Oehmen C, Nieplocha J () ScalaBLAST: a scalable imple-
mentation of BLAST for high-performance data-intensive bioin-
formatics analysis. IEEE Trans Parallel Distrib Syst ():–

. Orobitg M, Guirado F, Notredame C, Cores F () Exploiting
parallelism on progressive alignment methods. J Supercomput
–. doi: ./s---

. Pei J, Sadreyev R, Grishin NV () PCMA: fast and accu-
rate multiple sequence alignment based on profile consistency.
Bioinformatics ():–

. Polychronopoulos CD, Kuck DJ () Guided self-scheduling:
a practical scheduling scheme for parallel supercomputers. IEEE
Trans Comput :–

. Rajko S, Aluru S () Space and time optimal parallel sequence
alignments. IEEE Trans Parallel Distrib Syst :–

. RognesT, SeebergE () Six-fold speed-up of Smith-Waterman
sequence database searches using parallel processing on common
microprocessors. Bioinformatics ():–

. Sachdeva V, Kistler M, Speight E, Tzeng TK () Exploring the
viability of the cell broadband engine for bioinformatics applica-
tions. Parallel Comput ():–

. Saitou N, Nei M () The neighbor-joining method: a new
method for reconstructing phylogenetic trees. Mol Biol Evol
():–

. Sandes EFO, de Melo ACMA () CUDAlign: using GPU
to accelerate the comparison of megabase genomic sequences.
SIGPLAN Not ():–

. Sarje A, Aluru S () Parallel genomic alignments on the
cell broadband engine. IEEE Trans Parallel Distrib Syst ():
–

. Sneath PH, Sokal RR () Numerical taxonomy. Nature
:–

. Thakur R, Choudhary A () An extended two-phase method
for accessing sections of out-of-core arrays. Sci Program ():
–

. Thakur R, Gropp W, Lusk W () Data sieving and collec-
tive I/O in ROMIO. In: Symposium on the frontiers of massively
parallel processing. Annapolis, Maryland, USA, p 

. Thakur R, Gropp W, Lusk E () On implementing MPI-IO
portably and with high performance. In: Proceedings of the sixth
workshop on I/O in parallel and distributed systems. Atlanta,
Georgia, USA

. Thompson JD, Higgins DG, Gibson TJ () CLUSTAL W:
improving the sensitivity of progressive multiple sequence align-
ment through sequenceweighting, position-specific gap penalties
and weight matrix choice. Nucleic Acids Res ():–

. Vouzis PD, Sahinidis NV () GPU-BLAST: using graphics pro-
cessors to accelerate protein sequence alignment. Bioinformatics
():–

. Wallace IM, Orla O, Higgins DG () Evaluation of itera-
tive alignment algorithms for multiple alignment. Bioinformatics
():–

. Wozniak A () Using video-oriented instructions to speed up
sequence comparison. Comput Appl Biosci ():–

. Xiao S, Aji AM, Feng W () On the robust mapping
of dynamic programming onto a graphics processing unit.
In: ICPADS ’: proceedings of the  th international
conference on parallel and distributed systems, Washington,
DC. IEEE Computer Society, Los Alamitos, California, USA,
pp –

. Xiao S, Lin H, FengW () Characterizing and optimizing pro-
tein sequence search on the GPU. In: Proceedings of the th
IEEE international parallel and distributed processing sympo-
sium Anchorage, Alaska. IEEE Computer Society, Los Alamitos,
California, USA

. Zola J, Yang X, Rospondek A, Aluru S () Parallel-TCoffee: a
parallel multiple sequence aligner. In: ISCA international confer-
ence on parallel and distributed computing systems (ISCA PDCS
), pp –

Horizon

�Tera MTA

HPC Challenge Benchmark

Jack Dongarra, Piotr Luszczek
University of Tennessee, Knoxville, TN, USA

Definition
HPC Challenge (HPCC) is a benchmark that mea-
sures computer performance on various computational
kernels that span the memory access locality space.
HPCC includes tests that are able to take advantage of
nearly all available floating point performance: High
Performance LINPACK and matrix–matrix multiply
allow for data reuse that is only bound by the size of
large register file and fast cache. The twofold bene-
fit from these tests is the ability to answer the ques-
tion how well the hardware is able to work around the

http://dx.doi.org/10.1007/978-0-387-09766-4_221

HPC Challenge Benchmark H 

H

“memory wall” and how today’s machines compare to
the systems of the past as they are cataloged by the
LINPACK Benchmark Report [] and TOP. HPCC
also includes other tests, STREAM,PTRANS, FFT, Ran-
domAccess – when they are combined together they
span the memory access locality space. They are able
to reveal the growing inefficiencies of the memory sub-
system and how they are addressed in the new com-
puter infrastructures. HPCC also offers scientific rigor
to the benchmarking effort. The tests stress double pre-
cision floating point accuracy: the absolute prerequisite
in the scientific world. In addition, the tests include
careful verification of the outputs – undoubtedly an
important fault-detection feature at extreme computing
scales.

Discussion
The HPC Challenge benchmark suite was initially
developed for the DARPA HPCS program [] to pro-
vide a set of standardized hardware probes based
on commonly occurring computational software ker-
nels. The HPCS program involves a fundamental
reassessment of how to define and measure perfor-
mance, programmability, portability, robustness and,
ultimately, productivity across the entire high-end
domain. Consequently, the HPCC suite aimed both
to give conceptual expression to the underlying com-
putations used in this domain, and to be applica-
ble to a broad spectrum of computational science
fields. Clearly, a number of compromises needed to
be embodied in the current form of the suite, given
such a broad scope of design requirements. HPCC was
designed to provide approximate bounds on computa-
tions that can be characterized by either high or low
spatial and temporal locality (see Fig. , which gives
the conceptual design space for the HPCC compo-
nent tests). In addition, because the HPCC tests consist
of simple mathematical operations, HPCC provides a
unique opportunity to look at language and parallel
programming model issues. As such, the benchmark is
designed to serve both the system user and designer
communities.

Figure  shows a generic memory subsystem in the
leftmost column and how each level of the hierarchy
is tested by the HPCC software (the second column
from the left), along with the design goals for the future

FFTRandomAccess

Temporal locality

Radar cross-sectionCFD

TSP RSA DSP

Applications

HPL
DGEMM

PTRANS
STREAM

0

S
pa

tia
l l

oc
al

ity

HPC Challenge Benchmark. Fig.  The application areas

targeted by the HPCS Program are bound by the HPCC

tests in the memory access locality space

systems that originated in the HPCS program (the third
column from the right). In other words, these are the
projected target performance numbers that are to come
out of the wining HPCS vendor designs. The last col-
umn shows the relative improvement in performance
that needs to be achieved in order to meet the
goals.

The TOP Influence
Themost commonly known ranking of supercomputer
installations around the world is the TOP list [].
It uses the equally well-known LINPACK benchmark
[] as a single figure of merit to rank  of the world’s
most powerful supercomputers. The often-raised ques-
tion about the relation between the TOP list and
HPCC can be addressed by recognizing the positive
aspects of the former. In particular, the longevity of the
TOP list gives an unprecedented view of the high-
end arena across the turbulent era of Moore’s law []
rule and the emergence of today’s prevalent computing
paradigms. The predictive power of the TOP list is
likely to have a lasting influence in the future, as it has
had in the past. HPCC extends the TOP list’s con-
cept of exploiting a commonly used kernel and, in the
context of the HPCS goals, incorporates a larger, grow-
ing suite of computational kernels. HPCC has already

 H HPC Challenge Benchmark

Registers

HPCS Program:

Benchmarks Performance Target Required Improvement

HPL 2 Pflop/s 800%

STREAM 6 Pbyte/s 4000%

FFT
RandomAccess

b_eff

0.5 Pflop/s
64000 GUPS

20 000%
200 000%

Cache

Local Memory

Remote Memory

Disk

Pages

Messages

Operands

Lines

HPC Challenge Benchmark. Fig.  HPCS program benchmarks and performance targets

HPC Challenge Benchmark. Table  All of the top  entries of the th TOP list that have results in the HPCC database

Rank Name Rmax HPL PTRANS STREAM FFT RandomAccess Lat. B/w

 BG/L . . .  ,  . . .

 BG W . . .  ,  . . .

 ASC purple . . .   . . .

 Columbia . . .   . . .

 Red storm . . .  ,  . . .

begun to serve as a valuable tool for performance anal-
ysis. Table  shows an example of how the data from the
HPCC database can augment the TOP results (for
the current version of the table please visit the HPCC
website).

Short History of the Benchmark
The first reference implementation of the HPCC suite
of codes was released to the public in . The
first optimized submission came in April  from
Cray, using the then-recent X installation at Oak
Ridge National Lab. Ever since, Cray has champi-
oned the list of optimized HPCC submissions. By the
time of the first HPCC birds-of-a-feather session at
the Supercomputing conference in  in Pittsburgh,
the public database of results already featured major

supercomputer makers – a sign that vendors were par-
ticipating in the new benchmark initiative. At the same
time, behind the scenes, the code was also being tried
out by government and private institutions for pro-
curement and marketing purposes. A  milestone
was the announcement of the HPCC Awards con-
test. The two complementary categories of the com-
petition emphasized performance and productivity –
the same goals as the sponsoring HPCS program.
The performance-emphasizing Class  award drew the
attention of many of the biggest players in the super-
computing industry, which resulted in populating the
HPCC database with most of the top  entries of
the TOP list (some exceeding their performances
reported on the TOP – a tribute to HPCC’s continu-
ous results update policy). The contestants competed to
achieve the highest raw performance in one of the four

HPC Challenge Benchmark H 

H

Compute x from the system of linear equations
Ax = b.

A x =

Compute update to matrix C with a product of
matrices A and B.

Perform simple operations on vectors a, b, and c.

Compute update to matrix A with a sum of its
transpose and another matrix B.

Perform integer update of random vector T
locations using pseudo-random sequence.

Compute vector z to be the Fast Fourier
Transform (FFT) of vector x.

Perform ping-pong and various communication
ring exchanges.

DGEMM

HPL

STREAM

PTRANS

RandomAccess

FFT

X

b.eff

b

C A B C

ca

A

T T

x z

BAT

b

b

b

a

a

¬

¬

¬

®

®

®
¬

�¯ �¯
®
¬

®
¬

®
¬

+

+

+

...
...

HPC Challenge Benchmark. Fig.  Detail description of the HPCC component tests (A, B, C – matrices, a, b, c, x, z –

vectors, α, β – scalars, T – array of -bit integers)

tests: HPL, STREAM, RANDA, and FFT. At the SC
conference in Portland, Oregon, HPCC listed its first
Pflop/s machine – Cray XT  called Jaguar from Oak
Ridge National Laboratory. The Class  award, by solely
focusing on productivity, introduced a subjectivity
factor into the judging and also into the submission cri-
teria, regarding what was appropriate for the contest. As
a result, a wide range of solutions were submitted, span-
ning various programming languages (interpreted and
compiled) and paradigms (with explicit and implicit
parallelism). The Class  contest featured openly avail-
able as well as proprietary technologies, some of which
were arguably confined to nichemarkets and somewere

widely used.Thefinancial incentives for entering turned
out to be all but needless, as the HPCC seemed to
have gained enough recognition within the high-end
community to elicit entries even without the monetary
assistance. (HPCwire provided both press coverage and
cash rewards for the four winning contestants in Class
 and the single winner in Class .) At the HPCC’s
second birds-of-a-feather session during the SC con-
ference in Seattle, the former class was dominated by
IBM’s BlueGene/L at Lawrence LivermoreNational Lab,
while the latter class was split among MTA pragma-
decorated C and UPC codes from Cray and IBM,
respectively.

 H HPC Challenge Benchmark

The Benchmark Tests’Details
Extensive discussion and various implementations of
the HPCC tests are available elsewhere [, , ].
However, for the sake of completeness, this section pro-
vides the most important facts pertaining to the HPCC
tests’ definitions.

All calculations use double precision floating-point
numbers as described by the IEEE  standard [], and
no mixed precision calculations [] are allowed. All the
tests are designed so that they will run on an arbitrary
number of processors (usually denoted as p). Figure 
shows a more detailed definition of each of the seven
tests included in HPCC. In addition, it is possible to
run the tests in one of three testing scenarios to stress
various hardware components of the system. The sce-
narios are shown in Fig. . In the “Single” scenario,
only one process is chosen to run the test. Accordingly,
the remaining processes remain idle and so does the
interconnect (shown with strike-out font in the Figure).
In the “Embarrassingly Parallel” scenario, all process
run the tests simultaneously but they do not commu-
nicate with each other. And finally, in the “Global” sce-
nario, all components of the systemwork together on all
tests.

Global

.

Interconnect

PNP1 Pi

Embarrassingly Parallel

.

Interconnect

PNP1 Pi

Single

..

Interconnect

PNP1

Pi

HPC Challenge Benchmark. Fig.  Testing scenarios of

the HPCC components

Benchmark Submission Procedures
and Results
The reference implementation of the benchmark may
be obtained free of charge at the benchmark’s web site
(http://icl.cs.utk.edu/hpcc/). The reference implemen-
tation should be used for the base run: it is written in a
portable subset of ANSI C [] using a hybrid program-
ming model that mixes OpenMP [, ] threading with
MPI [–] messaging. The installation of the software
requires creating a script file for Unix’s make() utility.
Thedistribution archive comeswith script files formany
common computer architectures. Usually, a few changes
to any of these files will produce the script file for a given
platform. The HPCC rules allow only standard system
compilers and libraries to be used through their sup-
ported and documented interface, and the build pro-
cedure should be described at submission time. This
ensures repeatability of the results and serves as an edu-
cational tool for end users who wish to use a similar
build process for their applications.

After a successful compilation, the benchmark
is ready to run. However, it is recommended that
changes be made to the benchmark’s input file that
describes the sizes of data to use during the run.
The sizes should reflect the available memory on the
system and the number of processors available for
computations.

There must be one baseline run submitted for each
computer system entered in the archive. An optimized
run for each computer system may also be submitted.
The baseline run should use the reference implementa-
tion of HPCC, and in a sense it represents the scenario
when an application requires use of legacy code – a
code that cannot be changed. The optimized run allows
the submitter to performmore aggressive optimizations
and use system-specific programming techniques (lan-
guages, messaging libraries, etc.), but at the same time
still includes the verification process enjoyed by the
base run.

All of the submitted results are publicly available
after they have been confirmed by email. In addition to
the various displays of results and exportable raw data,
the HPCC website also offers a kiviat chart display to
visually compare systems using multiple performance
numbers at once. A sample chart that uses actual HPCC
results data is shown in Fig. .

http://icl.cs.utk.edu/hpcc/

HPC Challenge Benchmark H 

H

S-STREAM Triad

S-DGEMM

RandomRing
Bandwidth

RandomRing
Latency

1.0

0.8

0.6

0.4

0.2

64 processors: AMD Opteron 2.2 GHz

G-HPL

G-PTRANS

G-RandomAccess

G-FFT

Rapid Array

GigE

Quadrics

HPC Challenge Benchmark. Fig.  Sample kiviat diagram of results for three different interconnects that connect the

same processors

Related Entries
�Benchmarks
�LINPACK Benchmark
�Livermore Loops
�TOP

Bibliography
. ANSI/IEEE Standard – () Standard for binary float-
ing point arithmetic. Technical report, Institute of Electrical and
Electronics Engineers, 

. Chandra R, Dagum L, Kohr D,Maydan D,McDonald J, Menon R
() Parallel programming in OpenMP. Morgan Kaufmann
Publishers, San Francisco, 

. Dongarra JJ () Performance of various computers using stan-
dard linear equations software. Computer Science Department.
Technical Report, University of Tennessee, Knoxville, TN, April
. Up-to-date version available from http://www.netlib.org/
benchmark/

. Dongarra JJ, Luszczek P, Petitet A () The LINPACK bench-
mark: past, present, and future. In: Dou Y, Gruber R, Joller JM
() Concurrency and computation: practice and experience,
vol , pp –

. Dongarra J, Luszczek P () Introduction to the HPC challenge
benchmark suite. Technical Report UT-CS--, University of
Tennessee, Knoxville

. Kepner J () HPC productivity: an overarching view. Int J
High Perform Comput Appl ():–

. Kernighan BW, Ritchie DM () The C Programming Lan-
guage. Prentice-Hall, Upper Saddle River, New Jersey

. Luszczek P, Dongarra J () High performance development
for high end computing with Python Language Wrapper (PLW).
Int J High Perfoman Comput Appl. Accepted to Special Issue on
High Productivity Languages and Models

. Langou J, Langou J, Luszczek P, Kurzak J, Buttari A, Dongarra J
() Exploiting the performance of  bit floating point arith-
metic in obtaining  bit accuracy. In: Proceedings of SC,
Tampa, Florida, Nomveber – . See http://icl.cs.utk.edu/
iter-ref

. Moore GE () Cramming more components onto integrated
circuits. Electronics ():–

. Message Passing Interface Forum () MPI: AMessage-Passing
Interface Standard. The International Journal of Supercomputer
Applications and High Performance Computing (/):–

. Message Passing Interface Forum () MPI: AMessage-Passing
Interface Standard (version .), . Available at: http://www.
mpi-forum.org/

http://dx.doi.org/10.1007/978-0-387-09766-4_154
http://dx.doi.org/10.1007/978-0-387-09766-4_155
http://dx.doi.org/10.1007/978-0-387-09766-4_161
http://dx.doi.org/10.1007/978-0-387-09766-4_157
http://www.netlib.org/benchmark/
http://www.netlib.org/benchmark/
http://icl.cs.utk.edu/iter-ref
http://icl.cs.utk.edu/iter-ref
http://www.mpi-forum.org/
http://www.mpi-forum.org/

 H HPF (High Performance Fortran)

. Message Passing Interface Forum () MPI-: Extensions to the
Message-Passing Interface,  July . Available at http://www.
mpi-forum.org/docs/mpi-.ps

. Meuer HW, Strohmaier E, Dongarra JJ, Simon HD ()
TOP Supercomputer Sites, th edn. November .
(The report can be downloaded from http://www.netlib.org/
benchmark/top.html)

. Nadya Travinin and Jeremy Kepner () pMatlab parallel Mat-
lab library. International Journal of High Perfomance Computing
Applications ():–

. OpenMP: Simple, portable, scalable SMP programming. http://
www.openmp.org/

HPF (High Performance Fortran)

High Performance Fortran (HPF) is an extension of
Fortran  for parallel programming. In HPF pro-
grams, parallelism is represented as data parallel oper-
ations in a single thread of execution. HPF extensions
included statements to specify data distribution, data
alignment, and processor topology, which were used for
the translation of HPF codes onto an SPMD message-
passing form.

Bibliography
. Kennedy K, Koelbel C, Zima H () The rise and fall of
high performance Fortran: an historical object lesson. In: Pro-
ceedings of the third ACM SIGPLAN conference on History
of programming languages (HOPL III), ACM, New York, pp.
-–-, doi:./., http://doi.acm.org/./
.

. High Performance Fortran ForumWebsite. http://hpff.rice.edu

HPSMicroarchitecture

Yale N. Patt
The University of Texas at Austin, Austin, TX, USA

Synonyms
The high performance substrate

Definition
The microarchitecture specified by Yale Patt, Wen-mei
Hwu, Stephen Melvin, and Michael Shebanow in 
for implementing high-performance microprocessors.

It achieves high performance via aggressive branch
prediction, speculative execution, wide issue, and out-
of-order execution, while retaining the ability to handle
precise exceptions via in-order retirement.

Discussion
The High Performance Substrate (HPS) was the name
given to the microarchitecture conceived by Professor
Yale Patt and his three PhD students, Wen-mei Hwu,
Michael Shebanow, and Stephen Melvin, at the Univer-
sity of California, Berkeley in  and first published
in Micro  in October,  [, ]. Its goal was high-
performance processing of single-instruction streams
by combining aggressive branch prediction, specula-
tive execution, wide issue, dynamic scheduling (out-
of-order execution), and retirement of instructions in
program order (i.e., in-order).

Out-of-order execution had appeared in previous
machines from Control Data [] and IBM [], but
had pretty much been dismissed as a nonviable mech-
anism due to its lack of in-order retirement, which
prevented the processor from implementing precise
exceptions. The checkpoint retirement mechanisms of
HPS removed that problem [, ]. It should also be
noted that solutions to the precise exception problem
were also being developed simultaneously and indepen-
dently by James Smith and Andrew Plezskun [].

HPS was first targeted for the VAX instruction set
architecture and demonstrated that an HPS implemen-
tation of the VAX could process instruction streams at a
rate of three cycles per instruction (CPI), as compared
to the VAX-/, which processed at the rate of .
CPI [].

Instructions are processed as follows: Using an
aggressive branch predictor and wide-issue fetch/de-
code mechanism, multiple instructions are fetched
each cycle, decoded into data flow graphs (one per
instruction), and merged into a global data flow graph
containing all instructions in process. Instructions are
scheduled for execution when their flow dependen-
cies (RAW hazards) have been satisfied and executed
speculatively and out-of-order with respect to the pro-
gram order of the program. Results produced by these

http://www.mpi-forum.org/docs/mpi-20.ps
http://www.mpi-forum.org/docs/mpi-20.ps
http://www.netlib.org/benchmark/top500.html
http://www.netlib.org/benchmark/top500.html
http://www.openmp.org/
http://www.openmp.org/
http://doi.acm.org/10.1145/1238844.1238851
http://doi.acm.org/10.1145/1238844.1238851
http://hpff.rice.edu
http://dx.doi.org/10.1007/978-0-387-09766-4_2277

Hybrid Programming With SIMPLE H 

H

instructions are stored temporarily in a results buffer
(aka re-order buffer) until they can be retired in-order.
The essence of the paradigm is that the global data graph
consists of nodes corresponding to micro-operations
and edges corresponding to linkages between micro-
ops that produce operands and micro-ops that source
them. The edges of the data flow graph produced as a
result of decode correspond to internal linkages within
an instruction. Edges created as a result of merging an
individual instruction’s data flow graph into the global
data flow graph correspond to linkages between live-
outs of one instruction and live-ins of a subsequent
instruction. A Register Alias Table was conceived to
maintain correct linkages between live-outs and live-
ins. A node, corresponding to a micro-op, is avail-
able for execution when all its flow dependencies are
resolved.

The HPS research group refers to the paradigm as
Restricted Data Flow (RDF) since at no time does the
data flow graph for the entire program exist. Rather,
the size of the global data flow graph is increased every
cycle as a result of new instructions being decoded and
merged, and decreased every cycle as a result of old
instructions retiring. At every point in time, only those
instructions in the active window – the set of instruc-
tions that have been fetched but not yet retired – are
present in the data flow graph. The set of instructions
in the active window are often referred to as “in-flight”
instructions. The number of in-flight instructions is
orders of magnitude smaller than the size of a data
flow graph for the entire program. The result is data
flow processing of a program without incurring any of
the problems of classical data flow.

Since , the HPSmicroarchitecture has seen con-
tinual development and improvement bymany research
groups at many universities and industrial labs. The
basic paradigm has been adopted for most cutting-edge
high-performance microprocessors, starting with Intel
on its Pentium Pro microprocessor in the late s [].

Bibliography
. Patt YN, Hwu W, Shebanow M () HPS, a new microarchi-
tecture: rationale and introduction. In: Proceedings of the th
microprogramming workshop, Asilomar, CA

. Patt YN, Melvin S, Hwu W, Shebanow M () Critical issues
regarding HPS, a high performance microarchitecture. In: Pro-
ceedings of the th microprogramming workshop, Asilomar, CA

. Thornton JE () Design of a computer – the Control Data .
Scott, Foresman and Co. Glenview, IL

. Anderson DW, Sparacio FJ, Tomasulo RM () The IBM sys-
tem/ model : machine philosophy and instruction-handling.
IBM J Res Development ():–

. Hwu W, Patt Y () HPSm, a high performance restricted
data flow architecuture having minimal functionality. In: Proceed-
ings, th annual international symposium on computer architec-
ture, Tokyo

. Hwu W, Patt Y () Checkpoint repair for high perfor-
mance out-of-order execution machines. IEEE Trans Computers
():–

. Smith JE, Pleszkun A () Implementing precise interrupts. In:
Proceedings, th annual international symposium on computer
architecture, Boston, MA

. Hwu W, Melvin S, Shebanow M, Chen C, Wei J, Patt Y ()
An HPS implementation of VAX; initial design and analysis. In:
Proceedings of the Hawaii international conference on systems
sciences, Honolulu, HI

. Colwell R () The pentium chronicles: the people, passion,
and politics behind intel’s landmark chips. Wiley-IEEE Computer
Society Press, NJ, ISBN: ----

HT

�HyperTransport

HT.

�HyperTransport

Hybrid ProgrammingWith
SIMPLE

Guojing Cong, David A. Bader
IBM, Yorktown Heights, NY, USA
Georgia Institute of Technology, Atlanta, GA, USA

Definition
Most high performance computing systems are clus-
ters of shared-memory nodes. Hybrid parallel program-
ing handles distributed-memory parallelization across
the nodes and shared-memory parallelization within a
node.

 H Hybrid Programming With SIMPLE

SIMPLE refers to the joining of the SMP and
MPI-like message passing paradigms [] and the sim-
ple programming approach. It provides a methodology
of programming cluster of SMP nodes. It advocates
a hybrid methodology which maps directly to under-
lying architectural aspects. SIMPLE combines shared
memory programming on shared memory nodes with
message passing communication between these nodes.
SIMPLE provides () a complexity model and set of
efficient communication primitives for SMP nodes and
clusters; () a programming methodology for clus-
ters of SMPs which is both efficient and portable; and
() high performance algorithms for sorting integers,
constraint-satisfied searching, and computing the two-
dimensional FFT.

The SIMPLE Computational Model
Asimple paradigm is used in SIMPLE for designing effi-
cient and portable parallel algorithms. The architecture
consists of a collection of SMP nodes interconnected by
a communication network (as shown in Fig. ) that can
be modeled as a complete graph on which communica-
tion is subject to the restrictions imposed by the latency
and the bandwidth properties of the network. Each SMP
node contains several identical processors, each typi-
cally with its own on-chip cache and a larger off-chip
cache, which have uniform access to a shared memory
and other resources such as the network interface.

Parameter r is used to represent the number sym-
metric processors per node (see Fig.  for a diagram
of a typical node). Notice that each CPU typically has
its own on-chip cache (L) and a larger off-chip level

two cache (L), which can be tightly integrated into the
memory system to provide fast memory accesses and
cache coherence. The shared memory programming
of each SMP node is based on threads which com-
municate via coordinated accesses to shared memory.
SIMPLE provides several primitives that synchronize
the threads at a barrier, enable one thread to broad-
cast data to the other threads, or calculate reductions
across the threads. In SIMPLE, only the CPUs from a
certain node have access to that node’s configuration.
In this manner, there is no restriction that all nodes
must be identical, and certainly configuration can be
constructed from SMP nodes of different sizes. Thus,
the number of threads on a specific remote node is
not globally available. Because of this, SIMPLE sup-
ports only node-oriented communication, meaning
that communication is restricted such that, given any
source node s and destination node d, with s ≠ d,
only one thread on node s can send (receive) a message
to (from) node d at any given time.

Complexity Model
In the SIMPLE complexity model, each SMP is viewed
as a two-level hierarchy for which good performance
requires both good load distribution and the mini-
mization of secondary memory access. The cluster is
viewed as a collection of powerful processors con-
nected by a communication network. Maximizing per-
formance on the cluster requires both efficient load bal-
ancing and regular, balanced communication. Hence,
our performance model combines two separate but
complimentary models.

P7P6P5P4P3P2P1P0 Pp-2Pp-3Pp-4 Pp-1

Interconnection Network

Hybrid ProgrammingWith SIMPLE. Fig.  Cluster of processing elements

Hybrid Programming With SIMPLE H 

H

L1L1

L1

L2 L2

L1 L1

L2

L1

L2L2 L2

Shared Memory

Bus or Switching Network

Network
Interface

CPU 0 CPU 2 CPU r-2

CPU r-1CPU 3CPU 1

Hybrid ProgrammingWith SIMPLE. Fig.  A typical symmetric multiprocessing (SMP) node used in a cluster. L is

on-chip level-one cache, and L is off-chip level-two cache

The SIMPLE model recognizes that efficient algo-
rithm design requires the efficient decomposition of the
problem among the available processors, and so, unlike
some other models for hierarchical memory, the cost
of computation is included in the complexity. The cost
model also encourages the exploitations of temporal
and spatial locality. Specifically, memory at each SMP is
seen as consisting of two levels: cache and main mem-
ory. A block ofm contiguous words can be read from or
written tomainmemory in (є + mr

α) time, where є is the
latency of the bus, r is the number of processors com-
peting for access to the bus, and α is the bandwidth. By
contrast, the transfer ofm noncontiguous words would
require m(є + r

α) time.
A parallel algorithm is viewed as a sequence of

local SMP computations interleaved with communi-
cation steps, where computation and communication
is allowed to overlap. Assuming no congestion, the
transfer of a block consisting of m words between two
nodes takes (τ + m

β) time, where τ is the latency of
the network, and β is the bandwidth per node. SIM-
PLE assumes that the bisection bandwidth is sufficiently
high to support block permutation routings among the
p nodes at the rate of 

β . In particular, for any subset

of q nodes, a block permutation among the q nodes
takes (τ + m

β) time, where m is the size of the largest
block. Using this cost model, the communication time
Tcomm(n,p) of an algorithm can be viewed as a func-
tion of the input size n, the number of nodes p, and the
parameters τ and β.The overall complexity of algorithm
for the cluster T(n,p) is given by the sum of Tsmp and
Tcomm(n,p).

Communication Primitives
The communication primitives are grouped into three
modules: Internode Communication Library (ICL),
SMP Node, and SIMPLE. ICL communication prim-
itives handle internode communication, SMP Node
primitives aid shared-memory node algorithms, and
SIMPLE primitives combine SMP Node with ICL on
SMP clusters.

The ICL communication library services
internode communication and can use any of the
vendor-supplied or freely available thread-safe imple-
mentation of MPI. The ICL libraries are based upon a
reliable, application-layer send and receive prim-
itive, as well as a send-and-receive primitive
which handles the exchanging of messages between

 H Hybrid Programming With SIMPLE

sets of nodes where each participating node is the
source and destination of one message. The library
also provides a barrier operation based upon the
send and receive which halts the execution at each
node until all nodes check into the barrier, at which
time, the nodes may continue execution. In addition,
ICL includes collective communication primitives, for
example,scan,reduce,broadcast,allreduce,
alltoall, alltoallv, gather, and scatter.
See [].

SMP Node
The SMP Node Library contains important prim-
itives for an SMP node: barrier, replicate,
broadcast, scan, reduce, and allreduce,
whereby on a single node, barrier synchronizes
the threads, broadcast ensures that each thread
has the most recent copy of a shared memory loca-
tion, scan (reduce) performs a prefix (reduction)
operation with a binary associative operator (e.g.,
addition,multiplication,maximum,minimum, bitwise-
AND, and bitwise-OR) with one datum per thread, and
allreduce replicates the result from reduce.

Each of these collective SMP primitives can be
implemented using a fan-out or fan-in tree constructed
as follows. A logical k-ary balanced tree is built for an
SMPnode with r processors, which serves as both a fan-
out and fan-in communication pattern. In a k-ary tree,
level  has one processor, level  has k processors, level 
has k processors, and so forth, with level j containing
kj processors, for  ≤ j ≤ L − ), where there are L lev-
els in the tree. If logk r is not an integer, then the last
level (L − ) will hold less than kL− processors. Thus,
the number of processors r is bounded by

L−

∑

j=
kj < r ≤

L−

∑

j=
kj. ()

Solving for the number of levels L, it is easy to see that

L = ⌈logk(r(k − ) + )⌉ ()

where the ceiling function ⌈x⌉ returns the smallest inte-
ger greater than or equal to x.

An efficient algorithm for replicating a data
buffer B such that each processor i, ( ≤ i ≤ r − ),
receives a unique copy Bi of B makes use of the fan-
out tree, with the source processor situated as the root
node of the k-ary tree. During step j of the algorithm,

for ( ≤ j ≤ L− ), each of kj processors writes k unique
copies of the data for its k children. The time com-
plexity of this SMP replication algorithm given an
m-word buffer is

Tsmp =

L−

∑

j=
k(є +

kjm
α
)

= k(L − )є +
m
α
(r − )

≤ k(logk(r(k − ) + ) − ) є +
m
α
(r − )

≤ k(logk(r + /k)) є +
m
α
(r − )

= O((log r)є + mr
α). ()

The best choice of k, ( ≤ k ≤ r − ), depends on
SMP size r and machine parameters є and α, but can be
chosen to minimize Eq. .

An algorithm which barrier synchronizes r SMP
processors can use a fan-in tree followed by a fan-
out tree, with a unit message size m, taking twice the
replication time, namely, O((log r)є + r/α).

For certain SMP algorithms, it may not be necessary
to replicate data, but to share a read-only buffer for a
given step. Abroadcast SMP primitive supplies each
processor with the address of the shared buffer by repli-
cating the memory address in Tsmp = O((log r)є + r/α).

A reduce primitive, which performs a reduc-
tion with a given binary associate operator, uses a
fan-in tree, combining partial sums during each step.
For initial data arrays of sizem per processor, this takes
O((log r)є +mr/α). The allreduce primitive per-
forms a reduction followed by replicate so that
each processor receives a copy of the result with a cost
of O((log r)є + mr

α).
Scans (also called prefix-sums) are defined as

follows. Each processor i, ( ≤ i ≤ r − ), initially holds
an element ai, and at the conclusion of this primitive,
holds the prefix-sum bi = a ∗ a ∗ . . . ∗ ai, where ∗ is
any binary associative operator. An SMP algorithm sim-
ilar to the PRAMalgorithm (e.g., []) is employedwhich
uses a binary tree for finding the prefix-sums. Given an
array of elements A of size r = d where d is a nonnega-
tive integer, the output is array C such that C(, i) is the
ith prefix-sum, for ( ≤ i ≤ r − ).

In fact, arrays A, B, and C in the SMP prefix-sum
algorithm (Alg. ) can be the same array. The analysis
is as follows. The first for loop takes ∑log r

h= (є +
r
h

m
α) ,

Hybrid Programming With SIMPLE H 

H

and the second for loop takes ∑log r
h= (

+
) (є +

r
h

m
α)

for a total complexity of Tsmp ≤ є log r + mr
α =

O((log r)є + mr
α).

Simple
Finally, the SIMPLE communication library, built on
top of ICL and SMP Node, includes the prim-
itives for the SIMPLE model: barrier, scan,
reduce, broadcast, allreduce, alltoall,
alltoallv, gather, and scatter. These hierar-
chical layers of our communication libraries are pic-
tured in Fig. .

The SMP Node, ICL, and SIMPLE libraries are
implemented at a high level, completely in user space

Algorithm SMPscan algorithm for processor i,
( ≤ i ≤ r − ) and binary associative operator ∗

set B(, i) = A(i).

for h =  to log r do
if  ≤ i ≤ r/h then
set B(h, i) = B(h − , i − ) ∗ B(h − , i).

for h = log r downto  do
if  ≤ i ≤ r/h then
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

If i even, Set C(h, i)=C(h + , i/);

If i = , Set C(h, )=B(h, );

If i odd, Set C(h, i)=C(h + , (i − )/) ∗ B(h, i).

Recv SendRecv

Barrier

Send

SMP Node LibraryInternode Communication Library

SIMPLE Communication Library

Scan, Reduce, Broadcast, Allreduce,
Alltoall, Alltoallv, Gather, Scatter

Barrier, Scan, Reduce, Broadcast, Allreduce,
Alltoall, Alltoallv, Gather, Scatter

Broadcast

Scan

Reduce

Barrier

Replicate

Hybrid ProgrammingWith SIMPLE. Fig.  Hierarchy of

SMP, message passing, and SIMPLE communication

libraries

(see Fig. ). Because no kernel modification is required,
these libraries easily port to new platforms.

Asmentioned previously, the number of threads per
node can vary, along with machine size. Thus, each
thread has a small set of context information which
holds such parameters as the number of threads on
the given node, the number of nodes in the machine,
the rank of that node in themachine, and the rank of the
thread both () on the node and () across the machine.
Table  describes these parameters in detail.

Because the design of the communication libraries
is modular, it is easy to experiment with different
implementations. For example, the ICL module can
make use of any of the freely available or vendor-
supplied thread-safe implementations of MPI, or a
small communication kernel which provides the nec-
essary message passing primitives. Similarly, the SMP
Node primitives can be replaced by vendor-supplied
SMP implementations.

The Alltoall Primitive
One of the most important collective communication
events is the alltoall (or transpose) primitive
which transmits regular sized blocks of data between
each pair of nodes. More formally, given a collection of
p nodes each with an m element sending buffer, where
p divides m, the alltoall operation consists of each
node i sending its jth block of m

p data elements to node j,
where node j stores the data from i in the ith block of its
receiving buffer, for all ( ≤ i, j ≤ p − ). An efficient
message passing implementation of alltoall would
be as follows.Thenotation “vari” refers tomemory loca-
tion “var + (mp ∗ i),” and src and dst point to the source
and destination arrays, respectively.

To implement this algorithm (Alg. ), multiple
threads (r ≤ p) per node are used. The local mem-
ory copy trivially can be performed concurrently by
one thread while the remaining threads handle the
internode communication as follows. The p −  itera-
tions of the loop are partitioned in a straightforward
manner to the remaining threads. Each thread has the
information necessary to calculate its subset of loop
indices, and thus, this loop partitioning step requires
no synchronization overheads. The complexity of this
primitive is twice (є + m

r
r
α) for the local memory read

 H Hybrid Programming With SIMPLE

Message Passing
ICL (e.g. MPI)

SMP Node Library

Kernel

User Libraries

Kernel Space

User Space

POSIX threads

SIMPLE

User Program

Hybrid ProgrammingWith SIMPLE. Fig.  User code can access SIMPLE, SMP, message passing, and standard user

libraries. Note that SIMPLE operates completely in user space

Hybrid ProgrammingWith SIMPLE. Table  The local

context parameters available to each SIMPLE thread

Parameter Description

NODES = p Total number of nodes in the cluster

MYNODE My node rank, from  toNODES − 

THREADS = r Total number of threads on my node

MYTHREAD The rank of my thread on this node, from 
to THREADS − 

TID Total number of threads in the cluster

ID My thread rank, with respect to the cluster,
from  to TID − 

Algorithm  SIMPLE Alltoall primitive
copy the appropriate m

p elements from srcMYNODE to
dstMYNODE.

for i =  to NODES −  do
set k =MYNODE⊕ i;
send m

p elements from srck to node k, and
receive m

p elements from node k to dstk .

and writes, and (τ + m
β) for internode communication,

for a total cost of O(τ + m
β + є +

m
α).

Computation Primitives
SIMPLE computation primitives do not communicate
data but affect a thread’s execution through () loop
parallelization, () restriction, or () shared memory
management. Basic support for data parallelism, that
is, “parallel do” concurrent execution of loops across
processors on one or more nodes, is provided.

Data Parallel
The SIMPLE methodology contains several basic
“pardo” directives for executing loops concurrently
on one or more SMP nodes, provided that no depen-
dencies exist in the loop. Typically, this is useful when
an independent operation is to be applied to every
location in an array, for example, in the element-wise
addition of two arrays. Pardo implicitly partitions the
loop to the threads without the need for coordinating
overheads such as synchronization or communication
between processors. By default, pardo uses block par-
titioning of the loop assignment values to the threads,
which typically results in better cache utilization due to
the array locations on left-hand side of the assignment
being owned by local caches more often than not. How-
ever, SIMPLE explicitly provides both block and cyclic
partitioning interfaces for the pardo directive.

Similar mechanisms exist for parallelizing loops
across nodes. The all_pardo_cyclic (i, a, b)
directive will cyclically assign each iteration of the loop

Hybrid Programming With SIMPLE H 

H

across the entire collection of processors. For example,
i = a will be executed on the first processor of the first
node, i = a+  on the second processor of the first node,
and so on, with i = a + r −  on the last processor of
the first node. The iteration with i = a + r is exe-
cuted by the first processor on the second node. After
r ⋅ p iterations are assigned, the next index will again
be assigned to the first processor on the first node.
A similar directive called all_pardo_block, which
accepts the same arguments, assigns the iterations in a
block fashion to the processors; thus, the first b−a

rp iter-
ations are assigned to the first processor, the next block
of iterations are assigned to the second processor, and
so forth. With either of these SIMPLE directives, each
processor will execute at most ⌈ n

rp ⌉ iterations for a loop
of size n.

Control
The second category of SIMPLE computation primi-
tives control which threads can participate in the con-
text by using restrictions.

Table  defines each control primitive and gives the
largest number of threads able to execute the portion of
the algorithm restricted by this statement. For example,
if only one thread per node needs to execute a com-
mand, it can be preceded with the on_one_thread
directive. Suppose data has been gathered to a single
node. Work on this data can be accomplished on that
node by preceding the statement with on_one_node.
The combination of these two primitives restricts exe-
cution to exactly one thread, and can be shortcut with
the on_one directive.

MemoryManagement
Finally, shared memory allocations are the third cat-
egory of SIMPLE computation primitives. Two direc-
tives are used:

. node_malloc for dynamically allocating a shared
structure

. node_free for releasing this memory back to the
heap

The node_malloc primitive is called by all threads
on a given node, and takes as a parameter the num-
ber of bytes to be allocated dynamically from the heap.
The primitive returns to each thread a valid pointer to
the shared memory location. In addition, a thread may
allowothers to access local data by broadcasting the cor-
responding memory address. When this shared mem-
ory is no longer required, the node_free primitive
releases it back to the heap.

SIMPLE Algorithmic Design

Programming Model
Theuser writes an algorithm for an arbitrary cluster size
p and SMP size r (where each node can assign possibly
different values to r at runtime), using the parameters
from Table . SIMPLE expects a standard main func-
tion (called SIMPLE_main()) that, to the user’s view, is
immediately up and running on each thread. Thus, the
user does not need to make any special calls to initial-
ize the libraries or communication channels. SIMPLE
makes available the rank of each thread on its node or
across the cluster, and algorithms can use these ranks
in a straightforward fashion to break symmetries and

Hybrid ProgrammingWith SIMPLE. Table  Subset of SIMPLE control primitives

Control Primitives

Max number of
participating MYNODE MYTHREAD

Primitive Definition threads restriction restriction

on_one_thread only one thread per node p 

on_one_node all threads on a single
node

r 

on_one only one thread on a
single node

  

on_thread(i) one thread (i) per node p i

on_node(j) all threads on node j r j

 H Hybrid Programming With SIMPLE

partition work. The only argument of SIMPLE_main()
is “THREADED,” a macro pointing to a private data
structure which holds local thread information. If the
user’s main function needs to call subroutines which
make use of the SIMPLE library, this information is eas-
ily passed via another macro “TH” in the calling argu-
ments. After all threads exit from themain function, the
SIMPLE code performs a shut down process.

Runtime Support
When a SIMPLE algorithm first begins its execution,
the SIMPLE runtime support has already initialized
parallel mechanisms such as barriers and established
the network-based internode communication chan-
nels which remain open for the life of the program.
The various libraries described in Sect.“The SIMPLE

Computational Model” have runtime initializations
which take place as follows.

The runtime start-up routines for a SIMPLE algo-
rithm are performed in two steps. First, the ICL ini-
tialization expands computation across the nodes in
a cluster by launching a master thread on each of
the p nodes and establishing communication chan-
nels between each pair of nodes. Second, each mas-
ter thread launches r user threads, where each node
is at least an r-way SMP. (A rule of thumb in prac-
tice is to use r threads on an r + -way SMP node,
which allows operating system tasks to fully utilize at
least one CPU.) It is assumed that the r CPUs con-
currently execute the r threads. The thread flow of
an example SIMPLE algorithm is shown in Fig. .
As mentioned previously, our methodology supports

M
as

te
r T

hr
ea

d
1

M
as

te
r T

hr
ea

d
p-

1

M
as

te
r T

hr
ea

d
0

T
hr

ea
d

(0
, 0

)

T
hr

ea
d

(0
, 1

)

T
hr

ea
d

(0
, r

-1
)

T
hr

ea
d

(1
, 0

)

T
hr

ea
d

(1
, 1

)

T
hr

ea
d

(1
, r

-1
)

T
hr

ea
d

(p
-1

, 0
)

T
hr

ea
d

(p
-1

, 1
)

T
hr

ea
d

(p
-1

, r
-1

)

Node p-1Node 1Node 0

Communication Phase
(Collective)

Node Barrier T
im

e

Irregular Communication
using sends and receives

Hybrid ProgrammingWith SIMPLE. Fig.  Example of a SIMPLE algorithm flow of master and compute-based user

threads. Note that the only responsibility of each master thread is only to launch and later join user threads, but never to

participate in computation or communication

Hybrid Programming With SIMPLE H 

H

only node-oriented communication, that is, given any
source node s and destination node d, with s ≠ d, only
one thread on node s can send (receive) a message to
(from) node d during a communication step. Also note
that the master thread does not participate in any com-
putation, but sits idle until the completion of the user
code, at which time it coordinates the joining of threads
and exiting of processes.

The programming model is simply implemented
using a portable thread package called POSIX threads
(pthreads).

A Possible Approach
The latency for message passing is an order of mag-
nitude higher than accessing local memory. Thus, the
most costly operation in a SIMPLE algorithm is intern-
ode communication, and algorithmic design must
attempt to minimize the communication costs between
the nodes.

Given an efficient message passing algorithm, an
incremental process can be used to design an efficient
SIMPLE algorithm. The computational work assigned
to each node is mapped into an efficient SMP algo-
rithm. For example, independent operations such as
those arising in functional parallelism (e.g., indepen-
dent I/O and computational tasks, or the local memory
copy in the SIMPLE alltoall primitive presented in
the previous section) or loop parallelism typically can
be threaded. For functional parallelism, this means that
each thread acts as a functional process for that task, and
for loop parallelism, each thread computes its portion
of the computation concurrently. Loop transformations
may be applied to reduce data dependencies between
the threads. Thread synchronization is a costly opera-
tion when implemented in software and, when possible,
should be avoided.

Example: Radix Sort
Consider the problem of sorting n integers spread
evenly across a cluster of p shared-memory r-way SMP
nodes, where n ≥ p. Fast integer sorting is crucial
for solving problems in many domains, and as such, is
used as a kernel in several parallel benchmarks such as
NAS (Note that the NAS IS benchmark requires that the
integers be ranked and not necessarily placed in sorted
order.) [] and SPLASH [].

Consider the problem of sorting n integer keys in
the range [,M − ] that are distributed equally in the

shared memories of a p-node cluster of r-way SMPs.
Radix Sort decomposes each key into groups of ρ-bit
digits, for a suitably chosen ρ, and sorts the keys by
applying a counting sort routine on each of the ρ-bit
digits beginning with the digit containing the least sig-
nificant bit positions []. Let R = ρ ≥ p. Assume
(w.l.o.g.) that the number of nodes is a power of two,
say p = k , and hence R

p is an integer = 
ρ−k
≥ .

SIMPLE Counting Sort Algorithm
Counting Sort algorithm sorts n integers in the range
[,R− ] by using R counters to accumulate the number
of keys equal to the value i in bucket Bi , for  ≤ i ≤ R− ,
followed by determining the rank of each key. Once the
rank of each key is known, each key can be moved into
its correct position using a permutation (np -relation)
routing [, ], whereby no node is the source or des-
tination of more than n

p keys. Counting Sort is a stable
sorting routine, that is, if two keys are identical, their
relative order in the final sort remains the same as their
initial order.

Algorithm  SIMPLE Counting Sort Algorithm
Step (): For each node i, ( ≤ i ≤ p − ), count the
frequency of its n

p keys; that is, compute Hi[k], the
number of keys equal to k, for ( ≤ k ≤ R − ).

Step (): Apply the alltoall primitive to the H
arrays using the block size R

p . Hence, at the end of this
step, each node will hold R

p consecutive rows ofH.

Step (): Each node locally computes the prefix-sums
of its rows of the array H.

Step (): Apply the (inverse) alltoall prim-
itive to the R corresponding prefix-sums augmented
by the total count for each bin. The block size of the
alltoall primitive is  R

p .

Step (): On each node, compute the ranks of the n
p

local elements using the arrays generated in Steps ()
and ().

Step (): Perform a personalized communication of
keys to rank location using an n

p -relation algorithm.

 H Hypercube

The pseudocode for our Counting Sort algorithm
(Alg. ) uses six major steps and can be described as
follows.

In Step (), the computation can be divided evenly
among the threads. Thus, on each node, each of r
threads (A) histograms 

r of the input concurrently, and
(B) merges these r histograms into a single array for
node i. For the prefix-sum calculations on each node
in Step (), since the rows are independent, each of
r threads can compute the prefix-sum calculations for
R
rp rows concurrently. Also, the computation of ranks
on each node in Step () can be handled by r threads,
where each thread calculates n

rp ranks of the node’s
local elements. Communication can also be improved
by replacing the message passing alltoall primitive
used in Steps () and () with the appropriate SIMPLE
primitive.

Theh-relation used in the final step of Counting Sort
is a permutation routing since h = n

p , and was given in
the previous section.

Histogramming in Step (A) costs O(є + n
p

α) to

read the input and O(є + R r
α) for each processor

to write its histogram into main memory. Merg-
ing in Step (B) uses an SMP reduce with cost
O((log r)є + R r

α). SIMPLE alltoall in Step ()
and the inverse alltoall in Step () take
O(τ + R

β + є +
R
α) time. Computing local prefix-sums in

Step () costs O(є + R
pr p

r
α). Ranking each element in

Step () takes O(є + n
p

α) time. Finally, the SIMPLE

permutation with h = n
p costs O(τ + n

p (

β +


α +

є
r)),

for n
p ≥ r ⋅ max(p, log r). Thus, the total com-

plexity for Counting Sort, assuming that n ≥ p ⋅
max(R, r ⋅max(p, log r)) is

O(τ + n
p (


β +

r
α +

є
r)). ()

SIMPLE Radix Sort Algorithm
The message passing Radix Sort algorithm makes
several passes of the previous message passing Count-
ing Sort in order to completely sort integer keys.
Counting Sort can be used as the intermediate sort-
ing routine because it provides a stable sort. Let the n
integer keys fall in the range [,M − ], and M = b.
Then b

ρ passes of Counting Sort is needed; each pass

works on ρ-bit digits of the input keys, starting from
the least significant digit of ρ bits to the most signifi-
cant digit. Radix Sort easily can be adapted for clusters
of SMPs by using the SIMPLE Counting Sort routine.
Thus, the total complexity for Radix Sort, assuming that
n ≥ p⋅max(R, r ⋅max(p, log r)) is

O(bρ(τ +
n
p (


β +

r
α +

є
r))). ()

Bibliography
. Bader DA () On the design and analysis of practical parallel
algorithms for combinatorial problems with applications to image
processing, PhD thesis, Department of Electrical Engineering,
University of Maryland, College Park

. Bader DA, Helman DR, JáJá J () Practical parallel algo-
rithms for personalized communication and integer sorting. Tech-
nical Report CS-TR- and UMIACS-TR--, UMIACS and
Electrical Engineering. University of Maryland, College Park

. Bader DA, Helman DR, JáJá J () Practical parallel algo-
rithms for personalized communication and integer sorting.
ACM J Exp Algorithmics ():–. www.jea.acm.org//
BaderPersonalized/

. Bailey D, Barszcz E, Barton J, Browning D, Carter R, Dagum L,
Fatoohi R, Fineberg S, Frederickson P, Lasinski T, Schreiber R,
Simon H, Venkatakrishnan V, Weeratunga S () The NAS
parallel benchmarks. Technical Report RNR--, Numerical
Aerodynamic Simulation Facility. NASA Ames Research Center,
Moffett Field

. JáJá J () An Introduction to Parallel Algorithms. Addison-
Wesley Publishing Company, New York

. Knuth DE () The Art of Computer Programming: Sorting and
Searching, vol . Addison-Wesley Publishing Company, Reading

. Message Passing Interface Forum. MPI () A message-passing
interface standard. Technical report. University of Tennessee,
Knoxville. Version .

. Woo SC, Ohara M, Torrie E, Singh JP, Gupta A () The
SPLASH- programs: Characterization and methodological con-
siderations. In Proceeding of the nd Annual Int’l Symposium
Computer Architecture, pp –

Hypercube

�Hypercubes and Meshes
�Networks, Direct

www.jea.acm.org/1996/BaderPersonalized/
www.jea.acm.org/1996/BaderPersonalized/
http://dx.doi.org/10.1007/978-0-387-09766-4_408
http://dx.doi.org/10.1007/978-0-387-09766-4_318

Hypercubes and Meshes H 

H

Hypercubes and Meshes

Thomas M. Stricker
Zürich, Switzerland

Synonyms
Distributed computer; Distributed memory computers;
Generalizedmeshes and tori;Hypercube; Interconnection
network; k-ary n-cube; Mesh; Multicomputers; Multi-
processor networks

Definition
In the specific context of computer architecture, a hyper-
cube refers to a parallel computer with a common
regular interconnect topology that specifies the layout
of processing elements and the wiring in between them.
The etymology of the term suggests that a hypercube
is an unbounded, higher dimensional cube alike geo-
metric structure, that is scaled beyond (greek “hyper”)
the three dimensions of a platonic cube (greek “kubos”).
In its broader meaning, the term is also commonly
used to denote a genre of supercomputer-prototypes
and supercomputer-products, that were designed and
built in the time period of –, including theCos-
mic Cube, the Intel iPSC hypercube, the FPS T-Series,
and a similar machine manufactured by nCUBE corpo-
ration. A mesh-connected parallel computer is using a
regular interconnect topology with an array of multiple
processing elements in one, two, or three dimensions.
In a generalization from hypercubes and meshes to the
broader class of k-ary n-cubes, the concept extends to
many more distributed-memory multi-computers with
highly regular, direct networks.

Discussion

Introduction and Technical Background
In a distributed memorymulticomputer with a direct net-
work, the processing elements also serve as switching
nodes in the network of wires connecting them. For
a mathematical abstraction, the arrangement of pro-
cessors and wires in a parallel machine is commonly
expressed as a graph of nodes of processing elements

(vertices) and interconnect wires (edges) that are con-
necting the processors. Since high-speed data trans-
fers normally require an unidirectional point-to-point
connection, the resulting interconnection graphs are
directed. In addition to the abstract connectivity graph,
the optimal layout of processing elements and wires
in physical space must be studied. In reference to the
branch of mathematics dealing with invariant geomet-
ric properties in relation to different spaces, this spec-
ification is called the topology of a parallel computer
system.

In geometry, the classical term cube refers to the
regular convex hexahedron as one of the five platonic
solids in three-dimensional space. Cube alike struc-
tures, beneath and beyond the three dimensions of a
physical cube can be listed as follows and are drawn in
Fig. .

● Zero dimensional: A dot in geometry or a non-
connected uniprocessor in parallel computing.

● One dimensional: A geometric line segment or a
twin processor system, connected with two unidi-
rectional wires.

● Two dimensional: A geometric square or a four
processor array, connected with four unidirectional
wires in the horizontal and four wires in the vertical
direction.

● Three dimensional: A geometric cube (hexahedron)
or eight processors connected with  wires.

● Four dimensional: A tesseract in geometry or sixteen
processors, arranged as two cubes with the eight
corresponding vertices linked by two unidirectional
wires each.

● n-dimensional: A hypercube as an abstract geomet-
ric figure, that becomes increasingly difficult to draw
on paper or the arrangement of n processor with
each processor having n wires to its n immediate
neighbors in all n dimensions.

History
With the evolution of supercomputers froma single vec-
tor processor toward a collection of high performance
microprocessors during the mid-s, a large amount
of research work focused on the best possible topol-
ogy for massively parallel machines. In that time period
the majority of parallel systems were built from a large

http://dx.doi.org/10.1007/978-0-387-09766-4_2274
http://dx.doi.org/10.1007/978-0-387-09766-4_2404
http://dx.doi.org/10.1007/978-0-387-09766-4_2405
http://dx.doi.org/10.1007/978-0-387-09766-4_2371
http://dx.doi.org/10.1007/978-0-387-09766-4_2126
http://dx.doi.org/10.1007/978-0-387-09766-4_2126
http://dx.doi.org/10.1007/978-0-387-09766-4_2406
http://dx.doi.org/10.1007/978-0-387-09766-4_2372
http://dx.doi.org/10.1007/978-0-387-09766-4_2407
http://dx.doi.org/10.1007/978-0-387-09766-4_2447
http://dx.doi.org/10.1007/978-0-387-09766-4_2447

 H Hypercubes and Meshes

...

Dot
0-cube
uniprocessor

Line
1-cube
twin proc.

Square
2-cube
quad proc.

Cube
3-cube

64-node hypercube
binary 6-cube

Tesseract
binary 4-cube

Hypercubes

0

0

1

0

1

2

3

0

1

2

3
4

5

6

7

Hypercubes and Meshes. Fig.  Graphical rendering of dot ( dimensional), line (D), square (D), cube (D), and

hypercubes (>D)

number of identical processing elements, each com-
prising a standard microprocessor, a dedicated semi-
conductor random access memory, a network interface
and – in some cases – even a dedicated local storage disk
in every node. All processing elements also served as
switching points in the interconnect fabric. This evolu-
tion of technology in highly parallel computers resulted
in the class of distributed memory parallel computers or
multi-computers.

The extensive research activity goes back to a spe-
cial focus on geometry in the theory of parallel algo-
rithms pre-dating the development of the first prac-
tical parallel systems. This led to a widespread belief,
that the physical topology of parallel computing archi-
tectures had to reflect the communication pattern of
the most common parallel algorithms known at the
time. The obvious mathematical treatment of the ques-
tion through graph theory resulted in countless the-
oretical papers that established many new topologies,
mappings, emulations, and entire equivalence classes
of topologies including meshes, hypercubes, and fat
trees. The suggestions for a physical layout to con-
nect the nodes of a parallel multicomputer range from
simple one-dimensional arrays of processors to some
fully interconnected graphswith directwires fromevery
node to every other node in the system. Hierarchical
rings and busses were also considered.Themany results

of the effort are compiled into a comprehensive text
book [].

During the golden age of the practical hypercubes
(roughly during the years of –), it was assumed
that the topology of high-dimensional binary hyper-
cubes would result in the best network for the direct
mapping of many well-known parallel algorithms. In a
binary hypercube each dimension is populated with just
two processing nodes as shown in Fig. . The wiring of
P ⋆ logP unidirectional wires to connect P processors
in hypercube topology seemed to be an optimal com-
promise between the minimal interconnect of just P
wires for P processors in a ring and the complete inter-
connect with P⋆(P-) wires in a fully connected graph
(clique).

In a hypercube or a mesh layout for a parallel
system, the processors can only communicate data
directly to a subset of neighboring processors and there-
fore require a mechanism for indirect communication
through data forwarding at the intermediate process-
ing nodes. Indirect communication can take place along
pre-configured virtual channels or through the use of
forwarded messages. Accordingly the practical hyper-
cube and mesh systems are primarily designed formes-
sage passing as their programming model. However,
most stream-based programming models can be sup-
ported efficiently with channel virtualization. Shared

Hypercubes and Meshes H 

H

memory programming models are often supported on
top of a low level message passing software layer or by
hardware mechanisms like directory-based caches that
rely on messages for communication.

Binary hypercube parallel computers like the Cos-
mic Cube [], the iPSC [, ] the FPS T Series
[] or NCube [] were succeeded around 
by a series of distributed memory multi-computers
with a two- or three-dimensional mesh/torus topol-
ogy, such as the Ametek,Warp/iWarp, MassPar, J-
Machine, the Intel Paragon, Intel ASCI Red, Cray
TD, TE, Red Storm, and XT/Seastar. Scaling to
larger machines, the early binary hypercubes were at
a severe disadvantage, because they required a high
number of dimensions resulting in an unbounded
number of ports for the switches at every node
(due to the unbounded in/out degree of the hyper-
cube topology). Something all the hypercubes and the
more advanced mesh/torus architectures have in com-
mon is that they rely heavily on the message rout-
ing technologies developed for the early hypercubes.
They are classified as generalized hypercubes (k-ary
n-cubes) in the literature and therefore included in this
discussion. By the turn of the century the concept of
hypercubes was definitely superseded by the network of
workstations (NOWs) and by the cluster of personal com-
puters (COPs) that used a more or less irregular inter-
connect fabric built with dedicated network switches
that are readily available from the global working tech-
nology of the Internet.

Significance of Parallel Algorithms and
Their Communication Patterns
A valid statement about the optimal interconnect layout
in a parallel system can only bemade under the assump-
tion that there is a best suitable mapping between theM
data elements of a large simulation problem and the P
processing elements in a parallel computer. For simple,
linear mappings (e.g., M/P elements on every proces-
sor in block or block/cyclic distribution) the commu-
nication patterns of operations between data elements
translate into roughly the same communication pat-
tern of messages between the processors in the parallel
machine. For simplicity, we also assume M >> P and
that M and P are powers of two. In an algorithm with

a hypercube communication pattern all communica-
tion activities take place between nodes that are direct
neighbors in the layout of a hypercube. For the common
number scheme of nodes this is between node pairs that
differ by exactly one bit in their number. Every commu-
nication in a hypercube pattern therefore crosses just
one wire in the hypercube machine.

Algorithms with Pure Hypercube
Communication Patterns
Several well-known and important algorithms do
require a sequence of inter-node communication steps
that follow apure hypercube communication pattern. In
most of these algorithms, the communication happens
in steps along increasing or decreasing dimensions, e.g.,
the first communication step between neighbors whose
number differs in the least significant bit followed by
a next step until a last step with communication to
neighbors differing in the most significant bit. Most
parallel computers cannot use more than one or two
links for communication at the same time due to band-
width constraints within the processor node.Therefore,
a true pipeline with more than one or two overlapping
hypercube communication steps is rarely encountered
in practical programs.

One of the earliest and best-known algorithms
with a pure hypercube communication pattern is the
bitonic sorting algorithm that goes back to a generalized
merge sort algorithm for parallel computers published
in  [].The communication graph in Fig.  shows all
the hypercube communication steps that are required to
merge locally sorted subsequences into a globally sorted
sequence on  processors.

The most significant and most popular algorithm
communicating between nodes in a pure hypercube
pattern is the classic calculation of a Fast Fourier Trans-
form (FFT) over an one-dimensional array, with its data
distributed among P processors in a simple block par-
titioning. During the Fourier transformation of a large
distributed array a certain number of butterfly calcula-
tions can be carried out in local memory up to the point
when the distance between the elements in the butter-
fly becomes large enough that processor boundaries are
crossed and some inter-processor communication over

 H Hypercubes and Meshes

P0

P1
P2

P3
P4

P5
P6

P7
P8

P9
P10

P11
P12

P13
P14

P15

P0

P1
P2

P3
P4

P5
P6

P7
P8

P9
P10

P11
P12

P13
P14

P15
Step 1 Step 2,3 Step 4,5 and 6 Step 7,8,9 and 10

Hypercubes and Meshes. Fig.  Batcher bitonic parallel sorting algorithm. A series of hypercube communication steps

will merge  locally sorted subsequences into one globally sorted array. The arrows indicate the direction of the

merge, i.e., one processor gets the upper and the other processor gets the lower half of the merged sequence

the hypercube links is required. The distance of butter-
fly operations is always a power of two and therefore it
maps directly to a hypercube.

In the more advanced and multi-dimensional FFT
library routines the communication operations between
elements at the larger distances might eventually be
reduced by dynamically rearranging the distribution of
array elements during the calculation. Such a redistri-
bution is typically performed by global data transpose
operation that requires an all-to-all personalized com-
munication (AAPC), i.e., individual and distinct data
blocks are exchanged among all P processors. In gen-
eral, fully efficient and scalable AAPC does require a
scalable bandwidth interconnect, like the binary hyper-
cube. In practice a talented programmer can optimize
such collective communication primitives to run at
maximal link speed for sufficiently large mesh- and
torus-connected multi-computers (i.e., Cray TD/TE
tori with up to  nodes) [].

Algorithms with Next Neighbor
Communication Pattern
Most simulations in computational physics, chemistry,
and biology are calculating some physical interac-
tions (forces) between a large number of model nodes
(i.e., particles or grid points) in three-dimensional phys-
ical space.Therefore, they only require a limited amount

of communication between the model nodes in at most
three dimensions because the longer range forces can be
summarized or omitted. Consequently the communica-
tion in the parallel code of an equation solver, based on
relaxation techniques is also limited to nearby processor
in two or three dimensions.

Many calculations in natural science do not require
communication in dimensions that are higher than
three and there is no need to arrange processing ele-
ments of a parallel computer in hypercube topologies.
Users in the field of scientific computing have recently
introduced some optimizations that require increased
connectivity. Modern physical simulations are carried
out on irregular meshes, that are modeling the physi-
cal space more accurately by adapting the density of
meshing points to some physical key parameter like the
density of the material, the electric field, or a current
flow. Irregular meshes grid points and sparse matri-
ces are more difficult to partition into regular parallel
machines. Advanced simulation methods also involve
the summation of certain particle interactions and
forces in Fourier and Laplace spaces to achieve a better
accuracy in fewer simulation steps (e.g., the particle-
mesh Ewald summation in molecular dynamics). Both
improvements result in denser communication patterns
that require higher connectivity. In the end it remains
fairly hard to judge for the systems architect, whether

Hypercubes and Meshes H 

H

these codes alone can justify the more complex wiring
of a high-dimensional hypercube within the range of
the machine sizes, that are actually purchased by the
customers.

Meshes as a Generalization of Binary
Hypercubes into k-ary n-Cubes
In the original form of a binary hypercube, the wires
connect only two processing nodes in every dimension.
In linear arrays and rings a larger number of processors
can be connected in every dimension. The combination
of multiple dimensions and multiple processors con-
nected along a line in one dimension leads to a natural
generalization of the hypercube concept that includes
the popular D, D, and D arrays of processing ele-
ments. In computer architecture, the term “mesh” is
used for a two- or higher-dimensional processor array.
A linear array of processing nodes can be wired into a
ring by a wrap-around link. A two or higher dimen-
sional mesh, that is equipped with wrap-around links
is called a torus.

The generalized form of hypercubes and meshes is
characterized by two parameters, the maximal number
of elements found along one dimension, k, and the total
number of dimensions used, n. The binary hypercubes
described in the introduction are classified as a -ary
n-cubes. A k × k, two-dimensional torus can be classi-
fied as a k-ary -cube.

With the popularity of the hypercube topology in
the beginning of distributed memory computing, many
key technologies for message forwarding and rout-
ing were developed in the early hypercube machines.
These ideas extend quite easily to the generalized
k-ary n-cubes and were incorporated quickly into
meshes and tori. In hypercubes, meshes and tori alike,
the messages traveling between arbitrary processing
nodes have to traverse multiple links to reach their
destination. They have to be forwarded in a number
of intermediate nodes, raising the important issues of
message forwarding policies and deadlock avoidance.

In a general setting it would be very hard to establish
a global guarantee that every message can travel right
through without any delay along a given route. There-
fore, some low level flow control mechanisms are used
to stop and hold the messages, if another message is
already occupying a channel along the path. The most

common strategies for forwarding the messages in a
hypercube network are wormhole or cut-through rout-
ing. If not done carefully, blocking and delaying mes-
sages along the path can lead to tricky deadlock situa-
tions, in particular when the messages are indefinitely
blocking each other within an interconnect fabric. Dur-
ing the era of the first hypercube multicomputers two
key technologies for deadlock avoidancewere described
[] and applied to the construction of prototypes and
products:

● Dimension order routing: In binary hypercubes
routes between two nodes must be chosen in a way
that the distance in the highest dimension is trav-
eled first, before any distance of a lesser dimension
is traveled. Therefore messages can only be stopped
due to a busy channel in a dimension lower than
the one that they are traveling. The channels in the
lowest dimension always lead to a final destina-
tion. The messages occupying these channels can
make progress immediately and free the resource
for other messages blocked at the same and higher
dimensions. This is sufficient to prevent a routing
deadlock.

● Dateline-based torus routing:With the wrap-around
link of rings and tori, the case of messages block-
ing each other in a single dimension around the
back-loops has to be addressed.This is done by repli-
cating the physical wires into some parallel virtual
channels forming a higher and a lower virtual ring.
A dateline is established at a particular position in
the ring.The dateline can only be crossed if the mes-
sage switches from the higher to the lower ring at
that position. With this simple trick, all connections
along the ring remain possible, but the messages in
the ring can no longer block each other in a circular
deadlock.

Both deadlock avoiding techniques are normally com-
bined to permit deadlock-free routing in the general-
ized k-ary n-cube topologies. Extending thewell-known
dimension-order and dateline routing strategies to
slightly irregular network topologies is an additional
challenge. The two abstract rules for legal message
routes can be translated into a simple channel number-
ing schemeproviding a total order of all channelswithin
an interconnect, including all irregular nodes. A simple

 H Hypercubes and Meshes

3.01.02

2.01.17 2.01.15 2.01.13 1.01.023.01.011.01.02

2.03.03 2.03.05 2.03.07

2.03.17 2.03.15 2.03.13

2.05.03 2.05.05 2.05.07

2.05.17 2.05.15 2.05.13

2.07.03 2.07.05 2.07.07 3.03.02

2.07.17 2.07.15 2.07.13 1.03.02
11.18

Disk

1.03.02

1.02.02
Disk

3.02.01

2.12.17

2.12.15

2.12.13

1.02.02

3.02.02

1.02.01

2.12.03

2.12.05

2.12.07

3.02.02

2.14.17

2.14.15

2.14.13

2.14.03

2.14.05

2.14.07

2.16.15

2.16.13

2.16.03

2.16.05

2.16.07

3.04.01

2.18.15

2.18.13

1.04.02

2.16.17 2.18.17

1.04.01

2.18.05

2.18.07

3.04.02

2.18.03

1.04.02 3.04.02

3.03.02 1.03.01

3.03.01

2.01.03 2.01.05 2.01.07 3.01.021.01.01

Terminal
I/O

Video
I/O

Hypercubes and Meshes. Fig.  Generalized hypercubes. Channel numbering based on the original hyperube routing

rules for the validation of a deadlock-free router in a slightly irregular two-dimensional torus with several IO nodes

(an iWarp system)

rule that channels must be followed in a strictly increas-
ing/decreasing order to form a legal route is sufficient
to prevent deadlock. With the technique, illustrated in
Fig. , it becomes possible to code and validate the
router code for any k-ary -cube configuration that was
offered as part of the Intel/CMU iWarp product line,
including the service nodes that are arbitrarily inserted
into the otherwise regular torus network [].

Mapping Hypercube Algorithms into
Meshes and Tori
By design the binary hypercube topology provides a
fully scalable worst case bisection bandwidth. Regard-
less of how the machine is scaled or partitioned, the
algorithm can count on the same amount of bandwidth
per processor for the communication between the two

halves. Inmeshes and tori the total bisection bandwidth
does not scale up linearly with the number of nodes.
The global operations, that are usually communication
bound, become increasingly costly in larger machines.
The concept of the scalable bisection bandwidth was
thought to be a key advantage of the hypercube designs
that is not present in meshes for a long time.

In the theory of parallel algorithms the asymptotic
lower bounds on communication in binary hypercubes
usually differ from the bounds holding for communica-
tion in an one-, two- or three-dimensional mesh/torus.
The lower bound on the number of steps (i.e., the time
complexity) is determined by the amount of data that
has to be moved between the processing elements and
by the number of wires that are available for this task
(i.e., the bisection bandwidth). The upper bound is

Hypercubes and Meshes H 

H

usually determined by the sophistication of the algo-
rithm. One of the most studied algorithms is parallel
sorting in a – comparison based model [, ]. Simi-
lar considerations can be made formatrix transposes or
redistributions of block/cyclic arrays distributed across
the nodes of a parallel machine.

In the practice of parallel computing, a mesh-
connected machine must be fairly large until an
algorithmic limitation due to bisection bandwidth
is encountered and a slowdown over a properly
hypercube connected machine can be observed [].
As an example, the bandwidth of an -node ring,
a -node two - dimensional torus or a -node
three-dimensional torus is sufficient to permit arbitrary
array transpose operations without any slowdown over
a hypercube of the same size. The comparison assumes
that the processing nodes of both machines can trans-
fer data from and to the network at about the speed of
a bidirectional link – as this is the case for most parallel
machines. Therefore, a few simple mapping techniques
are used in practice to implement higher dimensional
binary hypercubes on k-ary meshes or tori. A three-
dimensional binary hypercube can be mapped into an
eight node ring with a small performance penalty using
a Gray code mapping as illustrated in Fig. .

In this simple mapping some links have to be shared
or multiplexed by a factor of two and next-neighbor
communication is extended to a distance of up to three
hops.Themapping of larger virtual hypercube networks
comes at the cost of an increasing dilation (increase in
link distance) and congestion (a multiplexing factor of
each link) for higher dimensions. The congestion fac-
tor can be derived using the calculations of bisection
bandwidth for both topologies. A binary -cube can be
mapped into a D torus and the -cube into a D torus
by extending the linear scheme to multiple dimensions.

In their VLSI implementation, a two- or three-
dimensional mesh/torus-machine is much easier to lay
out in an integrated circuit than an eight- or ten-
dimensional hypercube with its complicated wiring
structure. Therefore its simple next-neighbor links can
be built with faster wires and wider channels for mul-
tiple wires. The resulting advantage for the implemen-
tation is known to offset the congestion and dilation
factors in practice. It is therefore highly interesting to
study these technology trade-offs in practical machines.
For – sorting, the algorithmic complexity and the
measured execution times on a virtual hypercube
mapped to mesh match the known complexities and

...

(0,0,0)

(0,1,1)

(0,0,1)

0 1

4 5

6 7

32

0

2

7

3

1

5

6

4
(1,1,1)(1,1,0)

(1,0,0)

Hypercubes andMeshes. Fig.  Gray code mapping of a binary three-cube into an eight node ring. Virtual network

channels were used to implement virtual hypercube network in machines that are actually wired as meshes or tori

 H Hypercubes and Meshes

running times of the algorithm for direct execution on
a mesh fairly closely [, ].

Limitations of the Hypercube Machines
The ideal topology of a binary hypercube comes at the
high cost of significant disadvantages and restrictions
regarding their practical implementation in the VLSI
circuits of a parallel computer. Therefore, a number of
alternative options to build multicomputers were devel-
oped beyond hypercubes, meshes, and their superclass
of the k-ary n-cubes.

Among the alternatives studied are: hierarchical
rings, that differ slightly from multi-dimensional tori,
cube-connected cycles, that successfully combine the
scalable bisection bandwidth of hypercubes with the
bounded in/out degrees of lower - dimensional meshes
and finally fat trees that are provably optimal in their lay-
out of wiring for VLSI. Those interconnect structures
have in common, that they are still fairly regular and
can leverage of the same practical technical solutions
formessage forwarding, routing and link level flow con-
trol, the way the traditional hypercubes do. None of
these regular interconnects requires a spanning routing
protocol or TCP/IP connections to function properly.

Towards the end of the golden age of hypercubes,
the regular, direct networks were facing an increas-
ing competition by new types of networks built either
from physical links with different strength (i.e., dif-
ferent link bandwidths implemented by a multiplica-
tion of wires or in a different technology). In , the
Thinking Machines Corporation announced the Con-
nection Machine CM using a fat tree topology and
this announcement contributed to end of the hyper-
cube age. After the year , the physical network
topologies became less and less important in super-
computer architecture. The detailed structure of the
networks became hidden and de-emphasized due to
many higher-level abstractions of parallelizing com-
pilers and message passing libraries available to the
programmers.

The availability of high performance commodity
networking switches for use in the highly irregular
topology of the global Internet accelerated this trend.
Inmost newer designs, a fairly large multistage network
of switches (e.g., a Clos network) has replaced the older
direct networks of hypercubes and meshes. At this time
only a small fraction of PC Clusters is still including

the luxury of a low latency, high performance intercon-
nect. Despite all trends to abstraction and de-emphasis
of network structure, the key figures ofmessage forward-
ing latency and the bisection bandwidth remain themost
important measure of scalability in a parallel computer
architecture.

HypercubeMachine Prototypes and
Products
One of the earliest practical computer systems using
a hypercube topology is the Cosmic Cube prototype
designed by the Group of C. Seitz at the California Insti-
tute of Technology []. The system was developed in
the first half of the s using the VLSI integration
technologies newly available at the time. The first ver-
sion of the system comprised  nodes with an Intel
/ microprocessor/floating point coprocessors
combination running at  MHz and using  kB of
memory in each node. The nodes were connected with
point-to-point links running at Mbit/s nominal speed.
The original system of  nodes was allegedly planned
as a  ×  ×  three-dimensional torus with bidirec-
tional links – but this particular topology is fully equiv-
alent to a binary six-dimensional hypercube under a
gray code mapping and became therefore known as
a first hypercube multicomputer, rather than as a first
three-dimensional torus. Subsequently a small number
of commercial machines were built in a collaboration
with a division of AMETEK Corporation [].

The Caltech prototypes lead to the development of
iPSC at the Intel Supercomputer Systems Division, a
commercial product series based on hypercube topol-
ogy [, ]. An example of the typical technical spec-
ifications is the iPSC/ system as released in : 
nodes, Intel / processor/floating point copro-
cessor running at MHz, –MB of main memory in
each node, the nodes connected with links running 
Mbit/s. iPSC systems were programmed using the NX
message passing library, similar in the functionality, but
pre-dating the popular portable message passing sys-
tems like PVM orMPI.The development of the product
line was strongly supported by (D)ARPA, the Advanced
Research Project Agency of the US Dept. of Defense.

During roughly the same time period a hypercube
machine was also offered by NCube Corporation, a
super-computing vendor that was fully dedicated to
the development of hypercube systems at the time. The

Hypercubes and Meshes H 

H

NCube , model, available to Nasa AMES in 
was a -node system with a  MHz full custom 
bit CPU/FPU with up to  MB main memory in every
node and  Mbit/s interconnects. The largest configu-
ration commercially offered was a binary -cube with
, processing nodes [, ].

The FPS (Floating Point Systems) T Series Parallel
Vector Supercomputer was also made of multiple pro-
cessing nodes interconnected as a binary n-cube. Each
node is implemented on a single printed circuit board,
contains  MB of data storage memory, and has a peak
vector computational speed of MFLOPS. Eight vector
nodes are grouped around a system support node and
a disk storage system to form a module. The module is
the basic building block for larger system configurations
in hypercube topology. The T series was named after
the tesseract, a geometric cube in four-dimensional
space [].

The Thinking Machine CM also included a hyper-
cube communication facility for data exchanges between
the nodes as well as a mesh (called NEWS grid) [].
As an SIMD machine with a large number of bit slice
processors, its architecture differed significantly from
the classical hypercube multicomputer. In its successor,
the Thinking Machine CM, the direct networks were
given up in favor of a fat tree using a variable number
of (typically N-) of additional switches to form a net-
work in fat tree topology. A similar trend was followed
in the machines of Meiko/Quadrics. The delay of the
T transputer chips with processing and communi-
cation capabilities on a single chip forced the designers
of the CS system to build their communication system
with a multi-stage fabric of switches instead of a hyper-
cube interconnect. Themulticomputer line by IBM, the
IBM SP and its follow-on products also used a multi-
stage switch fabric. Therefore, these architectures do
no longer qualify as generalized hypercubes with direct
networks.

It is worth mentioning that the first Beowulf clus-
ters of commodity PCs were equipped with three to
five network interfaces that could be wired directly in
hypercube topology. Routing of messages between the
links was achieved by system software in the ether-
net drivers of the LINUX operating system. The com-
munication benchmark presented in the first beowulf
paper weremeasured on an -node system, wired as ˆ
cube []. The author also remembers encountering a

Beowulf system on display at the Supercomputing trade
show wired as a -node binary -cube using multi-
ple BaseT network interface cards and simple CAT
crossover cables.

But as mentioned before, the designs of processors
with their own communication hardware on board and
direct networks were quickly replaced by commodity
switches manufactured by a large number of network
equipment vendors in the Internet world. So the topol-
ogy of the parallel system suddenly became a secondary
issue. A large variety of different network configurations
rapidly succeeded the regular Beowulf systems in the
growing market for clusters of commodity PCs.

Research Conferences on Hypercubes
Thepopularity of hypercube architectures in the second
half of the s led to several instances of a com-
puter architecture conference dedicated solely to dis-
tributed memory multicomputers with hypercube and
mesh topologies. The locations and dates of the confer-
ences are as remembered or collected from citations in
subsequent papers:

● First Hypercube Conference in Knoxville, August
–, , with proceedings published by SIAM
after the conference.

● Second Conference on Hypercube Multiproces-
sors, Knoxville, TN, September –October , ,
with proceedings published by SIAM after the
conference.

● Third Conference on Hypercube Concurrent Com-
puters and Applications, Pasadena, CA, January
–,  with proceedings published by the
ACM, New York.

● FourthConference onHypercubeConcurrentCom-
puters andApplications,Monterrey, CA,March –,
, proceedings publisher unknown.

and later giving in to the trend that the architecture as
distributed memory computer is more important than
the hypercube layout:

● Fifth Distributed Memory Computing Conference,
Charleston, SC, April –,  with proceedings
published by IEEE Computer Society Press.

● Sixth Distributed Memory Computing Conference,
Portland,OR,April –May , with proceedings
published by IEEE Computer Society Press.

 H Hypercubes and Meshes

● First European Distributed Memory Computing,
EDMCC, held in Rennes, France.

● Second European Distributed Memory Computing,
EDMCC, Munich, FRG, April –,  with
Proceedings by Springer, Lecture Notes in Com-
puter Science.

After these rather successful meetings of computer
architects and application programmers, the conference
series on hypercubes and distributed memory parallel
systems lost its momentum and in , the specialized
venues were unfortunately discontinued.

Related Entries
�Beowulf clusters
�Bitonic Sort
�Clusters
�Connection Machine
�Cray TE
�Cray Vector Computers
�Cray XT and Seastar -D Torus Interconnect
�Distributed-Memory Multiprocessor
�Fast Fourier Transform (FFT)
�IBM RS/ SP
�Interconnection Networks
�MasPar
�MPI (Message Passing Interface)
�MPP
�nCUBE
�Networks, Direct
�Routing (including Deadlock Avoidance)
�Sorting
�Warp and IWarp

Bibliographic Notes and Further
Reading
Amost detailed description of the algorithms optimally
suited for hypercubes, the classes of hypercube equiva-
lent networks, and the emulation of different topologies
with respect to algorithmic models is given in an 
page textbook by F.T. Leighton that appeared in 
[]. A detailed description of the network topologies
and the technical data of all practical hypercube pro-
totypes built and machines commercially sold between
 and  can be found through Google Scholar in
the numerous papers written by the architects working
for the computer manufacturers or by researches at the

different US national labs evaluating and benchmarking
these distributed memory multicomputers. The most
interesting study dedicated entirely to binary hyper-
cubes appeared in  in Parallel Computing []. The
visit to the trade show of “Supercomputing” during
the “hypercube” years was a memorable experience,
because countless new distributed memory system ven-
dors surprised the audience with a new parallel com-
puter architecture every year. Most of them contained
some important innovation and can still be admired in
the permanent collections of the computer museums
in Boston (MA), Mountain View (CA), and Paderborn
(Germany).

Bibliography
. Leighton FT () Introduction to parallel algorithms and archi-
tectures: array, trees, hypercubes. Morgan Kaufmann Publishers,
San Francisco p, ISBN:---

. Stricker T () Supporting the hypercube programming model
onmeshes (a fast parallel sorter for iwarp). In: Proceedings of the
symposium for parallel algorithms and architectures, pp –,
San Diego, June 

. Batcher KE () Sorting networks and their applications. In:
Proceedings of the american federationof informationprocessing
societies spring joint computer conference, vol . AFIPS Press,
Montvale, pp –

. Nassimi D, Sahni S () Bitonic sort on a mesh-connected
parallel computer. In: IEEE TransComput ():–

. Hinrichs S, Kosak C, O’Hallaron D, Stricker T, Take R ()
Optimal all-to-all personalized communication in meshes and
tori. In: Proceedings of the symposium of parallel algorithms and
architectures, ACM SPAA’, Cape May, Jan 

. Stricker T () Message routing in irregular meshes and tori.
In: Proceedings of the th IEEE distributed memory computing
conference, DMCC, Portland, May 

. Seitz CL () The cosmic cube. Commun ACM ():–
. Close P () The iPSC/ node architecture. In: Proceedings of

the third conference on hypercube concurrent computers and
applications, Pasadena, – Jan , pp –

. Nugent SF () The iPSC/ direct-connect communications
technology. In: Proceedings of the third conference on hyper-
cube concurrent computers and applications, Pasadena, – Jan
, pp –

. Hawkinson S () The FPS T series supercomputer, system
modelling and optimization. In: Lecture notes in control and
information sciences, vol /. Springer, Berlin/Heidelberg,
pp –

. The nCUBE Handbook, Beaverton OR,  and the nCUBE
 processor, user manual, Beaverton

. Dunigan TH () Performance of the Intel iPSC //
and Ncube / hypercubes, parallel computing . North
Holland, Elsevier, pp –

http://dx.doi.org/10.1007/978-0-387-09766-4_2119
http://dx.doi.org/10.1007/978-0-387-09766-4_124
http://dx.doi.org/10.1007/978-0-387-09766-4_18
http://dx.doi.org/10.1007/978-0-387-09766-4_387
http://dx.doi.org/10.1007/978-0-387-09766-4_306
http://dx.doi.org/10.1007/978-0-387-09766-4_479
http://dx.doi.org/10.1007/978-0-387-09766-4_22
http://dx.doi.org/10.1007/978-0-387-09766-4_223
http://dx.doi.org/10.1007/978-0-387-09766-4_243
http://dx.doi.org/10.1007/978-0-387-09766-4_232
http://dx.doi.org/10.1007/978-0-387-09766-4_484
http://dx.doi.org/10.1007/978-0-387-09766-4_417
http://dx.doi.org/10.1007/978-0-387-09766-4_222
http://dx.doi.org/10.1007/978-0-387-09766-4_422
http://dx.doi.org/10.1007/978-0-387-09766-4_424
http://dx.doi.org/10.1007/978-0-387-09766-4_318
http://dx.doi.org/10.1007/978-0-387-09766-4_314
http://dx.doi.org/10.1007/978-0-387-09766-4_503
http://dx.doi.org/10.1007/978-0-387-09766-4_472

Hypergraph Partitioning H 

H

. Tucker LW, Robertson GG () Architecture and applications
of the connection machines. IEEE Comput ():–

. Becker J, Sterling D, Savarese T, Dorband JE, Ranawake UA,
Packer CV () Beowulf: a parallel workstation for scientific
computation. In: Proceedings of ICPP workshop on challenges
for parallel processing, CRC Press, Oconomowc, August 

. Seitz CL, AthasW, Flaig C,Martin A, Seieovic J, Steele CS, SuWK
() The architecture and programming of the ametek series
 multicomputer. In: Proceedings of the third conference on
hypercube concurrent computers and applications, Pasadena, –
 Jan , pp –

Hypergraph Partitioning

Ümit V. Çatalyürek, Bora Uçar, Cevdet Aykanat
The Ohio State University, Columbus, OH, USA
ENS Lyon, Lyon, France
Bilkent University, Ankara, Turkey

Definition
Hypergraphs are generalization of graphs where each
edge (hyperedge) can connect more than two vertices.
In simple terms, the hypergraph partitioning problem
can be defined as the task of dividing a hypergraph
into two or more roughly equal-sized parts such that a
cost function on the hyperedges connecting vertices in
different parts is minimized.

Discussion

Introduction
During the last decade, hypergraph-based models
gained wide acceptance in the parallel computing com-
munity for modeling various problems. By providing
natural way to represent multiway interactions and
unsymmetric dependencies, hypergraph can be used to
elegantly model complex computational structures in
parallel computing. Here, some concrete applications
will be presented to show how hypergraph models can
be used to cast a suitable scientific problem as an hyper-
graph partitioning problem. Some insights and general
guidelines for using hypergraph partitioning methods
in some general classes of problems are also given.

Formal Definition of Hypergraph
Partitioning
A hypergraph H=(V ,N) is defined as a set of vertices
(cells) V and a set of nets (hyperedges)N among those
vertices. Every net n ∈ N is a subset of vertices, that is,
n⊆V . The vertices in a net n are called its pins. The size
of a net is equal to the number of its pins. The degree of
a vertex is equal to the number of nets it is connected to.
Graph is a special instance of hypergraph such that each
net has exactly two pins. Vertices can be associated with
weights, denoted with w[⋅], and nets can be associated
with costs, denoted with c[⋅].

Π={V,V, . . . ,VK} is a K-way partition ofH if the
following conditions hold:

● Each part Vk is a nonempty subset of V , that is, Vk ⊆
V and Vk ≠ / for  ≤ k ≤ K

● Parts are pairwise disjoint, that is, Vk ∩Vℓ = / for all
 ≤ k < ℓ ≤ K

● Union of K parts is equal to V , i.e.,⋃K
k= Vk =V

In a partition Π ofH, a net that has at least one pin
(vertex) in a part is said to connect that part. Connectiv-
ity λn of a net n denotes the number of parts connected
by n. A net n is said to be cut (external) if it connects
more than one part (i.e., λn > ), and uncut (internal)
otherwise (i.e., λn = ). A partition is said to be balanced
if each part Vk satisfies the balance criterion:

Wk ≤Wavg( + ε), for k = , , . . . ,K. ()

In (), weight Wk of a part Vk is defined as the sum
of the weights of the vertices in that part (i.e., Wk =

∑v∈Vk
w[v]), Wavg denotes the weight of each part

under the perfect load balance condition (i.e., Wavg =

(∑v∈V w[v])/K), and ε represents the predetermined
maximum imbalance ratio allowed.

The set of external nets of a partition Π is denoted
asNE.There are various [] cutsize definitions for rep-
resenting the cost χ(Π) of a partition Π. Two relevant
definitions are:

χ(Π) = ∑
n∈NE

c[n] ()

χ(Π) = ∑
n∈NE

c[n](λn − ). ()

In (), the cutsize is equal to the sum of the costs of the
cut nets. In (), each cut net n contributes c[n](λn − )
to the cutsize. The cutsize metrics given in () and ()

 H Hypergraph Partitioning

will be referred to here as cut-net and connectivitymet-
rics, respectively. The hypergraph partitioning problem
can be defined as the task of dividing a hypergraph into
two or more parts such that the cutsize is minimized,
while a given balance criterion () among part weights
is maintained.

A recent variant of the above problem is the multi-
constraint hypergraph partitioning [, ] in which each
vertex has a vector of weights associated with it. The
partitioning objective is the same as above, and the par-
titioning constraint is to satisfy a balancing constraint
associated with each weight. Here,w[v, i] denotes the C
weights of a vertex v for i = , . . . ,C. Hence, the balance
criterion () can be rewritten as

Wk,i ≤Wavg,i ( + ε) for k = , . . . ,K and i = , . . . ,C ,
()

where the ith weight Wk,i of a part Vk is defined
as the sum of the ith weights of the vertices in that
part (i.e., Wk,i = ∑v∈Vk

w[v, i]), and Wavg,i is the
average part weight for the ith weight (i.e., Wavg,i =

(∑v∈V w[v, i])/K), and ε again represents the allowed
imbalance ratio.

Another variant is the hypergraph partitioning with
fixed vertices, in which some of the vertices are fixed in
some parts before partitioning. In other words, in this
problem, a fixed-part function is provided as an input
to the problem. A vertex is said to be free if it is allowed
to be in any part in the final partition, and it is said to
be fixed in part k if it is required to be in Vk in the final
partition Π.

Yet another variant is multi-objective hypergraph
partitioning in which there are several objectives to be
minimized [, ]. Specifically, a given net contributes
different costs to different objectives.

Sparse Matrix Partitioning
One of the most elaborated applications of hyper-
graph partitioning (HP) method in the parallel scien-
tific computing domain is the parallelization of sparse
matrix-vector multiply (SpMxV) operation. Repeated
matrix-vector and matrix-transpose-vector multiplies
that involve the same large, sparse matrix are the ker-
nel operations in various iterative algorithms involving
sparse linear systems. Such iterative algorithms include
solvers for linear systems, eigenvalues, and linear pro-
grams. The pervasive use of such solvers motivates the

development of HP models and methods for efficient
parallelization of SpMxV operations.

Before discussing the HP models and methods
for parallelizing SpMxV operations, it is favorable to
discuss parallel algorithms for SpMxV. Consider the
matrix-vector multiply of the form y ← A x, where
the nonzeros of the sparse matrix A as well as the
entries of the input and output vectors x and y are par-
titioned arbitrarily among the processors. Let map(⋅)
denote the nonzero-to-processor and vector-entry-to-
processor assignments induced by this partitioning. A
parallel algorithm would execute the following steps at
each processor Pk .

. Send the local input-vector entries xj , for all j with
map(xj) = Pk, to those processors that have at least
one nonzero in column j.

. Compute the scalar products aij xj for the local
nonzeros, that is, the nonzeros for whichmap(aij) =
Pk and accumulate the results yki for the same row
index i.

. Send local nonzero partial results yki to the processor
map(yi)≠Pk , for all nonzero yki .

. Add the partial yℓi results received to compute the
final results yi=∑ yℓi for each i with map(yi)=Pk .

As seen in the algorithm, it is necessary to have
partitions on the matrix A and the input- and output-
vectors x and y of the matrix-vector multiply operation.
Finding a partition on the vectors x and y is referred
to as the vector partitioning operation, and it can be
performed in three different ways: by decoding the par-
tition given on A; in a post-processing step using the
partition on the matrix; or explicitly partitioning the
vectors during partitioning the matrix. In any of these
cases, the vector partitioning for matrix-vector oper-
ations is called symmetric if x and y have the same
partition, and non-symmetric otherwise. A vector par-
titioning is said to be consistent, if each vector entry is
assigned to a processor that has at least one nonzero in
the respective row or column of the matrix. The con-
sistency is easy to achieve for the nonsymmetric vector
partitioning; xj can be assigned to any of the proces-
sors that has a nonzero in the column j, and yi can be
assigned to any of the processors that has a nonzero in
the row i. If a symmetric vector partitioning is sought,
then special care must be taken to assign a pair of
matching input- and output-vector entries, e.g., xi and

Hypergraph Partitioning H 

H

yi, to a processor having nonzeros in both row and
column i. In order to have such a processor for all vec-
tor entry pairs, the sparsity pattern of the matrix A
can be modified to have a zero-free diagonal. In such
cases, a consistent vector partition is guaranteed to exist,
because the processors that own the diagonal entries can
also own the corresponding input- and output-vector
entries; xi and yi can be assigned to the processor that
holds the diagonal entry aii .

In order to achieve an efficient parallelism, the pro-
cessors should have balanced computational load and
the inter-processor communication cost should have
been minimized. In order to have balanced computa-
tional load, it suffices to have almost equal number of
nonzeros per processor so that each processor will per-
form almost equal number of scalar products, for exam-
ple, aijxj, in any given parallel system. The communi-
cation cost, however, has many components (the total
volumeofmessages, the total number ofmessages,max-
imum volume/number of messages in a single proces-
sor, either in terms of sends or receives or both) each of
which can be of utmost importance for a givenmatrix in
a given parallel system. Although there are alternatives
and more elaborate proposals, the most common
communication cost metric addressed in hypergraph
partitioning-based methods is the total volume of
communication.

Loosely speaking, hypergraph partitioning-based
methods for efficient parallelization of SpMxV model
the data of the SpMxV (i.e., matrix and vector entries)
with the vertices of a hypergraph. A partition on the
vertices of the hypergraph is then interpreted in such a
way that the data corresponding to a set of vertices in a
part are assigned to a single processor. More accurately,
there are two classes of hypergraph partitioning-based
methods to parallelizing SpMxV. The methods in the
first class build a hypergraph model representing the
data and invoke a partitioning heuristic on the so-built
hypergraph. The methods in this class can be said to
be models rather than being algorithms. There are cur-
rently three main hypergraph models for representing
sparse matrices, and hence there are three methods in
this first class. These three main models are described
below in the next section. Essential property of these
models is that the cutsize () of any given partition is
equal to the total communication volume to be incurred
under a consistent vector partitioning when the matrix

elements are distributed according to the vertex par-
tition. The methods in the second class follow a mix-
and-match approach and use the three main models,
perhaps, along with multi-constraint and fixed-vertex
variations in an algorithmic form.There are a number of
methods in this second class, and one can developmany
others according to application needs and matrix char-
acteristics. Three common methods belonging to this
class are described later, after the three main models.
The main property of these algorithms is that the sum
of the cutsizes of each application of hypergraph par-
titioning amounts to the total communication volume
to be incurred under a consistent vector partitioning
(currently these methods compute a vector partition-
ing after having found a matrix partitioning) when the
matrix elements are distributed according to the vertex
partitions found at the end.

ThreeMainModels for Matrix
Partitioning
In the column-net hypergraph model [] used for D
rowwise partitioning, anM ×NmatrixAwith Z nonze-
ros is represented as a unit-cost hypergraph H

R

=

(V
R

,N
C

) with ∣VR∣ = M vertices, ∣NC ∣ = N nets, and
Z pins. InH

R

, there exists one vertex vi ∈ VR for each
row i of matrix A. Weight w[vi] of a vertex vi is equal
to the number of nonzeros in row i. The name of the
model comes from the fact that columns are represented
as nets. That is, there exists one unit-cost net nj ∈ NC
for each column j of matrix A. Net nj connects the ver-
tices corresponding to the rows that have a nonzero in
column j. That is, vi ∈nj if and only if aij≠.

In the row-net hypergraph model [] used for D
columnwise partitioning, an M × N matrix A with Z
nonzeros is represented as a unit-cost hypergraphH

C

=

(V
C

,N
R

) with ∣VC∣ = N vertices, ∣NR ∣ =M nets, and Z
pins. InH

C

, there exists one vertex vj ∈ VC for each col-
umn j of matrix A. Weight w[vj] of a vertex vj ∈ VR
is equal to the number of nonzeros in column j. The
name of the model comes from the fact that rows are
represented as nets. That is, there exists one unit-cost
net ni ∈ NR for each row i of matrix A. Net ni ⊆
V
C

connects the vertices corresponding to the columns
that have a nonzero in row i. That is, vj ∈ ni if and
only if aij≠.

In the column-row-net hypergraph model, other-
wise known as the fine-grain model [], used for D

 H Hypergraph Partitioning

nonzero-based fine-grain partitioning, anM×N matrix
A with Z nonzeros is represented as a unit-weight and
unit-cost hypergraph H

Z

= (V
Z

,N
RC

) with ∣V
Z

∣ = Z
vertices, ∣N

RC

∣ = M+N nets and Z pins. In VZ , there
exists one unit-weight vertex vij for each nonzero aij
of matrix A. The name of the model comes from the
fact that both rows and columns are represented as nets.
That is, inN

RC

, there exist one unit-cost row-net ri for
each row i of matrix A and one unit-cost column-net cj
for each column j of matrix A. The row-net ri connects
the vertices corresponding to the nonzeros in row i of
matrix A, and the column-net cj connects the vertices
corresponding to the nonzeros in column j of matrix A.
That is, vij ∈ ri and vij ∈ cj if and only if aij ≠. Note that
each vertex vij is in exactly two nets.

SomeOther Methods for Matrix
Partitioning
The jagged-like partitioning method [] uses the row-
net and column-net hypergraph models. It is an algo-
rithm with two steps, in which each step models either
the expand phase (the st line) or the fold phase (the
rd line) of the parallel SpMxV algorithm given above.
Therefore, there are two alternative schemes for this par-
titioning method.The one whichmodels the expands in
the first step and the folds in the second step is described
below.

Given an M × N matrix A and the number K of
processors organized as a P × Q mesh, the jagged-like
partitioning model proceeds as shown in Fig. . The
algorithm has two main steps. First, A is partitioned
rowwise into P parts using the column-net hypergraph
model H

R

(lines  and  of Fig. ). Consider a P-
way partition Π

R

of H
R

. From the partition Π
R

, one
obtains P submatrices Ap, for p = , . . . ,P each having
roughly equal number of nonzeros. For each p, the rows
of the submatrix Ap correspond to the vertices in Rp

(lines  and  of Fig. ). The submatrix Ap is assigned
to the pth row of the processor mesh. Second, each sub-
matrix Ap for  ≤ p ≤ P is independently partitioned
columnwise into Q parts using the row-net hypergraph
Hp (lines  and  of Fig. ). The nonzeros in the ith
row of A are partitioned among the Q processors in a
row of the processor mesh. In particular, if vi ∈ Rp at
the end of line  of the algorithm, then the nonzeros
in the ith row of A are partitioned among the proces-
sors in the pth row of the processor mesh. After par-
titioning the submatrix Ap columnwise, the map array
contains the partition information for the nonzeros
residing in Ap.

For each i, the volume of communication required
to fold the vector entry yi is accurately represented as
a part of “foldVolume” in the algorithm. For each j, the
volume of communication regarding the vector entry xj

JAGGED-LIKE-PARTITIONING (A, K = P × Q, e1, e2)
Input : a matrix A, the number of processors K = P × Q, and the imbalance ratios e1, e2.
Output: map(aij) for all aij ≠ 0 and total Volume.

1: HR = (VR, NC) ← columnNet(A)

2: PR = {R1,...,RP} ← partition(HR, P, e1) � rowwise partitioning of A

3: expand Volume ← cutsize(PR)

4: foldVolume ← 0

5: for p = 1 to P do

6: Rp = {ri:vi ∈ Rp}
7: Ap ← A(Rp,:) � submatrix indexed by rows Rp

8: Hp = (Vp, Np) ← rowNet(Ap)

9: PC
p = {C1

p,...,CQ
p} ← partition(Hp, Q, e2) � columnwise partitioning of Ap

10: foldVolume ← foldVolume + cutsize(PC
p)

11: for all aij ≠ 0 of Ap do

12: map(aij) = Pp,q ⇔ cj ∈ Cq
p

13: return totalVolume←expandVolume+foldVolume

Hypergraph Partitioning. Fig.  Jagged-like partitioning

Hypergraph Partitioning H 

H

R2R1

r1

r2

r3

r4

r5

r6

r7

r10

r8

r9

r13

r14
r15

r16

r12

r11

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

c13

c14

c15

c16

3 4 6 8 11 12 14 16 1 2 5 7 9 10 13 15

3
4
6
8

11
12
14
16

1
2
5
7
9

10
13
15

nnz = 47
vol = 3 imbal = [–2.1%, 2.1%]

a

b

Hypergraph Partitioning. Fig.  First step of four-way jagged-like partitioning of a matrix; (a) two-way partitioning ΠR
of column-net hypergraph representationHR of A, (b) two-way rowwise partitioning of matrix AΠ obtained by

permuting A according to the partitioning induced by Π; the nonzeros in the same partition are shown with the same

shape and color; the deviation of the minimum and maximum numbers of nonzeros of a part from the average are

displayed as an interval imbal; vol denotes the number of nonzeros and the total communication volume

is accurately represented as a part of “expandVolume” in
the algorithm.

Figure a illustrates the column-net representation
of a sample matrix to be partitioned among the proces-
sors of a  ×  mesh. For simplicity of the presentation,
the vertices and the nets of the hypergraphs are labeled
with letters “r” and “c” to denote the rows and columns
of the matrix. The matrix is first partitioned rowwise
into two parts, and each part is assigned to a row of
the processor mesh, namely to processors {P,P} and
{P,P}. The resulting permuted matrix is displayed in
Fig. b. Figure a displays the two row-net hypergraphs
corresponding to each submatrix Ap for p = , . Each
hypergraph is partitioned independently; sample par-
titions of these hypergraphs are also presented in this
figure. As seen in the final symmetric permutation in
Fig. b, the nonzeros of columns  and  are assigned to
different parts, resulting P to communicate with both
P and P in the expand phase.

The checkerboard partitioning method [] is also a
two-step method, in which each step models either the
expand phase or the fold phase of the parallel SpMxV.
Similar to jagged-like partitioning, there are two alter-
native schemes for this partitioning method. The one

which models the expands in the first step and the folds
in the second step is presented below.

Given anM×N matrix A and the number K of pro-
cessors organized as a P × Q mesh, the checkerboard
partitioning method proceeds as shown in Fig. . First,
A is partitioned rowwise into P parts using the column-
net model (lines  and  of Fig. ), producing Π

R

=

{R, . . . ,RP}. Note that this first step is exactly the
same as that of the jagged-like partitioning. In the sec-
ond step, the matrix A is partitioned columnwise into
Q parts by using the multi-constraint partitioning to
obtain Π

C

= {C, . . . ,CQ}. In comparison to the jagged-
like method, in this second step the whole matrix A is
partitioned (lines  and  of Fig. ), not the submatrices
defined by Π

R

.The rowwise and columnwise partitions
Π
R

and Π
C

together define a D partition on thematrix
A, wheremap(aij) = Pp,q ⇔ ri ∈ Rp and cj ∈ Cq.

In order to achieve a load balance among proces-
sors, amulti-constraint partitioning formulation is used
(line  of the algorithm). Each vertex vi ofHC is assigned
P weights: w[i,p], for p = , . . . ,P. Here, w[i,p] is equal
to the number of nonzeros of column ci in rows Rp

(line  of Fig. ). Consider a Q-way partitioning of H
C

with P constraints using the vertex weight definition

 H Hypergraph Partitioning

r1

P1 P2

P3 P4

r2

r3

r4

r5

r6

r7

r8

r9r10

r11

r12

r13

r14

r15

r16

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

c13

c14

c15

c16

c2

c5

c12 4 8 12 16 3 6 11 14 1 2 5 13 7 9 10 15

4
8

12
16

3
6

11
14

1
2
5

13
7
9

10
15

nnz = 47
vol = 8 imbal = [–6.4%, 2.1%]

a b

Hypergraph Partitioning. Fig.  Second step of four-way jagged-like partitioning: (a) Row-net representations of

submatrices of A and two-way partitionings, (b) Final permuted matrix; the nonzeros in the same partition are shown

with the same shape and color; the deviation of the minimum and maximum numbers of nonzeros of a part from the

average are displayed as an interval imbal; nnz and vol denote, respectively, the number of nonzeros and the total

communication volume

CHECKERBOARD-PARTITIONING(A; K = P × Q; e1; e2)
Input: a matrix A, the number of processors K = P × Q, and the imbalance ratios e1; e2.
Output: map(aij) for all aij ≠ 0 and totalVolume.

1: HR = (VR, NC) ← columnNet(A)

2: PR = {R1,...,RP} ← partition(HR, P, e1) � rowwise partitioning of A

3: expand Volume ← cutsize(PR)

4: HC = (VC, NR) ← rowNet(A)

5: for j = 1 to |VC| do

6: for p = 1 to P do

7: wj,p = |{nj ∩ Rp}|
8: PC = {C1,...,CQ} ← MCPartition(HC, Q, e2) � columnwise partitioning of A

9: foldVolume← cutsize(PC)

10: for all aij ≠ 0 of A do

11: map(aij) = Pp,q ⇔ ri ∈ Rp and cj ∈ Cq

12: totalVolume←expandVolume+foldVolume

Hypergraph Partitioning. Fig.  Checkerboard partitioning

above. Maintaining the P balance constraints () corre-
sponds to maintaining computational load balance on
the processors of each row of the processor mesh.

Establishing the equivalence between the total com-
munication volume and the sum of the cutsizes of the

two partitions is fairly straightforward. The volume of
communication for the fold operations corresponds
exactly to the cutsize(Π

C

). The volume of communica-
tion for the expand operations corresponds exactly to
the cutsize(Π

R

).

Hypergraph Partitioning H 

H

C1 C2

r2

r3
r4

r5
r6

r7

r8

r9

r10

r11 r12

r13

r14

r15

r16

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

c13

c14

c15

c16

r1

W2(1) = 12

W2(2) = 11

W1(1) = 12

W1(2) = 12

3 6 11 14 1 5 10 13 4 8 12 16 2 7 9 15

3
6

11
14

1
5

10
13

4
8

12
16

2
7
9

15

nnz = 47
vol = 8 imbal = [–6.4%, 2.1%]a b

Hypergraph Partitioning. Fig.  Second step of four-way checkerboard partitioning: (a) two-waymulti-constraint

partitioning ΠC of row-net hypergraph representationHC of A, (b) Final checkerboard partitioning of A induced by

(ΠR ,ΠC); the nonzeros in the same partition are shown with the same shape and color; the deviation of the minimum

and maximum numbers of nonzeros of a part from the average are displayed as an interval imbal; nnz and vol denote,

respectively, the number of nonzeros and the total communication volume

Figure b displays the × checkerboard partition
induced by (Π

R

, Π
C

). Here, Π
R

is a rowwise two-way
partition giving the same figure as shown in Fig. , and
Π
C

is a two-way multi-constraint partition Π
C

of the
row-net hypergraph model H

C

of A shown in Fig. a.
In Fig. a, w[, ]= and w[, ]= for internal column
c of row stripe R, whereas w[, ] =  and w[, ] = 
for external column c.

Another common method of matrix partitioning
is the orthogonal recursive bisection (ORB) []. In
this approach, the matrix is first partitioned rowwise
into two submatrices using the column-net hyper-
graph model, and then each part is further partitioned
columnwise into two parts using the row-net hyper-
graph model.The process is continued recursively until
the desired number of parts is obtained. The algorithm
is shown in Fig. . In this algorithm, dim represents
either rowwise or columnwise partitioning, where−dim
switches the partitioning dimension.

In the ORB method shown above, the step bisect
(A,dim, ε) corresponds to partitioning the givenmatrix
either along the rows or columns with, respectively, the
column-net or the row-net hypergraphmodels into two.
The total sum of the cutsizes () of each each bisection

step corresponds to the total communication volume. It
is possible to dynamically adjust the ε at each recursive
call by allowing larger imbalance ratio for the recursive
call on the submatrix A or A.

Some Other Applications
of Hypergraph Partitioning
As said before, the initial motivations for hypergraph
models were accurate modeling of the nonzero struc-
ture of unsymmetric and rectangular sparse matrices
to minimize the communication volume for iterative
solvers. There are other applications that can make use
of hypergraph partitioning formulation. Here, a brief
overview of general classes of applications is given along
with the names of some specific problems. Further
application classes are given in bibliographic notes.

Parallel reduction or aggregation operations form
a significant class of such applications, including the
MapReduce model.The reduction operation consists of
computing M output elements from N input elements.
An output element may depend on multiple input ele-
ments, and an input element may contribute tomultiple
output elements. Assume that the operation on which

 H Hypergraph Partitioning

ORB-PARTITIONING(A, dim, K min, K max, e)
Input: a matrix A, the part numbers K min (at initial call, it is equal to 1) and K max (at initial call it is
equal to K, the desired number of parts), and the imbalance ratio e.
Output: map(aij) for all aij ≠ 0.

1: if K max − K min > 0 then
2: mid ← (K max − K min + 1)/2

3: P = 〈A1, A2〉←bisect(A, dim, e) �Partition A along dim into two, producing two submatrices

4: totalVolume←totalVolume+cutsize(P)

� Recursively partition each submatrix along the orthogonal direction

5: map1(A1)←ORB-PARTITIONING(A1,−dim, Kmin, Kmin + mid−1, e)

6: map2(A2)←ORB-PARTITIONING(A2−dim, Kmin + mid, Kmax, e)

7: map(A)←map1(A1) ∪ map2(A2)
8: else
9: map(A)←Kmin

Hypergraph Partitioning. Fig.  Orthogonal recursive bisection (ORB)

reduction is performed is commutative and associa-
tive. Then, the inherent computational structure can be
represented with an M × N dependency matrix, where
each row and column of the matrix represents an out-
put element and an input element, respectively. For an
input element xj and an output element yi, if yi depends
on xj, aij is set to  (otherwise zero). Using this rep-
resentation, the problem of partitioning the workload
for the reduction operation is equivalent to the prob-
lem of partitioning the dependency matrix for efficient
SpMxV.

In some other reduction problems, the input and
output elements may be preassigned to parts. The pro-
posed hypergraph model can be accommodated to
those problems by adding K part vertices and con-
necting those vertices to the nets which correspond to
the preassigned input and output elements. Obviously,
those part vertices must be fixed to the corresponding
parts during the partitioning. Since the required prop-
erty is already included in the existing hypergraph par-
titioners [, , ], this does not add extra complexity
to the partitioning methods.

Iterative methods for solving linear systems usu-
ally employ preconditioning techniques. Roughly speak-
ing, preconditioning techniques modify the given lin-
ear system to accelerate convergence. Applications of
explicit preconditioners in the form of approximate
inverses or factored approximate inverses are amenable
to parallelization. Because, these techniques require
SpMxV operations with the approximate inverse or
factors of the approximate inverse at each step. In

other words, preconditioned iterative methods per-
form SpMxV operations with both coefficient and pre-
conditioner matrices in a step. Therefore, parallelizing
a full step of these methods requires the coefficient
and preconditioner matrices to be well partitioned, for
example, processors’ loads are balanced and commu-
nication costs are low in both multiply operations. To
meet this requirement, the coefficient and precondi-
tioner matrices should be partitioned simultaneously.
One can accomplish such a simultaneous partitioning
by building a single hypergraph and then partitioning
that hypergraph. Roughly speaking, one follows a four-
step approach: (i) build a hypergraph for each matrix,
(ii) determine which vertices of the two hypergraphs
need to be in the same part (according to the compu-
tations forming the iterative method), (iii) amalgamate
those vertices coming from different hypergraphs, (iv)
if the computations represented by the two hypergraphs
of the first step are separated by synchronization points
then assign multiple weights to vertices (the weights of
the vertices of the hypergraphs of the first step are kept),
otherwise assign a single weight to vertices (the weights
of the vertices of the hypergraphs of the first step are
summed up for each amalgamation).

The computational structure of the preconditioned
iterative methods is similar to that of a more general
class of scientific computations including multiphase,
multiphysics, and multi-mesh simulations.

In multiphase simulations, there are a number of
computational phases separated by global synchroniza-
tion points.The existence of the global synchronizations

Hypergraph Partitioning H 

H

necessitates each phase to be load balanced individually.
Multi-constraint formulation of hypergraph partition-
ing can be used to achieve this goal.

In multi-physics simulations, a variety of materi-
als and processes are analyzed using different physics
procedures. In these types of simulations, computa-
tional as well as the memory requirements are not uni-
form across the mesh. For scalability issues, processor
loads should be balanced in terms of these two com-
ponents. The multi-constraint partitioning framework
also addresses these problems.

In multi-mesh simulations, a number of grids
with different discretization schemes and with arbi-
trary overlaps are used. The existence of overlapping
grid points necessitates a simultaneous partitioning of
the grids. Such a simultaneous partitioning scheme
should balance the computational loads of the pro-
cessors and minimize the communication cost due to
interactions within a grid as well as the interactions
among different grids. With a particular transformation
(the vertex amalgamation operation, also mentioned
above), hypergraphs can be used to model the inter-
actions between different grids. With the use of multi-
constraint formulation, the partitioning problem in the
multi-mesh computations can also be formulated as a
hypergraph partitioning problem.

In obtaining partitions for two or more compu-
tation phases interleaved with synchronization points,
the hypergraph models lead to the minimization of the
overall sum of the total volume of communication in
all phases (assuming that a single hypergraph is built as
suggested in the previous paragraphs). In some sophis-
ticated simulations, the magnitude of the interactions
in one phase may be different than that of the interac-
tions in another one. In such settings, minimizing the
total volumeof communication in each phase separately
may be advantageous. This problem can be formulated
as a multi-objective hypergraph partitioning problem
on the so-built hypergraphs.

There are certain limitations in applying hyper-
graph partitioning to the multiphase, multiphysics,
and multi-mesh-like computations. The dependencies
must remain the same throughout the computations,
otherwise the cutsize may not represent the commu-
nication volume requirements as precisely as before.
The weights assigned to the vertices, for load balanc-
ing issues, should be static and available prior to the

partitioning; the hypergraph models cannot be used as
naturally for applications whose computational require-
ments vary drastically in time. If, however, the computa-
tional requirements change gradually in time, then the
models can be used to re-partition the load at certain
time intervals (while also minimizing the redistribution
or migration costs associated with the new partition).

Ordering methods are quite common techniques to
permute matrices in special forms in order to reduce
the memory and running time requirements, as well
as to achieve increased parallelism in direct methods
(such as LU and Cholesky decompositions) used for
solving systems of linear equations. Nested-dissection
is a well-known ordering method that has been used
quite efficiently and successfully. In the current state-
of-the-art variations of the nested-dissection approach,
a matrix is symmetrically permuted with a permutation
matrix P into doubly bordered block diagonal form

ADB = PAPT

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A AS

A AS

⋱ ⋮

AKK AKS

AS AS ⋯ ASK ASS

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where the nonzeros are only in the marked blocks (the
blocks on the diagonal and the row and column bor-
ders).The aim in such a permutation is to have reduced
numbers of rows/columns in the borders and to have
equal-sized square blocks in the diagonal. One way to
achieve such a permutation whenA has symmetric pat-
tern is as follows. Suppose amatrix B is given (if not, it is
possible to find one) where the sparsity pattern of BTB
equals to that of A (here arithmetic cancellations are
ignored). Then, one can permute B nonsymmetrically
into the singly bordered form

BSB = QBPT

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

B BS

B BS

⋱ ⋮

BKK BKS

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

 H Hypergraph Partitioning

so that BT
SBBSB = PAPT ; that is, one can use the column

permutation of B resulting in BSB to obtain a symmet-
ric permutation forA which results inADB . Clearly, the
column dimension of Bkk will be the size of the square
matrix Akk and the number of rows and columns in
the border will be equal to the number of columns in
the column border of BSB . One can achieve such a per-
mutation of B by partitioning the column-net model of
B while reducing the cutsize according to the cut-net
metric (), with unit net costs, to obtain the permuta-
tion P as follows. First, the permutation Q is defined
to be able to define P. Permute all rows correspond-
ing to the vertices in part k before those in a part ℓ, for
 ≤ k < ℓ ≤ K. Then, permute all columns correspond-
ing to the nets that are internal to a part k before those
that are internal to a part ℓ, for  ≤ k < ℓ ≤ K, yield-
ing the diagonal blocks, and then permute all columns
corresponding to the cut nets to the end, yielding the
column border (the order of column defining a diago-
nal block). Clearly the correspondence between the size
of the column border of BSB and the doubly border of
ADB is exact, and hence the cutsize according to the cut-
net metric is an exact measure.The requirement to have
almost equal sized square blocks Akk decoded as the
requirement that each part should have an almost equal
number of internal nets in the partition of the column-
net model of B. Although such a requirement is neither
the objective nor the constraint of the hypergraph parti-
tioning problem, the common hypergraph-partitioning
heuristics easily accommodate such requirements.

Related Entries
�Data Distribution
�Graph Algorithms
�Graph Partitioning
�Linear Algebra, Numerical
�PaToH (Partitioning Tool for Hypergraphs)
�Preconditioners for Sparse Iterative Methods
�Sparse Direct Methods

Bibliographic Notes and Further
Reading
The first use of the hypergraph partitioning meth-
ods for efficient parallel sparse matrix-vector multiply

operations is seen in []. A more comprehensive study
[] describes the use of the row-net and column-net
hypergraph models in D sparse matrix partitioning.
For different views and alternatives on vector partition-
ing see [, , ].

A fair treatment of parallel sparse matrix-vector
multiplication, analysis, and investigations on certain
matrix types along with the use of hypergraph parti-
tioning is given in [, Chapter ]. Further analysis of
hypergraph partitioning on some model problems is
given in [].

Hypergraph partitioning schemes for precondi-
tioned iterative methods are given in [], where ver-
tex amalgamation and multi-constraint weighting to
represent different phases of computations are given.
Discussions on application of such methodology for
multiphase, multiphysics, and multi-mesh simulations
are also discussed in the same paper.

Some different methods for sparse matrix partition-
ing using hypergraphs can be found in [], includ-
ing jagged-like and checkerboard partitioning meth-
ods, and in [], the orthogonal recursive bisection
approach. A recipe to choose a partitioning method for
a given matrix is given in [].

The use of hypergraph models for permuting matri-
ces into special forms such as singly bordered block-
diagonal form can be found in []. This permutation
can be leveraged to develop hypergraph partitioning-
based symmetric [, ] and nonsymmetric [] nested-
dissection orderings.

The standard hypergraph partitioning and the
hypergraph partitioning with fixed vertices formula-
tion, respectively, is used for static and dynamic load
balancing for some scientific applications in [, ].

Some other applications of hypergraph partition-
ing are briefly summarized in []. These include
image-space parallel direct volume rendering, paral-
lel mixed integer linear programming, data decluster-
ing for multi-disk databases, scheduling file-sharing
tasks in heterogeneous master-slave computing envi-
ronments, and work-stealing scheduling, road net-
work clustering methods for efficient query processing,
pattern-based data clustering, reducing software devel-
opment and maintenance costs, processing spatial join
operations, and improving locality in memory or cache
performance.

http://dx.doi.org/10.1007/978-0-387-09766-4_40
http://dx.doi.org/10.1007/978-0-387-09766-4_102
http://dx.doi.org/10.1007/978-0-387-09766-4_92
http://dx.doi.org/10.1007/978-0-387-09766-4_126
http://dx.doi.org/10.1007/978-0-387-09766-4_93
http://dx.doi.org/10.1007/978-0-387-09766-4_247
http://dx.doi.org/10.1007/978-0-387-09766-4_507

Hyperplane Partitioning H 

H

Bibliography
. AbabeiC, SelvakkumaranN,BazarganK,KarypisG ()Multi-
objective circuit partitioning for cutsize and path-based delay
minimization. In: Proceedings of ICCAD , San Jose, CA,
November 

. Aykanat C, Cambazoglu BB, Uçar B () Multi-level
direct k-way hypergraph partitioning with multiple con-
straints and fixed vertices. J Parallel Distr Comput ():
–

. Aykanat C, Pınar A, ÇatalyürekUV () Permuting sparse rect-
angular matrices into block-diagonal form. SIAM J Sci Comput
():–

. Bisseling RH () Parallel scientific computation: a structured
approach using BSP and MPI. Oxford University Press, Oxford,
UK

. Bisseling RH, Meesen W () Communication balancing
in parallel sparse matrix-vector multiplication. Electron Trans
Numer Anal :–

. Boman E, Devine K, Heaphy R, Hendrickson B, Leung V, Riesen
LA, Vaughan C, Catalyurek U, Bozdag D, Mitchell W, Teresco J
() Zoltan .: parallel partitioning, load balancing, and data-
management services; user’s guide. Sandia National Laboratories,
Albuquerque, NM, . Technical Report SAND-W
http://www.cs.sandia.gov/Zoltan/ug_html/ug.html

. Cambazoglu BB, Aykanat C () Hypergraph-partitioning-
based remapping models for image-space-parallel direct volume
rendering of unstructured grids. IEEE Trans Parallel Distr Syst
():–

. Catalyurek U, Boman E, Devine K, Bozdag D, Heaphy R, Riesen L
() A repartitioning hypergraph model for dynamic load
balancing. J Parallel Distr Comput ():–

. Çatalyürek UV () Hypergraph models for sparse matrix par-
titioning and reordering. Ph.D. thesis, Computer Engineering and
Information Science, Bilkent University. Available at http://www.
cs.bilkent.edu.tr/tech-reports//ABSTRACTS..html

. Çatalyürek UV, Aykanat C () A hypergraph model for map-
ping repeated sparse matrixvector product computations onto
multicomputers. In: Proceedings of International Conference on
High Performance Computing (HiPC’), Goa, India, December


. Çatalyürek UV, Aykanat C () Hypergraph-partitioning-based
decomposition for parallel sparse-matrix vector multiplication.
IEEE Trans Parallel Distr Syst ():–

. Çatalyürek UV, Aykanat C () PaToH: a multilevel hypergraph
partitioning tool, version .. Department of Computer Engineer-
ing, Bilkent University, Ankara,  Turkey. PaToH is available
at http://bmi.osu.edu/~umit/software.htm

. Çatalyürek UV, Aykanat C () A fine-grain hypergraph model
for D decomposition of sparse matrices. In: Proceedings of th
International Parallel and Distributed Processing Symposium
(IPDPS), San Francisco, CA, April 

. Çatalyürek UV, Aykanat C () A hypergraph-partitioning
approach for coarse-graindecomposition. In:ACM/IEEE SC,
Denver, CO, November 

. Çatalyürek UV, Aykanat C, Kayaaslan E () Hypergraph
partitioning-based fill-reducing ordering. Technical Report
OSUBMI-TR--n and BU-CE-, Department of
Biomedical Informatics,TheOhio State University and Computer
Engineering Department, Bilkent University (Submitted)

. Çatalyürek UV, Aykanat C, Uçar B () On two-dimensional
sparse matrix partitioning: models, methods, and a recipe. SIAM
J Sci Comput ():–

. Grigori L, Boman E, Donfack S, Davis T () Hypergraph
unsymmetric nested dissection ordering for sparse LU factoriza-
tion. Technical Report -J, Sandia National Labs, Submit-
ted to SIAM J Sci Comp

. Karypis G, Kumar V () Multilevel algorithms for multi-
constraint hypergraph partitioning. Technical Report -,
Department of Computer Science, University ofMinnesota/Army
HPC Research Center, Minneapolis, MN 

. Karypis G, Kumar V, Aggarwal R, Shekhar S () hMeTiS a
hypergraph partitioning package, version ... Department of
Computer Science, University ofMinnesota/Army HPCResearch
Center, Minneapolis

. Lengauer T () Combinatorial algorithms for integrated cir-
cuit layout. Wiley–Teubner, Chichester

. Selvakkumaran N, Karypis G () Multi-objective hypergraph
partitioning algorithms for cut and maximum subdomain degree
minimization. In: Proceedings of ICCAD , San Jose, CA,
November 

. Uçar B, Aykanat C () Encapsulating multiple communi-
cation-cost metrics in partitioning sparse rectangular matrices
for parallel matrix-vector multiplies. SIAM J Sci Comput
():–

. Uçar B, Aykanat C () Partitioning sparse matrices for par-
allel preconditioned iterative methods. SIAM J Sci Comput
():–

. Uçar B,AykanatC ()Revisiting hypergraphmodels for sparse
matrix partitioning. SIAM Review ():–

. Uçar B, Çatalyürek UV () On the scalability of hyper-
graph models for sparse matrix partitioning. In: Danelutto M,
Bourgeois J, Gross T (eds), Proceedings of the th Euromicro
Conference on Parallel, Distributed, and Network-based Process-
ing, IEEE Computer Society, Conference Publishing Services,
pp –

. Uçar B, Çatalyürek UV, Aykanat C () A matrix parti-
tioning interface to PaToH in MATLAB. Parallel Computing
(–):–

. Vastenhouw B, Bisseling RH () A two-dimensional data dis-
tribution method for parallel sparsematrix-vector multiplication.
SIAM Review ():–

Hyperplane Partitioning

�Tiling

http://www.cs.sandia.gov/Zoltan/ug_html/ug.html
http://www.cs.bilkent.edu.tr/tech-reports/1999/ABSTRACTS.1999.html
http://www.cs.bilkent.edu.tr/tech-reports/1999/ABSTRACTS.1999.html
http://bmi.osu.edu/~umit/software.htm
http://dx.doi.org/10.1007/978-0-387-09766-4_511

 H HyperTransport

HyperTransport

Federico Silla
Universidad Politécnica de Valencia, Valencia, Spain

Synonyms
HT; HT.

Definition
HyperTransport is a scalable packet-based, high-
bandwidth, and low-latency point-to-point intercon-
nect technology intended to interconnect proces-
sors and also link them to I/O peripheral devices.
HyperTransport was initially devised as an efficient
replacement for traditional system buses for on-board
communications. Nevertheless, the last extension to
the standard, referred to as High Node Count Hyper-
Transport, as well as the recent standardization of new
cables and connectors, allow HyperTransport to effi-
ciently extend its interconnection capabilities beyond a
single motherboard and become a very efficient tech-
nology to interconnect processors and I/O devices in a
cluster. HyperTransport is an open standard managed
by the HyperTransport Consortium.

Discussion
A complete description of the HyperTransport technol-
ogy should include both an introduction to the protocol
used by communicating devices to exchange data and
also a description of the electrical interface that this
technology makes use of in order to achieve its tremen-
dous performance. However, describing the electrical
interface seems to be less interesting than the proto-
col itself and, additionally, requires the reader to have
a large electrical background. Therefore, the following
description will be focused on the protocol used by the
HyperTransport technology, leaving aside the electrical
details. On the other hand, the protocol used by Hyper-
Transport is a quite complex piece of technology, thus
requiring an extensive explanation, whichmay be out of
the scope of this encyclopedia. For this reason, the fol-
lowing description just tries to be a brief introduction
to HyperTransport. Finally, the reader should note that
AMD uses an extended version of the HyperTransport
protocol in order to provide cache coherency among the
processors in a system. Such extended protocol, usually

referred to as coherent HyperTransport (cHT), is pro-
prietary toAMD, and therefore it is not described in this
document. Nevertheless, the main difference between
both protocols is that the coherent one includes some
additional types of packets.

HyperTransport Links
The HyperTransport technology is a point-to-point
communication standard, meaning that each of the
HyperTransport links in the system connects exactly
two devices. Figure  shows a simplified diagram of a
system that deploys HyperTransport in order to inter-
connect the devices it is composed of. As can be seen in
that figure, the main processor is connected to a PCIe
device by means of a HyperTransport link. That PCIe
device is, at the same time, connected to a GigaByte
Ethernet device, which is, additionally, connected to a
SATA device. This device connects to a USB device. All
of these devices make up a HyperTransport daisy chain.
Nevertheless, devices can implement multiple Hyper-
Transport links in order to build larger HyperTransport
fabrics.

Each of the links depicted in Fig.  consists of two
unidirectional and independent sets of signals. Each of
these sets includes its own CAD signal, as well as CTL
and CLK signals.

Memory

HyperTransport
link

CPU

PCle

GB Eth

SATA

USB

HyperTransport. Fig.  System deploying HyperTransport

http://dx.doi.org/10.1007/978-0-387-09766-4_2353
http://dx.doi.org/10.1007/978-0-387-09766-4_2352

HyperTransport H 

H

The CAD signal (named after Command, Address,
andData) carries control and data packets.TheCTL sig-
nal (named after ConTroL) is intended to differentiate
control from data packets in the CAD signal. Finally,
the CLK signal (named after CLocK) carries the clock
for the CAD and CTL signals. Figure  shows a diagram
presenting all these signals.

The width of the CAD signal is variable from  to 
bits. Actually, not all values are possible. Only widths
of -, -, -, -, or -bits are allowed. Neverthe-
less, note that the HyperTransport protocol remains
the same independently of the exact link width. More
precisely, the format of the packets exchanged among
HyperTransport devices does not depend on link width.
However, a given packet will require more time to be
transmitted in a -bit link than in a -bit one. The
reason for having several widths for the CAD signal
is allowing system developers to tune their system for
a given performance/cost design point. Narrower links
will be cheaper to implement, but they will also provide
lower performance.

On the other hand, the width of the CAD signal in
each of the unidirectional portions of the link may be
different, that is, HyperTransport allows asymmetrical
link widths. Therefore, a given device may implement a
-bit wide link in one direction while deploying a -bit
link in the other, for example. The usefulness of such
asymmetry is based on the fact that, if such a device
sends most of its data in one direction and receives a
limited amount of data in the other direction, then the
system designer can reduce manufacturing cost by pro-
viding a wide link in the direction that requires higher

bandwidth and a narrow link for the opposite direction,
which requires much less bandwidth.

In addition to the variable link width, HyperTrans-
port also supports variable clock speeds, thus increasing
even more the possibilities the system designer has for
tuning the bandwidth of the links.The clock speeds cur-
rently supported by the HyperTransport specification
are MHz, MHz, MHz, MHz, MHz,
 MHz,  GHz, . GHz, . GHz,  GHz, . GHz,
.GHz, . GHz,  GHz, and . GHz.Moreover, clock
frequency in both directions of a link does not need to
be the same, thus introducing an additional degree of
asymmetry. On the other hand, the clock mechanism
used in HyperTransport is referred to as double data
rate (DDR), which means that rising and falling edges
of the clock signal are used to latch data, thus achiev-
ing an effective clock frequency that doubles the actual
clock rate.

In summary, when variable link width is combined
with variable clock frequency, HyperTransport links
present an extraordinary scalability in terms of perfor-
mance. For example, when both directions of a link
are -bit wide working at  MHz, link bandwidth
is  MB/s. This would be the lowest performance/
lowest cost configuration. On the opposite, when -bit
wide links are used at . GHz, overall link performance
rises up to . GB/s. This implementation represents
the highest bandwidth configuration, also presenting
the highest manufacturing cost. This link configura-
tion could be interesting for extreme performance sys-
tems, for example, which usually require as much band-
width as possible. On the other hand, slow devices not

CAD

HyperTransport
device 1

HyperTransport
device 2

CTL

CLK

CAD

CTL

CLK

HyperTransport. Fig.  Signals in a HyperTransport link

 H HyperTransport

requiring high bandwidth could reduce cost by using
narrow links. If these links are additionally clocked at
low frequencies, then power consumption is further
reduced.

In the same way that the CAD signal can be imple-
mented with a variable width, the CTL and CLK signals
can also be implemented with several widths. However,
their width does not depend on the implementer’s crite-
rion to choose a performance/cost design point, but on
the width of the CAD signal. Additionally, as the CAD
signal can present a different width in each direction of
the link, then the width of the CTL and CLK signals
can also be different in each direction, depending on the
corresponding CAD signal in that direction.

In the case of the CTL signal, there is an individual
CTL bit for each set of , or fewer, CAD bits. Therefore,
, , or  CTL bits can be found in a HyperTransport
link. Moreover, the CTL bits are encoded in such a way
that four CTL bits are transferred every  CAD bits.
These four bits are intended to denote different flavors
of the information being transmitted in the CAD signal.
These different flavors may include, for example, that a
command is being transmitted, that a CRC for a com-
mand without data is in the CAD signal, that the CAD
signal is being used by a data packet, etc.

In the case for the CLK signal, a HyperTransport
link has an individual CLK bit for every set of , or
fewer, CAD bits. Thus, the number of CTL and CLK
bits in a given link is the same. The reason for hav-
ing a CLK bit for every  bits of the CAD signal is
because link implementation is made easier. Effectively,
the HyperTransport clocking scheme requires that the
skewbetween clock and data signalsmust beminimized
in order to achieve high transmission rates. Therefore,
having a CLK bit for every  CAD bits allows that dif-
ferences in trace lengths in the board layout are much
lower than just having a CLK bit for the entire set of
CAD bits.

In addition to the signals mentioned above, all
HyperTransport devices share one PWROK and one
RESET# signals for initialization and reset purposes.
Moreover, if devices require power management, they
should additionally include LDTSTOP# and LDTREQ#
signals.

HyperTransport Packets
Once described the links that connect devices in a
HyperTransport fabric, this section presents the packets

that are forwarded along those links. Packets in Hyper-
Transport are multiples of -bytes long and carry the
command, address, and data associatedwith each trans-
action among devices. Packets can be classified into
control and data packets.

Control packets are used to initiate and finalize
transactions as well as to manage several HyperTrans-
port features, and consist of  or  bytes. Control packets
can be classified into information, request, and response
packets.

Information packets are used for several link
management purposes, like link synchronization, error
condition signaling, and updating flow control infor-
mation. Information packets are always  bytes long and
can only be exchanged among adjacent devices directly
interconnected by a link.

On the other hand, request and response control
packets are used to build HyperTransport transactions.
Request packets, which are - or -bytes long, are used
to initiate HyperTransport transactions. On the other
hand, response packets, which are always -bytes long,
are used in the response phase of transactions to reply
to a previous request. Table  shows the different request
and response types of packets. As can be seen, there
are two different types of sized writes: posted and non-
posted. Although both types write data to the target
device of the request packet, their semantics are differ-
ent. Non-posted writes require a response packet to be
sent back to the requesting device in order to confirm
that the operation has completed. On the other hand,
posted writes do not require such confirmation.

HyperTransport. Table  Types of request and response

control packets

Packet type

Request packet Sized read

Sized write (non-posted)

Sized write (posted)

Atomic read-modify-write

Broadcast

Flush

Fence

Address extension

Source identifier extension

Response packet Read response

Target done

HyperTransport H 

H

All the packet types will be further described in next
section, except the extension packets. These packets are
-bytes long extensions that prepend some of the other
packets, when required.Their purpose is to allow -bit
addressing instead of the -bit one used by default, in
the case of the Address Extension, or -bit source iden-
tifiers in bus-device-function format in the case of the
Source Identifier Extension.

With respect to data packets, they carry the actual
data transferred among devices. Data packets only
include data, with no associated control field.Therefore,
data packets immediately follow the associated control
packet. For example, a read response control packet,
which includes no data, will be followed by the asso-
ciated data packet carrying the read data. In the same
way, a write request control packet will be followed by
the data to be written.

Data packet length depends on the command that
generated that data packet. Nevertheless, the maximum
length is  bytes.

HyperTransport Transactions
HyperTransport devices transfer data by means of
transactions. For example, every time a device requests
some data from another device, the former initiates a
read transaction targeted to the latter. Write transac-
tions happen in a similar way. For example, when a
program writes some data to disk, a write transaction
is initiated among the processor, which reads the data
from main memory, and the SATA device depicted in
Fig. . Other transactions include broadcasting a mes-
sage or explicitly taking control of the order of pending
transactions.

Every transaction has a request phase. Request con-
trol packets are used in this phase. The exact request
control packet to be used depends on the particular
transaction taking place. On the other hand, many
transactions require a response stage. Response control
packets are used in this case, for example, to return read
data from the target of the transaction, or to confirm its
completion.

There are six basic transaction types:

● Sized read transaction
● Sized write transaction
● Atomic read-modify-write transaction
● Broadcast transaction

● Flush transaction
● Fence transaction

Sized Read Transaction
Sized read transactions are used by devices when they
request data located in the address space of another
device. For example, when a device wants to read data
from main memory, it starts a read transaction tar-
geted to the main processor. Also, when the processor
requires some data from the USB device in Fig. , it will
issue a read transaction destined to that device.

Read transactions begin with a sized read request
control packet being issued by the device requesting the
data. Once this packet reaches the destination device,
it accesses the requested data and generates a response.
This response will be composed of a read response con-
trol packet followed by the read data, included in a data
packet. Once these two packets arrive at the device that
initiated the process, the transaction is completed.

It is noteworthy mentioning that during the time
elapsed since the requestor delivered the read request
on the link until it receives the corresponding response,
the HyperTransport chain is not idle. On the opposite,
as HyperTransport is a split transaction protocol, other
transactions can be issued (even finalized) before our
requestor receives the required data.

SizedWrite Transaction
Sized write transactions are similar to sized read ones,
with the difference that the requestor device writes data
to the target device instead of requesting data from it.
A write transaction may happen when a device sends
data to memory, or when the processor writes back data
frommemory to disk, for example.

There are two different sized write transactions:
posted and non-posted. Posted write transactions start
when the requestor sends to the target a posted write
request control packet followed by a data packet con-
taining the data to be written. In this case, because
of the posted nature of the transaction, no response
packet is sent back to the requestor. On the other hand,
non-posted write transactions begin with a non-posted
write control packet being issued by the requestor (fol-
lowed by a data packet). In this case, when both packets
reach the destination and the data are written, the target
issues back a target-done response control packet to the
requestor. When the requestor receives this response,
the transaction is finished.

 H HyperTransport

Atomic Read-Modify-Write Transaction
Atomic read-modify-write transactions are intended to
atomically access amemory location andmodify it.This
means that no other device in the systemmay access the
same memory location during the time required to read
and modify it. This is useful to avoid race conditions
among devices while performing the mutual exclusion
required to access a critical section, for example.

Two different types of atomic operations are
allowed:

● Fetch and Add
● Compare and Swap

The Fetch and Add operation is:

Fetch_and_Add(Out, Addr, In) {
Out = Mem[Addr];
Mem[Addr] = Mem[Addr] + In;
}

The Compare and Swap operation is:

Compare_and_Swap(Out, Addr, Compare,
In) {

Out = Mem[Addr];
If (Mem[Addr] == Compare) Mem[Addr]
= In;
}

The atomic transaction begins when the requestor
issues an atomic read-modify-write request control
packet on the link followed by a data packet con-
taining the argument of the atomic operation. Once
both packets are received at the target and it performs
the requested atomic operation, it will send back a
read response control packet followed by a data packet
containing the original data read from the memory
location.

Broadcast Transaction
This transaction is used by the processor to commu-
nicate information to all HyperTransport devices in
the system. This transaction is started with a broadcast
request control packet, which can only be issued by the
processor. All the other devices accept that packet and
forward it to the rest of devices in the system. Broadcast
requests include halt, shutdown, and End-Of-Interrupt
commands.

Flush Transaction
Posted writes do not generate any response once com-
pleted. Therefore, when a device issues one or more
posted writes targeted to the main processor in order
to write some data to main memory, the issuing device
has no way to know that those writes have effectively
completed their way to memory. Thus, if some of the
postedwrites have not been completely written tomem-
ory, that data will not be visible to other devices in the
system. In this scenario, flush transactions allow the
device that issued the posted writes to make sure that
data has reached main memory by flushing all pending
posted writes to memory.

Flush transactions begin when a device issues a
flush control packet targeted to the processor. Once this
control packet reaches the destination, all pending
transactions will be flushed to memory and then the
processor will generate a target-done response con-
trol packet back to the requestor. Once this packet is
received, the transaction is completed.

Fence Transaction
The fence transaction is intended to provide a barrier
among posted writes. When a processor (the only pos-
sible target of a fence transaction) receives a fence com-
mand, it will make sure that no posted write received
after the fence command is written to memory before
any of the posted writes received earlier than the fence
command.

The fence transaction begins when a device issues a
fence control packet. No response is generated for this
transaction.

Virtual Channels and Flow Control
in HyperTransport
All the different types of control and data packets are
multiplexed on the same link and stored in input buffers
when they reach the receiving end of the link. Then,
they are either accepted by that device in case they
are targeted to it or forwarded to the next link in
the chain.

If packets are not carefully managed, a protocol
deadlock may occur. For example, if many devices in
the system issue a large number of non-posted requests,
those requests may fill up all the available buffers and
hinder responses to make forward progress back to the
initial requestors. In this case, requestors would stop

HyperTransport H 

H

forever because they are waiting for responses that will
never arrive because the interconnect is full of requests
that avoid responses to advance. Additionally, requests
stored in the intermediate buffers will not be able to
advance toward their destination because output buffers
at the targets will be filled with responses that can-
not enter the link, thus hindering targets to accept new
requests from the link because they have no free space
neither to store them nor to store the responses they
would generate. As can be seen, in this situation, no
packet can advance because of lack of available free
buffers. The result is that the system freezes.

In order to avoid such deadlocks, HyperTransport
splits traffic into virtual channels and stores different
types of packets in buffers belonging to different vir-
tual channels. Additionally, HyperTransport does not
allow that packets traveling in one virtual channel move
to another virtual channel. In this way, if non-posted
requests use a virtual channel different from the one
used by responses, the deadlock described above can be
avoided.

HyperTransport defines a base set of virtual chan-
nels that must be supported by all HyperTransport
devices. Moreover, some additional virtual channel sets
are also defined, although support for them is optional.
Regarding the base set, it includes three different virtual
channels:

● The posted request virtual channel, which carries
posted write transactions

● The non-posted request virtual channel, which
includes reads, non-posted writes, and flush packets

● The response virtual channel, which is responsible
for read responses and target-done control packets

In addition to separate traffic into the three virtual
channels mentioned above, each device must imple-
ment separate control and data buffers for each of the
virtual channels.Therefore, there are six types of buffers:

● Non-posted request control buffer
● Posted request control buffer
● Response control buffer
● Non-posted request data buffer
● Posted request data buffer
● Response data buffer

Figure  shows the basic buffer configuration for a
HyperTransport link. The exact number of packets that

can be stored in each buffer depends on the implemen-
tation. Nevertheless, request and response buffers must
contain, at least, enough space to store the largest con-
trol packet of that type. Also, all data buffers can hold
 bytes. Moreover, in order to improve performance, a
HyperTransport device may have larger buffers, able to
store multiple packets of each type.

TheHyperTransport protocol states that a transmit-
ter should not issue a packet that cannot be stored by
the receiver.Thus, the transmittermust knowhowmany
buffers of each type the receiver has available. To achieve
this, a credit-based scheme is used between transmit-
ters and receivers. With such scheme, the transmitter
has a counter for each type of buffer implemented at the
receiver. When the transmitter sends a packet, it decre-
ments the associated counter. When one of the counters
reaches zero, the transmitter stops sending packets of
that type. On the other hand, when the receiver frees a
buffer, it sends back a NOP control packet (No Oper-
ation Packet) to the transmitter in order to update it
about space availability.

Extending the HyperTransport Fabric
The system depicted in Fig.  consists of several
HyperTransport devices interconnected in a daisy
chain. However, more complex topologies can also be
implemented by usingHyperTransport bridges. Bridges
in HyperTransport are devices having a primary link
connecting toward the processor and one or more sec-
ondary links that allow extending the topology in the
opposite direction. In this way, HyperTransport trees,
like the one shown in Fig. , can be implemented.

In addition to the use of bridges, HyperTransport
defines two more features able to expand a HyperTrans-
port system. These features are the AC mode and the
HTX connector. The AC mode allows devices to be
connected over longer distances than allowed by reg-
ular links, which make use of the DC mode. On the
other hand, the HTX connector allows external expan-
sion cards to be plugged to the HyperTransport link,
and be presented to the rest of the system as any other
HyperTransport device.

Improving the Scalability
of HyperTransport
As shown above, HyperTransport offers some degree of
scalability that enables the implementation of efficient

 H HyperTransport

Control
buffer

Posted request VC

Non posted request VC

Response VC

Posted request VC

Non posted request VC

Response VC

Receiver

Device 1 Device 2

Transmitter Receiver

Transmitter

Data
buffer

Control
buffer

Data
buffer

Control
buffer

Data
buffer

Control
buffer

Data
buffer

Control
buffer

Data
buffer

Control
buffer

Data
buffer

Control
buffer

Posted request VC

Non posted request VC

Response VC

Posted request VC

Non posted request VC

Response VC

Data
buffer

Control
buffer

Data
buffer

Control
buffer

Data
buffer

Control
buffer

Data
buffer

Control
buffer

Data
buffer

Control
buffer

Data
buffer

HyperTransport. Fig.  Buffer configuration for a HyperTransport link

topologies. Nevertheless, as HyperTransport was ini-
tially designed to replace traditional system buses, its
benefits are mainly confined to interconnects within
a single motherboard. Therefore, when HyperTrans-
port topologies are to be scaled to larger sizes, in order
to interconnect the processors and I/O subsystems in
several motherboards (e.g., an entire cluster), Hyper-
Transport is not able to do so because such large system
sizes require routing capabilities that exceed current

HyperTransport ones. More specifically, HyperTrans-
port is not able to provide device addressability beyond
 devices. Additionally, it does not support efficient
routing in scalable network topologies. As a result, high-
performance computing vendors have no choice but
to complement HyperTransport with other intercon-
nect technologies, link Infiniband in the case for general
purpose clusters, or proprietary interconnects, like in
the case for Cray’s XT and XT supercomputers [].

HyperTransport H 

H

Memory

CPU

HT device

HT bridge

HT device HT device

HT device HT device

HyperTransport. Fig.  HyperTransport tree topology

In order to overcome the limitations of HyperTrans-
port ., an extension to it named High Node Count
HyperTransport Specification was recently released.
This extension supports very large system sizes, like the
ones found in large data centers, at the same time that
it is fully compatible with theHyperTransport specifica-
tion. Additionally, the new extension adds a few bytes to
current HyperTransport packets, but only in the cases
where strictly required, thus minimizing the protocol
overhead.

Briefly, the new extension provides an improved
addressing scheme and a new control packet that allow
HyperTransport devices to address any other device
in large clusters. Additionally, new HyperTransport
connectors and cables have been recently standardized
in order to efficiently allow the deployment of the High
Node Count HyperTransport Specification.

Related Entries
�Busses and Crossbars
�Data Centers
�Interconnection Networks
�PCI-Express
�PGAS (Partitioned Global Address Space) Languages

Bibliographic Notes and Further
Reading
Thecomplete description ofHyperTransport . can be
found in the HyperTransport I/O link specification .
[]. Additionally, readers are also encouraged to look up
more information on HyperTransport in []. This book
nicely describes theHyperTransport technology.On the
other hand, a complete description of the High Node
Count HyperTransport Specification can be found in
[]. Finally, many white papers and additional infor-
mation are publicly available in the HyperTransport
Consortium web site [].

Bibliography
. Cray Inc. () Cray XT specifications. Available online at
http://www.cray.com

. Duato J, Silla F, Holden B, Miranda P, Underhill J, Cavalli M,
Yalamanchili S, Brüning U () Extending HyperTransport
protocol for improved Scalability. In: Proceedings of the first
international workshop on hypertransport research and applica-
tions, Mannheim, Germany, pp –

. Holden B, Trodden J, Anderson D () HyperTransport .
interconnect technology: a comprehensive guide to the st, nd,
and rd generations. MindShare Inc, Colorado Springs, CO

. HyperTransport Technology Consortium web site. http://www.
hypertransport.org. Accessed 

. HyperTransport Technology Consortium. HyperTransport I/O
link specification revision .. Available online at http://www.
hypertransport.org. Accessed 

http://dx.doi.org/10.1007/978-0-387-09766-4_391
http://dx.doi.org/10.1007/978-0-387-09766-4_484
http://dx.doi.org/10.1007/978-0-387-09766-4_2357
http://dx.doi.org/10.1007/978-0-387-09766-4_210
http://www.cray.com
http://www.hypertransport.org
http://www.hypertransport.org
http://www.hypertransport.org
http://www.hypertransport.org
http://dx.doi.org/10.1007/978-0-387-09766-4_476

	H
	Half Vector Length
	Hang
	Harmful Shared-Memory Access
	Haskell
	Hazard (in Hardware)
	HDF5
	Synonyms
	Definition
	Discussion
	Introduction
	Data Model
	Examples of Using HDF5
	Higher-Level Data Models Built on HDF5
	Library Interface
	File Format
	Tools
	Parallel File I/O
	Significant Parallel Applications and Libraries That Use HDF5
	netCDF, PnetCDF, and HDF5
	Future Directions

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	HEP, Denelcor
	Heterogeneous Element Processor
	Hierarchical Data Format
	High Performance Fortran (HPF)
	High-Level I/O Library
	High-Performance I/O
	Homology to Sequence Alignment, From
	Introduction
	Pairwise Sequence Alignment
	Case Study: Smith–Waterman Algorithm

	Sequence Database Search
	Case Study: mpiBLAST

	Multiple Sequence Alignment
	Case Study: ClustalW
	Case Study: T-Coffee
	Related Entries
	Bibliographic Notes and FurtherReading
	Bibliography

	Horizon
	HPC Challenge Benchmark
	Definition
	Discussion
	The TOP500 Influence
	Short History of the Benchmark
	The Benchmark Tests' Details
	Benchmark Submission Procedures and Results
	Related Entries
	Bibliography

	HPF (High Performance Fortran)
	Bibliography

	HPS Microarchitecture
	Synonyms
	Definition
	Discussion
	Bibliography

	HT
	HT3.10
	Hybrid Programming With SIMPLE
	SMP Node
	Simple
	The Alltoall Primitive
	Data Parallel
	Control
	Memory Management
	A Possible Approach
	Bibliography

	Hypercube
	Hypercubes and Meshes
	Synonyms
	Definition
	Discussion
	Introduction and Technical Background
	History
	Significance of Parallel Algorithms and Their Communication Patterns
	Algorithms with Pure Hypercube Communication Patterns
	Algorithms with Next Neighbor Communication Pattern
	Meshes as a Generalization of Binary Hypercubes into k-ary n-Cubes
	Mapping Hypercube Algorithms into Meshes and Tori
	Limitations of the Hypercube Machines
	Hypercube Machine Prototypes and Products
	Research Conferences on Hypercubes

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Hypergraph Partitioning
	Definition
	Discussion
	Introduction
	Formal Definition of Hypergraph Partitioning
	Sparse Matrix Partitioning

	Three Main Models for Matrix Partitioning
	Some Other Methods for Matrix Partitioning

	Some Other Applications of Hypergraph Partitioning
	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Hyperplane Partitioning
	HyperTransport
	Synonyms
	Definition
	Discussion
	HyperTransport Links
	HyperTransport Packets
	HyperTransport Transactions
	Sized Read Transaction
	Sized Write Transaction
	Atomic Read-Modify-Write Transaction
	Broadcast Transaction
	Flush Transaction
	Fence Transaction

	Virtual Channels and Flow Control in HyperTransport
	Extending the HyperTransport Fabric
	Improving the Scalability of HyperTransport

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

