! Scalability

» Metrics
»Single System Image

! Scalable Coherent Interface (SCl)

»SCI (Scalable Coherent Interface)

' ScaLAPACK

JACKk DONGARRA, P10TR LUSZCZEK
University of Tennessee, Knoxville, TN, USA

Definition

ScaLAPACK is a library of high-performance linear
algebra routines for distributed-memory message-
passing MIMD computers and networks of
workstations supporting PVM [1] and/or MPI [2, 3].
It is a continuation of the LAPACK [4] project, which
designed and produced analogous software for work-
stations, vector supercomputers, and shared-memory
parallel computers.

Discussion

Both LAPACK and ScaLAPACK libraries contain rou-
tines for solving systems of linear equations, least
squares problems, and eigenvalue problems. The goals
of both projects are efliciency (to run as fast as pos-
sible), scalability (as the problem size and number of
processors grow), reliability (including error bounds),
portability (across all important parallel machines),
flexibility (so users can construct new routines from
well-designed parts), and ease of use (by making the
interface to LAPACK and ScaLAPACK look as sim-
ilar as possible). Many of these goals, particularly

portability, are aided by developing and promoting
standards, especially for low-level communication and

computation routines. These goals have been success-
fully attained, limiting most machine dependencies to
two standard libraries called the BLAS, or Basic Lin-
ear Algebra Subprograms [5-8], and BLACS, or Basic
Linear Algebra Communication Subprograms [9, 10].
LAPACK will run on any machine where the BLAS are
available, and ScaLAPACK will run on any machine
where both the BLAS and the BLACS are available.

The library is written in Fortran 77 (with the excep-
tion of a few symmetric eigenproblem auxiliary routines
written in C to exploit IEEE arithmetic) in a Single Pro-
gram Multiple Data (SPMD) style using explicit mes-
sage passing for interprocessor communication. The
name ScaLAPACK is an acronym for Scalable Linear
Algebra PACKage, or Scalable LAPACK.

ScaLAPACK can solve systems of linear equations,
linear least squares problems, eigenvalue problems, and
singular value problems. ScaLAPACK can also handle
many associated computations such as matrix factoriza-
tions or estimating condition numbers.

Like LAPACK, the ScaLAPACK routines are based
on block-partitioned algorithms in order to minimize
the frequency of data movement between different
levels of the memory hierarchy. The fundamental build-
ing blocks of the ScaLAPACK library are distributed-
memory versions of the Level 1, Level 2, and Level 3
BLAS, called the Parallel BLAS or PBLAS [11, 12], and
a set of Basic Linear Algebra Communication Subpro-
grams (BLACS) [9, 10] for communication tasks that
arise frequently in parallel linear algebra computations.
In the ScaLAPACK routines, the majority of interpro-
cessor communication occurs within the PBLAS. So the
source code of the top software layer of ScaLAPACK
looks similar to that of LAPACK.

ScaLAPACK contains driver routines for solving
standard types of problems, computational routines
to perform a distinct computational task, and auxil-
iary routines to perform a certain subtask or common

David Padua (ed.), Encyclopedia of Parallel Computing, DOI 10.1007/978-0-387-09766-4,

© Springer Science+Business Media, LLC 2011

http://dx.doi.org/10.1007/978-0-387-09766-4_69
http://dx.doi.org/10.1007/978-0-387-09766-4_215
http://dx.doi.org/10.1007/978-0-387-09766-4_20

1774

ScaLAPACK

low-level computation. Each driver routine typically
calls a sequence of computational routines. Taken as
a whole, the computational routines can perform a
wider range of tasks than are covered by the driver rou-
tines. Many of the auxiliary routines may be of use to
numerical analysts or software developers, so the For-
tran source for these routines have been documented
with the same level of detail used for the ScaLAPACK
computational routines and driver routines.

Dense and band matrices are provided for, but not
general sparse matrices. Similar functionality is pro-
vided for real and complex matrices. However, not
all the facilities of LAPACK are covered by ScaLA-
PACK yet.

ScaLAPACK is designed to give high efficiency on
MIMD distributed-memory concurrent supercomput-
ers, such as the older ones like Intel Paragon, IBM SP
series, and the Cray T3 series, as well as the newer
ones, such IBM Blue Gene series and Cray XT series of
supercomputers. In addition, the software is designed
so that it can be used with clusters of workstations
through a networked environment and with a hetero-
geneous computing environment via PVM or MPL
Indeed, ScaLAPACK can run on any machine that sup-
ports either PVM or MPL

The ScaLAPACK strategy for combining efficiency
with portability is to construct the software so that as
much as possible of the computation is performed by

SCALAPACK

calls to the Parallel Basic Linear Algebra Subprograms
(PBLAS). The PBLAS [11, 12] perform global compu-
tation by relying on the Basic Linear Algebra Subpro-
grams (BLAS) [5-8] for local computation and the Basic
Linear Algebra Communication Subprograms (BLACS)
[9,10] for communication.

The efficiency of ScaLAPACK software depends on
the use of block-partitioned algorithms and on efficient
implementations of the BLAS and the BLACS being
provided by computer vendors (and others) for their
machines. Thus, the BLAS and the BLACS form a low-
level interface between ScaLAPACK software and dif-
ferent machine architectures. Above this level, all of the
ScaLAPACK software is portable.

The BLAS, PBLAS, and the BLACS are not, strictly
speaking, part of ScaLAPACK. C code for the PBLAS
is included in the ScaLAPACK distribution. Since the
performance of the package depends upon the BLAS
and the BLACS being implemented efficiently, they have
not been included with the ScaLAPACK distribution.
A machine-specific implementation of the BLAS and
the BLACS should be used. If a machine-optimized ver-
sion of the BLAS is not available, a Fortran 77 reference
implementation of the BLAS is available from Netlib
[13]. This code constitutes the “model implementation”
[14, 15]. The model implementation of the BLAS is not
expected to perform as well as a specially tuned imple-
mentation on most high-performance computers — on

Global addressing

Local addressing

Platform independent

Platform specific

ScaLAPACK. Fig.1 ScalLAPACK's software hierarchy

Scalasca

1775

some machines it may give much worse performance -
but it allows users to run ScaLAPACK codes on
machines that do not offer any other implementation of
the BLAS.

If a vendor-optimized version of the BLACS is
not available for a specific architecture, efficiently
ported versions of the BLACS are available on Netlib.
Currently, the BLACS have been efficiently ported on
machine-specific message-passing libraries such as the
IBM (MPL) and Intel (NX) message-passing libraries,
as well as more generic interfaces such as PVM and
MPI. The BLACS overhead has been shown to be neg-
ligible [10]. Refer to the URL for the blacs directory
on Netlib for more details: http://www.netlib.org/blacs/
index.html

Figure 1 describes the ScaLAPACK software hier-
archy. The components below the line, labeled local
addressing, are called on a single processor, with
arguments stored on single processors only. The
components above the line, labeled global addressing,
are synchronous parallel routines, whose arguments
include matrices and vectors distributed across multiple
processors.

LAPACK and ScaLAPACK are freely available soft-
ware packages provided on the World Wide Web on
Netlib. They can be, and have been, included in com-
mercial packages. The authors ask only that proper
credit be given to them which is very much like the
modified BSD license.

Related Entries
»LAPACK
»Linear Algebra, Numerical

Bibliography
1. Geist A, Beguelin A, Dongarra], Jiang W, Manchek R, Sunderam
V (1994) Parallel Virtual Machine. A Users Guide and Tuto-
rial for Networked Parallel Computing. MIT Press, Cambridge,
MA, 1994
2. MPI Forum, MPI: A message passing interface standard, Inter-
national Journal of Supercomputer Applications and High Per-
formance Computing, 8 (1994), pp 3-4. Special issue on MPIL
Also available electronically, the URL is ftp://www.netlib.org/
mpi/mpi-report.ps
3. Snir M, Otto SW, Huss-Lederman S, Walker DW, Dongarra JJ
(1996) MPI: The Complete Reference, MIT Press, Cambridge, MA

4. Anderson E, Bai Z, Bischof C, Blackford LS, Demmel JW,
Dongarra], Du Croz J, Greenbaum A, Hammarling S,
McKenney A, Sorensen D, LAPACK Users’ Guide, SIAM, 1992

5. Hanson R, Krogh F, Lawson CA (1973) A proposal for standard
linear algebra subprograms, ACM SIGNUM Newsl, 8

6. Lawson CL, Hanson RJ, Kincaid D, Krogh FT (1979) Basic Linear
Algebra Subprograms for Fortran Usage, ACM Trans Math Soft
5:308-323

7. Dongarra JJ, Du Croz J, Hammarling Richard S, Hanson] (March
1988) An Extended Set of FORTRAN Basic Linear Algebra Sub-
routines, ACM Trans Math Soft 14(1):1-17

8. Dongarra JJ, Du Croz], Duff IS, Hammarling S (March 1990)
A Set of Level 3 Basic Linear Algebra Subprograms, ACM Trans
Math Soft 16(1):1-17

9. Dongarra J, van de Geijn R (1991) Two dimensional basic linear
algebra communication subprograms, Computer Science Dept.
Technical Report CS-91-138, University of Tennessee, Knoxville,
TN (Also LAPACK Working Note #37)

10. Dongarra J, Whaley RC (1995) A user’s guide to the BLACS vl1.1,
Computer Science Dept. Technical Report CS-95-281, University
of Tennessee, Knoxville, TN (Also LAPACK Working Note #94)

11. Choi J, Dongarra J, Ostrouchov S, Petitet A, Walker D,
Whaley RC (May 1995) A proposal for a set of parallel basic
linear algebra subprograms, Computer Science Dept. Technical
Report CS-95-292, University of Tennessee, Knoxville, TN (Also
LAPACK Working Note #100)

12. Petitet A (1996) Algorithmic Redistribution Methods for Block
Cyclic Decompositions, PhD thesis, University of Tennessee,
Knoxville, TN

13. Dongarra JJ, Grosse E (July 1987) Distribution of Mathematical
Software via Electronic Mail, Communications of the ACM 30(5):
403-407

14. Dongarra JJ, du Croz J, Duff IS, Hammarling S (1990) Algorithm
679: A set of Level 3 Basic Linear Algebra Subprograms, ACM
Trans Math Soft 16:18-28

15. Dongarra JJ, DU Croz J, Hammarling S, Hanson RJ (1998) Algo-
rithm 656: An extended set of FORTRAN Basic Linear Algebra
Subroutines, ACM Trans Math Soft 14:18-32

! Scalasca

FeLix WOLF
Aachen University, Aachen, Germany

Synonyms
The predecessor of Scalasca, from which Scalasca
evolved, is known by the name of KOJAK.

Definition
Scalasca is an open-source software tool that supports
the performance optimization of parallel programs by

http://www.netlib.org/blacs/ index.html
http://www.netlib.org/blacs/ index.html
http://dx.doi.org/10.1007/978-0-387-09766-4_152
http://dx.doi.org/10.1007/978-0-387-09766-4_126
ftp://www.netlib.org/mpi/mpi-report.ps
ftp://www.netlib.org/mpi/mpi-report.ps

1776

Scalasca

measuring and analyzing their runtime behavior. The
analysis identifies potential performance bottlenecks -
in particular those concerning communication and
synchronization - and offers guidance in exploring their
causes. Scalasca targets mainly scientific and engineer-
ing applications based on the programming interfaces
MPI and OpenMP, including hybrid applications based
on a combination of the two. The tool has been specit-
ically designed for use on large-scale systems including
IBM Blue Gene and Cray XT, but is also well suited for
small- and medium-scale HPC platforms.

Discussion

Driven by growing application requirements and accel-
erated by current trends in microprocessor design,
the number of processor cores on modern supercom-
puters is expanding from generation to generation.
As a consequence, supercomputing applications are
required to harness much higher degrees of parallelism
in order to satisfy their enormous demand for com-
puting power. However, with today’s leadership sys-
tems featuring more than a hundred thousand cores,
writing efficient codes that exploit all the available
parallelism becomes increasingly difficult. Performance
optimization is therefore expected to become an even
more essential software-process activity, critical for the
success of many simulation projects. The situation is
exacerbated by the fact that the growing number of
cores imposes scalability demands not only on appli-
cations but also on the software tools needed for their
development.

Making applications run efficiently on larger scales
is often thwarted by excessive communication and syn-
chronization overheads. Especially during simulations
of irregular and dynamic domains, these overheads are
often enlarged by wait states that appear in the wake
of load or communication imbalance when processes
fail to reach synchronization points simultaneously.
Even small delays of single processes may spread wait
states across the entire machine, and their accumulated
duration can constitute a substantial fraction of the
overall resource consumption. In particular, when try-
ing to scale communication-intensive applications to
large processor counts, such wait states can result in
substantial performance degradation.

To address these challenges, Scalasca has been
designed as a diagnostic tool to support application
optimization on highly scalable systems. Although
also covering single-node performance via hardware-
Scalasca mainly targets
communication and synchronization issues, whose
understanding is critical for scaling applications to per-
formance levels in the petaflops range. A distinctive
feature of Scalasca is its ability to identify wait states that
occur, for example, as a result of unevenly distributed
workloads.

counter measurements,

To evaluate the behavior of parallel programs, Scalasca
takes performance measurements at runtime to be ana-
lyzed postmortem (i.e., after program termination). The
user of Scalasca can choose between two different anal-
ysis modes:

e Performance overview on the call-path level via pro-
filing (called runtime summarization in Scalasca
terminology)

e In-depth study of application behavior via event
tracing

In profiling mode, Scalasca generates aggregate per-
formance metrics for individual function call paths,
which are useful for identifying the most resource-
intensive parts of the program and assessing process-
local performance via hardware-counter analysis. In
tracing mode, Scalasca goes one step further and
records individual performance-relevant events, allow-
ing the automatic identification of call paths that
exhibit wait states. This core feature is the reason why
Scalasca is classified as an automatic tool. As an alter-
native, the resulting traces can be visualized in a tra-
ditional time-line browser such as » VAMPIR to study
the detailed interactions among different processes or
threads. While providing more behavioral detail, traces
also consume significantly more storage space and
therefore have to be generated with care.

Figure 1 shows the basic analysis workflow sup-
ported by Scalasca. Before any performance data can be
collected, the target application must be instrumented,
that is, probes must be inserted into the code which
carry out the measurements. This can happen at differ-
ent levels, including source code, object code, or library.

http://dx.doi.org/10.1007/978-0-387-09766-4_60

Scalasca

1777

___________________________________]
l Optimized measurement configuration |
Measurement o N _5
library Profile . B
report 32
Instr. E > Report
target | - T —— £ explorer
application > Local > Parallel wait- | Wait-state . £
»| event traces »| state search report g
= = ; o
< Trace
Instrumented > browser
executable
Instrumenter/ Source
compiler/linker modules

Scalasca. Fig.1 Schematic overview of the performance data flow in Scalasca. Gray rectangles denote programs and white
rectangles with the upper right corner turned down denote files. Stacked symbols denote multiple instances of programs or
files, in most cases running or being processed in parallel. Hatched boxes represent optional third-party components

Before running the instrumented executable on the par-
allel machine, the user can choose between generating
a profile or an event trace. When tracing is enabled,
each process generates a trace file containing records for
its process-local events. To prevent traces from becom-
ing too large or inaccurate as a result of measurement
intrusion, it is generally recommended to optimize the
instrumentation based on a previously generated profile
report. After program termination, Scalasca loads the
trace files into main memory and analyzes them in par-
allel using as many cores as have been used for the target
application itself. During the analysis, Scalasca searches
for wait states, classifies detected instances by category,
and quantifies their significance. The result is a wait-
state report similar in structure to the profile report
but enriched with higher-level communication and syn-
chronization inefficiency metrics. Both profile and wait-
state reports contain performance metrics for every
combination of function call path and process/thread
and can be interactively examined in the provided anal-
ysis report explorer (Fig. 2) along the dimensions of
performance metric, call tree, and system. In addition,
reports can be combined or manipulated to allow com-
parisons or aggregations, or to focus the analysis on
specific extracts of a report. For example, the differ-
ence between two reports can be calculated to assess the
effectiveness of an optimization or a new report can be
generated after eliminating uninteresting phases (e.g.,
initialization).

Instrumentation

Preparation of a target application executable for mea-
surement and analysis requires it to be instrumented to
notify the measurement library, which is linked to the
executable, of performance-relevant execution events
whenever they occur at runtime. On all systems, a mix
of manual and automatic instrumentation mechanisms
is offered. Instrumentation configuration and process-
ing of source files are achieved by prefixing selected
compilation commands and the final link command
with the Scalasca instrumenter, without requiring other
changes to optimization levels or the build process, as
in the following example for the file foo. c:

> scalasca -instrument mpicc -c foo.c

Scalasca follows a direct instrumentation approach.
In contrast to interrupt-based sampling, which takes
periodic measurements whenever a timer expires,
Scalasca takes measurements when the control flow
reaches certain points in the code. These points mark
performance-relevant events, such as entering/leaving
a function or sending/receiving a message. Although
instrumentation points have to be chosen with care
to minimize intrusion, direct instrumentation offers
advantages for the global analysis of communica-
tion and synchronization operations. In addition to
pure direct instrumentation, future versions of Scalasca
will combine direct instrumentation with sampling in

1778 Scalasca
X @ Cube 3.0 QT cubes/zeusmp_vn512_v1.2.cube.gz Vo
File Display Topology Help
|own root percent =] |Own root percent =] |Peer percent |
Metric tree | Calitree | Fiatview | System tree | Topology0 Topology 1 |
& [J0.00 Time =1l [0 0.00 zeusmp =]
& [77.25 Execution [0.00 configure
& O o.00omPI [0.00 options
& [J 0.00 Synchronization [0.00 mstart
& [J 0.00 Communication - [J 0.00 datalo
&+ [5.06 Point-to-point - [0.00 clocks
&[0 10.21 Late Sender 5 [0 0.05 srestep
[0.00 Late Receiver 3] 0.00 transprt
& [2.75 Collective &[] 0.00ct
[0.00 Early Reduce [2.98 lorentz_d
[J 0.00 Early Scan [0.00 bvalvi
[0.01 Late Broadcast [0.00 bvaiv2
0 1.86 Waitat NxN [J 0.00 bvaivd
1 0.00NxN Comp 1 [Q1288 MPI_Waitall
& [J 0.00 File vO [J 0.00 hsmoc
L [0.08 Init/Exit [0 0.00 <<iloops>>
L [0 2.78 Overhead [28.10 bvalemtt
— [100.00 Visits [0.00 MPI_Waitall

& [100.00 Synchronizations
[100.00 Communications
§ [100.00 Bytes transferred
[100.00 Computational imbalance

[J 0.00 <<jloops>>
[25.67 bvalemf2
[J 0.00 <<kioops>>
[23.13 bvalemt3
& 0252 advxt

3 [1.52 adw2

er 0226 adw3

3 [0.00 intchk

s+ [0.89 nudt

- [J 0.00 MPI_Reduce

% [J 0.00 MPI_Finalize

| _I—J_J

000 e 102 100,00] [0.00

L T

Scalasca. Fig. 2 Interactive performance-report exploration for the Zeus MP/2 code [8] with Scalasca. The left pane lists

different performance metrics arranged in a specialization hierarchy. The selected metric is a frequently occurring wait

state called Late Sender, during which a process waits for a message that has not yet been sent (Fig. 3a). The number and

the color of the icon to the left of the label indicate the percentage of execution time lost due to this wait state, in this

case 10.21%. In the middle pane, the user can see which call paths are most affected. For example, 12.88% of the 10.21% is

caused by the call path zeusmp () — transprt() — ct() — MPI_Waitall ().The right pane shows the

distribution of waiting times for the selected combination of wait state and call path across the virtual process topology.
The display indicates that most wait states occur at the outer rim of a spherical region in the center of the

three-dimensional Cartesian topology

profiling mode to better control runtime dilation, while
still supporting global communication analyses [15].

Measurement

Measurements are collected and analyzed under the
control of a workflow manager that determines how the
application should be run, and then configures mea-
surement and analysis accordingly. When tracing is
requested, it automatically configures and executes the
parallel trace analyzer with the same number of pro-
cesses as used for measurement. The following examples
demonstrate how to request measurements from MPI
application bar to be executed with 65,536 ranks, once

in profiling and once in tracing mode (distinguished by
the use of the “-t” option).

> scalasca -analyze mpiexec \
-np 65536 bar <arglists>

> scalasca -analyze -t mpiexec \
-np 65536 bar <arglists>

Call-Path Profiling

Scalasca can efficiently calculate many execution per-
formance metrics by accumulating statistics during
measurement, avoiding the cost of storing them
with events for later analysis. For example, elapsed
times and hardware-counter metrics for source regions

Scalasca

1779

(e.g., routines or loops) can be immediately determined
and the differences accumulated. Whereas trace storage
requirements increase in proportion to the number of
events (dependent on the measurement duration), sum-
marized statistics for a call-path profile per thread have
a fixed storage requirement (dependent on the number
of threads and executed call paths).

In addition to call-path visit counts, execution
times, and optional hardware counter metrics, Scalasca
profiles include various MPI statistics, such as the
numbers of synchronization, communication and file
I/O operations along with the associated number of
bytes transferred. Each metric is broken down into col-
lective versus point-to-point/individual, sends/writes
versus receives/reads, and so on. Call-path execution
times separate MPI message-passing and OpenMP
multithreading costs from purely local computation,
and break them down further into initialization/fi-
nalization, synchronization, communication, file I/O
and thread management overheads (as appropriate).
For measurements using OpenMP, additional thread
idle time and limited parallelism metrics are derived,
assuming a dedicated core for each thread.

Scalasca provides accumulated metric values for
every combination of call path and thread. A call
path is defined as the list of code regions entered
but not yet left on the way to the currently active
one, typically starting from the main function, such
as in the call chain main() — foo() — bar().
Which regions actually appear on a call path depends
on which regions have been instrumented. When exe-
cution is complete, all locally executed call paths are
combined into a global dynamic call tree for interactive
exploration (as shown in the middle of Fig. 2, although
the screen shot actually visualizes a wait-state report).

Wait-State Analysis

In message-passing applications, processes often require
access to data provided by remote processes, making
the progress of a receiving process dependent upon the
progress of a sending process. If a rendezvous proto-
col is used, this relationship also applies in the opposite
direction. Collective synchronization is similar in that
its completion requires each participating process to
have reached a certain point. As a consequence, a signif-
icant fraction of the time spent in communication and
synchronization routines can often be attributed to wait

states that occur when processes fail to reach implicit
or explicit synchronization points in a timely manner.
Scalasca provides a diagnostic method that allows the
localization of wait states by automatically searching
event traces for characteristic patterns.

Figure 3 shows several examples of wait states that
can occur in message-passing programs. The first one
is the Late Sender pattern (Fig. 3a), where a receiver is
blocked while waiting for a message to arrive. That is,
the receive operation is entered by the destination pro-
cess before the corresponding send operation has been
entered by the source process. The waiting time lost as a
consequence is the time difference between entering the
send and the receive operations. Conversely, the Late
Receiver pattern (Fig. 3b) describes a sender that is likely
to be blocked while waiting for the receiver when a ren-
dezvous protocol is used. This can happen for several
reasons. Either the MPI implementation is working in
synchronous mode by default, or the size of the mes-
sage to be sent exceeds the available MPI-internal buffer
space and the operation is blocked until the data is
transferred to the receiver. The Late Sender / Wrong
Order pattern (Fig. 3c) describes a receiver waiting for
a message, although an earlier message is ready to be
received by the same destination process (i.e., messages
received in the wrong order). Finally, the Wait at NxN
pattern (Fig. 3d) quantifies the waiting time due to the
inherent synchronization in n-to-n operations, such as
MPI Allreduce (). A full list of the wait-state types
supported by Scalasca including explanatory diagrams
can be found online in the Scalasca documentation [11].

Parallel Wait-State Search

To accomplish the search in a scalable way, Scalasca
exploits both distributed memory and parallel process-
ing capabilities available on the target system. After
the target application has terminated and the trace
data have been flushed to disk, the trace analyzer is
launched with one analysis process per (target) appli-
cation process and loads the entire trace data into its
distributed memory address space. Future versions of
Scalasca may exploit persistent memory segments avail-
able on systems such as Blue Gene/P to pass the trace
data to the analysis stage without involving any file I/O.
While traversing the traces in parallel, the ana-
lyzer performs a replay of the application’s origi-
nal communication. During the replay, the analyzer

1780 Scalasca
A A -
@ 3 waiting
(0] 0
(7] [%]
[%] Q
3 MPI_Send () 3 MPI_Send ()
<] | S |
< |
. | I
waiting | |
. MPI_Recv () — MPI_Recv () [—
time . time
a Late Sender b Late Receiver
o 4 » A
9 MPI_Send () b
17 (%2}
§ § MPI_Allreduce () _—
a ! S <—>i
| waiting
MPI_Send() | !
|
— | MPI_Allreduce () —
——p
| waiting I
| ,
— MPI_Recv () ~ MPI_Recv () MPT_Allr. ——
——>
waiting - R
time time
C Late Sender / Wrong Order Wait at Nx N

Scalasca. Fig. 3 Four examples of wait states (a—d) detected by Scalasca. The combination of MPI functions used in each

of these examples represents just one possible case. For instance, the blocking receive operation in wait state (a) can be

replaced by a non-blocking receive followed by a wait operation. In this case, the waiting time would occur during the

wait operation

identifies wait states in communication and synchro-
nization operations by measuring temporal differences
between local and remote events after their time stamps
have been exchanged using an operation of similar
type. Detected wait-state instances are classified and
quantified according to their significance for every
call path and system resource involved. Since trace
processing capabilities (i.e., processors and memory)
grow proportionally with the number of application
processes, good scalability can be achieved even at pre-
viously intractable scales. Recent scalability improve-
ments allowed Scalasca to complete trace analyses
of runs with up to 294,912 cores on a 72-rack IBM
Blue Gene/P system [23].

A modified form of the replay-based trace anal-
ysis scheme is also applied to detect wait states
occurring in MPI-2 RMA operations. In this case, RMA
communication is used to exchange the required
information between processes. Finally, Scalasca also

provides the ability to process traces from hybrid
MPI/OpenMP and pure OpenMP applications. How-
ever, the parallel wait-state search does not yet recognize
OpenMP-specific wait states, such as barrier waiting
time or lock contention, previously supported by its
predecessor.

Wait-State Search on Clusters without

Global Clock

To allow accurate trace analyses on systems without
globally synchronized clocks, Scalasca can synchronize
inaccurate time stamps postmortem. Linear interpola-
tion based on clock offset measurements during pro-
gram initialization and finalization already accounts
for differences in offset and drift, assuming that the
drift of an individual processor is not time depen-
dent. This step is mandatory on all systems without a
global clock, such as Cray XT and most PC or com-
pute blade clusters. However, inaccuracies and drifts

Scalasca

1781

varying over time can still cause violations of the log-
ical event order that are harmful to the accuracy of the
analysis. For this reason, Scalasca compensates for such
violations by shifting communication events in time
as much as needed to restore the logical event order
while trying to preserve the length of intervals between
local events. This logical synchronization is currently
optional and should be performed if the trace analy-
sis reports (too many) violations of the logical event
order.

Future enhancements of Scalasca will aim at fur-
ther improving both its functionality and its scala-
bility. In addition to supporting the more advanced
features of OpenMP such as nested parallelism and
tasking as an immediate priority, Scalasca is expected
to evolve toward emerging programming models and
architectures including partitioned global address space
(PGAS) languages and heterogeneous systems. More-
over, optimized data management and analysis work-
flows including in-memory trace analysis will allow
Scalasca to master even larger processor configurations
than it does today. A recent example in this direction is
the substantial reduction of the trace-file creation over-
head that was achieved by mapping large numbers of
logical process-local trace files onto a small number of

9000
8000
7000
6000
5000
4000
3000
2000
1000

.
0 200 400 600 800 1000 1200
a Iteration #

Count

physical files [4], a feature that will become available in
future releases of Scalasca.

In addition to keeping up with the rapid new devel-
opments in parallel hardware and software, research is
also undertaken to expand the general understanding
of parallel performance in simulation codes. The exam-
ples below summarize two ongoing projects aimed at
increasing the expressive power of the analyses sup-
ported by Scalasca. The description reflects the status
of March 2011.

Time-Series Call-Path Profiling

As scientific parallel applications simulate the temporal
evolution of a system, their progress occurs via discrete
points in time. Accordingly, the core of such an appli-
cation is typically a loop that advances the simulated
time step by step. However, the performance behav-
ior may vary between individual iterations, for exam-
ple, due to periodically reoccurring extra activities or
when the state of the computation adjusts to new con-
ditions in so-called adaptive codes. To study such time-
dependent behavior, Scalasca can distinguish individual
iterations in profiles and event traces. Figure 4 shows
the distribution of point-to-point messages across the
iteration-process space in the MPI-based PEPC [7] par-
ticle simulation code. Obviously, during later stages of
the simulation the majority of messages are sent by only
a small collection of processes with time-dependent

1024
896 o=
768 :
640
512 ' =~

384

Process

256
128
0 ———
0 200 400 600 800 1000 1200
b lteration #

Scalasca. Fig. 4 Gradual development of a communication imbalance along 1,300 timesteps of PEPC on 1,024 processors.
(@) Minimum (bottom), median (middle), and maximum (top) number of point-to-point messages sent or received by a
process in an iteration. (b) Number of messages sent by each process in each iteration. The higher the number of

messages the darker the color on the value map

1782

Scalasca

constituency, inducing wait states on other processes
(not shown).

However, even generating call-path profiles (as
opposed to traces) separately for thousands of iterations
to identify the call paths responsible may exceed the
available buffer space — especially when the call tree is
large and more than one metric is collected. For this
reason, a runtime approach for the semantic compres-
sion of a series of call-path profiles based on incre-
mentally clustering single-iteration profiles was devel-
oped that scales in terms of the number of iterations
without sacrificing important performance details [16].
This method, which will be integrated in future ver-
sions of Scalasca, offers low runtime overhead by
using only a condensed version of the profile data
when calculating distances and accounts for process-
dependent variations by making all clustering decisions
locally.

Identifying the Root Causes of Wait-State
Formation
In general, the temporal or spatial distance between
cause and symptom of a performance problem consti-
tutes a major difficulty in deriving helpful conclusions
from performance data. Merely knowing the locations
of wait states in the program is often insufficient to
understand the reason for their occurrence. Building on
earlier work by Meira, Jr. et al. [12], the replay-based
wait-state analysis was extended in such a way that it
attributes the waiting times to their root causes [3], as
exemplified in Fig. 5. Typically, these root causes are
intervals during which a process performs some addi-
tional activity not performed by its peers, for example
as a result of insufficiently balancing the load.
However, excess workload identified as the root
cause of wait states usually cannot simply be removed.
To achieve a better balance, optimization hypotheses
drawn from such an analysis typically propose the redis-
tribution of the excess load to other processes instead.
Unfortunately, redistributing workloads in complex
message-passing applications can have surprising side
effects that may compromise the expected reduction
of waiting times. Given that balancing the load stat-
ically or even introducing a dynamic load-balancing
scheme constitute major code changes, such procedures
should ideally be performed only if the prospective
performance gain is likely to materialize. Other recent

Z v
Z 74 Z Z
£ i L
Z Z P
F Z L Z Z .4 ”
Z Z 7
Z Z yd 4
Z 2 V&
Z Z 7
p Z Z Z 74 2 7
2z Z rd r > 4
Z ¥4 y d
7
> A
Z Z Z 2 Z
Z = Z
P = v £z
¥
Z £ L
74
pa L ¥ Z Z Z
Z Z .
P
Z Z 7
4
Z 7
Z Z 7
pa Z Z P4 Z S
Z P P r.d
P a— il il Z 7.4 Z 7

Scalasca. Fig. 5 In the lorentz_d() subroutine of the Zeus
MP/2 code, several processes primarily arranged on a small
hollow sphere within the virtual process topology are
responsible for wait states arranged on the enclosing
hollow sphere shown earlier in Fig. 2. Since the inner
region of the topology carries more load than the outer
region, processes at the rim of the inner region delay those
farther outside. The darkness of the color indicates the
amount of waiting time induced by a process but
materializing farther away. In this way, it becomes possible
to study the root causes of wait-state formation

work [10] therefore concentrated on determining the
savings we can realistically hope for when redistributing
a given delay — before altering the application itself.
Since the effects of such changes are hard to quantify
analytically, they are simulated in a scalable manner via
a parallel real-time replay of event traces after they have
been modified to reflect the redistributed load.

Related Entries

»Intel® Thread Profiler

» MPI (Message Passing Interface)
»OpenMP

http://dx.doi.org/10.1007/978-0-387-09766-4_113
http://dx.doi.org/10.1007/978-0-387-09766-4_222
http://dx.doi.org/10.1007/978-0-387-09766-4_50

Scalasca

1783

»OpenMP Profiling with OmpP
» Performance Analysis Tools
»Periscope

»PMPI Tools

»Synchronization

»TAU

»Vampir

Bibliographic Notes and Further
Reading

Scalasca is available for download including
documentation under the New BSD license at www.
scalasca.org.

Scalasca emerged from the KOJAK project, which
was started in 1998 at the Jiilich Supercomputing Centre
in Germany to study the automatic evaluation of paral-
lel performance data, and in particular, the automatic
detection of wait states in event traces of parallel appli-
cations. The wait-state analysis first concentrated on
MPI [20] and later on OpenMP and hybrid codes [21],
motivating the definition of the POMP profiling inter-
face [13] for OpenMP, which is still used today even
beyond Scalasca by OpenMP-enabled profilers such as
ompP (»OpenMP Profiling with OmpP) and »TAU. A
comprehensive description of the initial trace-analysis
toolset resulting from this effort, which was publicly
released for the first time in 2003 under the name
KOJAK, is given in [19].

During the following years, KOJAK’s wait-state
search was optimized for speed, refined to exploit vir-
tual process topologies, and extended to support MPI-2
RMA communication. In addition to the detection
of wait states occurring during a single run, KOJAK
also introduced a framework for comparing the anal-
ysis results of different runs [14], for example, to
judge the effectiveness of optimization measures. An
extensive snapshot of this more advanced version of
KOJAK including further literature references is pre-
sented in [22]. However, KOJAK still analyzed the traces
sequentially after the process-local trace data had been
merged into a single global trace file, an undesired scal-
ability limitation in view of the dramatically rising num-
ber of cores employed on modern parallel architectures.

In 2006, after the acquisition of a major grant from
the Helmholtz Association of German Research Cen-
tres, the Scalasca project was started in Jilich as the
successor to KOJAK with the objective of improving

the scalability of the trace analysis by parallelizing the
search for wait states. A detailed discussion of the par-
allel replay underlying the parallel search can be found
in [6]. Variations of the scalable replay mechanism were
applied to correct event time stamps taken on clusters
without global clock [1], to simulate the effects of opti-
mizations such as balancing the load of a function more
evenly across the processes of a program [10], and to
identify wait states in MPI-2 RMA communication in
a scalable manner [9]. Moreover, the parallel trace anal-
ysis was also demonstrated to run on computational
grids consisting of multiple geographically dispersed
clusters that are used as a single coherent system [2].
Finally, a very recent replay-based method attributes the
costs of wait states in terms of resource waste to their
original cause [3].

Since the enormous data volume sometimes makes
trace analysis challenging, runtime summarization
capabilities were added to Scalasca both as a simple
means to obtain a performance overview and as a
basis to optimally configure the measurement for later
trace generation. Scalasca integrates both measurement
options in a unified tool architecture, whose details
are described in [5]. Recently, a semantic compres-
sion algorithm was developed that will allow Scalasca
to take time-series profiles in a space-efficient manner
even if the target application performs large numbers of
timesteps [16].

Major application studies with Scalasca include a
survey of using it on leadership systems [24], a compre-
hensive analysis of how the performance of the SPEC
MPI2007 benchmarks evolves as their execution pro-
gresses [17], and the investigation of a gradually devel-
oping communication imbalance in the PEPC particle
simulation [18]. Finally, a recent study of the Sweep3D
benchmark demonstrated performance measurements
and analyses with up to 294,912 processes [23].

From 2003 until 2008, KOJAK and later Scalasca was
jointly developed together with the Innovative Comput-
ing Laboratory at the University of Tennessee. During
their lifetime, the two projects received funding from
the Helmholtz Association of German Research Cen-
tres, the US Department of Energy, the US Department
of Defense, the US National Science Foundation, the
German Science Foundation, the German Federal Min-
istry of Education and Research, and the European
Union. Today, Scalasca is a joint project between Jiilich

http://dx.doi.org/10.1007/978-0-387-09766-4_58
http://dx.doi.org/10.1007/978-0-387-09766-4_267
http://dx.doi.org/10.1007/978-0-387-09766-4_270
http://dx.doi.org/10.1007/978-0-387-09766-4_57
http://dx.doi.org/10.1007/978-0-387-09766-4_252
http://dx.doi.org/10.1007/978-0-387-09766-4_59
http://dx.doi.org/10.1007/978-0-387-09766-4_60
www.scalasca.org
www.scalasca.org
http://dx.doi.org/10.1007/978-0-387-09766-4_58
http://dx.doi.org/10.1007/978-1-4419-5906-5_59

1784

Scalasca

and the German Research School for Simulation Sci-
ences in nearby Aachen.

The following individuals have contributed to
Scalasca and its predecessor: Erika Abraham, Daniel
Becker, Nikhil Bhatia, David Béhme, Jack Dongarra,
Dominic Eschweiler, Sebastian Flott, Wolfgang Frings,
Karl Fiirlinger, Christoph Geile, Markus Geimer, Marc-
André Hermanns, Michael Knobloch, David Krings,
Guido Kruschwitz, André Kithnal, Bjérn Kuhlmann,
John Linford, Daniel Lorenz, Bernd Mohr, Shirley
Moore, Ronal Muresano, Jan Mufller, Andreas Nett,
Christian Rossel, Matthias Pfeifer, Peter Philippen, Far-
zona Pulatova, Pavel
Saviankou, Marc Schliitter, Christian Siebert, Feng-
guang Song, Alexandre Strube, Zoltdn Szebenyi, Felix
Voigtldnder, Felix Wolf, and Brian Wylie.

Divya Sankaranarayanan,

Bibliography

1. Becker D, Rabenseifner R, Wolf F Linford J (2009) Scalable
timestamp synchronization for event traces of message-passing
applications. Parallel Comput 35(12):595-607

2. Becker D, Wolf E, Frings W, Geimer M, Wylie BN, Mohr B (2007)
Automatic trace-based performance analysis of metacomputing
applications. In: Proceedings of the international parallel and dis-
tributed processing symposium (IPDPS), Long Beach, CA, USA.
IEEE Computer Society, Washington, DC

3. Bohme D, Geimer M, Wolf E, Arnold L (2010) Identifying the
root causes of wait states in large-scale parallel applications. In:
Proceedings of the 39th international conference on parallel pro-
cessing (ICPP), San Diego, CA, USA. IEEE Computer Society,
Washington, DC, pp 90-100

4. Frings W, Wolf E, Petkov V (2009) Scalable massively parallel I/O
to task-local files. In: Proceedings of the ACM/IEEE conference
on supercomputing (SC09), Portland, OR, USA, Nov 2009

5. Geimer M, Wolf F, Wylie BJN, Abrahdm E, Becker D, Mohr B
(2010) The Scalasca performance toolset architecture. Concurr
Comput Pract Exper 22(6):702-719

6. Geimer M, Wolf E Wylie BJN, Mohr B (2009) A scalable tool
architecture for diagnosing wait states in massively-parallel appli-
cations. Parallel Comput 35(7):375-388

7. Gibbon P, Frings W, Dominiczak S, Mohr B (2006) Performance
analysis and visualization of the n-body tree code PEPC on
massively parallel computers. In: Proceedings of the conference
on parallel computing (ParCo), Mélaga, Spain, Sept 2005 (NIC
series), vol 33. John von Neumann-Institut fiir Computing, Jiilich,
pp 367-374

8. Hayes JC, Norman ML, Fiedler RA, Bordner JO, Li PS, Clark
SE, ud-Doula A, Mac Low M-M (2006) Simulating radiating
and magnetized flows in multiple dimensions with ZEUS-MP.
Astrophys] Suppl 165(1):188-228

9. Hermanns M-A, Geimer M, Mohr B, Wolf F (2009) Scalable
detection of MPI-2 remote memory access inefficiency patterns.

10.

1L

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.

In: Proceedings of the 16th European PVM/MPI users group
meeting (EuroPVM/MPI), Espoo, Finland. Lecture notes in com-
puter science, vol 5759. Springer, Berlin, pp 31-41

Hermanns M-A, Geimer M, Wolf F, Wylie BJN (2009) Verifying
causality between distant performance phenomena in large-scale
MPI applications. In Proceedings of the 17th Euromicro inter-
national conference on parallel, distributed, and network-based
processing (PDP), Weimar, Germany. IEEE Computer Society,
Washington, DC, pp 78-84

Jilich Supercomputing Centre and German Research School
for Simulation Sciences. Scalasca parallel performance analy-
sis toolset documentation (performance properties). http://www.
scalasca.org/download/documentation/

Meira W Jr, LeBlanc TJ, Poulos A (1996) Waiting time analy-
sis and performance visualization in Carnival. In: Proceedings of
the SIGMETRICS symposium on parallel and distributed tools
(SPDT’96), Philadelphia, PA, USA. ACM

. Mohr B, Malony A, Shende S, Wolf F (2002) Design and proto-

type of a performance tool interface for OpenMP.] Supercomput
23(1):105-128

Song F, Wolf F, Bhatia N, Dongarra J, Moore S (2004) An algebra
for cross-experiment performance analysis. In: Proceedings of the
international conference on parallel processing (ICPP), Montreal,
Canada. IEEE Computer Society, Washington, DC, pp 63-72
Szebenyi Z, Gamblin T, Schulz M, de Supinski BR, Wolf F, Wylie
BJN (2011) Reconciling sampling and direct instrumentation for
unintrusive call-path profiling of MPI programs. In: Proceedings
of the international parallel and distributed processing sympo-
sium (IPDPS), Anchorage, AK, USA. IEEE Computer Society,
Washington, DC

Szebenyi Z, Wolf E, Wylie BN (2009) Space-efficient time-series
call-path profiling of parallel applications. In: Proceedings of the
ACM/IEEE conference on supercomputing (SC09), Portland, OR,
USA, Nov 2009

Szebenyi Z, Wylie BJN, WolfF (2008) SCALASCA parallel perfor-
mance analyses of SPEC MPI2007 applications. In: Proceedings
of the Ist SPEC international performance evaluation workshop
(SIPEW), Darmstadt, Germany. Lecture notes in computer sci-
ence, vol 5119. Springer, Berlin, pp 99-123

Szebenyi Z, Wylie BJN, Wolf F (2009) Scalasca parallel perfor-
mance analyses of PEPC. In: Proceedings of the workshop on
productivity and performance (PROPER) in conjunction with
Euro-Par, Las Palmas de Gran Canaria, Spain, August 2008.
Lecture notes in computer science, vol 5415. Springer, Berlin,
pp 305-314

Wolf F (2003) Automatic Performance Analysis on Parallel
Computers with SMP Nodes. PhD thesis, RWTH Aachen,
Forschungszentrum Jiilich. ISBN 3-00-010003-2

Wolf E, Mohr B (2001) Specifying performance properties of par-
allel applications using compound events. Parallel Distrib Com-
put Pract 4(3):301-317

Wolf E, Mohr B (2003) Automatic performance analysis of hybrid
MPI/OpenMP applications. J Syst Archit 49(10-11):421-439
Wolf E, Mohr B, Dongarra], Moore S (2007) Automatic analysis
of inefficiency patterns in parallel applications. Concurr Comput
Pract Exper 19(11):1481-1496

http://www.scalasca.org/download/documentation/
http://www.scalasca.org/download/documentation/

Scan for Distributed Memory, Message-Passing Systems

1785

23. Wylie BJN, Geimer M, Mohr B, Béhme D, Szebenyi Z, Wolf F
(2010) Large-scale performance analysis of Sweep3D with the
Scalasca toolset. Parallel Process Lett 20(4):397-414

24. Wylie BJN, Geimer M, Wolf F (2008) Performance measurement
and analysis of large-scale parallel applications on leadership
computing systems. Sci Program 16(2-3):167-181

' Scaled Speedup

» Gustafson’s Law

' Scan for Distributed Memory,
Message-Passing Systems

JESPER LARSSON TRAFF
University of Vienna, Vienna, Austria

Synonyms
All prefix sums; Prefix; Parallel prefix sums; Prefix
reduction

Definition

Among a group of p consecutively numbered process-
ing elements (nodes) each node has a data item x; for
i = 0,...p — 1. An associative, binary operator & over
the data items is given. The nodes in parallel compute
all p (or p — 1) prefix sums over the input items: node i
computes the inclusive prefix sum EBJ’::oxj (or, for i > 0,

; i-1
the exclusive prefix sum &;_;x;).

Discussion
For a general discussion, see the entry on “»Reduce
and Scan”

For distributed memory, message-passing parallel
systems, the scan operation plays an important role for
load-balancing and data-redistribution operations. In
this setting, each node possesses a local data item x;,

typically an n-element vector, and the given associative,
binary operator @ is typically an element-wise oper-
ation. The required prefix sums could be computed
by arranging the input items in a linear sequence and
“scanning” through this sequence in order, carrying
along the corresponding inclusive (or exclusive) pre-
fix sum. In a distributed memory setting, this intuition
would be captured by arranging the nodes in a lin-
ear array, but much better algorithms usually exist. The
inclusive scan operation is illustrated in Fig. 1.

The scan operation is included as a collective oper-
ation in many interfaces and libraries for distributed
memory systems, for instance MPI [5], where both an
inclusive (MPI_Scan) and an exclusive (MPI_Exscan)
general scan operation is defined. These operations work
on vectors of consecutive or non-consecutive elements
and arbitrary (user-defined) associative, possibly also
commutative operators.

Algorithms

On distributed memory parallel architectures parallel
algorithms typically use tree-like patterns to compute
the prefix sums in a logarithmic number of paral-
lel communication rounds. Four such algorithms are
described in the following. Algorithms also exist for
hypercube and mesh- or torus-connected communica-
tion architectures [1, 4, 8].

The p nodes are consecutively numbered from 0 to
p—1.Each node i has an input data item x;. Nodes must
communicate explicitly by send and receive operations.
For convenience a fully connected model in which each
node can communicate with all other nodes at the same
cost is assumed. Only one communication operation
per node can take place at a time. The data items x; are
assumed to all have the same size n = |x;|. For scalar
items, n = 1, while for vector items # is the number
of elements. The communication cost of transferring a
data item of size n is assumed to be O(n) (linear).

The simplest scan algorithm organizes the nodes in a
linear array. For i > 0 node i waits for a partial sum

Before After
Node 0 | Node 1 | Node 2 Node 0 | Node 1 | Node 2
x(©) x(1 x@ @?:0 () @}:O () @izo x(7)

Scan for Distributed Memory, Message-Passing Systems. Fig.1 The inclusive scan operation

http://dx.doi.org/10.1007/978-0-387-09766-4_78
http://dx.doi.org/10.1007/978-0-387-09766-4_2475
http://dx.doi.org/10.1007/978-0-387-09766-4_2211
http://dx.doi.org/10.1007/978-0-387-09766-4_2476
http://dx.doi.org/10.1007/978-0-387-09766-4_2477
http://dx.doi.org/10.1007/978-0-387-09766-4_2477
http://dx.doi.org/10.1007/978-0-387-09766-4_120
http://dx.doi.org/10.1007/978-1-4419-5906-5_120

1786

Scan for Distributed Memory, Message-Passing Systems

eaj’:éxj from node i — 1, adds its own item x; to arrive
at the partial sum @;_x;, and sends this to node i + 1,
unless i = p — 1. This algorithm is strictly serial and
takes p — 1 communication rounds for the last node to
finish its prefix computation, for a total cost of O(pn).
This is uninteresting in itself, but the algorithm can be
pipelined (see below) to yield a time to complete of
O(p + n). When n is large compared to p this easily of
implementable algorithm is often the fastest, due to its
simplicity.

The binary tree algorithm arranges the nodes in a bal-
anced binary tree T with in-order numbering. This
numbering has the property that the nodes in the sub-
tree T(i) rooted at node i have consecutive numbers in
the interval [s,...,4,...,e], where s and e denote the
first (start) and last (end) node in the subtree T(i),
respectively. The algorithm consists of two phases. It
suffices to describe the actions of a node in the tree
with parent, right and left children. In the up-phase,
node i first receives the partial result ea;;slxj from its
left child and adds its own item x; to get the partial
result @};ij. This value is stored for the down-phase.
Node i then receives the partial result ®;_;,,x; from its
right child and computes the partial result ®;_x;. Node
i sends this value upward in the tree without keeping
it. In the down-phase, node i receives the partial result
@j-;éxj from its parent. This is first sent down to the left
child and then added to the stored partial result ®;_x;
to form the final result &;_,x; for node i. This final result
is sent down to the right child.

With the obvious modifications, the general descrip-
tion covers also nodes that need not participate in all of
these communications: Leaves have no children. Some
nodes may only have a leftmost child. Nodes on the
path between root and leftmost leaf do not receive data
from their parent in the down-phase. Nodes on the path
between rightmost child and root do not send data to
their parent in the up-phase.

Since the depth of T is logarithmic in the number
of nodes, and data of size n are sent up and down the
tree, the time to complete the scan with the binary tree
algorithm is O(nlogp). This is unattractive for large .
If the nodes can only either send or receive in a commu-
nication operation but otherwise work simultaneously,
the number of communication operations per node is

at most 6, and the number of communication rounds is
6 ﬂogz rl.

The binomial tree algorithm likewise consists of an up-
phase and a down-phase, each of which takes k rounds
where k = [log, p|. Inround j for j = 0,...,k -1 of the
up-phase each node i satisfying i A (27" 1) = 2/*! -1
(where A denotes “bitwise and”) receives a partial result
from node i — 2/ (provided 0 < i — 2/). After send-
ing to node i, node i — 2/ is inactive for the remainder
of the up-phase. The receiving nodes add the partial
results, and after round j have a partial result of the form
692: i yi+14%e- The down-phase counts rounds down-
ward from k to 1. Node i with i A (2/ —1) = 2/ — 1 sends
its partial result to node i + 27! (provided i + 2/~ < p)
which can now compute its final result eai,ﬁflxg. The
communication pattern is illustrated in Fig. 2.

The number of communication rounds is 2|logp|,
and the time to complete is O(nlogp). Each node is
either sending or receiving data in each round, with no
possibility for overlapping of sending and receiving due
to the computation of partial results.

The number of communication rounds can be improved
by a factor of two by the simultaneous binomial tree algo-
rithm. Starting from round k = 0, in round k, node i
sends a computed, partial result €B;=i72k 1 Xj tonode i +2k
(provided i + 2¥ < p) and receives a likewise computed,
partial result from node i - 2k (provided i - 2k > 0).

Before the next round, the previous and received partial

Round
5 /
4
3
2
1 7
o S/

o]

—_

[2|3]4]5]6]7]8]9]10[11]12]

Processor

Scan for Distributed Memory, Message-Passing Systems.
Fig. 2 The communication pattern for the binomial tree
algorithm forp =13

Scan, Reduce and

1787

Ro:nd/
g
(1) /////////////7'

lo]1]2]3]4]5]6]7][8]9]10[11]12]
Processor

Scan for Distributed Memory, Message-Passing Systems.
Fig. 3 The communication patterns for the simultaneous
binomial tree algorithm for p = 13

results are added. It is easy to see that after round k,

node 7’s partial result is 69] max(0,i-2+1+1) %" Node i ter-

minates when both i — 25 < 0 (nothing to receive) and
i+ 2K > p (nothing to send). Provided that the nodes
can simultaneously send and receive an item in the same
communication operation this happens after [log, p|
communication rounds for a total time of O(nlogp).
This is again not attractive for large n. This algorithm
dates back at least to [2] and is illustrated in Fig. 3.

For large n the running time of O(nlogp) is not
attractive due to the logarithmic factor. For the binary
tree algorithm pipelining can be employed, by which the
running time can be improved to O(n + log p). Neither
the binomial nor the simultaneous binomial tree algo-
rithms admit pipelining. A pipelined implementation
breaks each data item into a certain number of blocks
N each of roughly equal size of n/N. As soon as a block
has been processed and sent down the pipeline, the next
block can be processed. The time of such an implemen-
tation is proportional to the depth of the pipeline plus
the number of blocks times the time to process one
block. From this an optimal block size can be deter-
mined, which gives the running time claimed for the
binary tree algorithm. For very large vectors relative to
the number of nodes, n > p, a linear pipeline seems to
be the best practical choice due to very small constants.
Pipelining can only be applied if the binary operator
can work independently on the blocks. This is trivially
the case if the items are vectors and the operator works
element-wise on these.

Related Entries
»Collective Communication

» Message Passing Interface (MPI)
»Reduce and Scan

Bibliographic Notes and Further
Reading

The parallel prefix problem was early recognized as a
fundamental parallel processing primitive, and its his-
tory goes back at least as far as the early 1970s. The
simultaneous binomial tree algorithm is from [2], but
may have been discovered earlier as well. The binary tree
algorithm easily admits pipelining but has the draw-
back that leaf nodes are only using either send or receive
capabilities, and that simultaneous send-receive com-
munication can be only partially exploited. In [6] it was
shown how to overcome these limitations, yielding the-
oretically almost optimal scan (as well as reduce and
broadcast) algorithms with (two) binary trees. Algo-
rithms for distributed systems in the LogP performance
model were presented in [7]. An algorithm for mul-
tiport message-passing systems was given in [3]. For
results on meshes and hypercubes see, for instance
[1, 4, 8].

Bibliography
1. Akl SG (1999) Parallel computation: models and methods.
Prentice-Hall, Upper Saddle River
2. Daniel Hillis W, Steele GL Jr (1986) Data parallel algorithms.
Commun ACM 29(12):1170-1183
3. Lin Y-C, Yeh C-S (1999) Efficient parallel prefix algorithms on
multiport message-passing systems. Inform Process Lett 71:91-95
4. Mayr EW, Plaxton CG (1993) Pipelined parallel prefix compu-
tations, and sorting on a pipelined hypercube.] Parallel Distrib
Comput 17:374-380
5. MPI Forum (2009) MPI: A message-passing interface standard.
Version 2.2. www.mpiforum.org. Accessed 4 Sept 2009
6. Sanders P, Speck J, Traff JL (2009) Two-tree algorithms for
full bandwidth broadcast, reduction and scan. Parallel Comput
35:581-594
7. Santos EE (2002) Optimal and efficient algorithms for summing
and prefix summing on parallel machines.] Parallel Distrib Com-
put 62(4):517-543
8. Ziavras SG, Mukherjee A (1996) Data broadcasting and reduc-
tion, prefix computation, and sorting on reduces hypercube par-
allel computer. Parallel Comput 22(4):595-606

! Scan, Reduce and

»Reduce and Scan

http://dx.doi.org/10.1007/978-0-387-09766-4_28
http://dx.doi.org/10.1007/978-0-387-09766-4_2085
http://dx.doi.org/10.1007/978-0-387-09766-4_120
www.mpiforum.org
http://dx.doi.org/10.1007/978-0-387-09766-4_120

1788

Scatter

! Scatter

» Collective Communication

! Scheduling

»Job Scheduling
»Task Graph Scheduling
»Scheduling Algorithms

! Scheduling Algorithms

PATRICE QUINTON
ENS Cachan Bretagne, Bruz, France

Synonyms
Execution ordering

Definition

Scheduling algorithms aim at defining when operations
of a program are to be executed. Such an ordering,
called a schedule, has to make sure that the dependences
between the operations are met. Scheduling for paral-
lelism consists in looking for a schedule that allows a
program to be efficiently executed on a parallel archi-
tecture. This efficiency may be evaluated in term of
total execution time, utilization of the processors, power
consumption, or any combination of this kind of crite-
ria. Scheduling is often combined with mapping, which
consists in assigning an operation to a resource of an
architecture.

Discussion

Scheduling is an essential design step to execute an
algorithm on a parallel architecture. Usually, the algo-
rithm is specified by means of a program from which
dependences between statements or operations (also
called tasks) can be isolated: an operation A depends

on another operation B if the evaluation of B must pre-
cede that of A for the result of the algorithm to be
correct.

Assuming the dependences of an algorithm are
already known, scheduling has to find out a partial
order, called a schedule, which says when each state-
ment can be executed. A schedule may be resource-
constrained, if the ordering must be such that some
resource — for example, processor unit, memory, etc. —
is available for the execution of the algorithm.

Scheduling algorithms are therefore classified accord-
ing to the precision of the dependence analysis, the kind
of resources needed, the optimization criteria consid-
ered, the specification of the algorithm, the granularity
size of the tasks, and the kind of parallel architecture
that is considered for execution.

Scheduling can also happen at run-time — dynamic
scheduling — or at compile-time - static scheduling.

In the following, basic notions related to task
graphs are first recalled, then scheduling algorithms for
loops are presented. The presentation separates mono-
dimensional and higher-dimensional loops. Task Graph
scheduling, a topic that is covered in another essay of this
site, is not treated here.

Task graphs and their scheduling is the basis of many sit-
uations of parallel computations and has been the sub-
ject of a number of researches. Task graphs are a means
of representing dependences between computations of
a program: vertices V of the graph are elementary com-
putations, called tasks, and oriented edges E represent
dependences between computations. A task graph is
therefore an acyclic, directed multigraph.

Assume that each task T has an estimated inte-
ger value d(T) representing its execution duration. A
schedule for a task graph is a function ¢ from the ver-
tex set V of the graph to the set of positive integers,
such that o(u) + d(u) < o(v), where d represents the
duration associated to the evaluation of task u, and v
depends on u. Since it is acyclic, a task graph always
admits a schedule.

Scheduling a task graph may be constrained by the
number of processors p available to run the tasks. It is
assumed that each task T, when ready to be evaluated, is
allocated to a free processor, and occupies this processor

http://dx.doi.org/10.1007/978-0-387-09766-4_28
http://dx.doi.org/10.1007/978-0-387-09766-4_212
http://dx.doi.org/10.1007/978-0-387-09766-4_42
http://dx.doi.org/10.1007/978-0-387-09766-4_66
http://dx.doi.org/10.1007/978-0-387-09766-4_2175

Scheduling Algorithms

1789

during its duration d(T), after which the processor is
released and becomes idle. When p is unlimited, we say
that the schedule is resource free, otherwise, it is resource
constrained.

The total computation time for executing a task
graph on p processors, is also called its makespan. If the
number of processors is illimited, that is, p = +o0, it can
be shown that finding out the makespan amounts to a
simple traversal of the task graph.

When the number of processors is bounded, that is,
P < +00, it can be shown that the problem becomes NP-
complete. It is therefore required to rely on heuristics.
In this case, a simple greedy heuristics is eflicient: try to
schedule at a given time as many tasks as possible on
processors that are available at this time.

A list schedule is a schedule such that no processor
is deliberately kept idle; at each time step ¢, if a proces-
sor P is available, and if some task T is free, that is to
say, when all its predecessors have been executed, then
T is scheduled to be executed on processor P. It can be
shown that a list schedule allows a solution within 50%
of the optimal makespan to be found.

List scheduling plays a very important role in
scheduling theory and is therefore worth mentioning.
A generic list scheduling algorithm looks as follows:

1. Initialization

a. Assign to all free tasks a priority level (the choice
of the priority function depends on the problem
at hand).

b. Set the time step ¢ to 0.

2. While there remain tasks to execute:

a. If the execution of a task terminates at time ¢,
suppress this task from the predecessor list of all
its successors. Add those tasks whose predeces-
sor tasks has become empty to the free tasks, and
assign them a priority.

b. If there are q available processors, and r free
tasks, execute the min(q, r) tasks of highest pri-
ority.

c. Increase the time step ¢ by one.

A vparticular field of interest for scheduling is how to
execute efficiently a set of compuations that re-execute
a large amount of time, also called cyclic scheduling.

Such a problem is encountered when scheduling a one-
dimensional loop. Consider for example, the following
loop:

dok=0,step0,to N -1
A:a(k)=c(k-1)
B:b(k) =a(k-2)xb(k-1)
C:c(k) =b(k) +1
endo

This loop could be modeled as a task graph where
tasks would be A(k), B(k), and C(k), k = 0,..,N — L.
But if N is large, this graph becomes difficult to handle,
hence the idea of finding out a generic way to schedule
the operations by following the stucture of the loop.

Scheduling such a loop consists in finding out a
time instant for each instruction to be executed, while
respecting the dependences between these instructions.
Call operation the execution of an instruction for a
given value of index k, and denote A(k), B(k), and C(k)
these operations. Notice that A(k) depends on the value
c(k - 1), which is computed by operation C(k — 1) dur-
ing the previous iteration of the loop. Similarly, B(k)
depends on B(k — 1) and A(k — 2); finally, C(k) depends
on B(k), an operation of the same loop iteration. To
model this situation, the notion of reduced dependence
graph, which gather all information needed to sched-
ule the loop, is introduced: its vertices are operation
names (e.g., A, B, C etc.), and its edges represent depen-
dences between operations. To each vertex v, associate
an integer value d(v) that represents its execution dura-
tion, and to each edge, associate a positive integer w
that is 0 if the dependence lies within an iteration, and
the difference between the iterations number otherwise.
Fig. 1 represents the reduced dependence graph of the
above loop.

With this representation, a schedule becomes a
function ¢ from V x N to N, where N denotes the set
of integers; o (v, k) gives the time at which instruction
v of iteration k can be executed. Of course, a schedule
must meet the dependence constraints, which can be
expressed in the following way: for all edge e = (1, v) of
the dependence graph, it is needed that o (v, k+w(e)) >
o(u,k) +d(u).

1790

Scheduling Algorithms

N,

A ~ B

1

Scheduling Algorithms. Fig. 1 Reduced dependence
graph of the loop

For this kind of problem, the performance of a
schedule is defined as the average cycle time A defined as
)=]\l,im max{o (v, k) + d(x;\)]|ve V,0<k <N}.

In order to define a generic schedule for such a
loop, it is interesting to consider schedules of the form
o (v, k) = Ak+c(v) where A is a positive integer and c(v)
is a constant integer associated to instruction v. Con-
stant A is called the initiation interval of the loop, and it
represents the number of cycles between the beginning
of two successive iterations.

Finding out a schedule is quite easy: by restrict-
ing the reduced dependence graph to the intra-iteration
dependences (i.e., dependences whose value w is 0), one
obtains an acyclic graph that can be scheduled using a
list scheduling algorithm. Let then A be the makespan
of such schedule, and let Is(v) be the schedule assigned
to vertex v by the list scheduling; then, a schedule of
the form o (v,k) = Ak + Is(v) is a solution to the prob-
lem. Fig. 2 shows, for example, the task graph obtained
when removing nonzero inter-iteration dependencies.
One can see that the makespan of this graph is 7, and
therefore, a schedule of the form o (v, k) = 7k + Is(v) is
a solution. Figure 3 shows a possible execution, on two
processors, with an initiation interval of 7.

However, one can do better in general, as shall be
seen. Again, the cyclic scheduling problem can be stated
with or without resources. Assuming, for the sake of
simplicity, that instructions are carried out by a set of
p identical processing units, the number of available
processors constitutes a resource limit.

First, one can give a lower bound for the initiation
interval. Let C be a cycle of the reduced dependence
graph, and let d(C) be its duration (the sum of the
durations of its instructions) and w(C) be its iteration
weight, i.e., the sum of the iteration weights of its edges.

0
2 3

A B

Scheduling Algorithms. Fig. 2 Reduced dependence
graph without nonzero edges. This graph is necessarily
acyclic, and a simple traversal provides a schedule

Then, A > %. The intuition behind this bound is that
the duration of the tasks of the cycle have to be spread
on the number of iterations spanned by this cycle, and as
cycles have all the same duration A, one cannot do bet-
ter than this ratio. Applying this bound to this example,
it can be seen that A > % =3 (cycleA - B - C - A)
and A > 3 (self dependence of B). Can the value A = 3
be reached?

The answer depends again on the resource
constraints. When an unlimited number of processors
is available, one can show that the lower bound can be
reached by solving a polynomial algorithm (essentially,
Belman-Ford longest path algorithm). For this example,
this would lead to the schedule (B, k) = 3k, 6(C, k) =
3k+3,and o (A, k) = 3k+4, which meets the constraints
and allows the execution of the loop on 4 processors (see
Fig. 4).

Solving the problem for limited resources is NP-
complete. Another lower bound is related to the number
of processors available. If p processors are available, then
pA = ¥,y d(v). Intuitively, the total execution time
available during one iteration on all processors (pA)
cannot be less than the total execution time needed to
evaluate all tasks of an iteration.

Several heuristics have been proposed in the lit-
erature to approach this bound: loop compaction,
loop shifting, modulo scheduling, etc. All these meth-
ods rely upon list scheduling, as presented in the
Sect. “Task graphs and Scheduling” Notice, finally,
that there exits guaranteed heuristics for solving this
problem. One such heuristics combines loop com-
paction, loop shifting and retiming to obtain such a
result.

Scheduling unidimensional loops is based on the idea
of avoiding unrolling the loop and therefore, of keeping

Scheduling Algorithms

1791

—

T

k 7k+ 3 7k+ 5

Initiation interval

Scheduling Algorithms. Fig. 3 Execution of the loop with an initiation interval of 7. The corresponding schedule is

(k) =7k +5,0(B,k) =7k,and o(C, k) =7k +3

Cyk=1

==

. k—zj\ > C Kk |

Y

B, k=1 Bk T

bl
B

1
3k 3k+3

Initiation interval

Scheduling Algorithms. Fig. 4 Execution of the loop with
an optimal initiation interval of 3. The corresponding
scheduleis o(a, k) =3k + 4, 0(B, k) = 3k, and
o(C,k)=3k+3

the model compact and tractable, independently on the
loop bound N. To this end, the schedule is chosen to
be a linear expression of the loop index. The same idea
can be pushed further: instead of unrolling a multiple
index loop, one tries to express the schedule of an oper-
ation by a linear (or affine) function of the loop indexes.
This technique can be applied to imperative loops, but
it interacts deeply with the detection of dependences in
the loop, making the problem more difficult. Another
way of looking at this problem is to consider algorithms
expressed as recurrence equations, where parallelism is
directly exposed.

Consider the following recurrences for the matrix
multiplication algorithm C = AB where A, B, and C are
square matrices of size N:

1<i,jk <N = C(i,j,k) = C(i,jk — 1) + a(i, k) x b(k,j) (1)
1<i,j <N - c(i,j) = C(i,j,N).)

Each one of these equations is a single assignment, and
it expresses a recurrence, whose indexes belong to the
set defined by the left-hand inequality. The first recur-
rence (1) defines how C is computed, where k represents
the iteration index; the second recurrence (2) says that
value (i,) is obtained as the result of the evaluation of
C(i,j, k) for k = N.

An easy way to schedule these computations for par-
allelism is to find out a schedule ¢ that is an affine func-
tion of all the indexes of these calculations. Assume that
Chas a schedule of the form #(i, j, k) = Adji+Ayj+Ask+a;
also, assume that the evaluation of equations take at least
one cycle, one must have, from Eq. 1:

t(i,j, k) > t(i,j,k—1), Vi,j,kst.1<i, k<N

or once simplified, A3 > 0. This defines a set of possible
values for ¢, with simplest form #(i,], k) = k (coefficient
« can be chosen arbitrarily equal to 0.) Once a schedule
is found, it is possible to allocate the computations of a
recurrence equation on a parallel architecture. A sim-
ple way of doing it is to use a linear allocation function:
for the matrix multiplication example, one could take
i and j as the number of the processors, which would
result in a parallel matrix multiplication executed on a
square grid-connected array of size N. But many other
allocations are possible.

This simple example contains all the ingredients of
loop parallelization techniques, as will be seen now.

First, notice that this kind of recurrence is partic-
ular: it is said to be uniform, as left-hand side opera-
tions depend uniformly on right-hand side expressions
through a dependence of the form (0,0,1) (such a
dependence is a simple translation of the left-hand side
index). In general, one can consider affine recurrences

1792

Scheduling Algorithms

where any right-hand side index is an affine function of
the left-hand side index.

Second, the set where the indexes must lie is an inte-
gral convex polyhedron, whose bounds may be parame-
terized by some symbolic values (here N for example).

This is not surprising: most of the loops that are
of interest for parallelism share the property that array
indexes are almost always affine, and that the index
space of a loop can be modeled with a polyhedron.

Scheduling affine recurrences in general can be also
done by extending the method. Assume that a recur-
rence has the form

VzeP,V(z) = f(U(a(z)),...)

where U and V are variables of a program, z is a
n-dimensional integer vector, P is a polyhedron, and
a(z) is an affine mapping of z. The difference with the
previous case is that the number of dependences may
now be infinite: depending on the a function and the
size of P, one may have a large, potentially infinite,
number of dependences between instances of V(z) and
U(a(z)), for which the schedule t must meet t(V(z)) >
t(U(a(z))). However, properties of polyhedra may be
used. A given polyhedron P may be represented equiv-
alently by a set of inequalities, or by its set of generators,
that is to say, its vertices, rays, and lines. Generators are
in finite number, and it turns out that it is necessary and
sufficient to check the property of ¢ on vertices and rays,
and this leads to a finite set of linear inequalities involv-
ing the coefficients of the t function. This is the basis of
the so-called vertex method for scheduling recurrences.
Another, equivalent method, called the Farkas method,
involves directly the inequalities instead of the genera-
tor system of the polyhedron. In general, such methods
lead to high complexity algorithms, but in practice, they
are tractable: a typical simple algorithm leads to a few
hundreds of linear constraints.

Without going into the details, these methods can
be extended to cover interesting problems. First of all,
it is not necessary to assume that all variables of the
recurrences have the same schedule. One may instead
suppose that variable V is scheduled with a function
tv(ij,...) = Avi+ Ayj + ... + ay without making the
problem more difficult. Secondly, one may also suppose
that the schedule has several dimensions: if operation

va(2) L
, then the time is

tv’z (Z)
understood as a lexicographical ordering. This allows
modeling situations where more than one dimension
of the index space are evaluated sequentially on a sin-
gle processor, thus allowing architectures of various
dimensions to be found.

Very few researches have yet explored scheduling
loops under constraints, as was the case for cyclic
scheduling.

A final remark: cyclic scheduling is a particular case
of multidimensional scheduling, where the function has
the form o(v,k) = Ak + a,. Indeed, the a constant
describes the relative time of execution of operation
v(k) during an iteration. In a similar way for higher-
level recurrences, ay plays the same role and allows one
to refine the pipeline structure of one processor.

V(z) is scheduled at time

The previous section (Sect. Scheduling Multi-Dimens-
ional Loops) has shown how a set of recurrence
equations can be scheduled using linear programming
techniques. Here it is sketched how loops expressed
in a some imperative language can be translated into
single-assignment form that is equivalent to recurrence
equations. Consider the following example:

for i := 0 to 2n do
{Sl}: c[i] := 0.;

=0 to n do

for j := 0 to n do
{82}: cl[i+j] :=
alil*b[j];

for i

cl[i+j] +

which computes the product of two polynomials of size
n+1, where the coeflicients of the input polynomials are
in arrays a and b and the result in c. This program con-
tains two loops, each one with one statement, labeled
S1 and S2 respectively.

Each statement represents as many elementary oper-
ations as loop indexes surrounding it. Statement S1
corresponds to 27 + 1 operations, denoted by (S1, (7)),
and statement S2 corresponds to operations denoted
(52.(i)).

The left-hand side element of statement S2, ¢ [1+7]
writes several times in the same memory cell and its
right-hand side makes use of the content of the same

Scheduling Algorithms

1793

memory cell. In order to rewrite these loops as recur-
rence equations, one need to carry out a data flow
analysis to find out which statement made the last
modification to ¢ [1+7]. Since both statement modify
¢, it may be either S2 itself, or S1.

Consider first the case when S2 is the source of
the operation that modifies ¢ [1i+j] for operation
(S2,(4,j)). Then this operation is (S2,(i’,j')) where
i’ +j = i+ j, and indexes i’ and j' must satisfy the
limit constraints of the loops, that is, 0 < i’ < n and
0 < j° < n. There is another condition, also called
sequential predicate: (S2,(i’,j')) must be the opera-
tion that was the last to modify cell c[1+j] before
(52, (i,j)) usesit. But (i’,") is smaller than (4,) in lexi-
cographic order, and thus, (i’,;") is the lexical maximum
of (i,j). All these conditions being affine inequalities, it
turns out that finding out the source index can be done
using parameterized linear programming, resulting in a
so-called quasi-affine selection tree (quast) whose con-
ditions on indices are also linear. One would thus find
out that

(i',j')=ifi>1Anj<nthen (i—1j+1)else L

where 1 represents the situation when (i',j') was
defined by a statement that precedes the loops.

Now if S1 is the source of the operation, this oper-
ation is (S1,i') where ' = i + j, and index i’ must lay
inside the bounds, thus 0 < i’ < 2n. Moreover, this
operation must be executed before, which is obviously
always true. Thus, it can be seen that (i') = (i + j).
Combining both expressions, one finds that the source
of (i,) is given by

if i>1Aj<nthen (S2,i—1,j+1) else (SLi+j).

Once the source of each operation is found, rewrit-
ing the program as a system of recurrence equations
is easy. For each statement S, a variable S(i,j,...) with
as many indexes as surrounding loops is introduced,
and the right hand side equation is rewritten by replac-
ing expressions by their source translation. An extra
equation can be provided to express the value of output
variables of the program, here, ¢ for example.

0<i<2n—SI(i) = 0. (3)

0<i<nA0<j<n—>82(ij)=ifi>1nj<n (4)
then S1(i —1,j +1) + a(i) * b(j)

else S1(i +j) + a(i) * b(j) ®)

0<i<2n — ¢(i) = if j=0 then S2(i,j) else S2(n,j) (6)

The exact data flow analysis is a means of expressing
implicit dependences that result from the encoding of
the algorithm as loops. Although other methods exist
in order to schedule loops without single assignement,
this method is deeply related to scheduling techniques.

Scheduling Today and Future
Directions

Loop scheduling is a central process of autoparal-
lelization techniques, either implicit — when loops are
rewritten after dependence analysis and then com-
piled, — or explicit, when the scheduling function is
calculated and explicitly used during the paralleliza-
tion process. Compilers incorporate more and more
often sophisticated dependence and analysis tools to
produce efficient code for target parallel architecture.
Mono-dimensional loop scheduling is both used to
massage loops for instruction-level parallelism, but
also to design special-purpose hardware for embedded
calculations. Finally, multi-dimensional scheduling is
included in some autoparallelizers to produce code for
parallel processors.

The need to produce efficient compilers is a limi-
tation to the use of complex scheduling methods, as
it has been shown that most practical problems are
NP-complete. Progress in the knowledge of scheduling
algorithms has made more and more likely for meth-
ods, previously rejected because of their complexity, to
become common ingredients of parallelization tools.
Moreover, the design of parallel programs tolerates a
slightly longer production time than compiling every-
days’ program does, in particular because many appli-
cations of parallelism target embedded systems. Thus,
the spreading of parallel computers - for example, GPU
or multi-core — will certainly make these techniques
useful.

Bibliographic Notes and Further
Reading

Darte, Robert, and Vivien [2] wrote a reference book on
scheduling for parallelism; it provides an in-depth cov-
erage of the techniques presented here, in particular task
scheduling and cyclic scheduling. It also provides a sur-
vey and comparison of various methods for dependence
analysis. This entry borrows a large part of its material
from this book.

1794

SCI (Scalable Coherent Interface)

El-Rewini, Lewis, and Ali give in [3] a survey on
scheduling in general and task scheduling in particu-
lar. In [1], Benoit and Robert give complexity results for
scheduling problems that are related to recent parallel
platforms.

Lam [9] presents software pipelining, one of the most
famous applications of cyclic scheduling to loops. The-
oretical results on cyclic scheduling can be found in [7].

Karp, Miller, and Winograd [8] were among the
first authors to consider scheduling for parallel exe-
cution, in a seminal paper on recurrence equations.
Lamport [10] published one of the most famous papers
on loop parallelization. Loop dependence analysis and
loop transformations for parallelization are extensively
presented by Zima and Chapman in [12]. Mauras,
Quinton, Rajopadhye, and Saouter presented in [11] the
vertex method to schedule affine recurrences, whereas
Feautrier ([5] and [6]) describes the Farkas method for
scheduling affine loop nests.

Data flow analysis is presented in great detail by
Feautrier in [4].

Bibliography

1. Benoit A, Robert Y (Oct 2008) Complexity results for throughput
and latency optimization of replicated and data-parallel work-
flows. Algorithmica 57(4):689-724

2. Darte A, Robert Y, Vivien F (2000) Scheduling and automatic
parallelization. Birkhauser, Boston

3. El-Rewini H, Lewis TG, Ali HH (1994) Task scheduling in paral-
lel and distributed systems. Prentice Hall, Englewood Cliffs, New
Jersey

4. Feautrier P (February 1991) Dataflow analysis of array and scalar
references. Int J Parallel Program 20(1):23-53

5. Feautrier P (Oct 1992) Some efficient solutions to the affine
scheduling problem, Part I, one dimensional time. Int] Parallel
Program 21(5):313-347

6. Feautrier P (December 1992) Some efficient solutions to the affine
scheduling problem, Part II, multidimensional time. Int J Parallel
Program 21(6):389-420

7. Hanen C, Munier A (1995) Cyclic Scheduling on parallel proces-
sors: An overview. In: Chrétienne P, Coffman EG Jr, Lenstra K,
Lia Z (eds) Scheduling theory and its applications. John Wiley
& Sons

8. Karp RM, Miller RE, Winograd S (July 1967) The organization of
computations for uniform recurrence equations.] Assoc Comput
Machin 14(3):563-590

9. Lam MS (1988) Software pipelining: an effective scheduling
technique for VLIW Machines. In: SIGPLAN’88 conference on
programming language, design and implementation, Atlanta, GA.
ACM Press, pp 318-328

10. Lamport L (Feb 1974) The parallel execution of DO loops.
Commun ACM 17(2):83-93

11. Mauras C, Quinton P, Rajopadhye S, Saouter Y (September 1990)
Scheduling affine parameterized recurrences by means of variable
dependent timing functions. In: Kung SY, Schwartzlander EE,
Fortes JAB, Przytula KW (eds) Application Specific Array Pro-
cessors, Princeton University, IEEE Computer Society Press,
pp 100-110

12. Zima H, Chapman B (1989) Supercompilers for Parallel and
Vector Computers. ACM Press, New York

! SCI (Scalable Coherent Interface)

HERMANN HELLWAGNER
Klagenfurt University, Klagenfurt, Austria

Synonyms
International standard ISO/IEC 13961:2000(E) and
IEEE Std 1596, 1998 edition

Definition

Scalable Coherent Interface (SCI) is the specification
(standardized by ISO/IEC and the IEEE) of a high-
speed, flexible, scalable, point-to-point-based inter-
connect technology that was implemented in various
ways to couple multiple processing nodes. SCI sup-
ports both the message-passing and shared-memory
communication models, the latter in either the cache-
coherent or non-coherent variants. SCI can be deployed
as a system area network for compute clusters, as a
memory interconnect for large-scale, cache-coherent,
distributed-shared-memory multiprocessors, or as an
I/O subsystem interconnect.

Discussion

SCI originated in an effort of bus experts in the late
1980s to define a very high performance computer bus
(“Superbus”) that would support a significant degree of
multiprocessing, i.e., number of processors. It was soon
realized that backplane bus technology would not be
able to meet this requirement, despite advanced con-
cepts like split transactions and sophisticated imple-
mentations of the latest bus standards and products.
The committee thus abandoned the bus-oriented view

SCl (Scalable Coherent Interface)

1795

and developed novel, distributed solutions to overcome
the shared-resource and signaling problems of buses,
while retaining the overall goal of defining an intercon-
nect that offers the convenient services well known from
centralized buses [3, 6].

The resulting specification of SCI, approved ini-
tially in 1992 [8] and finally in the late 1990s [9], thus
describes hardware and protocols that provide proces-
sors with the shared-memory view of buses. SCI also
specifies related transactions to read, write, and lock
memory locations without software protocol involve-
ment, as well as to transmit messages and interrupts.
Hardware protocols to keep processor caches coher-
ent are defined as an implementation option. The SCI
interconnect, the memory system, and the associated
protocols are fully distributed and scalable: an SCI net-
work is based on point-to-point links only, implements
a distributed shared memory (DSM) in hardware, and
avoids serialization in almost any respect.

Several ambitious goals guided the specification process
of SCI [3, 5, 8].

High performance. The primary objective of SCI was
to deliver high communication performance to parallel
or distributed applications. This comprises:

- High sustained throughput;
- Low latency;
- Low CPU overhead for communication operations.

The performance goals set forth were in the range of
Gbit/s link speeds and latencies in the low microseconds
range in loosely-coupled systems, even less in tightly-
coupled multiprocessors.

Scalability. SCI was devised to address scalability in
many respects, among them [4]:

- Scalability of performance (aggregate bandwidth) as
the number of nodes grows;

- Scalability of interconnect distance, from centime-
ters to tens of meters, depending on the media and
physical layer implementation, but based on the
same logical layer protocols;

- Scalability of the memory system, in particular of the
cache coherence protocols, without a practical limit
on the number of processors or memory modules
that could be handled;

- Technological scalability, i.e., use of the same mech-
anisms in large-scale and small-scale as well as
tightly-coupled and loosely-coupled systems, and
the ability to readily make use of advances in tech-
nology, e.g., high-speed links;

- Economic scalability, i.e., use of the same mecha-
nisms and components in low-end, high-volume
and high-end, low-volume systems, opening the
chance to leverage the economies of scale of mass
production of SCI hardware;

- No short-term practical limits to the addressing
capability, i.e., an addressing scheme for the DSM
wide enough to support a large number of nodes and
large node memories.

Coherent memory system. Caches are crucial for mod-
ern microprocessors to reduce average access time to
data. This specifically holds for a DSM system with
NUMA (non-uniform memory access) characteristics
where remote accesses can be roughly an order of mag-
nitude more expensive than local ones. To support a
convenient programming model as known, e.g., from
symmetric multiprocessors (SMPs), the caches should
be kept coherent in hardware.

Interface characteristics. The SCI specification was
intended to describe a standard interface to an inter-
connect to enable multiple devices from multiple ven-
dors to be attached and to interoperate. In other words,
SCI should serve as an “open distributed bus” connect-
ing components like processors, memory modules, and
intelligent I/O devices in a high-speed system.

In the following, the main concepts and features of SCI
will be summarized and the achievements, as repre-
sented by several implementations of SCI networks, will
be assessed.

Point-to-point links. An SCI interconnect is defined to
be built only from unidirectional, point-to-point links
between participating nodes. These links can be used
for concurrent data transfers, in contrast to the one-
at-a-time communication characteristics of buses. The
number of the links grows as nodes are added to the
system, increasing the aggregate bandwidth of the net-
work. The links can be made fast and their performance
can scale with improvements in the underlying technol-
ogy. They can be implemented in a bit-parallel manner

1796

SCl (Scalable Coherent Interface)

(for small distances) or in a bit-serial fashion (for larger
distances), with the same logical layer protocols. Most
implementations use parallel links over distances of a
few centimeters or meters.

Sophisticated signaling technology. The data transfer
rates and lengths of shared buses are inherently limited
due to signal propagation delays and signaling problems
on the transmission lines. The unidirectional, point-to-
point SCI links avoid such signaling problems. Since
there is only a single transmitter and a single receiver
rather than multiple devices, the signaling speed can be
increased significantly. High speeds are also fostered by
low-voltage differential signals.

Furthermore, SCI strictly avoids back-propagating
signals, even reverse flow control on the links, in favor
of high signaling speeds and scalability. Flow control
information becomes part of the normal data stream in
the reverse direction, leading to the requirement that an
SCI node must at least have one outgoing link and one
incoming link.

Already in the mid 1990s, SCI link implementation
speeds reached 500 Mbyte/s in system area networks
(distances of a few meters, 16-bit parallel links) and
1 Gbyte/s in closely-coupled, cache-coherent shared-
memory multiprocessors; transfer rates of 1 Gbyte/s

have also been demonstrated over a distance of about
100 m, using parallel fiber-optic links; see [6].

Nodes. SCI was designed to connect up to 64 k nodes. A
node can be a complete workstation or server machine,
a processor and its associated cache only, a memory
module, I/O controllers and devices, or bridges to other
buses or interconnects, as illustrated exemplarily in
Fig. 1. Each node is required to have a standard inter-
face to attach to the SCI network, as described in [3, 5,
8]. In most SCI systems implemented so far, nodes are
complete machines, often even multiprocessors.

Topology independence. In principle, SCI networks
with complex topologies could be built; investigations
into this area are described in several chapters of [6].
However, the standard anticipates simple topologies
to be used. For small systems, for instance, the pre-
ferred topology is a small ring (a so-called ringlet); for
larger systems, topologies like a single switch connect-
ing multiple ringlets, rings of rings, or multidimen-
sional tori are feasible; see Fig. 1. Most SCI systems
implemented used single rings, a switch, multiple rings,
or two-dimensional tori.

Fixed addressing scheme. SCI uses the 64-bit fixed
addressing scheme defined by the Control and Status

Work- Memory Pro;:sjsor SCI
station node
A cache

N

SCl-bus bridge

Node

Switch

SCI ringlet

Ring of rings

| SCI-LAN converter |

—1

s
ARiBin

D torus

SCl (Scalable Coherent Interface). Fig.1 Simple SCI network topologies

SCI (Scalable Coherent Interface)

1797

Register (CSR) Architecture standard (IEEE Std 1212-
1991) [7]. The 64-bit SCI address is divided into two
fixed parts: the most significant 16 address bits spec-
ify the node ID (node address) so that an SCI network
can comprise up to 64 k nodes; the remaining 48 bits
are used for addressing within the nodes, in compliance
with the CSR Architecture standard.

Hardware-based distributed shared memory (DSM).
The SCI addressing scheme spans a global, 64-bit
address space; in other words, a physically addressed,
distributed shared memory system. The distribution of
the memory is transparent to software and even to pro-
cessors, i.e., the memory is logically shared. A memory
access by a processor is mediated to the target memory
module by the SCI hardware.

The major advantage of this feature is that inter-
node communication can be effected by simple load and
store operations by the processor, without invocation
of a software protocol stack. The instructions accessing
remote memory can be issued at user level; the oper-
ating system need not be involved in communication.
This results in very low latencies for SCI communica-
tion, typically in the low microseconds range.

A major implementation challenge, however, is how
to integrate the SCI network (and, thus, access to the
system-wide SCI DSM) with the memory architec-
ture of a standard single-processor workstation or a
multiprocessor node. The common solutions, attach-
ing SCI to the I/O bus or to the memory bus, will be
outlined below.

Bus-like services. To complete the hardware DSM,
SCI defines transactions to read, write, and lock mem-
ory locations, functionality well-known from computer
buses. In addition, message passing and global time syn-
chronization are supported, both as defined by the CSR
Architecture; interrupts can be delivered remotely as
well. Broadcast functionality is also defined.
Transactions can be tagged with four different prior-
ities. In order to avoid starvation of low-priority nodes,
fair protocols for bandwidth allocation and queue allo-
cation have been developed. Bandwidth allocation is
similar in effect to bus arbitration in that it assigns
transfer bandwidth (if scarce) to nodes willing to send.
Queue allocation apportions space in the input queues
of heavily loaded, shared nodes, e.g., memory mod-
ules or switch ports, which are targeted by many nodes

simultaneously. Since the services have to be imple-
mented in a fully distributed fashion, the underlying
protocols are rather complex.

Split transactions. Like multiprocessor buses, SCI
strictly splits transactions into request and response
phases. This is a vital feature to avoid scalability imped-
iments; it makes signaling speed independent of the
distance a transaction has to travel and avoids monop-
olizing network links. Transactions therefore have to
be self-contained and are sent as packets, containing a
transaction ID, addresses, commands, status, and data
as needed. A consequence is that multiple transactions
can be outstanding per node. Transactions can thus
be pumped into the network at a high rate, using the
interconnect in a pipeline fashion.

Optional cache coherence. SCI defines distributed
cache coherence protocols, based on a distributed-
directory approach, a multiple readers - single writer
sharing regime, and write invalidation. The memory
coherence model is purposely left open to the imple-
menter. The standard provides optimizations for com-
mon situations such as pair-wise sharing that improve
performance of frequent coherence operations.

The cache coherence protocols are designed to be
implemented in hardware; however, they are highly
sophisticated and complex. The complexity stems from
a large number of states of coherent memory and
cache blocks, correspondingly complex state transi-
tions, and the advanced algorithms that ensure atomic
modifications of the distributed-directory information
(e.g., insertions, deletions, invalidations). The greatest
complication arises from the integration of the SCI
coherence protocols with the snooping protocols typi-
cally employed on the nodes’ memory buses. An imple-
mentation is highly challenging and incurs some risks
and potentially high costs. Not surprisingly, only a few
companies have done implementations, as described
below.

The cache coherence protocols are provided as
options only. A compliant SCI implementation need
not cover coherence; an SCI network even cannot par-
ticipate in coherence actions when it is attached to
the I/O bus as is the case in compute clusters. Yet,
a common misconception was that cache coherence
was required functionality at the core of SCI. This

1798

SCl (Scalable Coherent Interface)

misunderstanding has clearly hindered SCI’s prolifera-
tion for non-coherent uses, e.g., as a system area net-
work.

Reliability in hardware. In order to enable high-speed
transmission, error detection is done in hardware, based
on a 16-bit CRC code which protects each SCI packet.
Transactions and hardware protocols are provided that
allow a sender to detect failure due to packet corrup-
tion, and allow a receiver to notify the sender of its
inability to accept packets (due to a full input queue)
or to ask the sender to re-send the packet. Since this
happens on a per-packet basis, SCI does not automat-
ically guarantee in-order delivery of packets. This may
have a considerable impact on software which would
rely on a guaranteed packet sequence. An example is
a message passing library delivering data into a remote
buffer using a series of remote write transactions and
finally updating the tail pointer of the buffer. Some SCI
hardware provides functionality to enforce a certain
memory access order, e.g., via memory barriers [6].

Various time-outs are provided to detect lost packets
or transmission errors. Hardware retry mechanisms or
software recovery protocols may be implemented based
on transmission-error detection and isolation mecha-
nisms; these are however not part of the standard. As
a consequence, SCI implementations differed widely in
the way errors are dealt with.

The protocols are designed to be robust, i.e., they
should, e.g., survive the failure of a node with outstand-
ing transactions. Among other mechanisms, error con-
tainment and logging procedures, ringlet maintenance
functions and a packet time-out scheme are specified.
Robustness is particularly important for the cache
coherence protocols which are designed to behave cor-
rectly even if a node fails amidst the modification of a
distributed-directory entry.

Layered specification. The SCI specification is struc-
tured into three layers.

At the physical layer, three initial physical link mod-
els are defined: a parallel electrical link operating at
1 Gbyte/s over short distances (meters); a serial elec-
trical link that operates at 1 Gbit/s over intermediate
distances (tens of meters); and a serial optical link that
operates at 1 Gbit/s over long distances (kilometers).

Although the definitions include the electrical,
mechanical, and thermal characteristics of SCI mod-
ules, connectors, and cables, the specifications were not
adhered to in implementations. SCI systems typically
used vendor-specific physical layer implementations,
incompatible to others. It is fair to say, therefore, that
SCI has not become the open, distributed interconnect
system that the designers had envisaged to create.

The logical layer specifies transaction types and pro-
tocols, packet types and formats, packet encodings,
the standard node interface structure, bandwidth and
queue allocation protocols, error processing, addressing
and initialization issues, and SCI-specific CSRs.

The cache coherence layer provides concepts and
hardware protocols that allow processors to cache
remote memory blocks while still maintaining coher-
ence among multiple copies of the memory contents.
Since an SCI network no longer has a central resource
(i.e., a memory bus) that can be snooped by all attached
processors to effect coherence actions, distributed-
directory-based solutions to the cache coherence prob-
lem had to be devised.

At the core of the cache coherence protocols are the
distributed sharing lists shown in Fig. 2. Each shared
block of memory has an associated distributed, doubly-
linked sharing list of processors that hold a copy of the
block in their local caches. The memory controller and
the participating processors cooperatively and concur-
rently create and update a block’s sharing list, depending
on the operations on the data.

C code. A remarkable feature of the SCI standard is
that major portions are provided in terms of a “for-
mal” specification, namely, C code. Text and figures are
considered explanatory only, the definitive specification
are the C listings. Exceptions are packet formats and
the physical layer specifications. The major reasons for
this approach are that C code is (largely) unambiguous
and not easily misunderstood and that the specification
becomes executable, as a simulation. In fact, much of
the specification was validated by extensive simulations
before release.

SCI was originally conceived as a shared-memory inter-
connect, but SCT’s flexibility and performance potential

SCI (Scalable Coherent Interface)

1799

Memory Processors
Control P_A P_B P_C P_D CPUs
| > e
RAM /r:l"!” Y > | Caches
m ~ - s/ \
~ 7
- s
3 Bits | M State | Fwd ID |16 Bits 16 Bits | Fwd ID | Back ID | 16 Bits
Data 7 Bits | C State | Mem ID | 16 Bits
(64 Bytes) Address offset | 48 Bits
(~4% overhead) Data
(64 Bytes)

[Cache-coherent memory block
Il Non-coherent memory block

(~7% overhead)

64K nodes, 64-byte memory/cache blocks assumed

SCI (Scalable Coherent Interface). Fig.2 Sharing list and coherence tags of SCl cache coherence protocols

also for other applications was soon realized and lever-
aged by industry. In the following, a few of these “classi-
cal” applications of SCI are introduced and examples of
commercial systems that exploited SCI technology are
provided.

System Area Network for Clusters

In compute clusters, an SCI system area network can
provide high-performance communication capabilities.
In this application, the SCI interconnect is attached
to the I/O bus of the nodes (e.g., PCI) by a periph-
eral adapter card, very similar to a LAN; see Fig. 3.
In contrast to “standard” LAN technology and most
other system area networks, though, the SCI cluster
network, by virtue of the common SCI address space
and associated transactions, provides hardware-based,
physical distributed shared memory. Figure 4 shows a
high-level view of the DSM. An SCI cluster thus is more
tightly coupled than a LAN-based cluster, exhibiting the
characteristics of a NUMA parallel machine.

The SCI adapter cards, together with the SCI driver
software, establish the DSM as depicted in Fig. 4. (This
description pertains to the solutions taken by the pio-
neering vendor, Dolphin Interconnect Solutions, for
their SBus-SCI and PCI-SCI adapter cards [2, 6].) A
node that is willing to share memory with other nodes
(e.g., A), creates shared memory segments in its phys-
ical memory and exports them to the SCI network
(i.e., SCI address space). Other nodes (e.g., B) import
these DSM segments into their I/O address space. Using
on-board address translation tables (ATTs), the SCI

adapters maintain the mappings between their local
I/O addresses and the global SCI addresses. Processes
on the nodes (e.g., i and j) may further map DSM
segments into their virtual address spaces. The latter
mappings are conventionally being maintained by the
processors’ MMUs.

Once the mappings have been set up, inter-node
communication may be performed by the participating
processes at user level, by simple CPU load and store
operations into DSM segments mapped from remote
memories. The SCI adapters translate I/O bus trans-
actions that result from such memory accesses into
SCI transactions, and vice versa, and perform them on
behalf of the requesting processor. Thus, remote mem-
ory accesses are both transparent to the requesting pro-
cesses and do not need intervention by the operating
system. In other words, no protocol stack is involved in
remote memory accesses, resulting in low communica-
tion latencies.

In the 1990s, the prevailing commercial imple-
mentations of such SCI cluster networks were the
SBus-SCI and PCI-SCI adapter cards (and associated
switches) offered by Dolphin Interconnect Solutions
[2]. These cluster products were used by other compa-
nies to build key-turn cluster platforms; examples were
Sun Microsystems, offering high-performance, high-
availability server clusters, and Scali Computers and
Siemens providing clusters for parallel computing based
on MPI; see [6]. Similar SCI adapters are still offered
at the time of writing and are being used in embedded
systems, e.g., medical devices such as CT scanners [2].

1800

SCI (Scalable Coherent Interface)

Memory
image

SCI global
address space

/'

\-__'/
SClI
interconnect

SCl (Scalable Coherent Interface). Fig. 3 SCl cluster model

Node A, process i

Local memory segment
Virtual I I
address spaces

\ \
\ \ Ma
\ \ P

Physical I/0] |

address spaces

~ ~
~ ~
~

~ T

Node architecture

P&C M
| I

\ Memory bus

Y% /O bridge
I/O bus

\
\
\ SCl adapter [

| SCl links

Node B, process j

Mapped, remote
memory segment

Map -~ .- MMU

Export “~_ s _—=""2-==""Import ATT

SCI physical address space [[

SCl (Scalable Coherent Interface). Fig. 4 Address spaces and address translations in SCl clusters

In addition, there were research implementations of
adapter cards, among them one developed at CERN as
a prototype to investigate SCI's feasibility and perfor-
mance for demanding data acquisition systems in high-
energy physics, i.e,, in one of the LHC experiments;
see [6].

The description of an SCI cluster interconnect given
above does not address many of the low-level prob-
lems and functionality that the implementation has to
cover. For instance, issues like the translation of 32-bit
node addresses to 64-bit SCI addresses and vice versa,
the choice of the shared segment size, error detection
and handling, high-performance data transfers between
node hardware and SCI adapter, and the design and
implementation of low-level software (SCI drivers) as
well as message-passing software (e.g., MPI) represent a
spectrum of research and development problems. Sev-
eral contributions in [6] describe these problems and
corresponding solutions in some detail.

An important property of such SCI cluster inter-
connect adapters is worth pointing out here. Since an
SCI cluster adapter attaches to the I/O bus of a node,

it cannot directly observe, and participate in, the traffic
on the memory bus of the node. This therefore pre-
cludes caching and coherence maintenance of mem-
ory regions mapped to the SCI address space. In other
words, remote memory contents are basically treated
as non-cacheable and are always accessed remotely.
Standard SCI cluster interconnect hardware does not
implement cache coherence capabilities therefore. This
property raises a performance concern: remote accesses
(round-trip operations such as reads) must be used
judiciously since they are still an order of magnitude
more expensive than local memory accesses (NUMA
characteristics).

The basic approach to deal with the latter prob-
lem is to avoid remote operations that are inherently
round-trip, i.e., reads, as far as possible. Rather, remote
writes are used which are typically buffered by the SCI
adapter and therefore, from the point of view of the
processor issuing the write, experience latencies in the
range of local accesses, several times faster than remote
read operations. Again in [6], several chapters describe
how considerations like this influence the design and

SCI (Scalable Coherent Interface)

1801

implementation of efficient message-passing libraries
on top of SCL

Finally, several contributions in [6] deal with how
to overcome the limitations of non-coherent SCI clus-
ter hardware, in particular for the implementation of
shared-memory and shared-object programming mod-
els. Techniques from software DSM systems, e.g., repli-
cation and software coherence maintenance, are applied
to provide a more convenient abstraction, e.g., a com-
mon virtual address space spanning all the nodes in the
SCI cluster.

Memory Interconnect for Cache-Coherent
Multiprocessors

The use of SCI as a cache-coherent memory intercon-
nect allows nodes to be even more tightly coupled than
in a non-coherent cluster. This application requires SCI
to be attached to the memory bus of a node, as shown
in Fig. 5. At this attachment point, SCI can participate
in and “export,” if necessary, the memory and cache
coherence traffic on the bus and make the node’s mem-
ory visible and accessible to other nodes. The nodes’
memory address ranges (and the address mappings
of processes) can be laid out to span a global (vir-
tual) address space, giving processes transparent and
coherent access to memory anywhere in the system.
Typically, this approach is adopted to connect multi-
ple bus-based commodity SMPs to form a large-scale,
cache-coherent (CC) shared-memory system, often
termed a CC-NUMA machine.

There were three notable examples of SCI-based
CC-NUMA machines: the HP/Convex Exemplar series
[1], the Sequent NUMA-Q multiprocessor [10], and the
Data General AViiON scalable servers (see [6]). The

latter two systems comprised bus-based SMP nodes
with Intel processors, while the Exemplar used HP PA-
RISC processors and a non-blocking crossbar switch
within the nodes. The inter-node memory intercon-
nects were proprietary implementations of the SCI stan-
dard, with specific adaptations and optimizations incor-
porated to ease implementation and integration with
the node architecture and to foster overall performance.

The major challenge in building a CC-NUMA
machine is to bridge the cache coherence mechanisms
on the intra-node interconnect (e.g., the SMP bus run-
ning a snooping protocol) and the inter-node net-
work (SCI). Since it is well documented, the Sequent
NUMA-Q machine is used as a case study in [6] to illus-
trate the essential issues in building such a bridge and
making the protocols interact correctly.

1/0 Subsystem Interconnect
SCI can be used to connect one or more I/O subsystems
to a computing system in novel ways. The shared SCI
address space can include the I/O nodes which then are
enabled to directly transfer data between the peripheral
devices (in most cases, disks) and the compute nodes’
memories using DMA; software needs not be involved
in the actual transfer. Remote peripheral devices in a
cluster, for instance, thus can become accessible like
local devices, resulting in an I/O model similar to SMPs;
remote interrupt capability can also be provided via SCL
High bandwidth and low latency, in addition to the
direct remote memory access capability, make SCI an
interesting candidate for an I/O network.

There were two commercial implementations of
SCI-based 1/O system networks. One was the GigaR-
ing channel from SGI/Cray [12], the other one the

[
- P&C P&C
P&C P&C P&C P&C ‘I_L
I ——— o -
System bl
pembie] o s)SC;
M I/0 SCI
e f—

SCl interconnect

SCI (Scalable Coherent Interface). Fig. 5 SCl based CC-NUMA Multiproccessor Model

1802

SCl (Scalable Coherent Interface)

external I/O subsystem interconnect of the Siemens
RM600 Enterprise Servers, based on Dolphin’s cluster
technology; see again [6].

SCI addresses difficult interconnect problems and
specifies innovative distributed structures and proto-
cols for a scalable DSM architecture. The specifica-
tion covers a wide spectrum of bus, network, and
memory architecture problems, ranging from signaling
considerations up to distributed directory-based cache
coherence mechanisms.

In fact, this wide scope of SCI has raised criticism
that the standard is actually “several standards in one”
and difficult to understand and work with. This lack of
a clear profile and the wide applicability of SCI have
probably contributed to its relatively modest acceptance
in industry. Furthermore, the SCI protocols are com-
plex (albeit well devised) and not easily implemented in
silicon. Thus, implementations are quite complex and
therefore expensive.

In an attempt to reduce complexity and optimize
speed, many of the implementers adopted the concepts
and protocols which they regarded as appropriate for
their application, and left out or changed other features
according to their needs. This use of SCI led to a number
of proprietary, incompatible implementations.

As a consequence, the goal of economic scalability
has not been satisfactorily achieved in general. Further,
SCI has clearly also missed the goal of evolving into
an “open distributed bus” that multiple devices from
different vendors could attach to and interoperate.

However, in terms of the technical objectives, pre-
dominantly high performance and scalability, SCI has
well achieved its ambitious goals. The vendors that
have adopted and implemented SCI (in various fla-
vors), offered innovative high-throughput, low-latency
interconnect products or full-scale cache-coherent
shared-memory multiprocessing systems, as described
above.

SCI had noticeable influence on further develop-
ments, e.g., interconnect standard projects like Sync-
Link, a high-speed memory interface, and Serial
Express (SerialPlus), an extension to the SerialBus
(IEEE 1394) interconnect. SCI also played a role in
the debate on “future I/O systems” in the late 1990s,
which then led to the InfiniBand™Architecture. The

latest developments on SCI are explored in more detail
in the final chapter of [6].

Related Entries

»Buses and Crossbars

»Cache Coherence

»Clusters

» Distributed-Memory Multiprocessor
»InfiniBand

»Myrinet

»NOW

»Nonuniform Memory Access (NUMA) Machines
»Quadrics

»Shared-Memory Multiprocessors

Bibliographic Notes and Further
Reading

SCI was standardized and deployed in the 1990s. David
B. Gustavson, one of the main designers, provides first-
hand information on SCI’s origins, development, and
concepts [3, 4, 5]; even the standard document is stimu-
lating material [8, 9]. Gustavson also maintained a Web-
site that actively traced and documented the activities
around SCI and related standards [11].

In the late 1990s, the interest in SCI largely disap-
peared. However, [6] was published as a comprehensive
(and somehow concluding) summary of the technology,
research and development projects, and achievements
around SCI. For many projects and products, the cor-
responding chapters in [6] are the only documentation
still available in the literature; in particular, information
on products has disappeared from the Web meanwhile,
but is still available to some extent in this book for
reference.

This entry of the encyclopedia is a condensed
version of the introductory chapter of [6].

Bibliography
1. Brewer T, Astfalk G (1997) The evolution of the HP/Convex
Exemplar. In: Proceedings of COMPCON, San Jose
2. Dolphin Interconnect Solutions (2009) http://www.dolphi-
nics.com. Accessed October 2009
3. Gustavson DB, (1992) The Scalable Coherent Interface and related
standards projects. IEEE Micro 12(1):10-22

http://dx.doi.org/10.1007/978-0-387-09766-4_476
http://dx.doi.org/10.1007/978-0-387-09766-4_375
http://dx.doi.org/10.1007/978-0-387-09766-4_18
http://dx.doi.org/10.1007/978-0-387-09766-4_223
http://dx.doi.org/10.1007/978-0-387-09766-4_21
http://dx.doi.org/10.1007/978-0-387-09766-4_486
http://dx.doi.org/10.1007/978-0-387-09766-4_2124
http://dx.doi.org/10.1007/978-0-387-09766-4_2115
http://dx.doi.org/10.1007/978-0-387-09766-4_312
http://dx.doi.org/10.1007/978-0-387-09766-4_142
http://www.dolphi-nics.com
http://www.dolphi-nics.com

Semantic Independence

1803

4. Gustavson DB (1994) The many dimensions of scalability. In:
Proceedings of the COMPCON Spring, San Francisco

5. Gustavson DB Li Q (1996) The Scalable Coherent Interface (SCI).
IEEE Comm Mag 348:52-63

6. Hellwagner H, Reinefeld A (eds) (1999) SCI: Scalable Coher-
ent Interface. Architecture and software for high-performance
compute clusters. LNCS vol 1734, Springer, Berlin

7. IEEE Std 1212-1991 (1991) IEEE standard Control and Status Reg-
ister (CSR) Architecture for microcomputer buses

8. IEEE Std 1596-1992 (1993) IEEE standard for Scalable Coherent
Interface (SCI)

9. International Standard ISO/IEC 13961:2000(E) and IEEE Std
1596, 1998 Edition (2000) Information technology - Scalable
Coherent Interface (SCI). ISO/IEC and IEEE

10. Lovett T, Clapp R (1996) STiNG: a CC-NUMA computer sys-
tem for the commercial marketplace. In: Proceedings of the 23rd
Internationl Symposium on Computer Architecture (ISCA), May
1996, Philadelphia

11. SCIzzL: the local area memory port, local area multiprocessor,
Scalable Coherent Interface and Serial Express users, developers,
and manufacturers association. http://www.scizzl.com. Accessed
October 2009

12. Scott S (1996) The GigaRing channel. IEEE Micro 16(1):27-34

' Semantic Independence

MARTIN FRANZLE', CHRISTIAN LENGAUER®
'Carl von Ossietzky Universitit, Oldenburg, Germany
2University of Passau, Passau, Germany

Definition

Two program fragments are semantically independent
if their computations are mutually irrelevant. A con-
sequence for execution is that they can be run on
separate processors in parallel, without any synchro-
nization or data exchange. This entry describes a rela-
tional characterization of semantic independence for
imperative programs.

Discussion

The most crucial analysis for the discovery of parallelism
in a sequential, imperative program is the dependence
analysis. This analysis tells which program operations
must definitely be executed in the order prescribed
by the source code (see the entries on dependences
and dependence analysis). The conclusion is that all
others can be executed in either order or in parallel.

The converse problem is that of discovering indepen-
dence. Program fragments recognized as independent
may be executed in either order or in parallel, all oth-
ers must be executed in the order prescribed by the
source code.

The search for dependences is at the basis of an
automatic program parallelizer (see the entries on
autoparallelization and on the polyhedron model). The
determination of the independence of two program
fragments is a software engineering technique that can
help to map a specific application program to a spe-
cific parallel or distributed architecture or it can tell
something specific about the information flow in the
overall program.

While the search for dependences or independences
has to be based on some form of analysis of the program
text, the criteria underlying such an - in any Turing-
complete programming language necessarily incom-
plete — analysis should be semantic. The reason is that
the syntactic form of the source program will make cer-
tain (in)dependences easy to recognize and will occlude
others. It is therefore much wiser to define indepen-
dence in a model which does not entail such an arbitrary
bias. An appropriate model for the discovery of inde-
pendence between fragments of an imperative program
is the relation between its input states and its output
states.

Program examples adhere to the following notational
conventions:

e The value sets of variables are specified by means of
a declaration of the form var x,y, ... : {0,...,n}, for
n > 1 (that is, they are finite).

o If the value set is {0,1}, Boolean operators are used
with their usual meaning, where the number 0 is
identified with false and 1 with true.

e Boolean operators bind more tightly than arithmetic
ones.

The initial paper on semantic independence [2] con-
tains a number of illustrative examples. The most com-
plex one, Example 4, shall serve here as a guide:

var x, 9,z : {0,1};

a: (xy)=(xAz,yA-2Z)
a: (%y)=(xA-z,yAZ)

http://www.scizzl.com

1804

Semantic Independence

The question is whether the effect of these two
distinct multiple assigments can be achieved by two
independent operations which could be executed mutu-
ally in parallel. At first glance, it does not seem possible,
since x and y are subject to update and are both shared
by both statements. However, this is due to the particu-
lar syntactic form of the program. One should not judge
independence by looking at the program text but by
looking at a semantic model.

One suitable model is a graph of program state tran-
sitions. The graph for the program above is depicted in
Fig. 1. The nodes are program states. A program state
consists of the three binary values of variables x, y, and z.
State transitions are modelled by arrows between states.
Solid arrows depict transitions of statement «;, dashed
arrows transitions of statement a,.

The question to be answered in order to determine
independence on any platform is: is there a transforma-
tion of the program’s state space which leads to variables
that can be accessed independently? It is not sufficient
to require updates to be independent but allow read-
ing to be shared, because the goal is to let semanti-
cally independent program fragments access disjoint
pieces of memory. This obviates a cache coherence
protocol in a multiprocessor system and improves the

)
X
~
|
|
|
\
|
\

-l
/ 1
000 ————f— 010
|
100} ————— 110
/
‘\//

Semantic Independence. Fig.1 State relations of the
program example

utilization of the cache space. Some special-purpose
platforms, for example, systolic arrays, disallow shared
reading altogether; see the entry on systolic arrays.
Consequently, all accesses — writing and reading - must
be independent.

For the example, there is such a transformation of
the variables x, y, and z to new variables V and W

var V:{0,1}, W:{0,1,2,3};
V=(xn=-2)V(yAz)
W=2%z+(xAz)V(yA-2)

The transformation is depicted in Fig. 2. The figure
shows the same state graph as Fig. 1 but imposes two
partitionings on the state space. The set p; of the two
amorphously encased partitions yields the two-valued
variable V. As denoted in the figure, each partition
models one distinct value of the variable. The set p, of
the four rectangularly encased partitions yields the four-
valued variable W. The partitionings must - and do -
satisfy certain constraints to be made precise below.

The semantically equivalent program that results is:

var V: {0,1}, W:{0,1,2,3};
a: V=0
oy Wi=2x(Wdiv2)

Semantic Independence. Fig.2 State relations of the
program example, partitioned

Semantic Independence

1805

As is plainly evident, the new statements «] and o)
access distinct variable spaces and are, thus, triv-
ially independent. In Fig. 2, this property is reflected
by the fact that oy (and, thus, «) transitions are
exclusively inside partitions of partitioning p, and a,
(and, thus,) transitions exclusively inside partitions
of partitioning p;.

The notion of semantic independence illustrated
above and formalized below specifies a transformation
of the state space that induces two partitionings, each
covering one update in the transformed state space,
such that both updates can be performed in parallel,
without any need for shared access to program vari-
ables: they are completely independent in the sense that
no information flows between them.

If the parallel updates depend on a common context,
that is, they constitute only a part of the overall pro-
gram, the transformations between the original and the
transformed state space must become part of the imple-
mentation. Then, the transformation from the original
to the transformed space may require multiple read
accesses to variables in the original state space and the
backtransformation may require multiple read accesses
to variables in the transformed state space. Depending
on the abilities of the hardware, the code for these trans-
formations may or may not be parallelizable (see the
section on disjoint parallelism and its limitations).

The first objective of this subsection is the independence
of two imperative program fragments, as illustrated in
the example. The generalization to more than two pro-
gram fragments as well as to the interior of a single
fragment follows subsequently.

Independence Between Two Statements
A transformation of the state space can be modelled as
a function

n:X-Y

from a state space X to a state space Y. In this subsection,
consider two program fragments, R and S, which are
modelled as relations on an arbitrary (finite, countable,
or uncountable) state space X:

RcXxX and ScXxX.

n is supposed to expose binary independence. This leads
to a partitioning of state space Y, that is, Y should be
the Cartesian product of two nontrivial, that is, neither
empty nor singleton state spaces A and B:

Y=AxB.

Desired are two new program fragments R € Y x Y
and §' € Y x Y, such that R’ operates solely on A and §’
operates solely on B. Given two relations

rCAxA and sCBxB

denote their product relation as follows:

res={((a,b),(a’,b"))]| (a,a’) er,(b,b") es}
c (AxB)x(AxB)

Also, write Iy for the identity relation on set M, that
is, the relation {(m,m) | m € M}. Then, the above
requirement that R' and S’ operate solely on A and B,
respectively, amounts to requiring that

R =(r®lp) and §' = (14 ®s).

for appropriate relations r € A x Aand s € B x B.
Furthermore, the composition of R” and §’ should
exhibit the same input-output behavior on the image
7(X) € Y of the transformation # as the composition
of R and S on X. Actually, this requirement has been
strengthened to a mutual correspondence in order to
avoid useless parallelism in which either R” or S’ does
the full job of both R and S: R’ must behave on its part
of 7(X) like R on X and §' like S. With relational com-
position denoted as left-to-right juxtaposition, that is,

rs={(xy)|3z: (x,2) ern(z,y) €5},
the formal requirement is:
Ry=xR and Sn=1§.

In order to guarantee a correspondence between the
resulting output state in Y and its equivalent in X, there
is one more requirement: #’s relational inverse ' =
{(3,x) | y = n(x)}, when applied to #(X), must not
incur a loss of information of a poststate generated by
program fragments R or S. This is expressed by the two
equations:

R=nR'n' and S=#y8n"

1806

Semantic Independence

Figure 3 depicts the previous two requirements as com-
muting diagrams, on the left for relation R and on the
right for relation S. The dashed arrows represent the
former and the dashed-dotted arrows the latter require-
ment. Together they imply:

R=Ryn™' and S=Syn"

It is neither a consequence that 7! is a function when
confined to the images of R or S, nor that it is total
on these images. However, if 774~ contains two states
(x,y) and (x,)'), then y and y’ are R-equivalent (and
S-equivalent) in the sense that (z,y) € Riff (z,)') € R,
for each z € X (and likewise for S), that is, y and y" occur
as poststates of exactly the same prestates. If R (or S)
is a total function, which is the case for deterministic
programs, then 7! restricted to the image of R (or S,
respectively) must be a total function.

Putting all requirements together, one arrives at the
following definition of semantic independence between
two imperative program fragments.

Definition 1 (Semantic independence [4]) Two rela-
tions R and S on the state set X are called semantically
independent if there are nontrivial (i.e., cardinality > 1)
sets A and B, relations r on A and s on B, and a function

n: X — A x B such that
Ryn'=R, and
Snyn'=8. @

Under the conditions of Eq. 1, R is simulated by r in
the sense that

Ry=n(relp),
Sn=n(la®s),

R=Ryn'=n(rels)n’

1
, I
1 n :
I X > Y=AxB :
1
; I
1 1
1 1
: R r IB :
! .
' 1
1 1
1 n :
: X < > Y=AxB !
: ! '
' v
1

and, likewise, S by s due to
S=Synt=nIa®s)n"

That is, after applying state transformation #, an effect
equivalent to R can be obtained by executing r, with the
result to be extracted by transforming the state space
back via 77! The gain is that r only operates on the first
component A of the transformed state space, not inter-
fering with s which, in turn, simulates S on the second
component B.

An immediate consequence of Definition 1 is
that semantically independent relations commute with
respect to relational composition, which models sequen-
tial composition in relational semantics. Take again R
and S:

RS
= RSnn™!
= Ry(la®s)n™

=n(relp)(Iy®s)n™!

=n(Ia®s)(relz)n™!
= Sn(rel)n™
= SRyn!
= SR

However, the converse is not true: semantic inde-
pendence is more discriminative than commutativity.
Intuitively, it has to be, since semantic independence

1
. I
' n I
! X > Y=AxB .
: I
: I
' I
: S Ia s :
i !

1
1
: n _ :
. X > Yy=AxB !
' -1

n 1

| \
1

Semantic Independence. Fig. 3 Two requirements on semantic independence

Semantic Independence

1807

must ensure truly parallel execution, without the risk of
interference, while commutativity may hold for inter-
fering program fragments. A case of two program
fragments which commute but are not semantically
independent was provided as Example 5 in the initial
paper [2]:

var x: {0,1,2,3};

a;: x:=(x+1) mod 4

a: x:=(x+2) mod 4

To prove the dependence, consider the projection of a
Cartesian product to its first component:

ltAxB— A
b ((a,b)) =a

Since & corresponds to a transition relation that is a
total and surjective function on X = {0,1,2,3}, 5} is
necessarily a bijection between X and A whenever 7 sat-
isfies Eq. 1. Consequently, relation S’, which implements
«; in the transformed state space, cannot leave the first
component A of the transformed state space A x B unaft-
fected, that is, it cannot be of the form (I ® s), since a»
is not the identity on X.

As pointed out before, the example in Fig. 1 is
semantically independent in the sense of Definition 1.
Taking A = {0,1}, that is, as the domain of variable V'
from the transformation on page 2, and B = {0,1,2,3},
that is, as the domain of variable W, and taking

1(x,9.2) = ((xA=2)v(yAz),2%z+ (xA2) V(Y A-2Z)),
the two relations
s={(a,0)|acA} and r={(b,2%(bdiv2))|beB}

satisfy Eq. 1. These two relations s and are the relational
models of the assignments a; and &} on page 4.

Mutual Independence Between More than

Two Fragments

Semantic independence is easily extended to arbitrarily
many program fragments. To avoid subscripts, con-
sider only three program fragments given as relations
R,S, T on the state set X, which illustrates the general
case sufficiently. These relations are called semantically
independent if they correspond to relations r,s,t on
three nontrivial sets A, B, C, respectively, such that there
is a function

n:X—->AxBxC

that can be used to represent R, S and T by the product
relations

relpg®Ilc, [, ®s®Ic, I, Ip®t
respectively. For R, this representation has the form
Ry=n(relzIc).

As before, the requirement is that R# 5~ = R. Relations
Sand T are represented analogously and are subject to
corresponding requirements.

These conditions are considerably stronger than
requiring the three pairwise independences of R with
ST, of S with RT, and of T with RS. The individual
checks of the latter may use up to three different trans-
formations #; to #3 in Eq. 1. This freedom of choice does
not capture semantic independence adequately.

Independence Inside a Single Statement

Up to this point, an underlying assumption has been
that a limit of the granularity of parallelization is given
by the imperative program fragments considered. At
the finest possible level of granularity, these are indi-
vidual assigment statements. If some such assignment
statement contains an expression whose evaluation one
would like to parallelize, one must break it up into sev-
eral assignments to intermediate variables and demon-
strate their independence.

One can go one step further and ask for the potential
parallelism within a single statement. The question then
is whether there exists a transformation that permits a
slicing of the statement into various independent ones
in order to obtain a parallel implementation.

An appropriate condition for semantic indepen-
dence within a single statement given as a relation R ¢
X x X is that X can be embedded into a nontrivial Carte-
sian product A x B via a mapping # : X — A x B such
that

Ry=n(res), R1111_1:R (2)

for appropriate relations r € AxA and s € BxB. The gen-
eralization to more than two slices is straightforward.

One notable consequence of the presented notion of
semantic independence is that, due to accessing dis-
joint pieces of memory, the concurrent execution of the
transformed statements neither requires shared read-
ing nor shared writing. These operations are eliminated

1808

Semantic Independence

by the transformation or, if the context requires a state
space representation in the original format X rather
than the transform Y, localized in code preceding the
fork of the concurrent statements or following their
join. This is illustrated with our initial example, where
the shared reading and writing of x and y as well as the
shared reading of z present in the original statements

a: (xy)=(xAz,yA-2)
a: (%) :=(xA-z,yAzZ)

disappear in the semantically equivalent form

aj: V=0
af: Wi=2x%(Wdiv2)

If the context requires the format of X, one will
have to include the transformations # and 7! in the
implementation. For the example, this means that the
code

var V:{0,1}, W:{0,1,2,3};
B Vi=(xAn-z)v(ynz)
Ba: Wi=2xz+(xnz)V(yA-z)
(or any alternative code issuing the same side effects

on V and W) has to be inserted before the concurrent
statements «; and « and that the code

yr: x:=if (Wdiv2) =1then (W mod 2) else V

y»: y:=if (Wdiv2) = 0 then (W mod 2) else V
y3: z:=Wdiv2
endvar V,

has to be appended behind their join. The keyword end-
var indicates that, after the backtransformation, vari-
ables V and W are irrelevant to the remainder of the
program. (The backtransformation y; of z from the
transformed to the original state space could be omitted,
since the original statements do not have a side effect on
z, that is, y3 turns out not to modify z).

Whether implementations such as f8; and j3, of the
projections # |; and # |,, which prepare the state spaces
for the two parallel statements to be sparked, can them-
selves be executed in parallel depends on the ability
to perform shared reading. Since these transformations
have no side effects on the common state space X and
only local ones on A or B, respectively, yet require
shared reading on X, they can be executed in parallel
if and only if the architecture supports shared reading
on X - yet not necessarily on A or B, which need not

be accessible to the respective statement executed in
parallel. Conversely, a parallel execution of the reverse
transformation does, in general, require shared reads on
A and B, yet no shared reads or writes of the individual
variables spanning X, as illustrated by the statements y;,
y2, and y3 above.

In the parallelization of algorithms, the mapping #
transforming the state space is often fixed, depending
on the application, and, thus, left implicit. This leads to
fixed parallelization schemes which can be applied uni-
formly, which makes the search for 7 and the calculation
of the simulating relations r and s from the original
state transformers R and S unnecessary. Instead, it suf-
fices to justify the parallelization scheme once and for
all. It is worth noting that, for many practical schemes,
this can be done via the concept of semantic inde-
pendence. Examples are the implementation of *-LISP
on the Connection Machine [5] and Google’s closely
related MapReduce framework [3], which are based on
avery simple transformation, or the use of residue num-
ber systems (RNS) in arithmetic hardware and signal
processing [8], which exploits a much more elaborate
transformation.

In the former two cases, transformation # maps a
list of elements to the corresponding tuple of its ele-
ments, after which all elements are subjected to the
same mapping, say f, in parallel. The implementation
of 1 distributes the list elements to different processors.
Then, f is applied independently in parallel to each list
element and, finally, by the implementation of ", the
local results are collected in a new list.

In contrast, RNS, which has gained popularity
in signal processing applications during the last two
decades, transforms the state space rather intricately
following the Chinese remainder theorem of modular
arithmetic. In its simplest form, one considers assign-
ments of the form x := y ® z, where the variables are
bounded-range, nonnegative integers and the opera-
tion © can be addition, subtraction, or multiplication.
RNS transforms the variables in such assignments to
vectors of remainders with co-primal bases as follows.
(The numbers of a co-primal base have no common
positive factors other than 1.)

Semantic Independence

1809

Let x, y,z be variables with ranges N, where k is
a nonzero natural number and N denotes the natural
numbers up to k-1, and let fi, ..., f, < k be co-primal
natural numbers with [T;_, f; > k. Then, each variable v
of x, y,z is transformed to a vector (vy,...,v,) of vari-
ables such that v; ranges over N.g, and v; = v modf;.
Consequently,

7(x,9,2) = (x mod fi,y mod fi,z mod f;,...,
x mod f,,y mod f,,z mod f,).

The independence of the slices of assignment x := y ® 2,
one for each f;, follows from the fact that

(y©z) mod f;

=((y mod f;) ®(z mod f;)) mod f;
= (y; ®@z;) mod f;

for each of the three operations that can be substituted
for ©. This allows a parallel implementation in which
the assignment x := y © z is replaced by n semantically
independent assignments

xi=(yi0z) modf; for i=1,...,n

These are executed in parallel without any need for
information exchange. A significant speedup results
from the reduced bit width of the arithmetic operations
involved, which shrinks from [log, k] to [log, (max}.,
fi)]. If chains of assignments are performed, the
speedup can easily amortize the computational effort
involved in the transformations # and #~'. Then this
parallelization scheme remains attractive even when
the data are supplied and expected in standard binary
encoding, as is normally the case in signal processing.

Related Entries
»Connection Machine
»Dependences
»Dependence Analysis

» Parallelization, Automatic
»Polyhedron Model
»Systolic Arrays

Bibliographic Notes and Further
Reading

Semantic independence is a generalization of the syn-
tactic independence criterion proposed by Arthur

]. Bernstein in 1966 [1]. This criterion states that inde-
pendent program fragments are allowed to read shared
variables at any time but must not update any shared
variable.

Lengauer introduced a notion of independence
based on Hoare logic in the early 1980s [6, 7]. It com-
bines a semantic with a syntactic requirement. The
semantic part of the independence relation is called full
commutativity and permits an arbitrary interleaving of
the program fragments at the statement level, the syn-
tactic part is called non-interference and ensures the
absence of shared updates within each statement.

The independence relation based on a program state
graph, as proposed by Best and Lengauer in 1989 [2],
is entirely semantic. Von Stengel [9] ported the model
to universal algebra and Frinzle et al. [4] generalized it
shortly thereafter to the notion presented here. Whether
a general, automatic, and efficient method of finding %
and constructing r and s in any practical programming
language exists remains an open question.

Zhang [10] has ported the above notion of seman-
tic independence to security. He adopts Definition 1 as
the definition of a set of mutually secure transitions.
Transformation # defines the local views of users and
and s are the locally visible effects of the globally secure
transitions R and S.

The transformations of the state space, which make
independence visible, reflect the same principle as the
coordinate transformations of the iteration space in
polyhedral loop parallelization. There are other corre-
spondences between the two models, for example, the
way in which one exposes parallelism in a single assign-
ment statement. For a more detailed comparison, see
the entry on the polyhedron model.

Bibliography

1. Bernstein AJ (1966) Analysis of programs for parallel processing.
IEEE Trans Electr Comput EC-15(5):757-763

2. Best E, Lengauer C (1989) Semantic independence. Sci Comput
Program 13(1):23-50

3. Dean J, Ghemawat S (2008) MapReduce: simplified data pro-
cessing on large clusters. Commun ACM, 51(1):107-113, January
2008

4. Frinzle M, von Stengel B, Wittmiiss A (1995) A generalized notion
of semantic independence. Info Process Lett 53(1):5-9

5. Hillis WD (1986) The connection machine. MIT Press,
Cambridge, MA

http://dx.doi.org/10.1007/978-0-387-09766-4_9
http://dx.doi.org/10.1007/978-0-387-09766-4_172
http://dx.doi.org/10.1007/978-0-387-09766-4_2014
http://dx.doi.org/10.1007/978-0-387-09766-4_197
http://dx.doi.org/10.1007/978-0-387-09766-4_502
http://dx.doi.org/10.1007/978-0-387-09766-4_467

1810

Semaphores

6. Lengauer C (1982) A methodology for programming with con-
currency: the formalism. Sci Comput Program 2(1):19-52
7. Lengauer C, Hehner ECR (1982) A methodology for program-
ming with concurrency: an informal presentation. Sci Comput
Program 2(1):1-18
8. Omondi A, Premkumar B (2007) Residue number systems -
theory and implementation, volume 2 of Advances in computer
science and engineering. Imperial College Press, United Kingdom
9. von Stengel B (1991) An algebraic characterization of semantic
independence. Info Process Lett 39(6):291-296
10. Zhang K (1997) A theory for system security. In: 10th IEEE com-
puter security foundations workshop. IEEE Computer Society
Press, June 1997, pp 148-155

! Semaphores

»Synchronization

! Sequential Consistency

»Memory Models

' Server Farm

»Clusters
» Distributed-Memory Multiprocessor

! Shared Interconnect

»Buses and Crossbars

' Shared Virtual Memory

» Software Distributed Shared Memory

" Shared-Medium Network

»Buses and Crossbars

! Shared-Memory Multiprocessors

Luis H. CEzE
University of Washington, Seattle, WA, USA

Synonyms
Multiprocessors

Definition

A shared-memory multiprocessor is a computer sys-
tem composed of multiple independent processors that
execute different instruction streams. Using Flynns’s
classification [1], an SMP is a multiple-instruction
multiple-data (MIMD) architecture. The processors
share a common memory address space and commu-
nicate with each other via memory. A typical shared-
memory multiprocessor (Fig. 1) includes some number
of processors with local caches, all interconnected with
each other and with common memory via an intercon-
nection (e.g., a bus).

Shared-memory multiprocessors can either be sym-
metric or asymmetric. Symmetric systems implies that
all processors that compose the system are identical.
Conversely, asymmetric systems have different types of
processors sharing memory. Most multicore chips are
single-chip symmetric shared-memory multiprocessors
[2] (e.g., Intel Core 2 Duo).

Discussion

Communication between processors in shared-memory
multiprocessors happens implicitly via read and write
operations to common memory address. For example,
a data producer processor writes to memory location A,
and a consumer processor reads from the same memory
location:

http://dx.doi.org/10.1007/978-0-387-09766-4_252
http://dx.doi.org/10.1007/978-0-387-09766-4_419
http://dx.doi.org/10.1007/978-0-387-09766-4_18
http://dx.doi.org/10.1007/978-0-387-09766-4_223
http://dx.doi.org/10.1007/978-0-387-09766-4_476
http://dx.doi.org/10.1007/978-0-387-09766-4_492
http://dx.doi.org/10.1007/978-0-387-09766-4_476
http://dx.doi.org/10.1007/978-0-387-09766-4_2224

Shared-Memory Multiprocessors

1811

Processor 0

Data
Cache

Processor N-1

Data
Cache

Interconnection
| / network

Memory

Shared-Memory Multiprocessors. Fig.1 Conceptual overview of a typical shared-memory multiprocessor

Processor P1 wrote to location A and later processor
P2 read from A and therefore read the value “5” into
local variable “tmp,” written by P1. One way to think
about the execution of a parallel program in a shared-
memory multiprocessor is as some global interleaving
of the memory operations of all threads. This global
interleaving of instructions is nondeterministic, as there
are no guarantees that if a given program is executed
multiple times with the same input will lead to the same
interleaving and therefore the same result.

Since communication happens nondeterministic,
programs need to explicitly ensure that when com-
munication happens, the data communicated is in a
consistent state. This is done via synchronization, e.g.,
using mutual exclusion to prevent two threads from
manipulating the same piece of data simultaneously.

One of the key components of a shared-memory
multiprocessor is the cache coherence protocol. The
cache coherence protocol ensures that all caches in
each processor hold consistent data. The main job of
the coherence protocol is to keep track of when cache
lines are written to and propagating changes when
that happens. Therefore, the granularity of data move-
ment between processors is a cache line. There are
many trade-offs in how cache coherence protocols are
implemented. For example, whether updates should
be propagated as they happen or if they should only
be propagated when a remote processor tries to read
the corresponding data. Another very important aspect
of shared-memory multiprocessors is the memory con-
sistency model, which determines when (what order)
memory operations are made visible to processors in the
system [3].

For the actual physical memory organization (and
the interconnection network), it is common to have
multiple partitions physically spread over the proces-
sors. This means that each partition is closer to some
processors than others. Therefore, some regions of
memory have faster access than others. Such organiza-
tion is called non-uniform memory access, or NUMA.
ccNUMA refers to NUMA multiprocessors with private
caches per processor and cache coherence.

Given the general slower improvement in single-
thread performance, processor manufacturers are now
scaling raw compute performance in the forms of
more cores (or processors) on a single chip, forming
a symmetric shared-memory multiprocessor. Another
recent trend points towards using specialized proces-
sors to further improver performance and energy effi-
ciency, leading towards asymmetric shared-memory
multiprocessor system.

Related Entries

»Cache Coherence

»Cedar Multiprocessor

»Locality of Reference and Parallel Processing
» Memory Models

»Race Conditions

»Race Detection Techniques

Bibliographic Notes and Further
Reading

There are many notable shared-memory multiprocessor
systems worth reading about, starting from mainframes

http://dx.doi.org/10.1007/978-0-387-09766-4_375
http://dx.doi.org/10.1007/978-0-387-09766-4_112
http://dx.doi.org/10.1007/978-0-387-09766-4_206
http://dx.doi.org/10.1007/978-0-387-09766-4_419
http://dx.doi.org/10.1007/978-0-387-09766-4_36
http://dx.doi.org/10.1007/978-0-387-09766-4_38

1812

SHMEM

in the 60s (e.g., Burroughs B5500), many machines built
in academia (e.g., UIUC CEDAR, Stanford Flash, Stan-
ford DASH), and many systems manufactured and sold
by Sequent and DEC (now defunct), as well as IBM, Sun,
SGI, Fujitsu, HP, among several others.

Bibliography

L. Flynn M (1972) Some computer organizations and their effective-
ness. IEEE Trans Comput C-21:948

2. Olukotun et al (1996) The case for a single-chip multiprocessor. In:
Proceedings of the 7th international symposium architectural sup-
port for programming languages and operating systems (ASPLOS
VII), Cambridge, MA, October 1996

3. Adve S, Gharachorloo K (1996) Shared memory consistency
models: a tutorial. IEEE Comput Soc 29(12):66-76

' SHMEM

»OpenSHMEM - Toward a Unified RMA Model

' SIGMA-1

KEI HIRAKI
The University of Tokyo, Tokyo, Japan

Synonyms
Dataflow supercomputer

Definition

SIGMA-1 is a large-scale computer based on fine-grain
dataflow architecture designed to show feasibility of
fine-grain dataflow computer to highly parallel com-
putation over conventional von Neumann computers.
SIGMA-1 project was stated on 1984 and the 128 pro-
cessing element (PE) started working on 1988. SIGMA-1
was design and built at the Electrotechnical Labora-
tory (ETL for short), Ministry of International Trade
and Industry, Japan. SIGMA-1 is still the largest scale
dataflow computer so far built and it achieved more
100 Mflops as a maximum measured performance of
the total system. As for the language for SIGMA-1,
ETL developed Dataflow-C language as a subset of C

programming language. Dataflow-C is a single assign-
ment language that can compile C-like source pro-
grams to highly parallel executable dataflow machine
codes (Fig. 1).

Architecture

The global organization of the SIGMA-1 is shown in
Fig. 2. The SIGMA-1 consists of 128 processing ele-
ments, 128 structure elements, 32 local networks, a
global network, 16 maintenance microprocessors, a ser-
vice processor, and a host computer (Figs. 3 and 4).
The processing elements and structure elements are
divided into 32 groups, each of which consists of
four processing elements, four structure elements,
and a local network. All groups are connected via the
global network. The global network consists of a two-
stage omega network with a new adaptive load distribu-
tion mechanism. Its transfer rate is 2G bytes per second.
A local network is a ten-by-ten crossbar packet switch-
ing network, eight ports of which are used for com-
munication between processing elements and structure
elements within a group and two to interface the global
network. The transfer rate of a local network is 600M
bytes per second. The whole system is synchronous and
operates under a single clock (Fig. 5).

Figure 6 illustrates a processing element and a struc-
ture element. A processing element consists of an input
buffer, a matching memory with a waiting matching
function, an instruction memory, and a link register file.
A processing element executes all the SIGMA-1 instruc-
tions except structure-handling instructions such as
read, white, allocate, and deallocate used to access the
structure memory in a structure element. A process-
ing element works as a two-stage pipeline: the fir-
ing stage and the execution stage. In the firing stage,
operand matching and instruction fetching are per-
formed simultaneously. Input packets, stored in the
input buffer, are sent to the matching memory. The
matching memory enables the execution of instruc-
tions with two input operands. Successfully matched
packets are sent to the execution stage with the instruc-
tions fetched from the instruction memory. If the match
tails, the packet is stored in the matching memory and
the instruction fetched is discarded. Chained hashing

http://dx.doi.org/10.1007/978-0-387-09766-4_2335
http://dx.doi.org/10.1007/978-0-387-09766-4_490

SIGMA-1

1813

g

Y

mill

SIGMA-1.Fig.1 SIGMA-1system

PE SE PE SE PE SE

PE SE PE SE PE SE

PE SE SE SE

PE SE PE

HIEEE

—— Crossbar-Switch

BEEE
A

L1 Crossbar-Switch

HEEE
R

— Crossbar-Switch

DBEE

SE PE SE

Global Network (Two Stage Omega)

PE an instruction-level dataflow processing element
SE a structure processing element

SIGMA-1.Fig.2 Global architecture of the SIGMA-1

hardware is used to speed up the operand matching operations are similar to those in a conventional
operation, where a first-in-first-out queue is attached to computer. After combining the result value of the exe-
each key to enable multiple entries with the same key cution unit with the packet identifier, an output packet
Table 1. is produced and sent to the input buffer of the same

The link register is used to identify a parallel activ- or another processing element via the local network.
ity in a program and hold a base address of a procedure. If an array is treated as a set of scalar values, the
In the execution stage, instructions are executed in par- matching memory provides automatic synchronization
allel with packet identifier generation, where a packet and space management. However, heavy packet traffic
identifier keeps the destination address (next instruc- causes a serious bottleneck at the matching memory,
tion address) as well as a parallel activity identifier since each element of the array must be handled sepa-
(a procedure identifier and an iteration counter). These rately. This is the reason additional structure elements

1814 SIGMA-1

SIGMA-1.Fig. 4 SIGMA-1 Structure element (optional)

SIGMA-1

1815

T

: : E-

1
i

SIGMA-1.Fig.5 SIGMA-1Local network (optional)

Local Network

w18

e E

Local Network

l l
Input Buffer Input Buffer
(8K) (8K)
I—I_I .
Matching Instruction Structure Memory
Memory Unit (256K)
(64K) (64K)
—]
Synchronization
Execution | | Destination Flag
Unit Unit
Structure Processing Unit

v
Local Network
PE

!

Local Network
SE

SIGMA-1.Fig. 6 Processing element (PE) and SE of the SIGMA-1

are introduced in the SIGMA-1. A structure element
consists of an input buffer, a structure memory, two
flag logic functions, and a structure controller with a
register file. The flag logic function is capable of test

and setting all flags in an area arbitrarily specified in
a single clock. The structure controller is responsible
for waiting queue control and memory management. A
structure element handles arrays, which are the most

SIGMA-1

SIGMA-1.Table 1 Hardware specification of the SIGMA-1

Clock
Input buffer

10 MHz

8 K words(80bits/word)
64 K words(80bits/word)
64 K words(40bits/word)
256 K words(40bits/word)

Matching memory

Instruction memory

Structure memory

Total amount of memory [326 M Byte
Total no. of gates 19,013,447 gates
Total no. of ICs 91,029

Total no. of PE/SE 128 + 128

important data structure involved in numerical com-
putations. Each structure cell is composed of a 40-bit
data (data type and payload data) word and two flag bits
used for read and write synchronization. Multiple read
before write operations are realized by a waiting queue
attached to each cell. The buddy system implemented
in microprogramming is used to increase the speed of
allocating and deallocating structures.

The architectural features of the SIGMA-1 are
designed to achieve high speed by decreasing the par-
allel processing overheads in dataflow computers. For
example, the short pipeline architecture enables quick
response to small-sized programs with low parallelism.
It was anticipated that the matching memory and the
communication network would play a significant role
in the system design from the viewpoint of synchro-
nization and data transmission overhead. Besides the
newly proposed mechanisms, high-speed and compact
gate-array LSI elements have been developed for this
purpose.

Testing, debugging, and maintenance are performed
by a special purpose parallel architecture [6]. This main-
tenance architecture uses a set of conventional von Neu-
mann microprocessors, since maintenance operations
generally need history sensitivity utilizing side effects.

The architectural features of the SIGMA-1 are sum-
marized as follows:

1. A short (two-stage) pipeline in a processing ele-
ment, reducing the gap between the maximum and
average performance

2. Chained hashing hardware for the matching mem-
ory, giving efficient and high-speed synchronization

3. An array-oriented structure element, minimizing
structure handling overhead

4. A hierarchical network with a dynamic load distri-
bution function, reducing performance degradation
caused by load imbalance

5. A maintenance architecture for testing and
debugging, providing high-speed input and out-
put operations and performing precise performance
measurements

The SIGMA-1 adopts packet communication architec-
ture. Processing elements and structure elements com-
municate using fixed length packets. Input and output
to the host computer and maintenance system are also
in packet form. Therefore, hardware initialization and
hardware maintenance are carried out in packet form.
As shown in Fig. 7, a packet contains a destination pro-
cessing element number, a packet identifier and tagged
data, and miscellaneous control information.

The 89-bit packet is divided into two 40-bit seg-
ments, a processing element number field (8 bits), and
a cancel bit. A packet is transferred in two consecu-
tive segments; the first segment contains a processing
element or structure element number, a destination
address in the processing element or structure element
(32 bits), and packet type (8 bits). The second segment
consists of data (32 bits), data type (8 bits), and one can-
cel bit. The cancel bit is used for canceling the preceding
segment when a malfunction occurs. When the cancel
bit is on, the whole packet becomes invalid.

A destination address consists of a procedure iden-
tifier (8 bits) for specifying a parallel activity, a relative
instruction address (10 bits) within the activity, an iter-
ation counter (10 bits), and some control information
determining the firing rule in the matching memory
(4 bits). The iteration counter is utilized to implement
the loop construct efficiently. As in the ordinary model
of dynamic dataflow, the concatenation of the proce-
dure identifier and iteration counter is used to dis-
tinguish parallel activities in a program. The types of
packets used are: result of instruction, procedure call
and return, interrupt handling and system manage-
ment, structure operation, and system initiation and
maintenance for system resources.

SIGMA-1

1817

8 8 10 8 10 1 8 32
PE ITAG | LN D FLG|C || TAG DATA
I— I_ Payload
Data type data value
Cancel bit

— lteration counter
— Packet type

'— Destination PE/SE number

SIGMA-1.Fig.7 Packet format

40 18 2 20

Instruction displacement
Link register number (Procedure identifier)

Matching condition flag Packet
3 identifier

20 20

Immediate value OPCODE DFO

DF2

Operation Code

—— |Immediate data (Optional)

SIGMA-1.Fig. 8 Instruction format

The minimum length of an instruction is 40 bits
(one word) as illustrated in Fig. 8. The first 20 bits indi-
cate the operation to be performed (18 bits) and the
number of destination address fields (2 bits). The next
20 bits indicate the destination address of the result,
which does not contain dynamically assigned informa-
tion such as a procedure identifier and iteration counter.
Animmediate data operand can belocated at the header
part of each instruction. The maximum number of des-
tination address fields is three, using two words. When
an instruction contains an immediate data (constant)
operand, another word is required.

The objective of the SIGMA-1 instruction set
design is to execute efficiently application programs
that cannot be efficiently executed on a vector-type
supercomputer or a parallel von Neumann computer.
Low efficiency in these program executions is caused
by frequent procedure calls and returns, large amount
of scalar arithmetic operations, and wide fluctuations
of parallelism. Fine-grain parallelism has the advantage

DF1
I— I— Destination field 2 (Optional)
Destination field 1 (Optional)

Destination field O
NDEST (Number of destination fields)

over coarse-grain parallelism to overcome this ineffi-
ciency. As a result, 200 instructions on a processing
element and 97 instructions on a structure element have
been implemented (Fig. 9).

Software

The DataFlow C (DFC) compiler is implemented using
the language development tools of the UNIX operating
system. The emphasis was not on efficiency but on ease
of implementation. Efficiency and compactness are still
to be considered. Basically, DFC is a subset of the C lan-
guage with a single assignment rule. Therefore, assign-
ment to a variable is generally allowed only once in each
procedure. However, the loop construct, realized by the
for statement, is an exception. A non-single assignment
expression can be written as the third argument of the
for statement as shown in the following summation pro-
gram. The argument # of the main program is given by
a trigger packet invoking the program.

1818

SIGMA-1

SIGMA-1.Fig.9 SIGMA-1PEs and SEs (optional)

#define N 10

main (n)

int n;

{int i; float a[N], retval, sigma();
for(i=0;1i<5;1i=I + 1) ali] = 1i;
retval=sigma(n, a); print(retval);)}

float sigma (n, a)
int n; float al];
{int i; float s;
for (i=0,
return(s);}

s=0; i<n; s=s+al[i],i=i+1);

DFC may have multiple return values as an exten-
sion to the Clanguage. DFC programs without multiple
return values can be compiled by a C compiler. The
advantage is that DFC programs can be verified by a C
compiler on a host computer. The DFC compiler com-
prises approximately 7,000 steps in C. A nested structure
of for or if statements is not implemented and is inhib-
ited. The DFC compiler generates a macro-assembly
language program. This corresponds to a dataflow graph
with no restriction on the number of arcs.

System Performance

The whole system operates synchronously at a 10 MHz
clock frequency. The execution time of an instruction
is determined by the maximum execution time of the
two pipeline stages. Single operand instructions are exe-
cuted every two cycles and two operand instructions
every three cycles. The firing stage normally takes three
cycles. Since non-division arithmetic operations take at
most two cycles, the execution stage completes most
of the instruction execution in two cycles. This con-
sideration implies that the maximum speed of a pro-
cessing element is about 5 MIPS and 3 MFLOPS. For
a structure element, each read and write instruction is
carried out in two cycles. Since instructions for allocat-
ing and deallocating structures are implemented by a
microprogrammed buddy system, the execution times
estimated are between 10 and 340 cycles. The network
transfers a packet every two cycles. Therefore, struc-
ture elements can utilize maximum performance of the
network.

Performance is measured in terms of program exe-
cution time rather than raw machine cycles. The mea-
surement study proved that there is no difference
in computing ability of a single processing element
between dataflow architecture and von Neumann archi-
tecture, in case of constructing them using the same
device technology.

1. A speed degradation of 30% occurs when structure
elements are adopted. This is due to the extra index
and address calculation for structure handling.

2. The single processing element performance is
almost constant over the vector length, because of
the short pipeline architecture.

3. 'The speedup ratio for a single processing element to
four processing element organization is 3.9 without
structure elements and 3.5 with structure elements.

This performance evaluation shows that the average
performance of the 128 processing element organiza-
tion is more than 100 MFLOPS. For example, SIGMA-1
compute matrix multiplies at 117 Mflops.

Discussion
Table 2 shows development history of major MIMD
parallel computers and dataflow computers.

SIMD ISA

1819

SIGMA-1.Table 2 History of dataflow parallel processors

1976 DDM1 1PE 4 Static dataflow

1978 TI DDP 4 PE 16 Static dataflow

1979 LAU 32PE 32 Static dataflow

1981 Manchester dataflow machine 1PE 24 Dynamic dataflow

1982 OKI DDDP 4 PE 16 Dynamic dataflow

1982 NTT Eddy 16 PE 16 Simulated dynamic dataflow
1984 NEC NEDIPS 8 PE 32 Static dataflow

1983 Q-p 1PE 16 Static dataflow, Asyncronous
1984 SIGMA-1 Prototype 1PE 32 Dynamic dataflow

1988 SIGMA-1 128 PE 32 Dynamic dataflow

1988 MIT monsoon prototype 1PE 64 Dynamic dataflow

1990 ETL EM4 80 PE 32 Dynamic/Hybrid dataflow
1991 MIT monsoon 8 PE 64 Dynamic dataflow

1996 ETL EM-X 80 PE 32 Dynamic/Hybrid dataflow

9Year denote the date start working in its full configuration

As shown in Table 2, SI-1 is the largest dataflow
computer so far built.
lustrations, diagrams, and code examples.

Bibliography

1. Hiraki K, Nishida K, Sekiguchi S, Shimada T (1986) Maintenance
architecture and its LSI implementation of a dataflow computer
with a large number of processors. Proceedings of International
Conference on Parallel Processing, IEEE Computer Society, Uni-
versity Park, pp 584-591

2. Hiraki K, Sekiguchi S, Shimada T (1987) System architecture of
a dataflow supercomputer. Proceedings of 1987 IEEE Region 10
Conference, IEEE computer Society, Los Alamitos, pp 1044-1049

3. Hiraki K, Shimada T, Nishida K (1984) A hardware design of the
SIGMA-1—A data flow computer for scientific computations. Pro-
ceedings of 1984 International Conference on Parallel Processing,
IEEE Computer Society, Los Alamitos, pp 524-531

4. Hiraki K, Shimada T, Sekiguchi S (1993) Empirical study of latency
hiding on a fine-grain parallel processor. Proceedings of Interna-
tional Conference on Supercomputing, ACM, Tokyo, pp 220-229

5. Sekiguchi S, Shimada T, Hiraki K (1991) Sequential description and
parallel execution language DFCII dataflow supercomputers. Pro-
ceedings of International Conference on Supercomputing, ACM,
New York, pp 57-66

6. Shimada T, Hiraki K, Sekiguchi S, Nishida K (1986) Evaluation of
a single processor of a prototype data flow computer SIGMA-1 for
scientific computations. Proceedings of 12th Annual International
Symposium on Computer Architecture, IEEE Computer Society,
Chicago, pp 226-234

' SIMD (Single Instruction, Multiple
Data) Machines

»Cray Vector Computers

»Floating Point Systems FPS-120B and Derivatives
»Flynn’s Taxonomy

»Fujitsu Vector Computers

»Illiac IV

»MasPar

» MPP

»NEC SX Series Vector Computers

» Vector Extensions, Instruction-Set Architecture (ISA)

! SIMD Extensions

» Vector Extensions, Instruction-Set Architecture (ISA)

' SIMD ISA

» Vector Extensions, Instruction-Set Architecture (ISA)

http://dx.doi.org/10.1007/978-0-387-09766-4_479
http://dx.doi.org/10.1007/978-0-387-09766-4_281
http://dx.doi.org/10.1007/978-0-387-09766-4__2
http://dx.doi.org/10.1007/978-0-387-09766-4_11
http://dx.doi.org/10.1007/978-0-387-09766-4_285
http://dx.doi.org/10.1007/978-0-387-09766-4_417
http://dx.doi.org/10.1007/978-0-387-09766-4_422
http://dx.doi.org/10.1007/978-0-387-09766-4_425
http://dx.doi.org/10.1007/978-0-387-09766-4_259
http://dx.doi.org/10.1007/978-0-387-09766-4_259
http://dx.doi.org/10.1007/978-0-387-09766-4_259

1820

Single System Image

! Single System Image

ROLF RIESEN', ARTHUR B. MACCABE®
IBM Research, Dublin, Ireland
?Qak Ridge National Laboratory, Oak Ridge, TN, USA

Synonyms
Distributed process management

Definition

A Single System Image (SSI) is an abstraction that pro-
vides the illusion that a multicomputer or cluster is a
single machine. There are individual instances of the
Operating Systems (OSs) running on each node of a
multicomputer, processes working together are spread
across multiple nodes, and files may reside on multiple
disks. An SSI provides a unified view of this collec-
tion to users, programmers, and system administrators.
This unification makes a system easier to use and more
efficient to manage.

Discussion

Multicomputers consist of nodes, each with its own
memory, CPUs, and a network interface. In the case of
clusters, each node is a stand-alone computer made of
commodity, off-the-shelf parts. Instead of viewing this
collection of computers as individual systems, it is easier
and more economical if users, programmers, and sys-
tem administrators can treat the collection as a single
machine. For example, users want to submit a single job
to the system, even if it consists of multiple processes
working in parallel.

The task of an SSI is to provide the illusion of a sin-
gle machine under the control of the users and system
administrators. The SSIis a layer of abstraction that pro-
vides functions and utilities to use, program, and man-
age the system. An SSI consists of multiple pieces. Some
of them are implemented as individual utilities, other
pieces are found in system libraries, there are additional
processes running to hold up the illusion, OSs are mod-
ified, and in some systems hardware enables some of
the abstraction. No SSI provides a complete illusion.
There are always ways to circumvent the abstraction,
and sometimes it is necessary to interact with specific

components of the system directly. Many SSI in daily
use provide a limited abstraction that is enough to make
use of the system practical, but do not add too much
overhead or impede scalability.

An OS consists of a kernel, such as Linux, and a
set of utilities and tools, such as a graphical user inter-
face and tools to manipulate files. On a single computer,
for example, a desktop workstation, the OS manages
resources, such as CPUs, memory, disks, and other
peripherals. It does that by providing a set of abstrac-
tions such as processes and files that allow users to
interact with the system in a consistent manner inde-
pendent of the specific hardware used in that system.
For everyday tasks, it should not matter what particu-
lar CPU is installed, or whether files reside on a local
or a network-attached disk drive. The goal of an SSI
is to provide a similar experience to users of a parallel
system.

That is not that difficult to achieve in a Symmetric
Multi-Processor (SMP) where all memory is shared and
all CPUs have, more or less, equally fast access to it.
The OS for an SMP has additional features to manage
the multiple CPUs, but the view it presents to a user is
mostly the same that a user of a single-CPU system sees.
For example, when launching an application, a user of
an SMP does not need to specify which CPU should run
it. The OS will select the least busy CPU and schedules
the process to run there. There are additional functions
that an SMP OS provides, for example, to synchronize
processes, pin them to specific CPUs, and allow them to
share memory. Nevertheless, the abstraction is still that
of a single, whole machine.

In contrast, in a distributed memory system, such as
alarge-scale supercomputer or a cluster, each node runs
its own copy of the OS. It is possible that not all nodes
have the same capabilities; some may have access to a
Graphic Processing Unit (GPU), the CPUs and mem-
ory sizes may be different, and some nodes may have
connections to wide-area networks that are not avail-
able to all nodes in the system. The task of an SSI is
to unify these individual components and present them
to the user as if they were a single computer. This is
difficult and sometimes not desired. Accessing data in
the memory or disk of a remote node is much more
time consuming than accessing data locally. It therefore
makes sense for a user to specify that a process be run on
the node where the data currently resides. It also makes

http://dx.doi.org/10.1007/978-0-387-09766-4_2266

Single System Image

1821

sense to give users the ability to specify that a process be
run on a node that meets minimum memory require-
ments or has a certain type of CPU or GPU installed.
On the other hand, for many tasks, or in a homogeneous
system, the SSI should hide the complexity of the under-
lying system and present a view that lets users interact
with it as if it were a large SMP.

An SSI is meant to make interaction with a paral-
lel system easier and more efficient for three different
groups of users: Application users who use the system
to run applications such as a database or a simulation,
programmers who create applications for parallel sys-
tems, and administrators who manage these systems.
Each group has its own requirements for, and uses of,
an SSI; and the view an SSI presents to each group is
different. Of course, there is some overlap since there
are tasks that need to be done by members of more than
one group. The following sections discuss an SSI from
these three different viewpoints. Functions that overlap
are discussed in earlier viewpoints.

Application User’s View

A user of a parallel system uses it for an application such
as computing the path of an asteroid, the weekly pay-
roll, or maintaining the checking accounts of a bank.
This type of user does this by running an application
which provides the necessary functionality. In some
cases, like the banking example, the user never directly
interacts with the system. Those users only see the appli-
cation interface, for example, the banking application
that presents information about customers and their
account balances. Parallel systems used in science and
engineering cater to users who each have their own
applications to solve their particular scientific problems.
These users do interact with the system and an SSI
assists them in making these interactions smooth and
reliable.

Large systems that are shared among many users
usually dedicate several nodes as login nodes. Smaller
clusters sometimes let users log into any of the nodes,
though this is less efficient for running parallel appli-
cations. An SSI gathers these login nodes under the
umbrella of a single address. Users remotely log into that
address and the SSI chooses the least busy node as the
actual login node.

Once logged in, users need the ability to launch
serial or parallel jobs (applications) and control them.

An SSI chooses the nodes to run the individual pro-
cesses on and provides utilities to the user to obtain
status information, stop, suspend, and resume jobs.

While an application is running, users need to inter-
act with it. The SSI transparently directs user input to
the application, independent of which node it is run-
ning on. Similarly, output from the application is fun-
neled (if it comes from multiple processes) back to the
user. This is the same as on any computing system.
However, in a distributed system, the SSI needs to pro-
vide that functionality even if a process migrates to
another node.

Input and output data for an application is often
stored in files. Users must have the ability to see these
files and manipulate them, for example, copy, move, and
delete them. This requires a shared file system, since the
application must be able to access the same files. Since
the user, the application, and the files themselves may
all reside on different nodes, a distributed file system
is needed that presents a single root to all nodes in the
system. That means the full path name of a file, that is,
the hierarchy of directories (folders) above it and the
file name itself, must be the same when viewed from
any node.

Peripherals should be visible as if they were con-
nected to the local node. The SSI must provide a view
of that peripheral and transfer data to and from it, if the
device is not local.

Programmer’s View

Programmers of parallel applications have many of the
same requirements as application users. They also need
to launch applications, to test them for example, and
need access to the file system. The same is true for
writing and compiling applications.

For debugging, the SSI may need to route requests
from the debugger to processes on another node to sus-
pend them and to inspect their memory and registers.
If this functionality is embedded in the debugger itself,
then this is no longer a requirement for the SSI, but it
does require services that are part of the OS.

Programmers do have additional requirements that
an SSI provides. The programs they write need to access
low-level system services provided by the OS. That is
done through system calls that allow applications to trap
into an OS kernel to obtain a specific service. Typical
services provided are calls to open a file for reading and

1822

Single System Image

writing, creating and starting a new process, and inter-
act through Inter-Process Communication (IPC) with
another process. In a distributed system, these functions
become more complex.

A process creation request in a desktop system is an
operation carried out by the local OS. In a distributed
system managed by an SSI, process creation may mean
interaction with the OS of another node. If the origi-
nal process and the new process need to communicate,
then data has to move between nodes instead of just
being copied locally into another memory location. For
an application that is not aware of the distributed nature
of the system it is running on, the SSI must provide this
functionality so that it is transparent to the application.

Many applications consist of multiple processes that
work together by sharing memory locations. On a sin-
gle system, that is an efficient way to move data from
one process to another and lets multiple processes read
the same data. If these processes, in a distributed sys-
tem, do not have access to the same memory any-
more, this becomes more difficult and expensive, than
it was before. Some SSI provide the illusion of a shared
memory space. This is enabled by specialized hard-
ware or through Distributed Shared Memory (DSM)
implemented in software.

Administrator’s View

An administrator of a parallel system is responsible for
managing user accounts, keeping system software up to
date, replacing failed components, and in general have
the system available for its intended use. Many of the
administrators tasks are similar to the ones a user per-
forms, for example, manipulating files, but with a higher
privilege level.

In addition, an SSI should provide a single admin-
istrative domain. That means once the system admin-
istrator has logged in and has been authenticated by
the system, the administrator should be able to perform
all tasks for the entire system from that node. The SSI
enables killing, suspending, and resuming any process,
independent of its location. A system administrator fur-
ther has the ability to trigger the migration of a process.
This is sometimes necessary to vacate a portion of the
system so it can be taken down for maintenance or
repair. To do this, it must be possible to “down” network
links, disks, CPUs, and whole nodes. Once down, they

wont be allocated and used again until they have been
fixed or are done with maintenance.

System administrators also need the ability to moni-
tor nodes and links to troubleshoot problems or look for
early signs of failures. An SSI can help with these tasks
by providing utilities to search, filter, and rotate logs as
an aggregate so an administrator does not need to login
or access each node individually.

Often, each node has its own copy of system files,
libraries, and the OS installed on a local disk. This
increases performance and enhances scalability. An SSI
provides functions to keep the versions of all these
files synchronized and allows a system administrator to
update the system software on all nodes with a single
command.

The previous section looked at the functionality an SSI
provides to users, programmers, and system adminis-
trators. This section provides a little bit more detail on
how these abstractions are implemented and at what
level of the system hierarchy. Figure 1 shows the layers
of a system that contain SSI functions. User level is a
CPU mode of operation where hardware prevents cer-
tain resource accesses. Applications and utilities run at
this level. At the kernel level, all (local) resources are
fully accessible. The OS kernel runs at this privilege level
and manages resources on behalf of the applications
running above it.

At the bottom of the hierarchy is the hardware. Some
SSI features can only be implemented at that level. If
the necessary hardware is missing, that feature will not
be available or only very inefficiently in the form of
a software layer. Shared memory on a system without
hardware support for it is such an example.

Applications

Runtime/ utilities Unpriviledged (user) level

Kernel Priviledged (kernel) level

Hardware

Single System Image. Fig.1 Privilege and abstraction
layers in a typical system

Single System Image

1823

One level above the hardware resides the OS kernel.
Some SSI functionality, for example, process migration,
needs to be implemented at that level. Above the OS
is the runtime layer and system utilities. This layer is
sometimes called middle-ware. A batch and job con-
trol system which determines when and were (on which
nodes) a job should run can be found at this level. Of
course, utilities at that layer need the support of the OS
and ultimately the underlying hardware to do their job.

Above that are the applications that make use
of the system. Some SSI functionality, for example,
application-level checkpoint and restart can be imple-
mented at that level, for example, in a library. Table 1
shows various SSI features and at what level they are
implemented. Some can be implemented at more than
one level. Only the levels that have been tradition-
ally used, and where a feature is most efficient, are
marked.

Shared Memory

Sharing memory that is distributed among several
nodes requires hardware support to work well. Imple-
mentations in software of so-called Distributed Shared
Memory (DSM) systems have been done, but they all
suffer from poor performance and scalability.

Single System Image. Table 1 Features of an SSland at
what layer of the system hierarchy they are most
commonly implemented

Shared memory °

Up/down sys components | e . °
Debugger support ° °
Process migration °
Stdin/stdout °

File system °

System calls °
Checkpoint/restart ° . °
Batch system .
Login load leveling °
Sys log management °
SW maintenance °

Management of System Components

In larger systems, it is desirable to mark components
as being down so they wont be used anymore. Mark-
ing a node down, for example, should prevent the job
scheduling system from allocating that node. In some
systems, it is possible to mark links as being down and
have the system route messages around that link. This is
useful for system maintenance. Components that need
repair wont be used until the system is brought down
during the regular maintenance period, when all failed
components can be repaired at the same time. Depend-
ing on the sophistication of this management feature,
it requires hardware and kernel support. Simply telling
the node allocator to avoid certain nodes can be done at
user level in the runtime system.

Debugger Support

A debugger is a user-level program like any other appli-
cation. However, in order to signal and control pro-
cesses, and to inspect their memory and registers, the
debugger needs support from the OS. Some SSI modify
kernels such that standard Unix facilities, for example,
signals and process control, are extended to any pro-
cess in the system; independent of which node they are
currently running on. In that case, the debugger does
not need to change, although adding support to debug
multiple processes at the same time makes it a more
useful tool.

If the OS is not capable of providing these services,
they can be implemented in the debugger with the help
of runtime system features such as daemons and remote
procedure calls (RPC).

Process Migration

Migrating a process to another node is useful for load
balancing and as a precautionary measure before a
node is marked down. Migrating a process requires
that all data structures, such as the Process Control
Block (PCB), which the OS maintains for this process,
migrate in addition to the code and user-level data
structures the process has created. A completely trans-
parent migration also requires that file handles to open
files and those used for IPC are migrated as well. That,
in return, requires that some information remains in
the local OS about where the process has migrated to.
(Or that all connections to the migrating process are
updated before the migration.) For example, another

1824

Single System Image

process on the local node which was communicating
with the migrated process via IPC will continue to do
so. When data arrives for the migrated process, the OS
needs to forward the data to the new location. If a pro-
cess migrates multiple times, forwarding becomes more
expensive and convoluted.

Stdin/Stdout

The default channels for input to and output from a pro-
cess under UNIX are called stdin and stdout. If a user is
logged into one node and starts a process on another,
then the OS transfers data between these two nodes on
behalf of the user. If an application consists of multi-
ple processes, the OS ensures that output from all of
them gets funneled through the stdout channel to the
user. Data from the stdin channel usually does not get
replicated and only the first process that reads it, will
receive a copy. The OS must maintain these data chan-
nels even if processes migrate to other nodes, otherwise
the illusion of a single system image would be broken.

File System

In a system managed by an SSI, all processes should see
the same directory (folder) and file hierarchy. This fea-
ture, called shared root, is what is available on a desktop
system where multiple processes can access files on the
local disk. In a parallel system, files are often distributed
among multiple disks to enhance performance and scal-
ability. Distributing files like that complicates things,
since metadata (information about files and directo-
ries) may not be located on the same device as the
files themselves. Yet, metadata must be kept up-to-date
to preserve file semantics. For example, two processes
appending data to the end of a file must not overwrite
each other’s data. That requires that the file pointer
always points to the true end of the file.

Some files which the OS frequently accesses should
be local to the node. However, some files, such as/etc/
passwd, should be the same on all nodes and a system
administrator should have the ability to update only one
of them and then propagate the changes to all copies. On
the other hand, some (pseudo) files that describe local
devices for example, need to be unique on each node.
If a process migrates and had one of these files open, it
must continue to interact with the device on the original
node, even though a file with the same name exists on
the new node as well. Yet for other files, temporary files

for example, it may be desirable that they are only visible
locally. File systems that can handle all these cases are
complex and need to be tightly integrated with the OS.

System Calls

System calls are functions an application uses to inter-
act with the OS. Calls for opening, closing, reading,
and writing a file are typical. So are calls to create and
control other processes. An SSI that wants to maintain
these calls unchanged in a distributed system requires
changes to the OS kernel. For example, process creation
may not be strictly local anymore, if the system tries
to balance load by creating new processes on less busy
nodes.

Checkpoint/Restart

Long-running applications often do not finish, due to
an interruption by a faulty component or a software
problem. This is especially true for parallel applications,
where it is more likely that at least one of the many
nodes it runs on will fail. To combat this problem, an
application occasionally writes intermediate data and its
current state to disk. When a failure occurs, the appli-
cation is restarted on a different node, or on the same
node after it has been rebooted or repaired. The applica-
tion then reads the checkpoint data written earlier and
continues its computation.

This can be done by the application itself, in the
runtime system, or in the OS kernel. The latter has
the nice property that application writers do not need
to worry about it, but it has the potential for waste,
since the kernel cannot know what data the applica-
tion will need to restart. Therefore, it has to checkpoint
the complete application state and all of its data. Check-
point/restart needs to be integrated with the SSI system,
even if checkpointing is done at the application level.

Batch System

Many parallel systems use a batch scheduler to increase
throughput of jobs through the system and to allow
it to continue processing unattended, for example, at
night or on weekends. Users submit scripts that describe
the application they want to run, how much time they
require, and how many nodes the application needs.
The batch scheduler uses the job priority and knowl-
edge about available nodes to select and run the jobs
currently enqueued for processing.

Single System Image

1825

A batch system is one of the most common SSI com-
ponents in a cluster. It allows the user to treat the col-
lection of machines as a single system and use a single
command to submit jobs to it. A batch system provides
additional commands to view status information about
the currently enqueued and running jobs and to man-
age them. All these commands treat jobs as if they were
a single process on the local system.

Login Load Leveling

Parallel systems usually have more than one node where
users can log in. In a partitioned system, there is a ser-
vice partition comprised of the nodes dedicated to user
login and common tasks such as editing files and com-
piling applications. Parallel jobs are then run on nodes
that have been assigned to the compute partition. Often,
nodes in the service partition are of a different type;
they may have more memory or local disks attached.
Smaller clusters may not use partitioning, though that
is less efficient. In either case, the SSI should present a
single address to the outside world. When a user logs in
at that address, the SSI picks one of the service nodes for
that user to log in. The choice is usually made based on
the current work load of each node in the service par-
tition. As far as the user is concerned, there is only one
login node.

System Log Management

A lot of information about the current state of the sys-
tem is stored in log files that are unique to each node of
a parallel system. System administrators consult these
logs to diagnose problems and to detect and prevent
faults before they occur (e.g., warnings about the rising
temperature inside a CPU). An SSI should provide func-
tions to aggregate these individual files and let system
administrators search through, purge, or archive them
with a single command.

Software Maintenance

The software versions of the system utilities, libraries,
and applications installed on each node must be the
same system-wide or at least be compatible with each
other. As with system log management, an SSI should
provide functions to system administrators that allow
them to upgrade and check software packages on mul-
tiple nodes with a single command.

The previous sections listed the features an SSI must
provide and a glance at what implementing them
entails. Many of these features are independent com-
ponents and useful even when none of the other com-
ponents are available. In fact, no SSI running on more
than a couple hundred of nodes implements all fea-
tures described thus far. The reason for that is scalability.
Some features work well when used on eight nodes, but
become unusably slow when extended much beyond
that number.

Among the most costly features described earlier is
process migration, especially if an SSI tries to achieve
complete transparency. Once a process starts interact-
ing with other processes on a node and obtains file
handles to node-local resources, it becomes difficult
to migrate that process. After migration, a forwarding
mechanism must be in place to route information to
the new location of the migrated process. If the orig-
inal node retains information about the new location
of the migrated process, a failure of that node will dis-
rupt the flow of information. If no information is kept at
the original location, then all processes that are commu-
nicating with the migrated process must be told about
the new location. If migration is frequent, and interac-
tion among processes is high, this becomes very costly.
Furthermore, it does not always work, for example, if
the migrated process was using a peripheral that is only
available on the original node. Another high-cost SSI
item is shared memory. Even when supported by hard-
ware, the illusion of a single, large memory starts to fall
apart as the number of nodes (CPUs) increases.

Not all is lost, though. Some systems deploy addi-
tional hardware to assist with some SSI features. For
example, some systems have an additional network
and disks dedicated to system software maintenance.
Furthermore, complete transparency is not always
required, and users are willing to use different com-
mands and utilities when dealing with parallel pro-
cesses, in return for better performance and scalability.
For example, using a command such as gsub to submit
a parallel job does not seem a high burden compared to
the transparent method of just naming the application
on the command line to start it. The UNIX command
ps is used to obtain process status information. In a
transparent SSI system, it would return that information
even if the process is not local, or return information

1826

Single System Image

about many processes, if they are part of a parallel
application.

In contrast, users often only want to know whether
their job is running and whether it is making progress.
The batch system has a command that can answer at
least the former question and a ps output for hundreds
of processes scattered throughout the system would not
provide any additional useful information.

Therefore, even a partial SSI can be of benefit. Appli-
cation users benefit most from a batch scheduling sys-
tem. This also assists system administrators who also
need a way to efficiently manage the hardware and soft-
ware of the system. Most other functionality, especially
less scalable features, are not strictly necessary to make
a parallel system useful. That may mean additional utili-
ties that expose the distributed aspects of the system and
modifications to applications to allow them to work in
parallel and with greater efficiency.

Desktop systems with two or four CPU cores are com-
mon now. High-performance systems will be the first
to receive CPUs with tens of cores, but those CPUs will
soon be common. Desktop OSs will adapt to these sys-
tems and provide SSI features to manage and use the
cores in a single system. Users will expect to see these
features in parallel systems as well, which will drive
the development of SSI features and integration into
parallel OSs.

At the very high-end, exascale systems are on the
horizon. Implementing SSI for these systems will be a
challenge due to the size of these systems. Displaying
the status of a hundred-thousand nodes in a readable
fashion without endless scrollbars is only feasible with
intelligent software that zooms in on interesting events
and features of the system. Commercial tools for appli-
cations that span that many nodes do not exist yet.
Simple tools have a better chance at scaling to these
future systems, but managing and debugging such large
applications and systems will remain a challenge.

Related Entries
»Checkpointing

»Clusters

» Fault Tolerance

»Operating System Strategies
»Scalability

Bibliographic Notes and Further
Reading

Overviews of SSI are presented in [3], Chapter 11 of [13],
and [8]. The descriptions of actual systems are out of
date or the systems are not in use anymore. Neverthe-
less, the fundamental features and issues described are
still valid.

Many papers discuss specific aspects of SSI. For
example, [5] and [4] discuss partitioning and present
job launch mechanisms. In [12], the authors discuss
specific SSI challenges for petascale systems. SSI tools
to make system administration easier are presented in
[2,7,15].

Process migration is discussed in detail in [10]
and specific implementations appear in MOSIX [1],
BProc [6], and IBM’s WPAR [9], among others. The
survey in [16] is a little bit dated, but it gives a good
description of so-called worms, which are processes
specifically designed to migrate.

Implementations of SSI, most of them partial,
abound even before the term SSI was coined. Exam-
ples include LOCUS [17], Plan 9 [14], MOSIX [1], and
Kerrighed [11].

Bibliography

1. Barak A, Laadan O (1998) The MOSIX multicomputer operat-
ing system for high performance cluster computing. Future Gener
Comput Syst 13(4-5):361-372

2. Brightwell R, Fisk LA, Greenberg DS, Hudson T, Levenhagen M,
Maccabe AB, Riesen R (2000) Massively parallel computing using
commodity components. Parallel Comput 26(2-3):243-266

3. Buyya R, Cortes T, Jin H (2001) Single system image. Int] High
Perform Comput Appl 15(2):124-135

4. Frachtenberg E, Petrini E, Fernandez J, Pakin S, Coll S (2002)
STORM: lightning-fast resource management. In: Supercomput-
ing’02: proceedings of the 2002 ACM/IEEE conference on super-
computing, Baltimore. IEEE Computer Society, Los Alamitos,
pp 1-26

5. Greenberg DS, Brightwell R, Fisk LA, Maccabe AB, Riesen R
(1997) A system software architecture for high-end computing. In:
SC’97: high performance networking and computing: proceed-
ings of the 1997 ACM/IEEE SC97 conference, San Jose, Raleigh,
15-21 Nov 1997. ACM/IEEE Computer Society, New York

6. Hendriks E (2002) BPROC: the Beowulf distributed process
space. In: ICS *02: proceedings of the 16th international confer-
ence on supercomputing, pp 129-136. ACM, New York

7. Hendriks EA, Minnich RG (2006) How to build a fast and reliable
1024 node cluster with only one disk.] Supercomput 36(2):171-181

8. Hwang K, Jin H, Chow E, Wang C-L, Xu Z (1999) Designing SSI
clusters with hierarchical check pointing and single I/O space.
IEEE Concurr 7(1):60-69

http://dx.doi.org/10.1007/978-0-387-09766-4_62
http://dx.doi.org/10.1007/978-0-387-09766-4_18
http://dx.doi.org/10.1007/978-0-387-09766-4_63
http://dx.doi.org/10.1007/978-0-387-09766-4_211
http://dx.doi.org/10.1007/978-0-387-09766-4_2046

Sisal

1827

9. Kharat S, Mishra R, Das R, Vishwanathan S (2008) Migration of
software partition in UNIX system. In: Compute *08: proceed-
ings of the first Bangalore annual compute conference, Bangalore.
ACM, New York, pp 1-4

10. Miloji¢i¢ DS, Douglis F, Paindaveine Y, Wheeler R, Zhou S (2000)
Process migration. ACM Comput Surv 32(3):241-299

11. Morin C, Gallard P, Lottiaux R, Vallée G (2004) Towards an effi-
cient single system image cluster operating system. Future Gener
Comput Syst 20(4):505-521

12. Ong H, Vetter J, Studham RS, McCurdy C, Walker B, Cox A
(2006) Kernel-level single system image for petascale computing.
SIGOPS Oper Syst Rev 40(2):50-54

13. Pfister GF (1998) In search of clusters: the ongoing battle in
lowly parallel computing, 2nd edn. Prentice-Hall, Upper Saddle
River

14. Pike R, Presotto D, Thompson K, Trickey H, Winterbottom P
(1993) The use of name spaces in Plan 9. SIGOPS Oper Syst Rev
27(2):72-76

15. Skjellum A, Dimitrov R, Angaluri SV, Lifka D, Coulouris
G, Uthayopas P, Scott SL, Eskicioglu R (2001) Systems
administration. Int] High Perform Comput Appl 15(2):
143-161

16. Smith JM (1988) A survey of process migration mechanisms.
SIGOPS Oper Syst Rev 22(3):28-40

17. Walker B, Popek G, English R, Kline C, Thiel G (1983) The LOCUS
distributed operating system. In: SOSP ’83: proceedings of the
ninth ACM symposium on operating systems principles, Bretton
Woods. ACM, New York, pp 49-70

! Singular-Value Decomposition
(SVD)

»Eigenvalue and Singular-Value Problems

" sisal

Joun FEO
Pacific Northwest National Laboratory, Richland,
WA, USA

Definition

Streams and Iterations in a Single Assignment Language
(Sisal) was a general-purpose applicative language
developed for shared-memory and vector supercom-
puter systems. It provided an hierarchical intermedi-
ate form, parallel runtime system, optimizing compiler,

and programming environment. The language was
strongly typed. It supported both array and stream data
structures, and had both iterative and parallel loop
constructs.

Discussion

Streams and Iterations in a Single Assignment Language
(Sisal) was a general-purpose applicative language
defined by Lawrence Livermore National Laboratory,
Colorado Sate University, University of Manchester and
Digital Equipment Corporation in the early 1980s [1].
Lawrence Livermore and Colorado State developed the
language over the next 2 decades. They maintained
the language definition, compiler and runtime system,
programming tools, and provided education and user
support services. The language version used widely in
the 1980s and 1990s was Sisal 1.2 [2]. Three Sisal user
conferences were held in 1991, 1992, and 1993 [3, 4].

The Sisal Language Project had four major accom-
plishments: (1) IF], an intermediate form used widely
in research [5]; (2) OSC, an optimizing compiler that
preallocated memory for most data structures and elim-
inated unnecessary coping and reference count opera-
tions [7]; (3) a highly efficient, threaded runtime system
that supported most shared-memory, parallel computer
systems [6], and (4) execution performance and scala-
bility equivalent to imperative languages [1, 8].

Sisal’s applicative semantics and keyword-centric syn-
tax proved to be a simple, easy-to-use, easy-to-read
parallel programming language that facilitated algo-
rithm development and simplified compilation. Since
the value of any expression depended only on the values
of its subexpressions and not on the order of evaluation,
Sisal programs defined the data dependencies among
operations, but left the scheduling of operations, the
communication of data values, and the synchronization
of concurrent operations to the compiler and runtime
system.

Sisal was strongly typed. Programmers specified
the types of only function parameters; the compiler
inferred all other types. All functions were mathemati-
cally sound. A function had access to only its arguments
and there were no side effects. Each function invoca-
tion was independent and functions did not retain state

http://dx.doi.org/10.1007/978-0-387-09766-4_131

1828

Sisal

between invocations. Sisal programs were referentially
transparent and single-assignment. Since a name was
bound to one value and not a memory location, there
was no aliasing. In general, a Sisal program defined a
set of mathematical expressions where names stood for
specific values, and computations progressed without
state making the transformation from source code to
dataflow graph trivial.

Sisal supported the standard scalar data types:
boolean, character, integer, real, and double precision. It
also included the aggregate types: array, stream, record,
and union. All arrays were one-dimensional; multi-
dimensional arrays were arrays of arrays. The type, size,
and lower bound of an array was not defined explic-
itly, rather it was a consequence of execution. Arrays
were created by gathering elements, “modifying” exist-
ing arrays, or catenations.

A stream was a sequence of values of uniform type.
In Sisal, stream elements were accessible in order only;
there was no random access. A stream could have only
one producer, but many consumers. By definition, Sisal
streams were nonstrict — each element was available as
soon as it was produced. The Sisal runtime system sup-
ported the concurrent execution of the producer and
consumer(s).

The two major language constructs were for initial
and for expressions. The former expression substituted
for sequential iteration in conventional languages, but
retained single assignment semantics. The rebinding of
loop names to values was implicit and occurred between
iterations. Loop names prefixed with old referred to pre-
vious values. A returns clause defined the results and
arity of the expression. Each result was either the final
value of some loop name or a reduction of the val-
ues assigned to a loop name during loop execution.
The following for initial expression returns the prefix
sum of A

for initial

i := 0;
x := A[i]
while i < n repeat
i :=0ld i + 1;
x := old x + A[i]

returns array of x
end for

Sisal supported seven intrinsic reductions: array of,
stream of, catenate, sum, product, least, and greatest. The
order of reduction was determinate.

The for expression provided a way to specify inde-
pendent iterations. The semantics of the expression did
not allow references to values defined in other itera-
tions. The expression was controlled by a range expres-
sion that could be simple, a dot product of ranges, or a
cross product of ranges. The next two expressions com-
pute the dot and cross product of two arrays of size
nand m

for i in 0 ton - 1 dot j
in 0 tom - 1
x := A[i] * B[7]
returns sum of x
end for

for i in 0 ton - 1 cross j
in 0 tom - 1
x := A[i] * B[7]
returns array of x
end for

Note that the expression does not indicate how the
parallel iterations should be scheduled. The manage-
ment of parallel threads was the responsibility of the
compiler and runtime systems and was highly tuned
for each architecture. This separation of responsibility
greatly simplified Sisal programs, improved portability,
and made the language easy to use.

Build-in-Place Analysis

The Sisal compile process comprised eight phases
shown in Fig. 1. The two most important phases con-
cerned build-in-place (IF2MEM) and update-in-place
analysis (IF2UP). IF2 was a superset of IF1. It was not
applicative as it included operations (AT-nodes) that
directly referenced and manipulated memory.

Prior to Sisal, functional programming languages
were considered very inefficient. Since the size and
structure of aggregate data types are a consequence of
execution, without analysis aggregates must be built one
element at a time possibly requiring elements to be
copied many times as the aggregate grows in size. More-
over, strict adherence to single-assignment semantics
requires construction of a new array whenever a single
element is modified.

Sisal

1829

Sisal. Fig.1 OSC phases

Build-in-place analysis attacked the incremental
construction problem [6]. The algorithm had two-
passes. Pass 1 visited nodes in data flow order, and built,
where possible, an expression to calculate an array’s size
atrun time. The expression was a function of the seman-
tics of the array constructor and the size expressions of
its inputs. Determining the size of an array built dur-
ing loop execution required an expression to calculate
the number of loop iterations before the loop executes.
Deriving this expression was not possible for all loops.
Pass 1 concluded by pushing, in the order of encounter,
the nodes for the size expression onto a stack.

Pass 2 removed nodes from the stack, inserted them
into the data flow graph, and appropriately wired mem-
ory references among them by inserting edges transmit-
ting pointers to memory. If a node was the parent of an
already converted node, it could build its result directly
into the memory allocated to its child, thus eliminating
the intermediate array. If the node was not the par-
ent of an already converted node, it built its result in a
new memory location. Note that the ordering of nodes
on the stack guaranteed processing of children before
parents.

Update-in-Place Analysis

Update-in-place analysis attacked the aggregate update
problem [7]. OSC introduced dependences in the data
flow graph to schedule readers of an aggregate object
before writers. It used reference counts to identify the
last use of an object. If the last use was a write, then
the write was executed in place. By re-ordering nodes
and aggregating reference copy operations, OSC elim-
inated up to 98% of explicit reference count opera-
tions in larger programs without reducing parallelism.
Consequently, the inefficiencies of reference counting
largely disappeared and the benefits of updating aggre-
gate objects were fully enjoyed by Sisal programs.

OSC considered an array as two separately reference-
counted objects: a dope vector defining the array’s
logical extent and the physical space containing its
constituents. As array elements are computed and
stored, dope vectors cycle between dependent nodes to
communicate the current status of the regions under
construction. As a result, multiple dope vectors might
reference the same or different regions of the physical
space and the individual participants in the construc-
tion would produce new dope vectors to communicate
the current status of the regions to their predecessors.
Without update-in-place optimization, each stage in
construction would copy a dope vector.

The runtime software supported the parallel execution
of Sisal programs, provided general purpose dynamic
storage allocation, implemented operations on major
data structures, and interfaced with the operating sys-
tem for input/output and command line processing [7].

The Sisal runtime made modest demands of the host
operating system. At program initiation a command
line option specified the number of operating system
processes (workers) to instantiate for the duration of the
program. The runtime system maintained two queues
of threads: the For Pool and the Ready List. A worker
was always in one of three modes of operation: exe-
cuting a thread from the For Pool, executing a thread
from the Ready Pool, or idle. The runtime system allo-
cated stacks for threads on demand, but every effort
was made to reuse previously allocated stacks and thus
reduce allocation and deallocation overhead.

1830

Sisal

The For Pool maintained slices of for expressions.
A worker would pick up a slice, execute it, and return to
the pool for another slice. The worker that executed the
last slice of an expression placed the parent thread on
the Ready List, and returned to the For Pool to look for
slices from other expressions. By persisting in executing
slices of for expressions, a worker avoided deallocating
and allocating its stack.

The Ready List maintained all other threads made
executable by events, such as the main program or func-
tion calls. If a worker found no work on either Pool,
it examined the Storage Deallocation List for deferred
storage deallocation work.

Sisal relied on dynamic storage allocation for many
data values such as arrays and streams, and for internal
objects such as thread descriptors and execution stacks.
It used a two-level allocation mechanism that was fast,
efficient, and parallelizable. A standard boundary tag
scheme was augmented with multiple entry points to a
circular list of free blocks. Both the free list search and
deallocation of blocks were parallelized, even though
the former sometimes completely removed blocks from
the list and the latter coalesced physically adjacent but
logically distant blocks. To increase speed, an exact-fit
caching mechanism was interposed before the bound-
ary tag scheme. It used a working set of different sizes
of recently freed blocks.

As noted above, most Sisal programs executed as fast as
their imperative language counterparts. Consequently,

Sisal. Table 1 Execution times

Sisal attracted a wide user community that developed
many different types of parallel applications, includ-
ing benchmark codes, mathematical methods, scientific
simulations, systems optimization, and bioinformatics.

Table 1 lists the execution times of four applications
and Table 2 gives compilation statistics for each pro-
gram. Columns 2-4 give the number of static arrays
built, preallocated, and built-in-place; columns 5-8 list
the number of copy, conditional copy and reference
count operations after optimization, and the number of
artificial dependency edges introduced by the compiler.

It is instructive to examine two of the applications.
SIMPLE was a two-dimensional Lagrangian hydrody-
namics code developed at Lawrence Livermore National
Laboratory to simulate the behavior of a fluid in a
sphere. The hydrodynamic and heat condition equa-
tions are solved by finite difference methods. A tabular
ideal gas equation determines the relation between state
variables. The implementation of SIMPLE in Sisal 1.2
was straightforward and highly parallel.

The compiler preallocated and built all arrays in
place (261 of them), eliminated all absolute copy oper-
ations, marked 19 copy operations for run time check,
and eliminated 2,005 out of 2,066 reference count oper-
ations. The 19 conditional copy operations were a result
of row sharing. Since they always tested false at runtime,
no copy operations actually occured. For 62 iterations of
a100 x 100 grid problem, the Sisal and Fortran versions
of SIMPLE on one processor executed in 3,099.3 and
3,081.3 s, respectively. On ten processors, the Sisal code
realized a speedup of 7.3. An equivalent of 1.5 processors

GaussJordan 54.0s 5455 (1) 8.85(10) 6.2
RICARD 30.6h 31.0h 3.5h (10) 9.0
SIMPLE 30813s 3099.35(1) 422.0 (10) 73
Simulated annealing 476.6 s 956.2 s (1) 267.85 (5) 3.6
Sisal. Table 2 OSC optimizations
GaussJordan 7 7 7 0 0 1 9
RICARD 29 29 28 0 6 7 5
SIMPLE 261 261 261 0 19 61 347
Simulated annealing 46 46 42 0 4 41 168

Small-World Network Analysis and Partitioning (SNAP) Framework

1831

was lost in allocating and deallocating two-dimensional
arrays. The implementation of true multi-dimensional
arrays was proposed in both Sisal 2.0 [9] and Sisal 90.
[These language definitions were defined near the end
of the project, but never implemented.]

Simulated annealing is a generic Monte Carlo opti-
mization technique for solving many difficult combi-
natorial problems. In the case of the school timetable
problem, the objective is to assign a set of tuples to a
fixed set of time slots (periods) such that no critical
resource is scheduled more than once in any period.
Each tuple is a record of four fields: class, room, subject,
and teacher. Classes, rooms, and teachers are critical
resources; subjects are not. At each step of the proce-
dure, a tuple is chosen at random and moved to another
period. If the new schedule has equivalent or lower cost,
the move is accepted. If the new schedule has higher
cost, the move is accepted with a certain exponential
probability. If the move is not accepted, the tuple is
returned to its original period. The procedure can be
paralleilized by simultaneously choosing one tuple from
each nonempty period and applying the move criterion
to each. The accepted moves are then carried out one
at a time.

OSC preallocated memory for all the arrays, and
built all but four of the arrays in place. It removed
all absolute copy operations, marked four copy opera-
tions for run time check, and removed all but 41 ref-
erence count operations. The four arrays not built in
pace resulted from adding a tuple to a period. Although
the compiler did not mark the new periods for build-
in-place, the periods were rarely copied. When an ele-
ment was removed from the high-end of an array, the
array’s logical size shrunk by one, but its physical size
remained constant. Thus, when an element was added to
a period, there was often space to add the element with-
out copying. Whenever copying occurred, extra space
was allocated to accommodate future growth. This fore-
sight saved over 15,000 copies in this application at the
cost of a few hundred bytes of storage.

Bibliographic Notes and Further
Reading

For a summary of the project and details on the com-
piler and runtime system see [1]. The language defini-
tion can be found in [2]. IF1 is described [5].

Build-in-place analysis and update-in-place analysis
are described in more detail in [6] and [7], respectively.

In 1991 and then again in 1992 two new versions of
the language, Sisal 2.0 and Sisal 90, were defined. These
versions included: higher-order functions, user-defined
reductions, parameterized data types, foreign language
modules, array syntax, and rectangular arrays. While
compilers for the version were never released there is
some information available on the web.

Bibliography
1. FeoJT, Cann D, Oldehoeft R (1990) A report of the Sisal Language
Project. J Parallel Distrib Comput 10(4):349-366
2. McGraw] et al (1985) Sisal: streams and iterations in a single-
assignment language, reference manual version 1.2. Lawrence
Livermore National Laboratory Manual M-146, Livermore,
CA, September 1985
3. Feo] (ed) Proceedings of the 2nd Sisal User Conference.
Lawrence Livermore National Laboratory, CONF-9210270, San
Diego, CA, October 1992
4. Feo] (ed) Proceedings 3rd Sisal User Conference. Lawrence
Livermore National Laboratory, CONF-9310206, San Diego, CA,
October 1993
5. Skedzielewski S, Glauert J (1985) IF1 - an intermediate form for
applicative languages. Lawrence Livermore National Laboratory
Manual M-170, Livermore National Laboratory, Livermore, CA,
September 1985
6. Ranelletti J (1996) Graph transformation algorithms for array
memory optimization in applicative languages. PhD dissertation,
University of California at Davis, CA, May 1996
7. Cann D (1998) Compilation techniques for high performance
applicative computation. PhD dissertation, Colorado State
University, CO, May 1998
8. Cann D (1992) Retire Fortran?: A debate rekindled. Commun
ACM 35(8):81-89
9. Oldehoeft R et al (1991) The Sisal 2.0 reference manual. Lawrence
Livermore National Laboratory, Technical Report UCRL-MA-
109098, Livermore, CA, December 1991

' Small-World Network Analysis
and Partitioning (SNAP)
Framework

»SNAP (Small-World Network Analysis and Partition-
ing) Framework

http://dx.doi.org/10.1007/978-0-387-09766-4_94
http://dx.doi.org/10.1007/978-0-387-09766-4_94

1832

SNAP (Small-World Network Analysis and Partitioning) Framework

' SNAP (Small-World Network
Analysis and Partitioning)
Framework

KAMESH MADDURI
Lawrence Berkeley National Laboratory, Berkeley,
CA, USA

Synonyms
Graph analysis software; Small-world network analysis
and partitioning (SNAP) framework

Definition

SNAP (Small-world Network Analysis and Parti-
tioning) is a framework for exploratory analysis of
large-scale complex networks. It provides a collection
of optimized parallel implementations for common
graph-theoretic problems.

Discussion

Graphs are a fundamental abstraction for modeling
and analyzing data, and are pervasive in real-world
applications. Transportation networks (road and air-
line traffic), socio-economic interactions (friendship
circles, organizational hierarchies, online collaboration
networks), and biological systems (food webs, protein
interaction networks) are a few examples of data that
can be naturally represented as graphs. Understand-
ing the dynamics and evolution of real-world network
abstractions is an interdisciplinary research challenge
with wide-ranging implications. Empirical studies on
networks have led to a variety of models to characterize
their topology and evolution. Quite surprisingly, it has
been shown that graph abstractions arising from diverse
systems such as the Internet, social interactions, and
biological networks exhibit common structural features
such as a low diameter, unbalanced degree distribu-
tions, self-similarity, and the presence of dense sub-
graphs [1, 11, 14]. Some of these topological features are
captured by what is known as the small-world model or
phenomenon.

The analysis of large graph abstractions, particularly
small-world complex networks, raises interesting com-
putational challenges. Graph algorithms are typically

highly memory intensive, make heavy use of data struc-
tures such as lists, sets, queues, and hash tables, and
exhibit a combination of data and task-level parallelism.
On current workstations, it is infeasible to do exact in-
core computations on graphs larger than 100 million
vertex/edge entities (large in general refers to the typi-
cal problem size for which the graph and the associated
data structures do not fit in 2-4 GB of main mem-
ory). In such cases, parallel computers can be utilized
to obtain solutions for memory and compute-intensive
graph problems quickly. Due to power constraints and
diminishing returns from instruction-level parallelism,
the computing industry is rapidly converging towards
widespread use of multicore chips and accelerators.
Unfortunately, several known parallel algorithms for
graph-theoretic problems do not easily map onto clus-
ters of multicore systems. The mismatch arises due
to the fact that current systems lean towards efficient
execution of regular computations with low mem-
ory footprints and working sets, and heavily penalize
memory-intensive applications with irregular memory
accesses; however, parallel graph algorithms in the past
were mostly designed assuming an underlying, well-
balanced compute-memory platform. The small-world
characteristics of real networks, and the load-balancing
constraints they impose during parallelization, repre-
sent an additional challenge to the design of scalable
graph algorithms.

SNAP [2, 10] is an open-source computational
framework for graph-theoretic analysis of large-scale
complex networks. It is intended to be an optimized
collection of computational kernels (or algorithmic
building-blocks) that the end-user could readily use
and compose to answer higher-level, ad-hoc graph
analysis queries. The target platforms for SNAP are
shared-memory multicore and symmetric multiproces-
sor systems. SNAP kernels are implemented in C and use
OpenMP for parallelization. On distributed memory
systems, SNAP can be used for intra-node paralleliza-
tion, and the user has to manage inter-node communi-
cation, and also identify and implement parallelism at a
coarser node-level granularity.

The parallel graph algorithms in SNAP are signif-
icantly faster than alternate implementations in other
open-source graph software. This is due to a combi-
nation of the use of memory-efficient data structures,
preprocessing kernels that are tuned for small-world

http://dx.doi.org/10.1007/978-0-387-09766-4_2198
http://dx.doi.org/10.1007/978-0-387-09766-4_2199
http://dx.doi.org/10.1007/978-0-387-09766-4_2199

SNAP (Small-World Network Analysis and Partitioning) Framework

1833

Complex network

SNAP

Advanced analytics

e.g., community detection,
subgraph isomorphism

......

Exploratory

network e.g., centrality, clustering coeff.
analysis

Parallel graph kernels
-

Graph metrics, preprocessing

e.g., BFS, MST,
connected components

Graph representation
e.g., file formats, data structures

SNAP (Small-World Network Analysis and Partitioning) Framework. Fig.1 A schematic of the SNAP graph analysis

framework [8]

networks, as well as algorithms that are designed to
specifically target cache-based multicore architectures.
These issues are discussed in more detail in the follow-
ing sections of this article.

As the project title suggests, the initial design goals
of SNAP were to provide scalable parallel solutions for
community structure detection [4], a problem variant of
graph partitioning that is of great interest in social, and
in general, small-world network analysis. Community
structure detection is informally defined as identify-
ing densely connected sets of vertices in the network,
thereby revealing latent structure in a large-scale net-
work. It is similar to the problem of graph partitioning
in scientific computing, as is usually formulated as a
graph clustering problem. SNAP includes several dif-
ferent parallel algorithms for solving this problem of
community detection.

The first issue that arises in the design of graph algo-
rithms is the use of appropriate in-memory data struc-
tures for representing the graph. The data to be analyzed
typically resides on disk in a database, or in multiple
files. As the data is read from disk and loaded into main
memory, a graph representation is simultaneously con-
structed. The minimal layout that would constitute an
in-memory graph representation is a list of edge tuples
with vertex identifiers indicating the source and desti-
nation vertices, and any attributes associated with the

edges and vertices. However, this does not give one easy
access to lists of edges originating from a specific ver-
tex. Thus, the next commonly used representation is to
sort the edge tuple list by the source vertex identifier,
and store all the adjacencies of a particular vertex in a
contiguous array. This is the primary adjacency list rep-
resentation of graphs that is supported in SNAP. Edges
can have multiple attributes associated with them, in
which case they can either be stored along with the cor-
responding adjacency vertex identifier, or in separate
auxiliary arrays. This representation is space-efficient,
has a low computational overhead for degree and mem-
bership queries, and provides cache-friendly access to
adjacency iterators.

In cases where one requires periodic structural
updates to the graph, such as insertions and deletions
of edges, SNAP uses alternate graph representations.
An extension to the static representation is the use of
dynamic, resizable adjacency arrays. Clearly, this would
support fast insertions. Further, parallel insertions can
be supported using non-blocking atomic increment
operations on most of the current platforms. There are
two potential parallel performance issues with this data
structure. Edge deletions are expensive in this repre-
sentation, as one needs to scan the entire adjacency list
in the worst case to locate the required tuple. The scan
is particularly expensive for high-degree vertices. Sec-
ond, there may be load-balancing issues with parallel
edge insertions (for instance, consider the case where
there are a stream of insertions to the adjacency list of

1834

SNAP (Small-World Network Analysis and Partitioning) Framework

a single vertex). These problems can be alleviated by
batching the updates, or by randomly shuffling the
updates before scheduling the insertions. If one uses
sorted adjacency lists to address the deletion problem,
then the cost of insertions goes up due to the overhead
of maintaining the sorted order.

An alternative to arrays is the use of tree structures
to support both quick insertions and deletions. Treaps
are binary search trees with a priority (typically a ran-
dom number) associated with each node. The priorities
are maintained in heap order, and this data structure
supports insertions, deletions, and searching in average-
case logarithmic time. In addition, there are known
efficient parallel algorithms for set operations on treaps
such as union, intersection, and difference. Set opera-
tions are particularly useful to implement kernels such
as graph traversal and induced subgraphs, and also for
batch-processing updates.

To process both insertions and deletions efficiently,
and also given the power-law degree distribution for
small-world networks, SNAP supports a hybrid repre-
sentation that uses dynamically resizable arrays to rep-
resent adjacencies of low-degree vertices, and treaps for
high-degree vertices. The threshold to determine low
and high-degree vertices can be varied based on the
data set characteristics. By using dynamic arrays for
low-degree vertices (which will be a majority of vertices
in the graph), one can achieve good performance for
insertions. Also, deletions are fast and cache-friendly
for low-degree vertices, whereas they take logarithmic
time for high-degree vertices represented using treaps.
Madduriand Bader [9] discuss the parallel performance
and space-time trade-offs involved with each of these
representations in more detail.

There is a wide variety in the known approaches for
exploiting parallelism in graph problems. Some of
the easier ones to implement and analyze are com-
putations involving iterations over vertex and edge
lists, without much inter-iteration dependencies. For
instance, queries such as determining the top-k high-
degree vertices, or the maximum-weighted edge in the
graph, can be easily parallelized. However, most parallel
algorithms require the use of data structures such as pri-
ority queues and multisets. Further, one needs support
for fast parallel operations on these structures, such as

parallel insertions, membership queries, and batched
deletions. Fine-grained, low overhead synchronization
is an important requirement for several efficient paral-
lel implementations. Further, the notion of partitioning
a graph is closely related to several parallel graph algo-
rithms. Given that inter-processor communication is
expensive on distributed memory systems (compared
to computation on a single node), several parallel graph
approaches rely on a graph partitioning and vertex
reordering preprocessing step to minimize communi-
cation in subsequent algorithm executions. Graph par-
titioning is relevant in the context of shared-memory
SNAP algorithms as well, since it reduces parallel syn-
chronization overhead and improves locality in mem-
ory accesses.

Consider the example of breadth-first graph traver-
sal (BFS) as an illustration of more complex paradigms
for parallelism in graph algorithms. Several SNAP graph
kernels are designed to exploit fine-grained thread-
level parallelism in graph traversal. There are two
common parallel approaches to breadth-first search:
level-synchronous graph traversal, where the adjacencies
of vertices at each level in the graph are visited in paral-
lel; and path-limited searches, where multiple searches
from vertices that are far apart are concurrently exe-
cuted, and the independent searches are aggregated. The
level-synchronous approach is particularly suited for
small-world networks due to their low graph diame-
ter. Support for fine-grained efficient synchronization
is critical in both these approaches. The SNAP imple-
mentation of BFS aggressively reduces locking and bar-
rier constructs through algorithmic changes as well
as architecture-specific optimizations. For instance, the
SNAP BES implementation uses a lock-free approach
for tracking visited vertices and thread-local work
queues, significantly reducing shared memory con-
tention. While designing fine-grained algorithms for
small-world networks, it is also important to take the
unbalanced degree distributions into account. In alevel-
synchronized parallel BFS where vertices are statically
assigned to multiple threads of execution, it is likely
that there will be phases with severe work imbalance
(due to the imbalance in vertex degrees). To avoid
this, the SNAP implementation first estimates the pro-
cessing work to be done at each vertex, and then
assigns vertices accordingly to threads. Several other
optimization techniques, and their relative performance

SNAP (Small-World Network Analysis and Partitioning) Framework

1835

benefits, are discussed by Bader and Madduri in more
detail [2].

Graph algorithms often involve performance trade-
offs associated with memory utilization and paralleliza-
tion granularity. In cases where the input graph instance
is small enough, one could create several replicates of
the graph or the associated data structures for multi-
ple threads to execute concurrently, and thus reduce
synchronization overhead. SNAP utilizes this technique
for the exact computation of betweenness centrality,
which requires a graph traversal from each vertex. The
fine-grained implementation parallelizing each graph
traversal requires space linear in the number of ver-
tices and edges, whereas the coarse-grained approach
(the traversals are distributed among p threads) incurs a
p-way multiplicative factor memory increase. Depend-
ing on the graph size, one could choose an appropri-
ate number of replicates to reduce the synchronization
overhead.

Exploratory graph analysis often involves an iterative
study of the structure and dynamics of a network, using
a discriminating selection of topological metrics. SNAP
supports fast exact and approximate computation of
well-known social network analysis metrics, such as
average vertex degree, clustering coefficient, average
shortest path length, rich-club coefficient, and assorta-
tivity. Most of these metrics have a linear or sub-linear
computational complexity, and are straightforward to
implement. When used appropriately, they not only
provide insight into the network structure, but also help
speed up subsequent analysis algorithms. For instance,
the average neighbor connectivity metric is a weighted
average that gives the average neighbor degree of a
degree-k vertex. It is an indicator of whether vertices
of a given degree preferentially connect to high- or
low-degree vertices. Assortativity coefficient is a related
metric, which is an indicator of community structure
in a network. Based on these metrics, it may be possi-
ble to say whether the input data is representative of a
specific common graph class, such as bipartite graphs or
networks with pronounced community structure. This
helps one choose an appropriate community detection
algorithm and also the right clustering measure to opti-
mize for. Other preprocessing kernels that are beneficial

for exposing parallelism in the problem include compu-
tation of connected and biconnected components of the
graph. If a graph is composed of several large connected
components, it can be decomposed and individual com-
ponents can be analyzed concurrently. A combination
of these preprocessing kernels before the execution of
a compute-intensive routine often lead to a substantial
performance benefit, either by reducing the compu-
tation by pruning vertices or edges, or by explosing
more coarse-grained concurrency and locality in the
problem.

Several routines in SNAP are devoted to solving
the community identification problem in small-world
networks. Graph partitioning and community identi-
fication are related problems, but with an important
difference: the most commonly used objective func-
tion in partitioning is minimization of edge cut, while
trying to balance the number of vertices in each par-
tition. The number of partitions is typically an input
parameter for a partitioning algorithm. Clustering,
on the other hand, optimizes for an appropriate
application-dependent measure, and the number of
clusters is unknown beforehand. Multilevel and spec-
tral partitioning algorithms (e.g., Chaco [6] and Metis
[7]) have been shown to be very effective for par-
titioning graph abstractions derived from physical
topologies, such as finite-element meshes arising in sci-
entific computing. However, the edge cut when parti-
tioning small-world networks using these tools is nearly
two orders of magnitude higher than the correspond-
ing edge cut value for a nearly-Euclidean topology, for
graph instances that are comparable in the number of
vertices and edges. Clearly, small-world networks lack
the topological regularity found in scientific meshes
and physical networks, and current graph partitioning
algorithms cannot be adapted as-is for the problem of
community identification.

The parallel community identification algorithms in
SNAP optimize for a measure called modularity. Let
C = (G, ..., Ck) denote a partition of the set of vertices
V such that C; # ¢ and C; n C; = ¢. The cluster
G(C;) is identified with the induced subgraph G[C;] :=
(Ci,E(Cy)), where E(C;) = {{u,v) € E : u,v € C;}.
Then, E(C) := UX E(C;) is the set of intra-cluster edges

1836

SNAP (Small-World Network Analysis and Partitioning) Framework

and E(C) := E - E(C) is the set of inter-cluster edges.
Let m(C;) denote the number of inter-cluster edges in
C;. Then, the modularity measure q(C) of a clustering
C is defined as

q(C) = - .

5 m(Ci) (Zvec, deg(v))2

i

Intuitively, modularity captures the idea that a good
division of a network into communities is one in which
the inter-community edge count is less than what is
expected by random chance. This measure does not
try to minimize the edge cut in isolation, nor does
it explicitly favor a balanced community partitioning.
The general problem of modularity optimization has
been shown to be N'P-complete, and so there are sev-
eral known heuristics to maximize modularity. Most of
the known techniques fall into one of the two broad
categories: divisive and agglomerative clustering. In the
agglomerative scheme, each vertex initially belongs to
a singleton community, and communities whose amal-
gamation produces an increase in the modularity score
are typically merged together. The divisive approach is
a top-down scheme where the entire network is initially
in one community, and the network is iteratively broken
down into subcommunities. This hierarchical structure
of community resolution can be represented using a tree
(referred to as a dendrogram). The final list of the com-
munities is given by the leaves of the dendrogram, and
internal nodes correspond to splits (joins) in the divisive
(agglomerative) approaches.

SNAP includes several parallel algorithms for com-
munity identification that use agglomerative and divi-
sive clustering schemes [2]. One divisive clustering
approach is based on the greedy betweenness-based
algorithm proposed by Newman and Girvan [12]. In this
approach, the community structure is resolved by itera-
tively filtering edges with high edge betweenness central-
ity, and tracking the modularity measure as edges are
removed. The compute-intensive step in the algorithm
is repeated computation of the edge betweenness scores
in every iteration, and SNAP performs this computation
in parallel. SNAP also supports several greedy agglom-
erative clustering approaches, and the main strategy to
exploit parallelism in these schemes is to concurrently
resolve communities that do not share intercommu-
nity edges. Performance results on real-world networks

indicate that the SNAP parallel community identifi-
cation algorithms give substantial performance gains,
without any loss in community structure (given by the
modularity score) [2, 8].

Related Entries

»Chaco

»Graph Algorithms

»Graph Partitioning

»METIS and ParMETIS

»PaToH (Partitioning Tool for Hypergraphs)
»Social Networks

Bibliographic Notes and Further
Reading

The community detection algorithms in SNAP are
discussed in more detail in [3, 8]. Other popular
libraries and frameworks for large-scale network analy-
sis include Network Workbench [13], igraph [3], and the
Parallel Boost Graph Library [5].

Bibliography

1. Amaral LAN, Scala A, Barthélémy M, Stanley HE (2000) Classes
of small-world networks. Proc Natl Acad Sci USA 97(21):
11149-11152

2. Bader DA, Madduri K (April 2008) SNAP: Small-world Net-
work Analysis and Partitioning: an open-source parallel graph
framework for the exploration of large-scale networks. In: Pro-
ceedings of the 22nd IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2008), IEEE, Miami, FL

3. Csardi G, Nepusz T (2006) The igraph software package for
complex network research. InterJournal Complex Systems 1695.
http://igraph.sf.net. Accessed May 2011

4. Fortunato S (Feb 2010) Community detection in graphs. Physics
Reports 486(3-5):75-174

5. Gregor D, Lumsdaine A (July 2005) The Parallel BGL: a generic
library for distributed graph computations. In: Proceedings of the
Parallel/High-Performance Object-Oriented Scientific Comput-
ing (POOSC ’05), IOS Press, Glasgow, UK

6. Hendrickson B, Leland R (Dec 1995) A multilevel algorithm for
partitioning graphs. In: Proceedings of the 1995 ACM/IEEE Con-
ference on Supercomputing (SC 1995), ACM/IEEE Computer
Society, New York

7. Karypis G, Kumar V (1999) A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM] Sci Comput
20(1):359-392

8. Madduri K (July 2008) A high-performance framework for ana-
lyzing massive complex networks. Ph.D. thesis, Georgia Institute
of Technology

9. Madduri K, Bader DA (May 2009) Compact graph representa-
tions and parallel connectivity algorithms for massive dynamic

http://dx.doi.org/10.1007/978-0-387-09766-4_310
http://dx.doi.org/10.1007/978-0-387-09766-4_102
http://dx.doi.org/10.1007/978-0-387-09766-4_92
http://dx.doi.org/10.1007/978-0-387-09766-4_500
http://dx.doi.org/10.1007/978-0-387-09766-4_93
http://dx.doi.org/10.1007/978-0-387-09766-4_163
http://igraph.sf.net.

SoC (System on Chip)

1837

network analysis. In: Proceedings of the 23rd IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2009),
IEEE Computer Society, Rome, Italy

10. Madduri K, Bader DA, Riedy EJ (2011) SNAP: Small-world Net-
work Analysis and Partitioning v0.4. http://snap-graph.sf.net.
Accessed May 2011

11. Newman ME] (2003) The structure and function of complex
networks. SIAM Rev 45(2):167-256

12. Newman ME]J, Girvan M (2004) Finding and evaluating commu-
nity structure in networks. Phys Rev E 69:026113

13. NWB Team (2006) Network Workbench Tool. Indiana Uni-
versity, Northeastern University, and University of Michigan,
http://nwb.slis.indiana.edu. Accessed May 2011

14. Watts DJ, Strogatz SH (1998) Collective dynamics of small world
networks. Nature 393:440-442

' SoC (System on Chip)

TANGUY RISSET
INSA Lyon, Villeurbanne, France

Definition

A System on Chip (SoC) refers to a single-integrated
circuit (chip) composed of all the components of an
electronic system. A SoC is heterogeneous, in addition
to classical digital components: processor, memory, bus,
etc.; it may contain analog and radio components. The
SoC market has been driven by embedded computing
systems: mobile phones and handheld devices.

Discussion

Gordon Moore predicted in 1965 the exponential
growth of silicon integration and its consequences on
the application of integrated circuits. Following this
growth, known as Moore’s Law, the number of transis-
tor integrated on a single silicon chip has doubled every
18 months, leading to a constant growth in the semi
conductor industry for over 30 years. This technological
evolution implied constant changes in the design of dig-
ital circuits, with, for instance, the advent of gate level
simulation and logic synthesis. Amongst these changes,
the advent of System on Chip (SoC) represented a major
technological shift.

The term SoC became increasingly widespread in
the 1990s and is used to describe chips integrating on

a single silicon die what was before spread on sev-
eral circuits: processor, memory, bus, hardware device
drivers, etc. SoC technology did not fundamentally
change the functionality of the systems built, but drasti-
cally enlarged the design space: choosing the best way
to assemble a complete system from beginning (sys-
tem specification) to end (chip manufacturing) became
a difficult task. In 1999, a book entitled Surviving the
SoC Revolution: A guide to plateform-based design was
published. It was written by a group of people from
Cadence Design System, an important computer-aided
design tool company: SoC was driving a revolution of
the design methodologies for digital systems.

The production of SoC has been driven by the
emerging market of embedded systems, more precisely
embedded computing systems: cellular phones, PDa, dig-
ital camera, etc. Embedded computing systems require
strong integration, computing power and energy sav-
ing, features that were provided by SoC integration.
Moreover, most of these systems required radio com-
munication features; hence, a SoC integrates digital
components and analog components: the radio subsys-
tem. The success of mobile devices has increased the
economic pressure on SoCs, design cost and time-to-
market have become major issues, leading to new design
methodologies such as 1p-based design and hardware/
software codesign.

Another consequence of integration is the exponen-
tial growth of embedded software, shifting the complex-
ity of SoC design from hardware to software. Emulation,
simulation at various level of precision, and high level
design techniques are used because nowadays SoC are
incredibly complex: hundreds of millions of gates and
millions of lines of code. Increasing digital comput-
ing power enables software radio, providing everything
everywhere transparently. SoCs are now used to provide
convergence between computing, telecommunication,
and multimedia. Pervasive environments will also make
extensive use of embedded “intelligence” with SoCs.

A system on chip or SoC is an integrated circuit com-
posed of many components including: one or several
processors, on-chip memories, hardware accelerators,
devices drivers, digital/analog converters, and analog
components. It was initially named SoC because all the
features of a complete “system” were integrated together

http://snap-graph.sf.net.
http://nwb.slis.indiana.edu

1838

SoC (System on Chip)

on the same chip. At that time, a system was dedicated to
a single application: video processing or wireless com-
munication for instance. Thanks to the increasing role
of software, SoCs are no longer specific, in fact many
of them are reused in several different telephony or
multimedia devices.

Processors

The processor is the core of the SoC. Unlike desk-
top machine processors, a wide variety of processors
is integrated in the SoC: general purpose processors,
digital signal processors, micro-controllers, application
specific processors, FPGA based soft cores, etc. The
International Technology Road-Map for Semiconduc-
tors (1TRrs) indicated that, in 2005, more than 70% of
application specific integrated circuit (AsICS) contained
a processor. Until 2010, most SoCs were composed of
a single processor, responsible for the control of the
whole system, associated with hardware accelerators
and direct memory access components (DMA). In 2008,
the majority of SoCs were built around a processor
of one of the following form of processor architec-
tures: ARM, MIPS, PowerPC, or x86. Multi-processor
SoCs (MPSoC) are progressively appearing and mak-
ing use of the available chip area to keep performance
improvements. MPSoC appears to be a new major tech-
nological shift and MPSoC designers are facing problem
traditionally associated with super-computing.

Busses

The bus, or more generally the interconnection medium,
is also a major component of the SoC. Many SoCs
contain several busses, including a fast system bus
connecting the major SoC components (processor,
memory, hardware accelerator) and a slower bus for
other peripherals. For instance, the Advanced Micro-
controller Bus Architecture (Amba) proposes the
AHB specification (Advanced High-performance Bus),
and the ApB (Advanced Peripheral Bus), STBus (sT-
Microelectronics), and CoreConnect (1BM) are other
examples of SoC busses. The use of commercial bus pro-
tocol has been a major obstacle to SoC standardization:
a bus comes with a dedicated communication proto-
col which might be incompatible with other busses.
Networks on Chip (NoC) are progressively used with
MPSoC, the major problem of NoCs today is their
considerable power consumption.

Dedicated Components

A SoC will include standard control circuits such as
UART for the serial port, usB controller, and control of
specific devices: GPs, accelerometer, touch pad, etc. It
might also include more compute intensive dedicated
intellectual properties (1ps) usually targeted to signal or
image processing: FFT, turbo decoder, H.263 coder, etc.
Choosing between a dedicated component or a soft-
ware implementation of the same functionality is done
in early stages of the design, in the so-called hardware/
software partitioning. A hardware 1p will save power and
execution time compared to a software implementa-
tion of the same functionality. Dedicated 1ps are often
mandatory to meet the performance requirements of
the application (radio or multimedia), but they increase
SoC price, complexity, and also reduce its flexibility.

Other Components

Analog and mixed signal components may be included
to provide radio connexion: audio front-end, radio to
baseband interfaces, analog to digital converters. Other
application domains may require very specific compo-
nents such as microelectromechanical systems (MEMS),
optical computing, biochips, and nanomaterials.

Quality Criteria

The only objective indicator of the quality of a SoC is
its economical success, which is obviously difficult to
predict. Among the quality criteria, the most impor-
tant are: power consumption, time to market, cost, and
reusability.

Power consumption has been a major issue for
decades. Integrating all components on the same chip
reduces power consumption because inter chip wires
have disappeared. On the other hand, increasing clock
rate, program size, and number of computations has
a negative impact on power consumption. Moreover,
it is very difficult to statically predict the power con-
sumption of a SoC as it heavily depends on low-level
technological details. A precise electrical simulation of a
SoC is extremely slow and cannot be used in practice for
a complete system. Minimizing memory footprint and
memory traffic, gating clocks for idle components, and
dynamically adapting clock rate are techniques used to
reduce power consumption in SoCs. In recent submi-
cronic technologies, static power consumption is signif-
icant, leading to power consumption for idle devices.

SoC (System on Chip)

1839

It is usually said that, for a given product, the first
commercially available SoC will capture half of the mar-
ket. Hence, reducing the design time is a critical issue.
Performing hardware and software design in parallel is a
designer’s dream: it becomes possible with virtual pro-
totyping, that is, simulation of software on the virtual
hardware. High-level design and refinement are also
widely used: a good decision at a high level may save
weeks of design.

The cost of a SoC is divided into two components:
the nonrecurring engineering (NRE) cost which corre-
sponds to the design cost and the unit manufacturing
cost. Depending on the number of units manufactured
and the implementation technology, a complex trade-
off between the two can be made, bearing in mind that
some technological choices can shorten the time to mar-
ket such as field programmable gate arrays (FpGa) for
instance. NRE cost integrates, in addition to the design
cost of the hardware and software part of the SoC,
the cost of computer-aided design tools, computing
resource for simulation/emulation, and development of
tools for the SoC itself: compilers, linkers, debuggers,
simulation models of the 1ps, etc. To give a very rough
idea, in 2008, the development cost of a complex SoC
could reach several million dollars and could need more
than one hundred man years. In this context, is seems
obvious that the reuse of 1ps, tools, and SoCs is a major
issue because it shrinks both NRE costs and time to
market.

An Example

Figure 1 shows the architecture of the Samsung
S3CA400A01 SoC, designed to be associated with
another chip containing processor and memory through
the Cotulla interface. The Cotulla interface is associated
with Xscale processor (strong ARM processor architec-
ture manufactured by Intel). This chip was used for
instance in association with the pxa250 chip of Intel in
the ppA of Hewlett Packard iPaQ H5550. This SoC illus-
trates the different device driver components that can
be found, one can also observe the hierarchy of busses
mentioned before. It also shows that there is no standard
SoC, this one has no processor inside. Thanks to the
development of the open source software community,
many SoC architectures have been detailed and Linux
ports are available for many of them.

Although its advent was predicted, SoC really caused
a revolution in the semiconductor industry because it
changed design methods and brought many software
design problems in the microelectronics community.

Hardware design has been impacted by the arrival
of SoCs. The complexity of chip mechanically increases
with the number of gates on the chip. But the design
and verification effort increases more than linearly with
the number of gates. This is known as the design gap:
How can the designer efficiently use the additional gates
available without breaking design time and design reli-
ability? A SoC requires different technologies to be inte-
grated on the same silicon die (standard cells, memory,
FPGA). The clock distribution tree is a major source of
power dissipation leading to the advent of globally asyn-
chronous, locally synchronous systems (GALs). Routing
wires became a real problem partially solved by using
additional metal layers.

Hardware design methods have drastically changed
with the constant arrival of new Electronic Design
Automation (EDA) tools. RTL design methods (RTL
stands for register transfer level) have become the stan-
dard for hardware developers replacing transistor-level
circuit design. The hardware description languages
vHDL and Verilog are widely used for hardware spec-
ification before synthesis. However, higher-level hard-
ware description language are needed, partly because
SoC simulation time became prohibitive, requiring
huge rpGa based emulators. In addition, the net-
worked nature of embedded applications, and the
non-determinism introduced by parallelism in MPSoC
greatly complicates SoC simulation. As mentioned
before, cost and time to market imposes pressure on
engineers productivity, leading managers to new man-
agement methods. The hardware/software nature of a
SoC requires a constant dialog between hardware and
software engineers.

Embedded software has been introduced in cir-
cuit design, this is, in itself, a revolution. In 2006,
the Siemens company employed more software devel-
opers than Microsoft did, and since the mid-2000s,
more than half of the SoC design efforts were spent in
software development. Originally composed of a very
basic infinite loop waiting for interrupts, embedded
software has evolved by adding many device drivers,
standard or real time operating system services: tasks or

1840

SoC (System on Chip)

DMA (2channel)
GINT Interruption
DP(1:0)
USB |
DN(1:0)
RDY
Interface .
- NOE 3 Intel Cotulla Bridge
(Xscale) - ;
e | LED(4:0
% _JE;-#*
s —_
foa)
[2]
o
@ <
5 2
Internal Buffer 2 3 -
32 KBytes @ I
2
2
E SD Card I/F
DREQ(1:0) . SD Host ,é’—%—
MA(25:0) N A
MD(31:0) 3
<
__“ b FCD I/F
Y 5 Touch Panel I/F FCD IFF 1{
PCMCIA
—1 Expansion PWR Man.
ADC
TXD(1:0)
__% =} =) E 5
5 =) @ g
© g % § [a]
< a £ <
<

Reset, PLL, VCC, MCU-CLK

SoC (System on Chip). Fig.1 Architecture of the Samsung S3CA400A01 SoC

threads, resource management, shared memory, com-
munication protocols, etc. Even if an important part
of embedded code is written in C, there is a trend to
use component based software design methodologies
that reduces the conceptual difference between hard-
ware and software objects. Verifying software reliability
is very difficult, even if an important effort is dedi-
cated to that during the design process, complete formal
verification is impossible because of the complexity of
the software. This explains the bugs that everybody has
experienced on their mobile devices.

Both hardware and software design methods have
been drastically modified, but the most important
novelty concerns the whole SoC design methodology
that tries to associate in a single framework hardware
and software design.

SoC Design Methodology
There are many names associated with SoC design
methodologies, all of them refer more or less to the
same goal: designing hardware and software in the same
framework such that the designer can quickly produce
the most efficient implementation for a given system
specification. The term frequently used today is system
level design, the generic scheme of system level design
is the following: (1) derive hardware components and
software components from the specification, (2) map
the software part on the hardware components, (3) pro-
totype the resulting implementation, and (4) possibly
provide changes at some stage of the design if the per-
formance or cost is not satisfactory.

There is a global agreement on the fact that
high-level specifications are very useful to reduce the

SoC (System on Chip)

1841

design time. Many design frameworks have been pro-
posed for system level SoC design. The idea of refine-
ment of the original specification down to hardware is
present in many frameworks, high level synthesis (HLS)
was once seen as the solution but appears to be a very
difficult problem in general. In HLs, the hardware is
completely derived from the initial specifications. Dur-
ing the 1990s, the arrival of Intellectual Properties (1p)
introduced a clear distinction between circuit fabri-
cation and circuit design, leading some companies to
concentrate on IP design (ARM for instance). On the
other hand, 1p-based design and later platform-based
design propose to start from fixed (or parameterizable)
hardware library to reduce the design space exploration
phase. Improvement in simulation techniques permits,
with the use of systemC language, to have an approach
between the two by using virtual prototypes: cycle true
simulation of complete SoC before hardware imple-
mentation.

An open question remains at the present time: What will
be the dominant model for MPSoCs that are predicted
to include more than one hundred processors? There
are two main trends: heterogeneous MPSoCs following
actual heterogeneous SoC architecture or homogeneous
spMD-like multiprocessors on a single chip.

A heterogeneous MPSoC includes different types
of processors with different instruction set architec-
tures (1sA): general purpose processors, DSPs, applica-
tion specific instruction set processors (asip). It also
contains dedicated 1ps that might not be considered as
processors, DMAs, and memories. All these components
are connected together through a network on chip.

Heterogeneous MPSoCs are a natural evolution of
SoC, their main advantage is that they are more energy
efficient than homogeneous MPSoCs. They have been
driven by specific application domains such as soft-
ware radio or embedded video processing. But, for the
future, they suffer from many drawbacks. As they are
usually tuned for a particular application, they are dif-
ficult to reuse in another context. Because of incom-
patibility between 1sas, tasks cannot migrate between
processors inducing a much less flexible task mapping.
Moreover, in the foreseen transistor technology, inte-
grated circuits will have to be fault tolerant because
of electronics defaults. Heterogeneous MPSoC are not

fault tolerant by nature. Finally, their scalability is not
obvious and code reuse between different heteroge-
neous platforms is impossible. However, because het-
erogeneous MPSoCs provide better performance with
lower power consumption and lower cost, there are lots
of commercial activities on this model.

Homogeneous MPSoC are more flexible, they
can implement well known operating system services
such as code portability between different architec-
tures, dynamic task migration, virtual shared memory.
Homogeneity can help in being fault tolerant, as any
processor can be replaced by another. However, with
more than a hundred processor on a chip in 2020,
the MPSoC architecture cannot be completely homo-
geneous, it has to be hierarchical: clusters of proces-
sors tightly linked, these clusters being interconnected
with a network on chip. Memory must be physically
distributed with non-uniform access.

Ensuring cache coherency and providing efficient
compilation and parallelization tools for these architec-
tures are real challenges. In 2009, the 1TRs road-map
predicted for 2013 the advent of a concurrent software
compiler that will “Enable compilation and software
development in highly parallel processing SoC,” this will
be a critical step towards the advent of homogeneous
MPSoC. However, many unknowns remain concerning
the programming model to use, the ability of compi-
lation tools to efficiently use the available resources,
the reusability of the chip and the reusability of the
embedded code between platforms, and the real power
consumption of these homogeneous multiprocessors
on chip.

A trade-oft would be a homogeneous SoC with some
level of heterogeneity: dedicated 1ps for domain-specific
treatments. New technological techniques, such as 3D
vLsI packaging technology or more generally the arrival
of so-called system in package, mixing various nan-
otechnologies on a single chip might also open a new
road to embedded computing systems. But, whatever
will be the successful MPSoC model, it will bring highly
parallel computing on a chip and should lead to a revival
of parallel computing engineering.

Bibliographic Notes and Further
Reading

A number of books have been published on SoC,
we have already talked about “surviving the SOC

1842

Social Networks

revolution” [1]. Many interesting ideas were also present
in the Polis project [4]. Daniel Gajski [9] worked on
SoC from the beginning. Wayne Wolf published a gen-
eral presentation [13]. More recently, Chris Rowen [11]
proposed an interesting view of SoC design.

A good overview of the status of high-level synthesis
can be found in Coussy and Moraviec book [2]. More
practical details can be found on the Steve Furber book
on ARM [8].

A number of useful information are present on
the web, from the International Technology Road-
map for Semiconductors (ITRS [7]), from analyst or
engineer [3] or open source software developer for
embedded devices [5, 6]. A simple introduction to
semiconductor industry can be found in Jim Turley’s
book [12].

A good introduction on MPSoC is presented in [10],
but most of the interesting work on this subject are
presented in the proceedings of the international con-
ferences on the subject: Design Automation Conference
(pAC), Design automation and Test in Europe (DATE),
International Forum on Embedded MPSoC and Multi-
core (MPSOC), etc.

Bibliography
1. Chang H, Cooke L, Hunt M, Martin G, McNelly AJ, Todd L (1999)
Surviving the SOC revolution: a guide to platform-based design.
Kluwer Academic Publishers, Norwell, MA
2. Coussy P, Morawiec A (eds) (2008) High-level synthesis: from
algorithm to digital circuit. Springer, Berlin, Germany
3. Embedded System Design (2009) http://www.embedded.com/
4. Balarin F et al (1997) Hardware-software co-design of embedded
systems: the POLIS approach. Kluwer Academic Press, Dordrecht
5. Linux for device (2009) http://www.linuxfordevices.com/
6. Open Embedded: framework for embedded Linux (2009) http://
wiki.openembedded.net
7. International Technology Roadmap for Semiconductors (2009)
http://www.itrs.net/
8. Furber S (2000) ARM system-on-chip architecture. Addison
Wesley, Boston, MA
9. Gajski DD, Abdi S, Gerstlauer A, Schirner G (2009) Embed-
ded system design: modeling, synthesis and verification. Kluwer
Academic Publishers, Dordrecht
10. Jerraya A, Wolf W (2004) Multiprocessor systems-on-chips
(The Morgan Kaufmann Series in Systems on Silicon). Morgan
Kaufmann, San Francisco, CA
11. Rowen C (2004) Engineering the complex SOC: fast, flexible
design with configurable processors. Prentice-Hall Press, Upper
Saddle River, NJ

12. Turley J (2002) The essential guide to semiconductors. Prentice
Hall Press, Upper Saddle River, NJ

13. Wolf W (2002) Modern VLSI design: system-on-chip design.
Prentice Hall Press, Upper Saddle River, NJ

! Social Networks

MALEQ KHAN, V. S. ANIL KUMAR, MADHA V. MARATHE,
PauLa E. STRETZ
Virginia Tech, Blacksburg, VA, USA

Introduction

Networks are pervasive in todays world. They pro-
vide appropriate representations for systems comprised
of individual agents interacting locally. Examples of
such systems are urban regional transportation systems,
national electrical power markets and grids, the Inter-
net, ad-hoc communication and computing systems,
public health, etc. According to Wikipedia, A social
network is a social structure made of individuals (or
organizations) called “nodes,” which are tied (connected)
by one or more specific types of interdependency, such
as friendship, kinship, financial exchange, dislike, sex-
ual relationships, or relationships of beliefs, knowledge
or prestige. Formally, a social network induced by a
set V of agents is a graph G = (V,E), with an edge
e = (u,v) € E between individuals u and v, if they
are interrelated or interdependent. Here, we use a more
general definition of nodes and edges (that represent
interdependency). The nodes represent living or vir-
tual individuals. The edges can represent information
flow, physical proximity, or any feature that induces
a potential interaction. For example, the social con-
tact networks, an edge signifies some form of physical
co-location between the individuals - such a contact
may either capture physical proximity, an explicit phys-
ical contact or a co-location in the virtual world, e.g.,
Facebook. Socio-technical networks are a generaliza-
tion of social networks and consist of a large number
of interacting physical, technological, and human/soci-
etal agents. The links in socio-technical networks can
be physically real or a matter of convention such as
those imposed by law or social norms, depending on the
specific system being represented. This entry primarily
deals with social networks.

http://www.embedded.com/
http://www.linuxfordevices.com/
http://wiki.openembedded.net
http://wiki.openembedded.net
http://www.itrs.net/

Social Networks

1843

Social networks have been studied for at least 100
years; see [9] for a detailed account of the history and
development of social networks and the analytical tools
that followed them. Scientists have used social net-
works to uncover interesting insights related to societies
and social interactions. Social networks, their struc-
tural analysis, and dynamics on these networks (e.g.,
spread of diseases over social contact networks) are
now a key part of social, economic, and behavioral sci-
ences. Importantly, these concepts and tools are also
becoming popular in other scientific disciplines such
as public health epidemiology, ecology, and computer
science due to their potential applications. For exam-
ple, in computer science, interest in social networks
has been spurred by web search and other online com-
munication and information applications. Google and
other search engines crucially use the structure of the
web graph. Social networking sites, such as Facebook
and Twitter, and blogging sites have grown at an amaz-
ing rate and play a crucial role in advertising and the
spread of fads, fashion, public opinion, and politics. The
growing importance of social networks in the scientific
community can be gauged by a report from the National
Academies [18] as well as a recent issue of Science [21].
The proliferation of Facebook, MySpace, Twitter, Blog-
sphere, and other online communities has made social
networking a pervasive and essential part of our lingua.

An important and almost universal observation is
that the network structure seems to have a significant
impact on these systems and their associated dynamics.
For instance, many infrastructure networks (such as the
Internet) have been observed to be highly vulnerable
to targeted attacks, but are much more robust to ran-
dom attacks [2]. In contrast, social contact networks are
known to be very robust to all types of attacks [7]. These
robustness properties have significant implications for
control and policies on such systems - for instance,
protecting high degree nodes in Internet-like graphs
has been found to be effective in stopping the spread
of worms [19]. For many processes, e.g., the SIS model
of diffusion (which models “endemic” diseases, such as
Malaria and Internet malware), the dynamics have been
found to be characterized quite effectively by the spec-
tral properties of the underlying network [19]. Similarly,
classical and new graph theoretic metrics, e.g., centrality
(which, informally, determines the fraction of shortest
paths passing through a node), have been found to be

useful in identifying “important” nodes in networks and
community structure. Therefore, computing the prop-
erties of these graphs, and simulating the dynamical
processes defined on them are important research areas.

Most networks that arise in practice are very large
and heterogeneous, and cannot be easily stored in mem-
ory - for instance, the social contact graph of a city
could have millions of nodes and edges [13], while the
web graph has over 11 billion nodes [7] and several
billion edges. Additionally, these networks change at
very short time scales. They are also naturally labeled
structures, which adds to the memory requirements.
Consequently, simple and well-understood problems
such as finding shortest paths, which have almost lin-
ear time algorithms, become challenging to solve on
such graphs. High-performance computing has been
successfully used in a number of scientific applications
involving large data sets with complex processes, and
is, therefore, a natural and necessary approach to over-
come such resource limitations.

Most of the successful applications of high-
performance computing have been in physical sciences,
such as molecular dynamics, radiation transport, n-
body dynamics, and sequence analysis, and researchers
routinely solve very large problems using massive dis-
tributed systems. Many techniques and general prin-
ciples have been developed, which have made parallel
computing a crucial tool in these applications. Social
networks present fundamentally new challenges for
parallel computing, since they have very different struc-
ture, and do not fit the paradigms that have been devel-
oped for other applications. As we discuss later, some of
the key issues that arise in parallelization of social net-
work problems include highly irregular structure, poor
locality, variable granularity, and data-driven compu-
tations. Most social contact networks have a scale-free
and “small world” structure (described formally below),
which is very different from regular structures such as
grids. As a result, social network problems often cannot
be decomposed easily into smaller independent sub-
problems with low communication, making traditional
parallel computing techniques very inefficient.

The goal of this article is to highlight the challenges
for high-performance computing posed by the growing
area of social networks. New paradigms are needed at
all levels of hardware architecture, software methodolo-
gies, and algorithmic optimization.

1844

Social Networks

Section “Background and Notation” presents some
background into social networks, their history, and
important problems. Section “Petascale Computing
Challenges for Social Network Problems” identifies the
main challenges for parallel computing. We discuss
some recent developments in Section “Techniques” and
conclude in section “Conclusions’.

Background and Notation

Many of the results in sociology that have now become
folklore have been based on insights from social net-
work analysis. One of such classic results is the “six-
degree of separation” experiment, in which Stanley
Milgram [22] asked 296 randomly chosen people to for-
ward a letter to a stock broker in Boston, by sending
it to one of their acquaintances, who is most likely to
know the target. Milgram found that the median length
of chains that successfully reached the target was about
6, suggesting that the global social contact network was
very highly connected. Attempts to explain this phe-
nomenon have led to the “small-world” graph models,
which show that a small fraction of long-range con-
tacts to individuals spatially located far away is adequate
to bring the diameter of the network down. Another
classic result is Granovetter’s concept of the “strength
of weak ties” [13], which has become one of the most
influential papers in sociology. He examined the role
of information that individuals obtain as a result of
their position in the social contact network, and found
that information from acquaintances (weak ties), and
not close friends, was the most useful, during major
lifestyle changes, e.g., finding jobs. This finding has led
to the notions of “homophily” (i.e., nodes with simi-
lar attributes form contacts) and “triadic closure” (i.e.,
nodes with a common neighbor are more likely to form
a link), and the idea that weak ties form bridges that
span different parts of the network.

Concepts such as these have been refined and for-
malized using graph theoretic measures; see [5, 19] for
a formal discussion. Some of the key graph measures
are: (1) (Weighted) Degree distribution: The degree of a
node is the number of contacts it has, and the degree dis-
tribution is the frequency distribution of degrees. This
measure is commonly used to characterize and distin-
guish various families of graphs. In particular, it has
been found that many real networks have power law
or lognormal degree distributions, instead of Poisson,

which has been used to develop models to explain the
construction and evolution of these networks. (2) The
Clustering coefficient, C(v), of a node v is the proba-
bility that two randomly picked neighbors of node v
are connected, and models the notion of triadic closure,
and its extensions. (3) Centrality: Let f(s,t) denote the
number of shortest paths from s to t, and let f,(s,t)
denote the number of shortest paths from s to ¢ that
pass through node v. The centrality of node v is defined
as be(v) = X, fu(s,t)[f(s,t), and captures its “impor-
tance”. (4) Robustness to node and edge deletions, which
is quantified in terms of the giant component size, as a
result of node and edge deletions, and has been found to
be a useful measure to compare graphs. (5) Page Rank
and Hubs have been used to identify “important” web
pages for search queries, but have been extended to
other applications. The Page Rank of a node is, infor-
mally, related to the stationary probability of a node in
a random walk model of a web surfer. (6) A commu-
nity or a cluster is a “loosely connected” set of nodes
with similar attributes, which are different from nodes
in other communities. There are many different meth-
ods for identifying communities, including modularity
and spectral structure [19, 22].

In applications such as epidemiology and viral mar-
keting, the network is usually associated with a diffusion
process, e.g., the spread of disease or fads. There are many
models of diffusion, and some of the most widely used
classes of models are Stochastic cascade models [11, 19].
In these models, we are given a probability p(e) for each
edge e € E in a graph G = (V,E). The process starts
at a node s initially. If node v becomes active at time ¢,
it activates each neighbor w with probability p(v, w),
independently (and also independent of the history);
no node can be reactivated in this process. In the case
of viral marketing, active nodes are those that adopt a
certain product, while in the SIR model of epidemics,
the process corresponds to the spread of a disease, and
the active nodes are the ones that get infected. Another
class of models thathas been studied extensively involves
Threshold functions; one of the earliest uses of threshold
models was by Granovetter and Schelling [10], who used
it for modeling segregation. The Linear Threshold Model
[14] is at the core of many of these models. In this model,
each node v has a threshold ®, (which may be chosen
randomly), and each edge (v,w) has a weight b, ,,. A
node v becomes active at time £,if 3., n(1)na, brw 2 ©1s

Social Networks

1845

where N(v) denotes the set of neighbors of v and A;
denotes the set of active nodes at time ¢ (in this model,
an active node remains active throughout). Such dif-
fusion processes are instances of more general models
of dynamical systems, called Sequential Dynamical Sys-
tems (SDSs) [7,19], which generalize other models, such
as cellular automata, Hopfield networks, and commu-
nicating finite state machines. An SDS § is defined as
a tuple (G, F, m), where: (a) G = (V,E) is the under-
lying graph on a set V of nodes, (b) F = (f,) denotes
a set of local functions for each node v € V, on some
fixed domain. Each node v computes its state by apply-
ing the local function f, on the states of its neighbors.
(c) m denotes a permutation (or a word) on V, and
specifies the order in which the node states are to be
updated by applying the local functions. One update
of the SDS involves applying the local functions in the
order specified by 7. It is easy to see that the above dif-
fusion models can be captured by suitable choice of the
local functions f, and the order 7. It is easy to extend
the basic definition of SDS to accommodate local func-
tions that are stochastic, the edges that are dynamic, and
the graph that is represented hierarchically (to capture
organizational structure).

Fundamental questions in social networks include
(1) understanding the structure of the networks and
the associated dynamics, especially how the dynam-
ics is affected by the network properties; (2) tech-
niques to control the dynamics; (3) identifying the most
critical and vulnerable nodes crucial for the dynam-
ics; and (4) coevolution between the network and
dynamics - this issue brings in behavioral changes by
individuals as a result of the diffusion process. The
above mentioned problems require large-scale simula-
tions, and parallel computing is a natural approach for
designing them.

Petascale Computing Challenges for
Social Network Problems

Lumsdaine et al. [15] justifiably assert that traditional
parallel computing techniques (e.g., those developed in
the context of applications such as molecular dynam-
ics and sequencing) are not well suited for large-scale
social network problems because of the following rea-
sons: (1) Graph algorithms chiefly involve data driven
computations, in which the computations are guided

by the graph structure. Therefore, the structure and
sequence of computations are not known in advance
and are hard to predict, making parallelization diffi-
cult. (2) Social networks are typically very irregular
and strongly connected, which makes partitioning into
“independent” sub-problems difficult [15]. As observed
by many researchers, these networks usually have a
small-world structure with high clustering, and such
graphs have low diameter and large separators (unlike
regular graphs such as grids, which commonly arise
in other applications). (3) Locality is one of the key
properties that helps in parallelization; however, com-
putations on social networks tend to give low locality
because of the irregular structure, leading to computa-
tions and data access patterns with global properties. (4)
As noted in [15, 16], graph computations often involve
exploration of the graph structure, which are highly
memory intensive and there is very little computation to
hide the latency to memory accesses. Thus, the perfor-
mance of memory subsystem, rather than the memory
clock frequency, dominates the performance of graph
algorithms.

Traditional parallel architectures have been devel-
oped for applications that do not have these constraints,
and therefore, are not completely suited for social
network algorithms. The most common paradigm of
distributed computing, the distributed memory archi-
tectures with message-passing interface (MPI), leads to
high message passing, because of the lack of locality and
high data access to computation ratio. The shared mem-
ory model is much more suited for the kinds of data-
driven computations that arise in graph algorithms,
and multithreaded approaches have been found to be
more effective in exploiting the parallelism that arises.
Some of the main hardware and software challenges
that arise are as follows: (1) In many graph problems,
e.g., shortest paths, parallelism can be found at a fairly
fine level of granularity, though in other problems, e.g.,
computing centrality, there is coarse grained granular-
ity, where each path computation is an independent
task. (2) While multithreading is crucial for graph algo-
rithms, the unstructured nature of these graphs implies
that there are significant memory contention and cache-
coherence problems. (3) It is difficult to achieve load
balancing on graph computations, where the level of
parallelism varies with time, e.g., as in breadth-first
search.

1846

Social Networks

Techniques

Parallel algorithms for social network problems is an
active area of research and we now discuss some of
the key techniques that have been found to be effec-
tive for some problems that arise in analyzing social
networks. These techniques are still application spe-
cific, and developing general paradigms is still an active
research area.

In [12], Hendrickson and Berry discussed how mas-
sively multithreaded architectures, such as the Cray
MTA-2 and its successor the XMT, can be used to boost
the performance of parallel graph algorithms. Instead of
trying to reduce latency for single-memory access, the
MTA-2 tolerates it by ensuring that the processor has
other work to do while waiting for a memory request
to be satisfied by supporting many concurrent threads
in a single processor and switching between them in
a single clock cycle. When a thread issues memory
request, the processor immediately switches to another
ready-to-execute thread. MTA-2 supports fast and
dynamic thread creation and destruction allowing the
program to dynamically determine the number of
threads based on the data to be processed. Support of
virtualization of threads allows adaptive parallelism and
dynamic load balancing. MTA-2 also supports word-
level locking of the data items, which decreases access
contention and minimizes impact on the execution of
other threads.

Drawbacks of massively multithreaded machines
include higher price and much slower clock rate than
mainstream systems, and the difficulty in porting to
other architectures. Hendrickson and Berry [12], using
the massively multithreaded architectures, extended a
small subset of the Boost Graph Library (BGL) into
the Multithreaded Graph Library (MTGL). This library,
which is their ongoing current work, retains the BGLs
look and feel, yet encapsulates the use of nonstan-
dard features of massively multithreaded architectures.
Madduri et al. [16] also discussed architectural fea-
tures of the massively multithreaded Cray XMT system
and present implementation details and optimization
of betweenness centrality computations. They further
showed how the parallel algorithm for betweenness cen-
trality can be modified so that locking is not necessary

to avoid concurrent access to a memory unit, which they
call lock-free parallel algorithm.

Data streaming is a useful approach to deal with mem-
ory constraints, in which processors keep a “sketch” of
the data, while making one or more passes through
the entire data (or stream), which is assumed to be
too big to store. Streaming is usually sequential, and
Google’s MapReduce [6] and Apache’s Hadoop [1] pro-
vide a generic programming framework for distributed
streaming. MapReduce/Hadoop provide a transparent
implementation which takes care of issues like data
distribution, synchronization, load balancing, and pro-
cessor failures. It can, thus, greatly simplify computation
over large-scale data sets, and has been proven to be a
useful abstraction for solving many problems, especially
those related to web applications.

We briefly describe the MapReduce framework here.
In the map step, the master node takes a task, parti-
tions it into smaller independent subtasks and passes
them down to the worker nodes. The worker nodes may
recursively do the same, or process the subtask and pass
it back to the master node. The master node then col-
lects the solutions to each subtask that it had assigned
and processes these solutions to obtain the final solu-
tion for the original task. More formally, the input to
the MapReduce system is represented as a set of (key,
value) pairs, which can be defined in a completely gen-
eral manner. There are two functions: Map and Reduce,
which need to be specified by the user. A Map function
processes a key/value pair (k;,v,) and produces a list
of zero or more intermediate key/value pairs (k,v,).
Once the Map function completes processing of the
input key/value pairs, the system groups the interme-
diate pairs by each key k, and makes a list of all val-
ues associated with k. These lists are then provided as
input to the Reduce function. The Reduce function is
then applied independently to each key/value-list pair
to obtain a list of final values. The whole sequence can
be repeated as needed.

Programs written in this functional style are auto-
matically parallelized and executed on a large cluster
of machines, insulating users from all the run-time
issues. The MapReduce framework is quite powerful,
and can be used to efficiently compute any symmetric

Social Networks

1847

order-invariant function [8], a large subclass of prob-
lems that can be solved by streaming algorithms. This
class includes many stream statistics that arise in web
applications. Kang et al. [13] use this approach to esti-
mate the diameter of a massive instance of the web
graph with over 10 billion edges. The (key, value) pairs
in their algorithm capture adjacencies of nodes and esti-
mates of the number of nodes within a d-neighborhood
of a node; the algorithm is run in multiple stages in
order to keep the keys and associated values simple and
small, and also uses efficient sketches for representing
set unions. The uniqueness of a MapReduce framework
lies in its ability to hide the underlying computing archi-
tecture from the end-user. Thus, the user can compute
using a MapReduce framework on parallel clusters as
well as loosely coupled machines in a cloud or over vol-
unteer computing resources comprised of independent,
heterogeneous machines.

So far, much of the discussion has focused on compu-
tational considerations related to social network struc-
ture. But many more interesting questions arise when
one studies dynamical processes on these networks; in
fact, it is fair to say that social networks exist to serve
the function of one or more dynamical processes on
them. While researchers have worked extensively on
structural properties of social networks, the literature
on the study of dynamical processes on social networks
is relatively sparse. When it does exist, it is usually
in the context of very small networks or stylized and
regular networks. Unfortunately, many of these results
do not scale or apply to large and realistic social net-
works. In [3], the authors discuss new algorithms and
their implementations for modeling certain classes of
dynamical processes on large social networks. In gen-
eral, the problem is hard computationally; it becomes
even harder when the social network structure, the
dynamical processes and individual node behavior coe-
volve. For certain class of dynamical processes that
capture a number of interesting social, economic, and
behavioral theories of collective behavior, it is possi-
ble to develop fast parallel algorithms. Intuitively, such
dynamical processes can be expressed as SDSs with a
certain symmetry condition imposed on local transition
functions.

Conclusions

As our society is becoming more connected, there is
an increasing need to develop innovative computational
tools to synthesize, analyze, and reason about large
and progressively realistic social networks. Applications
of social networks for analyzing real-world problems
will require the study of multi-network, multi-theory
systems - systems composed of multiple networks
among agents whose behavior is governed by multiple
behaviors. Advances in computing and information are
also giving rise to new classes of social networks. Two
examples of these networks are: (1) botnet networks in
which individual nodes are software agents (bots) and
(2) wireless-social networks in which social networks
between individuals are being supported by wireless
devices that allow them to communicate and interact
anytime and anywhere. As the society becomes more
connected, these applications require support for real-
time individualized decision making over progressively
larger evolving social networks. This same technology
will form the basis of new modeling and data process-
ing environments. These environments will allow us to
leverage the next generation computing and communi-
cation resources, including cloud computing, massively
parallel peta-scale machines and pervasive wireless sen-
sor networks. The dynamic models will generate new
synthetic data sets that cannot be created in any other
way (e.g., direct measurement). This will enable social
scientists to investigate entirely new research questions
about functioning societal infrastructures and the indi-
viduals interacting with these systems. Together, these
advances also allow scientists, policy makers, educators,
planners, and emergency responders unprecedented
opportunities for multi-perspective reasoning.

Acknowledgments

This work has been partially supported by NSF Grant
CNS-0626964, SES-0729441, CNS-0831633, and OCI-
0904844, and DTRA Grant HDTRA1-0901-0017 and
HDTRAI-07-C-0113.

Bibliography
1. Apache hadoop. Code and documentation are available at http://
developer.yahoo.com/hadoop/
2. Barabasi A, Albert R (1999) Emergence of scaling in random
networks. Science 286:509-512

http://developer.yahoo.com/hadoop/
http://developer.yahoo.com/hadoop/

1848

Software Autotuning

10.

1L
12.

13.

14.

15.

16.

17.

19.

20.

. Barrett C, Bisset K, Marathe A, Marathe M (2009) An integrated

modeling environment to study the co-evolution of networks,
individual behavior and epidemics. AI Magazine, 2009

. Barrett C, Eubuank S, Marathe M (2005) Modeling and simulation

of large biological, information and socio-technical systems: an
interaction based approach interactive computation. In: Goldin D,
Smolka S, Wegner P (2005) The new paradigm, Springer, Berlin,
Heidelberg, New York

. Baur M, Brandes U, Lerner J, Wagner D (2009), Group-level anal-

ysis and visualization of social networks. In: Lerner J, Wagner D,
Zweig K (eds) Algorithmics of large and complex networks, vol
5515, LNCS. Springer, Berlin, Heidelberg, New York, pp 330-358

. Dean], Ghemawat S (2004) Mapreduce: Simplified data process-

ing on large clusters. In: Proceedings of the sixth symposium
on operating system design and implementation (OSDI), San
Francisco, December 2004

Eubank S, Guclu H, Anil Kumar VS, Marathe MV, Srinivasan A,
Toroczkai Z, Wang N (2004) Modelling disease outbreaks in
realistic urban social networks. Nature 429(6998):180-184

. Feldman J, Muthukrishnan S, Sidiropoulos A, Stein C, Svitkina Z

(2008) On distributing symmetric streaming computations. In:
Proceedings of the nineteenth annual ACM-SIAM symposium on
Discrete algorithms (SODA), San Francisco, pp 710-719

. Freeman L (2004) The development of social network analysis: a

study in the sociology of science. Empirical Press, Vancouver
Granovetter M (1978) Threshold models of collective behavior.
Am] Sociology 83(6):1420-1443

Grimmett G (1999) Percolation. Springer, New York
Hendrickson B, Berry J (2008) Graph analysis with high-
performance computing. Comput Sci Eng 10:14-19

Kang U, Tsourakakis CE, Appel AP, Faloutsos C, Leskovec J (2008)
Hadi: fast diameter estimation and mining in massive graphs with
hadoop. Technical Report CMU-ML-08-117, Carnegie Mellon
University

Kempe D, Kleinberg JM, Tardos E (2003) Maximizing the
spread of influence through a social network. In: SIGKDD ‘03,
Washington

Lumsdaine A, Gregor D, Hendrickson B, Berry J (2007) Chal-
lenges in parallel graph processing. Parallel Process Lett 17:5-20
Madduri K, Ediger D, Jiang K, Bader DA, Chavarra-Miranda DG
(2009) A faster parallel algorithm and efficient multithreaded
implementations for evaluating betweenness centrality on mas-
sive datasets. In: Proceedings of the 3rd Workshop on Multi-
threaded Architectures and Applications (MTAAP), Miami, May
2009

Mortveit HS, Reidys CM (2000) Discrete sequential dynamical
systems. Discrete Math 226:281-295

. National Research Council of the National Academies (2005)

Network Science. The National Academies Press, Washington,
DC

Newman M (2003) The structure and function of complex net-
works. SIAM Rev 45:167-256

Newman ME] (2004) Detecting community structure in net-
works. European Phy] B, 38:321-330

21. Special issue on complex systems and networks, Science, 24 July
2009, 325 (5939):357-504

22. Travers J, Milgram S (1969) An experimental study of the small
world problem. Sociometry 32(4):425-443

' Software Autotuning

» Autotuning

! Software Distributed Shared
Memory

SANDHYA DWARKADAS
University of Rochester, Rochester, NY, USA

Synonyms
Implementations of shared memory in software; Shared
virtual memory; Virtual shared memory

Definition

Software distributed shared memory (SDSM) refers to
the implementation of shared memory in software on
systems that do not provide hardware support for data
coherence and consistency across nodes (and the mem-
ory therein).

Discussion

Executing an application in parallel requires the coordi-
nation of computation and the communication of data
to respect dependences among tasks. Historically, mul-
tiprocessor machines provide either a shared memory
or a message passing model for data communication
in hardware (with models such as partitioned global
address spaces that fall in between the two extremes). In
the message passing model, communication and coor-
dination across processes is achieved via explicit mes-
sages. In the shared memory model, communication
and coordination is achieved by directly reading and
writing memory that is accessible by multiple processes
and mapped into their address space. Either model
can be emulated in software if the hardware does not

http://dx.doi.org/10.1007/978-0-387-09766-4_68
http://dx.doi.org/10.1007/978-0-387-09766-4_2455
http://dx.doi.org/10.1007/978-0-387-09766-4_2456
http://dx.doi.org/10.1007/978-0-387-09766-4_2456
http://dx.doi.org/10.1007/978-0-387-09766-4_2457

Software Distributed Shared Memory

1849

directly implement it. This entry focuses on implemen-
tations of shared memory in software on machines that
do not support shared memory in hardware across all
nodes.

In the shared memory model, data communication
is implicitly performed when shared data is accessed.
Programmers (or compilers) must still ensure, however,
that shared data users synchronize (coordinate) with
each other in order to respect program dependencies.
The message passing model typically requires explicit
communication management by the programmer or
compiler — software must specify what data to commu-
nicate, with whom to communicate the data, and when
the communication must be performed (typically on
both the sender and the receiver). Coordination is often
implicit in the data communication. While parallel pro-
gramming has proven inherently more difficult than
sequential programming, shared memory is considered
conceptually easier as a parallel programming model
than message passing. In contrast to message passing,
the shared memory model hides the need for explicit
data communication from the user, thereby avoid-
ing the need to answer the “what, when, and whom”
questions.

In terms of implementation, typical shared memory-
based hardware requires support for coherence -
ensuring that any modifications made by a processor
propagate to all copies of the data — and consistency -
ensuring a well-defined ordering in terms of when and
in what order modifications are visible to other pro-
cessors. Such support and the need for access to the
physically shared memory impacts the scalability of the
design. In contrast, message-based hardware is typi-
cally easier to build and to scale to large numbers of
processors.

Software distributed shared memory (SDSM)
attempts to combine the conceptual appeal of shared
memory with the scalability of distributed message-
based communication by allowing shared memory
programs to run on message-based machines. SDSM
systems target the knee of the price-performance curve
by using commodity components as the nodes in a net-
work of machines. SDSM provides processes with the
illusion of shared address spaces on machines that do
not physically share memory. Kai Li’s [27, 28] pioneer-
ing work in the mid-1980s was the first to consider

implementing SDSM on a network of workstations.
Since then, there has been a tremendous amount of
work exploring the state space of possible implemen-
tations and programming models, targeted at reducing
the software overheads required and hiding the larger
communication overheads of message-based hardware.

In order to implement coherence, accesses to shared
data must be detected and controlled. Implementing
coherence in software can typically be accomplished
either using virtual memory hardware [8, 23, 28], using
instrumentation [34], or using language-level hooks
[3,18]. The former two approaches assume that memory
is a linear untyped array of bytes. The latter approach
takes advantage of object- and type-specific informa-
tion to optimize the protocol. The trade-offs are dis-
cussed below.

Implementations Using Virtual Memory

The virtual memory mechanisms available on general-
purpose processors may be used to implement coher-
ence [8, 23, 28]. The virtual memory framework
combines protection with address translation at a
granularity of a page, which is typically on the order of
a few (e.g., 4) KBytes on today’s machines. Hardware
protection modes can be exercised to ensure that read
or write accesses to pages that are shared are trapped
if protection is violated. Software handlers installed by
the runtime can then determine the necessary actions
required to maintain coherence. The advantage of the
virtual memory approach is that there is no overhead
for data that is private or already cached. The disadvan-
tage is the large sharing granularity, which can result in
data being falsely (i.e., different processors reading and
writing to independent locations that are colocated on
the same page) shared, and the large cost of handling
a miss.

Implementations Using Instrumentation

An alternative approach is to instrument the program
in order to monitor every load and store operation
to shared data. The advantage of this approach is that
coherence can be maintained at any desired granular-
ity [35], resulting in lower miss penalties. The disadvan-
tage is that overhead is incurred regardless of whether

1850

Software Distributed Shared Memory

data is actually shared, resulting in higher hit latency.
Optimizations that identify and instrument accesses
to only shared data and that hide the instrumentation
behind existing program computation [34] help reduce
this overhead. Alternatively, hardware support, such as
ECC (error-correcting code) bits in memory [35], can
be leveraged to eliminate the software instrumentation
by using the ECC bits to raise an exception when the
data is not valid. However, complications do arise if
these exceptions are not precise.

Language-Level Implementations
Language-level programming systems (e.g., [3, 18]) pro-
vide the opportunity to use objects and types to improve
the eficiency of recognizing accesses to shared data.
Coherence is usually maintained at the granularity
of an object, providing application developers with
control over how data is managed. The DOSA sys-
tem [18] shows how a handle-based implementation
(an implementation in which all object references are
redirected through a handle) enables efficient fine- and
coarse-grain data sharing. Handle-based implementa-
tions work transparently when used in conjunction with
safe languages (ones in which no pointer arithmetic is
allowed). The handles make it easy to relocate objects
in memory, making it possible to use virtual memory
techniques for access and modification detection and
control. They also interact well with the garbage col-
lection algorithms used in these type-safe languages,
allowing good performance for these systems. The redi-
rection allows the implementation to avoid false sharing
for fine-grained access patterns.

Traditional hardware-based cache coherence usually
maintains the coherence invariant of allowing only a
single writer for each coherence granularity unit of
data. This approach has the advantage of simplicity,
works well under the intuitive assumption that two pro-
cesses will not intentionally write to the same location
concurrently without some form of coordination, and
makes it easy to ensure write serialization. However,
coherence granularities are often larger than a single
word. Even with hardware coherence, it is possible for
a cache line to bounce (“ping-pong”) between caches
because processes modify logically disjoint regions of

the same cache line. This problem is further exacer-
bated by the larger coherence granularities of software
coherence, particularly when using a virtual memory
implementation.

In order to combat the resulting performance penal-
ties caused by such false sharing, multiple-writer pro-
tocols have been proposed [8]. In these protocols, the
single writer state invariant of traditional hardware
coherence no longer holds. At any given time, multi-
ple processes may be writing to the same coherence
unit. Write serialization is ensured by making sure that
modifications (determined by keeping track of exactly
what locations in the coherence unit were written) are
propagated to all valid copies or that these copies are
invalidated. Modified addresses can be determined as
in the previous section, either by using instrumenta-
tion or virtual memory techniques. In the latter case, a
twin or copy of the virtual memory page is made prior
to modification, which is subsequently used to com-
pare to the modified page in order to create a diff or
an encoding of only the data that has changed on the
page. Multiple-writer protocols work particularly well
when combined with a more relaxed memory consis-
tency model that allows coherence actions to be delayed
to program synchronization points (elaborated on in
the next section).

In order to help hide long communication latencies,
SDSM systems typically use some form of relaxed con-
sistency model, which enable aggregation of coherence
traffic. In release consistency [16], ordinary accesses
to shared data are distinguished from synchroniza-
tion. Synchronization is further split into acquires and
releases. An acquire roughly corresponds to a request
for access to data, such as a lock operation. A release
roughly corresponds to making such data available,
such as an unlock operation. SDSM systems leverage the
release consistency model to delay coherence actions
on writes until the point of a release [8]. This enables
both aggregation of coherence messages and a reduc-
tion in the false sharing penalty. The former is bene-
ficial because of the high per message costs on typical
network-based platforms. The latter is a result of data
“ping-ponging” between sharers due to the fact that log-
ically differentiated data resides in the same coherence

Software Distributed Shared Memory

1851

unit. By delaying coherence actions to the release point,
the number of such “ping-pongs” is reduced.

Release consistency mandates, however, that before
the release is visible to any other process, all ordinary
data accesses made prior to the release are visible at all
other processes. This results in extra messages between
processes at the time of a release. The TreadMarks sys-
tem [2] proposed the use of a lazy release consistency
model [22] by making the observation that for data race
free [1] programs, such ordinary data accesses need only
be visible at the time of an acquire. Communication can
thus be further aggregated and limited to between an
acquirer and a releaser.

While lazy release consistency reduces the number
of coherence messages used to the minimum possible, it
comes at a cost in terms of implementation complexity.
Since data accesses are not made visible everywhere at
the time of a release, the runtime system must keep track
of the ordering of such coherence events and transmit
this information when a process eventually performs
an acquire. TreadMarks accomplishes this via the use
of vector timestamps. The execution of each process
is divided into intervals delineated by synchronization
operations (either an acquire or a release). Each interval
is assigned a monotonically increasing number. Inter-
vals of different processes are partially ordered: Inter-
vals on a single process are totally ordered by program
order and intervals on different processes are ordered
by acquire-release causality. This partial order is what is
captured by assigning a vector timestamp to each inter-
val. Write notices for all data written in an interval are
associated with its vector timestamp. This information
is piggybacked on release messages to ensure coherence.
Each process must then ensure that write notices from
all intervals that precede its current interval are applied
prior to execution of the current interval.

On system area networks such as Infiniband [21],
where the latency and CPU occupancy of commu-
nication is an order of magnitude lower than on
traditional networks, it can sometimes be beneficial
to overlap communication with computation. Cash-
mere [25] leverages this observation in a moderately
lazy release consistent implementation on the Mem-
ory Channel [16] network. Write notices are pushed
to all processes at the time of a release. They are only
applied at the time of the next acquire, thereby avoid-
ing the need to interrupt the remote process. Another

advantage of this implementation is that it removes
the need to maintain vector timestamps along with the
associated metadata management complexity.

An alternative consistency model, entry consistency,
was defined by Bershad and Zekauskas [5]. All shared
data are required to be explicitly associated with some
synchronization (lock) variable. On a lock acquisition,
only the shared data associated with the lock is guar-
anteed to be made coherent. This model has some
implementation and efficiency advantages. However,
the cost is a change to the programming model, requir-
ing explicit association of shared data with synchro-
nization and additional synchronization beyond what
is usually required for data race free programs. Scope
consistency [20] provides a model similar to entry con-
sistency, but helps eliminate the burden of explicit bind-
ing by implicitly associating data with the locks under
which they are modified.

In order to get an up-to-date copy of data, the runtime
system must determine the location of the latest ver-
sion/s. Most implementations fall into two categories —
ones in which the information is distributed across all
nodes at the time of synchronization, and ones in which
each coherence and metadata unit has a home that keeps
track of where the latest version resides, similar to a
hardware directory-based protocol. The former implies
that every process knows where the latest version is or
has the latest version of the data propagated directly to
them. The latter implies a level of indirection (through
the home) in order to locate the latest version of the data
or owner of the metadata. Variations of the latter proto-
col include making sure that the home node is kept up
to date so that any process requesting a copy can retrieve
it directly from the home, and allowing migration of the
home to (one of) the most active user/s.

As multiprocessor desktop machines become more
common, and with the advent of multicore chips, a
cluster of multicore multiprocessor machines is a fairly
common computing platform. In implementing shared
memory on these platforms, the challenge is to take
advantage of hardware-based sharing whenever possi-
ble and ensure that software overhead is incurred only
when actively sharing data across nodes in a cluster.

1852

Software Distributed Shared Memory

SoftFLASH [12] is a kernel-level implementation of
a two-level coherence protocol on a cluster of symmet-
ric multiprocessors (SMPs). SoftFLASH implements
coherence using virtual memory techniques, which
implies that coherence is implemented by changing
read/write permissions in the process’s page table. These
permissions are normally cached in the translation
lookaside buffer (TLB) in each of the processors of a
single node. Since the TLB is not typically hardware
coherent, in order to ensure that all threads/processes
on a single node have appropriate levels of permission
to access shared data, the TLBs in each processor within
a node must be examined and flushed if necessary. This
process, called TLB shootdown, is usually accomplished
with costly inter-processor interrupts.

Cashmere-2L [36] avoids the need for these expen-
sive. TLB shootdowns through a combination of a
relaxed memory model and the use of a novel two-way
diffing technique. Leveraging the observation that in
a data race free model, accesses by different processes
between two synchronization points will be to different
memory locations, Cashmere-2L avoids the need to
interrupt other processes during a software coherence
operation. Updates to a page are applied through a
reverse diffing process that identifies and updates only
the bytes that have changed, allowing concurrent pro-
cesses to continue accessing and modifying unrelated
data. Invalidations are applied individually by each pro-
cess and once again leverage the use of diffing in order
to avoid potential conflicts with concurrent writers on
the node.

Shasta [33] uses instrumentation to implement a
finer granularity coherence protocol across SMP nodes.
The lack of atomicity of coherence state checks with
respect to the actual load or store (the two actions con-
sist of multiple instructions) results in protocol race
conditions that require extra overhead when data is
shared by processes within an SMP node. A naive
solution would involve sufficient synchronization to
avoid the race. Shasta avoids this costly synchroniza-
tion through the selective use of explicit messages.
Since protocol metadata is visible to all processes, per-
process state tables are used to determine processes
that are actively sharing data. Messages are sent only to
these processes and overhead incurred only with active
sharing.

Systems such as Ivy, TreadMarks, and Munin are
implemented under the assumption that memory on
remote machines is not directly accessible and must
be read/accessed by requesting service from a handler
on the remote machine. This is typically accomplished
by sending a message over the network, which can
be detected and received at the responding end either
by periodically polling or by using interrupts. On tra-
ditional local area networks, interrupts are typically
expensive because of the need for operating system
intervention. However, the advantage is that overhead is
incurred only when communication is required. Polling
(periodically checking the status of the network inter-
face), on the other hand, is relatively cheap (on the order
of a few tens of processor cycles), but because the run-
time system has no knowledge of when communication
will occur, the frequency of checks can result in a sig-
nificant overhead that is incurred regardless of whether
or not data is actively shared. TreadMarks attempted
to minimize the number of messages using a lazy pro-
tocol on the assumption that the per message costs
(both network and processor occupancy as well as the
cost to interrupt a remote processor in order to elicit a
response) are at least two orders of magnitude higher
than memory read and write latencies.

High-performance network technologies, such as
those that conform to the Infiniband [21] standard
(as well as research prototypes such as Princeton’s
Shrimp [7] and earlier commercial offerings such
as DEC’s Memory Channel, Myrinet, and Quadrics
QsNet), provide low latency and high bandwidth com-
munication. These networks achieve low latency by vir-
tualizing the network interface. Issues of protection are
separated from actual data communication. The for-
mer involves the operating system and is performed
once at setup time. The latter is performed at user
level, thereby achieving lower latency. The majority of
these networks allow the possibility of direct access
(reads and/or writes) to remote memory, changing the
equation in terms of the trade-off in the number of
messages used and the eagerness and laziness of the
protocol. Protocols such as Cashmere and HLRC [6]
leverage such direct access to perform protocol actions
eagerly without the need to interrupt the remote
processor.

Software Distributed Shared Memory

1853

As “computing in the cloud,” i.e., taking advan-
tage of geographically distributed compute resources,
becomes more ubiquitous, the ability to seamlessly
share information across the wide area will improve
programmability. Several projects [3, 10, 14, 26, 31, 37]
have examined techniques to allow data sharing in the
wide area. Most enforce a strongly object-oriented pro-
gramming model. Specifically, InterWeave [9] supports
both language and machine heterogeneity, using an
intermediate format to provide persistent data storage
and to communicate seamlessly across heterogeneous
machines. InterWeave leverages existing hardware and
network characteristics (including support for coher-
ence in hardware) whenever possible. The memory
model is further relaxed to incorporate application-
specific tolerances for delays in consistency. Writes are,
however, serialized using a centralized approach (per
object) for coordination.

Early work in incorporating compiler support with
SDSMs [11] examined techniques by which data com-
munication could be aggregated or eliminated entirely
by understanding the specific access patterns of the
application. In particular, the shortcomings of a gen-
eralized runtime system for shared memory relative to
a program written for message passing is that in order
to minimize the volume of data communicated, data
communication is often separated from synchroniza-
tion and data is fetched on demand at the granularity
of the coherence unit. Compile-time analysis can iden-
tify data that will be accessed and inform the runtime
system so that the data can be explicitly prefetched. Sim-
ilarly, by using appropriate directives to the runtime to
identify when entire coherence units are being written
without being read, coherence communication can be
eliminated entirely. Subsequently, several efforts have
examined the use of SDSM as a back end for program-
ming models such as OpenMP [17, 29]. They discuss
the trade-offs between using a threaded (with a default
of sharing the entire address space) versus a process
model (with a default of private address spaces with
shared data being specifically identified). Their work
shows that naive implementations can perform poorly,
and that identification of shared data is important to

the feasibility and scalability of using programming
environments such as OpenMP on SMP clusters.

Despite intense research and significant advances in
the development of SDSM systems in the 1980s and
1990s, they remain in limited use due to their trade of
scalability for the platform transparency they achieve.
As multicore platforms become more ubiquitous, and
as the number of cores increases, the scalability of
pure hardware-based coherence is also in question, and
SDSM systems may see a bigger role. Several researchers
continue to explore the possibility of combining hard-
ware and software coherence, in terms of hardware
assists for a software-based coherence implementa-
tion [13] and in terms of alternating between automatic
hardware coherence and software-managed incoher-
ence based on application or compiler knowledge [24].
There is also renewed interest in the use of SDSM tech-
niques in order to support heterogeneous platforms
composed of a combination of general-purpose CPUs
and accelerators [4, 32].

Related Entries

»Cache Coherence

» Distributed-Memory Multiprocessor
»Linda

» Memory Models

»Network of Workstations
»POSIX Threads (Pthreads)
»Processes, Tasks, and Threads
»Shared-Memory Multiprocessors
»SPMD Computational Model
»Synchronization

Bibliographic Notes and Further
Reading

Protic et al. [30] published a compendium of works in
the area of distributed shared memory circa 1994. Iftode
and Singh [19] wrote an excellent survey article that
encompasses both network interface advances and the
incorporation of multiprocessor nodes.

http://dx.doi.org/10.1007/978-0-387-09766-4_9
http://dx.doi.org/10.1007/978-0-387-09766-4_223
http://dx.doi.org/10.1007/978-0-387-09766-4_233
http://dx.doi.org/10.1007/978-0-387-09766-4_419
http://dx.doi.org/10.1007/978-0-387-09766-4_426
http://dx.doi.org/10.1007/978-0-387-09766-4_447
http://dx.doi.org/10.1007/978-0-387-09766-4_448
http://dx.doi.org/10.1007/978-0-387-09766-4_142
http://dx.doi.org/10.1007/978-0-387-09766-4_26
http://dx.doi.org/10.1007/978-0-387-09766-4_252

1854

Software Distributed Shared Memory

Acknowledgment

This work was supported in part by NSF grants
CCF-1016902, CCF-0702505, CNS-0834451, and CNS-
0509270. Any opinions, findings, and conclusions or
recommendations expressed in this material are those
of the author and do not necessarily reflect the views of
the granting agencies.

Bibliography

1

10.

1L

12.

Adve S, Hill M (1990) Weak ordering: a new definition. In: Pro-
ceedings of the 17th annual international symposium on com-
puter architecture, May 1990. ACM, New York, pp 2-14

. Amza C, Cox A, Dwarkadas S, Keleher P, Lu H, Rajamony R,

Zwaenepoel W (1996) Tread-marks: shared memory computing
on networks of workstations. IEEE Comput 29(2):18-28

. Bal H, Kaashoek M, Tanenbaum A (1992) Orca: a language for

parallel programming of distributed systems. IEEE Trans Softw
Eng 18(3):190-205

. Becchi M, Cadambi S, Chakradhar S (2010) Enabling legacy appli-

cations on heterogeneous platforms. Poster paper, 2nd USENIX
workshop on hot topics in parallelism (HOTPAR), Berkley, June
2010

. Bershad B, Zekauskas M (1991) Midway: shared memory paral-

lel programming with entry consistency for distributed memory
multiprocessors. Technical Report CMU-CS-91-170, Carnegie-
Mellon University, Sept 1991

. Bilas A, Jiang D, Singh JP (2001) Accelerating shared virtual mem-

ory via general-purpose network interface support. ACM Trans
Comput Syst 19:1-35

Blumrich M, Li K, Alpert R, Dubnicki C, Felten E, Sandberg J
(1994) Virtual memory mapped network interface for the
SHRIMP multicomputer. In: Proceedings of the 21st annual inter-
national symposium on computer architecture. ACM, New York,
pp 142-153

. Carter J, Bennett J, Zwaenepoel W (1991) Implementation and

performance of Munin. In: Proceedings of the 13th ACM sym-
posium on operating systems principles, ACM Press, New York,
pp 152-164

. Chen D, Tang C, Chen X, Dwarkadas S, Scott ML (2001)

Beyond S-DSM: shared state for distributed systems. Technical
report 744, University of Rochester, Mar 2001

Chen D, Tang C, Chen X, Dwarkadas S, Scott ML (2002) Multi-
level shared state for distributed systems. In: International con-
ference on parallel processing, Aug 2002, Vancouver

Dwarkadas S, Cox A, Zwaenepoel W (1996) An integrated
compile-time/run-time software distributed shared memory sys-
tem. In: Proceedings of the 7th symposium on architectural
support for programming languages and operating systems,
pp 186-197, Oct 1996

Erlichson A, Nuckolls N, Chesson G, Hennessy] (1996) Soft-
FLASH: analyzing the performance of clustered distributed vir-
tual shared memory. In: Proceedings of the 7th symposium on
architectural support for programming languages and operating
systems, Oct 1996. ACM Press, New York, pp 210-220

13.

15.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

Fensch C, Cintra M (2008) An OS-based alternative to full hard-
ware coherence on tiled CMPs. In: Proceedings of the fourteenth
international symposium on high-performance computer archi-
tecture symposium, February 2008, Phoenix

. Foster I, Kesselman C (1997) Globus: a metacomputing infras-

tructure toolkit. Int J Supercomputer Appl 11(2):115-128
Gharachorloo K, Lenoski D, Laudon J, Gibbons P, Gupta A,
Hennessy] (1990) Memory consistency and event ordering in
scalable shared-memory multiprocessors. In: Proceedings of the
17th annual international symposium on computer architecture,
May 1990. ACM, New York, pp 15-26

. Gillett R (1996) Memory channel: an optimized cluster intercon-

nect. IEEE Micro 16(2):12-18

Hu Y, Lu H, Cox AL, Zwaenepoel W (1999) OpenMP for net-
works of SMPs. In: Proceedings of the 13th international par-
allel processing symposium (IPPS/SPDP), Apr 1999. IEEE, New
York, pp 302-310

Hu YC, Yu W, Cox AL, Wallach D, Zwaenepoel W (2003) Run-
time support for distributed sharing in sage languages. ACM
Trans Comput Syst 21(1):1-35

Iftode L, Singh JP (1999) Shared virtual memory: progress and
challenges. Proceedings of the IEEE 87(3):498-507

Iftode L, Singh JP, Li K (1996) Scope consistency: a bridge between
release consistency and entry consistency. In: ACM symposium
on parallelism in algorithms and architectures, June 1996. ACM
Press, New York, pp 277-287

Association (2010) InfiniBand. http://www.infinibandta.org
Keleher P, Cox AL, Zwaenepoel W (1992) Lazy release consistency
for software distributed shared memory. In: Proceedings of the
19th annual international symposium on computer architecture,
May 1992. ACM Press, New York, pp 13-21

Keleher P, Dwarkadas S, Cox A, Zwaenepoel W (1994) Tread-
marks: distributed shared memory on standard workstations and
operating systems. In: Proceedings of the 1994 winter Usenix
conference, Jan 1994. USENIX Association, Berkeley, pp 115-131
Kelm JH, Johnson DR, Tuohy W, Lumetta SS, Patel SJ (2010)
Cohesion: a hybrid memory model for accelerators. In: Proceed-
ings of the international symposium on computer architecture
(ISCA), June 2010, St Malo

Kontothanassis L, Hunt G, Stets R, Hardavellas N, Cierniak M,
Parthasarathy S, Meira W, Dwarkadas S, Scott M (1997) VM-
based shared memory on low-latency, remote-memory-access
networks. In: 24th international symposium on computer archi-
tecture, June 1997. ACM Press, New York, pp 157-169

Lewis M, Grimshaw A (1996) The core legion object model. In:
Proceedings of the 5th high performance distributed computing
conference, Aug 1996, Syracuse

Li K (1986) Shared virtual memory on loosely coupled multipro-
cessors. Ph.D. thesis, Yale University

Li K, Hudak P (1989) Memory coherence in shared virtual mem-
ory systems. ACM Trans Comput Syst 7(4):321-359

Min S-J, Basumallik A, Eigenmann R (2003) Optimizing openmp
programs on software distributed shared memory systems. Int J
Parallel Prog 31:225-249

Protic J, Tomasevic M, Milutinovic V (1998) Distributed shared
memory: concepts and systems. IEEE Computer Society Press,
Piscataway, p 365

http://www.infinibandta.org

Sorting

1855

31. Rogerson D (1997) Inside COM. Microsoft Press, Redmond

32. Saha B, Zhou X, Chen H, Gao Y, Yan S, Rajagopalan M, Fang J,
Zhang P, Ronen R, Mendelson (2009) A Programming Model for
a Heterogeneous x86 Platform. In Proceedings of the ACM SIG-
PLAN 2009 Conference on Programming Language Design and
Implementation, June 2009

33. Scales D, Gharachorloo K, Aggarwal A (1998) Fine-grain soft-
ware distributed shared memory on smp clusters. In: Proceed-
ings of the fourth international symposium on high-performance
computer architecture symposium, Feb 1998. ACM, New York,
pp 125-136

34. Scales D, Gharachorloo K, Thekkath C (1996) Shasta: A low over-
head, software-only approach for supporting fine-grain shared
memory. In: Proceedings of the 7th symposium on architectural
support for programming languages and operating systems, Oct
1996, pp 174-185

35. Schoinas I, Falsafi B, Lebeck AR, Reinhardt SK, Larus JR, Wood
DA (1994) Fine-grain access control for distributed shared mem-
ory. In: Proceedings of the 6th symposium on architectural sup-
port for programming languages and operating systems, Oct
1994. ACM, New York, pp 297-306

36. Stets R, Dwarkadas S, Hardavellas N, Hunt G, Kontothanassis L,
Parthasarathy S, Scott M (1997) Cashmere-2L: software coher-
ent shared memory on a clustered remote-write network. In:
Proceedings of the 16th ACM symposium on operating systems
principles, Oct 1997. ACM, New York, pp 170-183

37. van Steen M, Homburg P, Tanenbaum AS (1999) Globe: a wide-
area distributed system. IEEE Concurr 7(1):70-78

! Sorting

LaxmikaNT V. KALE', EDGAR SOLOMONIK®

'University of Illinois at Urbana-Champaign, Urbana,
IL, USA

*University of California at Berkeley, Berkeley, CA, USA

Definition

Parallel sorting is a process that given » keys distributed
over p processors (numbered 0 through p — 1), migrates
the keys so that all keys on processor k, for k € [0,p—2],
are sorted locally and are smaller than or equal to all
keys on processor k + 1.

Discussion

Parallel sorting algorithms have been studied in a
variety of contexts. Early studies in parallel sorting
addressed the theoretical problem of sorting n keys

distributed over n processors, using fixed intercon-
nection networks. Modern parallel sorting algorithms
focus on the scenario where n is much larger than
the number of processors, p. However, even contem-
porary algorithms need to satisfy an array of use-
cases and architectures, so various parallel sorting tech-
niques have been analyzed for GPU-based sorting,
shared memory sorting, distributed memory sorting,
and external memory sorting. On most if not all of these
architectures, parallel sorting is typically dominated by
communication, in particular, the movement of data
values associated with the keys.

Parallel sorting has a wide breadth of practical appli-
cations. Some scientific applications in the field of
high-performance computing (e.g., ChaNGa) perform
sorting each iteration, placing high demand on good
scalability and adaptivity of parallel sorting algorithms.
Parallel sorting is also utilized in the commercial field
for processing of numeric as well as nonnumeric data
(i.e., parallel database queries). Moreover, Integer Sort
is one of the NAS parallel benchmarks.

There are a few important parallel sorting algorithms
that dominate multiple use-cases and serve as build-
ing blocks for more specialized sorting algorithms. The
algorithms will be described for the distributed mem-
ory paradigm, though most are also applicable to other
architectures and models.

Parallel Quicksort

Parallelization of Quicksort can be done in a variety of
ways. A simplified, recursive version is described below.
A more thorough analysis can be found in [1] or [2].

1. A processor broadcasts a pivot element to all p
processors.

2. Each processor then splits its keys into two sections
(smaller keys and larger keys) according to the pivot.

3. Two prefix sums calculate the total number of
smaller keys and larger keys on the first k processors,
for k € [0,p — 1]. If, smally and largey. are, respec-
tively, the total numbers of smaller and larger keys
on processors 0 through k, then, after this operation,
processor k knows smallx_; and larger_; as well as
small and largey.

4. Processor p — 1 knows the total sums, small,_, and
large,_,. It can therefore divide the set of processors

1856

Sorting

in proportion with small,_; and large,_,, thus deter-
mining two sets of processors (Ps and P;) that should
be given the smaller and larger keys. This processor
should also broadcast the average number of keys
these two sets of processors should receive (small,,,
and largegy,).

5. Each processor k can now decide where its keys need
to be sent. For example, the smaller keys should go
to processor [%J through processor [S;"’u‘l’ﬁ"g J

6. After the communication, it is sufficient for the Par-
allel Quicksort procedure to recurse on the two pro-
cessor sets (P, and P;) until all data values are on the
correct processors and can be sorted locally.

This algorithm generally achieves good load balance
by determining the correct portions of processors that
should receive smaller and larger keys. However, the
necessity of moving half the data for every iteration
is costly on large distributed systems. In the average
case, Parallel Quicksort necessitates ®(nlogp) data
movement. Moreover, both the quality of load balance
achieved for small processor sets and the total num-
ber of recursive levels are dependent on pivot selection.
Efficient implementations of Parallel Quicksort typi-
cally use more complex pivoting techniques and mul-
tiple pivots [2]. Nevertheless, Parallel Quicksort is easy
to implement and can achieve good performance on
some shared memory and smaller distributed systems.
Additionally, the number of messages sent by each pro-
cessor in step 5 is constant — typically no more than
four. Therefore, Parallel Quicksort has a relatively small
message latency cost of ©(plog p) messages.

Bitonic Sort

Introduced in 1968 by Batcher [3], Bitonic Sort is one
of the oldest parallel sorting algorithms. This algorithm
is based on the sorting of bitonic sequences. A bitonic
sequence is a sequence S or any cyclic shift of S, such
that S = §;S; where §; is monotonically nondecreas-
ing and S, is monotonically nonincreasing. Further, any
unsorted sequence can be treated as a series of bitonic
subsequences of length two. A bitonic merge turns a
bitonic subsequence into a fully sorted subsequence.
Bitonic Sort works by application of a series of bitonic
merges until the entire sequence is sorted. Applying
bitonic merges on a series of bitonic subsequences effec-
tively doubles the length of each sorted subsequence
and cuts the number of bitonic subsequences in half.

Therefore, for an unsorted sequence of length k, where
k is a power of two, Bitonic Sort requires log k merges.

The main insight of Bitonic Sort is in the bitonic
merge operation. A bitonic merge recursively slices a
bitonic sequence into two bitonic sequences, with all
elements in one sequence larger than all elements in the
other. When the bitonic sequence is sliced into pieces of
unit length, the entire input is sorted. Given a bitonic
sequence of length s, where s is a power of two, every
slice operation compares and swaps each element k,
where k € [0,s/2) with element k + s/2. These swaps
result in two bitonic sequences of length s/2, with the
elements in one being larger than the elements of the
other. Thus, if s is a power of two, a bitonic merge
requires log s slices, which amounts to log s comparison
operations on every element.

In the case of n = p on a hypercube network,
a bitonic merge requires ®(logn) swaps, one swap
in each hypercube dimension. The algorithm requires
log n merges on such a network, for a composed run-
ning time of ®(log” n). Adaptive Bitonic Sorting [4]
avoids the redundant comparisons in Bitonic Sort and
achieves a runtime complexity of ®(log#n). Further,
Bitonic Sort is also asymptotically optimal on mesh
connected networks [5].

As proposed by Blelloch [6], Bitonic Sort can be
extended for the case of n > p, by introducing virtual
hypercube dimensions within each processor. Alterna-
tively, a more efficient sequential sorting algorithm can
be used for the sequential sorting work. Though histori-
cally significant and elegant in nature, Bitonic Sort is not
widely used on modern supercomputers, since the algo-
rithm requires data to be migrated through the network
©(log’ p) times or, in the case of Adaptive Bitonic Sort-
ing, ®(log p) times. Nevertheless, Bitonic Sort has been
used in a wide variety of applications, ranging from net-
work router hardware to sorting on GPUs [7-9]. A more
thorough analysis and justification of correctness of this
algorithm can be found in the Bitonic Sort article.

Parallel Radix Sort

Radix Sort is a counting-based sorting algorithm that
relies on the bitwise representation of keys. An r-bit
radix looks at r bits of each key at a time and per-
mutes the keys to move to one of the 2" buckets, where
the r-bit value of each key corresponds to its destina-
tion bucket. If each key has b bits, by looking at the r
least-significant bits first, Radix Sort can sort the entire

Sorting

1857

dataset in [%] permutations. Therefore, this algorithm
has a complexity of ® (%n) Notably, this complexity is
linear with respect to n, a feature that cannot be matched
by comparison-based sorting algorithms, which must
do at least ®(nlogn) comparison operations. However,
Radix Sort is inherently cache-inefficient since each key
may need to go to any one of the 2" buckets for each
iteration, independent of which bucket it resided in the
previous iteration [10]. A further limitation on Radix
Sort is its reliance on the bitwise representation of keys,
which is satisfied for integers and requires a simple
transformation for floats, but is not necessarily possible
or simple for strings and other data types.

Parallel Radix Sort is implemented by assigning a
subset of the buckets to each processor [6]. Thus, each
of [%] permutations would result in a step of all-to-all
communication. Load balancing is also achieved rela-
tively easily by computing a histogram of the number
of keys headed for each bucket at the beginning of each
step. These histograms can be computed using local data
on each processor first, then summed up using a reduc-
tion. Given a summed-up histogram, a single processor
can then adaptively decide the set of buckets to assign
to each processor and broadcast this information to all
other processors. Each processor then sends all of its
keys to the processor that owns the appropriate bucket
for each key, using all-to-all communication.

A good way to improve the efficiency of local his-
togram computation in Radix Sort is to use an auxiliary
set of low-bit counters [11]. Given a large r, it is unlikely
that an array of 2" 32-bit counters can fit into the L1
cache. However, by using an array of 2" 8-bit coun-
ters and incrementing the 32-bit counter array only
when the 8-bit counters are about to overflow, cache
performance can be significantly improved.

The simplicity of Radix Sort as well as its relatively
good all-around performance and scalability have made
it a popular parallel sorting algorithm in a variety of
contexts. However, Radix Sort still suffers from cache-
efficiency problems and requires multiple steps of all-
to-all communication, which can be an extremely costly
operation on a large enough system.

Sample Sort

Sample Sorting is a splitter-based method which per-
forms data partitioning by collecting a sample of
the entire dataset [12]. Splitter-based parallel sorting
algorithms determine the destinations for each key by

determining a range bounded by two splitters for each
processor. These splitters are simply values meant to
subdivide the entire key range into p approximately
equal chunks, so that each processor can be assigned a
roughly even-sized chunk. After the splitters have been
determined and broadcasted to all processors, a sin-
gle all-to-all communication step suffices in giving each
processor the correct data.

Parallel Sorting by Regular Sampling is a Sample
Sorting algorithm introduced by Shi and Schaeffer [13].
This algorithm determines the correct splitters by col-
lecting a sample of data from each processor. Sorting by
Regular Sampling uses a regular sample of size p —1 and
generally operates as follows:

1. Sort local data on each processor.

2. Collect sample of size p — 1 on each processor with
the kth element of each sample as element 127 X % of
the local data.

3. Merge the p samples to form a combined sorted
sample of size p x (p —1).

4. Define p — 1 splitters with the kth splitter as element
px (k + %) of the sorted sample.

5. Broadcast splitters to all processors.

6. On each processor, subdivide the local keys into p
chunks (numbered 0 through p—1) according to the
splitters. Send each chunk to equivalently numbered
processor.

7. Merge the incoming data on each processor.

Collecting a regular sample of size p — 1 from each pro-
cessor has been proven to guarantee no more than 27”
elements on any processor [14] and shown to achieve
almost perfect load balance for most practical distribu-
tions. The algorithm has also been shown to be asymp-
totically optimal as long as n > p°.

Regular Sample Sort is easy to implement, insen-
sitive to key distribution, and optimal in terms of the
data movement required (there is a single all-to-all step,
so each key gets moved only once). The algorithm has
been shown to perform very well for n > p and has
been the parallel sorting algorithm of choice for many
modern applications. One important issue with the tra-
ditional Sorting by Regular Sampling technique is the
requirement of a combined sample of size @(p?). For
a small-enough p this is not a major cost; however, for
high-performance computing applications running on
thousands of processors, this cost begins to overwhelm

1858

Sorting

the running time of the sorting algorithm and the n > p*
assumption crumbles.

Sorting by Random Sampling [6] is a parallel sort-
ing technique that can potentially alleviate some of
the drawbacks of Parallel Sorting by Regular Sampling.
Instead of selecting an evenly distributed sample of size
p — 1 from each processor, random samples of size s
are collected from the initial local datasets to form a
combined sample of size s x p. The s parameter has to
be carefully chosen, but sometimes sufficient load bal-
ance can be achieved for s < p. Additionally, Sorting
by Random Sampling allows for better potential over-
lap between computation and communication since the
sample can be collected before the local sorting is done.

Another interesting variation of Sample Sort was
introduced by Helman et al. [15]. Instead of collect-
ing a sample, this sorting procedure first permutes the
elements randomly with a randomized data transpose,
then simply selects the splitters on one processor. To
execute the transpose, each processor randomly assigns
each of its local keys to one of the p buckets, then sends
the jth bucket to the jth processor. With high proba-
bility, this permutation guarantees that any processor’s
elements will be representative of the entire key set.
Thus, this algorithm avoids the cost of collecting and
analyzing a large sample on a single processor. One pro-
cessor still needs to select and broadcast splitters but this
is a relatively cheap operation. The main disadvantage
of this technique is the extra all-to-all communication
round, which is very expensive on a large system. Addi-
tionally, as p scales to #n/p, the load balance achieved by
the algorithm deteriorates.

Histogram Sort

Histogram Sort [16] is another splitter-based method
for parallel sorting. Like Sample Sort, Histogram Sort
determines a set of p — 1 splitters to divide the keys
into p evenly sized sections. However, it achieves this
task by taking an iterative guessing approach rather than
simply collecting one big sample. Each set of splitter-
guesses, called the probe, is matched up to the data
then adjusted, until satisfactory values for all splitters
have been determined. A satisfactory value for the kth
splitter needs to divide the data so that approximately
k1 1 keys are smaller than the splitter value. Typi-
cally, a threshold range is established for each splitter
so that the splitter-guesses can converge quicker. The

kth splitter must divide the data within the range of

keys, (”—k — ol nk ”—T), where T is the given thresh-

p_p’p P
old. A basic implementation of Histogram Sort operates

as follows:

. Sortlocal data on each processor.

2. Define a probe of p — 1 splitter-guesses distributed
evenly over the key data range.

3. Broadcast the probe to all processors.

4. Produce local histograms by determining how
much of each processor’s local data fits between
each key range defined by the splitter-guesses.

5. Sum up the histograms from each processor using
a reduction to form a complete histogram.

6. Analyze the complete histogram on a single pro-
cessor, determining any splitter values satisfied by
a splitter-guess, and bounding any unsatisfied split-
ter values by the closest splitter-guesses.

7. If any splitters have not been satisfied, produce a
new probe and go back to step 3.

8. Broadcast splitters to all processors.

9. On each processor, subdivide the local keys into
p chunks (numbered 0 through p — 1) according
to the splitters. Send each chunk to equivalently
numbered processor.

10. Merge the incoming data on each processor.

This iterative technique can refine the splitter-guesses
to an arbitrarily narrow threshold range. Quick conver-
gence can be guaranteed by defining each new probe to
contain a guess in the middle of the bounded range for
each unsatisfied splitter.

Like any splitter-based sort, Histogram Sort is opti-
mal in terms of the data movement required. However,
unlike all previously described sorting algorithms, the
running time of Histogram Sort depends on the distri-
bution of the data through the data range. The iterative
approach employed by this sorting procedure guaran-
tees desired level of load balance which Sample Sort
and Radix Sort cannot. Additionally, the probing tech-
nique is flexible and does not require that local data be
sorted immediately [17]. This advantage allows an excel-
lent opportunity for the exploitation of communication
and computation overlap. However, Histogram Sort is
generally more difficult to implement than common
alternatives such as Radix Sort or Sample Sort.

Sorting

1859

Parallelism is exhibited by a variety of computer archi-
tectures. Shared memory multiprocessors, distributed
systems, supercomputers, sorting networks, and GPUs
are all fundamentally different parallel computing con-
structions. As such, parallel sorting algorithms need to
be designed and tuned for each of these architectures
specifically.

Sorting Networks and Early Theoretical Models
Traditional parallel sorting targeted the problem of
sorting n numbers on #n processors using a fixed inter-
connection network. Bitonic Sort [3] was an early suc-
cess as it provided a ©(log® n)-depth sorting network.
The bitonic sorting network also yielded a practical
algorithm for sorting » keys in parallel using n pro-
cessors in ®(log” n) time on network topologies such
as the hypercube and shuffle-exchange. In 1983, Ajtai
et al. [18], introduced an @(logn)-depth sorting net-
work capable of sorting n keys in @(logn) time using
©®(nlogn) comparators. However, this construction
was shown to lead to less-efficient networks than Bitonic
Sort for reasonable values of 1. Leighton [19] introduced
the Column Sort algorithm. He showed that, based on
Column Sort, for any sorting network with ®(nlogn)
comparators and ®(logn) depth, one can construct a
corresponding constant-degree network of # processors
that can sort in @(logn) time.

Much work has targeted the complexity of parallel
sorting on the less-restrictive PRAM model where each
processor can access the memory of all other processors
in constant time. In 1986, Cole [20] introduced an effi-
cient and practical parallel sorting algorithm with ver-
sions for the CREW (concurrent read only) and EREW
(no concurrent access) PRAM models. This algorithm
was based on a simple tree-based Mergesort, but was
elegantly pipelined to achieve a ® (log n) complexity for
sorting n keys using n processors. Cole’s merge sort used
a O(logn) time merging algorithm, which naturally
leads to a @(log” n) sorting algorithm. However, his
sorting algorithm used results from lower levels of the
merge tree to partially precompute the merging done in
higher levels of the merge tree. Thus, the sorting algo-
rithm was designed so that at every node of the merge
tree only a constant amount of work needed to be done,
yielding a ®(log) overall sorting complexity.

Sorting networks have also been extensively studied
for the VLSI model of computation. The VLSI model
focuses on area-time complexity, that is, the area of the
chip on which the network is constructed and the run-
ning time. A good analysis of lower bounds for the
complexity of such VLSI sorters can be found in [21].

These theoretical methods have been studied inten-
sively in literature and have yielded many elegant
parallel sorting algorithms. However, the theoretical
machine models they were designed for are no longer
representative or directly useful for current parallel
computer architectures. Nevertheless, these studies pro-
vide valuable groundwork for modern and future paral-
lel sorting algorithms. Moreover, sorting networks may
prove to be useful for emerging architectures such as
GPUs and chip multicores.

GPU-Based Sorting

Early GPU-based sorting algorithms utilized a lim-
ited graphics API which, among other restrictions, did
not allow scatter operations and made Bitonic Sort the
dominant choice. GPUTeraSort [7] is an early efficient
hybrid algorithm that uses Radix Sort and Bitonic Sort.
GPUTeraSort was designed for GPU-based external
sorting, but is also general to in-memory GPU-based
sorting. A weakness of the GPUTeraSort algorithm is
its ®(nlog” n) running time, typical of parallel sort-
ing algorithms based on Bitonic Sort. GPU-ABiSort [8]
improved over GPUTeraSort by using Adaptive Bitonic
Sorting [4], lowering the theoretical complexity to
©®(nlogn) and often demonstrating a lower practical
running time.

Newer GPUs, assisted by the CUDA software envi-
ronment, allow for efficient scan primitives and a much
broader set of parallel sorting algorithms. Efficient ver-
sions of Radix Sort and a parallel Mergesort are pre-
sented by Satish et al. [9]. Newer GPU-based sorting
algorithms also exploit instruction-level parallelism by
performing steps such as merging using custom vec-
tor operations. An array of various other GPU-based
sorting algorithms, which are not detailed here, can be
found in literature.

Current results on modern GPUs suggest that Radix
Sort typically performs best, particularly when the key
size is small [9]. Radix Sort is well fit for GPU execution
since keys can be processed independently and syn-
chronization is almost purely in the form of prefix sums,

1860

Sorting

which can be executed with high efficiency on GPUs.
Radix Sort also requires few or no low-level branches,
unlike comparison-based sorting algorithms. Finally,
the cache inefficiency of Radix Sort has been less costly
on GPUs since most GPUs have no cache. However,
newer GPUs, such as the NVIDIA GPUs of compute
capability 2.0, already have small caches and are rapidly
evolving. It is hard to predict whether Radix Sort or a
different sorting algorithm will prove most efficient on
emerging GPU and accelerator architectures.

Shared Memory Sorting

Parallel merging techniques have commonly been used
to produce simple shared memory parallel sorting
algorithms. Francis and Mathieson [22] present a k-
processor merge that allows for all processors to par-
ticipate in a parallel merge tree, with two processors
participating in each merge during the first merging
stage and all processors participating in the final merge
at the head of the tree. Good performance is achieved by
subdividing each of the two arrays of size a and b being
merged into k sections, where k is the number of pro-
cessors participating in the merge. The subdivisions are
selected so that the ith processor merges the ith section
of each of the two arrays and produces elements é(a+ b)
through &2 (a + b) of the merged array.

Merge-based algorithms, such as the one detailed
above, as well as parallel versions of Quicksort and
Mergesort, are predominant on contemporary shared
memory multiprocessor architectures. However, with
the advent of increased parallelism in chip architectures,
techniques such as sampling and histogramming may
become more viable.

Distributed Memory Sorting

Parallel Sorting algorithms for distributed memory
architectures are typically used in the high-performance
computing field, and often require good scaling on
modern supercomputers. In the 1990s Radix Sort and
Bitonic Sort were widely used. However, as architec-
tures evolved, these sorting techniques proved insuffi-
cient. Modern machines have thousands of cores, so,
to achieve good scaling interprocessor communication
needs to be minimized. Therefore, splitter-based algo-
rithms such as Sample Sort and Histogram Sort are now
more commonly used for distributed memory sorting.

Splitter-based parallel sorting algorithms have minimal
communication since they only move data once.

Despite the extraordinarily large amount of literature on
parallel sorting, the demand for optimized parallel sort-
ing algorithms continues to motivate novel algorithms
and more research on the topic. Moreover, the contin-
uously changing and, more recently, diverging nature
of parallel architectures has made parallel sorting an
evolving problem.

High-performance computer architectures are
rapidly growing in size, creating a premium on parallel
sorting algorithms that have minimal communication
and good overlap between computation and com-
munication. Since parallel sorting necessitates com-
munication between all processors, the creation and
optimization of topology-aware all-to-all personalized
communication strategies is extremely valuable for
many splitter-based parallel sorting algorithms. As pre-
viously mentioned, algorithms similar to Sample Sort
and Histogram Sort are the most viable candidates for
this field due to the minimal nature of the communica-
tion they need to perform.

Shared memory sorting algorithms are beginning
to face a challenge that most modern sequential algo-
rithms have to endure. The demand for good cache
efficiency is now a key constraint for all algorithms due
to the increasing relative cost of memory accesses. Par-
allel sorting is being studied under the cache-oblivious
model [23] in an attempt to reevaluate previously estab-
lished algorithms and introduce better ones.

Currently, parallel sorting using accelerators, such
as GPUs, is probably the most active of all paral-
lel sorting research areas due to the rapid changes
and advances happening in the accelerator architecture
field. Little can be said about which algorithms will
dominate this field in the future, due to the influx of
novel GPU-based sorting algorithms and newer accel-
erators in recent years.

The wide use of sorting in computer science
along with the popularization of parallel architec-
tures and parallel programming necessitates the imple-
mentation of parallel sorting libraries. Such libraries
can be difficult to standardize, however, especially

Sorting

1861

for the efficiency-sensitive field of high-performance
computing. Nevertheless, these libraries are quickly
emerging, especially under the shared memory com-
puting paradigm.

Related Entries

» Algorithm Engineering

»All-to-All

» Bitonic Sort

»Bitonic Sorting, Adaptive

»Collective Communication

»Data Mining

»NAS Parallel Benchmarks

»PRAM (Parallel Random Access Machines)

Bibliographic Notes and Further
Reading

The literature on parallel sorting is very large and this
entry is forced to cite only a select few. The sources
cited are a mixture of the largest impact publications
and the most modern publications. A few of the sources
also give useful information on multiple parallel sorting
algorithms. Blelloch et al. [6] provide an in-depth exper-
imental and theoretical comparative analysis of a few of
the most important distributed memory parallel sort-
ing algorithms. Satish et al. [9] provide good analysis
of a few of the most modern GPU-sorting algorithms.
Vitter [24] presents a good analysis of external memory
parallel sorting.

Bibliography
1. Kumar V, Grama A, Gupta A, Karypis G (1994) Introduction to
parallel computing: design and analysis of algorithms. Benjamin-
Cummings, Redwood City, CA
2. Sanders P, Hansch T (1997) Efficient massively parallel quicksort.
In: IRREGULAR ’97: Proceedings of the 4th International Sym-
posium on Solving Irregularly Structured Problems in Parallel,
pp 13-24. Springer-Verlag, London, UK
3. Batcher K (1968) Sorting networks and their application. Proc.
SICC, AFIPS 32:307-314
4. Bilardi G, Nicolau A (1986) Adaptive bitonic sorting: an opti-
mal parallel algorithm for shared memory machines. Technical
report, Ithaca, NY
5. Thompson CD, Kung HT (1977) Sorting on a mesh-connected
parallel computer. Commun ACM 20(4):263-271

10.

1L

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Blelloch G etal. (1991) A comparison of sorting algorithms for the

Connection Machine CM-2. In: Proceedings of the Symposium
on Parallel Algorithms and Architectures, July 1991

Govindaraju N, Gray J, Kumar R, Manocha D (2006) Gputera-
sort: high performance graphics co-processor sorting for large
database management. In: SIGMOD ’06: Proceedings of the 2006
ACM SIGMOD international conference on Management of data,
pp 325-336. ACM, New York

. Greb A, Zachmann G (2006) Gpu-abisort: optimal parallel sort-

ing on stream architectures. In: Parallel and Distributed Process-
ing Symposium, 2006. IPDPS 2006, 20th International, pp 45-54,
April 2006

. Satish N, Harris M, Garland M (2009) Designing efficient sorting

algorithms for manycore gpus. Parallel and Distributed Process-
ing Symposium, International, Rome, pp 1-10

LaMarca A, Ladner RE (1997) The influence of caches on
the performance of sorting. In: SODA ’97: Proceedings of the
eighth annual ACM-SIAM symposium on Discrete algorithms,
pp 370-379. Society for Industrial and Applied Mathematics,
Philadelphia, PA

Thearling K, Smith S (1992) An improved supercomputer sort-
ing benchmark. In: Proceedings of the Supercomputing, Novem-
ber 1992.

Huang JS, Chow YC (1983) Parallel sorting and data partitioning
by sampling. In: Proceedings of the Seventh International Com-
puter Software and Applications Conference, November 1983
Shi H, Schaeffer J (1992) Parallel sorting by regular sampling. J
Parallel Distrib Comput 14:361-372

Li X, Lu P, Schaeffer], Shillington J, Wong PS, Shi H (1993) On the
versatility of parallel sorting by regular sampling. Parallel Comput
19(10):1079-1103

Helman DR, Bader DA, JdJa] (1998) A randomized parallel
sorting algorithm with an experimental study.] Parallel Distrib
Comput 52(1):1-23

Kale LV, Krishnan S (1993) A comparison based parallel sorting
algorithm. In: Proceedings of the 22nd International Conference
on Parallel Processing, pp 196-200, St. Charles, IL, August 1993
Solomonik E, Kale LV (2010) Highly scalable parallel sort-
ing. In: Proceedings of the 24th IEEE International Parallel
and Distributed Processing Symposium (IPDPS). Urbana, IL,
April 2010

Ajtai M, Komlds J, Szemerédi E (1983) Sorting in c log n parallel
steps. Combinatorica 3(1):1-19

Leighton T (1984) Tight bounds on the complexity of parallel
sorting. In: STOC ’84: Proceedings of the sixteenth annual ACM
symposium on Theory of computing, pp 71-80. ACM, New York
Cole R (1986) Parallel merge sort. In: SFCS ’86: Proceedings of the
27th Annual Symposium on Foundations of Computer Science,
pp 511-516. IEEE Computer Society, Washington, DC

Bilardi G, Preparata FP (1986) Area-time lower-bound techniques
with applications to sorting. Algorithmica 1(1):65-91

Francis RS, Mathieson ID (1988) A benchmark parallel sort
for shared memory multiprocessors. Comput IEEE Trans
37(12):1619-1626

http://dx.doi.org/10.1007/978-0-387-09766-4_89
http://dx.doi.org/10.1007/978-0-387-09766-4_34
http://dx.doi.org/10.1007/978-0-387-09766-4_124
http://dx.doi.org/10.1007/978-0-387-09766-4_101
http://dx.doi.org/10.1007/978-0-387-09766-4_28
http://dx.doi.org/10.1007/978-0-387-09766-4_437
http://dx.doi.org/10.1007/978-0-387-09766-4_133
http://dx.doi.org/10.1007/978-0-387-09766-4_23

1862

Space-Filling Curves

23. Blelloch GE, Gibbons PB, Simhadri HV (2009) Brief announce-
ment: low depth cache-oblivious sorting. In: SPAA ’09: Pro-
ceedings of the twenty-first annual symposium on Parallelism in
algorithms and architectures, pp 121-123. ACM, New York

24. Vitter JS (2001) External memory algorithms and data structures:
dealing with massive data. ACM Comput Surv 33(2):209-271

! Space-Filling Curves

MICHAEL BADER!, HaNs-JoAcHIM BUNGARTZ?,
MiriaM MEHL?

"Universitit Stuttgart, Stuttgart, Germany

*Technische Universitit Miinchen, Garching, Germany

Synonyms
FASS (space-filling, self-avoiding, simple, and self-
similar)-curves

Definition

A space-filling curve is a continuous and surjective
mapping from a 1D parameter interval, say [0,1], onto a
higher-dimensional domain, say the unit square in 2D
or the unit cube in 3D. Although this, at first glance,
seems to be of a purely mathematical interest, space-
filling curves and their recursive construction process
have obtained a broad impact on scientific computing
in general and on the parallelization of numerical algo-
rithms for spatially discretized problems in particular.

Discussion

Space-filling curves (SFC) were presented at the end
of the nineteenth century - first by Peano (1890) and
Hilbert (1891), and later by Moore, Lebesgue, Sierpin-
ski, and others. The idea that some curves (i.e., some-
thing actually one-dimensional) may completely cover
an area or a volume sounds somewhat strange and for-
merly caused mathematicians to call them “topological
monsters.” The construction of all SFC follows basically
the same principle: start with a generator indicating an
order of traversal through the similar first-level sub-
structures of the initial domain (the unit square, unit
cube, etc.), and produce the next iterates by succes-
sively subdividing the domain in the same way as well

as placing and connecting shrinked, rotated, or reflected
versions of the generator in the next-level subdomains.
This has to happen in an appropriate way, ensuring the
two properties neighborhood (neighboring subintervals
are mapped to neighboring subdomains) and inclusion
(subintervals of an interval are mapped to subdomains
of the interval’s image). If all is done properly, it can be
proven that the limit of this recursive process in fact
defines a curve that completely fills the target domain
and, hence, results in an SFC.

While the SEC itself as the asymptotical result of a
continuous limit process is more a playground of math-
ematics, the iterative or recursive construction or, to
be precise, the underlying mapping can be used for
sequentializing higher-dimensional domains and data.
Roughly speaking, these higher-dimensional data (ele-
ments of a finite element mesh, particles in a molecular
dynamics simulation, stars in an astrophysics simula-
tion, pixels in an image, voxels in a geometric model,
or even entries in a data base, e.g.) now appear as pearls
on a thread. Thus, via the locality properties of the SFC
mapping, clusters of data can be easily identified (inter-
acting finite elements, neighboring stars, similar data
base entries, etc.). This helps for the efficient processing
of tasks such as answering data base queries, defining
hardware-aware traversal strategies through adaptively
refined meshes or heterogeneous particle sets, and, of
course, subdividing the data across cores or processors
in the sense of (static or dynamic) load distribution in
parallel computing. The main idea for the latter is that
the linear (1D) arrangement of the data via the mapping
basically reduces the load distribution problem to the
sorting of indices.

Space-filling curves are typically constructed via an
iterative or recursive process. The source interval and
the target domain are recursively substructured into
smaller intervals and domains. From each level of recur-
sion to the next, a mapping between subintervals and
subdomains is constructed, where the child intervals of
a subinterval are typically mapped to the children of the
image of the parent interval. The SFC is then defined as
the image of the limit of these mappings.

Figure 1 illustrates this recursive construction pro-
cess for the 2D Hilbert curve. From each level to the
next, the subintervals are split into four congruent

Space-Filling Curves

1863

5 : 6 qi 10 i LT
4l | Lz 8. |11 L VE,
| | :
I I I
3 : 2 1'%; 12 L Vt,
————— -
0 11 | 14, 15 L Nem
| | | : : |
o0 1 2 3 0 4 8 12
I T T T 1

Space-Filling Curves. Fig.1 The first three iterations of the Hilbert curve

subintervals. Likewise, the square subdomains are split
into four subsquares. In the nth iteration, an interval
[i-47",(i+1)-47"] is mapped to the ith subsquare,
as indicated in the figure. The curves in Fig. 1 connect
the subsquares of the nth level according to their source
intervals and are called iterations of the Hilbert curve.
For the limit #n — oo, the iterations shall, in an intuitive
sense, converge to the Hilbert curve.

More formal: for any given parameter ¢ € [0,1], there
exists a sequence of nested intervals [i, - 47", (i, +1) -
47"] that all contain t. The corresponding subsquares
converge to a point i(t) € [0,1]. The image of the map-
ping h defined by that construction is called the Hilbert
curve. h shall be called the Hilbert mapping.

Figure 1 shows that the nth Hilbert iteration consists
of the connection of four (n — 1)th Hilbert iterations,
which are scaled, rotated, and translated appropriately.
For n — oo, this turns into a fix-point argument: the
Hilbert curve consists of the connection of four suit-
ably scaled, rotated, and translated Hilbert curves. The
respective transformations shall be given by operations
H,, where g € {0,1,2,3} determines the relative posi-
tion of the transformed Hilbert curve. This leads to the
following recursive equation:

h(04.qquq3Q4...) :qu 0h(04.q2q3q41...). (1)

If the parameter ¢ is given as a quarternary fraction, i.e.,
t=04.q192q3 - = 2, q,,fn, then the interval numbers
i, and the relative position of subintervals within their
parent can be obtained from the quarternary digits g,,.

For finite quarternary fractions, successive application
of Eq. 1leads to the following formula to compute h:

h(04.192 ... qn) = Hy o Hy, 0...0Hy, 0 h(0). (2)

For the Hilbert curve, the operators H, are defined as:

1
X 2y
H() = -
y ix
x Ix
Hl = Ed
1 1
y V3
SNES
H2 = d
1 1
Y YA
X —%y-ﬁ-l
H3 = hd
1 1
y 2x+ 5

Equations 1 and 2 may be easily turned into an algo-
rithm to compute the image point k() from any given
parameter ¢.

Inverting this process leads to algorithms that find
a parameter ¢ that is mapped to a given point p = h(¢).
However, note that the Hilbert mapping h is not bijec-
tive; hence, an inverse mapping h~' does not exist. Still,
it is possible to construct mappings 4! that return a
uniquely defined parameter ¢t = h~!(p) with p = h(t).
Note that for practical applications, only the discrete
orders induced by h are of interest. These orders are
usually bijective — for example, the relation between

1864

Space-Filling Curves

subsquares and subintervals during the construction of
the Hilbert mapping is a bijective one. Bijectivity is only
lost with # — co.

Figure 2 illustrates the construction of different SFC. All
of them are constructed in a similar way as the Hilbert
curve and can be computed via an analogous approach.
The Hilbert-Moore curve combines four regular, scaled-
down Hilbert curves to a closed curve. The fQ-curve
is a Hilbert-like curve that uses nonuniform refine-
ment patterns throughout the iterations. Similar to the
Hilbert-Moore curve, it is a closed curve. Morton order
and the Z-curve result from a bit-interleaving code for
2D grids. They lead to discontinuous mappings from the
unit interval to the unit square. However, the Lebesgue
curve uses the same construction, but maps the Can-
tor set to the unit square in order to obtain continuity.

The Sierpinski curve is a curve that is generated via
recursive substructuring of triangles. The combination
of two triangle-filling Sierpinski curves leads to a curve
that fills the unit square. The H-index follows a con-
struction compatible to that for the Sierpinski curve, but
generates a discrete order on Cartesian grids. Infinite
refinement of the H-index, then, leads to the Sierpin-
ski curve. The Peano curve, finally, as well as its variant,
the Peano-Meander curve, are square-filling curves that
are based on a recursive 3x3-refinement of the unit
square.

Figure 3 provides snapshots of the construction pro-
cesses of 3D Hilbert and Peano curves.

The recursive construction of SFCleads to locality prop-
erties that can be exploited for efficient load distribution
and load balancing. The Hilbert curve, for example,

Hilbert-Moore curve: BQ-curve:
N — | R
= st
Morton order: Z-curve:
01 11 0101 0N1 1101 1111 00 01 0066 01| 0+66+06401
0100| 011Q| 1100| 1110 0 10 =641
0Q01| 0911[\1901| 1911 106674001| 11004101
00 10 odoo| Dd10] 1800| Mt 10 1 1 1] 1¥e+111
Sierpinski curve: H-index:
—. s A]u[]u %_ILJF% ”iL_I* RUSEES :ﬁh
a LT TR
. N M Tk Ll
4J L% i«FE hz‘—h

Peano curve:

Peano-Meander curve:

,,,,,,,,,,,,,,,,,,,,,,

Space-Filling Curves. Fig.2 Several examples for the construction of space-filling curves on the unit square

Space-Filling Curves

1865

//—‘—__-_
1 o
—14 =
0.8
0.6 ,ﬂ
0.4 z
0.2 p
]
'ﬂ’.f 1
0 508
° o2 Y G - SEU o2 4
06 o5 0

Space-Filling Curves. Fig. 3 Second iterations of three-dimensional Hilbert and Peano curves

and curves that follow a similar construction, can be
shown to be Hoélder continuous, i.e., for two parame-
ters fy and #, the distance of the images h(#,) and h(#)
is bounded by

[h(to) = h(t)], < Clto 1", (©)

where d denotes the dimension. As |t —] is also
equal to the area covered by the space-filling curve seg-
ment defined by the parameter interval [y, 1] (i.e., b is
parameterized by area or volume), Eq. 3 gives a relation
between the area covered by a curve segment and the
distance between the end points of the curve. It is thus
a measure for the compactness of partitions defined
by curve segments. For d-dimensional objects such as
spheres or cubes, the volume typically grows with the
dth power of the extent (diameter, e.g.,) of the object.
Hence, an exponent of d™! is asympotically optimal,
and the constant C characterizes the compactness of
an SFC.

High Performance Computing and Load
Balancing with Space-Filling Curves

The ability of recursively substructuring and lineariz-
ing high-dimensional domains is mainly responsible for
the revival of SFC - or their arrival in computational
applications - starting in the 1960s of the last century.
As some milestones, the Z-order (Morton-order) curve
has been proposed for file sequencing in geodetic data

bases in 1966 by G.M. Morton [15]; quadtrees (noth-
ing else than 2D Lebesgue SFC) were introduced in
image processing [9, 19]; octrees, their 3D counterparts,
marked the crucial idea for breakthroughs in the com-
plexity of particle simulations, the Barnes Hut [3] as well
as the Fast Multipole algorithms [11]. Octrees were also
successfully used in CAD [10, 12], as well as for organi-
zational tasks such as grid generation [20, 21] or steering
volume-oriented simulations [16], and the portfolio of
SEC of practical relevance is still widening.

The locality properties of SFC yield a high locality
of data access and, therewith, a high efficiency of cache-
usage for various kinds of applications. This will be a
crucial aspect for future computing architectures, in
particular multi-core architectures, where the memory
bottleneck will become even more severe than already
for today’s high-performance computers. For exam-
ple, the Peano curve is used for highly efficient block-
structured matrix-matrix products [2], and it can serve
as a general paradigm for PDE frameworks, where all
the steps of geometry representation, adaptive grid gen-
eration, grid traversal, data structure design, and paral-
lelization follow an SFC-based strategy [8, 13]. While all
the SFC discussed so far refer to structured Cartesian
grids or subdomain structures, the Sierpinski curve is
defined on a triangular master domain and has been
recently used to benefit from SFC characteristics also
in the context of managing, traversing, and distributing
triangular finite element meshes [1].

1866

Space-Filling Curves

|

.

o

L[

1

|
B
|
|

Space-Filling Curves. Fig. 4 Partitioning of a triangulation according to the Sierpinski curve and a Cartesian grid

according to the Peano curve

Hilbert or Hilbert-Peano curves were probably the
first SFC to see a broad application for load distribution
and load balancing [6, 17]. Meanwhile, SFC-based
strategies have become a well-established tool fre-
quently outperforming alternatives such as graph
partitioning. The classical SFC-based load-balancing
approach is to queue up grid elements like pearls on
a thread and to cut this queue into pieces with equal
workload [4, 6, 7,17, 18, 22, 24]. Fig. 4 shows examples
for the partitioning of a triangulation according to the
Sierpinski curve and a Cartesian grid according to the
Peano curve. This reduces the load balancing problem
to a problem of sorting data according to their positions
on a space-filling curve. The locality properties of SFC
yield connected partitions with quasi-minimal surfaces
that is quasi-minimal communication costs. However,
the constants involved in the quasi-optimality statement
can be rather large [24].

More recent approaches combine the space-filling
curve ordering with a tree-based domain decomposi-
tion [5, 14, 23]. This approach has the advantage that
already the domain decomposition itself as well as
dynamical rebalancing can easily be done fully paral-
lel and that it fits in a natural way with highly effi-
cient multilevel numerical methods such as multigrid
solvers.

Summarizing, it is obvious that although load bal-
ancing is the most attractive application of SFC in
the context of parallel computing, the scope of SFC
has become much wider with their parallelization
characteristics often just being one side effect.

Related Entries
»Domain Decomposition
»Hierarchical data format

Bibliographic Notes and Further

Reading

1. Sagan H (1994) Space-filling curves, Springer,
New York.

2. Bader M Space-filling curves — an introduction with

applications in scientific computing, Texts in Com-
putational Science and Engineering, Springer, sub-
mitted.

Bibliography

1. Bader M, Schraufstetter S, Vigh CA, Behrens] (2008) Memory
efficient adaptive mesh generation and implementation of multi-
grid algorithms using Sierpinski curves. Int] Comput Sci Eng
4(1):12-21

2. Bader M, Zenger Ch (2006) Cache oblivious matrix multiplica-
tion using an element ordering based on a Peano curve. Linear
Algebra Appl 417(2-3):301-313

3. Barnes], Hut P (1986) A hierarchical O(n log n) force-calculation
algorithm. Nature 324:446-449

4. Brézdovda V, Bowler DR (2008) Automatic data distribution and
load balancing with space-filling curves: implementation in con-
quest.] Phy Condens Matt 20

5. Brenk M, Bungartz H-J, Mehl M, Muntean IL, Neckel T, Weinzierl
T (2008) Numerical simulation of particle transport in a drift
ratchet. SIAM J Sci Comput 30(6):2777-2798

6. Griebel M, Zumbusch GW (1999) Parallel multigrid in an adap-
tive PDE solver based on hashing and space-filling curves. Parallel
Comput 25:827-843

http://dx.doi.org/10.1007/978-0-387-09766-4_291
http://dx.doi.org/10.1007/978-0-387-09766-4_2156

SPAI (SParse Approximate Inverse)

1867

7. Gunther E, Krahnke A, Langlotz M, Mehl M, Pégl M, Zenger Ch
(2004) On the parallelization of a cache-optimal iterative solver
for PDES based on hierarchical data structures and space-filling
curves. In: Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface: 11th European PVM/MPI Users Group
Meeting Budapest, Hungary, September 19-22, 2004. Proceed-
ings, vol 3241 of Lecture Notes in Computer Science. Springer,
Heidelberg

8. Giinther E Mehl M, Pogl M, Zenger C (2006) A cache-aware
algorithm for PDEs on hierarchical data structures based on
space-filling curves. SIAM J Sci Comput 28(5):1634-1650

9. Hunter GM, Steiglitz K (1979) Operations on images using
quad trees. IEEE Trans Pattern Analy Machine Intell PAMI-1(2):
145-154

10. Jackings C, Tanimoto SL (1980) Octrees and their use in repre-
senting three-dimensional objects. Comp Graph Image Process
14(31):249-270

11. Rokhlin V, Greengard L (1987) A fast algorithms for particle
simulations.] Comput Phys 73:325-348

12. Meagher D (1980) Octree encoding: A new technique for the rep-
resentation, manipulation and display of arbitrary 3d objects by
computer. Technical Report, IPL-TR-80-111

13. Mehl M, Weinzierl T, Zenger C (2006) A cache-oblivious self-
adaptive full multigrid method. Numer Linear Algebr 13(2-
3):275-291

14. Mitchell WF (2007) A refinement-tree based partitioning method
for dynamic load balancing with adaptively refined grids.] Parallel
Distrib Comput 67(4):417-429

15. Morton GM (1966) A computer oriented geodetic data base and
a new technique in file sequencing. Technical Report, IBM Ltd.,
Ottawa, Ontario

16. Mundani R-P, Bungartz H-J, Niggl A, Rank E (2006) Embedding,
organisation, and control of simulation processes in an octree-
based cscw framework. In: Proceedings of the 11th International
Conference on Computing in Civil and Building Engineering,
Montreal, pp 3208-3215

17. Patra A, Oden JT (1995) Problem decomposition for adaptive hp
finite element methods. Comput Syst Eng 6(2):97-109

18. Roberts S, Klyanasundaram S, Cardew-Hall M, Clarke W (1998)
A key based parallel adaptive refinement technique for finite ele-
ment methods. In: Proceedings of the Computational Techniques
and Applications: CTAC *97, Singapore, pp 577-584

19. Samet H (1980) Region representation: quadtrees from binary
arrays. Comput Graph Image Process 13(1):88-93

20. Saxena M, Finniganl PM, Graichen CM, Hathaway AFE

VN (1995) Octree-based
generation for non-manifold domains. Eng Comput 11(1):
1-14

21. Schroeder WJ, Shephard MS (1988) A combined octree/delaunay
method for fully automatic 3-d mesh generation. Int] Numer
Methods Eng 26(1):37-55

22. Sundar H, Sampath RS, Biros G (2008) Bottom-up construction
and 2:1 balance refinement of linear octrees in parallel. SIAM J Sci
Comput 30(5):2675-2708

Parthasarathy automatic mesh

23. Weinzierl T (2009) A framework for parallel PDE solvers on
multiscale adaptive Cartesian grids. Verlag Dr. Hut

24. Zumbusch GW (2001) On the quality of space-filling curve
induced partitions. Z Angew Math Mech 81:25-28

' SPAI (SParse Approximate
Inverse)

THOMAS HUCKLE, MATOUS SEDLACEK
Technische Universitit Miinchen, Garching, Germany

Synonyms
Sparse approximate inverse matrix

Definition

For a given sparse matrix A a sparse matrix M ~ A~
is computed by minimizing | AM —I|r in the Frobenius
norm over all matrices with a certain sparsity pattern. In
the SPAT algorithm the pattern of M is updated dynam-
ically to improve the approximation until a certain
stopping criterion is reached.

Discussion

For applying an iterative solution method like the conju-
gate gradient method (CG), GMRES, BiCGStab, QMR,
or similar algorithms, to a system of linear equations
Ax = bwith sparse matrix A, it is often crucial to include
an efficient preconditioner. Here, the original problem
Ax = bis replaced by the preconditioned system MAx =
Mb or Ax = A(My) = b. In a parallel environment a
preconditioner should satisfy the following conditions:

e M can be computed efficiently in parallel.

e Mc can be computed efficiently in parallel for any
given vector c.

o The iterative solver applied on AMx = b or MAx =
Mb converges much faster than for Ax = b (e.g., it
holds cond(MA) < cond(A)).

The first two conditions can be easily satisfied by
using a sparse matrix M as approximation to A™". Note,
that the inverse of a sparse A is nearly dense, but in many

http://dx.doi.org/10.1007/978-0-387-09766-4_2225

1868

SPAI (SParse Approximate Inverse)

cases the entries of A™! are rapidly decaying, so most of
the entries are very small [11].

Benson and Frederickson [4] were the first to pro-
pose a sparse approximate inverse preconditioner in a
static way by computing

min |AM —1I|F ¢))

for a prescribed a priori chosen sparsity pattern for M.
The computation of M can be split into n indepen-
dent subproblems miny, [|AMj — k|2, k = 1,...,n with
M. the columns of M and e, the k-th column of the
identity matrix I. In view of the sparsity of these Least
Squares (LS) problems, each subproblem is related to a
small matrix Ay := A(Ii, Ji) with index set J; which is
given by the allowed pattern for My and the so-called
shadow I of Ji, that is, the indices of nonzero rows in
A(:,Jk)- These n small LS problems can be solved inde-
pendently, for example, based on QR decompositions of
the matrices Ak by using the Householder method or
the modified Gram-Schmidt algorithm.

The SPAI algorithm is an additional feature in this
Frobenius norm minimization that introduces differ-
ent strategies for choosing new profitable indices in
M that lead to an improved approximation. Assume
that, by solving (1) for a given index set], an optimal
solution M (Ji) has been already determined resulting
in the sparse vector My with residual rx. Dynamically
there will be defined new entries in M. Therefore, (1)
has to be solved for this enlarged index set Ji such
that a reduction in the norm of the new residual 7, =
A(Tkjk)Mk (jk) — ek (jk) is achieved.

Following Cosgrove, Griewank, Diaz [10], and
Grote, Huckle [13], one possible new index j € Jy,, out
of a given set of possible new indices J,.,, is tested to
improve My. Therefore, the reduced 1D problem

n}\in HA(Mk + /ljej) —ex = n}\in [AA; + 7 2)
j j

has to be considered. The solution of this problem is
given by
B rkT Ag;
T |Agl?

which leads to an improved squared residual norm
(i Ae)®

2 _ 2
p] _HrkH - HAe]HZ

Obviously, for improving M one has to consider only
indices j in rows of A that are related to the nonzero
entries in the old residual ry; otherwise they do not lead
to a reduction in the residual norm. Thus, the column
indices j have to be determined that satisfy r{ Ae; # 0
with the old residual r,. Let the index set of nonzero
entries in r; be denoted by L. Furthermore, let J; denote
the set of new indices that are related to the nonzero
elements in the i-th row of A, and let J,ew = UjeL);
denote the set of all possible new indices that can lead
to a reduction of the residual norm. Then, one or more
indices J. are chosen as a subset of J,., that corre-
sponds to a large reduction in r¢. For this enlarged
index set J U J. the QR decomposition of the related
LS submatrix has to be updated and solved for the new
column M.

Inside SPAI there are different parameters that steer
the computation of the preconditioner M:

e How many entries are added in one step

o How many steps of adding new entries are allowed
e Start pattern

e Maximum allowed pattern

e What residual | rx| should be reached

e How to solve the LS problems

A different and more expensive way to determine a new
profitable index j with J; := J U {j} considers the more
accurate problem
min_ [|A(:,Ji)Mi(Ji) = e
M (Jk)
introduced by Gould and Scott [12]. For Ji the opti-
mal reduction of the residual is determined for the full
minimization problem instead of the 1D minimization
in SPAL
Chow [9] showed ways to prescribe an efficient static
pattern a priori and developed the software package
PARASAILS.
Holland, Shaw, and Wathen [17] have generalized
this ansatz allowing a sparse target matrix on the right
side in the form miny |AM — B|r. This approach is

SPAI (SParse Approximate Inverse)

useful in connection with some kind of two-level pre-
conditioning: First compute a standard sparse precon-
ditioner B for A and then improve this preconditioner
by an additional Frobenius norm minimization with
target B. From the algorithmic point of view the min-
imization with target matrix B instead of I introduces
no additional difficulties. Only the pattern of M should
be chosen more carefully with respect to A and B.

Zhang [23] introduced an iterative form of SPAI
where in each step a thin M is derived starting with
minyy, ||AM; — I||r. In the second step the sparse matrix
AM, is used and minyy, ||[(AM;)M, — I||F is solved, and
so on. The advantage is, that because of the very sparse
patterns in M; the Least Squares problems are very
cheap.

Chan and Tang [8] applied SPAI not to the original
matrix but first used a Wavelet transform W and com-
puted the sparse approximate inverse preconditioner for
WAWT that is assumed to be more diagonal dominant.

Yeremin, Kolotilina, Nikishin, and Kaporin [19, 20]
introduced factorized sparse approximate inverses of
the form A~ ~ LU. Huckle generalized the factorized
preconditioners adding new entries dynamically like in
SPAI [14].

Grote and Barnard [2] developed a software package
for SPAI and also introduced a block version of SPAIL

Huckle and Kallischko [15] generalized SPAI and the
target approach. They combined SPAI with the probing
method [7] in the form

min (JAM - I|} + p2le"AM - ")

for probing vectors e on which the preconditioner
should be especially improved. Furthermore, they
developed a software package for MSPAL

Advantages of SPAI:

e Good parallel scalability.

e SPAI allows modifications like factorized approxi-
mation or including probing conditions to improve
the preconditioner relative to certain subspaces, for
example, as smoother in Multigrid or for regulariza-
tion [16].

e It is especially efficient for preconditioning dense
problems (see Benzi [1] et al.).

Disadvantages of SPAI:

e SPAI is sequentially more expensive, especially for
denser patterns of M.

e Sometimes it shows poor approximation of A™' and
slow convergence as preconditioner.

Related Entries
»Preconditioners for Sparse Iterative Methods

Bibliographic Notes and Further
Reading

1. Axelsson O (1996) Iterative solution methods.
Cambridge University Press, Cambridge

2. Saad Y (2003) Iterative methods for sparse linear
systems. SIAM Philadelpha, PA

3. Bruaset AM (1995) A survey of preconditioned iter-
ative methods. Longman Scientific & Technical,
Harlow, Essex

4. Chen K (2005) Matrix preconditioning techniques
and applications. Cambridge University Press,
Cambridge

1. Chow E. Parasails, https://computation.lInl.gov/casc/
parasails/parasails.html

2. Barnard S, Broker O, Grote M, Hagemann M. SPAI
and Block SPAI, http://www.computational.unibas.
ch/software/spai

3. Huckle T, Kallischko A, Sedlacek M. MSPAI,
http://www5.in.tum.de/wiki/index.php/MSPAI

Bibliography
1. Alleon G, Benzi M, Giraud L (1997) Sparse approximate inverse
preconditioning for dense linear systems arising in computational
electromagnetics. Numer Algorith 16(1):1-15
2. Barnard S, Grote M (1999) A block version of the SPAI pre-
conditioner. Proceedings of the 9th SIAM conference on Parallel
Processing for Scientific Computing, San Antonio, TX
3. Barnard ST, Clay RL (1997) A portable MPI implemention of the
SPAI preconditioner in ISIS++. In: Heath M, et al (eds) Proceed-
ings of the eighth SIAM conference on parallel processing for
scientific computing, Philadelphia, PA

http://dx.doi.org/10.1007/978-0-387-09766-4_247
https://computation.llnl.gov/casc/parasails/parasails.html
https://computation.llnl.gov/casc/parasails/parasails.html
http://www.computational.unibas.ch/software/spai
http://www.computational.unibas.ch/software/spai
http://www5.in.tum.de/wiki/index.php/MSPAI

1870

Spanning Tree, Minimum Weight

10.

1L

12.

13.

14.

15.

16.

18.

19.

20.

21

22.

23.

. Benson MW, Frederickson PO (1982) Iterative solution of large

sparse linear systems arising in certain multidimensional approx-
imation problems. Utilitas Math 22:127-140

. Broker O, Grote M, Mayer C, Reusken A (2001) Robust parallel

smoothing for multigrid via sparse approximate inverses. SIAM J
Scient Comput 23(4):1396-1417

. Broker O, Grote M (2002) Sparse approximate inverse smoothers

for geometric and algebraic multigrid. Appl Num Math 41(1):
61-80

Chan TFC, Mathew TP (1992) The interface probing technique
in domain decomposition. SIAM] Matrix Anal Appl 13(1):
212-238

. Chan TE, Tang WP, Wan WL (1997) Wavelet sparse approximate

inverse preconditioners. BIT 37(3):644-660

. Chow E (2000) A priori sparsity patterns for parallel sparse

approximate inverse preconditioners. SIAM] Sci Comput
21(5):1804-1822

Cosgrove JDE D “iaz JC, Griewank A (1992) Approximate inverse
preconditionings for sparse linear systems. Int] Comput Math
44:91-110

Demko S, Moss WE Smith PW (1984) Decay rates of inverses of
band matrices. Math Comp 43:491-499

Gould NIM, Scott JA (1995) On approximate-inverse precondi-
tioners. Technical Report RAL-TR-95-026, Rutherford Appleton
Laboratory, Oxfordshire, England

Grote MJ, Huckle T (1997) Parallel preconditioning with sparse
approximate inverses. SIAM] Sci Comput 18(3):838-853

Huckle T (2003) Factorized sparse approximate inverses for pre-
conditioning.] Supercomput 25:109-117

Huckle T, Kallischko A (2007) Frobenius norm minimization and
probing for preconditioning. Int] Comp Math 84(8):1225-1248
Huckle T, Sedlacek M (2010) Smoothing and regularization with
modified sparse approximate inverses. Journal of Electrical and
Computer Engineering — Special Issue on Iterative Signal Process-
ing in Communications, Appearing (2010)

Holland RM, Shaw GJ, Wathen AJ (2005) Sparse approximate
inverses and target matrices. SIAM J Sci Comput 26(3):1000-1011
Kaporin IE (1994) New convergence results and precondition-
ing strategies for the conjugate gradient method. Numer Linear
Algebra Appl 1:179-210

Kolotilina LY, Yeremin AY (1993) Factorized sparse approximate
inverse preconditionings I: Theory. SIAM] Matrix Anal Appl
14(1):45-58

Kolotilina LY, Yeremin AY (1995) Factorized sparse approxi-
mate inverse preconditionings II: Solution of 3D FE systems on
massively parallel computers. Inter] High Speed Comput 7(2):
191-215

Tang W-P (1999) Toward an effective sparse approximate inverse
preconditioner. STAM] Matrix Anal Appl 20(4):970-986

Tang WP, Wan WL (2000) Sparse approximate inverse smoother
for multigrid. SIAM] Matrix Anal Appl 21(4):1236-1252

Zhang J (2002) A sparse approximate inverse technique for
parallel preconditioning of general sparse matrices. Appl Math
Comput 130(1):63-85

! Spanning Tree, Minimum Weight

Davip A. BADER', GuojinG CoNG®
'Georgia Institute of Technology, Atlanta, GA, USA
*IBM, Yorktown Heights, NY, USA

Definition

Given an undirected connected graph G with n ver-
tices and m edges, the minimum-weight spanning tree
(MST) problem consists in finding a spanning tree with
the minimum sum of edge weights. A single graph
can have multiple MSTs. If the graph is not connected,
then it has a minimum spanning forest (MSF) that is
a union of minimum spanning trees for its connected
components. MST is one of the most studied combi-
natorial problems with practical applications in VLSI
layout, wireless communication, and distributed net-
works, recent problems in biology and medicine such
as cancer detection, medical imaging, and proteomics.

With regard to any MST of graph G, two properties
hold: Cycle property: the heaviest edge (edge with the
maximum weight) in any cycle of G does not appear
in the MST. Cut property: if the weight of an edge e
of any cut C of G is smaller than the weights of other
edges of C, then this edge belongs to all MSTs of the
graph.

When all edges of G are of unique weights, the MST
is unique. When the edge weights are not unique, they
can be made unique by numbering the edges and break
ties using the edge number.

Sequential Algorithms

Three classical sequential algorithms, Prim, Kruskal,
and Bortivka, are known for MST. Each algorithm grows
a forest in stages, adding at each stage one or more tree
edges, whose membership in the MST is guaranteed by
the cut property. They differ in how the tree edges are
chosen and the order that they are added.

Prim starts with one vertex and takes a greedy
approach in growing the tree. In each step, it always
maintains a connected tree by choosing the edge of the
smallest weight that connects the current tree to a vertex
that is outside the tree.

Spanning Tree, Minimum Weight

1871

Kruskal starts with isolated vertices. As the algo-
rithm progresses, multiple trees may appear, and
eventually they merge into one.

Bortivka selects for each vertex the incident edge of
the smallest weight as a tree edge. It then compacts the
graph by contracting each connected component into
a super-vertex. Note that finding the tree edges can be
done in parallel for each vertices. Bortivka’s algorithm
lends itself naturally to parallelization.

These algorithms can easily be made to run in
O(mlogn) time. Better complexities can be achieved
with Prim’s algorithm if Fibonacci heap is used instead
of binary heap.

Graham and Hell [14] gave a good introduction for
the history of MST algorithms up to 1985. More complex
algorithms with better asymptotic run times have since
been proposed. For example, Gabow et al. designed
an algorithm that runs in almost linear time, i.e.,
O(mlog B(m,n)), where p(m,n) = min{illog” n <
m/n}. Karger, Klein, and Tarjan presented a random-
ized linear-time algorithm to find minimum spanning
trees. This algorithm uses the random sampling tech-
nique together with a linear time verification algo-
rithm (e.g., King’s verification algorithm). Pettie and
Ramachandran presented an optimal MST algorithm
that runs in O(T*(m,n)), where T is the minimum
number of edge-weight comparisons needed to deter-
mine the solution.

Moret and Shapiro [20] presented a comprehen-
sive experimental study on the performance MST algo-
rithms. Prim’s algorithm with binary heap is found in
general to be a fast solution. Katriel et al. [19] have
developed a pipelined algorithm that uses the cycle
property and provide an experimental evaluation on the
special-purpose NEC SX-5 vector computer.

Cache-oblivious MST is presented by Arge et al. [2].
Their algorithm is based on a cache-oblivious priority
queue that supports insertion, deletion, and deletemin
operations in O (% log,/p %) amortized memory trans-
fers, where M and B are the memory and block trans-
fer sizes. The cache-oblivious implementation of MST
runs in O(sort(m)loglog(n/c) + ¢) memory transfers
(c = m/B). The MST algorithm combines two phases:
Bortivka and Prim.

The memory access behavior of some MST algo-
rithms are characterized in [11].

Parallel Algorithms

Fast theoretical parallel MST algorithms also exist in
the literature. Pettie and Ramachandran [21] designed
a randomized, time-work optimal MST algorithm for
the EREW PRAM, and using EREW to QSM and QSM
to BSP emulations from [13], mapped the performance
onto QSM and BSP models. Cole et. al. [7, 8] and Poon
and Ramachandran [22] earlier had randomized linear-
work algorithms on CRCW and EREW PRAM. Chong
et al. [5] gave a deterministic EREW PRAM algorithm
that runs in logarithmic time with a linear number of
processors. On the BSP model, Adler et al. [1] presented
a communication-optimal MST algorithm.

Most parallel and some fast sequential MST algo-
rithms employ the Bortvka iteration. Three steps
characterize a Bortvka iteration: find-min, connect-
components, and compact-graph.

1. find-min: for each vertex v label the incident edge
with the smallest weight to be in the MST.

2. connect-components: identify connected compo-
nents of the induced graph with edges found in
Step 1.

3. compact-graph: compact each connected compo-
nent into a single supervertex, remove self-loops
and multiple edges; and relabel the vertices for con-
sistency.

The Bortvka algorithm iterates until no new tree edges
can be found. After each Borivka iteration, the num-
ber of vertices in the graph is reduced at least by half.
Some algorithms invoke several rounds of the Bortivka
iterations to reduce the input size (e.g., [1]) and/or to
increase the edge density (e.g., [18]).

Many of the fast theoretic MST algorithms are con-
sidered impractical for input of realistic size because
they are too complicated and have large constant factors
hidden in the asymptotic complexity. Complex MST
algorithms are hard to implement and usually do not
achieve good parallel speedups on current architec-
tures. Most existing implementations are based on the
Bortivka algorithm.

For a Bortvka iteration, Find-min and connect-
components are simple and straightforward to imple-
ment. The compact-graph step performs bookkeeping

1872

Spanning Tree, Minimum Weight

that is often left as a trivial exercise to the reader. JdJa
[16] describes a compact-graph algorithm for dense
inputs. For sparse graphs, though, the compact-graph
step often is the most expensive step in the Bortvka iter-
ation. Implementations and data structures for parallel
Bortivka on shared-memory machines are described
in [3].

Edge List Representation

This implementation of Boraivka’s algorithm (desig-
nated Bor-EL) uses the edge list representation of
graphs, with each edge (u, v) appearing twice in the list
for both directions (u,v) and (v,u). An elegant imple-
mentation of the compact-graph step sorts the edge list
(using an efficient parallel sample sort [15]) with the
supervertex of the first endpoint as the primary key, the
supervertex of the second endpoint as the secondary
key, and the edge weight as the tertiary key. When
sorting completes, all of the self-loops and multiple
edges between two supervertices appear in consecutive
locations and can be merged efficiently using parallel
prefix-sums.

Adjacency List Representation

With the adjacency list representation, each entry of
an index array of vertices points to a list of its inci-
dent edges. The compact-graph step first sorts the vertex
array according to the supervertex label, then concur-
rently sorts each vertex’s adjacency list using the super-
vertex of the other endpoint of the edge as the key. After
sorting, the set of vertices with the same supervertex
label are contiguous in the array, and can be merged
efficient. This approach is designated as Bor-AL.

Both Bor-EL and Bor-AL achieve the same goal that
self-loops and multiple edges are moved to consecutive
locations to be merged. Bor-EL uses one call to sample
sort, while Bor-AL calls a smaller parallel sort and then
a number of concurrent sequential sorts.

Flexible Adjacency List Representation

The flexible adjacency list augments the traditional
adjacency list representation by allowing each vertex
to hold multiple adjacency lists instead of just a single
one; in fact, it is a linked list of adjacency lists. During
initialization, each vertex points to only one adjacency
list. After the connect-components step, each vertex
appends its adjacency list to its supervertex’s adjacency
list by sorting together the vertices that are labeled with
the same supervertex. The compact-graph step is sim-
plified, allowing each supervertex to have self-loops
and multiple edges inside its adjacency list. Thus, the
compact-graph step now uses a smaller parallel sort plus
several pointer operations instead of costly sortings and
memory copies, while the find-min step gets the added
responsibility of filtering out the self-loops and multiple
edges. This approach is designated as Bor-FAL.

Figure 1 illustrates the use of the flexible adjacency
list for a 6-vertex input graph. After one Boruvka iter-
ation, vertices 1, 2, and 3 form one supervertex, and
vertices 4, 5, and 6 form a second supervertex. Vertex
labels 1 and 4 represent the supervertices and receive the
adjacency lists of vertices 2 and 3, and vertices 5 and 6,
respectively. Vertices 1 and 4 are relabeled as 1 and 2.
Note that most of the original data structure is kept
intact. Instead of relabeling vertices in the adjacency
list, a separate lookup table is maintained that holds the

O O

2
) ")

(Vo) | Ve

i (] 40] 6)

= CIED CYED I
V3 nil B
vi i[5)v]3) NN

([1w 2)
(2] 2] 6]

(]3] 4)
(5] 4 %] 6)

nil

C

Spanning Tree, Minimum Weight. Fig. 1 Example of flexible adjacency list representation. (a) Input graph. (b) Initialized
flexible adjacency list. (c) Flexible adjacency list after one iteration

Spanning Tree, Minimum Weight

1873

supervertex label for each vertex. The find-min step uses
this table to filter out self-loops and multiple edges.

Helman and JaJa’s SMP complexity model [15] provides
a reasonable framework for the realistic analysis that
favors cache-friendly algorithms by penalizing noncon-
tiguous memory accesses. Under this model, there are
two parts to an algorithm’s complexity: Mg, the memory
access complexity and, T¢, the computation complexity.
The Mg term is the number of noncontiguous mem-
ory accesses, and the T¢ term is the running time. The
Mg term recognizes the effect that memory accesses
have over an algorithm’s performance. Parameters of the
model includes the problem size n and the number of
processors p.

For a sparse graph G with n vertices and m edges, as
the algorithm iterates, the number of vertices decreases
by atleast halfin each iteration, so there are at most log n
iterations for all of the Bortivka variants.

Hence, the complexity of Bor-EL is given as, where
c and z are constants related to cache size and sampling
ratio [15].

T(n,p) = (Mg ; Tc)
_ <(8m +n+nlogn . 4mclog(2m/p)) logn;
p plogz
O(% logmlogn)> .

As in each iteration these Bor-AL and Bor-EL
compute similar results in different ways, it suffices
to compare the complexity of the first iteration. For
Bor-AL, the complexity of the first iteration is

T(n,p) = (Mg; Tc)
B ((Sn +5m+nlogn
p
+2nclog (n/p) +2mclog(m/n)\
plogz ’
O(g logm + % 10g(m/n))> .
While for Bor-EL, the complexity of the first itera-
tion is
T(n,p) = (Mg; Tc)
_[(8m+n+nlogn N 4mclog (2m/p)\ |
- p plogz ’
O(; log m) > .

Bor-AL is a faster algorithm than Bor-EL, as
expected, since the input for Bor-AL is “bucketed” into
adjacency lists, versus Bor-EL that is an unordered list
of edges, and sorting each bucket first in Bor-AL saves
unnecessary comparisons between edges that have no
vertices in common. The complexity of Bor-EL can be
considered to be an upper bound of Bor-AL.

In Bor-FAL, n reduces at least by half while m stays
the same. Compact-graph first sorts the n vertices, then
assigns O(n) pointers to append each vertex’s adjacency
list to its supervertex’s. For each processor, sorting takes
O(Iﬂ) log n) time, and assigning pointers takes O(n/p)
time assuming each processor gets to assign roughly the
same amount of pointers. Updating the lookup table
costs each processor O(n/p) time. With Bor-FAL, to
find the smallest weight edge for the supervertices, all
the m edges will be checked, with each processor cov-
ering O(m/p) edges. The aggregate running time is
Tc(n,p)pm = O(mlogn/p), and the memory access
complexity is Mg(n,p)sm = m/p. For the finding con-
nected component step, each processor takes T =
O(nlog %)time, and Mg(n,p). < 2nlogn. The com-
plexity for the whole Bortivka’s algorithm is

T(n,p) = T(”’P)fm +T(n,p)ec + T(”’P)cg
(8 2nlogn+mlogn . 4cnlog(n/p)
- p plogz
O("’T”’logn»

An MST algorithm has been proposed in [3] that
marries Prim’s algorithm (known as an efficient sequen-
tial algorithm for MST) with that of the naturally paral-
lel Bortivka approach. In this algorithm, essentially each
processor simultaneously runs Prim’s algorithm from
different starting vertices. A tree is said to be growing
when there exists a lightweight edge that connects the
tree to a vertex not yet in another tree, and mature oth-
erwise. When all of the vertices have been incorporated
into mature subtrees, the algorithm contracts each sub-
tree into a supervertex and call the approach recursively
until only one supervertex remains. When the problem
size is small enough, one processor solves the remaining
problem using the best sequential MST algorithm.

1874

Spanning Tree, Minimum Weight

This parallel MST algorithm possesses an inter-
esting feature: when run on one processor the algo-
rithm behaves as Prim’s, and on # processors becomes
Bortvkas, and runs as a hybrid combination for
1 < p < n, where p is the number of processors. Each of
p processors in the algorithm finds for its starting vertex
the smallest-weight edge, contracts that edge, and then
finds the smallest-weight edge again for the contracted
supervertex. It does not find all the smallest-weight
edges for all vertices, synchronize, and then compact
as in the parallel Bortivka’s algorithm. The algorithm
adapts for any number p of processors in a practical
way for SMPs, where p is often much less than #, rather
than in parallel implementations of Boravka’s approach
that appear as PRAM emulations with p coarse-grained
processors that emulate n virtual processors.

Most parallel graph algorithms are designed without
locks. Indeed it is hard to measure contention for these
algorithms. Yet proper use of locks can simplify imple-
mentation and improve performance. Cong and Bader
[10] presented an implementation of Bortivka’s algo-
rithm (Bor-spinlock) that uses locks and avoids mod-
ifying the input data structure. In Bor-spinlock, the
compact-graph step is completely eliminated.

The main idea is that instead of compacting con-
nected components, for each vertex there is now an
associated label supervertex showing to which super-
vertex it belongs. In each iteration, all the vertices are
partitioned as evenly as possible among the proces-
sors. Processor p finds the adjacent edge with smallest
weight for a supervertex v'. As the graph is not com-
pacted, the adjacent edges for v/ are scattered among the
adjacent edges of all vertices that share the same super-
vertex v/, and different processors may work on these
edges simultaneously. Now the problem is that these
processors need to synchronize properly in order to find
the edge with the minimum weight. Figure 2 illustrates
the specific problem for the MST case.

On the top in Fig. 2 is an input graph with six ver-
tices. Suppose there are two processors P; and P,. Ver-
tices 1, 2, and 3 are partitioned on to processor P;, and
vertices 4, 5, and 6 are partitioned on to processor P,.
It takes two iterations for Bortivka’s algorithm to find
the MST. In the first iteration, the find-min step of Bor-
spinlock labels < 1,5 >, < 5,3 >, < 2,6 >, and < 6,4 >,

Spanning Tree, Minimum Weight. Fig.2 Example of the
race condition between two processors when Borlvka’s
algorithm is used to solve the MST problem

to be in the MST. Connected-components finds vertices
1, 3, and 5 in one component, and vertices 2, 4, and 6 in
another component. The MST edges and components
are shown in the middle of Fig. 2. Vertices connected
by dashed lines are in one component, and vertices con-
nected by solid lines are in the other component. At this
time, vertices 1, 3, and 5 belong to supervertex 1’, and
vertices 2, 4, and 6 belong to supervertex 2. In the sec-
ond iteration, processor P; again inspects vertices 1, 2,
and 3, and processor P, inspects vertices 4, 5, and 6.
Previous MST edges < 1,5 >, < 5,3 >, < 2,6 >, and
< 6,4 > are found to be edges inside supervertices and
are ignored. On the bottom of Fig. 2 are the two super-
vertices with two edges between them. Edges < 1,2 >
and < 3,4 > are found by P to be the edges between
supervertices 1’ and 2/, edge < 3,4 > is found by P; to
be the edge between the two supervertices. For super-
vertex 2', P tries to label < 1,2 > as the MST edge, while
P, tries tolabel < 3,4 >. This is a race condition between
the two processors, and locks are used in Bor-spinlock
to ensure correctness.

In addition to locks and barriers, recent develop-
ment in transactional memory provides a new mech-
anism for synchronization among processors. Kang
and Bader implemented minimum spanning forest
algorithms with transactional memory [17]. Their

Spanning Tree, Minimum Weight

1875

implementation achieved good scalability on some cur-
rent architectures.

Partitioned global address space (PGAS) languages
such as UPC and X10 [4, 23] have been proposed
recently that present a shared-memory abstraction to
the programmer for distributed-memory machines.
They allow the programmer to control the data lay-
out and work assignment for the processors. Mapping
shared-memory graph algorithms onto distributed-
memory machines is straightforward with PGAS
languages.

Figure 3 shows both the SMP implementation and
UPC implementation of parallel Bortivka. The two
implementations are also almost identical. The dif-
ferences are shown in underscore. Performance wise,
straightforward PGAS implementation for irregular
graph algorithms does not usually achieve high per-
formance due to the aggregate startup cost of many
small messages. Cong, Almasi, and Saraswat presented

grafted = 0;
upc_forall (1=0;1<m; I++; i)
{
i = EI[1].vl; w= EI[]l].w;
j = EI[1].v2;
i =D[il; j =DI[jl;
if(il=j){

upc_lock(lock_array|[i]);
if (Min[i] > w) {
Min[i] = w;
Min_ind[i] = j;
grafted = 1;
}
upc_unlock(lock_array|[i]);
}
}
upc _barrier;
grafted = all_reduce.i(grafted , UPCMAX);
if (grafted ==0) break;

upc_forall (i=0;i<n;i++;i)
if (Min_ind[i]!=—1)
D[i]=Min_ind[i];
upc_barrier;

upc_forall(i=0; i<n; i++; 1)
while (D[1]!=D[D|i]]) Dli]=DI[D[i]];

their study in optimizing the UPC implementation of
graph algorithm in [9]. They apply communication coa-
lescing together with other techniques for improving
the performance. The idea is to merge the small mes-
sages to/from a processor into a single, large message.
As all operations in each step of a typical PRAM algo-
rithm are parallel, reads and writes can be scheduled in
an order such that communication coalescing is possi-
ble. After communication coalescing, these data can be
accessed in one communication round where one pro-
cessor sends at most one message to another processor.

Chung and Condon [6] implement parallel Bortavka’s
algorithm on the TMC CM-5. On a 16-processor
machine, for geometric, structured graphs with 32,000
vertices and average degree 9 and graphs with fewer ver-
tices but higher average degree, their code achieves a
relative parallel speedup of about 4, on 16-processors,
over the sequential Boriivka’s algorithm, which was
already 2-3 times slower than their sequential Kruskal

grafted = 0;
pardo (1,0 ,m,1)
{

i ElIll1].vl; w = EI[l].w

j = El1]11].v2

i =D[i]; j =DIljl;

if(il=j)
pthread._lock (lock_array[i]);
if (Min[i]>w) {

Min[i] = w;
Min_ind[i]=]j;
grafted=1;
}
pthread_unlock(lock_array[i]);
}
}
node_barrier ();
grafted = node_Reduce.i(grafted , MAX, TH);

if (grafted==0) break;

pardo(i,0,n,1)
if (Min_ind[i]!=-1)
D[i]=Min_ind[i];
node_Barrier ();

pardo(i,0,n,1)
while (D[i]!=D[D[i]]) D[i]=DI[D[i]1];

Spanning Tree, Minimum Weight. Fig. 3 UPC implementation and SMP implementation of MST: the main loop bodies

1876

Spanning Tree, Minimum Weight

algorithm. Dehne and Go6tz [12] studied practical par-
allel algorithms for MST using the BSP model. They
implement a dense Bortivka parallel algorithm, on a
16-processor Parsytec CC-48, that works well for suf-
ficiently dense input graphs. Using a fixed-sized input
graph with 1,000 vertices and 400,000 edges, their code
achieves a maximum speedup of 6.1 using 16 proces-
sors for a random dense graph. Their algorithm is not
suitable for the more challenging sparse graphs.

Bader and Cong presented their studies of parallel
MST on symmetric multiprocessors (SMPs) in [3, 10].
Their implementation achieved for the first time good
parallel speedups over a wide range of inputs on SMPs.
Their Experimental results show that for Bor-EL and
Bor-AL the compact-graph step dominates the run-
ning time. Bor-EL takes much more time than Bor-AL,
and only gets worse when the graphs get denser. In
contrast the execution time of compact-graph step of
Bor-FAL is greatly reduced: in the experimental section
with a random graph of 1M vertices and 10M edges, it
is over 50 times faster than Bor-EL, and over 7 times
faster than Bor-AL. Actually the execution time of the
compact-graph step of Bor-FAL is almost the same for
the three input graphs because it only depends on the
number of vertices. As predicted, the execution time
of the find-min step of Bor-FAL increases. And the
connect-components step only takes a small fraction of
the execution time for all approaches.

Cong, Almasi and Saraswat presented a UPC imple-
mentation of distributed MST in [9]. For input graphs
with billions of edges, the distributed implementation
achieved significant speedups over the SMP implemen-
tation and the best sequential implementation.

Bibliography

1. Adler M, Dittrich W, Juurlink B, Kutylowski M, Rieping I (1998)
Communication-optimal parallel minimum spanning tree algo-
rithms (extended abstract). In: SPAA *98: proceedings of the tenth
annual ACM symposium on parallel algorithms and architec-
tures, Puerto Vallarta, Mexico. ACM, New York, pp 27-36

2. Arge L, Bender MA, Demaine ED, Holland-Minkley B, Munro
JI (2002) Cache-oblivious priority queue and graph algorithm
applications. In: Proceedings of the 34th annual ACM symposium
on theory of computing, Montreal, Canada. ACM, New York,
Pp 268-276

3. Bader DA, Cong G (2006) Fast shared-memory algorithms for
computing the minimum spanning forest of sparse graphs. J Par-
allel Distrib Comput 66:1366-1378

~N

10.

1L

12.

14.

15.

16.

17.

. Charles P, Donawa C, Ebcioglu K, Grothoff C, Kielstra A,

Van Praun C, Saraswat V, Sarkar V (2005) X10: an object-oriented
approach to non-uniform cluster computing. In: Proceedings
of the 2005 ACM SIGPLAN conference on object-oriented
programming systems, languages and applications (OOPSLA),
San Diego, CA, pp 519-538

. Chong KW, Han Y, Lam TW (2001) Concurrent threads and

optimal parallel minimum spanning tree algorithm.] ACM 48:
297-323

. Chung S, Condon A (1996) Parallel implementation of Bortivka’s

minimum spanning tree algorithm. In: Proceedings of the
10th international parallel processing symposium (IPPS96),
Honolulu, Hawaii, pp 302-315

. Cole R, Klein PN, Tarjan RE (1996) Finding minimum span-

ning forests in logarithmic time and linear work using random
sampling. In: Proceedings of the 8th annual symposium paral-
lel algorithms and architectures (SPAA-96), Newport, RI. ACM,
New York, pp 243-250

. Cole R, Klein PN, Tarjan RE (1994) A linear-work parallel algo-

rithm for finding minimum spanning trees. In: Proceedings of the
6th annual ACM symposium on parallel algorithms and architec-
tures, Cape May, NJ, ACM, New York, pp 11-15

. Cong G, Almasi G, Saraswat V (2010) Fast PGAS implementa-

tion of distributed graph algorithms. In: Proceedings of the 2010
ACMY/IEEE international conference for high performance com-
puting, networking, storage and analysis (SC ’10), IEEE Computer
Society, Washington, DC, pp 1-11

Cong G, Bader DA (2004) Lock-free parallel algorithms: an exper-
imental study. In: Proceeding of the 33rd international conference
on high-performance computing (HiPC 2004), Banglore, India
Cong G, Sbaraglia S (2006) A study of the locality behavior
of minimum spanning tree algorithms. In: The 13th interna-
tional conference on high performance computing (HiPC 2006),
Bangalore, India. IEEE Computer Society, pp 583-594

Dehne E Gotz S (1998) Practical parallel algorithms for minimum
spanning trees. In: Proceedings of the seventeenth symposium on
reliable distributed systems, West Lafayette, IN. IEEE Computer
Society, pp 366-371

. Gibbons PB, Matias Y, Ramachandran V (1997) Can shared-

memory model serve as a bridging model for parallel
computation? In: Proceedings 9th annual symposium paral-
lel algorithms and architectures (SPAA-97), Newport, RI, ACM,
New York pp 72-83

Graham RL, Hell P (1985) On the history of the minimum span-
ning tree problem. IEEE Ann History Comput 7(1):43-57
Helman DR, JdJ4J (1999) Designing practical efficient algorithms
for symmetric multiprocessors. In: Algorithm engineering and
experimentation (ALENEX99), Baltimore, MD, Lecture notes in
computer science, vol 1619. Springer-Verlag, Heidelberg, pp 37-56
JaJa J (1992) An Introduction to parallel algorithms. Addison-
Wesley, New York

Kang S, Bader DA (2009) An efficient transactional memory algo-
rithm for computing minimum spanning forest of sparse graphs.
In: Proceedings of the 14th ACM SIGPLAN symposium on prin-
ciples and practice of parallel programming (PPoPP), Raleigh, NC

Sparse Direct Methods

1877

18. Karger DR, Klein PN, Tarjan RE (1995) A randomized linear-time
algorithm to find minimum spanning trees.] ACM 42(2):321-328

19. Katriel I, Sanders P, Traff JL (2003) A practical minimum span-
ning tree algorithm using the cycle property. In: 11th Annual Euro-
pean symposium on algorithms (ESA 2003), Budapest, Hungary,
Lecture notes in computer science, vol 2832. Springer-Verlag,
Heidelberg, pp 679-690

20. Moret BME, Shapiro HD (1994) An empirical assessment of algo-
rithms for constructing a minimal spanning tree. In: DIMACS
monographs in discrete mathematics and theoretical computer
science: computational support for discrete mathematics vol 15,
American Mathematical Society, Providence, RI, pp 99-117

21. Pettie S, Ramachandran V (2002) A randomized time-work opti-
mal parallel algorithm for finding a minimum spanning forest.
SIAM J Comput 31(6):1879-1895

22. Poon CK, Ramachandran V (1997) A randomized linear work
EREW PRAM algorithm to find a minimum spanning forest. In:
Proceedings of the 8th international symposium algorithms and
computation (ISAAC’97), Lecture notes in computer science, vol
1350. Springer-Verlag, Heidelberg, pp 212-222

23. Carlson WW, Draper JM, Culler DE, Yelick K, Brooks E, Warren K
(1999) Introduction to UPC and Language Specification. CCS-TR-
99-157. IDA/CCS, Bowie, Maryland

! Sparse Approximate Inverse
Matrix

»SPAI (SParse approximate inverse)

! Sparse Direct Methods

ANSHUL GUPTA
IBM T.J. Watson Research Center, Yorktown Heights,
NY, USA

Synonyms
Gaussian elimination; Linear equations solvers; Sparse
gaussian elimination

Definition

Direct methods for solving linear systems of the form
Ax = b are based on computing A = LU, where L and
U are lower and upper triangular, respectively. Comput-
ing the triangular factors of the coeflicient matrix A is
also known as LU decomposition. Following the factor-
ization, the original system is trivially solved by solving

the triangular systems Ly = b and Ux = y. If A is sym-
metric, then a factorization of the form A = LLT or
A = LDL" is computed via Cholesky factorization, where
L is a lower triangular matrix (unit lower triangular in
the case of A = LDL factorization) and D is a diagonal
matrix. One set of common formulations of LU decom-
position and Cholesky factorization for dense matrices
are shown in Figs. 1 and 2, respectively. Note that other
mathematically equivalent formulations are possible by
rearranging the loops in these algorithms. These algo-
rithms must be adapted for sparse matrices, in which a
large fraction of entries are zero. For example, if A[, i]
in the division step is zero, then this operation need not
be performed. Similarly, the update steps can be avoided
if either A[j,i] or A[i,k] (A[k,i] if A is symmetric)
is zero.

When A is sparse, the triangular factors L and U
typically have nonzero entries in many more locations
than A does. This phenomenon is known as fill-in, and
results in a superlinear growth in the memory and
time requirements of a direct method to solve a sparse
system with respect to the size of the system. Despite
a high memory requirement, direct methods are often
used in many real applications due to their generality
and robustness. In applications requiring solutions with
respect to several right-hand side vectors and the same
coefficient matrix, direct methods are often the solvers
of choice because the one-time cost of factorization
can be amortized over several inexpensive triangular
solves.

Discussion

The direct solution of a sparse linear system typically
involves four phases. The two computational phases,
factorization and triangular solutions have already been
mentioned. The number of nonzeros in the factors
and sometimes their numerical properties are func-
tions of the initial permutation of the rows and columns
of the coefficient matrix. In many parallel formula-
tions of sparse factorization, this permutation can also
have an effect on load balance. The first step in the
direct solution of a sparse linear system, therefore, is to
apply heuristics to compute a desirable permutation the
matrix. This step is known as ordering. A sparse matrix
can be viewed as the adjacency matrix of a graph. Order-
ing heuristics typically use the graph view of the matrix

http://dx.doi.org/10.1007/978-0-387-09766-4_144
http://dx.doi.org/10.1007/978-0-387-09766-4_2221
http://dx.doi.org/10.1007/978-0-387-09766-4_2222
http://dx.doi.org/10.1007/978-0-387-09766-4_2200
http://dx.doi.org/10.1007/978-0-387-09766-4_2200

1878

Sparse Direct Methods

begin LU_Decomp (A, n)
fori=1,n
forj=i+1,n

Alj, i) = Aly, i]/Alt, 4]; /* division step, computes column i of L */

1
2

3

4

5. end for
6 fork=i+1,n

7 forj=i+1,n
8

9. end for

10. end for

11. end for

12. end LU_Decomp

Alj, k] = Alj, k] — Alj, i| X Ali, k]; /* update step*/

Sparse Direct Methods. Fig.1 A simple column-based algorithm for LU decomposition of an n x n dense matrix A. The
algorithm overwrites A by L and U such that A = LU, where L is unit lower triangular and U is upper triangular. The
diagonal entries after factorization belong to U; the unit diagonal of L is not explicitly stored

1. begin Cholesky (4, n)

2 fori=1,n

3 Ali, i) = VA[, i];

4. forj=i+1,n

5. Alj, i) = Alj, 1]/ Als, 4]; /* division step, computes column i of L */
6 end for

7 fork=i+1,n

8. forj=Fkn

9. Alj, k] = A[j, k] — A[j, i] x A[k, 4]; /* update step*/
10. end for

11. end for

12. end for

13. end Cholesky

Sparse Direct Methods. Fig.2 A simple column-based algorithm for Cholesky factorization of an n x n dense symmetric
positive definite matrix A. The lower triangular part of A is overwritten by L, such that A = LL"

and label the vertices in a particular order that is equiv-
alent to computing a permutation of the coefficient
matrix with desirable properties. In the second phase,
known as symbolic factorization, the nonzero pattern of
the factors is computed. Knowing the nonzero pattern
of the factors before actually computing them is use-
ful for several reasons. The memory requirements of
numerical factorization can be predicted during sym-
bolic factorization. With the number and locations of
nonzeros known before hand, a significant amount of
indirect addressing can be avoided during numerical
factorization, thus boosting performance. In a par-
allel implementation, symbolic factorization helps in
the distribution of data and computation among pro-
cessing units. The ordering and symbolic factorization
phases are also referred to as preprocessing or analysis
steps.

Of the four phases, numerical factorization typically
consumes the most memory and time. Many appli-
cations involve factoring several matrices with differ-
ent numerical values but the same sparsity structure.
In such cases, some or all of the results of the order-
ing and symbolic factorization steps can be reused. This
is also advantageous for parallel sparse solvers because
parallel ordering and symbolic factorization are typ-
ically less scalable. Amortization of the cost of these
steps over several factorization steps helps maintain the
overall scalability of the solver close to that of numer-
ical factorization. The parallelization of the triangular
solves is highly dependent on the parallelization of the
numerical factorization phase. The parallel formulation
of numerical factorization dictates how the factors are
distributed among parallel tasks. The subsequent trian-
gular solution steps must use a parallelization scheme

Sparse Direct Methods

1879

that works on this data distribution, particularly in
a distributed-memory parallel environment. Given its
prominent role in the parallel direct solution of sparse
linear system, the numerical factorization phase is the
primary focus of this entry.

The algorithms used for preprocessing and factor-
ing a sparse coefficient matrix depend on the properties
of the matrix, such as symmetry, diagonal dominance,
positive definiteness, etc. However, there are common
elements in most sparse factorization algorithms. Two
of these, namely, task graphs and supernodes, are key to
the discussion of parallel sparse matrix factorization of
all types for both practical and pedagogical reasons.

A parallel computation is usually the most efficient
when running at the maximum possible level of gran-
ularity that ensures a good load balance among all
the processors. Dense matrix factorization is compu-
tationally rich and requires O(n*) operations for fac-
toring an n x n matrix. Sparse factorization involves
a much smaller overall number of operations per row
or column of the matrix than its dense counterpart.
The sparsity results in additional challenges, as well
as additional opportunities to extract parallelism. The
challenges are centered around finding ways of orches-
trating the unstructured computations in a load-
balanced fashion and of containing the overheads of
interaction between parallel tasks in the face of a rela-
tively small number or operations per row or column
of the matrix. The added opportunity for parallelism
results from the fact that, unlike the dense algorithms
of Figs. 1 and 2, the columns of the factors in the sparse
case do not need to be computed one after the other.
Note that in the algorithms shown in Figs. 1 and 2, row
and column i are updated by rows and columns 1. ..i-1.
In the sparse case, column i is updated by a column j < i
only if U[j,i] # 0, and a row i is updated by a row j < i
only if L[4,j] # 0. Therefore, as the sparse factorization
begins, the division step can proceed in parallel for all
columns i for which A[i,j] = 0 and A[j,i] = 0 for all
j < i. Similarly, at any stage in the factorization process,
there could be large pool of columns that are ready of the
division step. Any unfactored column i would belong to
this pool iff all columns j < i with a nonzero entry in row

iof L and all rows j < i with a nonzero entry in column
i of U have been factored.

A task dependency graph is an excellent tool for
capturing parallelism and the various dependencies in
sparse matrix factorization. It is a directed acyclic graph
(DAG) whose vertices denote tasks and the edges spec-
ify the dependencies among the tasks. A task is asso-
ciated with each row and column (column only in the
symmetric case) of the sparse matrix to be factored.
The vertex i of the task graph denotes the task respon-
sible for computing column i of L and row i of U.
A task is ready for execution if and only if all tasks with
incoming edges to it have completed. Task graphs are
often explicitly constructed during symbolic factoriza-
tion to guide the numerical factorization phase. This
permits the numerical factorization to avoid expensive
searches in order to determine which tasks are ready
for execution at any given stage of the parallel factoriza-
tion process. The task graphs corresponding to matrices
with a symmetric structure are trees and are known as
elimination trees in the sparse matrix literature.

Figure 3 shows the elimination tree for a struc-
turally symmetric sparse matrix and Fig. 4 shows the
task DAG for a structurally unsymmetric matrix. Once
a task graph is constructed, then parallel factorization
(and even parallel triangular solution) can be viewed
as the problem of scheduling the tasks onto paral-
lel processes or threads. Static scheduling is generally
preferred in a distributed-memory environment and
dynamic scheduling in a shared-memory environment.
The shape of the task graph is a function of the ini-
tial permutation of rows and columns of the sparse
matrix, and is therefore determined by the outcome of
the ordering phase. Figure 5 shows the elimination tree
corresponding to the same matrix as in Fig. 3a, but with
a different initial permutation. The structure of the task
DAG usually affects how effectively it can be scheduled
for parallel factorization. For example, it may be intu-
itively recognizable to readers that the elimination tree
in Fig. 3 is more amenable to parallel scheduling than
the tree corresponding to a different permutation of the
same matrix in Fig. 5. Figure 6 illustrates that the matri-
ces in Figs. 3 and 5 have the same underlying graph.
The only difference is in the labeling of the vertices of
the graph, which results in a different permutation of
the rows and columns of the matrix, different amount

1880

Sparse Direct Methods

01 2 3 4 5 6 7 8
oflx1 xi 1 o Ixio
L Lo _iL_a__uL_]
X X
F-a--r-n r-A r-A =
21 X 1 X1 X | | 1 X[
L _ o J__L_J__LT_yJ LT
3| 1 XD XXy
F---r-A--r-A--r-3--r-1
4 | | | X X | 1 X
| oo Lo _iL_a__uL_]
50 1 1 oxoxox O x O
F-A--r-A--r-A--r-a=-r -7
6| X1] X X X[
L o _ LT JZL B Rl
7L IX L XX XX
F---r---r-A--r-"--r
a8 X[C X[[X X

(®)

Q

(®)

(2) (%)
SORONONO

Sparse Direct Methods. Fig. 3 A structurally symmetric sparse matrix and its elimination tree. An X indicates a nonzero
entry in the original matrix and a box denotes a fill-in

[oY]

0w N o b~ W NN =+ O
T

012 3 45 6 7 8
Xi Lo Xl
E =
X oxoxion o
o oxaxagn
oL xe]
X x|
R R SR S
Cr X xio
XIX OO X iX| p

Sparse Direct Methods. Fig. 4 An unsymmetric sparse matrix and the corresponding task DAG. An X indicates a nonzero
entry in the original matrix and a box denotes a fill-in

01 2 3 4 5 6 7 8
ofxixixi T 1]
I T T R S B
XX Or XXy o
F-A--r-A--r-A--r-2--r~1
2 (X [X[X X 0
I R N el B B R BN R
s| xiOx OO x|
F-a--r-A--r-A-—-r-"=-r~1
4 PX X[X X X
I B el B e B BN R
50 0 o x,00 x O x|
F-a--r-a--r-A-—-r-"--r-1
6 | | X X P X[X
I O B SR e B e B
7] 0 O XaXxXGOrx X
F-a--r-a--r-a--r-"=-r-1
a8 | | | | | X1 X X

Sparse Direct Methods. Fig. 5 A permutation of the sparse matrix of Fig. 3a and its elimination tree

of fill-in, and different shapes of task graphs. In general,

long and skinny task graphs result in limited parallelism
and a long critical path. Short and broad task graphs
have a high degree of parallelism and shorter critical

paths.

Since the shape, and hence the amenability to effi-

cient parallel scheduling of the task graph is sensitive to
ordering, heuristics that result in balanced and broad
task graphs are preferred for parallel factorization. The

best known ordering heuristic in this class is called

Sparse Direct Methods

1881

6
0 3
2 ’ 5
1 4

a 8

0 3
2 4 6
5 8

b 7

Sparse Direct Methods. Fig. 6 Anillustration of the duality between graph vertex labeling and row/column permutation

of a structurally symmetric sparse matrix. Grid (a), with vertices labeled based on nested dissection, is the adjacency

graph of the matrix in Fig. 3a and grid (b) is the adjacency graph of the matrix in Fig. 5a

nested dissection. Nested dissection is based on recur-
sively computing balanced bisections of a graph by
finding small vertex separators. The vertices in the two
disconnected partitions of the graph are labeled before
the vertices of the separator. The same heuristic is
applied recursively for labeling the vertices of each par-
tition. The ordering in Fig. 3 is actually based on nested
dissection. Note that the vertex set 6, 7, 8 forms a sep-
arator, dividing the graph into two disconnected com-
ponents, 0,1, 2 and 3, 4, 5. Within the two components,
vertices 2 and 5 are the separators, and hence have the
highest label in their respective partitions.

In sparse matrix terminology, a set of consecutive rows
or columns that have the same nonzero structure is
loosely referred to as a supernode. The notion of supern-
odes is crucial to efficient implementation of sparse
factorization for a large class of sparse matrices arising
in real applications.

Coefficient matrices in many applications have nat-
ural supernodes. In graph terms, there are sets of
vertices with identical adjacency structures. Graphs
like these can be compressed by having one supervertex
represent the whole set that has the same adjacency
structure. When most vertices of a graph belong to
supernodes and the supernodes are of roughly the same
size (in terms of the number of vertices in them) with
an average size of, say, m, then it can be shown that
the compressed graph has O(m) fewer vertices and
O(m?*) fewer edges than in the original graph. It can
also be shown that an ordering of original graph can
be derived from an ordering of the compressed graph,

while preserving the properties of the ordering, by sim-
ply labeling the vertices of the original graph consecu-
tively in the order of the supernodes of the compressed
graph. Thus, the space and the time requirements of
ordering can be dramatically reduced. This is particu-
larly useful for parallel sparse solvers because parallel
ordering heuristics often yield orderings of lower qual-
ity than their serial counterparts. For matrices with
highly compressible graphs, it is possible to compute
the ordering in serial with only a small impact on the
overall scalability of the entire solver because ordering
is performed on a graph with O(m?) fewer edges.
While the natural supernodes in the coefficient
matrix, if any, can be useful during ordering, it is the
presence of supernodes in the factors that have the
biggest impact on the performance of the factoriza-
tion and triangular solution steps. Although there can
be multiple ways of defining supernodes in matrices
with an unsymmetric structure, the most useful form
involves groups of indices with identical nonzero pat-
tern in the corresponding columns of L and rows of
U. Even if there are no supernodes in the original
matrix, supernodes in the factors are almost inevitable
for matrices in most real applications. This is due to fill-
in. Examples of supernodes in factors include indices
6-8 in Fig. 3a, indices 2-3 and 7-8 in Fig. 4a, and indices
4-5and 6-8 in Fig. 5. Some practitioners prefer to artifi-
cially increase the size (i.e., the number of member rows
and columns) of supernodes by padding the rows
and columns that have only slightly different nonzero
patterns, so that they can be merged into the same
supernode. The supernodes in the factors are typically
detected and recorded as they emerge during symbolic

1882

Sparse Direct Methods

factorization. In the remainder of this chapter, the term
supernode refers to a supernode in the factors.

It can be seen from the algorithms in Figs. 1 and 2
that there are two primary computations in a column-
based factorization: the division step and the update
step. A supernode-based sparse factorization too has
the same two basic computation steps, except that these
are now matrix operations on row/column blocks cor-
responding to the various supernodes.

Supernodes impart efficiency to numerical fac-
torization and triangular solves because they permit
floating point operations to be performed on dense sub-
matrices instead of individual nonzeros, thus improving
memory hierarchy utilization. Since rows and columns
in supernodes share the nonzero structure, indirect
addressing is minimized because the structure needs
to be stored only once for these rows and columns.
Supernodes help to increase the granularity of tasks,
which is useful for improving computation to overhead
ratio in a parallel implementation. The task graph model
of sparse matrix factorization was introduced earlier
with a task k defined as the factorization of row and
column k of the matrix. With supernodes, a task can
be defined as the factorization of all rows and columns
associated with a supernode. Actual task graphs in
practical implementations of parallel sparse solvers are
almost always supernodal task graphs.

Note that some applications, such as power grid
analysis, in which the basis of the linear system is not
a finite-element or finite-difference discretization of a
physical domain, can give rise to sparse matrices that
incur very little fill-in during factorization. The factors
of these matrices may have very small supernodes.

The task graphs for sparse matrix factorization have
some typical properties that make scheduling some-
what different from traditional DAG scheduling. Note
that the task graphs corresponding to irreducible matri-
ces have a distinct root; that is, one node that has no
outgoing edges. This corresponds to the last (rightmost)
supernode in the matrix. The number of member rows
and columns in supernodes typically increases away
from the leaves and toward the root of the task graph.
The reason is that a supernode accumulates fill-in from
all its predecessors in the task graph. As a result, the
portions of the factors that correspond to task graph

nodes with a large number of predecessors tend to get
denser. Due to their larger supernodes, the tasks that are
relatively close to the root tend to have more work asso-
ciated with them. On the other hand, the width of the
task graph shrinks close to the root. In other words, a
typical task graph for sparse matrix factorization tends
to have a large number of small independent tasks closer
to the leaves, but a small number of large tasks closer
to the root. An ideal parallelization strategy that would
match the characteristics of the problem is as follows.
Starting out, the relatively plentiful independent tasks at
or near the leaves would be scheduled to parallel threads
or processes. As tasks complete, other tasks become
available and would be scheduled similarly. This could
continue until there are enough independent tasks to
keep all the threads or processes busy. When the num-
ber of available parallel tasks becomes smaller than the
number of available threads or processes, then the only
way to keep the latter busy would be to utilize more
than one of them per task. The number of threads or
processes working on individual tasks would increase
as the number of parallel tasks decreases. Eventually, all
threads or processes would work on the root task. The
computation corresponding to the root task is equiva-
lent to factoring a dense matrix of the size of the root
supernode.

So far in this entry, the tasks have been defined some-
what ambiguously. There are multiple ways of defining
the tasks precisely, which can result in different parallel
implementations of sparse matrix factorization. Clearly,
a task is associated with a supernode and is responsi-
ble for computing that supernode of the factors; that
is, performing the computation equivalent to the divi-
sion steps in the algorithms in Figs. 1 and 2. However,
a task does not own all the data that is required to
compute the final values of its supernode’s rows and
columns. The data for performing the update steps on a
supernode may be contributed by many other supern-
odes. Based on the tasks’ responsibilities, sparse LU
factorization has traditionally been classified into three
categories, namely, left-looking, right-looking, and Crout.
These variations are illustrated in Fig. 7. The traditional
left-looking variant uses nonconforming supernodes
made up of columns of both L and U, which are not very

Sparse Direct Methods

1883

] Read

Update and factor

Factor and read
[] Update

\

[

T

Supernode

Sparse Direct Methods. Fig. 7 The left-looking (a), right-looking (b), and Crout (c) variations of sparse LU factorization.
Different patterns indicate the parts of the matrix that are read, updated, and factored by the task corresponding to a
supernode. Blank portions of the matrix are not accessed by this task

common in practice. In this variant, a task is responsible
for gathering all the data required for its own columns
from other tasks and for updating and factoring its
columns. The left-looking formulation is rarely used in
modern high-performance sparse direct solvers. In the
right-looking variation of sparse LU, a task factors the
supernode that it owns and performs all the updates
that use the data from this supernode. In the Crout vari-
ation, a task is responsible for updating and factoring
the supernode that it owns. Only the right-looking and
Crout variants have symmetric counterparts.

A fourth variation, known as the multifrontal
method, incorporates elements of both right-looking
and Crout formulations. In the multifrontal method, the
task that owns a supernode computes its own contribu-
tion to updating the remainder of the matrix (like the
right-looking formulation), but does not actually apply
the updates. Each task is responsible for collecting all
relevant precomputed updates and applying them to its
supernode (like the Crout formulation) before factor-
ing the supernode. The supernode data and its update
contribution in the multifrontal method is organized
into small dense matrices called frontal matrices. Inte-
ger arrays maintain a mapping of the local contiguous
indices of the frontal matrices to the global indices of
the sparse factor matrices. Figure 8 illustrates the com-
plete supernodal multifrontal Cholesky factorization of
the symmetric matrix shown in Fig. 3a. Note that, since
rows and columns with indices 6-8 form a supernode,

there would be only one task (Fig. 8g) correspond-
ing to these in the supernodal task graph (elimination
tree).

When a task is ready for execution, it first constructs
its frontal matrix by accumulating contributions from
the frontal matrices of its children and from the coeffi-
cient matrix. It then factors its supernode, which is the
portion of the frontal matrix that is shaded in Fig. 8.
After factorization, the unshaded portion (this subma-
trix of a frontal matrix is called the update matrix) is
updated based on the update step of the algorithm in
Fig. 2. The update matrix is then used by the parent task
to construct its frontal matrix.

Note that Fig. 8 illustrates a symmetric multifrontal
factorization; hence, the frontal and update matrices
are triangular. For general LU decomposition, these
matrices would be square or rectangular. In symmet-
ric multifrontal factorization, a child’s update matrix
in the elimination tree contributes only to its parent’s
frontal matrix. The task graph for general matrices is
usually not a tree, but a DAG, as shown in Fig. 4.
Apart from the shape of the frontal and update matrices,
unsymmetric pattern multifrontal method differs from
its symmetric counterpart in two other ways. First, an
update matrix can contribute to more than one frontal
matrices. Secondly, the frontal matrices receiving data
from an update matrix can belong to the contributing
supernode’s ancestors (not necessarily parents) in the
task graph.

1884

Sparse Direct Methods

a Supernode b Supernode 1

C Supernode 3 d Supernode 4

Sparse Direct Methods. Fig. 8 Frontal matrices and data movement among them in the supernodal multifrontal

Cholesky factorization of the sparse matrix shown in Fig. 3a

The multifrontal method is often the formulation
of choice for highly parallel implementations of sparse
matrix factorization. This is because of its natural data
locality (most of the work of the factorization is per-
formed in the well-contained dense frontal matrices)
and the ease of synchronization that it permits. In
general, each supernode is updated by multiple other
supernodes and it can potentially update many other
supernodes during the course of factorization. If imple-
mented naively, all these updates may require exces-
sive locking and synchronization in a shared-memory
environment or generate excessive message traffic in a
distributed environment. In the multifrontal method,
the updates are accumulated and channeled along the
paths from the leaves of the task graph to its the root.
This gives a manageable structure to the potentially
haphazard interaction among the tasks.

Recall that the typical supernodal sparse factoriza-
tion task graph is such that the size of tasks generally
increases and the number of parallel tasks generally

diminishes on the way to the root from the leaves.
The multifrontal method is well suited for both task
parallelism (close to the leaves) and data parallelism
(close to the root). Larger tasks working on large frontal
matrices close to the root can readily employ multiple
threads or processes to perform parallel dense matrix
operations, which not only have well-understood
data-parallel algorithms, but also a well-developed
software base.

The discussion in this entry so far has focussed on the
scenario in which the rows and columns of the matrix
are permuted during the ordering phase and this per-
mutation stays static during numerical factorization.
While this assumption is valid for a large class of practi-
cal problems, there are applications that would generate
matrices that could encounter a zero or a very small
entry on the diagonal during the factorization process.

Sparse Direct Methods

1885

This will cause the division step of the LU decomposi-
tion algorithm to fail or to result in numerical instability.
For nonsingular matrices, this problem can be solved
by interchanging rows and columns of the matrix by
a process known as partial pivoting. When a small or
zero entry is encountered at A[i,i] before the division
step, then row i is interchanged with another row j
(i < j < n) such that A[j,i] (which would occupy
the location A[i,] after the interchange) is sufficiently
greater in magnitude compared to other entries A[k, i]
(i < k < n,k # j). Similarly, instead of row i, column i
could be exchanged with a suitable column j (i <j < n).
In symmetric LDLT factorization, both row and col-
umn i are interchanged simultaneously with a suitable
row-column pair to maintain symmetry.

Until recently, it was believed that due to unpre-
dictable changes in the structure of the factors due to
partial pivoting, a priori ordering and symbolic factor-
ization could not be performed, and these steps needed
to be combined with numerical factorization. Keeping
the analysis and numerical factorization steps separate
has substantial performance and parallelization bene-
fits, which would be lost if these steps are combined.
Fortunately, modern parallel sparse solvers are able to
perform partial pivoting and maintain numerical sta-
bility without mixing the analysis and numerical steps.
The multifrontal method permits effective implementa-
tion of partial pivoting in parallel and keeps its effects as
localized as possible.

Before computing a fill-reducing ordering, the rows
or columns of the coefficient matrix are permuted such
that the absolute value of the product of the magni-
tude of the diagonal entries is maximized. Special graph
matching algorithms are used to compute this permu-
tation. This step ensures that the diagonal entries of the
matrix have relatively large magnitudes at the begin-
ning of factorization. It has been observed that once the
matrix has been permuted this way, in most cases, very
few interchanges are required during the factorization
process to keep it numerically stable. As a result, factor-
ization can be performed using the static task graph and
the static structures of the supernodes of L and U pre-
dicted by symbolic factorization. When an interchange
is necessary, the resulting changes in the data struc-
tures are registered. Since such interchanges are rare,
the resulting disruption and the overhead is usually well
contained.

The first line of defense against numerical instabil-
ity is to perform partial pivoting within a frontal matrix.
Exchanging rows or columns within a supernode is
local, and if all rows and columns of a supernode can
be successfully factored by simply altering their order,
then nothing outside the supernode is affected. Some-
times, a supernode cannot be factored completely by
local interchanges. This can happen when all candidate
rows or columns for interchange have indices greater
than that of the last row—column pair of the supernode.
In this case, a technique known as delayed pivoting is
employed. The unfactored rows and columns are simply
removed from the current supernode and passed onto
the parent (or parents) in the task graph. Merged with
the parent supernode, these rows and columns have
additional candidate rows and columns available for
interchange, which increases the chances of their suc-
cessful factorization. The process of upward migration
of unsuccessful pivots continues until they are resolved,
which is guaranteed to happen at the root supernode for
a nonsingular matrix.

In the multifrontal framework, delayed pivoting
simply involves adding extra rows and columns to the
frontal matrices of the parents of supernode with failed
pivots. The process is straightforward for the supern-
odes whose tasks are mapped onto individual threads
or processes. For the tasks that require data-parallel
involvement of multiple threads or processes, the extra
rows and columns can be partitioned using the same
strategy that is used to partition the original frontal
matrix.

As mentioned earlier, solving the original system after
factoring the coeflicient matrix involves solving a sparse
lower triangular and a sparse upper triangular system.
The task graph constructed for factorization can be
used for the triangular solves too. For matrices with
an unsymmetric pattern, a subset of edges of the task
DAG may be redundant in each of the solve phases,
but these redundant edges can be easily marked dur-
ing symbolic factorization. Just like factorization, the
computation for the lower triangular solve phase starts
at the leaves of the task graph and proceeds toward the
root. In the upper triangular solve phase, computation
starts at the root and fans out toward the leaves (in other

1886

Sparse Gaussian Elimination

words, the direction of the edges in the task graph is
effectively reversed).

Related Entries
»Dense Linear System Solvers
» Multifrontal Method
»Reordering

Bibliographic Notes and Further
Reading

Books by George and Liu [6] and Duff et al. [5] are excel-
lent sources for a background on sparse direct methods.
A comprehensive survey by Demmel et al. [4] sums up
the developments in parallel sparse direct solvers until
the early 1990s. Some remarkable progress was made
in the development of parallel algorithms and software
for sparse direct methods during a decade starting in
the early 1990s. Gupta et al. [9] developed the frame-
work for highly scalable parallel formulations of sym-
metric sparse factorization based on the multifrontal
method (see tutorial by Liu [12] for details), and recently
demonstrated scalable performance of an industrial
strength implementation of their algorithms on thou-
sands of cores [10]. Demmel et al. [3] developed one
of the first scalable algorithms and software for solving
unsymmetric sparse systems without partial pivoting.
Amestoy et al. [1, 2] developed parallel algorithms and
software that incorporated partial pivoting for solving
unsymmetric systems with (either natural or forced)
symmetric pattern. Hadfield [11] and Gupta [7] laid
the theoretical foundation for a general unsymmet-
ric pattern parallel multifrontal algorithm with partial
pivoting, with the latter following up with a practical
implementation [8].

Bibliography

1. Amestoy PR, Duff IS, Koster J, LExcellent JY (2001) A fully asyn-
chronous multifrontal solver using distributed dynamic schedul-
ing. SIAM] Matrix Anal Appl 23(1):15-41

2. Amestoy PR, Duff IS, UExcellent JY (2000) Multifrontal par-
allel distributed symmetric and unsymmetric solvers. Comput
Methods Appl Mech Eng 184:501-520

3. Demmel JW, Gilbert JR, Li XS (1999) An asynchronous parallel
supernodal algorithm for sparse Gaussian elimination. SIAM]
Matrix Anal Appl 20(4):915-952

4. Demmel JW, Heath MT, van der Vorst HA (1993) Parallel numer-
ical linear algebra. Acta Numerica 2:111-197

5. Duff IS, Erisman AM, Reid JK (1990) Direct methods for sparse
matrices. Oxford University Press, Oxford, UK
6. George A, Liu JW-H (1981) Computer solution of large sparse
positive definite systems. Prentice-Hall, NJ
7. Gupta A (2002) Improved symbolic and numerical factorization
algorithms for unsymmetric sparse matrices. SIAM] Matrix Anal
Appl 24(2):529-552
8. Gupta A (2007) A shared- and distributed-memory parallel gen-
eral sparse direct solver. Appl Algebra Eng Commun Comput
18(3):263-277
9. Gupta A, Karypis G, Kumar V (1997) Highly scalable parallel
algorithms for sparse matrix factorization. IEEE Trans Parallel
Distrib Syst 8(5):502-520
10. Gupta A, Koric S, George T (2009) Sparse matrix factorization
on massively parallel computers. In: SC09 Proceedings, ACM,
Portland, OR, USA
11. Hadfield SM (1992) On the LU factorization of sequences of iden-
tically structured sparse matrices within a distributed memory
environment. PhD thesis, University of Florida, Gainsville, FL
12. Liu JW-H (1992) The multifrontal method for sparse matrix
solution: theory and practice. SIAM Rev 34(1):82-109

! Sparse Gaussian Elimination

»Sparse Direct Methods
»SuperLU

! Sparse Iterative Methods,

Preconditioners for

»Preconditioners for Sparse Iterative Methods

' SPEC Benchmarks

MATTHIAS MULLER', BRIAN WHITNEY?

RosERT HENSCHEL®, KaLYAN KUMARAN®
"Technische Universitit Dresden, Dresden, Germany
*Oracle Corporation, Hillsboro, OR, USA

*Indiana University, Bloomington, IN, USA

* Argonne National Laboratory, Argonne, IL, USA

Synonyms
SPEC HPC96; SPEC HPC2002; SPEC MPI12007; SPEC
OMP2001

http://dx.doi.org/10.1007/978-0-387-09766-4_128
http://dx.doi.org/10.1007/978-0-387-09766-4_86
http://dx.doi.org/10.1007/978-0-387-09766-4_245
http://dx.doi.org/10.1007/978-0-387-09766-4_507
http://dx.doi.org/10.1007/978-0-387-09766-4_95
http://dx.doi.org/10.1007/978-0-387-09766-4_247
http://dx.doi.org/10.1007/978-0-387-09766-4_2383
http://dx.doi.org/10.1007/978-0-387-09766-4_2382
http://dx.doi.org/10.1007/978-0-387-09766-4_2384
http://dx.doi.org/10.1007/978-0-387-09766-4_2385
http://dx.doi.org/10.1007/978-0-387-09766-4_2385

SPEC Benchmarks

1887

Definition

Application-based Benchmarks measure the perfor-
mance of computer systems by running a set of appli-
cations with a well defined configuration and workload.

Discussion

The Standard Performance Evaluation Corporation
(SPEC [Product and service names mentioned herein
may be the trademarks of their respective owners]) is
an organization for creating industry-standard bench-
marks to measure various aspects of modern com-
puter system performance. SPEC was founded in 1988.
In January 1994, the High-Performance Group of the
Standard Performance Evaluation Corporation (SPEC
HPG) was founded with the mission to establish, main-
tain, and endorse a suite of benchmarks representative
of real-world, high-performance computing applica-
tions. Several efforts joined forces to form SPEC HPG
and to initiate a new benchmarking venture that is sup-
ported broadly. Founding partners included the mem-
ber organizations of SPEC, former members of the
Perfect Benchmark effort, and representatives of area-
specific benchmarking activities. Other benchmarking
organizations have joined the SPEC HPG committee
since its formation.

SPEC HPG has developed various benchmark suites
and its run rules over the last few years. The purpose
of those benchmarks and their run rules is to further
the cause of fair and objective benchmarking of high-
performance computing systems. Results obtained with
the benchmark suites are to be reviewed to see whether
the individual run rules have been followed. Once they
are accepted, the results are published on the SPEC
web site (http://www.spec.org). All results, including a
comprehensive description of the hardware they were
produced on, are freely available. SPEC believes that
the user community benefits from an objective series of
tests which serve as a common reference.

The development of the benchmark suites includes
obtaining candidate benchmark codes, putting these
codes into the SPEC harness, testing and improving
the codes’ portability across as many operating sys-
tems, compilers, interconnects, runtime libraries as
possible, and testing the codes for correctness and
scalability.

The codes are put into the SPEC harness. The SPEC
harness is a set of tools that allow users of the bench-
mark suite to easily run the suite, and obtain validated
and publishable results. The users then only need to
submit the results obtained to SPEC for review and
publication on the SPEC web site.

The goals of the run rules of the benchmark suites
are to ensure that published results are meaningful,
comparable to other results, and reproducible. A result
must contain enough information to allow another user
to reproduce the result. The performance tuning meth-
ods employed when attaining a result should be more
than just “prototype” or “experimental” or “research’
methods; there must be a certain level of maturity
and general applicability in the performance methods
employed, e.g., the used compiler optimization tech-
niques should be beneficial for other applications as
well and the compiler should be generally available and
supported.

Two set of metrics can be measured with the bench-
mark suite: “Peak” and “Base” metrics. “Peak” metrics
may also be referred to as “aggressive compilation,”
e.g., they may be produced by building each bench-
mark in the suite with a set of optimizations individ-
ually selected for that benchmark, and running them
with environment settings individually selected for that
benchmark. The optimizations selected must adhere to
the set of general benchmark optimization rules. Base
optimizations must adhere to a stricter set of rules than
the peak optimizations. For example, the “Base” met-
rics must be produced by building all the benchmarks in
the suite with a common set of optimizations and run-
ning them with environment settings common to all the
benchmarks in the suite.

The efforts of SPEC HPG began in 1994 when a group
from industry and academia came together to try and
provide a benchmark suite based upon the principles
that had started with SPEC. Two of the more popular
benchmarks suites at the time were the NAS Parallel
Benchmarks and the PERFECT Club Benchmarks. The
group built upon the direction these benchmarks pro-
vided to produce their first benchmark, SPEC HPC96.

The benchmark SPEC HPC96 came out originally
with two components, SPECseis96 and SPECchem96,
with a third component SPECclimate available later.

http://www.spec.org

1888

SPEC Benchmarks

Each of these benchmarks provided a set of rules,
code, and validation which allowed benchmarking
across a wide variety of hardware, including parallel
platforms.

SPECseis96 is a benchmark application that was
originally developed at Atlantic Richfield Corporation
(ARCO). This benchmark was designed to test compu-
tation that was of interest to the oil and gas industry, in
particular, time and depth migrations which are used to
locate gas and oil deposits.

SPECchem96 is a benchmark based upon the
application GAMESS (General Atomic and Molecu-
lar Electronic Structure System). This computational
chemistry code was used in the pharmaceutical and
chemical industries for drug design and bonding
analysis.

SPECclimate is a benchmark based upon the appli-
cation MM5, the PSU/NCAR limited-area, hydrostatic
or non-hydrostatic, sigma-coordinate model designed
to simulate or predict mesoscale and regional-scale
atmospheric circulation. MM5 was developed by the
Pennsylvania State University (Penn State) and the
University Corporation for Atmospheric Research
(UCAR).

SPEC HPC96 was retired in February 2003, a lit-
tle after the introduction of SPEC HPC2002 and SPEC
OMP2001. The results remain accessible on the SPEC
web site, for reference purposes.

The benchmark SPEC HPC2002 was a follow-on to
SPEC HPC96. The update involved using newer ver-
sions of some of the software, as well as additional
parallelism models. The use of MM5 was replaced with
the application WRE

The benchmark was suitable for shared and dis-
tributed memory machines or clusters of shared
memory nodes. SPEC HPC applications have been col-
lected from among the largest, most realistic compu-
tational applications that are available for distribution
by SPEC. In contrast to SPEC OMP, they were not
restricted to any particular programming model or sys-
tem architecture. Both shared-memory and message
passing methods are supported. All codes of the current
SPEC HPC2002 suite were available in an MPI and an
OpenMP programming model and they included two
data set sizes.

The benchmark consisted of three scientific applica-
tions:

SPECenv (WRF) is based on the WRF weather
model, a state-of-the-art, non-hydrostatic mesoscale
weather model, see http://www.wrf-model.org.
The code consists of 25,000 lines of C and 145,000
lines of F90.

SPECseis was developed by ARCO beginning in 1995
to gain an accurate measure of performance of com-
puting systems as it relates to the seismic process-
ing industry for procurement of new computing
resources. The code is written in F77 and C and has
approximately 25,000 lines.

SPECchem used to simulate molecules ab initio, at the
quantum level, and optimize atomic positions. It is
a research interest under the name of GAMESS at
the Gordon Research Group of Iowa State University
and is of interest to the pharmaceutical industry. It
consists of 120,000 lines of F77 and C.

The SPEC HPC2002 suite was retired in June 2007.
The results remain accessible on the SPEC web site, for
reference purposes.

SPEC’s benchmark suite that measures performance
using applications based on the OpenMP standard
for shared-memory parallel processing. Two levels of
workload (OMPM2001 and OMPL2001) characterize
the performance of medium and large sized systems.
Benchmarks running under SPEC OMPM2001 use up
to 1.6 GB of memory, whereas the applications of SPEC
OMPL2001 require about 6.4 GB in a 16-thread run.

The SPEC OMPM2001 benchmark suite consists
of 11 large application programs, which represent the
type of software used in scientific technical comput-
ing. The applications include modeling and simulation
programs from the fields of chemistry, mechanical engi-
neering, climate modeling, and physics. Of the 11 appli-
cation programs, 8 are written in Fortran and 3 (AMMBP,
ART, and EQUAKE) are written in C. The benchmarks
require a virtual address space of about 1.5 GB in a
I-processor execution. The rationales for this size
were to provide data sets fitting in a 32-bit address
space.

SPEC OMPL2001 consists of 9 application pro-
grams, of which 7 are written in Fortran and 2 (ART and

http://www.wrf-model.org

SPEC Benchmarks

1889

EQUAKE) are written in C. The benchmarks require a
virtual address space of about 6.4 GB in a 16-processor
run. The rationale for this size were to provide data
sets significantly larger than those of the SPEC OMPM
benchmarks, with a requirement for a 64-bit address
space.

The following is a short description of the applica-
tion programs of OMP2001:

APPLU Solves five coupled non-linear PDEs on
a 3-dimensional logically structured grid, using
the Symmetric Successive Over-Relaxation implicit
time-marching scheme.

APSI Lake environmental model, which predicts the
concentration of pollutants. It solves the model for
the mesoscale and synoptic variations of poten-
tial temperature, wind components, and for the
mesoscale vertical velocity, pressure, and distribu-
tion of pollutants.

MGRID Simple multigrid solver, which computes a
3-dimensional potential field.

SWIM Weather prediction model, which solves the
shallow water equations using a finite difference
method.

FMA3D Crash simulation program. It simulates
the inelastic, transient dynamic response of 3-
dimensional solids and structures subjected to
impulsively or suddenly applied loads. It uses an
explicit finite element method.

ART (Adaptive Resonance Theory) neural network,
which is used to recognize objects in a thermal
image. The objects in the benchmark are a helicopter
and an airplane.

GAFORT Computes the global maximum fitness
using a genetic algorithm. It starts with an ini-
tial population and then generates children who go
through crossover, jump mutation, and creep muta-
tion with certain probabilities.

EQUAKE Is an earthquake-modeling program. It
simulates the propagation of elastic seismic waves
in large, heterogeneous valleys in order to recover
the time history of the ground motion everywhere
in the valley due to a specific seismic event. It uses a
finite element method on an unstructured mesh.

WUPWISE (Wuppertal Wilson Fermion Solver) is a
program in the field of lattice gauge theory. Lattice

gauge theory is a discretization of quantum chromo-
dynamics. Quark propagators are computed within
achromodynamic background field. The inhomoge-
neous lattice-Dirac equation is solved.

GALGEL This problem is a particular case of the
GAMM (Gesellschaft fuer Angewandte Mathematik
und Mechanik) benchmark devoted to numerical
analysis of oscillatory instability of convection in
low-Prandtl-number fluids. This program is only
part of OMPM2001.

AMMP (Another Molecular Modeling Program) is
a molecular mechanics, dynamics, and modeling
program. The benchmark performs a molecular
dynamics simulation of a protein-inhibitor com-
plex, which is embedded in water. This program is
only part of OMPM2001.

SPEC MPI2007 is SPEC’s benchmark suite for eval-
uating MPI-parallel, floating point, compute-intensive
performance across a wide range of cluster and SMP
hardware. MPI2007 continues the SPEC tradition of
giving users the most objective and representative
benchmark suite for measuring and comparing high-
performance computer systems.

SPEC MPI12007 focuses on performance of compute
intensive applications using the Message-Passing Inter-
face (MPI), which means these benchmarks empha-
size the performance of the type of computer pro-
cessor (CPU), the number of computer processors,
the MPI Library, the communication interconnect,the
memory architecture,the compilers, and the shared file
system.

It is important to remember the contribution of all
these components. SPEC MPI performance intention-
ally depends on more than just the processor. MP12007
is not intended to stress other computer components
such as the operating system, graphics, or the I/O sys-
tem. Table 1 contains the list of codes, together with
information on the benchmark set size, programming
language, and application area.

104.milc,142.dmilc stands for MIMD Lattice Compu-
tation and is a quantum chromodynamics (QCD)
code for lattice gauge theory with dynamical quarks.
Lattice gauge theory involves the study of some
of the fundamental constituents of matter, namely

SPEC Benchmarks

SPEC Benchmarks. Table 1 List of applications in SPEC MPI2007

104.milc medium C Physics: Quantum Chromodynamics (QCD)
107.leslie3d medium Fortran Computational Fluid Dynamics (CFD)
113.GemsFDTD medium Fortran Computational Electromagnetics (CEM)

115.fds4 medium C/Fortran Computational Fluid Dynamics (CFD)

121.pop2 medium, large C/Fortran Ocean Modeling

122.tachyon medium, large C Graphics: Parallel Ray Tracing

125.RAXML large C DNA Matching

126.lammps medium, large C++ Molecular Dynamics Simulation

127.wrf2 medium C/Fortran Weather Prediction

128.GAPgeofem medium, large C/Fortran Heat Transfer using Finite Element Methods (FEM)
129.tera_tf medium, large Fortran 3D Eulerian Hydrodynamics

130.socorro medium C/Fortran Molecular Dynamics using Density-Functional Theory (DFT)
132.zeusmp2 medium, large C/Fortran Physics: Computational Fluid Dynamics (CFD)
137.lu medium, large Fortran Computational Fluid Dynamics (CFD)

142.dmilc large C Physics: Quantum Chromodynamics (QCD)
143.dleslie large Fortran Computational Fluid Dynamics (CFD)
145.1GemsFDTD large Fortran Computational Electromagnetics (CEM)

147.12wrf2 large C/Fortran Weather Prediction

quarks and gluons. In this area of quantum field
theory traditional perturbative expansions are not
useful and introducing a discrete lattice of space-
time points is the method of choice.

107leslie3d,143.dleslie The main purpose of this code

is to model chemically reacting (i.e., burning) tur-
bulent flows. Various different physical models are
available in this algorithm. For MPI2007, the pro-
gram has been set up a to solve a test problem
which represents a subset of such flows, namely the
temporal mixing layer. This type of flow occurs in
the mixing regions of all combustors that employ
fuel injection (which is nearly all combustors).
Also, this sort of mixing layer is a benchmark
problem used to understand physics of turbulent
mixing.

LESlie3d uses a strongly conservative, finite-volume
algorithm with the MacCormack Predictor-
Corrector time integration scheme. The accuracy is
fourth-order spatially and second-order temporally.

113.GemsFDTD,145.1GemsFDTD GemsFDTD solves

the Maxwell equations in 3D in the time domain
using the finite-difference time-domain (FDTD)

method. The radar cross section (RCS) of a perfectly
conducting (PEC) object is computed. GemsFDTD
is a subset of the code GemsTD developed in the
General ElectroMagnetic Solvers (GEMS) project.
The core of the FDTD method are second-order
accurate central-difference approximations of the
Faraday’s and Ampere’s laws. These central-
differences are employed on a staggered Cartesian
grid resulting in an explicit finite-difference method.
The FDTD method is also referred to as the Yee
scheme. It is the standard time-domain method
within computational electrodynamics (CEM).

An incident plane wave is generated using so-
called Huygens’ surfaces. This means that the com-
putational domain is split into a total field part
and a scattered field part, where the scattered
field part surrounds the total field part. A time-
domain near-to-far-field transformation computes
the RCS according to Martin and Pettersson. Fast
Fourier transforms (FFT) are employed in the post-
processing.

1451GemsFDTD contains extensive performance
improvements as compared with 113.GemsFDTD.

SPEC Benchmarks

1891

115.fds4

122.tachyon

126.lammps

is a computational fluid dynamics (CFD)
model of fire-driven fluid flow. The software solves
numerically a form of the Navier-Stokes equations
appropriate for low-speed, thermally driven flow
with an emphasis on smoke and heat transport from
fires. It uses the block64 test case as dataset. This
dataset is similar to ones used to simulate fires in
the World Trade Center. The author’s agency did the
investigation of the collapse.

121.pop2 'The Parallel Ocean Program (POP) is a

descendant of the Bryan-Cox-Semtner class of
ocean models first developed by Kirk Bryan and
Michael Cox at the NOAA Geophysical Fluid
Dynamics Laboratory in Princeton, NJ, in the late
1960s. POP had its origins in a version of the
model developed by Semtner and Chervin. POP is
the ocean component of the Community Climate
System Model. Time integration of the model is
split into two parts. The three-dimensional verti-
cally varying (baroclinic) tendencies are integrated
explicitly using a leapfrog scheme. The very fast
vertically uniform (barotropic) modes are inte-
grated using an implicit free surface formulation in
which a preconditioned conjugate gradient solver
is used to solve for the two-dimensional surface
pressure.

is a ray tracing program. It implements
all of the basic geometric primitives such as tri-
angles, planes, spheres, cylinders, etc. Tachyon is
nearly embarrassingly parallel. As a result, MPI
usage tends to be much lower as compared to other
types of MPI applications. The scene to be rendered
is partitioned into a fixed number of pieces, which
are distributed out by the master process to each
processor participating in the computation. Each
processor then renders its piece of the scene in par-
allel, independent of the other processors. Once a
processor completes the rendering of its particular
piece of the scene, it waits until the other processors
have rendered their pieces of the scene, and then
transmits its piece back to the master process. The
process is repeated until all pieces of the scene have
been rendered.

is a classical molecular dynamics simu-
lation code designed to run efficiently on parallel
computers. It was developed at Sandia National Lab-
oratories, a US Department of Energy facility, with

127wrf2,147.2wrf

128.GAPgeofem

129.tera_tf

funding from the DOE. LAMMPS divides 3D space
into 3D sub-volumes, e.g.,a P = AxBxC grid of pro-
cessors, where P is the total number of processors.
It tries to make the sub-volumes as cubic as possible,
since the volume of data exchanged is proportional
to the surface of the sub-volume.

is a weather forecasting code based
on the Weather Research and Forecasting (WRF)
Model, which is a next-generation mesocale numer-
ical weather prediction system designed to serve
both operational forecasting and atmospheric
research needs. The code is written in Fortran 90.
WREF features multiple dynamical cores, a 3-
dimensional variational (3DVAR) data assimilation
system, and a software architecture allowing for
computational parallelism and system extensibility.
Multi-level parallelism support includes distributed
memory (MPI), shared memory (OpenMP), and
hybrid shared/distributed modes of execution. In
the SPEC MPI2007 version of WRE, all OpenMP
directives have been switched off. WREF version 2.0.2
is used in the 127wrf2 benchmark version. WRF
version 2.1.2 is used in the benchmark version,
147.12wrf2.

is a GeoFEM-based parallel finite-
element code for transient thermal conduction
with gap radiation and very heterogeneous material
property. GeoFEM is an acronym for Geophysical
Finite Element Methods, and it is a software used on
the Japanese Earth Simulator system for the mod-
eling of solid earth phenomena such as mantle-
core convection, plate tectonics, and seismic wave
propagation and their coupled phenomena. A back-
ward Euler implicit time-marching scheme has been
adopted. Linear equations are solved by parallel
CG (conjugate gradient) iterative solvers with point
Jacobi preconditioning.

is a three dimensional Eulerian hydrody-
namics application using a 2nd order Godunov-type
scheme and a 3rd order remapping. It uses mostly
point-to-point messages, and some reductions use
non-blocking messages. The global domain is a
cube, with N cells in each direction, which amounts
to a total number of N* cells. To set up the problem,
one needs to define the number of cells in each direc-
tion, and the number of blocks in each direction.
Each block corresponds to an MPI task.

SPEC Benchmarks

130.socorro is a modular, object oriented code for
performing self-consistent electronic-structure cal-
culations utilizing the Kohn-Sham formulation of
density-functional theory. Calculations are per-
formed using a plane wave basis and either norm-
conserving pseudopotentials or projector augmented
wave functions. Several exchange-correlation
functionals are available for use including the
local-density approximation (Perdew-Zunger or
Perdew-Wang parameterizations of the Ceperley-
Alder QMC correlation results) and the generalized-
gradient approximation (PW91, PBE, and BLYP).
Both Fourier-space and real-space projectors have
been implemented, and a variety of methods are
available for relaxing atom positions, optimizing cell
parameters, and performing molecular dynamics
calculations.

132.zeusmp2 is a computational fluid dynamics code
developed at the Laboratory for Computational
Astrophysics (NCSA, SDSC, University of Illinois
at Urbana-Champaign, UC San Diego) for the sim-
ulation of astrophysical phenomena. The program
solves the equations of ideal (non-resistive), non-
relativistic, hydrodynamics and magnetohydrody-
namics, including externally applied gravitational
fields and self-gravity. The gas can be adiabatic or
isothermal, and the thermal pressure is isotropic.
Boundary conditions may be specified as reflecting,
periodic, inflow, or outflow.
132.zeusmp?2 is based on ZEUS-MP Version 2, which
is a Fortran 90 rewrite of ZEUS-MP under devel-
opment at UCSD (by John Hayes). It includes new
physics models such as flux-limited radiation dif-
fusion (FLD), and multispecies fluid advection is
added to the physics set. ZEUS-MP divides the com-
putational space into 3D tiles that are distributed
across processors. The physical problem solved in
SPEC MPI2007 is a 3D blastwave simulated with
the presence of a uniform magnetic field along the
x-direction. A Cartesian grid is used and the bound-
aries are “outflow”

137Iu hasarich ancestry in benchmarking. Its imme-
diate predecessor is the LU benchmark in NPB3.2-
MPI, part of the NAS Parallel Benchmark suite.
It is sometimes referred to as APPLU (a version
of which was 173.applu in CPU2000) or NAS-
LU. The NAS-LU code is a simplified compressible

Navier-Stokes equation solver. It does not perform
an LU factorization, but instead implements a sym-
metric successive over-relaxation (SSOR) numerical
scheme to solve a regular-sparse, block lower and
upper triangular system.

The code computes the solution of five coupled non-
linear PDE’s, on a 3-dimensional logically struc-
tured grid, using an implicit pseudo-time marching
scheme, based on two-factor approximate factoriza-
tion of the sparse Jacobian matrix. This scheme is
functionally equivalent to a nonlinear block SSOR
iterative scheme with lexicographic ordering. Spatial
discretization of the differential operators are based
on a second-order accurate finite volume scheme.
It insists on the strict lexicographic ordering dur-
ing the solution of the regular sparse lower and
upper triangular matrices. As a result, the degree of
exploitable parallelism during this phase is limited
to O(N?) as opposed to O(N?) in other phases and
its spatial distribution is non-homogenous. This fact
also creates challenges during the loop re-ordering
to enhance the cache locality.

Related Entries
»Benchmarks

»HPC Challenge Benchmark
»NAS Parallel Benchmarks

» Perfect Benchmarks

Bibliographic Notes and Further
Reading

There are numerous efforts to create benchmarks for
different purposes. One of the early application bench-
marks are the so-called “Perfect Club Benchmarks”[6],
an effort that among others initiated the SPEC High Per-
formance Group (HPG) activities[9]. The goal of SPEC
HPGis to create application benchmarks to measure the
performance of High Performance Computers. There
are also other efforts that share this goal. Often such a
collection is assembled during a procurement process.
However, it normally is not used outside this specific
process, nor does such a collection claim to be represen-
tative for a wider community. Two of the collections that
are in wider use are the NAS Parallel Benchmarks [5]
and the HPC Challenge benchmark [8]. The NAS Par-
allel Benchmarks (NPB) are a small set of programs
designed to help evaluate the performance of parallel

http://dx.doi.org/10.1007/978-0-387-09766-4_154
http://dx.doi.org/10.1007/978-0-387-09766-4_156
http://dx.doi.org/10.1007/978-0-387-09766-4_133
http://dx.doi.org/10.1007/978-0-387-09766-4_358

SPEC MPI2007

1893

supercomputers. The benchmarks, which are derived
from computational fluid dynamics (CFD) applications,
consist of five kernels and three pseudo-applications.
HPCC consists of synthetic kernels measuring differ-
ent aspects of a parallel system, like CPU, memory
subsystem, and interconnect.

Two other benchmarks that consist of applications
are the ASCI-benchmarks used in the procurement pro-
cess of various ASCI-machines. ASCI-Purple [1] con-
sists of nine benchmarks and three stress tests. Its last
update was in 2003. The ASCI-Sequoia benchmark [2] is
the successor, it consists of 17 applications and synthetic
benchmarks, but only seven codes are MPI parallel.
A similar collection is the DEISA benchmark suite [7].
It contains 14 codes, but for licensing reasons, three
of the benchmarks must be obtained directly from the
code authors and placed in the appropriate location
within the benchmarking framework.

There are also a number of publications with more
details about the SPEC HPG benchmarks. Details of
SPEC HPC2002 are available in [10].Characteristics of
the SPEC benchmark suite OMP2001 are described by
Saito et al. [14] and Miiller et. al [12]. Aslot et al. [3]
have presented the benchmark suite. Aslot et al.[4] and
Iwashita et al.[11] have described performance charac-
teristics of the benchmark suite. The SPEC High Perfor-
mance Group published a more detailed description of
MPI2007 in [13]. Some performance characteristics are
depicted in [15].

Bibliography
1. ASCI-Purple home page (2003) https://asc.llnl.gov/computing
resources/purple/archive/benchmarks
2. ASCI-Sequoia page.
benchmarks.
3. Aslot V, Domeika M, Eigenmann R, Gaertner G, Jones WB,
Parady B (2001) SPEComp: a new benchmark suite for measur-

home https://asc.llnl.gov/sequoia/

ing parallel computer performance. In: Eigenmann R, Voss M]
(eds) WOMPAT’01: workshop on openmp applications and tools.
LNCS, vol 2104. Springer, Heidelberg, pp 1-10

4. Aslot V, Eigenmann R (2001) Performance characteristics of the
SPEC OMP2001 benchmarks. In: 3rd European workshop on
OpenMP, EWOMP’01, Barcelona, Spain, September 2001

5. Bailey D, Harris T, Saphir W, van der Wijngaart R, Woo A, Yarrow
M (1995) The NAS parallel benchmarks 2.0. Technical report
NAS-95-020, NASA Ames Research Center, Moffett Field, CA.
http://www.nas.nasa.gov/Software/NPB

6. Berry M, Chen D, Koss P, Kuck D, Lo S, Pang Y, Pointer, Rolo R,
Sameh A, Clementi E, Chin S, Schneider D, Fox G, Messina P,

10.

1L

12.

13.

14.

15.

Walker D, Hsiung C, Schwarzmeier], Lue K, Orszag S, Seidl
E Johnson O, Goodrum R, Martin J (1989) The perfect club
benchmarks: effective performance evaluation of supercomput-
ers. Int] High Perform Comp Appl 3(3):5-40

DEISA benchmark suite home page. http://www.deisa.eu/
science/benchmarking

. Dongarra], Luszczek P (2005) Introduction to the hpcchallenge

benchmark suite. ICL technical report ICL-UT-05-01, ICL 2005

. Eigenmann R, Hassanzadeh S (1996) Benchmarking with real

industrial applications: the SPEC high-performance group. IEEE
Comp Sci & Eng 3(1):18-23

Eigenmann R, Gaertner G, Jones W (2002) SPEC HPC2002: the
next high-performance computer benchmark. In: Lecture notes
in computer science, vol 2327. Springer, Heidelberg, pp 7-10
Iwashita H, Yamanaka E, Sueyasu N, van Waveren M, Miura K
(2001) The SPEC OMP 2001 benchmark on the Fujitsu PRIME-
POWER system. In: 3rd European workshop on OpenMP,
EWOMP’01, Barcelona, Spain, September 2001

Miiller MS, Kalyanasundaram K, Gaertner G, Jones W, Eigen-
mann R, Lieberman R, van Waveren M, Whitney B (2004) SPEC
HPG benchmarks for high performance systems. Int] High Per-
form Comp Netw 1(4):162-170

Miiuller MS, van Waveren M, Lieberman R, Whitney B, Saito
H, Kumaran K, Baron], Brantley WC, Parrott C, Elken T, Feng
H, Ponder C (2010) SPEC MPI2007 - an application benchmark
suite for parallel systems using MPIL. Concurrency Computat:
Pract Exper 22(2):191-205

Saito H, Gaertner G, Jones W, Eigenmann R, Iwashita H, Lieber-
man R, van Waveren M, Whitney B (2002) Large system per-
formance of SPEC OMP2001 benchmarks. In: Zima HP, Joe K,
Sata M, Seo Y, Shimasaki M (eds) High performance comput-
ing, 4th international symposium, ISHPC 2002. Lecture notes in
computer science, vol 2327. Springer, Heidelberg, pp 370-379
Szebenyi Z, Wylie BJN, Wolf F (2008) SCALASCA parallel perfor-
mance analyses of SPEC MPI2007 applications. In: Proceedings
of the 1st SPEC international performance evaluation workshop
(SIPEW). LNCS, vol 5119. Springer, Heidelberg, pp 99-123

' SPEC HPC2002

»SPEC Benchmarks

' SPEC HPC96

»SPEC Benchmarks

' SPEC MPI2007

»SPEC Benchmarks

https://asc.llnl.gov/computing_resources/purple/archive/benchmarks
https://asc.llnl.gov/computing_resources/purple/archive/benchmarks
https://asc.llnl.gov/sequoia/benchmarks
https://asc.llnl.gov/sequoia/benchmarks
http://www.nas.nasa.gov/Software/NPB
http://www.deisa.eu/science/benchmarking
http://www.deisa.eu/science/benchmarking
http://dx.doi.org/10.1007/978-0-387-09766-4_370
http://dx.doi.org/10.1007/978-0-387-09766-4_370
http://dx.doi.org/10.1007/978-0-387-09766-4_370

1894

SPEC OMP2001

' SPEC OMP2001

»SPEC Benchmarks

! Special-Purpose Machines

» Anton, a Special-Purpose Molecular Simulation
Machine

»GRAPE

»JANUS FPGA-Based Machine

»QCD apeNEXT Machines

»QCDSP and QCDOC Computers

! Speculation

»Speculative Parallelization of Loops
»Speculation, Thread-Level
» Transactional Memory

! Speculation, Thread-Level

Josep TORRELLAS
University of Illinois at Urbana-Champaign, Urbana,
IL, USA

Synonyms

Speculative multithreading (SM); Speculative
parallelization; Speculative run-time parallelization;
Speculative threading; Speculative thread-level par-
allelization; Thread-level data speculation (TLDS);
Thread level speculation (TLS) parallelization; TLS

Definition

Thread-Level Speculation (TLS) refers to an environ-
ment where execution threads operate speculatively,
performing potentially unsafe operations, and tem-
porarily buffering the state they generate in a buffer or
cache. At a certain point, the operations of a thread are
declared to be correct or incorrect. If they are correct,
the thread commits, merging the state it generated with
the correct state of the program; if they are incorrect,

the thread is squashed and typically restarted from its
beginning. The term TLS is most often associated to
a scenario where the purpose is to execute a sequen-
tial application in parallel. In this case, the compiler or
the hardware breaks down the application into specu-
lative threads that execute in parallel. However, strictly
speaking, TLS can be applied to any environment where
threads are executed speculatively and can be squashed
and restarted.

Discussion

In its most common use, Thread-Level Speculation
(TLS) consists of extracting units of work (i.e., tasks)
from a sequential application and executing them on
different threads in parallel, hoping not to violate
sequential semantics. The control flow in the sequen-
tial code imposes a relative ordering between the tasks,
which is expressed in terms of predecessor and suc-
cessor tasks. The sequential code also induces a data
dependence relation on the memory accesses issued by
the different tasks that parallel execution cannot violate.

A task is Speculative when it may perform or may
have performed operations that violate data or con-
trol dependences with its predecessor tasks. Other-
wise, the task is nonspeculative. The memory accesses
issued by speculative tasks are called speculative mem-
ory accesses.

When a nonspeculative task finishes execution, it is
ready to Commit. The role of commit is to inform the
rest of the system that the data generated by the task
is now part of the safe, nonspeculative program state.
Among other operations, committing always involves
passing the Commit Token to the immediate succes-
sor task. This is because maintaining correct sequential
semantics in the parallel execution requires that tasks
commit in order from predecessor to successor. If a task
reaches its end and is still speculative, it cannot com-
mit until it acquires nonspeculative status and all its
predecessors have committed.

Figure 1 shows an example of several tasks run-
ning on four processors. In this example, when task T3
executing on processor 4 finishes the execution, it can-
not commit until its predecessor tasks TO, T1, and T2
also finish and commit. In the meantime, depending on

http://dx.doi.org/10.1007/978-0-387-09766-4_370
http://dx.doi.org/10.1007/978-0-387-09766-4_199
http://dx.doi.org/10.1007/978-0-387-09766-4_199
http://dx.doi.org/10.1007/978-0-387-09766-4_286
http://dx.doi.org/10.1007/978-0-387-09766-4_414
http://dx.doi.org/10.1007/978-0-387-09766-4_3
http://dx.doi.org/10.1007/978-0-387-09766-4_304
http://dx.doi.org/10.1007/978-0-387-09766-4_35
http://dx.doi.org/10.1007/978-0-387-09766-4_170
http://dx.doi.org/10.1007/978-0-387-09766-4_2232
http://dx.doi.org/10.1007/978-0-387-09766-4_2233
http://dx.doi.org/10.1007/978-0-387-09766-4_2233
http://dx.doi.org/10.1007/978-0-387-09766-4_2234
http://dx.doi.org/10.1007/978-0-387-09766-4_2235
http://dx.doi.org/10.1007/978-0-387-09766-4_2236
http://dx.doi.org/10.1007/978-0-387-09766-4_2236
http://dx.doi.org/10.1007/978-0-387-09766-4_2237
http://dx.doi.org/10.1007/978-0-387-09766-4_2143
http://dx.doi.org/10.1007/978-0-387-09766-4_2238
http://dx.doi.org/10.1007/978-0-387-09766-4_122

Speculation, Thread-Level

1895

Proc# 1 2
Time

. Nonspeculative

task timeline

Stall

—> Commit token
transfer

Speculation, Thread-Level. Fig.1 A set of tasks executing on four processors. The figure shows the nonspeculative task

timeline and the transfer of the commit token

the hardware support, processor 4 may have to stall or
may be able to start executing speculative task T7. The
example also shows how the nonspeculative task status
changes as tasks finish and commit, and the passing of
the commit token.

Memory accesses issued by a speculative task
must be handled carefully. Stores generate Speculative
Versions of data that cannot simply be merged with
the nonspeculative state of the program. The reason is
that they may be incorrect. Consequently, these versions
are stored in a Speculative Buffer local to the processor
running the task - e.g., the first-level cache. Only when
the task becomes nonspeculative are its versions safe.

Loads issued by a speculative task try to find the
requested datum in the local speculative buffer. If they
miss, they fetch the correct version from the memory
subsystem, i.e., the closest predecessor version from the
speculative buffers of other tasks. If no such version
exists, they fetch the datum from memory.

As tasks execute in parallel, the system must
identify any violations of cross-task data dependences.
Typically, this is done with special hardware or soft-
ware support that tracks, for each individual task, the
data that the task wrote and the data that the task read
without first writing it. A data-dependence violation is
flagged when a task modifies a datum that has been read
earlier by a successor task. At this point, the consumer

task is squashed and all the data versions that it has
produced are discarded. Then, the task is re-executed.

Figure 2 shows an example of a data-dependence
violation. In the example, each iteration of a loop
is a task. Each iteration issues two accesses to an
array, through an un-analyzable subscripted subscript.
At run-time, iteration J writes A[5] after its succes-
sor iteration J+2 reads A[5]. This is a Read After
Write (RAW) dependence that gets violated due to
the parallel execution. Consequently, iteration J+2 is
squashed and restarted. Ordinarily, all the successor
tasks of iteration J+2 are also squashed at this time
because they may have consumed versions generated
by the squashed task. While it is possible to selectively
squash only tasks that used incorrect data, it would
involve extra complexity. Finally, as iteration J+2 re-
executes, it will re-read A[5]. However, at this time, the
value read will be the version generated by iteration J.

Note that WAR and WAW dependence violations do
not need to induce task squashes. The successor task has
prematurely written the datum, but the datum remains
buffered in its speculative buffer. A subsequent read
from a predecessor task (in a WAR violation) will get a
correct version, while a subsequent write from a prede-
cessor task (in a WAW violation) will generate a version
that will be merged with main memory before the one
from the successor task.

1896

Speculation, Thread-Level

for (i=0; i<N; i++) {

v = AL + ... Iteration J Iteration J+1 lteration J+2
: = A4+ ... =AR2]+ = A[B] + ...
. : RAW violation :
ALKl = ... : :
} Al5] = ... Al2] = ... Al6] = ...

Speculation, Thread-Level. Fig.2 Example of a data-dependence violation

However, many proposed TLS schemes, to reduce
hardware complexity, induce squashes in a variety of sit-
uations. For instance, if the system has no support to
keep different versions of the same datum in different
speculative buffers in the machine, cross-task WAR and
WAW dependence violations induce squashes. More-
over, if the system only tracks accesses on a per-line
basis, it cannot disambiguate accesses to different words
in the same memory line. In this case, false sharing of a
cache line by two different processors can appear as a
data-dependence violation and also trigger a squash.

Finally, while TLS can be applied to various code
structures, it is most often applied to loops. In this
case, tasks are typically formed by a set of consecutive
iterations.

The rest of this article is organized as follows:
First, the article briefly classifies TLS schemes. Then, it
describes the two major problems that any TLS scheme
has to solve, namely, buffering and managing specu-
lative state, and detecting and handling dependence
violations. Next, it describes the initial efforts in TLS,
other uses of TLS, and machines that use TLS.

There have been many proposals of TLS schemes. They
can be broadly classified depending on the emphasis
on hardware versus software, and the type of target
machine.

The majority of the proposed schemes use hardware
support to detect cross-task dependence violations that
result in task squashes (e.g., [1, 4, 6, 8,11,12, 14, 16, 18, 20,
23,27, 28,31, 32, 36]). Typically, this is attained by using
the hardware cache coherence protocol, which sends
coherence messages between the caches when multi-
ple processors access the same memory line. Among all
these hardware-based schemes, the majority rely on a
compiler or a software layer to identify and prepare the
tasks that should be executed in parallel. Consequently,

there have been several proposals for TLS compilers
(e.g., [9, 19, 33, 34]). Very few schemes rely on the
hardware to identify the tasks (e.g., [1]).

Several schemes, especially in the early stages of TLS
research, proposed software-only approaches to TLS
(e.g., [7,13, 25, 26]). In this case, the compiler typically
generates code that causes each task to keep shadow
locations and, after the parallel execution, checks if mul-
tiple tasks have updated a common location. If they
have, the original state is restored.

Most proposed TLS schemes target small shared-
memory machines of about two to eight processors
(e.g., 14, 18, 27, 29]). It is in this range of paral-
lelism that TLS is most cost effective. Some TLS pro-
posals have focused on smaller machines and have
extended a superscalar core with some hardware units
that execute threads speculatively [1, 20]. Finally, some
TLS proposals have targeted scalable multiprocessors
[4, 23, 28]. This is a more challenging environment,
given the longer communication latencies involved. It
requires applications that have significant parallelism
that cannot be analyzed statically by the compiler.

The state produced by speculative tasks is unsafe, since
such tasks may be squashed. Therefore, any TLS scheme
must be able to identify such state and, when neces-
sary, separate it from the rest of the memory state.
For this, TLS systems use structures, such as caches
[4, 6, 12, 18, 28], and special buffers [8, 14, 23, 32], or
undo logs [7, 11, 36]. This section outlines the chal-
lenges in buffering and managing speculative state. A
more detailed analysis and a taxonomy is presented by
Garzaran et al. [10].

Multiple Versions of the Same Variable

in the System

Every time that a task writes for the first time to a
variable, a new version of the variable appears in the

Speculation, Thread-Level

1897

system. Thus, two speculative tasks running on different
processors may create two different versions of the same
variable [4, 12]. These versions need to be buffered sep-
arately, and special actions may need to be taken so that
areader task can find the correct version out of the sev-
eral coexisting in the system. Such a version will be the
version created by the producer task that is the closest
predecessor of the reader task.

A task has at most a single version of any given
variable, even if it writes to the variable multiple times.
The reason is that, on a dependence violation, the whole
task is undone. Therefore, there is no need to keep
intermediate values of the variable.

Multiple Speculative Tasks per Processor

When a processor finishes executing a task, the task
may still be speculative. If the TLS buffering support is
such that the processor can only hold state from a single
speculative task, the processor stalls until the task com-
mits. However, to better tolerate task load imbalance,
the local buffer may have been designed to buffer state
from several speculative tasks, enabling the processor to
execute another speculative task. In this case, the state
of each task must be tagged with the ID of the task.

Multiple Versions of the Same Variable

in a Single Processor

When a processor buffers state from multiple specu-
lative tasks, it is possible that two such tasks create
two versions of the same variable. This occurs in load-
imbalanced applications that exhibit private data pat-
terns (i.e., WAW dependences between tasks). In this
case, the buffer will have to hold multiple versions of
the same variable. Each version will be tagged with a
different task ID. This support introduces complication
to the buffer or cache. Indeed, on an external request,
extra comparisons will need to be done if the cache has
two versions of the same variable.

Merging of Task State

The state produced by speculative tasks is typically
merged with main memory at task commit time; how-
ever, it can instead be merged as it is being generated.
The first approach is called Architectural Main Memory
(AMM) or Lazy Version Management; the second one
is called Future Main Memory (FMM) or Eager Version
Management. These schemes differ on whether the main

memory contains only safe data (AMM) or it can also
contain speculative data (FMM).

In AMM systems, all speculative versions remain
in caches or buffers that are kept separate from the
coherent memory state. Only when a task becomes non-
speculative can its buffered state be merged with main
memory. In a straightforward implementation, when
a task commits, all the buffered dirty cache lines are
merged with main memory, either by writing back the
lines to memory [4] or by requesting ownership for
them to obtain coherence with main memory [28].

In FMM systems, versions from speculative tasks are
merged with the coherent memory when they are gen-
erated. However, to enable recovery from task squashes,
when a task generates a speculative version of a vari-
able, the previous version of the variable is saved in a
log. Note that, in both approaches, the coherent mem-
ory state can temporarily reside in caches, which func-
tion in their traditional role of extensions of main
memory.

Basic Concepts

The second aspect of TLS involves detecting and han-
dling dependence violations. Most TLS proposals focus
on data dependences, rather than control dependences.
To detect (cross-task) data-dependence violations, most
TLS schemes use the same approach. Specifically, when
a speculative task writes a datum, the hardware sets a
Speculative Write bit associated with the datum in the
cache; when a speculative task reads a datum before it
writes to it (an event called Exposed Read), the hard-
ware sets an Exposed Read bit. Depending on the TLS
scheme supported, these accesses also cause a tag asso-
ciated with the datum to be set to the ID of the task.

In addition, when a task writes a datum, the cache
coherence protocol transaction that sends invalidations
to other caches checks these bits. If a successor task has
its Exposed Read bit set for the datum, the successor
task has prematurely read the datum (i.e., this isa RAW
dependence violation), and is squashed [18].

If the Speculative Write and Exposed Read bits are
kept on a per-word basis, only dependences on the same
word can cause squashes. However, keeping and main-
taining such bits on a per-word basis in caches, network

1898

Speculation, Thread-Level

messages, and perhaps directory modules is costly in
hardware. Moreover, it does not come naturally to the
coherence protocol of multiprocessors, which operate
at the granularity of memory lines.

Keeping these bits on a per-line basis is cheaper and
compatible with mainstream cache coherence proto-
cols. However, the hardware cannot then disambiguate
accesses at word level. Furthermore, it cannot combine
different versions of a line that have been updated in dif-
ferent words. Consequently, cross-task RAW and WAW
violations, on both the same word and different words
of a line (i.e., false sharing), cause squashes.

Task squash is a very costly operation. The cost
is threefold: overhead of the squash operation itself,
loss of whatever correct work has already been per-
formed by the offending task and its successors, and
cache misses in the offending task and its successors
needed to reload state when restarting. The latter over-
head appears because, as part of the squash opera-
tion, the speculative state in the cache is invalidated.
Figure 3a shows an example of a RAW violation across
tasks i and i+j+1. The consumer task and its successors
are squashed.

Producer Consumer Producer Consumer
L i+ i+j+1 i+j+2 |_ i+ i+j+1 i+j+2
— —
2 Z =
F +5-RD T—RD
e
P
/
WRT—— > > WR +—+
L [SqshiSash L |
Commit
b L
a L L

Techniques to Avoid Squashes

Since squashes are so expensive, there are techniques to
avoid them. If the compiler can conclude that a certain
pair of accesses will frequently cause a data-dependence
violation, it can statically insert a synchronization
operation that forces the correct task ordering at
runtime.

Alternatively, the machine can have hardware sup-
port that records, at runtime, where dependence vio-
lations occur. Such hardware may record the program
counter of the read or writes involved, or the address
of the memory location being accessed. Based on this
information, when these program counters are reached
or the memory location is accessed, the hardware can
try one of several techniques to avoid the violation. This
section outlines some of the techniques that can be used.
A more complete description of the choices is presented
by Cintra and Torrellas [5]. Without loss of generality, a
RAW violation is assumed.

Based on past history, the predictor may predict
that the pair of conflicting accesses are engaged in
false sharing. In this case, it can simply allow the read
to proceed and then the subsequent write to execute
silently, without sending invalidations. Later, before the

Producer Consumer Producer Consumer
i i+ i++1 i+j+2 i i+ i+j+1 i++2
+—RD +—RD
WR +—+ Rel WR +—
] > — Rel
Commit [By
Commit
C L
d L]

|:| Useful work

% Wasted correct work

@ Possibly incorrect work |:| Stall overhead

- Squash overhead

Checking overhead

Speculation, Thread-Level. Fig. 3 RAW data-dependence violation that results in a squash (a) or that does not cause a
squash due to false sharing or value prediction (b), or consumer stall (c and d)

Speculation, Thread-Level

1899

consumer task is allowed to commit, it is necessary
to check whether the sections of the line read by the
consumer overlap with the sections of the line written
by the producer. This can be easily done if the caches
have per-word access bits. If there is no overlap, it was
false sharing and the squash is avoided. Figure 3b shows
the resulting time line.

When there is a true data dependence between tasks,
a squash can be avoided with effective use of value pre-
diction. Specifically, the predictor can predict the value
that the producer will produce, speculatively provide it
to the consumer’s read, and let the consumer proceed.
Again, before the consumer is allowed to commit, it is
necessary to check that the value provided was correct.
The timeline is also shown in Fig. 3b.

In cases where the predictor is unable to predict the
value, it can avoid the squash by stalling the consumer
task at the time of the read. This case can use two pos-
sible approaches. An aggressive approach is to release
the consumer task and let it read the current value as
soon as the predicted producer task commits. The time
line is shown in Fig. 3c. In this case, if an interven-
ing task between the first producer and the consumer
later writes the line, the consumer will be squashed.
A more conservative approach is not to release the
consumer task until it becomes nonspeculative. In this
case, the presence of multiple predecessor writers will
not squash the consumer. The time line is shown in
Fig. 3d.

An early proposal for hardware support for a form of
speculative parallelization was made by Knight [16] in
the context of functional languages. Later, the Multi-
scalar processor [27] was the first proposal to use a form
of TLS within a single-chip multithreaded architec-
ture. A software-only form of TLS was proposed in the
LRPD test [25]. Early proposals of hardware-based TLS
include the work of several authors [14, 17, 21, 29, 35].

TLS concepts have been used in environments that
have goals other than trying to parallelize sequen-
tial programs. For example, they have been used to
speed up explicitly parallel programs through Spec-
ulative Synchronization [22], or for parallel program

debugging [24] or program monitoring [37]. Similar
concepts to TLS have been used in systems supporting
hardware transactional memory [15] and continuous
atomic-block operation [30].

Several machines built by computer manufacturers have
hardware support for some form of TLS - although
the specific implementation details are typically not dis-
closed. Such machines include systems designed for
Java applications such as Sun Microsystems’ MAJC
chip [31] and Azul Systems’ Vega processor [2].
The most high-profile system with hardware support
for speculative threads is Sun Microsystems’ ROCK
processor [3]. Other manufacturers are rumored to be
developing prototypes with similar hardware.

Bibliography

1. Akkary H, Driscoll M (1998) A dynamic multithreading proces-
sor. In: International symposium on microarchitecture, Dallas,
November 1998

2. Azul Systems. Vega 3 Processor. http://www.azulsystems.com/
products/vega/processor

3. Chaudhry S, Cypher R, Ekman M, Karlsson M, Landin A, Yip S,
Zefter H, Tremblay M (2009) Simultaneous speculative threading:
a novel pipeline architecture implemented in Suns ROCK Pro-
cessor. In: International symposium on computer architecture,
Austin, June 2009

4. Cintra M, Martinez JE, Torrellas J (2000) Architectural support
for scalable speculative parallelization in shared-memory multi-
processors. In: International symposium on computer architec-
ture, Vancouver, June 2000, pp 13-24

5. Cintra M, Torrellas J (2002) Eliminating squashes through
learning cross-thread violations in speculative parallelization for
multiprocessors. In: Proceedings of the 8th High-Performance
computer architecture conference, Boston, Feb 2002

6. Figueiredo R, Fortes] (2001) Hardware support for extract-
ing coarse-grain speculative parallelism in distributed shared-
memory multiprocesors. In: Proceedings of the international
conference on parallel processing, Valencia, Spain, September
2001

7. Frank M, Lee W, Amarasinghe S (2001) A software framework
for supporting general purpose applications on raw computation
fabrics. Technical report, MIT/LCS Technical Memo MIT-LCS-
TM-619, July 2001

8. Franklin M, Sohi G (1996) ARB: a hardware mechanism for
dynamic reordering of memory references. IEEE Trans Comput
45(5):552-571

http://www.azulsystems.com/products/vega/processor
http://www.azulsystems.com/products/vega/processor

1900

Speculation, Thread-Level

10.

1L

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

22.

23.

. Garcia C, Madriles C, Sanchez], Marcuello P, Gonzalez A,

Tullsen D (2005) Mitosis compiler: An infrastructure for specu-
lative threading based on pre-computation slices. In: Conference
on programming language design and implementation, Chicago,
Illinois, June 2005

Garzaran M, Prvulovic M, Llaberia J, Vials V, Rauchwerger L,
Torrellas J (2005) Tradeoffs in buffering speculative memory
state for thread-level speculation in multiprocessors. ACM Trans
Archit Code Optim

Garzaran MJ, Prvulovic M, Llaberia JM, Vifals V, Rauchwerger L,
Torrellas J (2003) Using software logging to support multi-
version buffering in thread-level speculation. In: International
conference on parallel architectures and compilation techniques,
New Orleans, Sept 2003

Gopal S, Vijaykumar T, Smith J, Sohi G (1998) Speculative ver-
sioning cache. In: International symposium on high-performance
computer architecture, Las Vegas, Feb 1998

Gupta M, Nim R (1998) Techniques for speculative run-time par-
allelization of loops. In: Proceedings of supercomputing 1998,
ACM Press, Melbourne, Australia, Nov 1998

Hammond L, Willey M, Olukotun K (1998) Data speculation sup-
port for a chip multiprocessor. In: International conference on
architectural support for programming languages and operating
systems, San Jose, California, Oct 1998, pp 58-69

Herlihy M, Moss E (1993) Transactional memory: architectural
support for lock-free data structures. In: International sympo-
sium on computer architecture, IEEE Computer Society Press,
San Diego, May 1993

Knight T (1986) An architecture for mostly functional languages.
In: ACM lisp and functional programming conference, ACM
Press, New York, Aug 1986, pp 500-519

Krishnan V, Torrellas J (1998) Hardware and software sup-
port for speculative execution of sequential binaries on a chip-
multiprocessor. In: International conference on supercomputing,
Melbourne, Australia, July 1998

Krishnan V, Torrellas J (1999) A chip-multiprocessor archi-
tecture with speculative multithreading. IEEE Trans Comput
48(9):866-880

Liu W, Tuck J, Ceze L, Ahn W, Strauss K, Renau J, Torrellas J
(2006) POSH: A TLS compiler that exploits program structure.
In: International symposium on principles and practice of parallel
programming, San Diego, Mar 2006

Marcuello P, Gonzalez A (1999) Clustered speculative multi-
threaded processors. In: International conference on supercom-
puting, Rhodes, Island, June 1999, pp 365-372

Marcuello P, Gonzalez A, Tubella] (1998) Speculative multi-
threaded processors. In: International conference on supercom-
puting, ACM, Melbourne, Australia, July 1998

Martinez J, Torrellas J (2002) Speculative synchronization: apply-
ing thread-level speculation to explicitly parallel applications.
In: International conference on architectural support for pro-
gramming languages and operating systems, San Jose, Oct
2002

Prvulovic M, Garzaran M], Rauchwerger L, Torrellas J
(2001) Removing architectural bottlenecks to the scalability

24.

25.

26.

27.

28.

29.

30.

3L

32.

33.

34.

35.

36.

37.

of speculative parallelization. In: Proceedings of the 28th inter-
national symposium on computer architecture (ISCA01), New
York, June 2001, pp 204-215

Prvulovic M, Torrellas J (2003) ReEnact: using thread-level spec-
ulation to debug data races in multithreaded codes. In: Inter-
national symposium on computer architecture, San Diego, June
2003

Rauchwerger L, Padua D (1995) The LRPD test: speculative run-
time parallelization of loops with privatization and reduction
parallelization. In: Conference on programming language design
and implementation, La Jolla, California, June 1995

Rundberg P, Stenstrom P (2000) Low-cost thread-level data
dependence speculation on multiprocessors. In: Fourth work-
shop on multithreaded execution, architecture and compilation,
Monterrey, Dec 2000

Sohi G, Breach S, Vijaykumar T (1995) Multiscalar processors. In:
International Symposium on computer architecture, ACM Press,
New York, June 1995

Steffan G, Colohan C, Zhai A, Mowry T (2000) A scalable
approach to thread-level speculation. In: Proceedings of the 27th
Annual International symposium on computer architecture, Van-
couver, June 2000, pp 1-12

Steffan G, Mowry TC (1998) The potential for using thread-
level data speculation to facilitate automatic parallelization. In:
International symposium on high-performance computer archi-
tecture, Las Vegas, Feb 1998

Torrellas J, Ceze L, Tuck J, Cascaval C, Montesinos P, Ahn W,
Prvulovic M (2009) The bulk multicore architecture for improved
programmability. Communications of the ACM, New York
Tremblay M (1999) MAJC: microprocessor architecture for java
computing. Hot Chips, Palo Alto, Aug 1999

Tsai J, Huang J, Amlo C, Lilja D, Yew P (1999) The superthreaded
processor architecture. IEEE Trans Comput 48(9):881-902
Vijaykumar T, Sohi G (1998) Task selection for a multiscalar pro-
cessor. In: International symposium on microarchitecture, Dallas,
Nov 1998, pp 81-92

Zhai A, Colohan C, Steffan G, Mowry T (2002) Compiler opti-
mization of scalar value communication between speculative
threads. In: International conference on architectural support for
programming languages and operating systems, San Jose, Oct
2002

Zhang Y, Rauchwerger L, Torrellas J (1998) Hardware for specula-
tive run-time parallelization in distributed shared-memory mul-
tiprocessors. In: Proceedings of the 4th International symposium
on high-performance computer architecture (HPCA), Phoenix,
Feb 1998, pp 162-174

Zhang Y, Rauchwerger L, Torrellas J (1999) Hardware for spec-
ulative parallelization of partially-parallel loops in DSM multi-
processors. In: Proceedings of the 5th international symposium
on high-performance computer architecture, Orlando, Jan 1999,
pp 135-139

Zhou P, Qin F, Liu W, Zhou Y, Torrellas (2004) iWatcher: efficient
architectural support for software debugging. In: International
symposium on computer architecture, IEEE Computer society,
Miinchen, June 2004

Speculative Parallelization of Loops

1901

! Speculative Multithreading (SM)

»Speculation, Thread-Level

! Speculative Parallelization

»Speculation, Thread-Level
»Speculative Parallelization of Loops

! Speculative Parallelization of
Loops

LAWRENCE RAUCHWERGER
Texas A&M University, College Station, TX, USA

Synonyms

Optimistic loop parallelization; Parallelization; Specu-
lative Parallelization; Speculative Run-Time Paralleliza-
tion; Thread-level data speculation (TLDS); TLS

Definition

Speculative loop (thread) level parallelization is a com-
piler run-time technique that executes optimistically
parallelized loops, verifies the correctness of their exe-
cution and, when necessary, backtracks to a safe state
for possible re-execution. This technique includes a
compiler (static) component for the transformation of
the loop for speculative parallel execution as well as
a run-time component which verifies correctness and
re-executes when necessary.

Discussion

The correctness of optimizing program transforma-
tions, such as loop parallelization, relies on compiler or
programmer analysis of the code. Compiler-performed
analysis is preferred because it is more productive and is
not subject to human error. However, it usually involves
a very complex symbolic analysis which often fails to
produce an optimizing transformation. Sometimes the

outcome of the code analysis depends on the input val-
ues of the considered program block or on computed
values, neither of which are available during compila-
tion. Manual code analysis relies on the use of a higher
level of semantic analysis which is usually more pow-
erful but not applicable if it depends on run-time com-
puted or input values. To overcome this limitation, the
analysis can be (partially) performed at run-time. Run-
time analysis can succeed where static analysis fails
because it has access to the actual values with which
the program symbolic expressions are instantiated and
thus can make aggressive, instance-specific optimiza-
tion (e.g., loop parallelization) decisions.

There are essentially two ways of performing the
run-time analysis that can (in)validate loop paralleliza-
tion (and, in general any other optimization):

o Before executing the parallel version of a loop
e During execution of the parallel version of the loop

The analysis that is performed before loop execution can
be of various degrees of complexity: from constant time
to time proportional to the original loop computation.
The parallel execution of aloop before run-time analysis
is completed is called speculative (aka optimistic) exe-
cution. It represents a speculation because the outcome
of the analysis may, in the end, invalidate the (opti-
mistic) parallel execution of the loop (and its results).
In this case the state before the speculation has to be
restored and the loop is re-executed in a safe manner,
e.g., sequentially. Figure 1 shows the global flowchart of
the speculative parallelization process.

A loop can be executed in parallel, without synchro-
nizations, if and only if the desired outcome of the loop
does not depend upon the relative execution order of
the data accesses across its iterations. This problem has
been modeled with the help of data dependence analysis
[1,13,19,42, 48]. There are three possible types of depen-
dences between two statements that access the same
memory location: flow (read after write - RAW), anti
(write after read - WAR), and output (write after write —
WAW). Flow dependences express a fundamental rela-
tionship about the data flow in the program. Anti and
output dependences, also known as memory-related

http://dx.doi.org/10.1007/978-0-387-09766-4_170
http://dx.doi.org/10.1007/978-0-387-09766-4_170
http://dx.doi.org/10.1007/978-0-387-09766-4_35
http://dx.doi.org/10.1007/978-0-387-09766-4_2142
http://dx.doi.org/10.1007/978-0-387-09766-4_2162
http://dx.doi.org/10.1007/978-0-387-09766-4_2233
http://dx.doi.org/10.1007/978-0-387-09766-4_2233
http://dx.doi.org/10.1007/978-0-387-09766-4_2234
http://dx.doi.org/10.1007/978-0-387-09766-4_2234
http://dx.doi.org/10.1007/978-0-387-09766-4_2237
http://dx.doi.org/10.1007/978-0-387-09766-4_2238

1902

Speculative Parallelization of Loops

Source Code

Compiler

Run-time
transformations

Compile time
M—/—_f_/__/__/_\
Run-time

| Checkpoint |

I
Speculative parallel
execution

Sequential
execution

Speculative Parallelization of Loops. Fig.1 Speculative
run-time parallelization

dependences, are caused by the reuse of storage for
program variables.

When flow data dependences exist between loop
iterations, the loop cannot be executed in parallel
because the original (sequential) semantics of the loop
cannot be preserved. For example, the iterations of the
loop in Fig. 2a must be executed in sequential order
because iteration i+1 needs the value that is produced in
iteration i, for 1 < i < n. The simplest and most desired
outcome of the data dependence analysis is when there
are no anti, output, or flow dependences. In this case,
all the iterations of the loop are independent and can
be executed in any order, e.g., concurrently. Such loops
are known as DOALL loops. In the absence of flow
dependences, which are fundamental to a program’s
algorithms, the anti and/or output dependences can be
removed through privatization (or renaming) [40], a
very effective loop transformation.

Privatization creates, for each processor cooperat-
ing on the execution of the loop, private copies of the
program variables that can give rise to anti-or output
dependences (see, e.g., [2, 16, 17, 38, 39]). Figure 2b
exemplifies a loop that can be executed in parallel after
applying the privatization transformation: The anti-
dependences between statement S2 of iteration i and
statement S1 of iteration i + 1, for 1 < i < n/2, are
removed by privatizing the temporary variable tmp.

This transformation can be applied to a loop variable
if it can be proven, statically or dynamically, that every
read access to it (e.g., elements of array A) is pre-
ceded by a write access to the same variable within
the same iteration. Of course, variables that are never
written (read only) cannot generate any data depen-
dence. Intuitively, variables are privatizable when they
are used as workspace (e.g., temporary variables) within
an iteration.

A semantically higher level transformation is the
parallelization of reduction operations. Reductions are
operations of the form x = x ® exp, where ® is an asso-
ciative operator and x does not occur in exp or anywhere
else in the loop. A simple, but typical example of a
reduction is statement S1 in Fig. 2c. The operator ® is
exemplified by the + operator, the access to the array
A(:) is a read, modify, write sequence, and the func-
tion performed by the loop is a prefix sum of the values
stored in A. This type of reduction is sometimes called
an update and occurs quite frequently in programs.

A reduction can be readily transformed into a paral-
lel operation using, e.g., a recursive doubling algorithm
[12, 15]. When the operator takes the form x = x + exp,
the values taken by variable x can be accumulated in
private storage followed by a global reduction opera-
tion. There are also other, less scalable methods that use
unordered critical sections [7, 48]. When the operator
is also commutative, its substitution with a parallel algo-
rithm can be done with fewer restrictions (e.g., dynamic
scheduling of DOALL loops can be employed).

Thus, the difficulty encountered by compilers in
parallelizing loops with reductions arises not from
transforming the loop for parallel execution but
from correctly identifying and validating reduction pat-
terns in loops. This problem has been handled at com-
pile time mainly by syntactically pattern matching the
loop statements with a template of a generic reduc-
tion, and then performing a data dependence analy-
sis of the variable under scrutiny to guarantee that it
is not used anywhere else in the loop except in the
reduction statement and thus does not cause additional
dependences [48].

In essence, the parallelization of DO (for) loops
depends on proving that their memory reference

Speculative Parallelization of Loops

1903

doi=1,n doi=1,n/2 doi=1,n
A(K(i)) = A(K(i)) + A(K(i-1)) S1: tmp = A(2%) doj=1,m
if (A(K(i)) .eq. 0) then A(2%i) = A(2*i-1) S1: A(j) = A(j) + exp()
B(i) = A(L(i) S2 A(2¥i-1) = tmp enddo
endif enddo enddo
enddo
a b d

Speculative Parallelization of Loops. Fig.2 Examples of representative loops targeted by automatic parallelization

patterns do not carry data dependences or that there
are legal transformations that can remove possible
data dependences. The burden of proof relies on the
static analysis performed by autoparallelizing compil-
ers. However, there are many situations when this is not
possible because either symbolic analysis is not power-
ful enough or the memory reference pattern is input
or data dependent. The technique that can overcome
such problems is run-time parallelization because, at
run-time, all input values are known and the symbolic
evaluation of complex expressions is vastly simplified.
In this scenario, the compiler generates, conceptually
at least, a parallel and a serial version of the loop as
well code for the dynamic dependence analysis using
the loop’s memory references.

If the decision about the serial or parallel character
of the loop is (and can be) made before its execution,
then the results computed and written by the loop
to memory can be considered to be always correct.
Such a technique is called “inspector/executor” [31-33]
because the memory references are first “inspected”
and then executed in a safe manner, whether sequen-
tially or concurrently. In this context, an “inspector”
is obtained by extracting a loop slice that generates
(and perhaps records) the relevant memory addresses
which can then reveal possible loop-carried data depen-
dences. It is important for such “inspectors” to be
scalable and not to become serial bottlenecks. If no
dependences are found, then the loop can be sched-
uled (and executed) as a DOALL, i.e., all its iterations
can be executed concurrently. If dependences are found,
then the “executor” of the loop has to enforce them
using ordered synchronizations at the memory or iter-
ation level such that sequential semantics is preserved.
A frequently used solution [23, 24, 33] to this problem
has been to first construct the loop dependence graph
from the memory trace obtained by the inspector and
then to use it to compute a parallel execution schedule.

Finally, the loop is executed in parallel according to the
schedule.

The computation of this execution schedule can also
be interleaved with the executor [46]. If the reference
pattern does not change within a larger scope than the
considered loop, then the schedule can be reused, thus
reducing the impact of its overhead. There have been
several variations of this technique which were reported
in [22].

If aloop is executed in parallel before its data depen-
dences are uncovered, then it can cause out of order
memory references which may lead to incorrect com-
putation. Such an execution model is called speculative
execution, also known as optimistic execution, because
its performance is based on the the optimistic assump-
tion that such dependences do in fact not material-
ize or are quite infrequent. To ensure that even when
dependences may occur, the final computation pro-
duces sequentially equivalent results, the speculative
execution model includes a restart from a safe (cor-
rect) state mechanism. Such a mechanism implies either
saving state (checkpointing) before its speculative mod-
ification or writing into a temporary memory which has
to be later merged (committed) into the global state of
the program.

For example, the references to array A in the loop in
Fig. 2a depend on some input values stored in array K
and cannot be statically analyzed by the compiler. An
inspector for this loop would analyze the contents of
array K and decide whether the loop is parallel and then
execute it accordingly. A speculative approach is to exe-
cute the loop in parallel while at the same time record-
ing all the references to A. After the loop has ended, the
memory trace is checked for data dependences and, if
any are found, the results are discarded and the loop is
re-executed sequentially or in some other safer mode.
Alternatively, the memory references can be checked
as they occur (“on-the-fly”) and, if dependences are

1904

Speculative Parallelization of Loops

detected the execution can be aborted at that point, the
program state repaired and the loop restarted in a safe
manner.

There are advantages and disadvantages to using
either of the run-time parallelization methods. In the
“inspector/executor” approach, the inspector does not
modify the program state and thus does not require
a restart mechanism with its associated memory over-
head. On the other hand, a speculative approach may
need to discard its results and restart from a safe state.
This implies the allocation of additional memory for
checkpointing or buffering state. Inspectors always add
to the critical path of the program because they have to
be inserted serially before the parallelized loop. Spec-
ulative parallelization performs the needed inspection
of the memory references during the parallel execution
almost independently from the actual computation and
thus can be almost overlapped with it (assuming avail-
able resources). On the other hand, the checkpoint or
commit phase introduces some overhead which may
add to the critical path. What is perhaps the most
important feature of speculative parallelization is its
general applicability, even when the memory reference
pattern is dependent on the computation of the loop.
For example, the code snippet in Fig. 3 shows that the
reference to array NUSED is dependent on its value
which in turn, may have been modified in a different
iteration (because the indirection array IHITS is not
known at compile time).

There are two ways to look at speculation: opti-
mistically assuming that a loop is fully parallel and can
be executed as a DOALL or, pessimistically, assuming
that the loop has dependences and must be executed
as a DOACROSS, i.e., with synchronizations. When
a DOALL is expected, then the overhead of the data
checking can be done once, after the speculative loop

read (IHITS(:))
do k=1, LST
j=IHITS(1,k)
if (NUSED(j).LE.1) then
NUSED(j)=NUSED(j) -1
endif
enddo

Speculative Parallelization of Loops. Fig.3 A loop
example where only speculative parallelization is possible:
array indexes are computed during loop execution

has finished. If, however, dependences are expected,
then they need to be detected early so that the resulting
incorrect computation can be minimized. Early detec-
tion means frequent memory reference checks, well
before the speculative loop has finished. These spec-
ulative approaches are bridged (transformed into one
another) through the variation of the frequency (gran-
ularity) of the memory reference checks from once per
loop to once per reference.

A related, but different limitation of compilers is
their inability to analyze and parallelize most while
loops. The reason is twofold:

e The classical loop dependence analysis looks for
dependences in abounded iteration space. However,
the upper bound of a while loop can only be con-
servatively established at compile time which results
in overly restrictive decisions, possibly inhibiting
parallelization.

o The fully parallel execution of a while loop with-
out data dependences (e.g., do loops with possible
premature exits) may not be limited to the original
iteration space. Iterations may be executed beyond
their sequential upper bound, i.e., “overshoot” and
thus incorrectly modify the global state.

A possible solution is to use a speculative paral-
lel execution framework which allows discarding any
unnecessary work and its effects. Speculation can also
be used to estimate an upper bound of the iteration
space of while loops.

The optimistic version of speculative parallelization
executes a loop in parallel and tests subsequently if any
data dependences could have occurred. If this valida-
tion test fails, then the loop is re-executed in a safe
manner, starting from a safe state, e.g., sequentially
from a previous checkpoint. This approach, known as
the LRPD Test (Lazy Reduction and Privatization Doall
Test), [25, 27] is sketched in the next paragraph. To
qualify more loops as parallel, array privatization and
reduction parallelization can be speculatively applied
and their validity tested after loop termination.
Consider a do loop for which the compiler cannot
statically determine the access pattern of a shared array
A (Fig. 4a). The compiler allocates the shadow arrays for

Speculative Parallelization of Loops

1905

doi=1,5 doall i=1, 5
z = A(K(i)) markread(K(i))
if (B(i) .eq. .true.) then z = A(K(i))
A(L(i)) = z +C(i) if (B(i) .eq. .true.) then
endif markwrite(L(i))
enddo A(L(i)) = z +C(i)
B(1:5)=(10101) endif
K(1:5)=(12341) enddoall
L(1:5)=(22442) b
a

Shadow arrays
PD test 1 2|3 4 tw tm
Ay o1 |0 1 3 2
A, 1 1 1 1
Ao 1 1 1 1
Al () AAQ) o110 1
Ap() A App() o110 1

C

Speculative Parallelization of Loops. Fig. 4 Do loop (a) transformed for speculative execution, (b) the markwrite and

markread operations update the appropriate shadow arrays, (c) shadow arrays after loop execution. In this example,

the test fails

marking the write accesses, A,,, and the read accesses,
A, and an array A, for flagging non-privatizable ele-
ments. The loop is augmented with code (Fig. 4b) that
during the speculative execution will mark the shadow
arrays every time A is referenced (based on specific
rules). The result of the marking can be seen in Fig. 4c.
The first time an element of A is written during an iter-
ation, the corresponding element in the write shadow
array A,, is marked. If, during any iteration, an element
in A is read, but never written, then the corresponding
element in the read shadow array A, is marked. Another
shadow array A, is used to flag the elements of A that
cannot be privatized: An element in A,,, is marked if, in
any iteration, the corresponding element in A has been
written only after it has been read.

A post-execution analysis, illustrated in Fig. 4c,
determines whether there were any cross-iteration
dependencies between statements referencing A as fol-
lows. If any(A,, (:) AA,(:)) is true, (any returns the “OR”
of its vector operand’s elements, i.e., any(v(1l : n)) =
(v(1) v v(2) v ... v v(n))) then there is at least one
flow- or anti-dependence that was not removed by pri-
vatizing A (some element is read and written in different
iterations). If any(A,,(:)) is true, then A is not privati-
zable (some element is read before being written in an
iteration). If tw, the total number of writes marked dur-
ing the parallel execution, is not equal to ¢m, the total
number of marks computed after the parallel execution,
then there is at least one output dependence (some ele-
ment is overwritten); however, if A is privatizable (i.e.,
if any(An,(:)) is false), then these dependencies were
removed by privatizing A.

The addition of an A,, field to the shadow structure
and some simple marking logic can extend the previous

algorithm to validate parallel reductions at run-time
(25, 27].

For this speculative technique two safe restart meth-
ods can be used [21, 25].

e The compiler either generates a checkpoint of all
global, modified variables before the starting the
speculative loop or does it, on demand, before a vari-
able is modified the first time.

o The compiler generates code to allocate temporary,
private storage for the global, modified variables. If
the test fails the private storage is de-allocated, else
its contents are merged into the global storage.

The data structures used for the checkpointing and
shadowing can be appropriately chosen depending on
the dense (e.g., arrays) or sparse reference characteris-
tics of the loop (e.g., hash tables, linked lists) [44].

Compiler analysis can reduce the overhead of spec-
ulation by establishing equivalence classes (in the data
dependence sense) of the interesting memory refer-
ences and then tracking only one representative per
class [44].

The speculative LRPD test has been later modi-
fied into the R-LRPD (Recursive LRPD) test [6] to
improve its performance for loops with dependences.
When a speculative parallel loop is block scheduled, the
R-LRPD test can detect the iteration that is the source of
the earliest dependence and thus validate the execution
of the loop up to it. The remainder of the loop is then
speculatively re-executed in a recursive manner until all
work has finished, thus guaranteeing, at worst, a serial
time complexity.

1906

Speculative Parallelization of Loops

If dependences are expected, then speculation should
be verified frequently, so that incorrect iterations can
be restarted as soon as violations have occurred, thus
reducing the overall speculation overhead. Approaches
that track dependencies at low level (access/itera-
tion), usually simulate the operation of a cache coher-
ence protocol-based (hardware-based) TLS (Thread
Level Speculation). Figure 5 depicts a sliding-window
approach: The updates are recorded in per-iteration
private storage and are merged (committed) to global
storage by the oldest executing iteration, referred to as
the master. Since the master represents a nonspecula-
tive thread, i.e., it cannot be invalidated by any future

P = Processor; It = Iteration

——> Read-after-write (RAW) violation

I:] Iteration executed in private space

|t=2 “:3

iteration, its updates are known to be correct and the
copy-out operation is safe. Then, the next iteration
becomes nonspeculative and can eventually commit its
updates, etc.

While implementations are diverse, one approach
[4, 28] could be that (1) a read access returns the value
written by the closest predecessor iteration (forward-
ing), or the nonspeculative value if no such write exists,
and (2) a write access to memory location 1 signals
a flow dependence violation if a successor iteration
has read from location 1. This behavior is achieved
by inspecting the shadow vectors A,, and A,, which
record per-iteration write/read accesses. For example, in
Fig. 5, the call of the function validate by iteration

doacross i=1, 5
markread(K(i))
z = A(K(0)
if (B(i) .eq. .true.) then
A(L(i))=z+C(i)

::= : - Serial commit by the master iteration markwrite(L(i))
= if (.not. validate(i, L(i))) then
rollback()
endif
endif
wait_until_master()
lt=2 commit()
Rollback p_-2 enddo
it 2,3,4 It=3
P
| 1
o
| 1
o
| 1
o
| 1
: | It=4
: 1 4
\ ! It=5 It=5
: 3 P=1 P=1
1 1
Exicutién
ime | ;
| 1
| ‘ P mmmmmmmm———— -
' Aw Ar Aw Ar Aw Ar
1 L]
2 L]
3 H
4 L]
5

Speculative Parallelization of Loops. Fig. 5 Serial-commit, sliding-window-based Thread Level Speculation execution.
Dashed, red arrows starting from A, /A, represent the source/sink of flow dependences

Speculative Parallelization of Loops

1907

1, which writes A[2], detects a flow dependence viola-
tion because iteration 2 already read A[2]. The master
is always correct, so iteration 1 commits its updates, but
restarts iterations 2, 3, and 4. Similarly, iterations 3 and
4 are the source and sink of another flow dependence
violation.

While maintaining per-iteration shadow vectors is
prohibitively expensive in many cases, a sliding win-
dow of size C will reduce the memory overhead to more
manageable levels. In particular, since only C consec-
utive iterations may execute concurrently, only O(C)
sets of shadow vectors need to be maintained, and then
recycled.

Speculative DOACROSS methods are best suited for
loops with more frequent data dependences because
they can detect dependences earlier thus reducing
wasted computation. However, verifying the depen-
dence violation for each memory reference can be quite
expensive because it requires global synchronizations.
Furthermore, the merge (commit) phase is done in iter-
ation order which constitutes a serial bottleneck. Loops
with frequent dependences are not candidates for scal-
able parallelization regardless of the methods used to
detect and process them. They cause, aside from lack
of parallelism, frequent back tracking which rapidly
degrades performance to possible negative levels.

While loops and do loops with conditional prema-
ture exits arise frequently in practice and techniques for
extracting their available parallelism [5, 26] are highly
desirable. In the most general form, a while loop can
be defined as a loop that includes at least one recurrence,
a remainder, and at least one termination condition.
The dominating recurrence, which precedes the rest of
the computation is called the dispatching recurrence, or
simply the dispatcher (Fig. 6a).

Sometimes the termination conditions form part
of one of the recurrences, but they can also occur in
the remainder, e.g., conditional exits from do loops.
Assuming, for simplicity, that the remainder is fully
parallelizable, there are two potential problems in the
parallelization of while constructs:

o Evaluating the recurrences. If the recurrences cannot
be evaluated in parallel, then the iterations of the

loop must be started sequentially, leading in the best
case to a pipelined execution.

o Evaluating the termination conditions. If the ter-
mination conditions (loop exits) cannot be evalu-
ated independently by all iterations, the parallelized
while loop could continue to execute beyond the
point where the original sequential loop would stop,
i.e., it can overshoot.

Evaluating the recurrences concurrently. In general, the
terms of the dispatcher must be evaluated sequentially,
e.g., the pointer chasing when traversing a linked list.
Because the values of the dispatcher (the pointer) must
be evaluated in sequential order, iteration i of the loop
cannot be initiated until the dispatcher for iteration
i — 1 has been computed (see Fig. 6b). However, if
the dispatching recurrence is associative then it can be
evaluated in parallel using, e.g., a parallel prefix algo-
rithm (see Fig. 6¢). Better yet, when the dispatcher takes
the form of an induction, its values can be computed
concurrently by evaluating its symbolic form and thus
allowing all iterations of the while loop to execute in
parallel. A typical example is represented by a do loop
(see Fig. 6d, e).

Evaluating the termination conditions in parallel.
Another difficulty with parallelizing while loops is
that the termination condition (terminator) of the loop
may be overshot, i.e., the loop would continue to execute
beyond its sequential (original) counterpart. The termi-
nator is defined as remainder invariant, or R, if it is only
dependent on the dispatcher and values that are com-
puted outside the loop. If it is dependent on some value
computed in the loop, then it is considered to be remain-
der variant or RV. If the terminator is RV, then iterations
larger than the last (sequentially) valid iteration could
be performed in a parallel execution of the loop, i.e.,
iteration i cannot decide if the terminator is satisfied
in the remainder of some iteration i’ < i. Overshoot-
ing may also occur if the dispatcher is an induction, or
an associative recurrence, and the terminator is RI. An
exception in which overshooting would not occur is if
the dispatcher is a monotonic function, and the termi-
nator is a threshold on this function, e.g., d(i) = i,
and tc(i) = (d(i) < V), where V is a constant, and
d(j) and tc(j) denote the dispatcher and the terminator,
respectively, for the jth iteration. Overshooting can also

1908

Speculative Parallelization of Loops

initialize dispatcher
while |(not termination condition)|

do work associatied with current dispatcher
dispatcher = next dispatcher (increment)

dispatcher

dispatcher increment

I:I termination condition

a endwhile
pointer tmp = head(list) integer r =1
whie white ({0 1)|
WORK(tmp) WORK(r)
tmp = next(tmp) r=ar+b
b endwhile ¢ endwhile
Equivalent) .
while loop integer i =1
do i =1,n | while | ((f(i) .It. V) .and. (i .le. n))|
if [(1() -1t V) | exit % WORK(i)
WORK(i) i=i+1
d enddo e endwhile

Speculative Parallelization of Loops. Fig. 6 (a) The general structure of while loops (b) Pointer chasing (c) Threshold
terminator with monotonic dispatcher (d) DO loop with premature exit and (e) its equivalent while loop

be avoided when the dispatcher is a general recurrence,
and the terminator is RI. For example, the dispatcher
tmp is a pointer used to traverse a linked list, and the
terminator is (tmp = null) (see Fig. 6b). The paralleliza-
tion potential of the dispatcher is summarized by the
taxonomy of while loops given in Table 1.

Speculative while loop Parallelization. Executing a
loop outside its intended iteration space may result in
undesired global state modification which has to be
later undone. Such parallel execution can be regarded
as speculative and is handled similarly to the previously
mentioned speculative do loop parallelization.

The effects of overshooting in speculative paral-
lel while loops can be undone after loop termination
by restoring the (sequentially equivalent) correct state
from a trace of the time (iteration) stamped mem-
ory references recorded during speculative execution.
This solution may, however, have a large memory
overhead for the time-stamped memory trace.

Alternatively, shared variables can be written into
temporary storage, and then copied out only if their
time stamps are less than or equal to the last valid itera-
tion. There are various techniques for reducing memory
overhead that can take advantage of the specific mem-
ory reference pattern, e.g., sparse patterns can be stored

in hash tables. Further optimizations include strip min-
ing the loop, or using a “sliding window” of iterations
whose advance can be throttled adaptively.

An alternative to time-stamping is to attempt to

extract a slice from the original while loop that can
precompute the iteration space. When such a transfor-
mation is possible (e.g., traversal of a linked list) then
the remainder of the while loop can be executed as a
doall.
While loops with statically unknown cross-iteration
dependences. When the data dependences of a While
loop cannot be conclusively analyzed by a static com-
piler, the loop parallelization can be attempted by
combining the LRPD test (applied to the remainder
loop) with the techniques for while loop parallelization
described above.

When it can be determined statically (see the taxon-
omy Table 1) that the parallelized while loop will not
overshoot, then the shadow variable tracing instrumen-
tation for the LRPD test can be inserted directly into the
while loop.

In the more complex case when overshooting may
occur (see the taxonomy Table 1) the LRPD test can be
combined with the while loop parallelization meth-
ods by augmenting its shadow arrays with the minimum

Speculative Parallelization of Loops

1909

Speculative Parallelization of Loops. Table 1 A taxonomy
of while loops and their dispatcher’s potential for parallel
execution. In the table, mono is monotonic, OV is
overshoot, P is parallel, N is no, Y is yes, and pp means
parallelizable with a parallel prefix computation. RV is
remainder variant and Rl is remainder invariant

RI N|Y|Y]|Y]|]Y] Ypp
RV Y|Y|Y|Y]|Y] Ypp

iteration that marked each element. The post-execution
analysis of the LRPD test has to ignore the shadow array
entries with minimum time stamps greater than the last
valid iteration.

A special and unwelcome situation arises when the
termination condition of the while loop is depen-
dent (data or control) upon a variable which has not
been found by the LRPD test to be independent. The
speculative parallel execution of such a while loop
may incorrectly compute its iteration space, or even
worse, the termination condition might never be met
(an infinite loop). Such loops are very hard to parallelize
efficiently.

In general, while loops do not usually lend them-
selves to scalable parallelization due to their inherent
nontrivial recurrence and overshooting potential which
is expensive to mitigate.

The speculative techniques presented thus far con-
cern themselves with the automatic transformation of
sequential loops into parallel ones. They can validate,
at run-time, if an instance of a loop executed in paral-
lel does not have potential dependences and thus has
exactly the same output as its sequential original. This
validation does not, and could not, realistically check
if the parallel and sequential execution have the same
results. However, it imposes conditions on the mem-
ory reference trace which can ensure that the parallel

loop respects the same dependence graph as the sequen-
tial one. In general, the speculative parallelization pre-
sented thus far represents a gamble that its results are
equal to those of the sequential execution because it
executes the same fine-grain algorithm, i.e., the same
fine-grain dependence graph as the sequential origi-
nal loop. This approach has lent itself well to automatic
compiler implementation.

There is, however, a higher semantic level, albeit
more complex, use of speculative parallelization. Instead
of speculating on the execution of a fine-grain depen-
dence graph (constructed from memory references),
the programmer can generate the same results by fol-
lowing the correct execution of a coarser, semantically
higher level dependence graph. For example, the nodes
of such a coarse graph could represent the methods of
a container and the edges the order in which they will
be invoked. The programmer may also specify high-
level properties of the methods involved. For example,
the order of “inquire” type method invocations may
be declared as interchangeable (commutative) similar
with the read operations on an array. Other meth-
ods may be required to respect the program order, e.g.,
add and delete. In general, the cause-and-effect relation
of the operations can be user defined. The result is a
partial order of operations, a coarse dependence graph.
A speculative parallelization of a program at this level
of abstraction will ensure that its execution respects the
higher level dependence graph. It implements a more
relaxed execution model thus possibly improving per-
formance. The Galois system implements this approach
to speculative parallel programming [14]. It is based
on two key abstractions: (1) optimistic iterators that can
iterate over sets of iterations in any order and (2) a
collection of assertions about properties of methods
in class libraries. In addition a run-time scheme can
detect and undo potentially unsafe operations due to
speculation.

The set iterator abstracts the possibility selecting for
execution elements of a set of iteration in any serial
order (similar to the DOANY construct [43]). When an
iteration executes it may add new iterations to the itera-
tion space, hence allowing for fully dynamic execution.
This is inherently possible because the addition of work
can be inserted anywhere in the unordered set with-
out changing the semantics of the loop. The set iterator

1910

Speculative Parallelization of Loops

can become an optimistic iterator if the generated work
can create conflicts at the iteration level. To exploit
parallelism, the system relies on the semantic commu-
tativity property of methods which must be declared by
the programmer through special class interface method
declarations. Finally, when the program executes, the
methods are invoked like transactions (in isolation) and
the commutativity property of the sequence of invoked
methods is asserted. If it fails, then it is possible that
operations have been executed in an illegal order and
therefore have to be undone. The execution is rolled
back using anti-methods, i.e., methods that undo the
effects of the offending method. For example, an add
operation can be undone by a delete operation. The
entire system is reminiscent of Jefferson’s Virtual Time
system [10].

Speculating about higher level operations using
higher level abstractions allows the exploitation of algo-
rithmic parallelism otherwise impossible to exploit at
the memory reference level. It requires, however, the
user to reason more about the employed algorithm.

Run-time parallelization in general, and speculative
parallelization in particular, are likely to be essential
techniques for both automatic and manual paralleliza-
tion. Speculation has its drawbacks: The success rate
of speculation is rather unpredictable and thus affects
performance in a nondeterministic manner. Specula-
tion may waste resources, including power, when it does
not produce a speedup. However, given the ubiquitous
parallelism encountered today, it is sometimes the only
avenue of performance improvement.

It would be of great benefit if meaningful statis-
tics about the success rate of speculative parallelization
could be found. Speculation will continue to be used
for manual parallelization of irregular programs [14], at
least until good parallel algorithms will be found. In this
case, high-level speculation is likely to produce better
results and result in more expressive programs!.

Speculative parallelization has been integrated into
the Hybrid Analysis compiler framework [29, 30]. This
framework seamlessly integrates static and dynamic
analysis to extract the minimum sufficient conditions
that need to be evaluated at run-time in order to vali-
date a parallel execution of a loop. By carefully staging
these sufficient conditions in order of their run-time

complexity, the compiler often minimizes the need for
a full speculative parallelization, thus reducing the non-
determinism of the code performance.

In conclusion, speculative parallelization is a glob-
ally applicable parallelization technique that can make
the difference between a fully and a partially paral-
lelized program, i.e., between scalable and non-scalable
performance.

Related Entries

» Debugging
»Dependences
»Dependence Analysis
»Parallelization, Automatic
»Race Conditions

»Run Time Parallelization
»Speculation, Thread-Level

Bibliographic Notes and Further
Reading

Speculative run-time parallelization has been first men-
tioned in the context of processes of parallel discrete
event simulations by D. Jefferson [10]. In his virtual time
concurrent processes are launched asynchronously and
are tagged with their logical time stamp. When such
processes communicate, they compare time stamps to
check if their order respects the logical clock of the
program (i.e., if data dependences are not violated). If
a violation is detected, then anti-messages will recur-
sively undo the effects of the incorrect computations
and restart from a safe point.

The LRPD test, i.e., the speculative parallelization of
loops, was introduced in [27]. It has later been modi-
fied to parallelize loops with dependences [6]. Compiler
optimizations [21, 44] have lowered its overhead. The
Hybrid Analysis framework has integrated the LRPD
test in a compiler framework [30].

A significant amount of later work [4, 11, 20] has
followed the hardware based approach to speculative
parallelization presented in [8, 36, 37, 45].

Other related work reduces communication over-
head via a master—slave model [47] in which the master
executes an optimistic (fast) approximation of the code,
while the slaves verify the master’s correctness. Another
framework [3, 41] exploits method-level parallelism
for Java applications. The design space of speculative

http://dx.doi.org/10.1007/978-0-387-09766-4_135
http://dx.doi.org/10.1007/978-0-387-09766-4_172
http://dx.doi.org/10.1007/978-0-387-09766-4_2014
http://dx.doi.org/10.1007/978-0-387-09766-4_197
http://dx.doi.org/10.1007/978-0-387-09766-4_36
http://dx.doi.org/10.1007/978-0-387-09766-4_164
http://dx.doi.org/10.1007/978-0-387-09766-4_170

Speculative Parallelization of Loops

9mn

parallelization has been further widened by allowing
tunable memory overhead [18] by mapping more than
one memory reference to the same “shadow” structure,
but with the penalty of generating false dependence
violations.

Software Transactional Memory [9, 35] can be and

often is implemented using speculative parallelization
techniques.

Debugging of parallel programs in general and

detecting memory reference “anomalies” in particular
[34] is a related topic to speculative parallelization and
data dependence violation detection.

Bibliography

1

10.

1L

12.

13.

Banerjee U (1988) Dependence analysis for supercomputing.
Kluwer, Boston

. Burke M, Cytron R, Ferrante], Hsieh W (1989) Automatic gener-

ation of nested, fork-join parallelism.] Supercomput 2:71-88

. Chen MK, Olukotun K (1998) Exploiting method level parallelism

in single threaded java programs. In: International conference
on parallel architectures and compilation techniques PACT 98,
IEEE, Paris, pp 176-184

. Cintra M, Llanos DR (2003) Toward efficient and robust soft-

ware speculative parallelization on multiprocessors. In: Interna-
tional conference on principle and practice of parallel computing
PPoPP’03, ACM, San Diego, pp 13-24

. Collard J-F (1994) Space-time transformation of while-loops

using speculative execution. In: Scalable high performance com-
puting conference, IEEE, Knoxville, pp 429-436

. DangF, Yu H, Rauchwerger L (2002) The R-LRPD test: speculative

parallelization of partially parallel loops. In: International parallel
and distributed processing symposium, Florida

. Eigenmann R, Hoeflinger J, Li Z, Padua D (1991) Experience in the

automatic parallelization of four perfect-benchmark programs.
Lecture notes in computer science 589. Proceedings of the fourth
workshop on languages and compilers for parallel computing,
Santa Clara, pp 65-83

. Hammond L, Willey M, Olukotun K (1998) Data speculation sup-

port for a chip multiprocessor. In: 8th international conference on
architectural support for programming languages and operating
systems, San Jose, pp 58-69

. Herlihy M, Shavit N (1995) The art of multiprocessor program-

ming. Morgan Kaufmann, London

Jefferson DR (1985) Virtual time. ACM Trans Program Lang Syst
7(3):404-425

Kazi IH, Lilja DJ (2001) Coarsed-grained thread pipelining: a
speculative parallel execution model for shared-memory multi-
processors. IEEE Trans Parallel Distrib Syst 12(9):952

Kruskal C (1986) Efficient parallel algorithms for graph problems.
In: Proceedings of the 1986 international conference on parallel
processing, University Park, pp 869-876, Aug 1986

Kuck DJ, Kuhn RH, Padua DA, Leasure B, Wolfe M (1981) Depen-
dence graphs and compiler optimizations. In: Proceedings of the

14.

15.

16.

17.

18.

19.

20.

21

22.

23.

24.

25.

26.

27.

28.

8th ACM symposium on principles of programming languages,
Williamsburg, pp 207-218

Kulkarni M, Pingali K, Walter B, Ramanarayanan G, Bala K, Paul
Chew L (2007) Optimistic parallelism requires abstractions. In:
Proceedings of the 2007 ACM SIGPLAN conference on program-
ming language design and implementa-tion, PLDI ’07, ACM,
New York, pp 211-222

Thomson Leighton F (1992) Introduction to parallel algorithms
and architectures: arrays, trees, hypercubes. Morgan Kaufmann,
London

Li Z (1992) Array privatization for parallel execution of loops. In:
Proceedings of the 19th international symposium on computer
architecture, Gold Coast, pp 313-322

Maydan DE, Amarasinghe SP, Lam MS (1992) Data dependence
and data-flow analysis of arrays. In: Proceedings 5th workshop
on programming languages and compilers for parallel computing,
New Haven

Oancea CE, Mycroft A, Harris T (2009) A lightweight in-place
implementation for software thread-level speculation. In: Inter-
national symposium on parallelism in algorithms and architec-
tures SPAA09, ACM, Calgary, pp 223-232

Padua DA, Wolfe MJ (1986) Advanced compiler optimizations for
supercomputers. Commun ACM 29:1184-1201

Papadimitriou S, Mowry TC (2001) Exploring thread-level spec-
ulation in software: the effects of memory access tracking granu-
larity. Technical report, CMU

Patel D, Rauchwerger L (1999) Implementation issues of loop-
level speculative run-time parallelization. In: Proceedings of
the 8th international conference on compiler construction
(CC99), Amsterdam. Lecture notes in computer science, vol 1575.
Springer, Berlin

Rauchwerger L (1998) Run-time parallelization: its time has come.
Parallel Comput 24(3-4):527. Special issues on languages and
compilers for parallel comput

Rauchwerger L, Amato N, Padua D (1995) Run-time methods for
parallelizing partially parallel loops. In: Proceedings of the 9th
ACM international conference on supercomputing, Barcelona,
Spain, pp 137-146

Rauchwerger L, Amato N, Padua D (1995) A scalable method
for run-time loop parallelization. Int] Parallel Prog 26(6):
537-576

Rauchwerger L, Padua DA (1999) The LRPD test: speculative
run-time parallelization of loops with privatization and reduction
parallelization. IEEE Trans Parallel and Distrib Syst 10(2):160-180
Rauchwerger L, Padua DA (1995). Parallelizing WHILE loops
for multi-processor systems. In: Proceedings of 9th international
parallel processing symposium, Santa Barbara

Rauchwerger L, Padua DA (1995) The LRPD test: speculative
run-time parallelization of loops with privatization and reduction
parallelization. In: Proceedings of the SIGPLAN 1995 conference
on programming language design and implementation, La Jolla
pp 218-232

Rundberg P, Stenstrom P (2000) Low-cost thread-level data
dependence speculation on multiprocessors. In: 4th work-
shop on multithreaded execution, architecture and compilation,
Monterey

1912

Speculative Run-Time Parallelization

29.

30.

3L

32.

33.

34.

35.

36.

37.

38.

39.

40.

41

42.

43.

44,

Rus S, Pennings M, Rauchwerger L (2007) Sensitivity analysis
for automatic parallelization on multi-cores. In: Proceedings of
the ACM international conference on supercomputing (ICS07),
Seattle

Rus S, Hoeflinger J, Rauchwerger L (2003) Hybrid analysis:
static & dynamic memory reference analysis. Int J Parallel Prog
31(3):251-283

Saltz J, Mirchandaney R (1991) The preprocessed doacross loop.
In: Schwetman HD (ed) Proceedings of the 1991 international
conference on parallel processing, Software, vol II. CRC Press,
Boca Raton, pp 174-178

Saltz J, Mirchandaney R, Crowley K (1989) The doconsider loop.
In: Proceedings of the 1989 international conference on super-
computing, Irakleion, pp 29-40

Saltz J, Mirchandaney R, Crowley K (1991) Run-time paralleliza-
tion and scheduling of loops. IEEE Trans Comput 40(5):603-612
Schonberg E (1989) On-the-fly detection of access anomalies. In:
Proceedings of the SIGPLAN 1989 conference on programming
language design and implementation, Portland, pp 285-297
Shavit N, Touitou D (1995) Software transactional memory. In:
Proceedings of the fourteenth annual ACM symposium on prin-
ciples of distributed computing, PODC ’95, ACM, New York,
pp 204-213

Sohi GS, Breach SE, Vijayakumar TN (1995) Multiscalar proces-
sors. In: 22nd international symposium on computer architecture,
Santa Margherita

Steffan JG, Mowry TC (1998) The potential for using thread-
level data speculation to facilitate automatic parallelization.
In: Proceedings of the 4th international symposium on high-
performance computer architecture, Las Vegas

Tu P, Padua D (1992) Array privatization for shared and dis-
tributed memory machines. In: Proceedings 2nd workshop on
languages, compilers, and run-time environments for distributed
memory machines, Boulder

Tu P, Padua D (1993) Automatic array privatization. In: Proceed-
ings 6th annual workshop on languages and compilers for parallel
computing, Portland

Tu P, Padua D (1995) Efficient building and placing of gating
functions. In: Proceedings of the SIGPLAN 1995 conference on
programming language design and implementation, La Jolla,
pp 47-55

Welc A, Jagannathan S, Hosking A (2006) Safe futures for Java.
In: International conference object-oriented programming, sys-
tems, languages and applications OOP-SLA06, ACM, New York,
pp 439-453

Wolfe M (1989) Optimizing compilers for supercomputers. MIT
Press, Boston

Wolfe M (1992) Doany: not just another parallel loop. In: Pro-
ceedings 5th annual workshop on programming languages and
compilers for parallel computing, New Haven. Lecture notes in
computer science, vol 757. Springer, Berlin

Yu H, Rauchwerger L (2000) Run-time parallelization overhead
reduction techniques. In: Proceedings of the 9th international
conference on compiler construction (CC 2000), Berlin Germany.
Lecture notes in computer science vol 1781. Springer, Heidelberg

45.

Zhang Y, Rauchwerger L, Torrellas J (1998) Hardware for spec-
ulative run-time parallelization in distributed shared-memory
multiprocessors. In: Proceedings of the 4th international sympo-
sium on high-performance computer architecture (HPCA), Las
Vegas, pp 162-174

46. Zhu C, Yew PC (1987) A scheme to enforce data dependence

on large multiprocessor systems. IEEE Trans Softw Eng 13(6):
726-739

47. Zilles C, Sohi G (2002) Master/slave speculative parallelization.

48.

In: International symposium on microarchitecture Micro-35,
IEEE, Los Alamitos, pp 85-96

Zima H (1991) Supercompilers for parallel and vector computers.
ACM Press, New York

Speculative Run-Time
Parallelization

»Speculation, Thread-Level
»Speculative Parallelization of Loops

Speculative Threading

»Speculation, Thread-Level

Speculative Thread-Level
Parallelization

»Speculation, Thread-Level

Speedup

» Metrics

' SPIKE

Eric Povrizz1
University of Massachusetts, Amherst, MA, USA

Definition
SPIKE is a polyalgorithm that uses many differ-
ent strategies for solving large banded linear systems

http://dx.doi.org/10.1007/978-0-387-09766-4_170
http://dx.doi.org/10.1007/978-0-387-09766-4_35
http://dx.doi.org/10.1007/978-0-387-09766-4_170
http://dx.doi.org/10.1007/978-0-387-09766-4_170
http://dx.doi.org/10.1007/978-0-387-09766-4_69

SPIKE

1913

in parallel. Existing parallel algorithms and software
using direct methods for banded matrices are mostly
based on LU factorizations. In contrast, SPIKE uses
a novel decomposition method (i.e., DS factorization)
to balance communication overhead with arithmetic
cost to achieve better scalability than other methods.
The SPIKE algorithm is similar to a domain decomposi-
tion technique that allows performing independent cal-
culations on each subdomain or partition of the linear
system, while the interface problem leads to a reduced
linear system of much smaller size than that of the orig-
inal one. Direct, iterative, or approximate schemes can
then be used to handle the reduced system in a differ-
ent way depending on the characteristics of the linear
system and the parallel computing platform.

Discussion

Many science and engineering applications, particu-
larly those involving finite element analysis, give rise
to very large sparse linear systems. These systems can
often be reordered to produce either banded systems or
low-rank perturbations of banded systems in which the
width of the band is but a small fraction of the size of
the overall problem. In other instances, banded systems
can act as effective preconditioners to general sparse
systems, which are solved via iterative methods.

Direct methods for solving linear systems AX = F
are commonly based on the LU decomposition that rep-
resents a matrix A as a product of lower and upper tri-
angular matrices A = LU. Consequently, solving AX = F
can be achieved by solutions of two triangular systems

SPIKE. Fig.1 A banded matrix with a conceptual partition

Partitioned

LG = F and UX = G. A parallel LU decomposition
for banded linear systems has also been proposed by
Cleary and Dongarra in [1] for the ScaLAPACK pack-
age [2]. The central idea behind the SPIKE algorithm
is a different decomposition for banded linear systems,
introduced by A. Sameh in the late 1970s [3], which is
ideally suited for parallel implementation as it naturally
leads to lower communication cost. Several enhance-
ments and variants of the SPIKE algorithm have since
been proposed by Sameh and coauthors in [4-11]. In the
case when A is a banded matrix as depicted in Fig. 1,
SPIKE is using a direct partitioning in the context of
parallel processing.

SPIKE relies on the decomposition of a given
banded matrix A into the product of a block-diagonal
matrix D, and another matrix S which has the struc-
ture of an identity matrix with some extra “spikes” (and
hence the name of the algorithm). This DS factorization
procedure is illustrated in Fig. 2.

Solving AX = F can then be accomplished in two
steps:

1. Solution of block-diagonal system DG = F. Because
D consists of decoupled systems of each of the diag-
onal block A;, they can be solved in parallel without
requiring any communication between the individ-
ual systems.

2. Solution of the system SX = G. This system has a
wonderful characteristic that it is also decoupled to
a large extent. Except for a reduced system (near
the interface of each of the identity blocks), the
rest are independent from one another. The natu-
ral way to tackle this system is to first solve the
reduced system via some parallel algorithms that

1914

SPIKE

A = D S
N\ /
A A : .
SO SO I v,
i SO :
A A
G i St S
i S Wyl 1 TV,
il B, SO
A, AL
Corelrnn SO Wil oI

7/

N

SPIKE. Fig.2 SPIKE factorization where A = DS, S = D™'A. The blocks in the block-diagonal matrix D are supposed

non-singular

require inter-processor communications, followed
by retrieval of the rest of the solution without requir-
ing further inter-processor communications.

As illustrated in Fig. 1, a (N x N) banded matrix A can
be partitioned into a block tridiagonal form {C;, A;, B;},
where A; is the (n; x n;) diagonal block j, and B; (i.e.,
C;) is the (ku x ku) (ie., (kI x kI)) right block (i.e., left
block). Using p partitions, it comes that #; is roughly
equal to N/p. In order to ease the description of the
SPIKE algorithm but without loss of generality, the size
off-diagonal blocks are both supposed equal to m (kI =
ku = m). The size of the bandwidth is then defined by
b = 2m + 1 where b << n;. Each partitionj (j=1,...,p)
can be associated to one processor or one node allow-
ing multilevel of parallelism. Using the DS factorization
illustrated in Fig. 2, the obtained spike matrix S has
a block tridiagonal form {W},I;, V;}, where I; is the
(njx n;j) identity matrix, V; and Wj are the (nx m) right
and left spikes. The spikes V; and W are solutions of the
following linear systems:

0 G
: 0
A]V] = 5 and A]‘/VJ = . (1)
0 :
[B [0]

respectively forj=1,...,p—1landj=2,...,p.

Solving the system AX = F now consists of two steps:

(a)solve DG=F (2)

(b) solve SX =G. 3)

The solution of the linear system DG = F in Step (a)
yields the modified right-hand side G needed for Step
(b). In case of assigning one partition to each processor,
Step (a) is performed with perfect parallelism. To solve
SX = G in Step (b), one should observe that the prob-
lem can be reduced further by solving a system of much
smaller size, which consists of the m rows of § imme-
diately above and below each partitioning line. Indeed,
the spikes V; and W; can also be partitioned as follows

v w®
j j
.= ! .=
Vi v, and W; W]’ (4)
y® w®
j j

where Vj(t), Vi, Vj(b), and Wj(t), wj, Wj(b), are the top
m, the middle #; — 2m and the bottom m rows of V; and
Wj, respectively. Here,

w =1,

() _ .
ij - [0 Im]Vl’ j

ojw;, (5
and

v =1, olvy w”=[0 LJW. (6)

SPIKE

1915

Similarly, if X; and G;j are the jth partitions of X and
G, it comes

(t) (®)
Xj G]
.= ! - /
X; X] and G;j Gj . (7)
(b) (b)
Xj G]

It is then possible to extract from a block tridiago-
nal reduced linear system (8) of size 2(p — 1)m, which
involves only the top and bottom elements of V;, W}, Xj,
and G;j. As example, the reduced system obtained for the
case of four partitions (p = 4) is given by

[5, v 1[x®P1 [¢]
w1, v x|l
wib) L, vi® el I e
w1, v [x| 6l

w? Lo VO[] {6

w5, J[x] L6l

®)

Finally, once the solution of the reduced system is
obtained, the global solution X can be reconstructed
fromX]Eb) (k=1,...,p-1) andX]Et) (k=2,...,p) either
by computing

X =G -v/x,

! _ I 7v-(t) 7y(b)
Xj = Gj - ViXj1 - WiXi i,

j=2...,p-1 9

- (b)
X} = G- WX

7P
or by solving
0
axi=F-| |BxY,
Inm

0 |
A]-X-—Fj|:l]Bjxj(g[o]cjxj‘_l), j=2..,p-1

In | .)
ApXp=Fp— [.] GiX,).

(10)

Multiple options are available for efficient parallel
implementation of the SPIKE algorithm depending on

the properties of the linear system as well as the archi-
tecture of the parallel platform. More specifically, the
following stages of the SPIKE algorithm can be handled
in several ways resulting in a polyalgorithm:

1. Factorization of the diagonal blocks A;. Depend-
ing on the sparsity pattern of the matrix and the
size of the bandwidth, these diagonal blocks could
be considered either as dense or sparse within the
band. For the dense banded case, a number of strate-
gies based on the LU decomposition of each A; can
be applied here. This include variants such as LU
with pivoting, LU without any pivoting but diago-
nal boosting, as well as a combination of LU and
UL decompositions, either with or without pivot-
ing. For the sparse banded case, it is common to use
a sparse direct linear system solver to reorder and
then factorize the diagonal blocks. However, solving
the various linear systems for A; can also be achieved
using an iterative solver with preconditioner. Finally,
each partition in the decomposition can be asso-
ciated with one or several processors (one node),
enabling multilevel parallelism.

2. Computation of the spikes. If the spikes V; and W;
are determined entirely, the reduced system (8) can
be solved explicitly and equation (9) can be used
to retrieve the entire solution. In contrast, if equa-
tion (10) is used to retrieve the solution, the spikes
may not be computed but only for the top and
bottom (m x m) blocks of V; and W; needed to
form the reduced system. It should be noted that
the determination of the top and bottom spikes
is also not explicitly needed for computing the

actions of the multiplications with Wj(t), Wj(h), Vj(t),

and Vj(b). These latter can be realized “on-the-fly”

-1 Im
Cj (0 Im)Aj Cj,

using (Im 0) Aj’1
0

(o o)

0

0

I
Bj (() Im) A;l B]',
0
respectively.

3. Solution scheme for the reduced system. One of
the earliest concerns with the SPIKE algorithm for
large number of partitions was to propose a reliable
and efficient parallel strategy for solving the reduced

1916

SPIKE

system (8). Krylov subspace-based iterative meth-
ods have been the first candidates to fulfill this pur-
pose, while giving to SPIKE its hybrid nature. These
iterative methods are often used in conjunction with
a block Jacobi preconditioner (i.e., diagonal blocks
of the reduced system) if the bottom of the V; spikes
and the top of the W; spikes are computed explicitly.
In turn, the matrix-vector multiplication operations
of the iterative technique can be done explicitly or
implicitly (“on-the-fly”). In order to enhance robust-
ness and scalability for solving the reduced system,
two new highly efficient direct methods have been
introduced by Polizzi and Sameh in [10, 11]. These
SPIKE schemes, which have been named “truncated
scheme” for handling diagonally dominant systems,
and “recursive scheme” for non-diagonally domi-
nant systems, are presented in the next sections.
Here again, a number of different strategies exists for
solving the reduced system.

As mentioned above, and in order to minimize
memory references, it is sometimes advantageous to
factorize the diagonal blocks A; using LU without any
pivoting but adding a diagonal boosting if a “zero-pivot”
is detected. Hence, A is not exactly the product DS and
rather takes the form A = DS + R, where R represents
the correction which, even if nonzero, is by design small
in some sense. Outer iterations via Krylov subspace
schemes or iterative refinement, are then necessary to
obtain sufficient accuracy as SPIKE would act on M =
DS (i.e., the approximate SPIKE decomposition for M is
used as effective preconditioner).

Finally, a SPIKE-balance scheme has also been
proposed by Golub, Sameh, and Sarin in [12], for
addressing the case where the block diagonal A; are
nearly singular (i.e., ill-conditioned), and when even
the LU decomposition with partial pivoting is expected
to fail.

The truncated SPIKE scheme is an optimized version of
the SPIKE algorithm with enhanced use of parallelism
for handling diagonally dominant systems. These sys-
tems may arise from several science and engineering
applications, and are defined if the degree of diagonally

dominance, dd, of the matrix A is greater than 1, where
dd is given by
Al

>jei il
It is possible to show from equation (1), that the mag-
nitude of the elements of the right spikes V; decay from
bottom to top, while the elements of the left spikes W;
decay in magnitude from top to bottom [13, 14]. Since
the size n of A; is much larger than the size m of the
blocks B; and C;, the bottom blocks of the left spikes
Wj(b) and the top blocks of the right spikes Vj(t) can be
approximately set equal to zero. In fact, the zero accu-
racy machine is ensured to be reached either in the
case of a pronounced decay (i.e., high value for dd),
or for large ratio nj/m. Thus, it follows that the off-
diagonal blocks of the reduced system (8) are equal to
zero, and the solution of this new block-diagonal “trun-
cated” reduced system can be obtained by solving p — 1
independent 2m x 2m linear systems in parallel:

dd = min

(11)

@ | [x® ()

e v (157|167)
®) () 0
wil L |[x0] |60

These systems can be solved directly using a
block-LU factorization, where the solution steps consist
of the following: (a) Form E = I,,, - W.(I)Vj(h), (b) Solve

j+1
EXJ(Q = G](Q - V\/j(ng(b) to obtain Xj(g, (c) Compute
X0 - g0y,

Solving the reduced system via the truncated SPIKE
algorithm for diagonally dominant systems demon-
strates then linear scalability with the number parti-
tions. The truncated scheme is often associated with an
outer-iterative refinement step to increase the solution
accuracy.

Within the framework of the truncated scheme, two
other major contributions have also been proposed for
improving computing performance and scalability of
the factorization stage: (a) a LU/UL strategy, and (b) a
new unconventional partitioning scheme.

LU/UL Strategy

The truncated scheme facilitates different new options
for the factorization step that make possible to avoid
the computation of the entire spikes. As illustrated in

SPIKE

1917

\

N N N
N N <
AN \ \ |
N N
N N N | b
N N N 1 V! Bj
N N N J
A N N

N N NI

SPIKE. Fig. 3 The bottom of the spike V; can be computed
using only the bottom m x m blocks of L and U. Similarly,
the top of the spike W; may be obtained if one performs
the UL-factorization

Fig. 3, computational solve times can be drastically
reduced by using the LU factorization without pivoting
on each diagonal block A;. Obtaining the top block of
W;j, however, would still require computing the entire
spike with complete forward and backward sweeps.
Another approach consists of performing also the UL-
factorization of the block A; without pivoting. Similar
to the LU-factorization, this allows obtaining the top
block of W; involving only the top m x m blocks of the
new U and L matrices. Numerical experiments indicate
that the time consumed by this LU/ UL strategy is much
less than that taken by performing only one LU factor-
ization per diagonal block and generating the entire left
spikes.

Unconventional Partitioning Schemes

A new partitioning scheme can be introduced to avoid
performing both LU and UL factorization for a given
Aj (j = 2,...,p — 1). This scheme acts on a new par-
allel distribution of the system matrix, which considers
less partition than processors. Practically, if k represents
an even number of processors (or nodes in the case of
multilevel parallelism), the new number of partitions
will be equal to p = (k + 2)/2. The new block matrices
Aj,j =1,...,p can be associated to the first p proces-
sors while processors p + 1 to k hold another copy of
the block matrix A;,j = 2,...,p — L Figure 4 illustrates
the new partitioning of the matrix right-hand side and
solution, for the case k=4 and p = 3.

The diagonal blocks A; associated to processors 1
to p — 1 are then factorized using LU without pivoting,
while a UL factorization is used for the diagonal blocks
associated with processors p to k. In the example of
k=4,L;U; < Ajforj = 1,2 (processors 1,2), and Ujlj “«~

Aj for j = 2,3 (processors 4, 3). As described above using
the LU/ UL strategy, the Vj(b) (j=1...,p—1) can be
obtained with minimal computational efforts via the LU
solve step on processors 1 to p — 1, while the Wj(t) (j=
2,...,p) can be obtained in the similar way but now on
different processors using the UL solve step. Using this
new partitioning scheme, the size of the partitions does
increase but the number of arithmetic operations by
partition decreases as well as the size of the truncated
reduced system. This scheme achieves better balance
between the computational cost of solving the sub-
problems and the communication overhead. In addi-
tion to increasing scalability results for large number of
processors, the scheme also addresses the “bottleneck”
of the small number of processors case as described
below.

Speed-Up Performances on Small Number of
Processors

One of the main focus in the development of parallel
algorithms for solving linear systems aims at achiev-
ing linear scalability on large number of processors.
However, the emergence of multicore computing plat-
forms in these recent years has brought new empha-
sis for parallel algorithms on achieving net speedup
over the corresponding best sequential algorithms on
small number of processors/cores. Clearly, parallel algo-
rithms often inherit extensive preprocessing stages with
increased memory references or arithmetics, leading to
counter-performances on small number of cores. For
parallel banded solvers, in particular, four to eight cores
may be usually needed to solve linear systems as fast
as the best corresponding sequential solver in LAPACK
[15]. It is then important to note that the new parti-
tioning scheme for the truncated SPIKE algorithm has
also been designed to address this issue while offer-
ing a speedup of two from only two cores. While the
two-cores (two-partitions) case can take advantage of
a single LU or UL factorization for A; and A,, respec-
tively, the efforts to solve the reduced system become
minimal (i.e., as compared to a LU decomposition on
the overall system, the number of arithmetic operations
is essentially divided by two in the SPIKE factorization
and solve stages). When the number of cores increases,
and without accounting for the communication costs
(which are minimal for the truncated scheme), the

1918

SPIKE

5,]

A 3

X F 1)
= X2 F = Fg (274)
X3 Iy 3)

SPIKE. Fig. 4 lllustration of the unconventional partitioning of the linear system for the truncated SPIKE algorithm in the
case of 4 processors. Ay is sent to processor 1, A, to processors 2 and 4, and As to processor 3.

speedup are expected ideally equal to the number of
partitions: x2 on two cores, x3 on four cores, x5 on
eight cores, etc. Thereafter, the SPIKE performance
will approach linear scalability as the number of cores
increases.

For non-diagonally dominant systems and large num-
ber of partitions, solving the reduced system (8) using
Krylov subspace iterative method with or without pre-
conditioner may result in high interprocessor commu-
nication cost. Interestingly, the truncated scheme for
the two-cores (two-partitions) case is as well appli-
cable for non-diagonally dominant systems since the
reduced system (12) contains only one diagonal block.
It should be noted, however, that this scheme may
necessitate outer-refinement steps, since the diagonal
boosting used to handle the “zero-pivot” in the LU and
UL factorization stages, are more likely to appear for
non-diagonally dominant systems.

For larger number of partitions, a new direct
approach named “recursive” scheme has been proposed
for solving the reduced system and enhancing robust-
ness, accuracy, and scalability. This recursive scheme
consists of successive iterations of the SPIKE algorithm
from systems to reduced systems, resulting in better
balance between the costs of computation and commu-
nication. This scheme assumes that the original number
of (conventional) partitions is given by p = 2¢ (d > 1).
The bottom and top blocks of the V; and W; spikes are
then computed explicitly to form the reduced system.
In practice, a modified version of the reduced system is

preferred which also includes the top block V{ and bot-
tom block W; . For the case p = 4, the original reduced
system (8) is now represented by the following “reduced
spike matrix”:

L. v® [xO] [6]
In v x" |6
w1, v xO |6
w® g, | v x |6
wi | 1, v x|l
wb) I, v x |6
w1, x|l
wi? e JIXP] L6

(13)

This reduced spike system matrix contains p parti-
tions with p diagonal block identities. The system can
be easily redistributed in parallel using only p/2 par-
titions which are factorized by SPIKE recursively up
until obtaining two partitions only. It can be shown
[10] that the two partitions case leading to a 2m x
2m linear system presented in (12), constitutes the
basic computational kernel of the recursive SPIKE
scheme.

Since the publications of the first SPIKE algorithm in the
late seventies [3, 4], many variations and new schemes
have been implemented. In recent years, a compre-
hensive MPI-Fortran 90 SPIKE package for distributed
memory architecture has been developed by the author.

SPIKE

1919

This implementation includes, in particular, all the dif-
ferent family of SPIKE algorithms: recursive, truncated,
and on-the-fly schemes. These SPIKE solvers rely on
a hierarchy of computational modules, starting with
the data locality-rich BLAS level-3, up to the blocked
LAPACK [15] algorithms for handling dense banded
systems, or up to the direct sparse solver PARDISO
[16] for handling sparse banded systems, with SPIKE
being on the outermost level of the hierarchy. The pack-
age also includes new primitives for banded matrices
that make efficient use of BLAS level-3 routines. Those
include banded triangular solvers with multiple right-
hand sides, banded matrix-matrix multiplications, and
LU, UL factorizations with diagonal boosting strategy.

In addition, the large number of options/decision
schemes available for SPIKE created the need for the
automatic generation of a sophisticated runtime deci-
sion tree “SPIKE-ADAPT” that has been developed by
Intel. This adaptive layer indicates the most appropri-
ate version of the SPIKE algorithm capable of achieving
the highest performance for solving banded systems
that are dense within the band. The relevant linear sys-
tem parameters in this case are system size, number of
nodes/processors to be used, bandwidth of the linear
system, and degree of diagonal dominance. SPIKE and
SPIKE-ADAPT have been regrouped into one package,
named “Intel Adaptive Spike-Based Solver;” which has
been released to the public in June 2008 on the Intel
whatif web site [17].

The SPIKE package also includes a SPIKE-PARDISO
scheme for addressing banded linear systems with large
sparse bandwidth while offering a basic distributed
version of the current shared memory PARDISO pack-
age. The capabilities and domain applicability of the
SPIKE-PARDISO scheme have recently been signifi-
cantly enhanced by Manguoglu, Sameh, and Schenk in
[18] to address general sparse systems. In this approach,
a weighted reordering strategy is used to extract effi-
cient banded preconditioners that are solved via SPIKE-
PARDISO including new specific PARDISO features
for computing the relevant bottom and top tips of the
spikes.

While the current parallel distributed SPIKE pack-
age does offer HPC users a new and valuable tool for
solving large-scale problems arising from many areas
in science and engineering, the growing size of the
number of cores in compute node forestalls distributed
programming model (i.e., MPI) for many users. On the

other hand, the scalability of the LAPACK banded algo-
rithms on multicore node or SMP is first and foremost
dependent on the threaded capabilities of the underly-
ing BLAS routines. A new implementation of the SPIKE
solver recently initiated by the author is concerned with
a shared memory programming model (i.e., OpenMP)
that can consistently match the LAPACK functions for
solving banded systems. This SPIKE Open-MP project
is expected to offer high efficient threaded alterna-
tives for solving banded linear systems on current and
emerging multicore architectures.

Related Entries

»BLAS (Basic Linear Algebra Subprograms)
»Collective Communication

»Dense Linear System Solvers

»Linear Algebra, Numerical

»Load Balancing, Distributed Memory
»Metrics

» PARDISO

»Preconditioners for Sparse Iterative Methods
»ScaLAPACK

Bibliography Notes and Further
Reading

As mentioned in the introduction, the main ideas of
the SPIKE algorithm has been introduced in the late
1970s [3, 4], since then, many improvements and vari-
ations have been proposed [5-12, 18]. In particular,
the highly efficient truncated and recursive schemes for
solving the reduced system presented here are discussed
in more detail in [10, 11]. All the main SPIKE algorithm
variations have been regrouped into a comprehensive
MPI-based SPIKE solver package in [17], where the
associated SPIKE’s user guide contains more detailed
information on the capabilities of the different SPIKE
schemes and their domain of applicability.

Bibliography

1. Cleary A, Dongarra J (1997) Implementation in ScaLAPACK of
divide and conquer algorithms for banded and tridiagonal lin-
ear systems. University of Tennessee Computer Science Technical
Report, UT-CS-97-358

2. Blackford LS, ChoiJ, Cleary A, Dazevedo E, Demmel J, Dhillon I,
et al (1997) ScaLAPACK users guide. Society for Industrial and
Appl. Math, Philadelphia

3. Sameh A (1977) Numerical parallel algorithms: a survey. In:
Kuck D, Lawrie D, Sameh A (eds) High speed computer and
algorithm organization. Academic, New York, pp 207-228

http://dx.doi.org/10.1007/978-0-387-09766-4_84
http://dx.doi.org/10.1007/978-0-387-09766-4_28
http://dx.doi.org/10.1007/978-0-387-09766-4_128
http://dx.doi.org/10.1007/978-0-387-09766-4_126
http://dx.doi.org/10.1007/978-0-387-09766-4_504
http://dx.doi.org/10.1007/978-0-387-09766-4_69
http://dx.doi.org/10.1007/978-0-387-09766-4_90
http://dx.doi.org/10.1007/978-0-387-09766-4_247
http://dx.doi.org/10.1007/978-0-387-09766-4_151

1920

Spiral

4. Sameh A, Kuck D (1978) On stable parallel linear system solvers.
] ACM 25:81-91
5. Sameh A (1983) On two numerical algorithms for multiproces-
sors. In: Proceedings of NATO adv res workshop on high-speed
comp. Series F: computer and systems sciences, vol 7. Springer,
Berlin, pp 311-328
6. Lawrie D, Sameh A (1984) The computation and communication
complexity of a parallel banded system solver. ACM Trans Math
Software 10(2):185-195
7. Dongarra J, Sameh A (1984) On some parallel banded system
solvers. Parallel Comput 1:223-235
8. Berry M, Sameh A (1988) Multiprocessor schemes for solving
block tridiagonal linear systems. Int J Supercomput Appl 2(3):
37-57
9. Sameh A, Sarin V (1999) Hybrid parallel linear solvers. Int J
Comput Fluid Dyn 12:213-223
10. Polizzi E, Sameh A (2006) A parallel hybrid banded system solver:
the SPIKE algorithm. Parallel Comput 32(2):177-194
11. Polizzi E, Sameh A (2007) SPIKE: A parallel environment for
solving banded linear systems. Comput Fluids 36:113-120
12. Golub G, Sameh V, Sarin V (2001) A parallel balance scheme for
banded linear systems. Numer Linear Algebr Appl 8(5):297-316
13. Demko S, Moss WE, Smith PW (1984) Decay rates for inverses of
band matrices. Math Comput 43(168):491-499
14. Mikkelsen CCK, Manguoglu M (2008) Analysis of the truncated
spike algorithm. SIAM] Matrix Anal Appl 30(4):1500-1519
15. Anderson E, Bai Z, Bischof C, Blackford S, Demmel], Dongarra J,
et al (1999) LAPACK users guide, 3rd edn. Society for Industrial
and Appl. Math, Philadelphia
16. Schenk O, Grtner K (2004) Solving unsymmetric sparse systems
of linear equations with PARDISO. J Future Gener Comput Syst
20(3):475-487
17. A distributed memory version of the SPIKE package can
be obtained from http://software.intel.com/en-us/articles/intel-
adaptive-spike-based-solver/
18. Manguoglu M, Sameh A, Schenk O (2009) PSPIKE: a parallel
hybrid sparse linear system solver. Lecture notes in computer
science, vol 5704. Springer, Berlin, pp 797-808

! Spiral

MAaRKUS PiscHEL', FRANZ FRANCHETTI?,
YEVGEN VORONENKO®

'ETH Zurich, Zurich, Switzerland

*Carnegie Mellon University, Pittsburgh, PA, USA

Definition

Spiral is a program generation system (software that
generates other softwares) for linear transforms and an
increasing list of other mathematical functions. The goal
of Spiral is to automate the development and porting
of performance libraries. Linear transforms include the

discrete Fourier transform (DFT), discrete cosine trans-
forms, convolution, and the discrete wavelet transform.
The input to Spiral consists of a high-level mathe-
matical algorithm specification and selected architec-
tural and microarchitectural parameters. The output is
performance-optimized code in a high-level language
such as C, possibly augmented with vector intrinsics
and threading instructions.

Discussion

The advent of computers with multiple cores, SIMD
(single-instruction multiple-data) vector instruction
sets, and deep memory hierarchies has a dramatic effect
on the development of high-performance software. The
problem is particularly apparent for functions that per-
form mathematical computations, which form the core
of most data or information processing applications.
Namely, on a current workstation, the performance dif-
ference between a straightforward implementation of
an optimal (minimizing operations count) algorithm
and the fastest possible implementation is typically
10-100 times.

As an example, consider Fig. 1, which shows the
performance (in gigafloating point operations per sec-
ond) of four implementations of the discrete Fourier
transform for varying input sizes on a quadcore Intel
Core i7. Each one uses a fast algorithm with roughly
the same operations count. Yet the difference between
the slowest and the fastest is 12-35 times. The bottom
line is the code from Numerical Recipes [20]. The best
standard C code is about five times faster due to mem-
ory hierarchy optimizations and constant precomputa-
tion. Proper use of explicit vector intrinsics instructions
yields another three times. Explicit threading for the
four cores, properly done, yields another three times for
large sizes.

The plot shows that the compiler cannot perform
these optimizations as is true for most mathematical
functions. The reason lies in both the compiler’s lack
of domain knowledge needed for the necessary trans-
formations and the large set of optimization choices
with uncertain outcome that the compiler cannot assess.
Hence the optimization task falls with the programmer
and requires considerable skill. Further, the optimiza-
tions are usually platform specific, and hence have to be
repeated with every new generation of computers.

http://software.intel.com/en-us/articles/intel-adaptive-spike-based-solver/
http://software.intel.com/en-us/articles/intel-adaptive-spike-based-solver/

Spiral

1921

DFT (single precision) on Intel Core i7 (4 cores)

Performance [Gflop/s] vs. input size
40

Best vector and parallel code

35
30
25
20
Best vector code

15

10
Best scalar code

*-:vA N o o o o a
o= g g g g

Numerical recipes

VS o

L 3

07 T T T T T T T
16 64 256 1k

T
4k 16k 64k

T T T T
256k 1M

Spiral. Fig. 1 Performance of different implementations of the discrete Fourier transform (DFT) and reason for the

performance difference (From [10])

Spiral overcomes these problems by completely
automating the implementation and optimization pro-
cesses for the functions it supports. Complete automa-
tion means that Spiral produces source code for a given
function given only a very high-level representation of
the algorithms for this function and a high-level plat-
form description. After algorithm and platform knowl-
edge are inserted, Spiral can generate various types of
code including for fixed and general input size, threaded
or vectorized.

The approach taken by Spiral is based on the follow-
ing key principles:

o Algorithm knowledge for a given mathematical
function is represented in the form of breakdown
rules in a domain-specific language. Each rule repre-
sents a divide-and-conquer algorithm. The language
is based on mathematics, and is declarative and
platform independent. These properties enable the
mapping to various forms of parallelism from algo-
rithm knowledge that is inserted only once. They
also enable the derivation of the library structure for
general input size implementations by computing
the so-called recursion step closure.

o Platform knowledge is organized into paradigms. A
paradigm is a feature of a platform that requires
structural optimization and possibly source code
extensions. Examples include shared memory paral-
lelism and SIMD vector processing. Each paradigm

consists of a set of parameterized rewrite rules and
base cases expressed in the same language as the
algorithm knowledge. The base cases constitute a
subset of the domain-specific language that maps
well to a paradigm. The rewrite rules interact with
the breakdown rules to produce algorithms that
are base cases, which means they are structurally
optimized for the considered paradigm. Examples
of parameters include the SIMD vector length or
the cacheline size. Paradigms are designed to be
composable.

e Spiral uses empirical search to automatically explore
choices in a feedback loop. This is done by generat-
ing candidate implementations and evaluating their
performance. Even though theoretically unsatisfy-
ing, search enables further optimization for intricate
microarchitectural details that may be unknown or
are not well understood.

In summary, Spiral integrates techniques from mathe-
matics, programming languages, compilers, automatic
performance tuning, and symbolic computation. The
entire Spiral system combines aspects of a compiler,
generative programming, and an expert system.

The remainder of this section describes the frame-
work underlying Spiral and the inner workings of
the actual system. The presentation focuses on linear
transforms; extensions of Spiral beyond transforms are
briefly discussed in the end.

1922

Spiral

Linear transforms. A linear transform is a function
x — Mx,

where M is a fixed matrix, x is the input vector, and
y=Mx the output vector. Different transforms corre-
spond to different matrices M. For simplicity, M is
referred to as transform in the following. Most trans-
forms M are square n x n, which implies that x and y are
of length n. Most transforms exist forall n =1,2,....

Possibly the most well-known transform is the DFT,
defined by the n x n matrix:

W, = 6*27'[1/1’1,

i=v-L

Other examples include the discrete Hartley transform,

DFT, = [01]yt e

DHT, = [cos(27ke/n) + sin(27k€/n)]o<x o<n >

the discrete cosine transform (DCT) of type 2,
DCT-2, = [cos (k(¢+) n/n)]

0<k,b<n’

as well as other types of discrete cosine and sine trans-
forms, the Walsh-Hadamard transform, the real DFT,
the discrete wavelet transform, the inverses and other
variants of the preceding transforms, and finite impulse
response filters.

Fast transform algorithms: SPL. If M is n x n and
has few or no zero entries, then a direct computation
of y = Mx requires O(n*) many operations. However,
all the transforms mentioned above have fast algorithms
that reduce their complexity below that, typically to
O(nlog(n)). Every algorithm can be expressed as a
factorization of the transform matrix M into a prod-
uct of sparse matrices. As an example, assume M =
MiM;MzM,; then y = Mx can be computed in four
steps as

t = Myx,u = Mst,v=Mu,y=Mpw.

If the M; are sufficiently sparse, this reduces the opera-
tions count.

The sparse matrices occurring in transform algo-
rithms have a structure that can be formally expressed
using basic matrices and matrix operators such as the
direct sum and the tensor or Kronecker product. This
notation forms the basis for the language SPL (signal
processing language) explained next.

Basic matrices include the n x n identity matrix I,
diagonal matrices D, = diag(ao,...,a,-1), the 2 x 2

butterfly matrix

the stride permutation matrix L}, defined for n = km by
the underlying permutation

O im+jjk+i, 0<i<k 0<j<m, (1)

and several others.
Matrix operators include the matrix product, the
direct sum

A
A®B= ,

and the tensor product
A®B-= [ak,fB]Osk,kn , forA= [ak,f]osk,kn .

Most important are the tensor products where A or B is
the identity:

B
I, ®B= ,
B
and, for example,
,a , -
a b
a b al; bl; a b
®I = =
c d cz; dlz c d
c d
| ¢ d]

A (partial) description of SPL in Backus-Naur form is
provided in Table 1.

Algorithms as SPL breakdown rules. Using SPL, the
algorithm knowledge in Spiral is captured by breakdown
rules. A breakdown rule represents a one-step divide-
and-conquer algorithm of a transform. This means the
transform is factorized into sparse matrices involving
other, typically smaller, transforms.

Spiral

1923

Spiral. Table 1 A subset of SPL in Backus—Naur form; n, k are positive integers, a; are real or complex numbers

spl) ® -+ - - ®(spl) |

(generic) == diag(ao, ..., an-1) | ...
(basic) ==l | L} | F2] ...
(transform) ::= DFT, | DHT, |DCT-2, | ...

(spl) == (generic) | (basic) | (transform) |
(spl)----- (spl) | (product)
(spl) @ ... & (spl) | (direct sum)
(

(tensor product)

The most well-known example is the general-radix
Cooley-Tukey fast Fourier transform (FFT):
DFT, - (DFTy ®I,,) Ty, (I ® DFT,,)L, n=km,

)
where T}, is the diagonal matrix of twiddle factors. For
n = 16 = 4 x 4, the factorization is visualized in
Fig. 2 together with the associated data-flow graph. The
smaller DFT’s are boxes of equal shades of gray.

To terminate the recursion, base cases are needed.
For example, for two-powers n, a size two base case is
sufficient:

A few points are worth noting about this representation
of transform algorithms:

o The representation (2) is point free, i.e., the input
vector is not present.

o The representation (2) is declarative.

e Since the rule (2) is a matrix equation, it can be
manipulated using matrix identities. For example,
both sides can be inverted or transposed, to obtain
an inverse or transposed transform algorithm.

o A breakdown rule may have degrees of freedom. An
example is the choice of k in (2).

e A rule like (2) does not specify how to compute the
smaller transforms. This implies that rules have to be
applied recursively until an algorithm is completely
specified. Because of this and the availability of dif-
ferent rules for the same transform, thereisalarge set
of choices. In other words, the relatively few existing
rules yield a very large space of possible algorithms.
This makes rules a very efficient representation of
algorithm knowledge. For example, for n = 2¢, (2)
alone yields @ (5¢/£%/?) different algorithms, all with
roughly the same operations count.

Spiral contains about 200 breakdown rules for about
40 transforms, some of which are auxiliary. The
most important rules for the DFT, without complete
specification, are shown in Table 2. Note the occurrence
of auxiliary transforms.

The task performed by Spiral is to translate the algo-
rithm knowledge (represented as in Table 2) for a
given transform into optimized source code (we assume
C/C++) for a given platform.

The exact approach for generating the code depends
on the type of code that has to be generated. The most
important distinctions are the following:

o Fixed input size versus general input size: If the input
size is known (e.g., “DFT of size 4” as shown in
Table 3a and b), the algorithm to be used and other
decisions can be determined at program generation
time and can be inlined. The result is a function con-
taining only loops and basic blocks of straightline
code. If the input size is not known, it becomes an
additional input and the implementation becomes
recursive (Table 3¢). The actual algorithm, i.e., recur-
sive computation, is now chosen at runtime once the
input size is known.

e Straightline code versus loop code (fixed input size
only): Straightline code (Table 3a) is only suitable
for small sizes, but can be faster, due to reduced
overhead and increased opportunities for alge-
braic simplifications. Loop code (Table 3b) requires
additional optimizations that merge redundant
loops.

e Scalar code versus parallel code: Code that is par-
allelized for SIMD vector extensions or multiple
cores requires specific optimizations and the use of
explicit vector intrinsics or threading directives.

1924 Spiral

DFT, ® I, T16 I, ®DFT, L8

DFTys — . .

a Matrix factorization b Data-flow graph

Spiral. Fig.2 Cooley-Tukey FFT (2) for 16 = 4 x 4 as SPL rule and as (complex) data-flow graph (from right to left). Some
lines are bold to emphasize the strided access of the DFT4s (From [10])

Spiral. Table 2 A selection of breakdown rules representing algorithm knowledge for the DFT. rDFT is an auxiliary
transform and has two parameters. RDFT is a version of the real DFT

DFT, — (DFTx®lm)T" (I ® DFT)LE, (Cooley-Tukey FFT) n = km
DFT, — V;'(DFT ®lm)(lk ® DFTp)V,, (Prime-factor FFT) n =km, gcd(k,m) =1
DFT, — W'k ®DFT,_1)En (h®DFT,_) W, (Rader FFT) n prime
DFT, — B;DmDFTny D}, DFT,, D):Bn, (Bluestein FFT) n>2m
DFT, - Py, (DFTom @ (ko ®; Com DFTam, ik)) (RDF Tk ®1in), n = 2km
RDFT, — (P, ®h) (RDFTon & (lk—1 ® Dam IDF Ty 2)) (RDFTok ®lm), n = 2km
IDFThu = 27 (I ® rDFTom, (ivuy/k) (FDFTax,u ®lm), n =2km

Spiral. Table 3 Code types

(a) Fixed input size, unrolled (b) Fixed input size, looped (c) General input size library, recursive
void dft 4 (cpx #*Y, cpx #*X){ struct dft : public Env{

void dft_4 (cpx cpx T[4]; dft (int n); // constructor

*Y, cpx *X) { cpx W[2] = {1, I }; void compute (cpx *Y, cpx *X);
eErE @, &, ©2, €3; for(int i = 0; i <= 1; i++) { int rule, £, n;
t = (X[0] + X[2]); cpx w = W[i]; char * dat;
t2 = (X[0] - X[2]); T[2%i] = (X[i] + X[i+2]); Env *chl, #ch2;
t3 = (X[1] + X[31); T[2#i+1] = wx (X[1] - X[i+2]); |};
s = _I_»(X[1] - X[3]); }
Y[0] = (t + t3); for(int j = 0; j <= 1; j++) { void dft::compute(cpx *Y, cpx *X) {
Y[2] = (€ - €3); Y[3] = T[j] + T[j+2]; ch2->compute (Y, X, n, £, n, £f);
Y[1] = (t2 + s); Y[2+3] = T[] - T[j+2]; chl->compute (Y, Y, n, £, n, n/f);
Y[3] = (£2 - s); } }

} }

The program generation process is explained in the next at least one new idea had to be introduced. The types
four sections corresponding to four different code types and main ideas (in parentheses) are
of increasing difficulty. The order matches the historic

o Fixed input size straightline code (SPL, breakdown
development, since for each move to the next code type

rules, feedback loop)

Spiral

1925

o Fixed input size loop code (£-SPL, loop merging)

o Fixed input size parallel code (paradigms, tagged
rewriting)

e General input size code (recursion step closure,
parameterization)

Spiral generates code for fixed input size transforms
(first three bullets), as shown in Fig. 3. The input is the
transform symbol (e.g., “DFT”) and the size (e.g., “128”).
The output is a C function that computes the transform
(y = DFTipg x in this case). Depending on code type,
not all blocks in Fig. 3 may be used.

The block diagram for the general input size code is
shown later.

Fixed Input Size: Straightline Code

Given as input to Spiral is a transform symbol (“DFT”)
and the input size. The program generation does
not need the parallelization and loop optimization
blocks. Further, no £-SPL is needed, which means the
SPL-to-2-SPL block and the X-SPL-to-code block are
joined to one SPL-to-code block.

Algorithm generation. Spiral uses a rewrite sys-
tem that recursively applies the breakdown rules (e.g.,
Table 2) to generate a complete SPL algorithm for the
transform. As mentioned before, there are many choices

Algorithm knowledge
(breakdown rules)
Platform knowledge
(paradigms)

llelizati
parallelization Joop

optimizations

Spiral
(fixed input size)

due to the choice of rule and the degree of freedom in
some rules (e.g., k in (2)).

SPL to C code and optimization. The SPL expression
is then compiled into actual C code using the internal
SPL compiler, which recursively applies the translation
rules sketched in Table 4.

All loops are unrolled and code-level optimizations
are applied. These include array scalarization, constant
propagation, and algebraic simplification.

Performance evaluation. The runtime of the result-
ing code is measured and fed into the search block that
controls the algorithm generation.

Search. The search drives a feedback loop that gen-
erates and evaluates different algorithms to find the
fastest. Dynamic programming has proven to work
best in many cases, but other techniques includ-
ing evolutionary search or bandit-based Monte Carlo
exploration have also been studied.

Fixed Input Size: Loop Code
The approach to generating straightline code can also
be used to generate loop code (Table 4 yields loops), but
the code will be inefficient.

The problem: Loop merging. To illustrate the prob-
lem, consider the SPL expression

(I, ® F,)L3.

Transform (“DFT”)
input size (“128”)

Algorithm generation

algorithm (SPL)

SPL—ZX-SPL
loop merging

algorithm (2-SPL)

3-SPL—C code
Code optimizations

source code (C)

Performance evaluation

C implementation:
DFT_128(*y, *x) { ... }

Spiral. Fig. 3 Spiral program generator for fixed input size functions. For straightline code, no 2-SPL is needed and SPL is

translated directly into C code

1926 Spiral

Spiral. Table 4 Translation of SPL to code. The subscript of A, B specifies the (square) matrix size. x [b: s: e] denotes
(Matlab style) the subvector of x starting at b, ending at e, and extracted at stride s. D is a diagonal matrix, whose
diagonal elements are stored in an array with the same name

SPL expression S | Pseudo code fory = Sx

AnBn <code for: t = Bx>
<code for: y = At>
Im ® Ap for (i=0; i<m; 1i++)
<code for: y[i*n:1l:i*n+n-1] = A(x[i*n:1l:i*n+n-1]1)>
An ® In for (i=0; i<n; i++)
<code for: y[i:n:i+m*n-n] = A(x[i:n:i+m*n-n])>
Dp for (i=0; i<n; i++)
yl[il = DI[il*x[i];
Lgm for (i=0; i<k; i++)
for (j=0; j<m; F++)
yism+j] = x[jxk+i];
F y[0] = x[0] + x[1];
y[1] = x[0] - x[1];
y —€ X y —€ X

J><g
i

a Two stages b One stage

Spiral. Fig. 4 The loop merging problem for (Is ® F;)L§

The application of Table 4 yields the code visualized This is known to be suboptimal since the permu-
in Fig. 4a: tation (first loop) can be fused with the subsequent
computation loop, thus eliminating one pass through
the data (Fig. 4b):
// Input: double x[8], output: y[8]
double t[8];

Input: doubl 8], tput: y[8
for (int 1=0; i<4; i++) { //Inpu cuble x[6], output: yl[8]

for (int j=0; j<4; j++) {

for (int j=0; j<2; j++) { : i j
vI2%9] = x[3] + x[j+4]1;

t[i*2+3] = x[j*4+i]; i i i
} y[2*j+1] = x[j] - x[j+4];
} }
for (int j=0; j<4; j++) {
yI2*31 = t[2*j] + t[2*j+1]; This transformation cannot be expressed in SPL and,
yI2%3+1] = t[2*j] - t[2*j+1]; in the general case, is difficult to perform on C code. To

} solve this problem, X-SPL was developed, an extension

Spiral

1927

of SPL that can express loops. The loop merging is then
performed by rewriting >-SPL expressions.
%-SPL. X-SPL adds four basic components to SPL:

Index mapping functions
Scalar functions
Parameterized matrices
Iterative sum

B S

These are defined next.

An integer interval is denoted by I, = {0,...,n -1},
and an index mapping function f with domain I, and
range [y is denoted by

FroN LT, - I i f(0).

An example is the stride function

hZ;’N:]Ine]IN; i b+is,

for s|N. (4)
Permutations are written as f"~" = f", such as the stride
permutation in (1).

A scalar function f : I,, > C; i — f(i) maps an inte-
ger interval to the domain of complex or real numbers,
and is abbreviated as f"~C. Scalar functions are used to
describe diagonal matrices.

2-SPL adds four types of parameterized matrices to
SPL (gather, scatter, permutation, diagonal):

G(f"™M), S(f"7), P(f"), and diag (f"7°).

Their translation into actual code (which also defines
the matrices) is shown in Table 5. For example,

n— 1 n—
Gy ="] SMTN) = Glhe).

Spiral. Table 5 Translation of >-SPL to code

G(f"=N) for (i=0; i<n; i++)
yIi]l = x[£(1)];
S(f”_’N) for (i=0; i<n; i++)
yIlE(i)] = x[i];
P(f™) for (i=0; i<n; i++)
ylil = x[£(1)];
diag (") for (i=0; i<n; i++)
ylil = £(1)*x[i];
T A for (i=0; i<k; i++)
<code for: y = A i * x>

Finally, £-SPL adds the iterative matrix sum

to represent loops. The A; are restricted such that no two
A, have a nonzero entry in the same row.

The following example shows how ® is converted
into a sum. A is assumed to be # x n, and domain and
range in the occurring stride functions are omitted for
simplicity.

o[[Jen]]

= S(ho)l)AG(ho)l) +...

+ S(h(k-1)n1)AG(h(k-1yn1)
k-1

= Z S(hin,l)AG(hin,l)
i=0

Intuitively, the conversion to X-SPL makes the loop
structure of y = (Ix ® A)x explicit. In each iteration i,
G(-) and S(-) specify how to read and write a portion of
the input and output, respectively, to be processed by A.

Loop merging using X-SPL and rewriting. Using X-
SPL, the loop merging problem identified before in the
example (I ® F,)L} is solved by the loop optimization
block in Fig. 3 as follows:

—

]
(=}

(I, ® Fz)Li - (S(hai,1)F2G(ha;, 1))P(€Z)

1

M

—

(S(hz,‘) 1)F2G(€Z o h2i, 1))

1

. Z(:) (S(hai, 1) F2G(hi, 1))

The first step translates SPL into X-SPL. The second step
performs the loop merging by composing the permu-
tation £% with the index functions of the subsequent
gathers. The third step simplifies the resulting index
functions. After that, actual C code is generated using
Table 5.

Besides the added loop optimizations block in Fig. 3,
the program generation for loop code operates itera-
tively exactly as for straightline code.

w
o

As was illustrated in Fig. 1, for compute functions, com-
pilers usually fail to optimally (or at all) exploit the
parallelism offered by a platform. Hence, the task falls

1928

Spiral

with the programmer, who has to leave the standard
C programming model and insert explicit threading or
OpenMP loops for shared memory parallelism and so-
called intrinsics for vector instruction sets. However,
doing so in a straightforward way does not necessarily
yield good performance.

The problem: Algorithm structure. To illustrate the
problem, consider a target platform with four cores that
share a cache with a cache block size of two complex
numbers.

The first goal is to obtain parallel code with four
threads for Iy ® F, visualized in Fig. 5a. The computa-
tion is data parallel; hence, the loop suggested in Table 4
can be replaced, for example, by an OpenMP parallel
loop. Note that each processor “owns” as working set
exactly one cache block; hence, the parallelization will
be efficient.

Now consider again the SPL expression (I; ® F,)L}
visualized in Fig. 5b. The computation is again data par-
allel, but the access pattern has changed such that always
two processors access the same cache block. This pro-
duces false sharing, which triggers the cache coherency
protocol and reduces performance. The problem is
obviously the permutation L§. Since the rules (e.g.,
those in Table 2) contain many, and various, permu-
tations, a straightforward mapping to parallel code
will yield highly suboptimal performance. To solve
this problem inside Spiral, another rewrite system is
introduced to restructure algorithms before mapping
to parallel code. The restructuring will be different for
different forms of parallelism, called paradigms.

} Cache block

Paradigms and tagged rewriting. A paradigm in Spi-
ral is a feature of the target platform that requires struc-
tural optimization. Typically, a paradigm is a form of
parallelism. Examples include shared memory paral-
lelism (SMP) and SIMD parallelism. A paradigm may
be parameterized, for example, by the vector length v for
SIMD parallelism. In Spiral, a paradigm manifests itself
by another rewrite system provided by the additional
parallelism block in Fig. 3 (and backend extensions in
the X-SPL to C code block to produce the actual code).

The goal of the new rewrite system is to structurally
optimize a given SPL expression into a form that can
be efficiently mapped to a given paradigm. The rewrite
system is built from three main components:

o Tags encode the paradigm and relevant parameters.
Examples include the tags “vec(v)” for SIMD vector
extensions and the tag “smp(p,u)” for SMP. The
meaning of the parameters is explained later.

e Base cases are SPL constructs that can be mapped

well to a given paradigm. As illustrated above, one

example is any I, ® A, for p-way SMP.

Tagged rewrite rules are mathematical identities that

translate general SPL expressions toward base cases.

An example is the rule (assuming p|n)

An®I,~ LW (I,®
N e’ —
smp(p4)

(Ljp ® Aw)) LI"
~——

smp(p.p) smp(p.u)

The rule extracts the p-way parallel loop (base case)
I, ® (I,/, ® Ay) from A,, ® I,,. The stride permuta-
tions L};" and L’ are handled by further rewriting.

A

X

]— Cache block

9(%

sl

I

9(%

B (@

a L®F, b

g

(b ®Fp) Ly

Spiral. Fig.5 Mapping SPL constructs to four threads. Each thread computes one F,. Both computations are data parallel,

but (a) produces no false sharing, whereas (b) does

Spiral

1929

Example: SMP. For SMP, the tag smp(p, 4) contains
the number of processors p and the cache block size
p. Base cases include I, ® A, and P ® I,, where P is
any permutation. P ® I, moves data in blocks of size y;
hence false sharing is avoided. From these, other base
cases can be built recursively as captured by the sketched
grammar in Table 6.

Some SMP rewrite rules are shown in Table 7. Note
that the rewriting is not unique, and not every sequence
of rules terminates. Once all tags disappear, the rewrit-
ing terminates.

Example: SIMD. For SIMD, the tag vec(v) contains
only the vector length v. The most important base case
is A, ® I,, which can be mapped to vector code by
generating scalar code for A, and replacing every opera-
tion by its corresponding v-way vector operation. Other
base cases include L2*, I2*, and LY, which are gener-
ated automatically from the instruction set [9]. Similar
to Table 6, the entire set of vector base cases is specified

Spiral. Table 6 smp(p, u) base cases in Backus-Naur form;
nis a positive integer, a; are real or complex numbers

(smp) == (generic) | (basic) |

(smp)----- (smp) |
(smp) @ ... ® (smp) | (directsum)

(product)
(tensor product)

(generic) == diag(ao, ...,an-1) | ...
(basic) i==l, @ Ay |[P® 1, | ...

Spiral. Table 7 Examples of smp(p,) rewrite rules

AB — A B
—~— —~ —~
smp(p.p) smp(p,u) smp(p,u)
An®lh > (LnP ®) (I ® (An ® Inyp)) (LpP @ lryp)
N— ——
smp(p,u) smp(p,ut)
(b ®LZ5) (2 @)
S
Lmn N smp(p,u) smp(p.u)
N (L5 @ o) (o ® L)
smp(p,) N —
smp(p.p) smp(p,u)
In®Ar = Ip® (lnyp ®An)
N———
smp(p,u)
Pe®h) = (P®hy)®l
—
smp(p.+)

by a grammar recursively built from the above special
constructs.

Parallelization by rewriting. In Spiral, parallelization
adds the new parallelization block in Fig. 3. The paral-
lelization rules are applied interleaved with the break-
down rules to generate SPL algorithms that have the
right structure for the desired paradigm. For example,
for the DFT it may operate as follows:

DFT,, — ((DFT,, ®I,)T;" (I, ® DFT, L")
N——
smp(p.i1)

smp(p,p)

~ (DFT,®lL,) T;" (I.®DFT,) Ly
N——— — N—— ——

smp(p,u) smp(pu) smp(p,u) smp(p,)

> (L2 ©1,1,) ®1,) (I, ® (DFT,, ©1,,))
((qup‘g’ln/w) ®I,)Tn"(I,® (I,,,® DFT,))

(Ip ® LZZP) (5" ® Ljpu) ® 1)

First, Spiral applies the breakdown rule (2). Then
the parallelization rules transform the resulting SPL
expression in several steps. Note how the final expres-
sion has only access patterns (permutations) of the form
P® I, and all computations are in the form I, ® A (and
the diagonal T7,"). The smaller DFTs can be expanded
in different ways, for example, by rewriting for SIMD.
Further choices are used for search.

The remaining operation of Spiral including X-SPL
conversion and search proceeds as before.

An implementation that can compute a transform for
arbitrary input size is fundamentally different from one
for fixed input size (compare Table 3b and ¢). If the input
size n is fixed, for example, n = 4, the computation is

(x,y) -> dft_4(y,x)

and all decisions such as the choice of recursion until
base cases are reached can be made at implementation
time. In an equivalent implementation (called library)
for general input size #,

(n,x,y) -> dft(n,y,x)

the recursion is fixed only once the input size is
known. Formally, the computation now becomes

n-> ((x,y) -> dft(n,y,x))

1930

Spiral

which is an example of function currying. A C++
implementation is sketched in Table 3¢, where the two
steps would take the form

dft * £ = new dft(n);
f->compute(y, x);

// initialization
// computation

The first step determines the recursion to be taken
using search or heuristics, and precomputes the twid-
dle factors needed for the computation. The second
step performs the actual computation. The underlying
assumption is that the cost of the first step is amortized
by a sufficient number of computations. This model is
used by FFTW [15] and the libraries generated by Spiral.

To support the above model, the implementation
needs recursive functions. The major problem is that
the optimizations introduced before operate in nontriv-
ial ways across function boundaries, thus creating more
functions than expected. The challenge is to derive these
functions automatically.

The problem: Loop merging across function bound-
aries. To illustrate the problem, consider the Cooley-
Tukey FFT (2). A direct recursive implementation
would consist of four steps corresponding to the four
matrix factors in (2). Two of the steps would call smaller
DFTs:

void dft(int n, cpx *y, cpx *x) {

int k = choose factor(n);

int m = n/k;
cpx *tl = Permute x with L(n,k);

// t2 = (I_k tensor DFT m)*tl
for (int 1i=0; i<k; ++1i)
dft (m, t2 + m*i, tl + m*i);

// t3 = T"n m*t2, f() computes
// diagonal entries of T
for (int 1=0; i<n; ++1i)

t3[i] = £(i) * t2[i];
// v = (DFT_k tensor I _m)*t3,
//cannot call dft () recursively,
//need strided I/O
for (int 1=0;

i<m; ++1)

dft stride(k, m, y + i, t3 + 1);

}
// to be implemented
void dft stride(int n, int stride,

cpx *Y, cpx *X);

Note how even this simple implementation is
not self-contained. A new function dft_stride is
needed that accesses the input in a stride and pro-
duces the output at the same stride (see the data flow in
Fig. 2).

However, as explained before, loops should be
merged where possible. For fixed size code, Spiral would
merge the first loop with the second, and the third loop
with the fourth, using 2-SPL rewriting. The same can be
done in the general size recursive implementation, but
the merging crosses function boundaries:

void dft (int n, cpx *y, cpx *x) {
int k = choose factor(n);

//tl = (I_k tensor DFT m)L(n,k)*x
for (int i=0;

dft iostride(m, k, 1,

1 < k; ++1)

tl + m*1i,
X + m*i);

// v = (DFT k tensor I m) T'n m

// diagonal entries of T are now

// precomputed in precomp f[]

for (int 1i=0; i < m; ++1)

dft scaled(k, m, precomp f[il],

y + i, tl + 1i);

// to be implemented
void dft iostride(int n, int istride,
cpx *y,
void dft scaled(int n,

cpx *y,

int ostride, cpxX *X) ;
int stride,

cpx *d, CpxX *X);

Now there are two additional functions:
dft iostride reads at a stride and writes at a dif-
ferent stride, and dft scaled first scales the input
and then performs a DFT at a stride.

So at least three functions are needed with different
signatures. However, the two additional functions are
also implemented recursively, possibly spawning new
functions. Calling these functions recursion steps, the
main challenge is to automatically derive the complete
set of recursion steps needed, called the “recursion step
closure” Further, for each recursion step in the closure,
the signature has to be derived.

Recursion step closure by Z-SPL rewriting. Spiral
derives the recursion step closure using X-SPL and the
same rewriting system that is used for loop merging.

Spiral

1931

For example, the two additional recursion steps in
the optimized implementation above are automati-
cally obtained from (2) as follows. Recursion steps are
marked by overbraces.

—— —— ——
DFT, — (DFT,; ®Ik) T} (I,x ® DFTk)L;
k-1 e,
- (Z S(hi)k) DFTn/k G(h,*,k))
i=0
n/k—1 —_—
diag (f)(2. S(hjk1) DFTk G(hjk,))P(EZ/k)
j=0
k-1 r—t—
— Z S(hi,k) DFTn/k diag (f o h,‘)k)G(h,‘,k)

i=0

n/k-1 ——
>~ S(hjk1) DFT G(hjk)
=0

k-1
— %" S(hix) DFT, i diag (f © hix) G(hix)
i=0
n/k-1

> S(hjk1) DFTx G(h;) (5)
=0

The first step applies the breakdown rule (2). The second
step converts to X-SPL. The third step performs loop
merging as explained before. The fourth step expands
the braces to include the context. The two expres-
sions under the braces correspond to the two functions

dft _iostride and dft scaled. The process is
now repeated for the expression under the braces until
closure is reached. In this example, only one addi-
tional function is needed, i.e., the recursion step clo-
sure consists of four mutually recursive functions. The
derivation of the recursion steps also yields a X-SPL
specification of the actual recursion, i.e., their imple-
mentation by a recursive function (e.g., (5) for DFT,).

For the best performance, the braces may be
extended to also include the loop represented by the
iterative sum. Moving the loop into the function enables
better C/C++ compiler optimizations.

If the implementation is vectorized or parallelized,
the initial breakdown rules are first rewritten as
explained before and then the closure is computed.
The size of the closure is typically increased in
this case.

Program generation for general input size: Overview.
The overall process is visualized in Fig. 6. The input
to Spiral is now a (sufficient) set of breakdown rules
for a given transform or transforms. The rules are par-
allelized if desired, using the appropriate paradigms;
then the recursion step closure is computed, which also
yields the actual recursions.

The resulting recursion steps need base cases for
termination. These are generated using the algorithm
generation block from the fixed input size Spiral (Fig. 3)

Algorithm knowledge
(breakdown rules)

Platform knowledge
(paradigms)

Parallelization

Recursion steps and recursions (%-SPL)

Base case
algorithms (2-SPL)

C library

Spiral. Fig. 6 Spiral program generator for general input size libraries

1932

Spiral

for a range of small sizes (e.g., n < 32) to improve per-
formance. These, the recursion steps, and the recursions
are fed into the final block to generate the final library.
Among other junctions, the block performs the hot/
cold partitioning that determines which parameters in
a recursion step are precomputed during initialization
and which become parameters of the actual compute
function. Finally, the actual code is generated (which
now includes recursive functions) and integrated
into a common infrastructure to obtain a complete
library.

Many details are omitted in this description and are
provided in [29, 30].

A major question is whether the approach taken by
Spiral can be extended beyond the domain of linear
transforms, while maintaining both the basic principles
outlined in the introduction and the ability to auto-
matically perform the necessary transformations and
reasoning. First progress in this direction was made in
[7] with the introduction of the operator language (OL).
OL generalizes SPL by considering operators that may
be nonlinear and may have more than one vector input
or output. Important constructs such as the tensor prod-
uct are generalized to operators. First results on pro-
gram generation for functions such as radar imaging,
Viterbi decoding, matrix multiplication, and the physi-
cal layer functions of wireless communication protocols
have already been developed.

Related Entries

»ATLAS (Automatically Tuned Linear Algebra Soft-
ware)

»FFT (Fast Fourier Transform)

»FFTW

Bibliographic Notes and Further
Reading

Spiral is based on early ideas on using tensor prod-
ucts to map FFT algorithms to parallel supercomputers
[16]. The first paper describing SPL and the SPL com-
piler is [32]. See also [14] for basic block optimizations
for transforms. The first complete basic Spiral system
including SPL algorithm generation and search was pre-
sented in [23], with a more extensive treatment in [24]

and probably the best overview paper [22], which fully
develops SPL for a variety of transforms. The path to
complete automation in the transform domain contin-
ued with 2-SPL and loop merging [11], the introduction
of rewriting systems for SIMD vectorization [8, 13] and
base case generation [9], SMP parallelization [12], and
distributed memory parallelization [2, 3]. The final step
to generating general size, parallel, adaptive libraries
was made in [29, 30]. The generated libraries are mod-
eled after FFTW [15], which is written by hand but uses
generated basic blocks [14].

The most important extensions of Spiral are the
following. Extensions to generate Verilog for field-
programmable gate-arrays (FPGAs) are presented in
[18, 19]. Search techniques other than dynamic pro-
gramming are developed in [5, 26]. The use of learning
to avoid search was studied in [6, 25]. Finally, [4, 7, 17]
make the first steps toward extending Spiral beyond the
transform domain including the first OL description.
The Spiral project website with more information and
all publications is given in [1].

A good introduction to FFTs using tensor prod-
ucts is given in the books [27, 28]. A comprehensive
overview of algorithms for Fourier/cosine/sine trans-
forms is given in [21, 31]. A good introduction to map-
ping FFTs to multicore platforms is given in [10].

Bibliography

1. Spiral project website. www.spiral.net

2. Bonelli A, Franchetti E Lorenz], Piischel M, Ueberhuber CW
(2006) Automatic performance optimization of the discrete
Fourier transform on distributed memory computers. In: Inter-
national symposium on parallel and distributed processing and
application (ISPA), Lecture notes in computer science, vol 4330.
Springer, Berlin, pp 818-832

3. Chellappa S, Franchetti E, Piischel M (2009) High performance
linear transform program generation for the Cell BE. In: Pro-
ceedings of the high performance embedded computing (HPEC),
Lexington, 22-23 September 2009

4. de Mesmay F, Chellappa S, Franchetti F Piischel M (2010)
Computer generation of efficient software Viterbi decoders. In:
International conference on high performance embedded archi-
tectures and compilers (HiPEAC), Lecture notes in computer
science, vol 5952. Springer, Berlin, pp 353-368

5. de Mesmay F, Rimmel A, Voronenko Y, Piischel M (2009) Bandit-
based optimization on graphs with application to library perfor-
mance tuning. In: International conference on machine learning
(ICML), ACM international conference proceedings series, vol
382. ACM, New York, pp 729-736

http://dx.doi.org/10.1007/978-1-4419-5906-5_85
http://dx.doi.org/10.1007/978-1-4419-5906-5_85
http://dx.doi.org/10.1007/978-1-4419-5906-5_243
http://dx.doi.org/10.1007/978-1-4419-5906-5_397
http://www.spiral.net

SPMD Computational Model

1933

10.

1L

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

. de Mesmay F, Voronenko Y, Piischel M (2010) Offline library

adaptation using automatically generated heuristics. In: Interna-
tional parallel and distributed processing symposium (IPDPS)

. Franchetti F, de Mesmay F, McFarlin D, Piischel M (2009) Oper-

ator language: a program generation framework for fast kernels.
In: IFIP working conference on domain specific languages (DSL
WC), Lecture notes in computer science, vol 5658. Springer,
Berlin, pp 385-410

. Franchetti F, Plischel M (2002) A SIMD vectorizing compiler for

digital signal processing algorithms. In: International parallel and
distributed processing symposium (IPDPS). pp 20-26

. Franchetti F, Piischel M (2008) Generating SIMD vectorized per-

mutations. In: International conference on compiler construction
(CC), Lecture notes in computer science, vol 4959. Springer,
Berlin, pp 116-131

Franchetti E, Piischel M, Voronenko Y, Chellappa S, Moura JMF
(2009) Discrete Fourier transform on multicore. IEEE Signal Proc
Mag 26(6):90-102

Franchetti F, Voronenko Y, Piischel M (2005) Formal loop merg-
ing for signal transforms. In: Programming languages design and
implementation (PLDI). ACM, New York, pp 315-326
Franchetti F, Voronenko Y, Piischel M (2006) FFT program gen-
eration for shared memory: SMP and multicore. In: Supercom-
puting (SC). ACM, New York

Franchetti F, Voronenko Y, Piischel M (2006) A rewriting system
for the vectorization of signal transforms. In: High perfor-
mance computing for computational science (VECPAR), Lec-
ture notes in computer science, vol 4395. Springer, Berlin,
pp 363-377

Frigo M (1999) A fast Fourier transform compiler. In: Proceed-
ings of the programming language design and implementation
(PLDI). ACM, New York, pp 169-180

Frigo M, Johnson SG (2005) The design and implementation of
FFTW3. Proc IEEE 93(2):216-231

Johnson J, Johnson RW, Rodriguez D, Tolimieri R (1990)
A methodology for designing, modifying, and implementing
Fourier transform algorithms on various architectures. IEEE
Trans Circ Sys 9:449-500

McFarlin D, Franchetti F, Moura JME, Piischel M (2009) High
performance synthetic aperture radar image formation on com-
modity architectures. Proc SPIE 7337:733708

Milder PA, Franchetti F, Hoe JC, Piischel M (2008) Formal dat-
apath representation and manipulation for implementing DSP
transforms. In: Design automation conference (DAC). ACM,
New York, pp 385-390

Nordin G, Milder PA, Hoe JC, Piischel M (2005) Auto-
matic generation of customized discrete Fourier transform IPs.
In: Design automation conference (DAC). ACM, New York,
pp 471-474

Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992)
Numerical recipes in C: the art of scientific computing, 2nd edn.
Cambridge University Press, Cambridge

Piischel M, Moura JMF (2008) Algebraic signal processing the-
ory: Cooley-Tukey type algorithms for DCTs and DSTs. IEEE
Trans Signal Proces 56(4):1502-1521

22.

23.

24.

25.

26.

27.

28.

29.

30.

3L

32.

Piischel M, Moura JME, Johnson], Padua D, Veloso M, Singer
B, Xiong J, Franchetti F, Gacic A, Voronenko Y, Chen K, John-
son RW, Rizzolo N (2005) SPIRAL: code generation for DSP
transforms. Proc IEEE (Special Issue on Program Generation,
Optimization, and Adaptation) 93(2):232-275

Piischel M, Singer B, Veloso M, Moura JMF (2001) Fast auto-
matic generation of DSP algorithms. In: International conference
on computational science (ICCS), Lecture notes in computer
science, vol 2073. Springer, Berlin, pp 97-106

Piischel M, Singer B, Xiong J, Moura JME, Johnson J, Padua D,
Veloso M, Johnson RW (2004) SPIRAL: a generator for platform-
adapted libraries of signal processing algorithms.] High Perform
Comput Appl 18(1):21-45

Singer B, VelosoM (2001) Learningtogeneratefastsignal processing
implementations.In:International conferenceonmachinelearning
(ICML). Morgan Kaufmann, San Francisco, pp 529-536

Singer B, Veloso M (2001) Stochastic search for signal process-
ing algorithm optimization. In: Supercomputing (SC). ACM,
New York, p 22

Tolimieri R, An M, Lu C (1997) Algorithms for discrete Fourier
transforms and convolution, 2nd edn. Springer, Berlin

Van Loan C (1992) Computational framework of the fast Fourier
transform. SIAM, Philadelphia

Voronenko Y (2008) Library generation for linear transforms.
Ph.D. thesis, Electrical and Computer Engineering, Carnegie
Mellon University

Voronenko Y, de Mesmay F, Piischel M (2009) Computer gener-
ation of general size linear transform libraries. In: International
symposium on code generation and optimization (CGO). IEEE
Computer Society, Washington, DC, pp 102-113

Voronenko Y, Piischel M (2009) Algebraic signal processing the-
ory: Cooley-Tukey type algorithms for real DFTs. IEEE Trans
Signal Proces 57(1):205-222

Xiong J, Johnson J, Johnson RW, Padua D (2001) SPL: a lan-
guage and compiler for DSP algorithms. In: Programming lan-
guages design and implementation (PLDI). ACM, New York,
Pp 298-308

SPMD Computational Model

FREDERICA DAREMA
National Science Foundation, Arlington, VA, USA

Definition of the Subject

The Single Program - Multiple Data (SPMD) parallel
programming paradigm is premised on the concept that
all processes participating in the execution of a pro-
gram work cooperatively to execute that program, but
at any given instance different processes may execute
different instruction-streams, and act on different data

1934

SPMD Computational Model

and on different sections in the program, and whereby
these processes dynamically self-schedule themselves,
according to the program workflow and through syn-
chronization constructs embedded in the application
program. SPMD programs comprise of serial, parallel,
and replicate sections.

The (SPMD) Single Program-Multiple Data model [1-6]
is premised on the concept that all processes partici-
pating in the (parallel) execution of a program work
cooperatively to execute this program, but at any given
instance, through synchronization constructs embed-
ded in the application program, different processes may
execute different instruction-streams, and act on differ-
ent data and on different sections in the program; thus
the name of the model: Single Program — Multiple Data.
The model was proposed by the author in January 1984
[1], as a means for expressing and enabling parallel exe-
cution of applications on highly parallel MIMD com-
putational platforms. The term “single-program” was
used for emphasis on the parallel execution of a given
program (i.e., concurrent execution of tasks in a given
program), in distinction from the environments of that
time, where OS-level concurrent tasks would (concur-
rently) execute different programs on the multiproces-
sors of that time (e.g., IBM 3081). The initial motivation
for the SPMD model was to enable the expression of the
(then) high degrees of parallelism supported by the IBM
Research Parallel Processor Prototype (RP3) [7] parallel
computer system. The model was first implemented in
the Environment for Parallel Execution (EPEX) [2-6]
programming environment (one of the first general-
purpose parallel programming environments, and of
course the first to implement SPMD). This entry is
an excerpt of a more comprehensive treatise on the
SPMD [8] which puts the motivation for the SPMD
in the context of the landscape of the computer plat-
forms and software support of the early- to mid-1980s,
and discusses experiences, effectiveness, and impact of
the SPMD in expediting adoption of parallelism in that
time frame and as it has influenced derivative program-
ming environments in the intervening 25 years.

The SPMD model fostered a new approach to par-
allel programming, differing than the Fork & Join (or
Master—Slave) model predominantly pursued by others
at around the 1984 timeframe. In SPMD, all processes

that participate in the parallel execution of a program
commence execution of the program, and each process
is dynamically self-scheduled and selects work-tasks to
execute (self-allocated work), based on parallelization
directives embedded in the program and according to
the program workflow. In the SPMD model, a process
represents a separate instantiation of the program, and
processes participating in the cooperative execution of
a program (also referred to as parallel processes) exe-
cute distinct instruction streams in a coordinated way
through these embedded parallelization directives (also
referred to as synchronization directives). With respect
to parallel execution, in general a program consists of
sections that are executed by one process (serial sec-
tions) and sections that can be executed by multiple
cooperating processes (i.e., parallel sections, that can
be executed by several processes in a cooperative and
concurrent manner, and replicate sections, where the
computations are executed by every process; parallel
sections may include one or more levels of nested par-
allel sections). Regardless of the section considered, the
beginning and end of serial and of parallel sections
(and nested parallel sections) are points of synchro-
nization of the processes (synchronization points), that
is, points of coordination and control of the execution
path of the participating processes. The definition in
[1, 2]: “all processes working together will execute the
very same program,” uses the word “same” to empha-
size concurrent execution of a given program by these
(“multiple”) processes, and not to imply that all these
processes execute identical instruction streams (as it has
been interpreted by some). In expressing parallelism
through the SPMD model, the flow of control is dis-
tinguished in two classes: the parallel flow of control is
the flow of control followed by the processes while exe-
cuting a serial or a parallel section in the program; the
global flow of control is the flow of control followed by
the processes as they step through the synchronization
points of the program, according to the program work-
flow. In parallel execution with the SPMD model, the
participating processes follow a difterent parallel flow of
control, but all the processes follow the same global flow
of control.

Conceptually, the SPMD model has been from the
outset a general model, enabling to express parallelism
for concurrent execution of distinct instruction streams
and allowing application-level parallelization control

SPMD Computational Model

1935

and dynamic scheduling of work-tasks ready to exe-
cute (with process self-scheduling). The model is able to
support general MIMD task-level parallelism, includ-
ing nested parallelism, and is applicable to a range
of parallel architectures (those considered at the time
the model was proposed and other parallel and dis-
tributed architectures that have subsequently appeared)
in more efficient and general ways than the then pro-
posed alternate parallel programming models, such
as those based on Fork-and-Join, SIMD, and data-
parallel and systolic-arrays approaches. In fact SPMD
allows combining with and implementing such mod-
els as parallel execution models invoked under the
SPMD rubric. Applied to parallel architectures support-
ing shared memory (for example RP3) the SPMD is a
global-view programming model. From its inception,
SPMD allowed efficient implementations of expressing
parallelism, through parallelization directives inserted
in the initial serial application programs, the ensu-
ing “parallelized” program compiled with the standard
serial compliers. The parallelization directives enabled
application-level dynamic scheduling and control of
the parallel execution, with efficient runtime imple-
mentations, requiring minimal interaction with the OS,
avoiding (the heavy) OS level-synchronization over-
heads, and without requiring new, parallel OS ser-
vices. These were important considerations in the 1984
time frame, the SPMD showed early-on that it allowed
the parallelization of non-trivial programs; many were
production-level application programs, for example,
from the areas of applied physics, aerospace, and design
automation. Thus the SPMD expedited adoption of par-
allelism in the mid-1980s, as the model enabled to deter-
mine that it was not difficult to express parallelism, and
map and execute such non-trivial applications on par-
allel machines, and thus exploit parallelism and do so
flexibly and adaptively, and with efficiency.

SPMD enabled creating parallel versions of
FORTRAN and C programs, and also enabled the
parallel execution of such programs without the need
for new parallel languages. To date, there are many
environments that have implemented SPMD, primarily
for science and engineering parallel computing, but
also for commercial applications. The most widely used
today being MPI [9] for distributed multiprocessing
systems or “message-passing” systems, and later used
also for shared memory systems; the predecessor of

MPI being PVM [10], which appeared in the late-1980s
as one of the first popular implementations of SPMD
for “message-passing” systems. The SPMD model
through its implementation in MPI is widely used
for exploiting today’s heterogeneous complex parallel
and distributed computational platforms, including
computational grids [11], which embody many types
of processors, multiple levels of memory hierarchy,
and multiple levels of networks and communication,
and which may employ a combination of SPMD as
well as Fork-and-Join programming environments.
Other influential programming environments also
based on SPMD include OpenMP [12] for shared-
memory parallel programming in FORTRAN, C, and
C++; Titanium [13] for parallelization of Java programs;
and Split-C [14] and Unified Parallel C (UPC) [15] for
parallel execution of C programs.

The SPMD Model

In the SPMD model, a parallel program conceptually
consists of serial, parallel (including nested parallel),
and replicate sections. The program data are distin-
guished into application data and synchronization data;
synchronization data are shared among the parallel pro-
cesses, and application data are distinguished into pri-
vate and into shared data. In the following are discussed
how these parallelization aspects are treated in SPMD:

e Serial sections are executed by one process (either
a designated process, or more generally, and typi-
cally, the first one to arrive at that section). The other
processes that arrive at this serial section, through
the “serial-section synchronization directives” are
directed to bypass its execution; there, they either
wait at the end of the section for its execution
to complete, or they may proceed to seek and
execute available work-task(s) in subsequent sec-
tion(s), if that is allowed by the program workflow
dependencies (and with appropriate synchroniza-
tions imposed - soft and hard barriers, discussed
later on in their EPEX implementation).

e Parallel sections are executed concurrently by
processes that arrive at the beginning of such a
section. These processes, through “parallel-section
synchronization directives” dynamically self-schedule
themselves and get allocated with the next available
parallel work-task to execute. As each of these

1936

SPMD Computational Model

processes arriving in a parallel section is self-
assigned a work - task, and as each process
completes its task of work, these processes can
seek the next available work-task to execute in
that parallel section; or if all work tasks in the
parallel section have been allocated to processes,
the remaining process(es) can proceed to the end
of that parallel section, and either wait there till
all the work of the parallel section is completed,
or continue-on to the next section of the program
or other subsequent sections of the program as
allowed by the program workflow dependencies
(and with appropriate synchronizations imposed -
soft and hard barriers, discussed later on in their
EPEX implementation). Parallel loops in programs
are the predominant form of a parallel section and
thus major targets of parallel execution; however,
SPMD also supports other forms of general task
parallelism. Later in this section nested parallelism
support in SPMD is discussed.

Replicate sections of the program are sections
allowed to be executed by all processes (it is the
default mode of execution that was envisioned when
the SPMD was first proposed). Such sections involve
parts of the computation (typically small portion
of the total amount of the computation) and where
allowing all processes to replicate the execution
of the computation is more efficient than having
one process execute the section (while the others
wait) and then make the result of the computa-
tion available to other processes (as shared data
or as communicated messages). This is applica-
ble, for example, where replicate execution avoids:
the serialization overhead, the busy-waiting and
polling a synchronization semaphore by the other
processes (with potential additional overhead due
for example contention in this semaphore, and
also potential network contention), and the over-
head of making the resulting data available to the
other process (e.g., in shared memory architec-
tures, potential of contention upon access of the
resulting data placed in shared memory; or net-
work contention upon broadcasting the results to
the other processes through message passing, in log-
ically distributed, “message-passing” architectures).
Especially for message-passing environments, such
overheads can be rather high, and in such cases

the approach of replicate computations can be a
more efficient alternative for certain portions of the
computation.

Shared and Private Data: These refer to application
data and synchronization data. For parallel machine
architectures which support shared as well as pri-
vate memory, parallelism is expressed by consid-
ering two types of data: shared data and private
data; each of the parallel processes having read and
write capability on the shared data, while private
data are exclusive to each process (and typically the
private data of a process would reside in the local
memory of the processor on which the process exe-
cutes). Application shared data and synchronization
data are declared as shared data. SPMD was origi-
nally proposed for architectures supporting a mix of
shared and (logically local - private) memory, and
the approach followed in the original SPMD imple-
mentation was for the default to be the private data
(to each parallel process); this decision was made
(by the author) on the basis that it is easier
(especially for the user) to identify the applica-
tion shared data and the synchronization data,
rather than explicitly defining the private data as
other approaches have done. For message-passing
architectures, where the SPMD was also applied,
the application shared data are partitioned into
per process private data, and “sharing” of such
data is effected through “messages” exchanged
between parallel processes, as needed during the
course of the computation. It is the belief of this
author that expressing parallelism through message-
passing is more challenging than supporting par-
allelism through a “shared-memory plus private
memory” architecture support, and that is also the
case with the kinds of programming models for
expressing parallelism (more on this in later discus-
sion on MPI).

I/O: The SPMD model allows general flexibility in
handling I/O. Any of the parallel processes execut-
ing a parallel program are allowed to perform I/O,
and (as discussed later-on in the context of the EPEX
programming environment) all processes can have
read/write access to any of the parallel program’s
files. One can argue that the typical approach would
be for I/O to be treated as a serial action, although
that is not necessarily always so. For example, upon

SPMD Computational Model

1937

commencing execution of a program, one process
typically would be assigned to read the input data
file, and perform the program state initialization.
However, there are many other instances in the pro-
gram execution, for example, within parallel sec-
tions, where it may be more efficient to allow each
process to read data from a file, and as needed
write data back into a file. In this case, for flexi-
bility, random-access file structure would be more
desirable, than sequential record files; it is then not
necessary to attach a file to a given process, which is
a possible but more restrictive approach.

In the early implementations of the SPMD, where
processes were implemented by heavy-weight mecha-
nisms (such as VMs - Virtual Machines), to enable effi-
cient parallel execution, all processes were created in the
beginning of the program execution, and this has been
applied to most SPMD implementations since then.
Noted, however, that the SPMD model does not pre-
clude by principle the case where additional processes
can be created and participate in the program execution;
this was allowed through EPEX implemented directives,
allowing such additional processes to skip the already
executed portion of the entire computation. However,
at the time SPMD was proposed and within the systems
then available for the implementation of the model, cre-
ation of such processes and inheriting program state
was expensive, unlike capabilities that were enabled
later on, like creation of light-weight threads.

Nesting in SPMD can be implemented by allowing
enough processes to enter an (outer) parallel loop, for
example, allocate several processes — a group of pro-
cesses — to a given outer loop iteration, allowing only
one of these processes to execute the outer loop por-
tion (for example, with appropriate directives treating
it as a “nested serial”) and then allow all processes
in this group to execute in parallel the inner loop. In
fact this author experimented with such approaches, as
well as a hybrid of SPMD combined with Fork-and-
Join capabilities to implement nesting, but they were
never implemented in a production way, due to the
overheads of spawning VM/SP virtual processes, but
also because in the mid-1980s timeframe the degrees
of parallelism in the applications (e.g., dimensionality
of the outer parallel loops in a program) exceeded the
numbers of processors in the commercial and in the

prototype systems of that time, so exploiting nesting was
more of an intellectual endeavor rather than a practical
need. With threading capabilities, other implementa-
tions can be used to support more elegantly execution
of nested parallel computations, for example, by each
process spawning threads to execute the inner itera-
tions of the loop, like for example in OpenMP. Later in
this entry is discussed the need for nested or multilevel
threading capabilities, gang scheduling of threads, par-
tially shared data and active data-distribution notions,
in the context of multi-level parallelization hierarchies
that will be encountered in the emerging and future
parallel architectures.

The SPMD model does not restrict how many pro-
cesses can run on each parallel processor. While often
one process executes per processor, there are cases
where multiple processes may be spawned to execute
per processor, for example, to mask memory latency,
shared memory contention, I/O, etc. Also SPMD does
not require a given process to be attached to a given
processor; however, the typical approach is to bind a
process (or a thread to a processor), to avoid cost of
migration, context-switch, and better exploitation of
(local data) cache; however, there are situations where,
aslong as there is no thrashing, a process may be moved,
for example, to improve performance, and in other cases
for fault tolerance or recovery [16, 17].

Other SPMD features are provided as illustrative
examples of the EPEX programming environment dis-
cussed next.

The EPEX Programming

Environment - Implementation of the
SPMD Model

The first implementation of SPMD was in the EPEX
environment [2-5], initially implemented on IBM mul-
tiprocessors like the dual processor IBM/3081 and,
later, the six-processor IBM/3090 vector multiproces-
sor (through MVS/XA [18]). The IBM/3081 through the
VM/SP OS [19] supported execution of multiple vir-
tual machines (VMs), running in time-shared mode
(on each node of the 3081). This capability was used to
simulate parallel execution by a large number of pro-
cessors working together on a single program, each
simulated parallel processor and its local memory (cor-
respondingly for each of the parallel processes) being
simulated by a VM (a virtual machine). Although in

1938

SPMD Computational Model

practice the 3081 hardware supported 2-way parallelism
(and the 3090 hardware supported 6-way parallelism),
the simulation environment created was used to simu-
late up to 64 parallel processors; of course, in principle
the environment could simulate even higher numbers
of processors. To simulate execution on parallel plat-
forms, like RP3, the VM/SP OS support of the Writable
Shared Segments (VM/WSS) capability was used, which
allowed to establish a portion of the virtual machines’
memory as shared across a set of VMs (in read and
write modalities); this feature allowed to simulate the
shared-memory of a parallel system (like RP3), while
the private memory of each virtual machine simulated
the local memory of an RP3 processor, and the private
memory of the corresponding process. The VM/WSS
was also used to emulate message-passing environ-
ments, by using the WSS-based (virtual) shared mem-
ory as a “mailbox” for messages, and thus allowing to
also experiment and to demonstrate the use of SPMD
as a model also supporting message-passing parallel
computation. These capabilities were used to create a
simulation platform for the EPEX programming envi-
ronment, and were also used for the development of
other simulation tools for analysis of execution on var-
ious parallel machines with shared-plus-local memory
systems as well as for “message - passing” distributed
systems. While over the last two decades most parallel
systems have been used with MPI (a message-passing
environment), it behooves elaborating on shared-
plus-local memory systems because the emerging
multicore-based architectures are expected to support
such memory organizations within the likely set of
memory hierarchies.

Initially, parallelization of programs under EPEX
was enabled by implementing the “serial,” “parallel,”
and “barrier” parallelization directives through syn-
chronization subroutine calls inserted in the program;
the first EPEX implementation was applied to par-
allelization of FORTRAN programs, and shared data
declared explicitly, through FORTRAN Shared COM-
MON statements. Shortly thereafter, the synchroniza-
tion subroutine calls were replaced by corresponding
parallelization macros, with the development of a pre-
processor (source-to-source translator from macros to
subroutine calls). Denoting the parallelization direc-
tives through macros, and likewise for the declaration
of application shared data, allowed converting serial

programs to their parallel counterparts, more easily
and elegantly. Additional synchronization constructs
were also expressed through other appropriate macros.
All these parallelization macros inserted in the pro-
gram were then expanded by the “EPEX Preprocessor”
into the parallel program version, by inserting the
SPMD parallelization subroutines (specifically referred
to here is the EPEX FORTRAN Preprocessor source-
to-source translator [20-22]; later a preprocessor for C
was also developed [23]). Then the ensuing “parallelized
program” was compiled through a standard serial FOR-
TRAN or C compiler. By ’87-"88 the SPMD-based EPEX
system had been installed in ten IBM sites (including
IBM Scientific Centers, such as those in Palo Alto, CA-
USA and Rome, Italy), three National and International
Labs (LANL, ANL, and CERN); two industrial partners
(MartinMarietta and Grumman), and eight universities.

The syntax and utilization of the initial EPEX
implementation is presented in [2-5]. The macros
implementing SPMD and the EPEX preprocessor are
presented in detail in [6, 19-21] which document in
more detail the preprocessor-based EPEX environ-
ment. Here, for reference, an illustrative sample of the
set of the EPEX macros is given with a brief description
of their use:

o Thetraditional FORTRAN DO-loop was designated
through the:
@DO [stmt#|label] index = nl, n2, [n3]
[CHUNK = chunksize]
... loop body ...
[stmt#] @ENDO [label] [WAIT | NOWAIT]

Processes entering the @DO get self-assigned
with the next available loop-iteration(s), through
synchronization routines utilizing the Fetch-and-
Add (F&A) [24] RP3 primitive (implemented in
the simulated environment through the Com-
pare&Swap instruction); processes that arrive after
all the work in the loop has been allocated or all the
work in the loop has been completed proceed to the
end of the section (RENDO); there they may wait
for the loop execution to be completed, or proceed
to subsequent section(s), as allowed by the program
workflow dependencies. The CHUNK option allows
processes to get assigned more than one iterations at
a time, thus decreasing the overhead of parallelism;
the WAIT option requires processes to wait for the

SPMD Computational Model

1939

execution of the preceding section (in this case the
loop body) to be completed before continuing to the
next section of the program; the NOWAIT option
allowed processes that reach the end of the sec-
tion to continue execution of subsequent section(s),
thus allowing multiple concurrent sections of the
program (or subroutines) to be executed concur-
rently, as allowed by dependencies in the program
workflow.

The serial section is bounded by the @SERBEG
and @SEREND macros. The default is for the first
process to encounter the @SERBEG to execute the
section, the other processes proceed to @SEREND,
with [WAIT | NOWAIT] options similar to the ones
for a parallel loop. The environment also allows des-
ignating a given process to execute a given serial
section.

The @ WAITFOR macro can be inserted at any point
of the program and designates that processes can-
not go beyond that point, until a logical condition
specified by the argument of the macro is satisfied;
for instance, this construct can be used for imposing
various kinds of soft barriers — for example, for the
processes to wait until execution of the preceding
section(s) is completed.

Process Initialization === ésrrLl:-JeL 'I*M]ﬂ__y == (optional) Synchronization (all processes may wait for initialization to complete

(first process to arrive at section executes — others bypass)

Serial Section —in

Parallel Section ==

Serial Section —

Concurrent J’

Parallel
Sections _1__

Serial Section —

Parallel Section e

Serial Section —

P EPPEILIR AT ROV LPER,

The @BARRIER macro can be inserted at any point
of the program and forces all processes participat-
ing in the execution of the program to arrive at that
point of the program (hard barrier).

The parallel processes are endowed with an iden-
tity [@MYNUM]; the MYNUM for each process can
be a parameterized assignment. This property can
be used in several ways: for example, for designat-
ing a given process to perform I/O to a file if that is
desired, or execute a given section (e.g., a serial sec-
tion) that can be designated to be executed by a given
process (of course in general this is not mandatory,
as the default option for a section, and more gener-
ally the next available work-task is to be executed on
a “first-arrives-executes” basis).

@SHARED [application shared data: parameters,
arrays] allows the user to designate the application
shared data; by default all other data of the applica-
tion are assumed as private to each parallel process;
@SHARED [synchronization data] are created auto-
matically by the preprocessor and designated all the
shared data used by the synchronization constructs.

A schematic of an example of SPMD execution is shown
in Fig. 1.

4= Synchronization (@barrier)
T * Beginning of Parallel Section (@DO/@forall)

(processes self-assign work as they arrive at section executes — others bypass

Synchronization soft-barrier (@ barrier/no-wait)

SPMD Computational Model. Fig.1 Schematic of an example of SMPD MIMD task-parallel execution

1940

SPMD Computational Model

e Handling of I/O: In [25, 26] are discussed imple-
mentations of ideas for parallel I/O presented in
the previous section, which allowed 1/O by multi-
ple processes, and not necessarily serializing 1/0O.
A file could be opened, written into and closed,
and then made available to other processes. This
could be done at the end of a parallel section or
at the end of an outmost iteration of the program,
depending on the problem needs; such implemen-
tations might be enabled via a barrier at the end of
the outermost loop, or if no barrier was imposed
the file maybe accessed (in read-write mode) by
another process (which may need to spin-wait if the
file had not been closed by the previous process).
The @MYNUM designation allowed to tie a given
process to a file if that was desirable. The advent of
newer file-systems (such as GPES [27, 28]) allows
more flexible mechanisms for parallel I/O in SPMD
programs, and parallel I/O is supported in program-
ming environments, like OpenMP. Furthermore, as
mass storage technologies evolve from disk to solid-
state and nano-devices, it is possible that parallel I/O
could be implemented through other than file-based
methods (perhaps something akin to a “DBMS-like”
I/O management).

Through the EPEX parallelization directives, the
participating processes executing cooperatively the pro-
gram step through the synchronization points in the
program, and are dynamically allocated the next work-
task or execution path to take. In that sense all partici-
pating processes follow the same global flow of control
in the program. In executing serial or parallel sections,
each process is allocated the next available work-task,
and thus they may execute different instructions at any
given time and act on different parts of the program
(including potentially different procedures or subrou-
tines), as consistent with the workflow dependencies
in the program. A given process may follow a dif-
ferent parallel flow of control during different passes
of an outer iteration of the entire program. The syn-
chronization routines provided in EPEX allowed exe-
cuting outer iterations of the entire program (that is
repeated execution of the serial and parallel sections of
the program) without necessarily imposing the need for
the programmer to introduce explicit blocking at the
end of the outer iteration of the program.

The EPEX programming environment allowed to
parallelize and simulate the parallel execution of a large
number of applications, to understand their charac-
teristics, and assess the efficacy and effectiveness of
parallelism. In the 1984 - 1986 time-span, over 40
applications were parallelized with SPMD, and exe-
cuted in parallel under the EPEX programming envi-
ronment. The set of these applications (mostly numeric,
but also non-numeric) included: Fluid Dynamics (e.g.,
advanced turbulent-flow programs [29], and shallow
water and heart blood-flow problems); Radiation Trans-
port (Discrete Ordinates methods and Monte-Carlo);
Design Automation (Chip placement and Routing by
Simulated Annealing [30-33]; and Fault simulation);
Seismic, Reservoir Modeling, Weather Modeling, Pol-
lution Propagation; Physics Applications (Band Struc-
ture, Spin-Lattice, Shell Model); Applied Physics and
Chemistry Applications (Molecular Dynamics); Epi-
demic Spread; Computer Graphics and Image Pro-
cessing (e.g., ray-tracing); Numerical and non-numeric
Libraries (FFTs, Linear Solvers, Eigen-solvers, sort-
ing), etc.

Advancing into the Future: Directions,
Opportunities, Challenges, and
Approaches

Emerging Computational Platforms and Emerging Appli-
cations Systems. Increasingly, large-scale distributed
systems are deploying as their building blocks high-
performance multicore processors (and in combina-
tion with special-purpose processor chips, like GPUs),
as are the emerging petaflops and future hexaflops
platforms. In fact, it is also conceivable that this
kind of heterogeneity of processors will be eventually
embedded in the multicore chip itself. Such systems,
with 1,000s to 100s of thousands of tightly coupled
nodes, will be enabled as Grids-in-a-Box (GiBs). Com-
putational platforms include both high-end systems
as well as globally-distributed, meta-computing, het-
erogeneous, networked and adaptive platforms, rang-
ing from assemblies of networked workstations, to
networked supercomputing clusters or combinations
thereof, together with their associated peripherals such
as storage and visualization systems. All these hardware
platforms will have potentially not only multiple lev-
els of processors, but also multiple levels of memory
hierarchies (at the cache, main memory and storage

SPMD Computational Model

1941

levels), and multiple levels of interconnecting networks,
with multiple levels of latencies (variable at inter-node
and intra-node levels) and bandwidths (differing for
different links, differing based on traffic). Moving into
the exascale domain, the challenges are augmented
as we are faced with prospects of addressing billion-
way concurrency, and in the presence of heterogeneity
of processing units in a processing node, increasing
degrees in the multiple levels of memory hierarchies,
and multiple levels of interconnects hierarchies; these
are the Grids-in-a-Box, referred to earlier-on, with sig-
nificantly added complexity, because of the wider range
of granularity, needing to expose concurrency from the
fine grain to many more levels of coarser grain. The
questions range from: how to express parallelism and
optimally map and execute applications on such plat-
forms, to how to enable load balancing, and at what level
(or levels) is load balancing applied. It becomes evident
that static parallelization approaches are inadequate,
that one needs programming models that allow express-
ing parallelism so that it can be exploited dynamically,
for load balancing and hiding latency, and for express-
ing dynamic flow control and synchronization possibly
at multiple levels. The ideas of dynamic runtime com-
piler [34] capabilities discussed below are becoming
more imperative.

Furthermore, new application paradigms (e.g.,
DDDAS - Dynamic Data Driven Applications Sys-
tems [35, 36]) that have emerged over the last several
years and which entail dynamic on-line integration and
feed-back and control between the computations of
complex application models and measurement aspects
of the application system, leading to SuperGrids [37]
of integrated computational and instrumentation plat-
forms, as well as other sensory devices and control
platforms. In the context of this entry on programming
environments and programming models, the impli-
cations are that these environments and models will
need to support seamlessly execution of applications
encompassing dynamically integrated high-end com-
puting with real-time data-acquisition and control com-
ponents and requirements.

New Programming Environments and Runtime-
Support Technologies Such environments
technology approaches which break down traditional
barriers in existing software components in the
application development support and runtime layers, to
deliver QoS in application execution. That is, together

require

with new programming models, new compiler tech-
nology is needed, such as the runtime-compiler system
(RCS [38]), where part of the compiler becomes embed-
ded in the runtime and where the compiler interacts
with the system monitoring and resource managers, as
well as performance models of the underlying hardware
and software, using such capabilities for optimizing
the mapping of the application on the underlying
complex platform(s). This runtime-compiler system is
aware of the heterogeneity in the underlying architec-
ture of the platforms, such as multi-level hierarchy of
processing nodes, memories, and interconnects, with
differing architecture, memory organization, and laten-
cies, and will link to appropriately selected components
(dynamic application composition) to generate consistent
code at runtime. Representative examples of develop-
ing runtime-compiler capabilities are given in [39] and
[40]. Together with the “runtime-compiler” capabili-
ties [33], called for novel approaches and substantial
enhancements in computational models to actualize
the distributed applications software, including user-
provided assists to facilitate and enhance the runtime-
compiler’s ability to analyze task and data dependencies
in the application programs, resolve dependencies, and
dynamically optimize mapping across a complex set
of processing nodes and memory structure of dis-
tributed platforms (such as Grids and GiBs, multicore
and GPU-based), with multiple levels of processors and
processing nodes, interconnects, and memory hierar-
chies. It is the thesis of this entry that the models
needed should facilitate the RCS (runtime compil-
ing system) to map applications, without requiring
detailed resource management specifications by the user
and without requiring specification of data location
(e.g., proximity — or PGAS). Rather the programming
models should incorporate advanced concepts such as
“active data-distribution,” that is the user specifies that
these data are candidates for active or runtime dis-
tribution, and the RCS determines at runtime how
to map them, determines partial sharing, copy/move
between memory hierarchies, through dynamic adap-
tive resource management, decoupled execution and
data location/placement, memory consistency mod-
els, and multithreaded hierarchical concurrency. Such
capabilities may be materialized through a hybrid
combination of language, library models, development
of OS-supported “hierarchical threading” capabilities
and partial sharing of data approaches.

1942

SPMD Computational Model

In order to adequately support the future paral-
lel systems, it is advocated here that the new software
technologies need to adopt a more integrated view of
the architectural layers and software components of a
computing system (hardware/software co-design), con-
sisting of the applications, the application support envi-
ronments (languages, compilers, application libraries,
linkers, run-time support, security, visualization, etc.),
operating systems (scheduling, resource allocation and
management, etc), computing platform architectures,
processing nodes and network layers, and also support
systems encompassing the computational and appli-
cation measurement systems. Furthermore, such envi-
ronments need to include approaches for engineering
such systems, at the hardware, systems software, and
at the applications levels, so that they execute with
optimized efficiency with respect to runtime, quality
of service, performance, power utilization, fault toler-
ance, and reliability. Such capabilities require robust
software frameworks, encompassing the systems soft-
ware layers and the application layers and cognizant of
the underlying hardware platform resources.

Summary

This entry has provided an overview of the SPMD
model, its origin and its initial implementations, its
effectiveness and impact in expediting adoption of par-
allelism in the mid-80s, and its use as a vehicle for
exploiting parallel and distributed computational plat-
forms for the intervening 25 years. As we consider what
are the possible new parallel programming models for
new and future computing platforms, as well as present
and emerging compute-, data-intensive, dynamically
integrated applications executing on such platforms, it
is becoming imperative to advance programming mod-
els and programming environments by building from
past experiences and opening new directions through
synergistic approaches of models, advanced runtime-
compiler methods, user assists, multi-level threading
OS services, and ensuring that the approaches and tech-
nologies developed are created in the context of end-to-
end software architectural frameworks.

Acknowledgment

The IBM RP3 Project became the ground for my
inspiration and work on the SPMD model; I'm forever
grateful for being part of the RP3 team and will always
value my collaborations with the RP3 team.

Bibliography

1. Darema-Rogers F (1984) IBM Internal Communication, Jan 1984

1L

12.
13.

14.

15.

16.

17.

18.

19.

. Darema-Rogers F, George D, Norton VA, Pfister G (1984) A VM

parallel environment. Proceedings of the IBM Kingston Parallel
Processing Symposium, 27-29 Nov 1984 (IBM Confidential)

. Darema-Rogers E George DA, Norton VA, Pfister GF (1985)

A VM based parallel environment. IBM research report,
RC11225

. Darema-Rogers F, George DA, Norton VA, Pfister GF (1985) Envi-

ronment and system interface for VM/EPEX. IBM research report
R11381, 9/19/1985

. Darema-Rogers E George DA, Norton VA, Pfister GF (1985)

Using a single-program-multiple-data model for parallel exe-
cution of scientific applications. SIAM Conference on Parallel
Processing for Scientific Computing, November, 1985, and IBM
research report R11552, 11/19/1985

. Darema F George DA, Norton VA, Pfister GF (1988) A

single-program-multiple-data computational model for EPEX/-
FORTRAN. Parallel Comput 7:11-24 (received April 1987 upon
publication release by IBM - IBM Technical Disclosure Bulletin
29(9) February 1987)

Pfister G et al (1984) The research parallel processor prototype
(RP3). Proceedings of the IBM Kingston Parallel Processing Sym-
posium, 27-29 Nov 1984 (IBM Confidential); and Proceedings of
the ICPP, August 1985

. Darema F Historical and future perspectives on the SPMD com-

putational model. - Forthcoming Publication

. MPI standard - draft released by the MPI Forum. http://

www.mcs.anl.gov/Projects/mpi/standard.html

. PVM - Parallel Visrtual Machine. http://www.csm.ornl.gov/

pvm/pvm_home.html

Foster I, Kesselman C (eds) (1999) The grid: blueprint for a new
computing infrastructure. Morgan Kaufmann

OpenMP. http://openmp.org/wp/

Yelick KA, Semenzato L, Pike G, Miyamoto C, Liblit B, Krishna-
murthy A, Hilfinger PN, Graham SL, Gay D, Colella P, Aiken A
(1998) Concurrency: practice and experience. vol 10, No. 11-13,
September-November. An earlier version was presented at the
Workshop on Java for High-Performance Network Computing,
Palo Alto, CA, Feb 1998

Culler DE, Arpaci-Dusseau AC, Goldstein SC, Krishnamurthy A,
Lumetta S, Eicken T, Yelick KA (1993) Parallel programming in
Split-C. SC, pp 262-273

El-Ghazawi T, Carlson W, Sterling T, Yelick KA (2005) UPC:
distributed shared-memory programming. Wiley, Hoboken
Bronevetsky G, Marques D, Pingali K, Stodghill P (2000) Auto-
mated application-level checkpointing of MPI programs. ACM
SIGPLAN 38(10):84-94

Bronevetsky G, Marques D, Pingali K, Szwed P, Schulz M (2004)
Application-level checkpointing for shared memory programs.
ACM Comp Ar 32(5):235-247

George DA MVS/XA EPEX - Environment for parallel execution.
IBM research report RC 13158, 9/28/87

VM/System Product (VM/SP). http://www-03.ibm.com/ibm/
history/exhibits/mainframe/mainframe_PP3081.html (and
MVS/XA also supported)

http://www.mcs.anl.gov/Projects/mpi/standard.html
http://www.mcs.anl.gov/Projects/mpi/standard.html
http://www.csm.ornl.gov/ pvm/pvm{_}home.html
http://www.csm.ornl.gov/ pvm/pvm{_}home.html
http://openmp.org/wp/
http://www-03.ibm.com/ibm/ history/exhibits/mainframe/mainframe{_}PP3081.html
http://www-03.ibm.com/ibm/ history/exhibits/mainframe/mainframe{_}PP3081.html

Stream Programming Languages 1943

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

3L

32.

33.

34.

35.
36.
37.

Stone JM, Darema-Rogers F, Norton VA, Pfister GF Introduction
to the VM/EPEX FORTRAN Preprocessor. IBM research report
RC 11407, 9/30/85

Stone JM, Darema-Rogers E Norton VA, Pfister GF The
VM/EPEX FORTRAN Preprocessor Reference. IBM research
report RC 11408, 9/30/85

Bolmarcich T, Darema-Rogers F Tutorial for EPEX/FORTRAN
Program Parallelization and Execution. IBM research report
RCI12515, 2/18/87

Whet-Ling C, Norton A (1986) VM/EPEX C preprocessor user’s
manual. Version 1.0. Technical report RC 12246, IBM T.J. Watson
Research Center, Yorktown Heights, NY, October 1986

Gottlieb A, Kruskal CP (1981) Coordinating parallel processors:
a partial unification. Computer Architecture News, pp 16-24,
October 1981

Darema-Rogers F I/O capabilities in the VM/EPEX system. IBM
research report, RC 12219, 10/9/86

Darema F (1987) Applications environment for the IBM research
parallel processor prototype (RP3). IBM research report RC
12627, 3/27/87; and Proceedings of the International Confer-
ence on Supercomputing (ICS), (published by Springer, Athens,
Greece, June 1988

GPFS: http://www.almaden.ibm.com/StorageSystems/projects/
gpfs

Schmuck F, Haskin R (2002) GPFS: a shared-disk file system for
large computing clusters. (pdf). Proceedings of the FAST’02 Con-
ference on File and Storage Technologies. USENIX, Monterey,
California, USA, pp 231-244. ISBN 1-880446-03-0. http://
www.usenix.org/events/fast02/full_papers/schmuck/schmuck.
pdf. Accessed 18 Jan 2008

ARC3D: Pulliam TH Euler and thin layer navier stokes codes:
ARC2D, ARC3D. Computational fluid dynamics, A workshop
held at the University of Tennessee Space Institute, UTSI publ.
E02-4005-023-84,1984 {other related application programs par-
allelized included: SIMPLE and HYDRO-1}

Darema-Rogers F, Kirkpatrick S, Norton VA (1987) Parallel tech-
niques for chip placement by simulated annealing. Proceedings
of the International Conference on Computer-Aided Design.
pp 91-94

Darema F Kirkpatrick S, Norton VA (1987) Simulated anneal-
ing on shared memory parallel systems. IBM Journal of R&D
31:391-402

Jayaraman R, Darema F Error analysis of parallel simulated
annealing techniques. Proceedings of the ICCD’88, Rye, NY,
10/3-5/88

Greening D, Darema F Rectangular spatial decomposition meth-
ods for parallel simulated annealing. IBM research report,
RC14636, 5/2/89, and in the Proceedings of the International
Conference on Supercomputing ‘89. Crete-Greece

Darema F (2009) Report on cyberifrastructures of cyber-
applications-systems & cyber-systems-software, submitted for
external publication

DDDAS. www.cise.nsf.gov/dddas

DDDAS. www.dddas.org

Darema F (2005) Grid computing and beyond: the con-
text of dynamic data driven applications systems. Proc

IEEE
697
38. Darema F (2000) New software architecture for complex appli-

(Special Issue on Grid Computing) 93(3):692-

cations development and runtime support. Int] High-Perform
Comput (Special Issue on Programming Environments, Clusters,
and Computational Grids For Scientific Computing) 14(3)

39. GRADS project. http://www.hipersoft.rice.edu/grads/

40. Adve VS, Sanders WH A compiler-enabled model- and
measurement-driven adaptation environment for dependability
and performance. - http://www.perform.cslLillinois.edu/projects/
newNSFNGS.html, LLVL compiler - http://llvim.org

' SSE

» AMD Opteron Processor Barcelona
»Intel Core Microarchitecture, x86 Processor Family
» Vector Extensions, Instruction-Set Architecture (ISA)

! Stalemate

»Deadlocks

' State Space Search

» Combinatorial Search

' Stream Processing

»Stream Programming Languages

' Stream Programming Languages

RyaAN NEWTON
Intel Corporation, Hudson, MA, USA

Synonyms
Complex event processing; Event stream processing;
Stream processing

http://www.almaden.ibm.com/StorageSystems/projects/gpfs
http://www.almaden.ibm.com/StorageSystems/projects/gpfs
http://www.usenix.org/events/fast02/full{_}papers/schmuck/schmuck.pdf.
http://www.usenix.org/events/fast02/full{_}papers/schmuck/schmuck.pdf.
http://www.usenix.org/events/fast02/full{_}papers/schmuck/schmuck.pdf.
http://www.hipersoft.rice.edu/grads/
http://www.perform.csl.illinois.edu/projects/newNSFNGS.html
http://www.perform.csl.illinois.edu/projects/newNSFNGS.html
http://llvlm.org
http://dx.doi.org/10.1007/978-0-387-09766-4_12
http://dx.doi.org/10.1007/978-0-387-09766-4_10
http://dx.doi.org/10.1007/978-0-387-09766-4_259
http://dx.doi.org/10.1007/978-0-387-09766-4_282
http://dx.doi.org/10.1007/978-0-387-09766-4_241
http://dx.doi.org/10.1007/978-0-387-09766-4_520
http://dx.doi.org/10.1007/978-0-387-09766-4_2480
http://dx.doi.org/10.1007/978-0-387-09766-4_2481
http://dx.doi.org/10.1007/978-0-387-09766-4_2482
http://www.cise.nsf.gov/dddas
http://www.dddas.org

1944

Stream Programming Languages

Definition

Stream Programming Languages are specialized to the
processing of data streams. A key feature of stream pro-
gramming languages is that they structure programs not
as a series of instructions, but as a graph of computation
kernels that communicate via data streams. Stream pro-
gramming languages are implicitly parallel and contain
data, task, and pipeline parallelism. They offer some of
the best examples of high-performance, fully automatic
parallelization of implicitly parallel code.

Discussion

Stream processing is found in many areas of computer
science. Accordingly, it has received distinct and some-
what divergent treatments. For example, most work on
stream processing in the context of compilers, graph-
ics, and computer architecture has focused on streams
with predictable data-rates, such as in digital signal
processing (DSP) applications. These can be modeled
using synchronous dataflow, are deterministic (being a
subclass of Kahn process networks), and are especially
attractive as parallel programming models. Specialized
languages for dataflow programming go at least as
far back the SISAL (Streams and Iteration in a Sin-
gle Assignment Language) in 1983. Somewhat differ-
ent are streaming databases that are concerned with
asynchronous (unpredictable) streams of timestamped
events. Typical tasks include searching for temporal
patterns and relating streams to each other and to data
in stored tables, which may be termed “complex event
processing.”

This entry considers a broad definition of stream
processing, requiring only that kernel functions and
data streams be the dominant means of computation
and communication. This includes both highly restric-
tive models - statically known, fixed graph and data-
rates — and less restrictive ones. More restrictions allow
for better performance and more automatic parallelism,
whereas less restrictive models handle a broader class of
applications.

Even this broad definition has necessarily blurry
boundaries. For example, while stream-processing
models typically allow only pure message passing com-
munication, they can be extended to allow various
forms of shared memory between kernel functions.
General purpose programming languages equipped

with libraries for stream processing are likely to fall into
this category, as are streaming databases that include
shared, modifiable tables.

This entry classifies stream programming designs along
two major axes: Graph Construction Method and Mes-
saging Discipline. The following three fictional program-
ming models will be used to illustrate the design space:

e StreamStatic: a language with a statically known,
fixed graph of kernel functions, as well as statically
known, fixed data-rates on edges.

e StreamDynamic: a general purpose language that
can manipulate streams as first-class values, con-
structing and destroying graphs on the fly and allow-
ing arbitrary access to shared memory.

e StreamDB: Kernel graphs that are changed dynami-
cally through transactions. Includes shared memory
in the form of modifiable tables. More restricted and
with different functionality than StreamDynamic.

Snippets of code corresponding to these three
languages appear in Figs. 1-3, respectively. Kernels,
being nothing more than functions, are usually defined
in a manner resembling function definitions. In
StreamDynamic the same language is used for graph
construction as for kernel definition, whereas Stream-
Static employs a distinct notation for graph topolo-
gies. Only in StreamDB are the definitions of kernels
nonobvious. Whenever a new stream is defined from an

metadata: pop 1 push 1
stream out AddAccum(stream in) {
state { int s = 0; }
execute () {
S++;
out.push(s + in.pop()) ;
}
}

// A static graph topology, in literal
textual notation:
IntIn -> AddAccum -> IntOutput;

Stream Programming Languages. Fig.1 A kernel
function in StreamStatic might appear as in the above
pseudocode, explicitly specifying the amount of data
produced and consumed (pushed and popped) by the
kernel during each invocation. This particular kernel
carries a state that persists between invocations

Stream Programming Languages

1945

-- Streams and tables coexist

CREATE TABLE Prices (
Id string PRIMARY KEY,
Price double) ;

CREATE INPUT STREAM PricelIncrs (
Id string,

Increase double) ;

-- A ’kernel’ is constructed by building new streams from old

CREATE STREAM NormedPricelIncrs AS

SELECT Id, Increase / 10.0

FROM PriceIncrs;
-- Table modified based on streaming data:
UPDATE Prices USING NormedPricelIncrs

SET Price = Prices.Price + NormedPricelIncrs.Increase,

WHERE Prices.Id == NormedPriceIncrs.Id;

Stream Programming Languages. Fig.2 A pseudocode example of StreamDB code

// A function that creates N copies of a kernel

fun pipeline(int n, Function fn, Stream S)
if (n==0)

else pipeline(n-1,

return S;
fn, map(fn,s));

}

// Graph wiring is implicit in program execution:

pipeline (10, AddAccum, OrigStream)

Stream Programming Languages. Fig. 3 A pseudocode example of StreamDynamic code

old one with a seLECT statement, the expressions used
in the seLECT statement form the body of a new ker-
nel function. However, in streaming databases, much
more functionality is built into the primitive operators,
supporting, for example, a variety of windowing and
grouping operations on streaming data.

StreamStatic assumes that each kernel
specifies exactly how many inputs it consumes on each
inbound edge, and outputs it produces on outbound
edges. StreamDynamic instead uses asynchronous
event streams and allows nondeterministic merge, which
interleaves the elements of two streams in the real-
time order in which they occur. StreamDB is similar to
StreamDynamic, but timestamps all stream elements at
their source, and then maintains a deterministic seman-
tics with respect to those explicit timestamps.

Methods for Graph Wiring

Our three fictional languages use different mechanisms
for constructing graphs. StreamStatic uses a literal
textual encoding of the graph (Fig. 1). StreamDB also
uses a direct encoding of a graph in the text of a query,

but in the form of named streams with explicit depen-
dencies (Fig. 2). In contrast, in StreamDynamic the
graph is implicit, resulting from applying operators such
as map to stream objects (Fig. 3).

There are other common graph construction meth-
ods not represented in these fictional languages:
first, GUI-based construction of graphs, as found in
LabView([12] and StreamBase[l]; second, an API for
adding edges in a general purpose language, along
the lines of “connect (x,v);” Compared to implicit
graph wiring via the manipulation of stream values
(as seen in StreamDynamic or in real systems such as
FlumeJava[2]), APIs of this kind are more explicit about
edges and usually more verbose.

Finally, an advanced technique for constructing
stream graphs is metaprogramming. Metaprogram-
ming, or staged execution, simply refers to any pro-
gram that generates another program. In the case of
streaming, the most common situation is that a static
kernel graph is desired, yet the programmer wishes
to use loops and abstraction in the construction of
(potentially complex) graphs. Therefore the need for

1946

Stream Programming Languages

metaprogramming in streaming is analogous to hard-
ware description languages, which also have a static
target (logic gates) but need abstraction in the source
language.

While it would be possible to write a program
to generate the textual graph descriptions used by,
for example, StreamStatic, a much more disciplined
form of metaprogramming can be provided by stream-
processing DSLs (domain specific languages), which
can integrate the type-checking of the metalanguage
and the target kernel language. Indeed, this is the
approach taken by DSLs such as WaveScript[9] and to a
lesser extent Streamlt(].

Once constructed, a kernel graph exposes pipeline,
task, and data parallelism. This terminology, used by
the Streamlt authors [4] among others, distinguishes
between producer/consumer parallelism (pipeline) and
kernels lacking that relationship, such as the siblings in
a fork-join pattern (task parallelism). Data parallelism
in this context refers specifically to the ability to execute
a kernel simultaneously on multiple elements in a sin-
gle stream. Data parallelism is not always possible with
a stateful kernel function - equivalent to a loop-carried
dependence.

Stream programs expose abundant parallelism. It is
the job of a scheduler or program optimizer to man-
age that parallelism and map it onto hardware. Fully
automatic solutions to this problem remain difficult,
but less difficult in a restrictive stream programming
model than many other programming models. The key
advantage is that stream programs define independent
kernels with local data access and explicit, predictable
communication.

This advantage enables stream programming mod-
els like StreamStatic to target a wide range of hard-
ware architectures, including traditional cache-based
CPUs (both multicore and vector parallelism), as well as
GPUs, and architectures with software-controlled com-
munication, such as the RAW tiled architecture [11] or
the Cell processor. For example, the DSL StreamIt[4]
(which subsumes StreamStatic) is an example of a pro-
gramming language that has targeted all these platforms
as well as networked clusters of workstations.

An effective stream-processing implementation must
accomplish three things: adjust granularity, choose
between sources of parallelism, and place computa-
tions. Granularity here refers to how much data is pro-
cessed in bulk, as well as whether or not kernels are
combined (fused). Second, because stream programs
include multiple kinds of parallelism, it is necessary to
balance pipeline/task parallelism and data parallelism.
Finally, placement and ordering presents a variant of
the traditional task-scheduling problem.

Consider the two-kernel pipeline shown in Fig. 4.
Even the simple composition of two kernels exposes
several trade-offs. Three possible placements of kernels
A and B onto four processors are shown in the figure.
Placement (a) illustrates a common scenario: fusing
kernels and leveraging data parallelism rather than
pipeline parallelism. Yet choosing pipeline parallelism
(placement (b)) could be preferable if, for example,
A and B’s combined working sets exceed the cache
capacity of a processor. (Note that in a steady state
streams provide enough data to keep A and B simulta-
neously executing — software pipelining.) Finally, place-
ment (c) illustrates another common scenario — a kernel
carries state and cannot be parallelized. In this case,
kernel B must be executed serially, so it must not be
fused with A or it would serialize A.

Note that there is a complicated interplay between
batch size, kernel working set, and fusion/placement.
One simple model for kernel working set assumes
its size is linear in the size of its input x: that is, mx + k
where k represents memory that must be read irrespec-
tive of batch size. A large k might, for example, suggest
the selection of placement (b) in Fig. 4 because if k = 0
batch size could be tuned to make placement (a) attrac-
tive. But a phase-ordering problem arises: Solving either
batch size or fusion/fission independently (rather than
simultaneously) can sacrifice opportunities to achieve
optimal placement.

A related complication is that while the choices
made by a stream-processing system could take place
either statically or dynamically, granularity adjustment
is more difficult to perform dynamically. For exam-
ple, while dynamic work-stealing on a shared-memory
computer can provide load balance and place kernels
onto processors, it cannot deal with fine-grained kernels

Stream Programming Languages

1947

a Fused

b Pipeline before data parallelism

C B serial

Stream Programming Languages. Fig. 4 Sample placements of two kernels, A and B onto processors P1-P4

that perform only a few FLOPS per invocation. That
said, as long as kernels are compiled to handle batches
of data, the exact size of batches can be adjusted at
runtime.

Program Transformation

If optimizations are performed statically by a compiler,
they can take the form of source-to-source transforma-
tions. The most important optimizations fall into the
following four categories:

e High-level / Algebraic — domain - specific optimiza-
tions, for example, canceling an FFT and an inverse
FFT (see Haskell [8], WaveScript [9])

e Batch-processing / Execution Scaling - choosing
batch size

¢ Fusion - combining and inlining kernels

¢ Fission / Data Parallelism - choosing N-ways to split
a kernel

StreamStatic, for example, could follow the exam-
ple of StreamIT and perform fusion, fission, and scaling
as source-to-source program transformations, resulting
in a number of kernels that match the target number
of processors and leaving only a one-to-one placement
problem to be solved by a simulated annealing opti-
mization process. To achieve load balance during this
process, StreamIt happens to use static work-estimation
for kernels, but profiling is another option. In fact, given
more dynamic data-rates, as in StreamDynamic and
StreamDB, profile-based optimization and auto-tuning
techniques are a good way to enable some of the above

static program transformations. (WaveScript takes this
approach [9].) To our knowledge no systems attempt to
apply high-level / algebraic optimizations dynamically.

Algorithms

Dynamic systems along the lines of StreamDynamic
tend to use work-stealing, as do most of today’s popular
task-scheduling frameworks. Further, many streaming
databases use heuristics for kernel/operator migration
to achieve load balance in a distributed setting. On
the other hand, streaming models with fixed data-rates
permit static scheduling strategies and much work has
focused there. Scheduling predictable stream programs
bears some resemblance to the well-studied problem of
mapping a coarse-grained task-graph onto a multipro-
cessor (surveyed in [6]). But there is a notable differ-
ence: stream programs run continuously and are usually
scheduled for throughput (with some exceptions [10]).
Likewise, traditional graph-partitioning methods can
be applied, but they do not, in general, capture all the
degrees of freedom present in stream programs, whose
graphs are not fixed, but are subject to transformations
such as data-parallel fission of kernels.

An overview of scheduling work on stream process-
ing specifically can be found in [13], focusing on embed-
ded and real-time uses. The ideal would be an algorithm
that simultaneously optimizes all aspects of a streaming
program. A recent paper [5] proposed one such system
that uses integer linear programming to simultaneously
perform fission and processor placement for StreamIt
programs.

1948

Stream Programming Languages

Data Structures and Synchronization

Static and dynamic scheduling approaches employ
different data structures. Dynamic approaches target-
ing shared memory multiprocessors are likely to rely
on concurrent data structures including queues. In con-
trast, a completely static schedule typically requires
no synchronization on data structures. Rather it may
repeat a fixed schedule, using a global barrier syn-
chronization at the end of each iteration of the
schedule.

Functional Reactive Programming

Like StreamDynamic, FRP enables general purpose
functional programs (usually in Haskell) to manip-
ulate streams of values. FRP in particular deals not
with discrete streams of elements, but with semanti-
cally continuous signals. Sampling of signals is per-
formed by the runtime, or separately from the main
definition of programs. Most FRP implementations are
not high-performance, but parallel implementations
and staged implementations that generate efficient code
exist.

Relation to Data-parallel Models

With the increasing popularity of the MapReduce
paradigm, there is a lot of interest in programming
models for massively parallel manipulation of data.
The Flume]Java library [2] (built on Google’s MapRe-
duce) bears a lot of resemblance to a stream-processing
system. The user composes parallel operations on col-
lections, and FlumeJava applies fusion transformations
to pipelines of parallel operations. Similar systems
like Cascade and Dryad explicitly construct dataflow
graphs. These systems have a different application focus,
target hardware, and scale than most of the work on
stream processing. Further, they focus on batch process-
ing of data in parallel, not on continuous execution.

Relation to Fork-Join Shared-Memory
Parallelism

Fork-join parallelism in the form of parallel subrou-
tine calls and parallel loops, as found in Cilk [7] and
OpenMP [3], are attractive because of their relative
ease of incorporation into legacy codes. In contrast,

stream processing requires that a program be fac-
tored into kernels and that communication become
explicit. Once a program is ported, however, it is per-
haps easier to assure that it is correct and determin-
istic. Stream-processing languages provide a complete
programming model encompassing computation and
communication. In contrast, fork-join models treat
the issues of control-flow and work-decomposition,
but do not directly address data decomposition or
communication.

This entry has described a family of programming mod-
els that have already accomplished a lot. Unfortunately,
the systems described above have seen little applica-
tion to industrial stream-processing problems. Most
stream-processing codes are written in general purpose
languages without any special support for stream pro-
cessing. A major future challenge is to increase adop-
tion of the body of techniques developed for stream
processing.

Libraries, rather than stream-programming lan-
guages may have an advantage in this respect. Further,
stream programming systems that are wide spectrum
may prove desirable in the future — models that can
reproduce the best results of more restrictive program-
ming models, while also allowing graceful degradation
into more general programming, therefore not confin-
ing the user strictly.

Related Entries
»Cell Processor

Bibliography

1. http://www.streambase.com/

2. Chambers C, Raniwala A, Perry E Adams S, Henry RR,
Bradshaw R, Weizenbaum N (2010) Flumejava: easy, efficient
data-parallel pipelines. In: PLDI ’10: proceedings of the 2010
ACM SIGPLAN conference on programming language design
and implementation. ACM, New York, pp 363-375

3. Dagum L, Menon R (1998) OpenMP: an industry standard API for
shared memory programming. IEEE Comp Sci Eng 5(1):46-55

4. Gordon MI, Thies W, Amarasinghe S (2006) Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs.
SIGOPS Oper Syst Rev 40(5):151-162

5. Kudlur M, Mahlke S (2008) Orchestrating the execution of stream
programs on multicore platforms. In: PLDI *08 proceedings of

http://dx.doi.org/10.1007/978-0-387-09766-4_2213
http://www.streambase.com/

Suffix Trees

1949

the 2008 ACM SIGPLAN conference on programming language
design and implementation. ACM, New York, pp 114-124

6. Kwok Y-K, Ahmad I (1999) Static scheduling algorithms for allo-
cating directed task graphs to multiprocessors. ACM Comput
Surv 31(4):406-471

7. Leiserson CE (2009) The cilk + + concurrency platform. In: DAC
’09 proceedings of the 46th annual design automation conference.
ACM, New York, pp 522-527

8. Liu H, Cheng E, Hudak P (2009) Causal commutative arrows and
their optimization. In: ICFP *09 proceedings of the 14th ACM
SIGPLAN international conference on functional programming.
ACM, New York, pp 35-46

9. Newton RR, Girod LD, Craig MB, Madden SR, Morrisett JG
(2008) Design and evaluation of a compiler for embedded
stream programs. In: LCTES *08 proceedings of the 2008 ACM
SIGPLAN-SIGBED conference on languages, compilers, and tools
for embedded systems. ACM, New York, pp 131-140

10. Pillai PS, Mummert LS, Schlosser SW, Sukthankar R, Helfrich CJ
(2009) Slipstream: scalable low-latency interactive perception on
streaming data. In: NOSSDAV ’09 proceedings of the 18th inter-
national workshop on network and operating systems support for
digital audio and video. ACM, New York, pp 43-48

11. Taylor MB, Lee W, Miller], Wentzlaff D, Bratt I, Greenwald B,
Hoffmann H, Johnson P, Kim J, Psota J, Saraf A, Shnidman N,
Strumpen V, Frank M, Amarasinghe S, Agarwal A (2004) Eval-
uation of the raw microprocessor: an exposed-wire-delay archi-
tecture for ilp and streams. In: ISCA ’04 proceedings of the 3lst
annual international symposium on Computer architecture. IEEE
Computer Society, Washington, DC,p2

12. Travis J, Kring J (2006) LabVIEW for everyone: graphical pro-
gramming made easy and fun, 3rd edn. Prentice Hall, Upper
Saddle River

13. Wiggers MH (2009) Aperiodic multiprocessor scheduling for
real-time stream processing applications. Ph.D. thesis, University
of Twente, Enschede, The Netherlands

! Strong Scaling

» Amdahl’s Law

! Suffix Trees

AMOL GHOTING, KONSTANTIN MAKARYCHEV
IBM Thomas. J. Watson Research Center, Yorktown
Heights, NY, USA

Synonyms
Position tree

Definition

The suffix tree is a data structure that stores all the suf-
fixes of a given string in a compact tree-based structure.
Its design allows for a particularly fast implementation
of many important string operations.

Discussion

The suffix tree is a fundamental data structure in string
processing. It exposes the internal structure of a string
in a way that facilitates the efficient implementation
of a myriad of string operations. Examples of these
operations include string matching (both exact and
approximate), exact set matching, all-pairs suffix-prefix
matching, finding repetitive structures, and finding the
longest common substring across multiple strings [12].
Let A denote a set of characters. Let § =
S0>S1>.++>Sn-1,%9, wheres; € Aand $ ¢ A, denote a $
terminated input string of length n + 1. The ith suffix
of S is the substring s;,sis1,...,S-1,$. The suffix tree
for S, denoted as T, stores all the suffixes of S in a tree
structure. The tree has the following properties:

1. Paths from the root node to the leaf nodes have a
one-to-one relationship with the suffixes of S. The
terminal character $ is unique and ensures that no
suffix is a proper prefix of any other suffix. Therefore,
there are as many leaf nodes as there are suffixes.

2. Edges spell nonempty strings.

3. Allinternal nodes, except the root node, have at least
two children. The edge for each child node begins
with a character that is different from the starting
character of its sibling nodes.

4. For an internal node v, let [(v) denote the substring
obtained by traversing the path from the root node
to v. For every internal node v, with I(v) = xa, where
x € Aand o € A*, we have a pointer known as a suffix
link to an internal node u such that /(u) = a.

An instance of a suffix tree for a string S = ABCABC$
is presented in Fig. 1. Each edge in a suffix tree is rep-
resented using the start and end indices of the corre-
sponding substring in S. Therefore, even though a suffix
tree represents n suffixes (each with at most n charac-
ters) for a total of Q(n*) characters, it only requires
O(n) space [31].

http://dx.doi.org/10.1007/978-0-387-09766-4_77
http://dx.doi.org/10.1007/978-0-387-09766-4_2427

1950

Suffix Trees

Suffix Trees. Fig. 1 Suffix tree for S = ABCABCS [0123456].
Internal nodes are represented using circles and leaf nodes
are represented using rectangles. Each leaf node is labeled
with the index of the suffix it represents. The dashed
arrows represent the suffix links. Each edge is labeled with
the substring it represents and its corresponding edge
encoding

Over the past few decades, the suffix tree has been
used for a spectrum of tasks ranging from data clus-
tering [33] to data compression [3]. The quintessential
usage of suffix trees is seen in the bioinformatics domain
[2,5,6,12,17,19, 24] where it is used to effectively evalu-
ate queries on biological sequence data sets. A hallmark
of suffix trees is that in many cases it allows one to pro-
cess queries in time proportional to the size of the query
rather than the size of string.

Serial Suffix Tree Construction Algorithms

Algorithms due to Weiner [32], McCreight [22], and
Ukkonen [31] have shown that suffix trees can be built in
linear space and time. These algorithms afford a linear
time construction by employing suffix links. Ukkonen’s
algorithm is more recent and popular because it is easier
to implement than the other algorithms. It is an O(n),
in-memory construction algorithm. The algorithm is
based on the simple, but elegant observation that the
suffixes of a string S; = sg,s1,...,5; can be obtained
from the suffixes of string S;_; = s¢,s1,...,5si-1 by cate-
nating symbol s; at the end of each suffix of S;_; and
by adding the empty suffix. The suffixes of the whole

string S = S, = 50,1, . . ., S4 can then be obtained by first
expanding the suffixes of S into the suffixes of §; and so
on, until the suffixes of S,, are obtained from the suffixes
of S,,_1. This translates into a suffix tree construction that
can be performed by iteratively expanding the leaves
of a partially constructed suffix tree. Through the use
of suffix links, which provide a mechanism for quickly
locating suffixes, the suffix tree can be expanded by sim-
ply adding the (i + 1)th character to the leaves of the
suffix tree built on the previous i characters. The algo-
rithm thus relies on suffix links to traverse through all
of the sub-trees in the main tree, expanding the outer
edges for each input character.

Parallel Suffix Tree Construction

Parallel suffix tree construction has been extensively
studied in theoretical computer science. Apostolico
etal. [1], Sthleyman et al. [28], and Hariharan [14]
proposed theoretically efficient parallel algorithms for
the problem based on the PRAM model. For exam-
ple, Hariharan [14] showed how to execute McCreight’s
[22] algorithm concurrently on many processors. These
algorithms, however, are designed for the case when the
string and the suffix tree fit in main memory. Since the
memory accesses of these algorithms exhibit poor local-
ity of reference [8], these algorithms are inefficient when
either the string or the suffix tree do not fit in main
memory. On many real-world data sets, this is often the
case.

The aforementioned problem has been theoreti-
cally resolved by Farach-Colton et al. [8]. Farach-
Colton et al. [8] proposed a divide-and-conquer
algorithm that operates as follows. First, construct a suf-
fix tree for suffixes starting at odd positions. To do so,
sort all pairs of characters at positions 2i — 1 and 2i
and replace each pair with its index in the sorted list.
This gives us a string of length [#n/2] with characters
in a bigger alphabet. Recursively construct the suffix
tree for this string. The obtained tree is essentially the
suffix tree for suffixes starting at odd positions in the
original string. Then, given the “odd” suffix tree con-
struct an “even” suffix tree of suffixes starting at even
positions. Finally, merge the trees. The details of the
Farach-Colton et al. [8] algorithms are very complex,
and there have not been any successful implementa-
tions. However, the doubling approach has been suc-
cessfully used in practice for constructing suffix arrays

Suffix Trees

1951

(see [4, 7], and section Suffix Arrays). While the authors
do not explicitly provide a parallel algorithm, they indi-
cate that the sort and merge phases do lend themselves
to a parallel implementation. While the aforementioned
algorithms provide theoretically optimal performance,
for most algorithms, memory accesses exhibit poor
locality of reference. As a consequence, these algorithms
are grossly inefficient when either the tree or the string
does not fit in main memory. To tackle this problem, this
past decade has seen several research efforts that tar-
get large suffix tree construction. Algorithms that have
been developed in these efforts can be placed in two
categories: ones that require the input string to fit in
main memory and ones that do not have this require-
ment. Many of these efforts only provide and evaluate
serial algorithms for suffix tree construction. However,
by design, as will be discussed, they do indeed lend
themselves to a parallel implementation.

Practical Parallel Algorithms for In-Core Strings
Hunt et al. [13] presented the very first approach to
efficiently build suffix trees that do not fit in main mem-
ory. The approach drops the use of suffix links in favor
of better locality of reference. Typically, the suffix tree
is an order of magnitude larger than the string being
indexed. As a result, for large input strings, the suffix
tree cannot be accommodated in main memory. The
method first finds a set of prefixes so as to partition
the suffix tree into sub-trees (each prefix corresponds
to a sub-tree) that can be built in main memory. The
number of times a prefix occurs in a string is used to
bound the size of the suffix sub-tree. The approach iter-
atively increases the size of the prefix until a length is
reached where all the suffix sub-trees will fit in mem-
ory. Next, for each of these prefixes, the approach builds
the associated suffix sub-tree using a scan of the data
set. Essentially, for each suffix with the prefix, during
insertion, one finds a path in the partially constructed
suffix sub-tree that shares the longest common prefix
(Icp) with this suffix, and branches from this path when
no more matching characters are found. The worst case
complexity of the approach is O(n?), but it exhibits
O(nlogn) average case complexity. This algorithm can
be parallelized by distributing the prefixes to the dif-
ferent processors in a round-robin fashion and having
each processor build one or more suffix sub-trees of the

suffix tree. Kalyanaraman et al. [18] presented a paral-
lel generalized suffix tree construction algorithm that
in some ways builds upon Hunt’s approach to realize
a scalable parallel suffix tree construction. A general-
ized suffix tree is a suffix tree for not one but a group
of strings. While the algorithm was presented in the
context of the genome assembly problem, the proposed
approach is not tied to genome assembly and can be
applied else where. The approach first sorts all suf-
fixes based on their w-length prefixes, where (like Hunt
etal’s approach) w is picked to ensure that the associated
suffix sub-trees will fit in main memory. Suffixes with
the same prefix are then assigned to the a single bucket.
The buckets are then partitioned across the processors
such that load is approximately balanced. Each proces-
sor then builds a sub-tree of the final suffix tree using a
depth-first tree building approach. This is accomplished
by sorting all the suffixes in the local bucket and then
inserting them in sorted order. The end result in a dis-
tributed representation of the generalized suffix tree as
a collection of sub-trees.

Japp introduced top-compressed suffix trees [15]
that improves upon Hunt’s approach by introducing a
pre-processing stage to remove the need for repeated
scans of the input sequence. Moreover, the author
employed partitioning and optimized the insertion of
suffixes into partitions using suffix links. The method
is based on a new linear time construction algorithm
for “sparse” suffix trees, which are sub-trees of the
whole suffix tree. The new data structures are called
the paged suffix tree (PST) and the distributed suffix
tree (DST), respectively. Both tackle the memory bot-
tleneck by constructing sub-trees of the full suffix tree
independently and are designed for single processor
and distributed memory parallel computing environ-
ments, respectively. The standard operations on suffix
trees of biological importance are shown to be easily
translatable to these new data structures.

Practical Parallel Algorithms for Out-of-Core
Strings

The above mentioned parallel algorithms scale well
when the input string fits in main memory. Many real-
world input strings (like the human genome), however,
do not fit in main memory. Researchers have developed
a variety of algorithms to handle this situation. The ear-
lier solutions for this problem follow what is known as

1952

Suffix Trees

the partition-and-merge methodology. The approach is
illustrated in Fig. 2. sT-MERGE [30], proposed by Tian
et al. partitions the input string and constructs a suffix
tree for each of these partitions in main memory. These
suffix trees are then merged to create the final suffix tree.
Merging two suffix trees involves finding matching suf-
fixes in the two trees that share the longest common
prefix, reusing this path in the new merged tree, and
splitting this path when no more matching characters
are found. Suffix link recovery can them be accom-
plished using a postprocessing step. The approach can
be parallelized as follows. During the partition phase,
each processor can be assigned block of the input string
and it can build a suffix tree for the partition. During the
merge phase, a processor can be assigned a pair of suffix
trees where it is responsible for merging a pair of trees.
One can realize a binary merge tree to build the final
suffix tree. TRELLIS [26], due to Phoophakdee and Zaki,
is similar in flavor but differs in the following regards.
First, the approach finds a set of variable-length pre-
fixes such that the corresponding suffix sub-trees will fit
in main memory. Second, it partitions the input string
and constructs a suffix tree for each partition in main
memory (like sT-MERGE) and stores the sub-trees for
each prefix determined in the first step, separately, on
disk. Finally, it merges all the sub-trees associated with
each prefix to realize the final set of suffix sub-trees. By

P1 P2 P3 P4

| D1 |:| D2 |i| D3 |:| D4 |

A

Suffix Links

Suffix Trees. Fig. 2 lllustration of the partition and merge
approach

design, TRELLIS ensures that each of the suffix sub-trees
(built using the merge operation) will fit in main mem-
ory. TRELLIS can be parallelized using an approach
similar to the parallelization of ST-MERGE.

Ghoting and Makarychev [10] studied the perfor-
mance of the “partition-and-merge” approach for very
large input strings and showed that the working set for
these algorithms scales linearly with the size of the input
string. This results in a lot of random disk I/0 during the
merge phase (the authors of TRELLIS do mention this as
well [26]) when indexing strings that do not fit in main
memory. One can even argue that for very large strings,
the performance of the “partition-and-merge” way will
converge to that of Hunts approach [13], as merging
sub-trees in tantamount to inserting suffixes into a
partially constructed suffix tree. To address this chal-
lenge, Ghoting and Makarychev presented a serial algo-
rithm WAVEFRONT and its parallelization P-WAVEFRONT
[10, 11]. P-WAVEFRONT is the first parallel algorithm that
can build a suffix tree for an input string that does not
fit in main memory. P-WAVEFRONT diverges from the
partition-and-merge methodology to suffix tree con-
struction. Leveraging the structure of suffix trees, the
algorithm builds a suffix tree by simultaneously tiling
accesses to both the input string and the partially con-
structed suffix tree. Steps for P-WAVEFRONT are pre-
sented in Fig. 3. First, an in-network string cache is
built by distributing the input strings across all proces-
sors in a round-robin fashion. The algorithm assumes
that the input string can fit in collective main memory.
This step uses collective I/O to ensure efficient reading
of the input string. Next, like TRELLIS, a set of variable
length prefixes are found in parallel such that the asso-
ciated suffix sub-trees fit in memory. These prefixes are
then distributed across all processors in a round-robin
fashion. The following prefix location discovery phase
is used to find the location of each prefix being pro-
cessed using a collective procedure. During this step,
each processor is responsible for finding locations of all
prefixes (not just its own) in a partition of the input
string and these are collective exchanged with other
processors such that each processor has locations of its
prefix in the entire input string. Finally, the suffix sub-
tree for each prefix is built in a tiled and iterative manner
by processing a pair of blocks of the input string at
a time. The end result is an algorithm that can index
very large input strings and at the same time maintain a

Suffix Trees

1953

Build in-network
string cache (collective)

!

Find prefixes P whose
sub-trees can be built
in memory (collective)

!

Find all locations of
a prefix Pin string
(collective)

!

Build suffix sub-tree
for prefix P

!

Recover suffix links
(collective)

Suffix Trees. Fig. 3 Steps of P-wavefront

bounded working set size and a fixed memory footprint.
The proposed methodology was applied to the suffix
link recovery process as well, realizing an end-to-end
I/O-efficient solution.

Closely related to suffix trees is the suffix array [23]. Suf-
fix array is the alphabetically sorted list of all suffixes of a
given string S. For example, the suffix array of the string
S = ABCABCS$ is as follows
Index Suffix Icp

6 $ 0

3 ABCS$ 0

0 ABCABC$ 3

4 BC$ 0

1 BCABC$ 2

5 C$ 0

2 CABC$ 1

The suffix array only contains pointers to the suf-
fixes in the original string S. Thus, in the example above,

the suffix array is the first column of the table, that
is, the array {6,3,0,4,1,5,2}. Given a suffix tree one
can obtain a suffix array in linear time by performing
a depth-first search (DFS) (see Fig. 1). Suffix arrays are
often used instead of suffix trees. The main advantage
of suffix arrays is that they have a more compact rep-
resentation in the memory. Besides the pointers to the
suffixes, suffix arrays can also be augmented to contain
lengths of the longest common prefixes (Icps) between
adjacent strings (see the third column in the example
above). In which case, given a suffix array it is easy to
reconstruct the suffix tree. Essentially, the longest com-
mon prefix corresponds to the lowest common ancestor
(Ica) in the tree. Relative to suffix trees, the main draw-
back is that query processing using suffix arrays can be
more time consuming as most queries are processed in
time that is function of the size of the input string and
not the size of the query (as was the case with suffix
trees). Researchers have developed several linear time
algorithms for directly building suffix arrays without
pre-building a suffix tree [16, 21].

Futamura et al. [9] presented the first algorithm
for parallel suffix array construction. The approach is
similar to the one by Kalyanaraman et al. [18] that
was described in section Practicel Parallel Algorithms
for In-Core Strings. The approach first partitions the
suffixes into buckets based on their w-length prefixes.
These buckets are then distributed across the proces-
sors, where the suffixes in each bucket are sorted locally
to obtain a portion of the suffix array. The final suf-
fix array can then be realized by concatenating these
distributed suffix arrays.

Algorithms for constructing suffix arrays in external
memory have been extensively studied and compared

by Crauser and Ferragina [4] and by Dementievetal. [7].

Kérkkdinen et al. [21] proposed the DC3 algorithm,
which is based on a similar approach as the Farach et
al. [8]divide-and-conquer algorithm for suffix trees (see
section Parallel Suffix Tree Construction). However,
instead of dividing suffixes in the input string into suf-
fixes starting at odd and even positions, it divides them
in three groups depending on the remainder of the suf-
fix position modulo 3. Surprisingly, this change signifi-
cantly simplifies the algorithm. A variant of DC3, called
pDC3, has been implemented by Kulla and Sanders
[20]. Their study as well as the study of Dementiev
et al. [7] indicate that DC3 and pDC3 are currently

1954

Suffix Trees

the most efficient algorithms for constructing suffix
arrays.

Related Entries
» Bioinformatics
»Genome Assembly

Bibliographic Notes and Further
Reading

Research on parallel indexing for sequence/string data
sets is still in its infancy. The primary reason for
this is that until 2005, sequence data sets were not
growing at a rapid pace and most problems could
be handled in main memory. However, over the past
few years, with advances in sequencing technologies,
sequence databases have reached gigantic proportions.
For instance, aggressive DNA sequencing efforts have
resulted in the GenBank sequence database surpass-
ing the 100 Gbp (one bp (base pair) is one character
in the sequence) mark [25], with sequences from over
165,000 organisms. Further complicating the issue is the
fact that researchers not only need the ability to index
a single large genome, but a group of large genomes.
For example, consider the area of comparative genomics
[27] where one is interested in comparing different
genomes, be they from the same or different species.
Here researchers may be interested in comparing the
genomes of individuals that are prone to a specific type
of cancer to those that are not susceptible. In this case,
we need to efficiently build a suffix tree for a group of
large genomes, as and when needed. These trends sug-
gest the parallel indexing technology for sequence data
sets will be extremely important in the coming decade.

Much of this entry focused on parallel construc-
tion of suffix trees and suffix arrays. We would like to
point the reader to Dan Gusfield’s book [12] for a larger
overview of applications. There has not been much work
on parallelization of query processing using suffix trees
and suffix arrays.

Another important direction is the design of parallel
cache-conscious algorithms for multi-core processors
so as to effectively utilize the memory hierarchy on
modern processors. Tsirogiannis and Koudas looked at
the problem of parallelizing the partition-and-merge
approach on chip-multiprocessor architectures [29] and
developed a cache-conscious algorithm for suffix tree

construction. Such directions will become increasingly
important in the near future given the tendency of
packing many cores on a single processor.

Bibliography

1. Apostolico A, Iliopoulos C, Landau G, Schieber B, Vishkin U
(1988) Parallel construction of a suffix tree with applications.
Algorithmica 3(1-4):347-365

2. Bray N, Dubchak I, Pachter L (2003) AVID: a global alignment
program. Genome research 13(1):97-102

3. Burrows M, Wheeler D (1994) A block sorting lossless data com-
pression algorithm. Technical report, Digital Equipment Corpo-
ration. Palo Alto, California

4. Crauser A, Ferragina P (2008) A theoretical and experimental
study on the construction of suffix arrays in external memory.
Algorithmica 32(1):1-35

5. Delcher A, Kasif S, Fleischmann R, Peterson], White O,
Salzberg S (1999) Alignment of whole genomes. Nucleic Acids Res
27(11):2369-2376

6. Delcher A, Phillippy A, Carlton], Salzberg S (2002) Fast algo-
rithms for large-scale genome alignment and comparison. Nucleic
Acids Res 30(1)

7. Dementiev R, Kirkkiinen J, Mehnert J, Sanders P (2008) Better
external memory suffix array construction.] Exp Algorithmics
(JEA) 12:3-4

8. Farach-Colton M, Ferragina P, Muthukrishnan S (2000) On the
sorting-complexity of suffix tree construction.] ACM 47(6):
987-1011

9. Futamura N, Aluru S, Kurtz S (2001) Parallel suffix sorting. In:
Proceedings 9th international conference on advanced computing
and communications. Citeseer, pp 76-81

10. Ghoting A, Makarychev K (2009) Indexing genomic sequences on
the IBM Blue Gene. In: SC ’09: proceedings of the conference on
high performance computing networking, storage and analysis.
ACM, New York, pp 1-11

11. Ghoting A, Makarychev K (2009) Serial and parallel methods
for 1/0 efficient suffix tree construction. In: Proceedings of the
ACM international conference on management of data. ACM,
New York

12. Gusfield D (1997) Algorithms on strings, trees, and sequences:
computer science and computational biology. Cambridge Univer-
sity Press, Cambridge

13. Harjharan R (1994) Optimal parallel suffix tree construction. In:
Proceedings of the symposium on theory of computing. ACM,
New York

14. Hunt E, Atkinson M, Irving R (2001) A database index to large
biological sequences. In: Proceedings of 27th international confer-
ence on very large databases. Morgan Kaufmann, San Francisco

15. Japp R (2004) The top-compressed suffix tree: a disk resident
index for large sequences. In: Proceedings of the bioinformat-
ics workshop at the 21st annual british national conference on
databases

http://dx.doi.org/10.1007/978-0-387-09766-4_110
http://dx.doi.org/10.1007/978-0-387-09766-4_402

SuperLU 1955

17.

18.

19.

20.

21

22.

23.

24.

25.

26.

27.

28

29.

30.

. Kalyanaraman A, Emrich S, Schnable P, Aluru S (2007) Assem-

bling genomes on largescale parallel computers. J Parallel Distr
Comput 67(12):1240-1255

Kirkkiinen J, Sanders P, Burkhardt S (2006) Linear work suffix
array construction.] ACM 53(6):918-936

Ko P, Aluru S (2005) Space efficient linear time construction of
suffix arrays.] Discret Algorithms 3(2-4):143-156

Kulla E, Sanders P (2006) Scalable parallel suffix array construc-
tion. In: Recent advances in parallel virtual machine and mes-
sage passing interface: 13th European PVM/MPI User’s Group
Meeting, Bonn, Germany, 17-20 September, 2006: proceedings.
Springer, New York, p 22

Kurtz S, Choudhuri J, Ohlebusch E, Schleiermacher C, Stoye J,
Giegerich R (2001) Reputer: the manifold applications of repeat
analysis on a genome scale. Nucleic Acids Res 29(22):4633-4642
Kurtz S, Phillippy A, Delcher A, Smoot M, Shumway M,
Antonescu C, Salzberg S (2004) Versatile and open software for
comparing large genomes. Genome Bio 5:(R12)

Manber U, Myers G (1990) Suffix arrays: a new method for on-line
string searches. In: Proceedings of the first annual ACM-SIAM
symposium on discrete algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, pp 319-327

McCreight E (1976) A space-economical suffix tree construction
algorithm.] ACM 23(2)

Meek C, Patel J, Kasetty S (2003) Oasis: an online and accurate
technique for localalignment searches on biological sequences.
In: Proceedings of 29th international conference on very large
databases

NCBI. Public collections of DNA and RNA sequence reach 100
gigabases, 2005. http://www.nlm.nih.gov/news/press_releases/
dna_rna_100_gig.html.

Phoophakdee B, Zaki M (2007) Genome-scale disk-based suffix
tree indexing. In: Proceedings of the ACM international confer-
ence on management of data. ACM, New York

Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson
CR, Hariharan IK, Fortini ME, Li PW, Apweiler R, Fleischmann
W, Cherry JM, Henikoff S, Skupski MP, Misra S, Ashburner
M, Birney E, Boguski MS, Brody T, Brokstein P, Celniker SE,
Chervitz SA, Coates D, Cravchik A, Gabrielian A, Galle RE,
Gelbart WM, George RA, Goldstein LS, Gong F, Guan P, Har-
ris NL, Hay BA, Hoskins RA, Li J, Li Z, Hynes RO, Jones 5],
Kuehl PM, Lemaitre B, Littleton JT, Morrison DK, Mungall C,
O’Farrell PH, Pickeral OK, Shue C, Vosshall LB, Zhang], Zhao Q,
Zheng XH, Zhong F, Zhong W, Gibbs R, Venter JC, Adams MD,
Lewis S (2000) Comparative genomics of the eukaryotes. Science
287(5461):2204-2215

. Sahinalp SC, Vishkin U (1994) Symmetry breaking for suffix

tree construction. In: STOC ’94: proceedings of the twenty-
sixth annual ACM symposium on Theory of computing ACM,
New York, pp 300-309

Tian Y, Tata S, Hankins R, Patel J (2005) Practical methods for
constructing suffix trees. VLDB] 14(3):281-299

Tsirogiannis D, Koudas N (2010) Suffix tree construction algo-
rithms on modern hardware. In: EDBT ’10: Proceedings of the

13th international conference on extending database Technology.
ACM, New York, pp 263-274

31. Ukkonen E (1992) Constructing suffix trees on-line in linear time.
In: Proceedings of the IFIP 12th work computer congress on
algorithms, software, architecture: information processing. North
Holland Publishing Co., Amsterdam

32. Weiner P (1973) Linear pattern matching algorithms. In: Proceed-
ings of 14th annual symposium on switch and automata theory.
IEEE Computer Society, Washington, DC

33. Zamir O, Etzioni O (1998) Web document clustering: a feasibility
demonstration. In: Proceedings of 21st international conference
on research and development in information retrieval. ACM,
New York

! Superlinear Speedup

»Metrics

! SuperLU

XIAOYE SHERRY LI, JAMES DEMMEL?, Joun GILBERT,
LAURA GRIGORT', MEIYUE SHAO®

'Lawarence Berkeley National Laboratory, Berkeley,

CA, USA

*University of California at Berkeley, Berkeley, CA, USA
?University of California, Santa Barbara, CA, USA
*Laboratoire de Recherche en Informatique Universite
Paris-Sud 11, Paris, France

>Umea University, Umes, Sweden

Synonyms
Sparse gaussian elimination

Definition

SuperLU is a general-purpose library for the solution
of large, sparse, nonsymmetric systems of linear equa-
tions using direct methods. The routines perform LU
decomposition with numerical pivoting and solve the
triangular systems through forward and back substi-
tution. Iterative refinement routines are provided for
improved backward stability. Routines are also provided
to equilibrate the system, to reorder the columns to pre-
serve sparsity of the factored matrices, to estimate the
condition number, to calculate the relative backward
error, to estimate error bounds for the refined solutions,

http://www.nlm.nih.gov/news/press_releases/dna_rna_100_gig.html
http://www.nlm.nih.gov/news/press_releases/dna_rna_100_gig.html
http://dx.doi.org/10.1007/978-0-387-09766-4_69
http://dx.doi.org/10.1007/978-0-387-09766-4_2200

SuperLU

and to perform threshold-based incomplete LU factor-
ization (ILU), which can be used as a preconditioner for
iterative solvers. The algorithms are carefully designed
and implemented so that they achieve excellent per-
formance on modern high-performance machines,
including shared-memory and distributed-memory
multiprocessors.

Discussion

SuperLU consists of a collection of three related ANSI
C subroutine libraries for solving sparse linear systems
of equations AX = B. Here A is a square, nonsingular,
n x n sparse matrix, and X and B are dense n x nrhs
matrices, where nrhs is the number of right-hand sides
and solution vectors. The LU factorization routines can
handle non-square matrices. Matrix A need not be
symmetric or definite; indeed, SuperLU is particularly
appropriate for matrices with very unsymmetric struc-
ture. All three libraries use variations of Gaussian elim-
ination optimized to take advantage of both sparsity
and the computer architecture, in particular memory
hierarchies (caches) and parallelism [5, 17]. All three
libraries can be obtained from the following URL:

http://crd.1lbl.gov/~xiaoye/SuperLU/
The three libraries within SuperLU are as follows:

o Sequential SuperLU (SuperLU) is designed for
sequential processors with one or more levels
of caches [3]. Routines for both complete and
threshold-based incomplete LU factorizations are
provided [20].

e Multithreaded SuperLU (SuperLU_MT) is designed
for shared-memory multiprocessors, such as multi-
core, and can effectively use 16-32 parallel proces-
sors on sufficiently large matrices in order to speed
up the computation [4].

e Distributed SuperLU (SuperLU_DIST) is designed
for distributed-memory parallel machines, using
MPI for interprocess communication. It can effec-
tively use hundreds of parallel processors on sufhi-
ciently large matrices [19].

Table 1 summarizes the current status of the soft-
ware. All the routines are implemented in C, with
parallel extensions using Pthreads or OpenMP for

SuperLU. Table 1 SuperlLU software status

Platform Serial Shared- distributed-
memory memory

Language C C + Pthreads |C + MPI

(with Fortran or OpenMP

interface)

Data type Real/ Real/ Real/
complex |[complex comples
Single/ Single/ Double
double double

shared-memory programming, or MPI for distributed-
memory programming. Fortran interfaces are provided
in all three libraries.

The kernel algorithm in SuperLU is sparse Gaussian
elimination, which can be summarized as follows:

1. Compute a triangular factorization P,D,AD.P, =
LU. Here D, and D, are diagonal matrices to equi-
librate the system, and P, and P, are permutation
matrices. Premultiplying A by P, reorders the rows
of A, and postmultiplying A by P, reorders the
columns of A. P, and P, are chosen to enhance
sparsity, numerical stability, and parallelism. L is a
unit lower triangular matrix (L; = 1) and U is an
upper triangular matrix. The factorization can also
be applied to non-square matrices.

2. Solve AX=B by evaluating X=A"'B=(D;'P,'LUP;"
D;')"'B=D, (P.(U"(L™'(P,(D,B))))). 'This is
done efficiently by multiplying from right to left
in the last expression: Scale the rows of B by D,.
Multiplying P,B means permuting the rows of D, B.
Multiplying L™ (P,D,B) means solving nrhs trian-
gular systems of equations with matrix L by sub-
stitution. Similarly, multiplying U™'(L™'(P,D,B))
means solving triangular systems with U.

In addition to exact, or complete, factorization,
SuperLU also contains routines to perform incomplete
factorization (ILU), in which sparser and so cheaper
approximations to L and U are computed, which can be

http://crd.lbl.gov/~xiaoye/SuperLU/

SuperLU

1957

used as a general-purpose preconditioner in an iterative
solver.

The simplest implementation, used by the simple
driver routines in SuperLU and SuperLU_MT, consists
of the following steps:

1. Choose P, to order the columns of A to increase
the sparsity of the computed L and U factors, and
hopefully increase parallelism (for SuperLU_MT).
Built-in choices are described later.

2. Compute the LU factorization of AP,. SuperLU and
SuperLU_MT can perform dynamic pivoting with
row interchanges during factorization for numerical
stability, computing P,, L, and U at the same time.

3. Solve the system using P,, P, L, and U as described
above (where D, = D, =1).

The simple driver subroutines for double precision
real data are called dgssv and pdgssv for SuperLU
and SuperLU_ MT, respectively. The letter d in the
subroutine names means double precision real; other
options are s for single precision real, ¢ for single pre-
cision complex, and z for double precision complex.
SuperLU_ DIST does not include this simple driver.

There is also an expert driver subroutine that
can provide more accurate solutions, compute error
bounds, and solve a sequence of related linear systems
more economically. It is available in all three libraries.

1. Equilibrate the matrix A, that is, compute diagonal
matrices D, and D, so that A = D,AD, is “better
conditioned” than A, that is, A™! is less sensitive to
perturbations in A than A™! is to perturbations in A.

2. Preorder the rows of A (SuperLU DIST only),
that is, replace A by P,A where P, is a permuta-
tion matrix. This step is called “static pivoting,” and
is only done in the distributed-memory algorithm,
which allows scaling to more processors.

3. Order the columns of A, to increase the sparsity of
the computed L and U factors, and increase paral-
lelism (for SuperLU MT and SuperLU DIST).
In other words, replace A by AP in SuperLU
and SuperLU MT, or replace A by P.AP! in
SuperLU_DIST, where P, is a permutation matrix.

4. Compute the LU factorization of A. SuperLU and
SuperLU_ MT can perform dynamic pivoting with
row interchanges for numerical stability. In contrast,
SuperLU DIST uses the order computed by the
preordering step (Step 2), and replaces tiny pivots by
larger values for stability; this is corrected by Step 6.

5. Solve the system using the computed triangular fac-
tors.

6. Iteratively refine the solution, again using the com-
puted triangular factors. This is equivalent to New-
ton’s method.

7. Compute error bounds. Both forward and backward
error bounds are computed.

The expert driver subroutines for double precision
real data are called dgssvx, pdgssvx, and pdgssvx
for SuperLU, SuperLU MT, and SuperLU DIST,
respectively.

The driver routines are composed of several lower
level computational routines for computing permuta-
tions, computing LU factorization, solving triangular
systems, and so on. For large matrices, the LU factor-
ization step takes most of the time, although choosing
P. to order the columns can also be time consuming.

Supernodes in the Factors

The factorization algorithms in all three libraries use
unsymmetric supernodes [3], which enable the use of
higher level BLAS routines with higher flops-to-byte
ratios, and so higher speed. A supernode is a range
(r : s) of columns of L with the triangular block just
below the diagonal being full, and the same nonzero
structure below the triangular block. Matrix U is parti-
tioned rowwise by the same supernodal boundaries. But
due to the lack of symmetry, the nonzero pattern of U
consists of dense column segments of different lengths.

Sparse Matrix Data Structure

The principal data structure for
SuperMatrix, defined as a C structure. This struc-
ture contains two levels of fields. The first level defines
the three storage-independent properties of a matrix:
mathematical type, data type, and storage type. The
second level points to the actual storage used to store
the compressed matrix. Specifically, matrix A is stored

a matrix is

1958

SuperLU

in either column-compressed format (aka Harwell-
Boeing format), or row-compressed format (i.e., AT
stored in column-compressed format) [1]. Matrices
B and X are stored as a single dense matrix of dimen-
sion n x nrhs in column-major order, with output X
overwriting input B. In SuperLU DIST, A and B can
be either replicated or distributed across all processes.
The factored matrices L and U are stored differently
in SuperLU/SuperLU MT and SuperLU DIST,
to be described later.

Options Input Argument

The options is an input argument to control the
behaviour of the libraries. The user can tell the solvers
how the linear systems should be solved based on some
known characteristics of the system. For example, for
diagonally dominant matrices, choosing the diagonal
pivots ensures stability; there is no need for numerical
pivoting (i.e., P, can be an identity matrix). In another
situation where a sequence of matrices with the same
sparsity pattern needs to be factorized, the column per-
mutation P, (and also the row permutation P,, if the
numerical values are similar) needs to be computed only
once, and reused thereafter. In these cases, the solvers’
performance can be much improved over using the
default parameter settings.

Performance-Tuning Parameters

All three libraries depend on having an optimized BLAS
library to achieve high performance [7, 8]. In partic-
ular, they depend on matrix—vector multiplication or
matrix-matrix multiplication of relatively small dense
matrices arising from the supernodal structure. The
block size of these small dense matrices can be tuned
to match the “sweet spot” of the BLAS performance on
the underlying architecture. These parameters can be
altered in the inquiry routine sp_ienv.

Example Programs

In the source code distribution, the EXAMPLE/ direc-
tory contains several examples of how to use the driver
routines, illustrating the following usages:

e Solve a system once

e Solve different systems with the same A, but different
right-hand sides

e Solve different systems with the same sparsity pat-
tern of A

o Solve different systems with the same sparsity pat-
tern and similar numerical values of A

Except for the case of one-time solution, all the other
examples can reuse some of the data structures obtained
from a previous factorization, hence, save some time
compared to factorizing A from scratch. The users can
easily modify these examples to fit their needs.

Numerical Pivoting

Both sequential SuperLUand SuperLU MT use par-
tial pivoting with diagonal threshold. The row permuta-
tion P, is determined dynamically during factorization.
At the jth column, let a,,; be a largest entry in magni-
tude on or below the diagonal of the partially factored
A: |apj| = max;sjla;|. Depending on a threshold u
(0.0 < u < 1.0) selected by the user, the code may use
the diagonal entry aj; as the pivot in column j as long as
|aji| > u|ayj| and aj; # 0, or else use a,,;. If the user sets
u = 1.0, a,j (or an equally large entry) will be used as
the pivot; this corresponds to the classical partial pivot-
ing. If the user has ordered the matrix so that choosing
diagonal pivots is particularly good for sparsity or par-
allelism, then smaller values of u tend to choose those
diagonal pivots, at the risk of less numerical stability.
Selecting u = 0.0 guarantees that the pivot on the diag-
onal will be chosen, unless it is zero. The code can also
use a user-input P, to choose pivots, as long as each
pivot satisfies the threshold for each column. The back-
ward error bound BERR measures how much stability
is actually lost.

It is hard to get satisfactory execution speed
with partial pivoting on distributed-memory machines,
because of the fine-grained communication and the
dynamic data structures required. SuperLU DIST
uses a static pivoting strategy, in which P, is chosen
before factorization and based solely on the values of
the original A, and remains fixed during factorization.
A maximum weighted matching algorithm and the code
MC64 developed by Duft and Koster [6] is currently
employed. The algorithm chooses P, to maximize the
product of the diagonal entries, and chooses D, and D,
simultaneously so that each diagonal entry of P,D,AD,
is +1 and each oft-diagonal entry is bounded by 1 in
magnitude. On the basis of empirical evidence, when

SuperlLU

1959

this strategy is combined with diagonal scaling, setting
very tiny pivots to larger values, and iterative refine-
ment, the algorithm is as stable as partial pivoting for
most matrices that have occurred in the actual applica-
tions. The detailed numerical experiments can be found
in [19].

Sparsity-Preserving Reordering

For unsymmetric factorizations, preordering for spar-
sity is less understood than that for Cholesky
factorization. Many unsymmetric ordering methods
use symmetric ordering techniques, either minimum
degree or nested dissection, applied to a symmetrized
matrix (e.g., ATA or AT + A). This attempts to mini-
mize certain upper bounds on the actual fills. Which
symmetrized matrix to use strongly depends on how the
numerical pivoting is performed.

In sequential SuperLU and SuperLU_ MT, where
partial pivoting is used, an AT A-based ordering algo-
rithm is preferrable. This is because the nonzero pattern
of the Cholesky factor R in ATA = RTR is a superset of
the nonzero pattern of the LT and U in P,A = LU, for
any with row interchanges [9]. Therefore, a good sym-
metric ordering P, on AT A that preserves the sparsity of
R can be applied to the columns of A, forming AP, so
that the LU factorization of AP is likely to be sparser
than that of the original A.

In SuperLU DIST, an a priori row permutation
P, is computed to form P,A. With fixed P,, an (AT +A)-
based ordering algorithm is preferrable. This is because
the symbolic Cholesky factor of A” + A is a much tighter
upper bound on the structures of L and U than that
of ATA when the pivots are chosen on the diagonal.
Note that after P, is chosen, a symmetric permutation
P.(P,A)PT is performed so that the diagonal entries of
the permuted matrix remain the same as those in P,A,
and they are larger in magnitude than the off-diagonal
entries. Now the final row permutation is P.P,.

In all three libraries, the user can choose one
of the following ordering methods by setting the
options.ColPermoption:

e NATURAL: Natural ordering

e MMD_ATA: Multiple Minimum Degree [21] applied
to the structure of ATA

e MMD_AT _PLUS_A: Multiple Minimum Degree
applied to the structure of AT + A

e METIS_ATA: MeT1isS [14] applied to the structure
of ATA

e METIS_AT_PLUS_A: MeTiS applied to the struc-
ture of AT + A

e PARMETIS: ParMeTisS [15] applied to the struc-
ture of AT + A

¢ COLAMD: Column Approximate
Degree [2]

e MY_PERMC: Use a permutation P, supplied by the
user as input

Minimum

COLAMD is designed particularly for unsymmetric
matrices when partial pivoting is needed, and does not
require explicitly forming AT A. It usually gives compa-
rable orderings as MMD on AT A, and is faster.

The purpose of the last option MY_PERMC is to be
able to reap the results of active research in the order-
ing methods. Recently, there is much research on the
orderings based on graph partitioning. The user can
invoke those ordering algorithms separately, and then
input the ordering in the permutation vector for P,.
The user may apply them to the structures of ATA or
AT + A. The routines getata () and at_plus_a()
in the file get _perm c.c can be used to form ATA
or AT +A.

Task Ordering

The Gaussian elimination algorithm can be organized
in different ways, such as left-looking (fan-in) or right-
looking (fan-out). These variants are mathematically
equivalent under the assumption that the floating-point
operations are associative (approximately true), but
they have very different memory access and commu-
nication patterns. The pseudo-code for the left-looking
blocking algorithm is given in Algorithm 1.

Algorithm 1

for block K = 1to N do
(1) Compute U(1: K - 1,K)
(via a sequence of triangular solves)
(2) Update A(K : N,K) < A(K:N, K)
-L(1:N,1: K-1)-U(1: K -1,K)
(via a sequence of calls to GEMM)
(3) Factorize A(K : N,K) - L(K : N,K)

(may involve pivoting)

Left-looking Gaussian elimination

end for

1960

SuperLU

SuperLUand SuperLU_MT use the left-looking algo-
rithm, which has the following advantages:

e In each step, the sparsity changes are restricted
within the Kth block column instead of the entire
trailing submatrix, which makes it relatively easy to
accommodate dynamic compressed data structures
due to partial pivoting.

e There are more memory read operations than
write operations in Algorithm 1. This is better for
most modern cache-based computer architectures,
because write tends to be more expensive in order
to maintain cache coherence.

The pseudo-code for the right-looking blocking
algorithm is given in Algorithm 2.

Algorithm 2 Right-looking Gaussian elimination

for block K =1to N do

(1) Factorize A(K : N,K) - L(K : N,K)
(may involve pivoting)

(2) Compute U(K,K +1:N)

(via a sequence of triangular solves)

(3) Update A(K+1:N,K+1:N) <
A(K+1:N,K+1:N)-L(K +1: N,K)-
U(K,K+1:N)

(via a sequence of calls to GEMM)
end for

SuperLU DIST uses right-looking algorithm mainly
for scalability consideration.

e The sparsity pattern and data structure can be deter-
mined before numerical factorization because of
static pivoting.

o The right-looking algorithm fundamentally has
more parallelism: at step (3) of Algorithm 2, all
the GEMM updates to the trailing submatrix are
independent and so can be done in parallel. On
the other hand, each step of the left-looking algo-
rithm involves operations that need to be carefully
sequenced, which requires a sophisticated pipelin-
ing mechanism to exploit parallelism across multi-
ple loop steps.

SuperLU_ MT is designed for parallel machines with
shared address space, thus there is no need to parti-
tion the matrices. Matrices A, L, and U are stored in
separate compressed formats. The parallel elimination
uses an asychronous and barrier-free scheduling algo-
rithm to schedule two types of parallel tasks to achieve
a high degree of concurrency. One such task is factor-
izing the independent panels in the disjoint subtrees
of the column elimination tree [10]. Another task is
updating a panel by previously computed supernodes.
The scheduler facilitates the smooth transition between
the two types of tasks, and maintains load balance
dynamically. In symbolic factorization, a non-blocking
algorithm is used to perform depth-first search and
symmetric pruning in parallel. The code achieved over
tenfold speedups on a number of earlier SMP machines
with 16 processors [4]. Recent evaluation shows that
SuperLU_ MT performs very well on current multi-
threaded, multicore machines; it achieved over 20-fold
speedup on a 16 core, 128 thread Sun VictoriaFalls [16].

The design of SuperLU DIST is drastically dif-
ferent from SuperLU/SuperLU MT. Many design
choices were made by the need for scaling to a large
process count. The input sparse matrix A is divided by
block rows, with each process having one block row rep-
resented in a local row-compressed format. This format
is user-friendly and is compatible with the input inter-
face of much other distributed-memory sparse matrix
software. The factored L and U matrices, on the other
hand, are distributed by a two-dimensional block cyclic
layout using supernodal structure for block partition.
This distribution ensures that most (if not all) proces-
sors are engaged in the right-looking update at each
block elimination step, and also ensures that interpro-
cess communication is restricted among process row
set or column set. The right-looking factorizations use
elimination DAGs to identify task and data depen-
dencies, and a one step look-ahead scheme to overlap
communication with computation. A distributed par-
allel symbolic factorization algorithm is designed so
that there is no need to gather the entire graph on a
single node, which largely increases memory scalabil-
ity [12]. SuperLU_DIST has achieved 50- to 100-fold
speedups with sufficiently large matrices, and over half
a Teraflops factorization rate [18].

SuperLU

1961

There are still many open problems in the develop-
ment of high performance algorithm and software for
sparse direct methods. The current architecture trend
shows that the Chip Multiprocessor (CMP) will be the
basic building block for computer systems ranging from
laptops to extreme high-end supercomputers. The core
count per chip will quickly increase from four to eight
today to tens in the near future. Given the limited per-
chip memory and memory bandwidth, the standard
parallelization procedure based on MPI would suffer
from serious resource contention. It becomes essen-
tial to consider a hybrid model of parallelism at the
algorithm level as well as the programming level. The
quantitative multicore evaluation of SuperLU shows
that the left-looking algorithm in SuperLU MT con-
sistently outperforms the right-looking algorithm in
SuperLU _DIST on a single node of the recent CMP
systems, mainly because the former incurs much less
memory traffic [16]. One new design is to combine the
two algorithms - partitioning the matrix into larger
panels, performing left-looking intra-chip elimination
and right-looking inter-chip elimination.

A second new direction is to exploit the property
of low numerical rank in many discretized operators so
that a specialized Gaussian elimination algorithm can
be designed. For example, it has been shown recently
that semi-separable structures occur in the pivoting
block and the corresponding Schur complement of each
block factorization step. Thus, using the compressed,
semi-separable representation throughout the entire
factorization leads to an approximate factorization algo-
rithm that has nearly linear time and space complex-
ity [13, 22]. For many discretized elliptic PDEs, this
approximation is sufficiently accurate and can be used
as an optimal direct solver. For more general problems,
the factoriation can be used as an effective precondi-
tioner. Because of its asymptotically lower data volume
compared with conventional algorithms, the amount of
memory-to-processor and inter-processor communica-
tion is smaller, making it more amenable to a scalable
implementation.

Another promising area is to extend the new
communication avoiding dense LU and QR factor-
izations to sparse factorizations [11]. In conventional
algorithms, the panel factorization of a tall-skinny

submatrix requires a sequence of fine-grained mes-
sage transfers, and often lies on the critical path of
parallel execution. The new method employs a divide-
and-conquer scheme for this phase, which has asymp-
totically less communication. This method should also
work for sparse matrices. In particular, the new pivoting
strategy for LU can replace the static pivoting currently
used in SuperLU, leading to a more stable and scalable
solver.

Related Entries

»Chaco

»LAPACK

»METIS and ParMETIS

» Mumps

»PARDISO

»PETSc (Portable, Extensible Toolkit for Scientific
Computation)

»Preconditioners for Sparse Iterative Methods
»Reordering

»ScaLAPACK

»Sparse Direct Methods

Bibliography

1. Barrett R, Berry M, Chan TE, Demmel J, Donato J, Dongarra J,
Eijkhout V, Pozo R, Romine C, van der Vorst H (1994) Templates
for the solution of linear systems: building blocks for the iterative
methods. SIAM, Philadelphia, PA

2. Davis TA, GilbertJR, Larimore S, Ng E (2004) A column approx-
imate minimum degree ordering algorithm. ACM Trans Math
Softw 30(3):353-376

3. Demmel JW, Eisenstat SC, Gilbert JR, Li XS, Liu JWH (1999) A
supernodal approach to sparse partial pivoting. SIAM] Matrix
Anal Appl 20(3):720-755

4. Demmel JW, Gilbert JR, Li XS (1999) An asynchronous paral-
lel supernodal algorithm for sparse gaussian elimination. SIAM
] Matrix Anal Appl 20(4):915-952

5. Demmel JW, Gilbert JR, Li XS (1999) SuperLU users’ guide. tech-
nical report LBNL-44289, Lawrence Berkeley National Labora-
tory, September 1999. http://crd.Ibl.gov/~xiaoye/SuperLU/. Last
update: September 2007

6. Duff IS, Koster J (1999) The design and use of algorithms for per-
muting large entries to the diagonal of sparse matrices. SIAM]
Matrix Anal Appl 20(4):889-901

7. BLAS Technical Forum (2002) Basic Linear Algebra Subpro-
grams Technical (BLAST) Forum Standard I. Int] High Perform
Comput Appl 16:1-111

http://dx.doi.org/10.1007/978-0-387-09766-4_9
http://dx.doi.org/10.1007/978-0-387-09766-4_152
http://dx.doi.org/10.1007/978-0-387-09766-4_500
http://dx.doi.org/10.1007/978-0-387-09766-4_204
http://dx.doi.org/10.1007/978-0-387-09766-4_90
http://dx.doi.org/10.1007/978-0-387-09766-4_87
http://dx.doi.org/10.1007/978-0-387-09766-4_87
http://dx.doi.org/10.1007/978-0-387-09766-4_247
http://dx.doi.org/10.1007/978-0-387-09766-4_245
http://dx.doi.org/10.1007/978-0-387-09766-4_151
http://dx.doi.org/10.1007/978-0-387-09766-4_507
http://crd.lbl.gov/~xiaoye/SuperLU/

1962

Supernode Partitioning

10.

1L

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. BLAS Technical Forum (2002) Basic Linear Algebra Subpro-

grams Technical (BLAST) Forum Standard II. Int] High Perform
Comput Appl 16:115-199

. George A, Liu J, Ng E (1988) A data structure for sparse QR and

LU factorizations. SIAM J Sci Stat Comput 9:100-121

Gilbert JR, Ng E (1993) Predicting structure in nonsymmetric
sparse matrix factorizations. In: George A, Gilbert JR, Liu JWH
(eds) Graph theory and sparse matrix computation. Springer-
Verlag, New York, pp 107-139

Grigori L, Demmel], Xiang H (2008) Communication-avoiding
Gaussian elimination. In: Supercomputing 08, Austin, TX,
November 15-21, 2008.

Grigori L, Demmel JW, Li XS (2007) Parallel symbolic factor-
ization for sparse LU with static pivoting. SIAM] Sci Comput
29(3):1289-1314

Gu M, Li XS, Vassilevski P (2010) Direction-preserving and
schur-monotonic semi-separable approximations of symmetric
positive definite matrices. SIAM] Matrix Anal Appl 31(5):2650-
2664

Karypis G, Kumar V (1998) MeTiS - a software package
for partitioning unstructured graphs, partitioning meshes, and
computing fill-reducing orderings of sparse matrices - ver-
sion 4.0. University of Minnesota, September 1998. http://www-
users.cs.umn.edu/ karypis/metis/. Accessed 2010

Karypis G, Schloegel K, Kumar V (2003) ParMeTiS: Parallel graph
partitioning and sparse matrix ordering library - version 3.1. Uni-
versity of Minnesota. http://www- users.cs.umn.edu/~Kkarypis/
metis/parmetis/. Accessed 2010

Li XS (2008) Evaluation of sparse factorization and triangular
solution on multicore architectures. In: Proceedings of VEC-
PARO8 8th international meeting high performance computing
for computational science, Toulouse, France, June 24-27, 2008
Li XS (Sept 2005) An overview of SuperLU: algorithms, imple-
mentation, and user interface. ACM Trans Math Softw 31(3):
302-325

Li XS (2009) Sparse direct methods on high performance com-
puters. University of California, Berkeley, CS267 Lecture Notes
Li XS, Demmel JW (June 2003) SuperLU DIST: a scalable
distributed-memory sparse direct solver for unsymmetric linear
systems. ACM Trans Math Softw 29(2):110-140

Li XS, Shao M (2011) A supernodal approach to imcomplete LU
factorization with partial pivoting. ACM Trans Math Softw 37(4)
Liu JWH (1985) Modification of the minimum degree algorithm
by multiple elimination. ACM Trans Math Softw 11:141-153

Xia], Chandrasekaran S, Gu M, Li XS (2009) Superfast multi-
frontal method for large structured linear systems of equations.
SIAM] Matrix Anal Appl 2008, 31(3):1382-1411

! Supernode Partitioning

»Tiling

|
Superscalar Processors

WEN-MEI HWu
University of Illinois at Urbana-Champaign, Urbana,
IL, USA

Synonyms
Multiple-instruction issue; Out-of-order execution
processors

Definition

A superscalar processor is designed to achieve an exe-
cution rate of more than one instruction per clock cycle
for a single sequential program.

Discussion

Superscalar processor design typically refers to a set
of techniques that allow the central processing unit
(CPU) of a computer to achieve a throughput of more
than one instruction per cycle while executing a sin-
gle sequential program. While there is not a universal
agreement on the definition, superscalar design tech-
niques typically include parallel instruction decoding,
parallel register renaming, speculative execution, and
out-of-order execution. These techniques are typically
employed along with complementing design techniques
such as pipelining, caching, branch prediction, and
multi-core in modern microprocessor designs.

A typical superscalar processor today is the Intel
Core i7 processor based on the Nehalem microarchi-
tecture. There are multiple processor cores in a Core
i7 design, where each processor core is a superscalar
processor. The processor performs parallel decoding on
IA (X86) instructions, performs parallel register renam-
ing to map the X86 registers used by these instruc-
tions to a larger set of physical registers, performs
speculative execution of instructions beyond condi-
tional branch instruction and potential exception caus-
ing instructions, and allows instructions to execute out
of their program specified order while maintaining the
appearance of in-order completion. These techniques
are accompanied and supported by pipelining, instruc-
tion caching, data caching, and branch prediction in the
design of each processor core.

http://www-users.cs.umn.edu/~karypis/metis/
http://www-users.cs.umn.edu/~karypis/metis/
http://dx.doi.org/10.1007/978-0-387-09766-4_511
http://dx.doi.org/10.1007/978-0-387-09766-4_2323
http://dx.doi.org/10.1007/978-0-387-09766-4_2324
http://dx.doi.org/10.1007/978-0-387-09766-4_2324
http://www-users.cs.umn.edu/~karypis/metis/parmetis/
http://www-users.cs.umn.edu/~karypis/metis/parmetis/

Superscalar Processors

1963

Superscalar processor design assumes the existence of
instruction-level parallelism, a phenomenon that mul-
tiple instructions can be executed independently of each
other at each point in time. Instruction-level parallelism
arises due to the fact that instructions in an execution
phase of a program often read and write different data,
thus their executions do not affect each other.

In Fig. 1, Instruction A is a memory load instruc-
tion that forms its address from the contents of register
1 (r1), accesses the data in the address location, and
deposits the accessed data into register 2 (r2). Instruc-
tion B is a memory load instruction that forms its
address by adding value 4 to the contents of register
1 (r1), accesses the data in the address location, and
deposits the accessed data into register 3 (r3). Instruc-
tions A and B can be executed independently of each
other. Neither of their execution results is affected by the
other. With sufficient execution resources, a superscalar
processor can execute A and B together and achieve an
execution rate of more than one instruction per clock
cycle.

Note that Instruction C cannot be executed inde-
pendently of Instruction A or Instruction B. This is
because Instruction C uses the data in register 2 (r2) and
register 3 (r3) as its input. These data are loaded from
memory by Instruction A and Instruction B. That is, the
execution of Instruction C depends on that of instruc-
tion A and Instruction B. Such dependences limit the
amount of instruction-level parallelism that exists in a
program.

In general, data dependences arise in programs due
to the way instructions read from and write into regis-
ter and memory storage locations. Data dependencies
occur between instructions in three forms. We use the

r2 « Load MEM[r1+0]
r3 « Load MEM[r1+4]
r2 < r2+r3

r3 < Load MEM[r1+8]

O o0 w >

Superscalar Processors. Fig.1 Code example for register
access data dependences

code example in Fig. 1 to illustrate these forms of data
dependences:

1. Data flow dependency: the destination register of
Instruction A is the same as one of the source
registers of Instruction C, and C follows A in the
sequential program order. In this case, a subsequent
instruction consumes the execution result of a pre-
vious instruction.

2. Data antidependency: one of the source operands of
Instruction C is the same as the destination register
of Instruction D, and D follows C in the sequential
program order. In this case, Instruction C should
receive result of Instruction B. However, if Instruc-
tion D is executed too soon, C may receive execution
result of Instruction D, which is too new. In this
case, a subsequent instruction overwrites one of the
source registers of a previous instruction.

3. Data output dependency: the destination register of
Instruction B is the same as the destination register
of Instruction D, and Instruction D follows B in the
sequential program order. In this case, a subsequent
instruction overwrites the destination register of a
previous instruction. If D is executed too soon, its
result could be overwritten by Instruction B, leaving
a result which is too old in the destination regis-
ter. Subsequent instructions would be using stale
results.

A superscalar processor uses register renaming and out-
of-order execution techniques to detect and enhance
the amount of instruction-level parallelism between
instructions so that it can execute multiple instructions
per clock cycle. These techniques ensure that all instruc-
tions acquire the appropriate input value in the presence
of all the parallel execution activities and data depen-
dences. They also make sure that the output values
of instructions are reflected correctly in the processor
registers and memory locations.

Register renaming is a technique that eliminates regis-
ter antidependences and output dependences in order
to increase instruction parallelism. A register renam-
ing mechanism provides a physical or implementation
register file that is larger than the architectural regis-
ter files. For example, the IA (X86) architecture spec-
ifies 8 general-purpose registers whereas the register

1964

Superscalar Processors

renaming mechanism of a superscalar processor typ-
ically provides 32 or more physical registers. At any
time, each architectural register is mapped to one or
more of the physical registers. By mapping, an architec-
tural register is mapped to multiple physical registers,
one can eliminate apparent antidependences and output
dependences between instructions.

For example, a register renaming mechanism may
map architectural register r3 to physical register prl03
for the destination operand of Instruction B and source
of Instruction C in Fig. 1. That is, Instruction B will
deposit its result to prl03 and Instruction C will fetch
its second input operand from prl103. As long as the pro-
ducer of the data and all the consumers of the data are
redirected to the same physical register, the execution
results will not be affected.

Let’s further assume that architecture register r3 is
mapped to physical register prl05 for the destination
operand of Instruction D. That is, Instruction D will
deposit its execution results to prl05. As long as all sub-
sequent uses of the data produced by Instruction D
are redirected to prl05 for their input, their execution
results will remain the same.

The reader should see that the antidependence
between Instruction C and Instruction D has been
eliminated by the register renaming mechanism. Since
Instruction C will go to prl03 for its input whereas
Instruction D will deposit its result into prl05, Instruc-
tion D will no longer overwrite the input for Instruc-
tion C no matter how soon it is executed. As a result,
we have eliminated a dependence constraint between
Instruction C and Instruction D.

The reader should also notice that the output depen-
dence between Instruction B and Instruction D has
been eliminated by the register renaming mechanism.
Since Instruction B deposits its result into prl03 and
Instruction D deposits its result into prl05, B will no
longer overwrite the result of D no matter how soon D
is executed. As long as subsequent Instructions that use
architecture register r3 are also directed to prl05, they
will see the updated results rather than stale results even
though B could be executed after D.

By eliminating the register antidependence between
C and D and output dependence between B and
D, Instruction D can now be executed in parallel
with Instructions A and B. This increases the level of

instruction-level parallelism. This is the reason why
register renaming has become an essential mechanism
for superscalar processor design.

A major limitation on the amount of instruction-
level parallelism is uncertainties in program execu-
tion sequence. There are two major sources of such
uncertainty. The first is conditional and indirect branch
instructions. Conditional branches are used to imple-
ment control constructs such as if-then-else statements
and loops in high-level language programs. Depending
on the condition values, the instructions to be executed
after a conditional branch can be either from the next
sequential location or from a target location specified
by the branch offset. Indirect branches use the contents
of a register or memory location as the address of the
next instruction to execute. Indirect branches are used
to implement procedure return statements, case state-
ments, and table-based procedural calls in high-level
language programs.

While conditional and indirect branch instructions
serve essential purposes in implementing high-level
languages, they introduce uncertainties for execution.
The classic approach to addressing this problem is
branch prediction, where a mechanism is used to pre-
dict the next instructions to execute when conditional
and indirect branches are encountered during program
execution. However, prediction alone is not sufficient.
One needs a means to speculatively execute the instruc-
tions on the predicted path of execution and recover
from any incorrect predictions.

The second source of uncertainty in program exe-
cution is exception conditions. Modern computers use
exceptions to support the implementation of virtual
memory management, memory protection, and rare
execution condition handling. For example, the Instruc-
tion A in Fig. 1 may trigger a page fault in its execu-
tion and require operating system service to bring in
its missing load data. The execution needs to be able
to resume cleanly after the page fault is handled by
the operating system. This requirement means that the
instructions after a load instruction, or any instruction
that can potentially cause exceptions, cannot change the
execution state in a way that prevents the execution
from restarting at the exception causing instruction.

Superscalar Processors

1965

Like in the case of branch prediction, one can
“predict” that the exception conditions do not occur
and assume that the execution will simply continue
down the current path. However, one needs a means
to recover the state when an exception indeed occurs
so that the execution can correctly restart from the
exception-causing instruction.

Speculative execution is a mechanism that allows
processors to fetch and execute instructions down a pre-
dicted path and to recover if the prediction is incorrect.
In general, these mechanisms use buffers to keep both
the original state and the recent updates to the state.
The updated state is used during the speculative exe-
cution. The original state is used if the processor needs
to recover from an incorrect prediction. Since condi-
tional and indirect branches occur frequently, one in
every four to five instructions on average, the level of
instruction level parallelism a superscalar processor can
exploit would be extremely low without speculative exe-
cution. This is why speculative execution has become
an essential mechanism in superscalar processor design.
The most popular methods for recovering from incor-
rect branch predictions are reorder buffer (ROB) and
checkpointed register file. The most popular method
for recovering from exception causing instructions is
reorder buffer.

A retirement mechanism in speculative execution
attempts to make the effects of instruction execution
permanent. An instruction is eligible for retirement
when all instructions before it have retired. An eligible
instruction is then checked if it has caused any excep-
tions or incorrect branch prediction. If the instruc-
tion does not incur any exception or incorrect branch
prediction, it can commit its execution result into an
architectural state. Otherwise, the instruction triggers a
recovery and the state of the processor is restored to a
previous architectural state.

The capacity of reorder buffers and checkpoint
buffers defines the notion of instruction window, a col-
lection of consecutive instructions that are actively pro-
cessed by a superscalar processor. At any point in time,
the instruction window starts with the oldest instruc-
tion that has not completed execution and ends with
the youngest instruction that has started execution.
The larger the instruction window, the more hard-
ware is needed to keep track of the execution status

of all instructions in the window and the information
needed to recover the processor state if anything goes
wrong with the execution of the instructions in the
window.

In a superscalar processor, instructions are fetched
according to their sequential program order. However,
this may not be best order of execution. For example, in
Fig. 1, Instruction D is fetched after Instruction C. How-
ever, Instruction C cannot execute until Instructions B
and Instruction D completes their execution. On the
other hand, with register renaming, Instruction D does
not have any dependence on Instructions A, Instruction
B, or Instruction C. Therefore, a superscalar processor
“reorders” the execution of Instruction C and Instruc-
tion D so that Instruction D can produce results for its
consumers as soon as possible.

An out-of-order execution mechanism provides
buffering for Instructions that need to wait for their
input data so that some of their subsequent instruc-
tions can proceed with execution. A popular method
used in out-of-order execution is the Tomasulos Algo-
rithm that was originally used in the IBM 360/91.
The method maintains reservation stations, hardware
buffers that allow the instructions to wait for their input
operands.

The most popular out-of-order execution mechanism
in modern superscalar processors is Tomasulo’s algo-
rithm [1] designed by Bob Tomasulo and used in the
IBM 360/91 floating point unit in 1967. The out-order-
execution mechanism was abandoned in later IBM
machines partly due to the concern of the problems it
introduces to virtual memory management.

The Intel Pentium processor [2] is an early super-
scalar design that fetches and executes multiple instruc-
tions at each clock cycle. It did not employ register
renaming or speculative execution and was able to
exploit only a very limited amount of instruction-level
parallelism.

Register renaming in superscalar processor design
started with the Register Alias Table (RAT) by Patt et al.
[3]. To this day, the register renaming structure used in
Intel superscalar processors are still called RAT.

1966

SWARM: A Parallel Programming Framework for Multicore Processors

Simth and Plaszkun proposed reorder buffers and
history buffers for recovering from exceptions in highly
pipelined processors [4]. Hwu et al. [5] extended the
concepts with checkpointing and incorporated these
speculative execution mechanisms with Tomasulo’s
algorithm.

In 1985, Patt et al. [3] proposed a comprehensive
superscalar design that incorporates register renaming,
speculative execution, out-of-order execution, along
with parallel instruction decode and branch predic-
tion. This is the first comprehensive academic design
of superscalar processors. In 1987, Sohi and Vijapeyam
[6] proposed a unified reservation station design. These
designs were later adopted and refined by Intel to cre-
ate the Pentium Pro Processor, the first commercially
successful superscalar processor design [7].

Recent superscalar processors include MIPS R10000,
Intel Pentium 4, IBM Power 6, AMD Athlon, and
ARM Cortex. Interested readers should refer to Hen-
nessy and Patterson [8] for more detailed treatment
and more recent history on superscalar processor
design.

Bibliography

1. Tomasulo R (1967) An efficient algorithm for exploiting multiple
arithmetic units. IBM] ResDev 11(1):8-24

2. Case B (1993) Intel reveals pentium implementation details. Micro-
processor Report 29 Mar 1993

3. Patt Y, Hwu W-M, Shebanow M (1985) HPS, a new microar-
chitecture: rationale and introduction. In: Proceedings of the
18th annual workshop on microprogramming, Pacific Grove,
pp 103-108

4. Smith J, Pleszkun A (1985) Implementation of precise interrupts
in pipelined processors. In: Proceedings of the 12th international
symposium on computer architecture, Boston

5. Hwu W-M, Patt Y (1987) Checkpoint repair for out-of-order exe-
cution machines. In: Proceedings of the 14th international sympo-
sium on computer architecture, Pittsburgh

6. Sohi G, Vajapeyam S (1987) Instruction issue logic for high-
performance, interruptable pipelined processors. In: Proceedings
of the 14th international symposium on computer architecture,
New York

7. Colwell R (2005) Pentium chronicles - the people, passion, and
politicc behind Intel’s Lanmark chips. Wiley-IEEE Computer Soci-
ety, ISBN 978-0-47-173617-2

8. Hennessy J, Patterson D (2007) Computer architecture - a quanti-
tative approach, 4th edn. Morgan Kauffman, San Francisco, ISBN
978-0-12-370490-0

' SWARM: A Parallel Programming
Framework for Multicore
Processors

Davip A. BADER', GuojinGg CoNG®
'Georgia Institute of Technology, Atlanta, GA, USA
*IBM, Yorktown Heights, NY, USA

Definition

SoftWare and Algorithms for Running on Multi-core
(SWARM) is a portable open-source parallel library of
basic primitives for programming multicore processors.
SWARM is built on POSIX threads that allows the user
to use either the already developed primitives or direct
thread primitives. SWARM has constructs for paral-
lelization, restricting control of threads, allocation and
deallocation of shared memory, and communication
primitives for synchronization, replication and broad-
cast. Built on these techniques, it contains a higher-level
library of multicore-optimized parallel algorithms for
list ranking, comparison-based sorting, radix sort, and
spanning tree. In addition, SWARM application exam-
ple codes include efficient implementations for solving
combinatorial problems such as minimum spanning
tree [3], graph decomposition [8], breadth-first-search
[9], tree contraction [10], and maximum parsimony [7].

Motivation

For the last few decades, software performance has
improved at an exponential rate, primarily driven by
the rapid growth in processing power. However, per-
formance improvements can no longer rely solely on
Moore’s law. Fundamental physical limitations such as
the size of the transistor and power constraints have
now necessitated a radical change in commodity micro-
processor architecture to multicore designs. Dual and
quad-core processors from Intel [13] and AMD [2] are
now ubiquitous in home computing. Also, several novel
architectural ideas are being explored for high-end
workstations and servers [15, 16]. Continued software
performance improvements on such novel multicore
systems now require the exploitation of concurrency at
the algorithmic level. Automatic methods for detect-
ing concurrency from sequential codes, for example

SWARM: A Parallel Programming Framework for Multicore Processors

1967

with parallelizing compilers, have had only limited suc-
cess. SWARM was introduced to fully utilize multicore
processors.

On multicore processors, caching, memory band-
width, and synchronization constructs have a con-
siderable effect on performance. In addition to time
complexity, it is important to consider these factors
for algorithm analysis. SWARM assumes the multicore
model that can be used to explain performance on sys-
tems such as Sun Niagara, Intel, and AMD multicore
chips. Different models [6] are required for model-
ing heterogeneous multicore systems such as the Cell
architecture.

Model for Multicore Architectures
Multicore systems have a number of processing cores
integrated on to a single chip [2, 11, 13, 15, 16]. Typically,
the processing cores have their own private L; cache and
share a common L, cache [13, 16]. In such a design, the
bandwidth between the L, cache and main memory is
shared by all the processing cores. Figure 1 shows the
simplified architectural model.

The multicore model (MCM) consists of p identi-
cal processing cores integrated onto a single chip. The

processing cores share an L, cache of size C, and the
memory bandwidth is ¢.

1. Let T(i) denote the local time complexity of the core
ifori=1,...,p. Let T = max T(i).

2. Let B be the total numéer of blocks transferred
between L, cache and the main memory. The requests
may arise out of any processing core.

3. Let L be the time required for synchronization
between the cores. Let Ns(i) be the total number of
synchronizations required on core i fori = 1,...,p.
Let Ng = max Ng(i).

1

Then the complexity under the multicore model can be
represented by a triple (T, B- 0™, N - L). The complex-
ity of an algorithm will be represented by the dominant
element in this triple.

The model proposed above is in many ways sim-
ilar to the Helman-JaJd4 model for symmetric multi-
processor (SMP) systems [12], with a few important
differences. In the case of SMPs, each processor typi-
cally has a large L, cache and dedicated bandwidth to
main memory, whereas in multicore systems, the shared
memory bandwidth will be an important consideration.
Thus, SWARM explicitly models the cache hierarchy,
and count the number of block transfers between the
cache and main memory in a manner similar to Aggar-
wal and Vitter’s external memory model [1].

Core 1
1
Core 2

[\l

mIO>»0

Core p

‘ ’ Main
memory

SWARM: A Parallel Programming Framework for Multicore Processors. Fig. 1 Architectural model for multicore systems

1968

SWARM: A Parallel Programming Framework for Multicore Processors

SWARM targets three primary issues that affect per-
formance on multicore systems:

1. Number of processing cores: Current systems have
two to eight cores integrated on a single chip.
Cores typically support features such as simulta-
neous multithreading (SMT) or hardware multi-
threading, which allow for greater parallelism and
throughput. In future designs, up to 100 cores can
exist on a single chip.

2. Caching and memory bandwidth: Memory speeds
have been historically increasing at a much slower
rate than processor capacity [14]. Memory band-
width and latency are important performance
concerns for several scientific and engineering
applications. Caching is known to drastically affect
the efficiency of algorithms even on single processor
systems [17, 18]. In multicore systems, this will be
even more important due to the added bandwidth
constraints.

3. Synchronization: Implementing algorithms using
multiple processing cores will require synchro-
nization between the cores from time to time,
which is an expensive operation in shared memory
architectures.

Algorithm 1

In the first algorithm, the input array of length N is
equally divided among the p processing cores so that
each core gets N/p elements to sort. Once the sort-
ing phase is completed, there are p sorted sub-arrays,
each of length N/p. Thereafter the merge phase takes
place. A p-way merge over the runs will give the sorted
array. Each processor individually sorts its elements
using some cache-friendly algorithm. This approach
does not try to minimize the number of blocks trans-
ferred between the L, cache and main memory.
Analysis. Since the p processors are all sorting their
respective elements at the same time, the L, cache will
be shared by all the cores during the sorting phase. Thus,
if the size of the L, cache is C, then effectively each core
can use just a portion of the cache with size C/p. Assum-
ing the input size is larger than the cache size, the cache
misses will be p times that if only a single core were sort-
ing. Also the bandwidth between the cache and shared

main memory is also shared by all the p cores, and this
may be a bottleneck.
The time complexity of each processor is:

N N
T.(sort) = —-lo (—)
p s P

During the merge phase:

T.(merge) = N -log(p)
T.(total) = %Ilog (%) + Nlog(p)

Algorithm 2

This algorithm divides the given array of length N into
blocks of size M where M is less that C, the size of the
L, cache. Each of such N/M blocks is first sorted using
all p cores. This is the sorting phase. When the sort-
ing phase is completed, the array consists of N/M runs
each of length M. During the merge phase, p blocks are
merged at a time. This process is repeated till a single
sorted array is arrived. Thus, the merge phase is carried
out log, (%) times.

Analysis. This algorithm is very similar to the 1/O
model merge sort [1]. Thus, this algorithm is optimal in
terms of transfers between main memory and L, cache.
However, it will have slightly higher-computational
complexity. The p cores sort a total of N/M blocks of
size M. Assuming the use of a split-and-merge sort for
sorting the block of M elements, thus, during the sorting
phase, the time per core is:

N M M N
T.(sort) = e ; log(?) U -Mlog(p)

= %log(%) + Nlog(p) 1)

During any merge phase, if blocks of size S are being

merged p at a time, the complexity per core is 5

Splog(p) =
phases, thus

N
Nlog(p). There are logp(ﬂ) merge

T.(merge) = Nlog(p) - log, (%)

T, (total) = %log (%) + Nlog(p) (1 +log, (A—A/;))

Comparison. Algorithm 1 clearly has better time com-
plexity than algorithm 2. However, algorithm 2 is opti-
mal in terms of transfers between L, cache and shared

SWARM: A Parallel Programming Framework for Multicore Processors

main memory. Algorithm analysis using this model
captures computational complexity as well as memory
performance.

Programming in SWARM
A typical SWARM program is structured as follows:

int main

{

(int argc, char **argv)
SWARM Init (&argc, &argv) ;
/* sequential code */

/* parallelize a routine using
SWARM */

SWARM_ Run (routine) ;

/* more sequential code */

SWARM Finalize() ;

In order to use the SWARM library, the program-
mer needs to make minimal modifications to existing
sequential code. After identifying compute-intensive
routines in the program, work can be assigned to each
core using an efficient multicore algorithm. Indepen-
dent operations such as those arising in functional par-
allelism or loop parallelism can be typically threaded.
For functional parallelism, this means that each thread
acts as a functional process for that function, and for
loop parallelism, each thread computes its portion of
the computation concurrently. Note that it might be
necessary to apply loop transformations to reduce data
dependencies between threads.

SWARM contains efficient implementations of com-
monly used primitives in parallel programming.

Data parallel. The SWARM library contains several
basic “pardo” directives for executing loops concur-
rently on one or more processing cores. Typically, this is
useful when an independent operation is to be applied
to every location in an array, for example element-wise
addition of two arrays. Pardo implicitly partitions the
loop among the cores without the need for coordinating
overheads such as synchronization of communication
between the cores. By default, pardo uses block par-
titioning of the loop assignment values to the threads,
which typically results in better cache utilization due to

the array locations on lefthand side of the assignment
being owned by local caches more often than not. How-
ever, SWARM explicitly provides both block and cyclic
partitioning interfaces for the pardo directive.

/* example: partitioning a "for"
loop among the cores */

pardo (i, start, end, incr) ({
A[i] = BI[i] + C[i];

Control. SWARM control primitives restrict which
threads can participate in the context. For instance, the
control may be given to a single thread on each core,
all threads on one core, or a particular thread on a
particular core.

THREADS: total number of execution
threads
MYTHREAD: the rank of a thread,

from 0 to THREADS-1

/* example: execute code on
thread MYTHREAD */

on thread (MYTHREAD)

}

/* example: execute code on
one thread */
on one thread ({

Memory management. SWARM provides two direc-
tives SWARM mallocand SWARM free that, respec-
tively, dynamically allocate a shared structure and
release this memory back to the heap.

/* example: allocate a shared array
of size n */

A=(int*)SWARM malloc (n*sizeof (int),

TH) ;

/* example: free the array A */

SWARM free(A) ;

Barrier. This construct provides a way to synchro-
nize threads running on the different cores.

/* parallel code */

1970

SWARM: A Parallel Programming Framework for Multicore Processors

/* use the SWARM Barrier for
synchronization */

SWARM Barrier () ;

/* more parallel code */

Replicate. This primitive uniquely copies a data
buffer for each core.

Scan (reduce). This performs a prefix (reduction)
operation with a binary associative operator, such as
addition, multiplication, maximum, minimum, bitwise-
AND, and bitwise-OR. allreduce replicates the
result from reduce for each core.

/* function signatures */
int SWARM Reduce i (int myval,
reduce_t op,
THREADED) ;
double SWARM Reduce_ d(double
myval,
reduce_t op,
THREADED) ;

/* example: compute global sum,
using

partial local values from each
core */

sum = SWARM Reduce d(mySum, SUM,
TH) ;

Broadcast. This primitive supplies each processing
core with the address of the shared buffer by replicating
the memory address.

/* function signatures */

int SWARM Bcast i (int myval,

THREADED) ;
(int* myval,

THREADED) ;
(char myval,

THREADED) ;

int* SWARM Bcast ip

char SWARM Bcast c

Apart from the primitives for computation and
communication, the thread-safe parallel pseudo-
random number generator SPRNG [19] is integrated in
SWARM.

Algorithm Design and Examples

in SWARM

The SWARM library contains a number of techniques to
demonstrate key methods for programming on multi-
core processors.

e The prefix-sum algorithm is one of the most use-
ful parallel primitives and is at the heart of several
other primitives, such as array compaction, sorting,
segmented prefix-sums, and broadcasting; it also
provides a simple use of balanced binary trees.

o Pointer-jumping (or path-doubling) iteratively
halves distances in a list or graph. It is used in
numerous parallel graph algorithms, and also as a
sampling technique.

o Determining the root for each tree node in a rooted-
directed forest is a crucial step in handling equiv-
alence classes — such as detecting whether or not
two nodes belong to the same component; when the
input is a linked list, this algorithm also solves the
parallel prefix problem.

e An entire family of techniques of major importance
in parallel algorithms is loosely termed divide-and-
conquer - such techniques decompose the instance
into smaller pieces, solve these pieces independently
(typically through recursion), and then merge the
resulting solutions into a solution to the original
instance. These techniques are used in sorting, in
almost any tree-based problem, in a number of com-
putational geometry problems (finding the closest
pair, computing the convex hull, etc.), and are also
at the heart of fast transform methods such as the
FFT. The pardo primitive in SWARM can be used
for implementing such a strategy.

e A variation of the above theme is the partitioning
strategy, in which one seeks to decompose the prob-
lem into independent subproblems - and thus avoid
any significant work when recombining solutions;
quicksort is a celebrated example, but numerous
problems in computational geometry can be solved
efficiently with this strategy (particularly problems
involving the detection of a particular configuration
in three- or higher-dimensional space).

e Another general technique for designing parallel
algorithms is pipelining. In this approach, waves
of concurrent (independent) work are employed to
achieve optimality.

Switch Architecture

1971

Built on these techniques, SWARM contains a
higher-level library of multicore-optimized parallel
algorithms for list ranking, comparison-based sorting,
radix sort and spanning tree. In addition, SWARM appli-
cation example codes include efficient implementations
for solving combinatorial problems such as minimum
spanning tree [3], graph decomposition [8], breadth-
first-search [9], tree contraction [10] and maximum
parsimony [7].

Related Entries
»Cilk

»OpenMP

»Parallel Skeletons

History

The SWARM programming framework is a descendant
of the symmetric multiprocessor (SMP) node library
component of SIMPLE [4].

Bibliography

1. Aggarwal A, Vitter] (1988) The input/output complexity of sort-
ing and related problems. Commun ACM 31:1116-1127

2. AMD Multi-Core Products (2006), http://multicore.amd.-
com/en/Products/

3. Bader DA, Cong G (2004) A fast, parallel spanning tree algo-
rithm for symmetric multiprocessors (SMPs). In: Proceedings of
the international parallel and distributed processing symposium
(IPDPS 2004), Santa Fe, NM, April 2004

4. Bader DA, JaJa J (1999) SIMPLE: a methodology for program-
ming high performance algorithms on clusters of symmetric
multiprocessors (SMPs).] Parallel Distrib Comput 58(1):92-108

5. Bader DA (2006) SWARM: a parallel programming frame-
work for multicore processors, https://sourceforge.net/projects/
multicore-swarm

6. Bader DA, Agarwal V, Madduri K (2007) On the design and
analysis of irregular algorithms on the Cell processor: a case
study of list ranking. In: Proceedings of the International Paral-
lel and Distributed Processing Symposium (IPDPS 2007), Long
Beach, CA

7. Bader DA, Chandu V, Yan M (2006) ExactMP: an efficient parallel
exact solver for phylogenetic tree reconstruction using maximum
parsimony. In: Proceedings of the 35th International Conference
on Parallel Processing (ICPP), Columbus, OH, August 2006

8. Bader DA, Illendula AK, Moret BME, Weisse-Bernstein N (2001)
Using PRAM algorithms on a uniform-memoryaccess shared-
memory architecture. In: Brodal GS, Frigioni D, Marchetti-
Spaccamela A (eds) Proceedings of the 5th international
workshop on algorithm engineering (WAE 2001), volume 2141
of lecture notes in computer science. Springer-Verlag, Arhus,
Denmark, pp 129-144

9.

10.

1L

12.

13.

14.

15.

16.

17.

18.

19.

Bader DA, Madduri K (2006) Designing multithreaded algo-
rithms for breadth-first search and st-connectivity on the Cray
MTA-2. In: Proceedings of the 35th international conference on
parallel processing (ICPP), IEEE Computer Society, Columbus,
OH, August 2006

Bader DA, Sreshta S, Weisse-Bernstein N (2002) Evaluating arith-
metic expressions using tree contraction: a fast and scalable par-
allel implementation for symmetric multiprocessors (SMPs). In:
Sahni S, Prasanna VK, Shukla U (eds) Proceedings of the 9th
international conference on high performance computing (HiPC
2002), volume 2552 of lecture notes in computer science. Banga-
lore, India, Springer-Verlag, December 2002, pp 63-75

Barroso LA, Gharachorloo K, McNamara R, Nowatzyk A,
Qadeer S, Sano B, Smith S, Stets R, Verghese B (2000) Piranha:
a scalable architecture based on single-chip multi-processing.
SIGARCH Comput Archit News 28(2):282-293

Helman DR, J4Ja J (1999) Designing practical efficient algorithms
for symmetric multiprocessors. In: Algorithm engineering and
experimentation (ALENEX’99), volume 1619 of lecture notes in
computer science, Springer-Verlag, Baltimore, MD, January 1999,
pp 37-56

Multi-Core from Intel - Products and Platforms (2006)
http://www.intel.com/multi- core/products.htm

International Technology Roadmap for Semiconductors (2004),
http://itrs.net, 2004 update

Kahle JA, Day MN, Hofstee HP, Johns CR, Maeurer TR,
Shippy D (2005) Introduction to the cell multiprocessor. IBM J
Res Dev 49(4/5):589-604

Kongetira P, Aingaran K, Olukotun K (2005) Niagara: a 32-way
multithreaded Spare processor. IEEE Micro 25(2):21-29

Ladner R, Fix JD, LaMarca A (1999) The cache performance
of traversals and random accesses. In: Proceedings of the 10th
annual symposium discrete algorithms (SODA-99), ACM-SIAM,
Baltimore, MD, pp 613-622

Ladner RE, Fortna R, Nguyen B-H (2002) A comparison of
cache aware and cache oblivious static search trees using program
instrumentation. In: Fleischer R, Meineche-Schmidt E, Moret
BME (eds) Experimental algorithms, volume 2547 of lecture
notes in computer science, Springer-Verlag, Berlin Heidelberg,
pp 78-92

Mascagni M, Srinivasan A (2000) Algorithm 806: SPRNG: a scal-
able library for pseudorandom number generation. ACM Trans
Math Softw 26(3):436-461

Switch Architecture

Josk FLicn
Technical University of Valencia, Valencia, Spain

Synonyms
Router architecture

http://dx.doi.org/10.1007/978-0-387-09766-4_289
http://dx.doi.org/10.1007/978-0-387-09766-4_50
http://dx.doi.org/10.1007/978-0-387-09766-4_24
http://multicore.amd.-com/en/Products/
http://multicore.amd.-com/en/Products/
https://sourceforge.net/projects/multicore-swarm
https://sourceforge.net/projects/multicore-swarm
http://www.intel.com/multi-core/products.htm
http://dx.doi.org/10.1007/978-0-387-09766-4_2346
http://itrs.net

1972

Switch Architecture

Definition

The switch architecture defines the internal organiza-
tion and functionality of components in a switch. The
switch is in charge of forwarding units of information
from the input ports to the output ports.

Discussion

High-performance computing systems, like clusters and
massively parallel processors (MPPs), rely on the use
of an efficient interconnection network. As the num-
ber of end nodes increases to thousands, or even larger
sizes, the network becomes a key component since it
must provide low latencies and high bandwidth at a
moderate cost and power consumption. The basic com-
ponents of a network are switches/routers, links, and
network interfaces. The interconnection network effi-
ciency largely depends on the switch design.

Prior to defining and describing the switch architec-
ture concept, it is worth differentiating between router
and switch. Typically, the router is the basic component
in a network that forwards messages from a set of input
ports to a set of output ports. The router usually nego-
tiates paths and computes the output ports messages
need to take. Therefore, the router has some intelligence
and adapts to the varying conditions of the network.
Indeed, the router concept comes from Wide Area Net-
works (WANs) where the switching devices must be
smart enough to adapt to the varying topological condi-
tions. In high-performance interconnection networks,
typically found in cluster cabinets, connecting massively
parallel processors, and nowadays even inside a chip,
switching devices are also needed. However, differently
from the WAN environment, these devices, although
have some intelligence and can make critical decisions,
they have no capabilities to negotiate the paths and to
adapt to the varying conditions. Indeed, usually the
topology is expected not to change, thus no need for
such negotiation. This is the reason why these devices
are also known as switches rather than routers. How-
ever, both terms are used with no clear differentiation
by the community and thus, both become acceptable.
This entry is related to switch architecture, although it
can be seen also as router architecture.

The switch architecture defines the internal organi-
zation and functionality of a switch or router. Basically,
the switch has a set of input ports where data messages

come in and a set of output ports where data mes-
sages are delivered. The way internal components are
used and connected between them is defined by the
switch architecture.

The switch architecture largely depends on the
switching technique (see »Switching Techniques) used;
thus, we may find switch architectures implement-
ing store and forward switching that greatly vary from
switches implementing wormhole switching. Most of
the current modern routers and switches, used in
high-performance networks, implement cut-through
switching, or some variant. This entry focuses on such
architectures, mainly in wormhole (WH) switches and
virtual cut-through (VCT) switches. Although there are
basic differences between them, that affect the switch
architecture, there are commonalities as both rely on the
same form of switching. In the next section, a canoni-
cal switch architecture including all the commonalities
found in current switches is provided. Then, different
components are reviewed and alternative switch orga-
nizations are described.

Figure 1 shows the organization of a basic switch
architecture. The switch is made up of a set of identical
input ports, connected to input physical channels. Each
input port uses a link control module to adapt messages
coming through the physical channel to the internal
switch. Each message is then stored in a buffer at the
input port. The buffer can be made of different queues,
each one usually associated to a virtual channel. Each
message is then routed (computing the appropriate out-
put port to take) at the Routing control unit. Once the
output port is computed, the message may cross the
internal crossbar of the switch, thus reaching the out-
put port. To do so, the message has to win the access to
the output port since different messages may compete
for the same port. In addition, the message has to com-
pete to get access to an available virtual channel. Both
are resolved by the arbitration unit. Once the access is
granted, the message crosses the crossbar and is writ-
ten at the corresponding queue at the output port. Each
message, again, needs to compete with other messages
in order to win the access to the physical channel. Prior
to reaching the physical channel the message passes
through the link controller logic.

http://dx.doi.org/10.1007/978-0-387-09766-4_296

Switch Architecture

1973

Physical

Physical
channel

l

Switch Architecture. Fig. 1 Basic switch architecture

As an alternative view, the resources found in the
switch can be divided into two separate blocks: the data
plane (or datapath) and the control plane. Basically, the
data plane is the set of resources messages use while
being forwarded (storage and movement) through the
switch. The control plane is made of the resources used
to make decisions at the switch, like the routing control
unit and the arbitration unit.

Alternative Switch Architectures
Taking this basic switch architecture as the starting
point, several alternative architectures can be derived,
some of them better suited for a particular switching
mechanism. One of the key issues in the switch architec-
ture is the location of the buffering resources. Regarding
this, switch architectures can be classified as:
Output-Queued (OQ) switch architecture. In this
architecture buffers only exist at the output ports
and thus no buffering exists at the input port. Thus,
whenever a message arrives at the switch it must be
sent directly to the appropriate output port. An N x N
0Q switch requires only N memories, one per output

port. As packets are mapped to the memory associated
with the requested output port, HOL blocking is totally
eliminated (see » Congestion Management Entry); thus,
this organization achieves maximum switch efficiency.
However, internal speedup is required to handle the
worst-case scenario without dropping messages, allow-
ing all the input ports to transmit packets to the same
output port at the same time. In particular, output
queues must either implement multiple write ports or
use a higher clock frequency. A speedup of N is required
in OQ switches in the worst case. Unfortunately, provid-
ing such internal speedup is not always viable.
Input-Queued (IQ) switch architecture. Buffers
only exist at input ports and not at output ports. In
this architecture the required internal bandwidth does
not increase with the number of ports and the switch
can be designed with the same bandwidth as the link.
However, a switch designed with this organization may
face low performance due to contention/congestion
at the output ports. It is well known that such
switches achieve only 58% of maximum efficiency
under uniformly distributed requests [3]. This is mainly

http://dx.doi.org/10.1007/978-0-387-09766-4_313

1974

Switch Architecture

due to the HOL blocking problem. One solution to
eliminate the HOL blocking issue in IQ switches is the
use of N queues at every input port, mapping the incom-
ing message to a queue associated with the requested
output port. This technique is known as Virtual Output
Queuing (VOQ) [4]. However, it increases the queue
requirements quadratically with the number of ports.
Therefore, as the number of ports increases, this solu-
tion becomes too expensive.

Combined-Input-Output-Queued (CIOQ) switch
architecture. With this organization, the contention/
congestion problem found in IQ switches is alleviated or
even eliminated, since messages can be also stored at the
output side of the switch. In this architecture some mod-
erate internal speedup is used, as the internal bandwidth
is higher than the aggregate link bandwidth. A speedup
of two is usually enough to compensate the perfor-
mance drop produced by HOL blocking. Speedup can
be implemented by using internal datapaths with higher
transmission frequencies or wider transmission paths.
However, as the external link bandwidth increases, sus-
taining the speedup may become difficult.

Buffered-Crossbar (BC) switch architecture. This
organization uses a memory at every crossbar cross-
point. An input link is connected to N memories, each
one connected to a different output port. By design,
the BC organization implements internal speedup, as
many inputs can forward a packet to the same output at
the same time. Additionally, such memory organization
eliminates the HOL blocking (every packet is mapped
to the memory associated with the requested output
port). As a consequence, the BC organization requires
low-cost arbiters per output port. However, the problem
with such organization is that the number of memories
increases quadratically with the number of ports (N?),
thus limiting scalability.

When focusing on the switching device (the cross-
bar) different alternatives exist. The solution used in the
basic example is the most frequently implemented one,
where a crossbar connecting every input to every pos-
sible output is used. The crossbar has inherited band-
width as it is able to connect an input to every output
(broadcast communication). There are, however, other
solutions, like using a centralized buffer and using a bus.

In addition, the connection of the input ports to
the crossbar, and the crossbar to the output ports
can be implemented in different ways. In the example

multiplexers and demultiplexers are used at both sides
of the crossbar. This is done to reduce the crossbar
complexity (that increases quadratically with the num-
ber of ports). Different alternative configurations arise
when these devices are removed from one or both sides
of the crossbar. In the case multiplexers are removed, the
input speedup of the switch is increased, since different
messages can be forwarded through the crossbar from
the same input port. If demultiplexers are removed then
the output speedup of the switch is increased, since dif-
ferent messages can be written to the same output port
at the same time. Obviously, output buffers are required
when implementing output speedup.

An important component of the switch architecture
is the buffer organization, mostly when virtual chan-
nels are implemented. The way memory resources are
assigned to queues will impact on the performance of
the switch. This issue is highly related to the flow con-
trol protocol (see »Flow Control). Buffer partitioning
can be designed in several ways. The first one is to com-
bine all the buffers across the entire switch (a single
memory). In that case, there is no need for a switching
element. The benefit of this approach is the flexibility in
dynamically allocating memory across the input ports.
The problem, however, is the high memory bandwidth
required.

The second way to organize buffers is by partitioning
them by physical input ports and dynamically assign-
ing them to virtual channels of the same input port. The
third way is to partition the buffers by virtual channel,
providing a separate memory for each virtual channel
at each port. This, however, may lead to high cost and
poor memory utilization.

Another important aspect of buffer organization is
the way flits are stored. Such memories require data
structures to keep track of where flits are located, and to
manage free slots. Two buffer organizations are mostly
used: circular buffers and linked lists. Circular buffers
are used when memory is statically assigned to a queue
(virtual channel) and have low implementation over-
heads. However, a linked list is used when memory is
assigned dynamically and has, in turn, higher imple-
mentation overhead.

http://dx.doi.org/10.1007/978-0-387-09766-4_316

Switch Architecture

1975

It is common to design a switch as a pipelined data-
path. Such designs allow for high clock frequencies of
the switch and, thus, high throughput. On every cycle,
a different flit (see »Flow Control Entry) from the same
message may be processed at each stage. Typically, five
stages are conceived for the switches:

- Input Buffer (IB) stage, where the flit is stored at the
input port of the switch.

- Routing computation (RC) stage, where the output
port is computed for the message.

- Switch allocation (SA) stage, where the access to the
output port is granted among all the requesting mes-
sages. Also, selection of the virtual channel to use is
performed.

- Switch transversal (ST) stage, where the flit crosses
the crossbar and reaches the output.

- Output Buffer (OB) stage, where the flit is stored at
the output port of the switch.

In the ideal case (no contention experienced within
the switch) the flit advances through the pipelined
switch architecture as shown in Fig. 2. The figure shows
the case for a switch implementing virtual cut-through
switching where arbitration is performed once per
packet.

The first flit is the header flit of the message. At the
first cycle the header flit is stored at the input port (IB
stage) in a virtual channel. The header includes the iden-
tifier of the virtual channel to use. At the second cycle,
the header flit is processed at the RC stage so the out-
put port for the message is computed. The output port
identifier is associated with the input virtual channel, as
this output port will be used by all the flits of the mes-
sage. At the same cycle the second flit of the message
(payload flit) is stored at the input port (IB stage). At

Packet header

Payload fragment

Payload fragment

Payload fragment

Switch Architecture. Fig. 2 Typical five-stage pipelined
switch design for a virtual cut-through switch

the third cycle the SA stage is executed to get access to
the requested output port. A valid virtual channel for
the message at the next switch is also requested. On suc-
cess (there is an available virtual channel and the output
portis granted) the header flit crosses the crossbar at the
next cycle, followed in the following cycles by the rest
of payload flits. All the flits use the same virtual channel
and output port. Notice also that resources (access to the
output port) are granted per message, so flit multiplex-
ing in the crossbar may not occur. Upon crossing the
crossbar, the flits are stored at the output port in the cor-
responding queue (OB stage). The tail flit of a message
will have a different treatment since the connection of
the input port to the output port will be broken. Notice
that the RC and SA stages are performed only once per
packet.

A typical wormhole switch architecture differs in
some stages. First, it is not common to have a buffer
at the output port, thus using an IQ switch approach.
Second, virtual channel allocation and port allocation
are usually performed in separate stages. Therefore, a
new stage appears, referred to as Virtual channel allo-
cation (VA) used only for header flits, and the SA stage
only intended for requesting the output port. Also, out-
put port usually is granted flit by flit. Figure 3 shows an
example of a five-stage pipelined wormhole switch.

The pipeline design may experience stalls. Stalls may
happen due to different reasons (a virtual channel is
not available in the SA stage, the RC stage does not
find a free output port, ...). In all these cases, the
switch must be designed accordingly. Also, the flow
control (see »Flow Control) must be aware of the stalls
and thus backpressure the previous switch to avoid
buffer overflows. For a detailed analysis of pipelined
switches and stall treatments, the reader is referred to
[1] (Chapter 16).

Packet header

Payload fragment

Payload fragment | 1B | 1B | 1B | SA| ST|

[1B[B B [sA|sT]

Payload fragment

Switch Architecture. Fig. 3 Typical five-stage pipelined
switch architecture for a wormhole switch

http://dx.doi.org/10.1007/978-0-387-09766-4_316
http://dx.doi.org/10.1007/978-0-387-09766-4_316

1976

Switch Architecture

This basic pipelined architecture can be enhanced
with different techniques, most of them trying to reduce
the number of stages, thus also reducing the delay of
traversing a switch. Routers with three or even two
stages can be found in the literature. Also, single-
cycle switches are common in some environments, like
networks-on-chip (NoCs) for low-end systems-on-chip
(SoCs). Obviously, such reduction in the number of
stages should be achieved by not incurring in an exces-
sive increase of the cycle time. Two basic procedures
exist to reduce the number of stages, the first one by
using speculation and performing actions in parallel,
and the second one by performing computations ahead
of time to remove the operation from the critical path.

Virtual channel allocation can be performed specu-
latively and in parallel with switch allocation in worm-
hole switching. Notice that this is done only for header
flits. If both resources are obtained (the virtual channel
is successfully assigned and the output port is granted)
then the wormhole switch saves one cycle. If any of the
two fails (or both fail) then the pipeline stalls and at
the next cycle the operation is repeated. Figure 4 shows
the case.

A further reduction in cycles would be to specula-
tively send the flit through the crossbar to the output
port (ST) at the same time. To achieve this, internal
speedup is required. Finally, the output port computa-
tion can be performed at the previous switch and stored
at the head flit. So, when the flit reaches the next switch
the output port to take is already computed and thus,
there is no need for the RC stage. In that case, the out-
put port computed for the next switch can be done in
parallel with the VA stage, thus further reducing the
pipeline depth.

Packet header

Payload fragment

Payload fragment

Payload fragment

Switch Architecture. Fig. 4 Four-stage pipelined
wormhole switch design

As identified in [5], during the last decades, the pin
bandwidth of a switch has increased exponentially
(from 64 Mb/s of the Torus routing chip in 1986 to
the 1Tb/s of the recent Velio 3003). This is due to the
increase in the signaling speed and the increase in the
number of signals. In this sense, high-radix switches
with narrow channels are able to achieve lower packet
latencies than low-radix switches with wide channels.
The explanation is simple. With high-radix switches the
hop count in the network decreases. Additional bene-
fits from high-radix switches are a lower cost and lower
power consumption (as the total number of switches
and links to build a network is reduced). Following this
trend, there are some proposals for high-radix switch
architectures, [5-7].

However, designing high-radix switches presents
major challenges. The most important one is to keep
a high switch efficiency with an affordable cost. The
cost of a high-radix switch will largely depend on three
key components: memory resources, arbiter logic, and
internal connection logic. Depending on the location of
memories in the switch, different switch organizations
(memory and crossbar capabilities and their intercon-
nects) have been used. In some of them, the number
of memories increases quadratically with the number
of ports. Also, arbiters and crossbars must cope with
more candidates and connections, and for that reason
become expensive. As an example, in on-chip networks,
the use of high-radix switches is not appropriate due
to the increase in power consumption and reduction in
switch-operating frequency [8].

Related Entries
» Flow Control
»Switching Techniques

Bibliographic Notes and Further
Reading

Two basic books exist for interconnection networks.
Both describe in detail the concept of switch architec-
ture. The first one, [2] describes a wide range of routers,
some with wormhole switching (Intel Teraflops router,

http://dx.doi.org/10.1007/978-0-387-09766-4_316
http://dx.doi.org/10.1007/978-0-387-09766-4_296

Switching Techniques

1977

Cray 3TD and 3TE routers, Reliable router and SGI spi-
der), others with virtual cut-through switching (Chaos
router, Arctic router, R2 router, Alpha 21364 router),
and others with circuit switching (Intel iPSC Direct
Connect Module). Also, the book describes the Myrinet
switch.

The other book [1], provides as a case study the
Alpha 21364 router and the IBM Colony router.

In on-chip networks building an efficient switch is
critical. In addition to delay constraints, designing an
on-chip switch has also power consumption and area
limitations. In [9] basic design rules for building an
on-chip router are provided. Also, literature is popu-
lated with many switch/router architectures for on-chip
networks.

Bibliography

1. Dally W, Towles B (2004) Principles and practices of interconnec-
tion networks. Morgan Kaufmann, San Francisco, CA

2. Duato J, Yalamanchili S, Ni N (2002) Interconnection networks: an
engineering approach. Morgan Kaufmann, San Francisco, CA

3. Karol MJ et al (1987) Input versus output queueing on a space-
division packet switch. IEEE Trans Commun COM-35(12):1347-
1356

4. Tamir Y, Frazier GL (1988) High-performance multi-queue buffers
for vlsi communications switches. IGARCH Comput Archit News
16(2):343-354

5. Kim], Dally WJ, Towles B, Gupta AK (2005) Microarchitecture of
a high-radix router. In: 32nd Annual International Symposium on
Computer Architecture (ISCA ’05), Madison, WI, pp 420-431

6. Scott S, Abts D, Kim J, Dally WJ (2006) The blackwidow high-radix
clos network. In: Proceedings of the 33rd Annual International
Symposium on Computer Architecture (ISCA), The Washington,
DC, June 2006

7. Mora G, Flich J, Duato J, Lépez P, Baydal E, Lysne O (2006)
Towards and efficient switch architecture for high-radix switches.
In: Proceedings of ANCS 2006, San Jose, CA

8. Pullini A, Angiolini F, Murali S, Atienza D, De Micheli G, Benini
G (2007) Bringing NOCs to 65 nm. IEEE Micro 27(5):75-85

9. de Micheli G, Benini L (2006) Networks on chips: technology and
tools. Morgan Kaufmann, San Francisco, CA

" switched-Medium Network

»Buses and Crossbars

! Switching Techniques

SUDHAKAR YALAMANCHILI
Georgia Institute of Technology, Atlanta, GA, USA

Definition

Switching techniques determine how messages are for-
warded through the network. Specifically, these tech-
niques determine how and when buffers and switch
ports of individual routers are allocated and released
and thereby the timing with which messages or message
components can be forwarded to the next router on the
destination path.

Discussion

This section introduces basic switching techniques used
within the routers of multiprocessor interconnection
networks. Switching techniques determine when and
how messages are forwarded through the network.
These techniques determine the granularity and timing
with which resources such as buffers and switch ports
are requested and released and consequently determine
the blocking behavior of routing protocols that uti-
lize them in different network topologies. As a result,
they are key determinants of the deadlock properties
of routing protocols. Further, their relationship to flow
control protocols and traffic characteristics significantly
impact the latency and bandwidth characteristics of the
network.

Switching techniques are understood in the context
of routers used in multiprocessor interconnection net-
works. A simple generic router architecture is illustrated
in Fig. 1. This router microarchitecture presents to mes-
sages a four stage pipeline comprised of the following
stages.

o Input Buffering (IB): Message data is received into
the input buffer.

e Route Computation (RC) and Switch Allocation (SA):
Based on the message destination, a switch output
port is computed, requested, and allocated.

http://dx.doi.org/10.1007/978-0-387-09766-4_476

Switching Techniques

Router operational pipeline
» Switch
R
allocator 1B SCA& ST LT
computation
\
0111
Input 0 Input buffers| | =] Qutput 0
f :
computation | - Qutput (p—1)
Input (p-1) L . T
nput (p— [ITTT
»I
nput buffers
Crossbar

Switching Techniques. Fig.1 A generic router model

o Switch Traversal (ST): Message data traverses the
switch to the output buffer.

e Link Traversal (LT): The message data traverses the
link to the next router.

The end-to-end latency experienced by a message
depends on how the switching techniques interact with
this pipeline. This generic router architecture has been
enhanced over the years with virtual channels [1], spec-
ulative operation [2, 3], flexible arbiters, effective chan-
nel and port allocators [4], deeper pipelines, and a host
of buffer management and implementation optimiza-
tions (e.g., see [5, 6]). The result has been a range of
router designs with different processing pipelines.

For the purposes of this discussion, here it is
assumed that all of the pipeline stages take the same
time — one cycle. This is adequate to define, distin-
guish, and compare properties of basic switching tech-
niques. The following section addresses some basic
concepts governing the operation and implementation
of switching techniques based on the generic router
model shown in Fig. 1. The remainder of the section is
devoted to a detailed presentation of alternative switch-
ing techniques.

The performance and behavior of switching techniques
are enabled by the low-level flow control protocols used
for the synchronized transfer of data between routers.
Flow control determines the granularity with which
data is moved through the network and consequently
when routing decisions can be made, when switching

operations can be initiated, and how (at what granular-
ity) data is transferred.

Flow control is the synchronized transfer of a unit
of data between a sender and a receiver and ensures the
availability of sufficient buffering at the receiver to avoid
the loss of data. Selection of the unit of data transfer
is based on a few simple concepts. A message is parti-
tioned into fixed-length packets. Packets are individu-
ally routable units of data and are comprised of control
bits packaged as the header and data bits packaged as
the body. Packets are typically terminated with some
bits for error detection such as a checksum. The header
contains destination information used by the routers to
select the onward path through the network. The packet
as a whole is partitioned into fixed size units corre-
sponding to the unit of transfer across a link or across a
router and is referred to as a flow control digit or flit [7].
A flit becomes the unit of buffer management for trans-
mission across a physical channel. Many schemes have
been developed over the years for flow control including
on-off, credit-based, sliding window, and flit reserva-
tion. The physical transfer of a flit across a link may in
fact rely on synchronized transfers of smaller units of
information. For example, consider flit sizes of 4 bytes
and a physical channel width of 8 bits. The transfer of
a flit across the physical link requires the synchronized
transfer of 8-bit quantities referred to as a physical digit
or phit [4] using phit-level flow control. In contrast to
flits which represent units of buffer management, phits
correspond to quantities reflecting a specific physical
link implementation. Both flit-level and phit-level flow
control are atomic in the sense that in the absence of

Switching Techniques

1979

errors, all transfers will complete successfully and are
not interleaved with other transfers. While phit sizes
between chips or boards tend to be small, e.g., 8-32
bits, phit sizes on-chip can be much larger, e.g., 128
bits. Typical message sizes can range from 8-12 bytes
(control messages) to 64-128 bytes (for example cache
lines), to much larger sizes in message-passing paral-
lel architectures. The preceding hierarchy of units is
illustrated in Fig. 2 along with an example of a packet
format [4, 8]. The actual content of a packet header
will depend on the specifics of an implementation such
as the routing protocol (e.g., destination address), flow
control strategy (e.g., credits), use of virtual channels
(e.g., virtual channel ID), and fault tolerance strategy
(e.g., acknowledgements).

Switching techniques determine when messages are
forwarded through the network and differ in the relative
timing of flow control operations, route computation,
and data transfer. High-performance switching tech-
niques seek as much overlap as possible between these
operations while reliable communication protocols may
seek less concurrency between these operations in the
interest of efficient error recovery. For example, one can

wait until the entire packet is received before a request
is made for the output port of the router’s switch (packet
switching). Alternatively, the request can be made as
soon as all flits corresponding to the header are received
(cut-through switching) but before the rest of the packet
has been received.

The remainder of this section will focus on the pre-
sentation and discussion of switching techniques under
the assumption of a flit-level flow control protocol and
a supporting phit-level flow control protocol. It is com-
mon to have the flit size the same as the phit size.

As one might expect, switching techniques have their
roots in traditional digital communication and have
evolved over the years to address the unique require-
ments of multiprocessor interconnection networks. For
the purposes of comparison, the no-load latency is com-
puted for an L-bit message. The phit size and flit size
are assumed to be equivalent and equal to the physical
data channel width of W bits, which is also the width of
the internal datapath of the router. The routing header
is assumed to be one flit, thus the message size is L + W

Data/message

Packets

X

flits: flow control digits

Headﬂnr_JC::——’/

I

o 7N

DestInfo Seq # Misc

\A

Tail flit/checksum

phits: physical flow control digits

Request packet Reply packet
Header Header Flit 2
phit Ofphit 1 phit O|phit 1|phit O|phit 1|phit O[phit 1|phit O|phit O

—_——
Flit 1 Flit 3

Switching Techniques. Fig. 2 Basic concepts and an example packet format

1980

Switching Techniques

bits. A router can make a routing decision in one cycle
and a flit can traverse a switch or link in one cycle as
described with respect to Fig. 1.

Circuit Switching
Circuit switching evolved from early implementations
in telephone switching networks. In circuit switching,
a physical path from the source network interface to
the destination network interface is reserved prior to
the transmission of the data. The source injects a rout-
ing packet commonly called a probe into the network.
The probe is routed to the destination as specified by
the routing protocol reserving the physical channels and
switch ports along the way. An acknowledgement is
returned to the source node to confirm path reserva-
tion. Figure 3b shows several circuits that have been set
up and one in the process of being set up. While circuits
B, C, D have been set up, circuit A is blocked from being
set up by circuit B.

The base no-load latency of a circuit-switched mes-
sage is determined by the sum of the time to set up a
path and the time to transmit data. For a circuit that

traverses D routers to the destination and operates at
B Hz, the no-load message latency can be represented
as follows.

Leircuit tsetup + tdata
tsetup = D[tRC + 2(1’13 + tsT + tLT)] (1)
tdata = 1_1; [%]

The notation in the expression follows the generic
router model shown in Fig. 1, and the expression does
not include the time to inject the probe into the router
at the source (a link traversal) or the time to inject
the acknowledgement into the router at the destination.
The subscripts correspond to the pipeline stages illus-
trated in Fig. 1. For example, tzc is the time taken to
compute the output port to be traversed by the mes-
sage at a router. This computation is carried out in the
same cycle as the process of requesting and allocat-
ing a switch port, and therefore the switch allocation
(SA) time is hidden and does not appear in the expres-
sion. The terms t1p, tsr, and t;r represent the times
for input buffering, switch traversal, and link traversal,

Header probe Acknowledgment Data
= t W | |
P Pl lig + g7
. i o ~— | |
Link | ! tig+ fac + ts7 '
i EH o | |
L tsetup ;L lyata J
a Time busy .
Setup failed!

A

YOI

MK

b

Switching Techniques. Fig. 3 Circuit switching. (a) Time-space utilization across two routers, (b) an example

Switching Techniques

1981

respectively, experienced by the probe and the acknowl-
edgement. The factor of 2 in the expression for path
setup reflects the forward progress of the probe and the
return progress of the acknowledgement - assuming
the acknowledgement traverses the same path in the
reverse direction. Note the acknowledgements do not
have to be routed and therefore do not experience any
routing delays at intermediate routers. A time-space
diagram in Fig. 3a depicts the setup and operation of
a circuit that crosses two routers.

Nominally, the routing probe contains the desti-
nation address and additional control bits used by
the routing protocol and is buffered at intermediate
routers where it is processed to reserve links and set
router switch settings. On reaching the destination, an
acknowledgement packet is transmitted back to the
source. The hardware circuit has been set up and data
can be transmitted at the full speed of the circuit. Flow
control for data transfer is exercised end-to-end across
the circuit and the flow control bandwidth (rate of
signaling) should be at least as fast as the transmis-
sion speeds to avoid slowing down the hardware cir-
cuit. When transmission is complete, a few control bits
traversing the circuit from the source release link and
switch resources along the circuit. These bits may take
the form of a small packet or with suitable channel
design and message encoding, may be transmitted as
part of the last few bits of the message data. Routing
and data transmission functions are disjoint operations
where all switches on the source-destination path are set
prior to the transmission of any data.

Circuit switching is generally advantageous when
messages are infrequent and long compared to the size
of the routing probe. It is also advantageous when inter-
node traffic exhibits a high degree of temporal locality.
After a path has been set up, subsequent messages to
the same destination can be transmitted without incur-
ring the latency of path set-up times. The inter-node
throughput is also maximized since once a path has
been set up, messages to the destination are not routed
and do not block in the network. The disadvantages
are the same as those typically associated with most
reservation-based protocols. When links and switch
ports are reserved for a duration they prevent other traf-
fic from making progress if they need to use any of the
resources reserved by the established circuit. In partic-
ular, a probe can be blocked during circuit set up while

waiting for another circuit to be torn down. The links
reserved by the probe up to that point can similarly
prevent other circuits from being established.

Wire delays place a practical limit on the speed of
circuit switching as a function of system size, moti-
vating the development of techniques to mitigate or
eliminate end-to-end wire delay dependencies. One set
of techniques evolved around pipelining multiple bits
on the wire essentially using a long latency wire as
a deeply pipelined transmission medium. Such tech-
niques have been referred to as wave pipelining or wave
switching [9-11]. These techniques maximize wire band-
width while reducing sensitivity to distance. However,
when used in anything other than bit serial channels,
pragmatic constraints of signal skew and stable opera-
tion across voltage and temperature remain challenges
to widespread adoption. Alternatively, both the wire
length issue and blocking are mitigated by combining
circuit switching concepts with the use of virtual chan-
nels. Virtual channel buffers at each router are reserved
by the routing probe setting up a pipelined virtual cir-
cuit from source to destination in a manner referred
to as pipelined circuit switching [12]. This approach
increases physical link utilization by enabling sharing
across circuits although the available bandwidth to each
circuit is now reduced. This approach was also used in
the Intel iWarp chip that was designed to support sys-
tolic communication through message pathways: long-
lived communication paths [13]. Rather than set up and
remove network paths each time data are to be com-
municated, paths through the network persist for long
periods of time. Special messages called pathway begin
markers are used to reserve virtual channels (referred to
as logical channels in iWarp) and set up interprocessor
communication paths. On completion of the computa-
tion, the paths are explicitly removed by other control
messages.

Packet Switching

In circuit switching, routing and data transfer oper-
ations are separated. All switches in the path to the
destination are set a priori, and all data is transmitted
in a burst at the full bandwidth of the circuit. In packet
switching, the message data is partitioned into fixed-
sized packets. The first few bytes of a packet contain
routing and control information and are collectively

Switching Techniques

referred to as the packet header while the data is con-
tained in the packet body. Each packet can now be
independently routed through the network. Flow con-
trol between routers is at the level of a complete packet.
A packet cannot be forwarded unless buffer space for
a complete packet is available at the next router. A
packet is then transferred in its entirety across a link
to the input buffer of the next router. Only then is the
header information extracted and used by the rout-
ing and control unit to determine the candidate output
port. The switch can now be set to enable the packet
to be transferred to the output port and then stored
at the next router before being forwarded. This switch-
ing technique is also known as store-and-forward (SAF)
switching. There is no overlap between flow control,
routing operations, and data transfer. Consequently, the

Packet header

end-to-end latency of a packet is proportional to the
distance between the source and destination nodes.

An example of packet switching is illustrated in
Fig. 4D (links to local processors are omitted for brevity).
Note how packets A, B, and C are in the process of
being transferred across a link. Each input buffer is par-
tially full pending receipt of the remainder of the packet
before being forwarded.

The no-load latency for a packet transmission across
D routers can be modeled as follows.

L+W
tpacket = D {ch + (tB + tsT + trr) [T]} (2)

This expression does not include the time to inject
the packet into the network at the source. The expres-
sion follows the router model in Fig. 1 where entire
packets must traverse the link or switch at each router.

) e
1 ' t|_'|' T
;] 1 «—r—
Link : ; |_|—|
g+ frc + IsT
i packet i
a Time busy

X

A

X

> S 1<

X

X

b

Switching Techniques. Fig. 4 Packet switching. (@) Time-space utilization across three links, (b) an example

Switching Techniques

1983

Therefore end-to-end latency is proportional to the
distance between the source and destination.

Packet switching evolved from early implementa-
tions in data networks. Relative to circuit switching,
packet switching is advantageous when the average
message size is small. Since packets only hold resources
as they are being used, this switching technique can
achieve high link utilization and network throughput.
Packets are also amenable to local techniques for error
detection and recovery since all data and its associated
routing information are encapsulated as a single locally
available unit. However, the overhead per data bit is
higher - each packet must invest in a header reducing
energy efliciency as well as the proportion of physi-
cal bandwidth that is accessible to actual data transfer.
If a message is partitioned into multiple packets and
adaptive routing is employed, packets may arrive at the
destination out of order necessitating investments in
reordering mechanisms. Packet-switched routers have
also been designed with dynamically allocated central-
ized queues rather than keeping the messages buffered
at the router input and output resulting in both cost and
power advantages.

Virtual Cut-Through (VCT) Switching

Virtual cut-through (VCT) switching is an optimization
for packet switching where in the absence of congestion,
packet transfer is pipelined. Like the preceding tech-
niques, VCT has its genesis in packet data networks [14].
Flow control is still at the packet level. However, packet
transfer is overlapped with flow control and routing
operations as follows. Routing can begin as soon as the
header bytes of a packet have arrived at the input buffer
and before the rest of the packet has been received. In
the absence of congestion, switch allocation and switch
traversal can proceed and the forwarding of the packet
through the switch as well as flow control requests to
the next router can begin. Thus, packet transfer can be
pipelined through multiple routers. For example, con-
sider a 128 byte packet with an 8 byte header. After the
first 8 bytes have been received, routing decisions and
switch allocation can be initiated. If the switch output
port is available, then the router can begin forwarding
bytes to the output port before the remainder of the
packet has arrived and can cut-through to the next
router. In the absence of blocking in the network, the

latency for the header to arrive at the destination net-
work interface is proportional to the distance between
the source and destination. Thereafter a phit can exit
the network every cycle. If the header is blocked on
a busy output channel at an intermediate router, the
packet is buffered at the router — a consequence of the
fact that flow control is at the level of a packet. Thus, at
high network loads, VCT switching behaves like packet
switching. An example of VCT at work is illustrated
in Fig. 5b. Packet A is blocked by packet B. Note that
packet A has enough buffer space to be fully buffered at
the local router. Packet B can be seen to be spread across
multiple routers as it is pipelined through the network.

The no-load latency of a message that successfully
cuts through D intermediate routers is captured in the
following expression.

L
tver = D(tig + tre + tst + tr) + tip W (3)

This expression does not include the time to inject
the packet into the network at the source. The first
term in the equation is much smaller than the second
term (recall that each value of delay is one pipeline
cycle). Therefore, under low load conditions, the mes-
sage latency is approximately proportional to the packet
size rather than distance between source and destina-
tion. However, when a packet is blocked, the packet is
buffered at the router. Thus, at high network loads, the
behavior of VCT approximates that of packet switch-
ing. At low loads, the performance improves consider-
ably approaching that of wormhole switching which is
described next.

Wormhole Switching

The need to buffer complete packets within a router can
make it difficult to construct small, compact, and fast
routers. In the multiprocessor machines of the 1980s,
interconnection networks employed local node mem-
ory as storage for buffering blocked packets. This ejec-
tion and re-injection of packets incurred significant
latency penalties. It was desirable to keep packets in
the network. However, there was insufficient buffering
within individual routers. Wormhole switching evolved
as a small buffer optimization of virtual cut-through
where packets were pipelined through routers. The
buffers in each router had enough storage for several
flits. When a packet header blocks, the message occu-
pies buffers in several routers. For example, consider

1984

Switching Techniques

Packet header
— Message packet
cuts through
I:l ! Vo the router
Link : >
I - |
SERERNRON
fbiocking 1B Tre fsT
a Time busy
A
¥ Ay
o — o
> E | ’E >
I:IT] | oo |
'
"om ﬁ
> E 3
< E <«
EIF % |
T M4 [mmmn| * DL]
: P oG
> >< >
¢

-

oW

K’

Switching Techniques. Fig. 5 Virtual cut-through switching. (a) Time-space utilization across three links, (b) an example

the message pattern shown in Fig. 6b with routers with
one flit buffers. Message A is blocked by message B
and occupies buffers across multiple routers leading to
secondary blocking across multiple routers. The time-
space diagram illustrates how packets are pipelined
across multiple routers significantly reducing the sen-
sitivity of message latency to distance.

When it was introduced [7, 15], the pipelined behav-
ior of wormhole switching led to relatively large reduc-
tions in message latency at low loads. Further gains
derived from not having to eject messages from the
network for storage. The use of small buffers also

has two physical consequences. First, smaller buffers
lead to lower access latency and shorter pipeline stage
time (see Fig. 1). The smaller pipeline delay enables
higher clock rates and consequently high bandwidth
routers, for example, 5 GHz in today’s Intel TeraFlops
router [16]. Second, the smaller buffers also reduce
static energy consumption which is particularly impor-
tant in the context of on-chip routers. However, as the
offered communication load increases, messages block
in place occupying buffers across multiple routers and
the links between them. This leads to secondary block-
ing of messages that share any of these links which

Switching Techniques

1985

in turn propagates congestion further. The disadvan-
tage of wormhole switching is that blocked messages
hold physical channel resources. Routing information
is only associated with a few header flits. Data flits have
no routing information associated with them. Con-
sequently, when a packet is blocked in place, packet
transmission cannot be interleaved over a physical link
without additional support (such as virtual channels -
see Section on Virtual Channels) and physical channels
cannot be shared. The result is the rapid onset of sat-
uration as offered load increases. Virtual channel flow
control was introduced to alleviate this problem.

The key deadlock issue is that a single message
produces dependencies between buffers across mul-
tiple routers. Routing protocols must be designed

Header flit

—

to ensure that such dependencies are not composed
across multiple messages to produce deadlocked con-
figurations of messages. Deadlock freedom require-
ments for deterministic routing protocols are described
in [7] while proofs for adaptive routing protocols are
described in [17-19].

The base latency of a wormhole-switched message
crossing D routers with the flit size equal to the phit size
can be computed as follows.

L
twormhole = D(tIB +tre + tsT + tLT) + tB "I/_V"I (4)
This expression does not include the time to inject

flits into the network at the source. After the first flit
arrives at the destination, each successive flit is delivered

=

Link i . .
Dol [[[-+ [] singlefit
i ls e IsT
| BT - T
i: twormhole ;i
a Time busy
A
Ay Ay
N O O
/L X
O — il
< :><T~D*' AL o
xy Y X
O O O
N
>0 i i .
2P X e X e K s
E. | =]
Y Y A
O O i
o i ol) <
2o N Lo el 3 s
m|

b Ay

N Ay

Switching Techniques. Fig. 6 Wormhole switching. (a) Time-space utilization across three links, (b) an example

1986

Switching Techniques

in successive clock cycles. Thus, for message sizes that
are large relative to the distance between sender and
destination, the no-load latency is approximately a
function of the message size rather than distance.

Several optimizations have been proposed to fur-
ther improve the performance of wormhole switching.
One example is flit reservation flow control was intro-
duced to improve buffer turn-around time in wormhole
switching [20]. Deeply pipelined, high speed routers can
lead to low buffer occupancy as a consequence of prop-
agation delays of flits over the link and the latency in
receiving and processing credits before the buffer can
be reused. Flit reservation is a technique that combines
some elements of circuit switching (a priori reserva-
tions) to improve performance. A control flit advances
ahead of the data flits of a message to reserve buffer
and channel resources. Note that router pipeline for data
flits is much shorter (they do not experience routing
and switch allocation delays). As a result, reservations
and transfers can be overlapped and buffer occupancy
is significantly increased.

Another example that combines the advantages of
wormhole switching and packet switching is buffered
wormhole switching (BWS). This was proposed and used
in IBM’s Power Parallel SP systems [21, 22]. In the
absence of blocking, messages are routed through the
network using wormhole switching. When messages
block, 8-flit chunks are constructed at the input port of a
switch and buffered in a dynamically allocated central-
ized router memory freeing up the input port for use
by other messages. Subsequently, buffered chunks are
transferred to an output port where they are converted
to a flit stream for transmission across the physical
channel. BWS differs from wormhole switching in that
flits are not buffered in place. Rather flits are aggregated
and buffered in a local memory within the switch and in
this respect BWS is similar to packet switching. The no-
load latency of a message routed using BWS is identical
to that of wormhole-switched messages.

An important interconnection architecture function is
the use of virtual channel flow control [1]. Each uni-
directional virtual channel across a physical link is
realized by an independently managed pair of mes-
sage buffers. Multiple virtual channels are multiplexed
across the physical link increasing link utilization

and network throughput. Importantly, routing con-
straints on the use of virtual channels are commonly
used to ensure deadlock freedom. The use of virtual
channels decouples message flows from the physical
links and their use is orthogonal to the operation
of switching techniques. Each switching technique is
now employed to regulate the flow of packet data
within a virtual channel while constraints on vir-
tual channel usage may govern routing decisions at
intermediate routers. The microarchitecture pipeline of
the routers now includes an additional stage for vir-
tual channel allocation. Virtual channels have been
found to be particularly useful for optimizing the
performance of wormhole-switched routers ameliorat-
ing the consequences of blocking and thus broaden-
ing the scope of application of wormhole switching.
A simple example of the operation of virtual channel
flow control is illustrated in Fig. 7.

A modified router architecture reflecting the use of
virtual channels is shown in Fig. 8. The route computa-
tion operation now returns a set of virtual channels that
are candidates for forwarding the message (note that the
router might be employing adaptive routing). A typi-
cal router pipeline is now extended by an extra stage
as shown - virtual channel allocation. This is imple-
mented prior to requesting an output port of the switch
extending the router pipeline of Fig. 1 by one stage.

Switching techniques have fundamental differences in
their ability to utilize network bandwidth. In packet
switching and VCT switching, messages are partitioned
into fixed length packets each with its own header.
Consequently, the overhead per transmitted data byte
of a message is a fixed function of the message length.
Wormbhole switching supports variable sized messages
and consequently overhead per data byte decreases with
message size. However, as the network load increases
when wormhole-switched messages block, they hold
links and resources across multiple routers, wasting
physical bandwidth, propagating congestion, and sat-
urating the network at a fraction of the peak. The use
of virtual channels in wormhole switching decouples
the physical channel from blocked messages improv-
ing network utilization but increases the flow control
latency across the physical link as well as the complexity
of the channel controllers and intra-router switching.

Switching Techniques

1987

Per VC state
——1

Output buffers

Unidirectional physical link

Per VC state
—1

Input buffers

Link
control

Switching Techniques. Fig. 7 Virtual channel flow control

Link
control

VC Router operational pipeline
allocator B Ii{/((::i(sAa |l st | LT
} v Switch
nputo | veorTIm allocator
vet [T |
Ve (-1 [T ||— Output 0
Input buffers
[ot
L {#}
Input (p—1) veo[I111]
—> e
1ED;ED Crossbar
Ve (n-1)[ITTT1
Input buffers

Switching Techniques. Fig. 8 The generic router with virtual channels

In VCT switching and packet switching, packets are
fully buffered at each router and therefore traffic con-
sumes network bandwidth in proportion to network
load at the expense of increased amount of in-network
buffering.

The latency behavior of packets using different
switching techniques exhibits distinct behaviors. At
low loads, the pipelined behavior of wormhole switch-
ing produces superior latency characteristics. However,
saturation occurs at lower loads and the variance in
packet latency is higher and accentuated with variance
in packet length. The latency behavior of packets under
packet switching tends to be more predictable since
messages are fully buffered at each load. VCT pack-
ets will operate like wormhole switching at low loads
and approximate packet switching at high loads where
blocking will force packets to be buffered at an interme-
diate node. Consequently, approaches to provide Qual-
ity of Service guarantees (QoS) typically utilize VCT
or packet switching. Attempting to control QoS when

blocked messages are spread across multiple nodes is by
comparison much more difficult.

Reliability schemes are shaped by the switching
techniques. Alternative topologies and routing algo-
rithms affect the probability of encountering a failed
component. The switching technique affects feasi-
ble detection and recovery algorithms. For exam-
ple, packet switching is naturally suited to link level
error detection and retransmission since each packet
is an independently routable unit. For the same rea-
son, packets may be adaptively routed around faulty
regions of the network. However, when messages are
pipelined over several links, error recovery and con-
trol becomes complicated. Recall that data flits have
no routing information. Thus, errors that occur within
a message that is spread across multiple nodes can
lead to buffers and channel resources that are indefi-
nitely occupied (e.g., link transceiver failures) and can
lead to deadlocked message configurations. Thus, link
level recovery must be accompanied by some higher

1988

Switching Techniques

level layer recovery protocols that typically operate
end-to-end.

Finally, it can be observed that the switching
techniques exert a considerable influence on the
architecture of the router, and as a result, the network
performance. For example, flit level flow control
enabled pipelined message transfers as well as the use
of small buffers. The combination resulted in higher
flow control signaling speeds and small compact router
pipeline stages that could be clocked at higher speeds.
The use of wormhole switching precluded the need for
larger (slower) buffers or costly use of local storage at a
node - the message could remain the network. This is a
critical design point if one considers that the link band-
width can often exceed the memory bandwidth. Such
architectural advances have amplified the performance
gained via clock speed advances over several technol-
ogy generations. For example, consider the difference
in performance between the Cosmic cube network [23]
that operated at 5 MHz and produced message latencies
approaching hundreds of microseconds to milliseconds
while the most recent TeraFlops chip from Intel operat-
ing at 5 GHz produces latencies on the order of nanosec-
onds. While performance has increased almost 5 orders
of magnitude, the clock speeds have only increased
by about 3 orders of magnitude. Much of this perfor-
mance differential can be attributed to switching tech-
niques and associated microarchitecture innovations
that accompany their implementation.

Related Entries

»Collective Communication, Network Support for
»Congestion Management

» Flow Control

» Interconnection Networks

» Networks, Fault-Tolerant

»Routing (Including Deadlock Avoidance)

Bibliographic Notes and Further
Reading

Related topics such as flow control and deadlock free-
dom are intimately related to switching techniques.
A combined coverage of fundamental architectural, the-
oretical, and system concepts and a distillation of key
concepts can also be found in two texts [4, 8]. More
advanced treatments of these and related topics can

be found in papers in most major systems and com-
puter architecture conferences with the preceding texts
contributing references to many seminal papers in the
field.

Acknowledgments

Assistance and feedback from Mitchelle Rasquinha,
Dhruv Choudhary, and Jeffrey Young are gratefully
acknowledged.

Bibliography

1. Dally WJ (1992) Virtual-channel flow control. IEEE Trans Parallel
Distrib Syst 3(2):194-205

2. Peh L-S, Dally WJ (2001) A delay model for router microarchitec-
tures. IEEE Micro 21:26-34

3. Peh L-S, Dally WJ (2001) A delay model and speculative archi-
tecture for pipelined routers. In: Proceedings of the 7th interna-
tional symposium on high-performance computer architecture,
Nuevo Leone

4. Dally WJ, Towles B (2004) Principles and practices of intercon-
nection networks. Morgan Kaufman, San Francisco

5. Choi Y, Pinkston TM (2004) Evaluation of queue designs for true
fully adaptive routers.] Parallel Distrib Comput 64(5):606-616

6. Mullins R, West A, Moore S (2004) Low-latency virtual-channel
routers for on-chip networks. In: Proceedings of the 31st annual
international symposium on computer architecture, Munchen

7. Dally WJ, Seitz CL (1987) Deadlock-free message routing in
multiprocessor interconnection networks. IEEE Trans Comput
C-36(5):547-553

8. Duato J, Yalamanchili S, Ni L (2003) Interconnection networks:
an engineering Approach. Morgan Kaufmann, San Francisco

9. Flynn M (1995) Computer architecture: pipelined and parallel
processor design. Jones & Bartlett, Boston, pp 63-140

10. Duato J et al (1996) A high performance router architecture
for interconnection networks. In: Proceedings of the 1996 inter-
national conference on parallel processing, Bloomington, vol I,
August 1996, pp 61-68

11. Scott SL, Goodman JR (1994) The impact of pipelined channels on
k-ary n-cube networks. IEEE Trans Parallel Distrib Syst 5(1):2-16

12. Gaughan PT et al (1996) Distributed, deadlock-free routing in
faulty, pipelined, direct interconnection networks. IEEE Trans
Comput 45(6):651-665

13. Borkar S et al (1988) iWarp: an integrated solutionto high-
speed parallel computing. In: Proceedings of supercomputing ' 88,
Orlando, November 1988, pp 330-339

14. Kermani P, Kleinrock L (1979) Virtual cut-through: a new
computer communication switching technique. Comp Networks
3(4):267-286

15. Dally WJ, Seitz CL (1986) The torus routing chip. J Distrib
Comput 1(3):187-196

16. Hoskote Y, Vangal S, Singh A, Borkar N, Borkar S (2007) A 5-GHz

mesh interconnect for a teraflops processor. IEEE Micro 27(5):

51-61

http://dx.doi.org/10.1007/978-0-387-09766-4_302
http://dx.doi.org/10.1007/978-0-387-09766-4_313
http://dx.doi.org/10.1007/978-0-387-09766-4_316
http://dx.doi.org/10.1007/978-0-387-09766-4_484
http://dx.doi.org/10.1007/978-0-387-09766-4_298
http://dx.doi.org/10.1007/978-0-387-09766-4_314

Synchronization

1989

17. Duato J (1993) A new theory of deadlock-free adaptive routing
in wormhole networks. IEEE Trans Parallel Distrib Syst 4(12):
1320-1331

18. Duato J (1995) A necessary and sufficient condition for deadlock-
free adaptive routing in wormhole networks. IEEE Trans Parallel
Distrib Syst 6(10):1055-1067

19. Duato J (1996) A necessary and sufficient condition for deadlock-
free routing in cut-through and store-and-forward networks.
IEEE Trans Parallel Distrib Syst 7(8):841-854

20. Peh L-S, Dally WJ (2000) Flit reservation flow control. In:
Proceedings of the 6th international symposium on high-
performance computer architecture, Toulouse, France, January
2000, pp 73-84

21. Stunkel CB et al (1994) Architecture and implementation of vul-
can. In: Proceedings of the 8th international parallel processing
symposium, Cancun, Mexico, pp 266-274

22. Stunkel CB et al (1994) The SP1 high-performance switch. In: Pro-
ceedings of the scalable high performance computing conference,
Knoxville, pp 150-157

23. Seitz C (1985) The cosmic cube. Commun ACM 28(1):22-23

! Symmetric Multiprocessors

»Shared-Memory Multiprocessors

! Synchronization

MICHAEL L. ScotT
University of Rochester, Rochester, NY, USA

Synonyms
Fences; Multiprocessor synchronization; Mutual exclu-
sion; Process synchronization

Definition

Synchronization is the use of language or library mech-
anisms to constrain the ordering (interleaving) of
instructions performed by separate threads, to preclude
orderings that lead to incorrect or undesired results.

Discussion

In a parallel program, the instructions of any given
thread appear to occur in sequential order (at least from
that thread’s point of view), but if the threads run inde-
pendently, their sequences of instructions may inter-
leave arbitrarily, and many of the possible interleavings

may produce incorrect results. As a trivial example, con-
sider a global counter incremented by multiple threads.
Each thread loads the counter into a register, increments
the register, and writes the updated value back to mem-
ory. If two threads load the same value before either
stores it back, updates may be lost:

c == 0
Thread 1: Thread 2:
rl := ¢C
rl:= cC
++rl
++rl
c :=rl
c :=rl
c ==1

Synchronization serves to preclude invalid thread
interleavings. It is commonly divided into the subtasks
of atomicity and condition synchronization. Atomicity
ensures that a given sequence of instructions, typi-
cally performed by a single thread, appears to all other
threads as if it had executed indivisibly — not inter-
leaved with anything else. In the example above, one
would typically specify that the load-increment-store
instruction sequence should execute atomically.

Condition synchronization forces a thread to wait,
before performing an operation on shared data, until
some desired precondition is true. In the example above,
one might want to wait until all threads had performed
their increments before reading the final count.

While it is tempting to suspect that condition syn-
chronization subsumes atomicity (make the precondi-
tion be that no other thread is currently executing a
conflicting operation), atomicity is in fact considerably
harder, because it requires consensus among all com-
peting threads: they must all agree as to which will
proceed and which will wait. Put another way, condi-
tion synchronization delays a thread until some locally
observable condition is seen to be true; atomicity is a
property of the system as a whole.

Like many aspects of parallel computing, syn-
chronization looks different in shared-memory and
message-passing systems. In the latter, synchronization
is generally subsumed in the message-passing meth-
ods; in a shared-memory system, it typically employs a
separate set of methods.

ahttp://dx.doi.org/10.1007/978-0-387-09766-4_142
http://dx.doi.org/10.1007/978-0-387-09766-4_2016
http://dx.doi.org/10.1007/978-0-387-09766-4_2216
http://dx.doi.org/10.1007/978-0-387-09766-4_2331
http://dx.doi.org/10.1007/978-0-387-09766-4_2331
http://dx.doi.org/10.1007/978-0-387-09766-4_2332

1990

Synchronization

Shared-memory implementations of synchroniza-
tion can be categorized as busy-wait (spinning), or
scheduler-based. The former actively consume processor
cycles until the running thread is able to proceed. The
latter deschedule the current thread, allowing the pro-
cessor to be used by other threads, with the expectation
that future activity by one of those threads will make
the original thread runnable again. Because it avoids the
cost of two context switches, busy-wait synchronization
is typically faster than scheduler-based synchronization
when the expected wait time is short and when the
processor is not needed for other purposes. Scheduler-
based synchronization is typically faster when expected
wait times are long; it is necessary when the num-
ber of threads exceeds the number of processors (else
quantum-long delays or even deadlock can occur). In
the typical implementation, busy-wait synchronization
is built on top of whatever hardware instructions exe-
cute atomically. Scheduler-based synchronization, in
turn, is built on top of busy-wait synchronization, which
is used to protect the scheduler’s own data structures
(see entries on Scheduling Algorithms and on Processes,
Tasks, and Threads).

In the earliest multiprocessors, load and store were
the only memory-access instructions guaranteed to
be atomic, and busy-wait synchronization was imple-
mented using these. Modern machines provide a vari-
ety of atomic read-modify-write (RMW) instructions,
which serve to update a memory location atom-
ically. These significantly simplify the implementa-
tion of synchronization. Common RMW instructions
include:

Test-and-set (1) sets the Boolean variable at location /
to true, and returns the previous value.

Swap (1, v) stores the value v to location [and returns
the previous value.

Atomic-¢ (I, v) replaces the value o at location [with
¢(0,v) for some simple arithmetic function ¢ (add,
sub, and, etc.).

Fetch-and-¢ (1, v) is like atomic-¢, but also returns the
previous value.

Compare-and-swap (1, 0, n) inspects the value v at
location I, and if it is equal to o, replaces it with n.

In either case, it returns the previous value, from
which one can deduce whether the replacement
occurred.

Load-linked (/) and store-conditional (I, v). The first
of these returns the value at location / and “remem-
bers” I. The second stores v to [if I has not been
modified by any other processor since a previous
load-linked by the current processor.

These instructions differ in their expressive power.
Herlihy has shown [9] that compare-and-swap (CAS)
and load-linked / store-conditional (LL/SC) are univer-
sal primitives, meaning, informally, that they can be
used to construct a non-blocking implementation of any
other RMW operation. The following code provides a
simple implementation of fetch-and-¢ using CAS.

val old :=
loop
val new := phi(old);

*1;

val found := CAS(1l, old, new);
if (old == found) break;
old := found;

If the test on line 5 of this code fails, it must be because
some other thread successfully modified * 1. The system
as a whole has made forward progress, but the current
thread must try again.

As discussed in the entry on Non-blocking Algo-
rithms, this simple implementation is lock-free but not
wait-free. There are stronger (but slower and more
complex) non-blocking implementations in which each
thread is guaranteed to make forward progress in a
bounded number of its own instructions.

In any distributed system, and in most modern
shared memory systems, instructions executed by a
given thread are not, in general, guaranteed to be seen
in sequential order by other threads, and instructions
of any two threads are not, in general, guaranteed to be
seen in the same order by all of their peers. Modern
processors typically provide so-called fence or barrier
instructions (not to be confused with the barriers dis-
cussed under Condition Synchronization below) that
force previous instructions of the current thread to be
seen by other threads before subsequent instructions of
the current thread. Implementations of synchronization

Synchronization

1991

methods typically include sufficient fences that if syn-
chronization method s; in thread #; occurs before syn-
chronization method s, in thread t,, then all instruc-
tions that precede s; in t#; will appear in t, to have
occurred before any of its own instructions that fol-
low s,. For more information, see the entry on Memory
Models. The remainder of the discussion here assumes
that memory is sequentially consistent, that is, that
instructions appear to interleave in some global total
order that is consistent with program order in every
thread.

A multi-instruction operation is said to be atomic if
appears to occur “all at once” from every other thread’s
point of view. In a sequentially consistent system, this
means that the program behaves as if the instructions
of the atomic operation were contiguous in the global
instruction interleaving. More specifically, in any sys-
tem, intermediate states of the atomic operation should
never be visible to other threads, and actions of other
threads should never become visible to a given thread
in the middle of one of its own atomic operations.

The most straightforward way to implement atomic-
ity is with a mutual-exclusion (mutex) lock — an abstract
object that can be held by at most one thread at a time.
In standard usage, a thread invokes the acquire method
of the lock when it wishes to begin an atomic opera-
tion and the release method when it is done. Acquire
waits (by spinning or rescheduling) until it is safe for
the operation to proceed. The code between the acquire
and release (the body of the atomic operation) is known
as a critical section.

Critical sections that conflict with one another (typ-
ically, that access some common location, with at least
one section writing that location) must be protected
by the same lock. Programming discipline commonly
ensures this property by associating data with locks. A
thread must then acquire locks for all the data accessed
in a critical section. It may do so all at once, at the begin-
ning of the critical section, or it may do so incremen-
tally, as the need for data is encountered. Considerable
care may be required to ensure that locks are acquired in
the same order by all critical sections, to avoid deadlock.
All locks are typically held until the end of the criti-
cal section. This two-phase locking (all acquires occur

before any releases) ensures that the global set of critical
section executions remains serializable.

Relaxations of Mutual Exclusion

So-called reader-writer locks increase concurrency by
observing that it is safe for more than one thread to read
a location concurrently, so long as no thread is modi-
fying that location. Each critical section is classified as
either a reader or a writer of the data associated with a
given lock. The reader_acquire method waits until there
is no concurrent writer of the lock; the writer_acquire
method waits until there is no concurrent reader or
writer.

In a standard reader-writer lock, a thread must
know, when it first reads a location, whether it will ever
need to write that location in the current critical sec-
tion. In some contexts it may be possible to relax this
restriction. The Linux kernel, for example, provides a
sequence lock mechanism that allows a reader to abort
its peers and upgrade to writer status. Programmers are
required to follow a restrictive programming discipline
that makes critical sections “restartable;,” and checks,
before any write or “dangerous” read, to see whether a
peer’s upgrade has necessitated a restart.

For data structures that are almost always read, and
very occasionally written, several operating system ker-
nels provide some variant of a mechanism known as
RCU (originally an abbreviation for read-copy update).
RCU divides execution into so-called epochs. A writer
creates a new copy of any data structure it needs to
update. It replaces the old copy with the new, typically
using a single CAS instruction. It then waits until the
end of the current epoch to be sure that all readers that
might have been using the old copy have completed
their critical sections (at which point it can reclaim the
old copy, or perform other actions that depend on the
visibility of the update). The advantage of RCU, in com-
parison to locks, is that it imposes zero overhead in the
read-only case.

For more general-purpose use, transactional mem-
ory (TM) allows arbitrary operations to be executed
atomically, with an underlying implementation based
on speculation and rollback. Originally proposed [10] as
a hardware assist for lock-free data structures — sort of
a multi-word generalization of LL/SC - TM has seen a
flurry of activity in recent years, and several hardware

1992

Synchronization

and software implementations are now widely available.
Each keeps track of the memory locations accessed by
transactions (would-be atomic operations). When two
concurrent transactions are seen to conflict, at most one
is allowed to commit; the others abort, “roll back,” and
try again, using a fully automated, transparent analogue
of the programming discipline required by sequence
locks. For further details, see the separate entry
on TM.

Fairness

Because they sometimes force multiple threads to wait,
synchronization mechanisms inevitably raise issues of
fairness. When a lock is released by the current holder,
which waiting thread should be allowed to acquire it?
In a system with reader-writer locks, should a thread be
allowed to join a group of already-active readers when
writers are already waiting? When transactions conflict
in a TM system, which should be permitted to proceed,
and which should wait or abort?

Many answers are possible. The choice among con-
flicting threads may be arbitrary, random, first-come-
first-served (FIFO), or based on some other notion
of priority. From the point of view of an individual
thread, the resulting behavior may range from poten-
tial starvation (no progress guarantees) to some sort of
proportional share of system run time. Between these
extremes, a thread may be guaranteed to run eventually
ifit is continuously ready, or if it is ready infinitely often.
Even given the possibility of starvation, the system as
a whole may be livelock-free (guaranteed to make for-
ward progress) as a result of algorithmic guarantees or
pseudo-random heuristics. (Actual livelock is generally
considered unacceptable.) Any starvation-free system is
clearly livelock free.

Simple Busy-Wait Locks
Several early locking algorithms were based on only
loads and stores, but these are mainly of historical inter-
est today. All required Q(tn) space for ¢ threads and »n
locks, and w(1) (more-than-constant) time to arbitrate
among threads competing for a given lock.

In modern usage, the simplest constant-space, busy-
wait mutual exclusion lock is the test-and-set (TAS)

lock, in which a thread acquires the lock by using a
test-and-set instruction to change a Boolean flag from
false to true. Unfortunately, spinning by waiting threads
tends to induce extreme contention for the lock loca-
tion, tying up bus and memory resources needed for
productive work. On a cache-coherent machine, better
performance can be achieved with a “test-and-test-and-
set” (TATAS) lock, which reduces contention by using
ordinary load instructions to spin on a value in the local
cache so long as the lock remains held:

type lock = Boolean;

proc acquire(lock *1):
(test-and-set (1))
while (*1) /* spin */ ;

while

proc release(lock *1):
*1 := false;

This lock works well on small machines (up to, say, four
processors).

Which waiting thread acquires a TATAS lock at
release time depends on vagaries of the hardware,
and is essentially arbitrary. Strict FIFO ordering can
be achieved with a ticket lock, which uses fetch-and-
increment (FAI) and a pair of counters for constant
space and (per-thread) time. To acquire the lock, a
thread atomically performs an FAI on the “next avail-
able” counter and waits for the “now serving” counter
to equal the value returned. To release the lock, a thread
increments its own ticket, and stores the result to the
“now serving” counter. While arguably fairer than a
TATAS lock, the ticket lock is more prone to perfor-
mance anomalies on a multiprogrammed system: if any
waiting thread is preempted, all threads behind it in line
will be delayed until it is scheduled back in.

Scalable Busy-Wait Locks

On a machine with more than a handful of processors,
TATAS and ticket locks scale poorly, with time per criti-
cal section growing linearly with the number of waiting
threads. Anderson [1] showed that exponential backoft
(reminiscent of the Ethernet contention-control algo-
rithm) could substantially improve the performance of
TATAS locks. Mellor-Crummey and Scott [17] showed
similar results for linear backoff in ticket locks (where

Synchronization

1993

a thread can easily deduce its distance from the head of
the line).

To eliminate contention entirely, waiting threads can
be linked into an explicit queue, with each thread spin-
ning on a separate location that will be modified when
the thread ahead of it in line completes its critical sec-
tion. Mellor-Crummey and Scott showed how to imple-
ment such queues in total space O(t + n) for t threads
and n locks; their MCS lock is widely used in large-
scale systems. Craig [4] and, independently, Landin
and Hagersten [16] developed an alternative CLH lock
that links the queue in the opposite direction and per-
forms slightly faster on some cache-coherent machines.
Auslander et al. developed a variant of the MCS
lock that is API-compatible with traditional TATAS
locks [3]. Kontothanassis et al. [14] and He et al. [8]
developed variants of the MCS and CLH locks that
avoid performance anomalies due to preemption of
threads waiting in line.

Scheduler-Based Locks

A busy-wait lock wastes processor resources when
expected wait times are long. It may also cause perfor-
mance anomalies or deadlock in a multiprogrammed
system. The simplest solution is to yield the proces-
sor in the body of the spin loop, effectively moving
the current thread to the end of the scheduler’s ready
list and allowing other threads to run. More com-
monly, scheduler-based locks are designed to deschedule
the waiting thread, moving it (atomically) from the
ready list to a separate queue associated with the lock.
The release method then moves one waiting thread from
the lock queue to the ready list. To minimize over-
head when waiting times are short, implementations
of scheduler-based synchronization commonly spin for
a small, bounded amount of time before invoking the
scheduler and yielding the processor. This strategy is
often known as spin-then-wait.

It is tempting to assume that busy-wait condition
synchronization can be implemented trivially with a
Boolean flag: a waiting thread spins until the flag is true;
a thread that satisfies the condition sets the flag to true.
On most modern machines, however, additional fence

instructions are required both in the satisfying thread,
to ensure that its prior writes are visible to other threads,
and in the waiting thread, to ensure that its subsequent
reads do not occur until after the spin completes. And
even on a sequentially consistent machine, special steps
are required to ensure that the compiler does not violate
the programmer’s expectations by reordering instruc-
tions within threads.

In some programming languages and systems, a
variable may be made suitable for condition synchro-
nization by labeling it volatile (or, in C++0X,
atomic<>). The compiler will insert appropriate
fences at reads and writes of volatile variables, and
will refrain from reordering them with respect to other
instructions.

Some other systems provide special event objects,
with methods to set and await them. Semaphores and
monitors, described in the following two subsections,
can be used for both mutual exclusion and condition
synchronization.

In systems with dynamically varying concurrency,
the fork and join methods used to create threads and
to verify their completion can be considered a form of
condition synchronization. (These are, in fact, the prin-
cipal form of synchronization in systems like Cilk and
OpenMP))

Barriers

One form of condition synchronization is particularly
common in data-parallel applications, where threads
iterate together through a potentially large number of
algorithmic phases. A synchronization barrier, used to
separate phases, guarantees that no thread continues to
phase n + 1 until all threads have finished phase #.

In most (though not all) implementations, the bar-
rier provides a single method, composed internally of
an arrival phase that counts the number of threads that
have reached the barrier (typically via a log-depth tree)
and a departure phase in which permission to continue
is broadcast back to all threads. In a so-called fuzzy
barrier [6], these arrival and departure phases may be
separate methods. In between, a thread may perform
any instructions that neither depend on the arrival of
other threads nor are required by other threads prior to
their departure. Such instructions can serve to “smooth
out” phase-by-phase imbalances in the work assigned

1994

Synchronization

to different threads, thereby reducing overall wait time.
Wait time may also be reduced by an adaptive barrier [7,
19], which completes the arrival phase in constant time
after the arrival of the final thread.

Unfortunately, when t threads arrive more or less
simultaneously, no barrier implementation using ordi-
nary loads, stores, and RMW instructions can complete
the arrival phase in less than Q(logt) time. Given the
importance of barriers in scientific applications, some
supercomputers have provided special near-constant-
time hardware barriers. In some cases the same hard-
ware has supported a fast eureka method, in which
one thread can announce an event to all others in
constant time.

First proposed by Dijkstra in 1965 [5] and still widely
used today, semaphores support both mutual exclusion
and condition synchronization. A general semaphoreis a
nonnegative counter with an initial value and two meth-
ods, known as V and P. The V method increases the
value of the semaphore by one. The P method waits for
the value to be positive and then decreases it by one.
A binary semaphore has values restricted to zero and
one (it is customarily initialized to one), and serves as a
mutual exclusion lock. The P method acquires the lock;
the V method releases the lock. Programming discipline
is required to ensure that P and V methods occur in
matching pairs.

The typical implementation of semaphores pairs the
counter with a queue of waiting threads. The V method
checks to see whether the counter is currently zero. If so,
it checks to see whether any threads are waiting in the
queue and, if there are, moves one of them to the ready
list. If the counter is already positive (in which case the
queue is guaranteed to be empty) or if the counter is
zero but the queue is empty, V simply increments the
counter. The P method also checks to see whether the
counter is zero. If so, it places the current thread on
the queue and calls the scheduler to yield the processor.
Otherwise it decrements the counter.

General semaphores can be used to represent
resources of which there is a limited number, but more
than one. Examples include I/O devices, communica-
tion channels, or free or full slots in a fixed-length buffer.
Most operating systems provide semaphores as part of
the kernel API.

While semaphores remain the most widely used
scheduler-based shared-memory synchronization mech-
anism, they suffer from several limitations. In particu-
lar, the association between a binary semaphore (mutex
lock) and the data it protects is solely a matter of con-
vention, as is the paired usage of P and V methods.
Early experience with semaphores, combined with the
development of language-level abstraction mechanisms
in the 1970s, led several developers to suggest build-
ing higher-level synchronization abstractions into pro-
gramming languages. These efforts culminated in the
definition of monitors [12], variants of which appear in
many languages and systems.

A monitor is a data abstraction (a module or
class) with an implicit mutex lock and an optional
set of condition variables. Each entry (method) of the
monitor automatically acquires and releases the mutex
lock; entry invocations thus exclude one another in
time. Programmers typically devise, for each monitor,
a program-specific invariant that captures the mutual
consistency of the monitor’s state (data members -
fields). The invariant is assumed to be true at the begin-
ning of each entry invocation, and must be true again at
the end.

Condition variables support a pair of methods
superficially analogous to P and V; in Hoare’s origi-
nal formulation, these were known as wait and signal.
Unlike P and V, these methods are memory-less: a signal
invocation is a no-op if no thread is currently waiting.

For each reason that a thread might need to wait
within a monitor, the programmer declares a sepa-
rate condition variable. When it waits on a condition,
the thread releases exclusion on the monitor. The pro-
grammer must thus ensure that the invariant is true
immediately prior to every wait invocation.

Semantic Details

The details of monitors vary significantly from one lan-
guage to another. The most significant issues, discussed
in the paragraphs below, are commonly known as the
nested monitor problem and the modeling of signals as
hints vs. absolutes. More minor issues include language
syntax, alternative names for signal and wait, the mod-
eling of condition variables in the type system, and the
prioritization of threads waiting for conditions or for
access to the mutex lock.

Synchronization

1995

The nested monitor problem arises when an entry of
one monitor invokes an entry of another monitor, and
the second entry waits on a condition variable. Should
the wait method release exclusion on the outer monitor?
If it does, there is no guarantee that the outer moni-
tor will be available again when execution is ready to
resume in the inner call. If it does not, the program-
mer must take care to ensure that the thread that will
perform the matching signal invocation does not need
to go through the outer monitor in order to reach the
inner one. A variety of solutions to this problem have
been proposed; the most common is to leave the outer
monitor locked.

Signal methods in Hoare’s original formulation were
defined to transfer monitor exclusion directly from the
signaler to the waiter, with no intervening execution.
The purpose of this convention was to guarantee that
the condition represented by the signal was still true
when the waiter resumed. Unfortunately, the conven-
tion often has the side effect of inducing extra context
switches, and requires that the monitor invariant be
true immediately prior to every signal invocation. Most
modern monitor variants follow the lead of Mesa [15] in
declaring that a signal is merely a hint, and that a waiting
process must double-check the condition before contin-
uing execution. In effect, code that would be written

if (!condition)
cond var.wait () ;

in a Hoare monitor is written

while (!condition)
cond_var.wait () ;

in a Mesa monitor. To make it easier to write programs
in which a condition variable “covers” a set of pos-
sible conditions (particularly when signals are hints),
many monitor variants provide a signal-all or broadcast
method that awakens all threads waiting on a condition,
rather than only one.

In a system in which threads interact by exchanging
messages, rather than by sharing variables, synchro-
nization is generally implicit in the send and receive
methods. A receive method typically blocks until an
appropriate message is available (a matching send has

been performed). Blocking semantics for send methods
vary from one system to another:

Asynchronous send - In some systems, a sender con-
tinues execution immediately after invoking a send
method, and the underlying system takes responsi-
bility for delivering the message. While often desir-
able, this behavior complicates the delivery of failure
notifications, and may be limited by finite buffering
capacity.

Synchronous send - In other systems — notably those
based on Hoare’s Communicating Sequential Pro-
cesses (CSP) [13] - a sender waits until its message
has been received.

Remote-invocation send - In yet other systems, a send
method has both ingoing and outcoming parame-
ters; the sender waits until a reply is received from
its peer.

Distributed Locking

Libraries, languages, and applications commonly imple-
ment higher-level distributed locks or transactions on
top of message passing. The most common lock imple-
mentation is analogous to the MCS lock: acquired
requests are sent to a lock manager thread. If the lock
is available, the manager responds directly; otherwise it
forwards the request to the last thread currently wait-
ing in line. The release method sends a message to the
manager or, if a forwarding request has already been
received, to the next thread in line for the lock. Races
in which the manager forwards a request at the same
time the last lock holder sends it a release are trivially
resolved by statically choosing one of the two (per-
haps the lock holder) to inform the next thread in line.
Distributed transaction systems are substantially more
complex.

Rendezvous and Remote Procedure Call

In some systems, a message must be received explic-
itly by an already existing thread. In other systems,
a thread is created by the underlying system to han-
dle each arriving message. Either of these options -
explicit or implicit receipt — can be paired with any of the
three send options described above. The combination
of remote-invocation send with implicit receipt is often
called remote procedure call (RPC). The combination of
remote-invocation send with explicit receipt is known

1996

System Integration

as rendezvous. Interestingly, if all shared data is encap-
sulated in monitors, one can model - or implement -
each monitor with a manager thread that executes entry
calls one at a time. Each such call then constitutes a
rendezvous between the sender and the monitor.

Related Entries

» Actors

»Cache Coherence

»Concurrent Collections Programming Model
»Deadlocks

» Memory Models

» Monitors, Axiomatic Verification of
»Non-Blocking Algorithms

»Path Expressions

»Processes, Tasks, and Threads
»Race Conditions

»Scheduling Algorithms
»Shared-Memory Multiprocessors

» Transactions, Nested

Bibliographic Notes

The study of synchronization began in earnest with
Dijkstras “Cooperating Sequential Processes” mono-
graph of 1965 [5]. Andrews and Schneider provide an
excellent survey of synchronization mechanisms circa
1983 [2]. Mellor-Crummey and Scott describe and com-
pare a variety of busy-wait spin locks and barriers, and
introduce the MCS lock [17]. More extensive coverage
of synchronization can be found in Chapter 12 of Scott’s
programming languages text [18], or in the recent texts
of Herlihy and Shavit [11] and Taubenfeld [20].

Bibliography

1. Anderson TE (Jan 1990) The performance of spin lock alternatives
for shared-memory multiprocessors. IEEE Trans Parallel Distr Sys
1(1):6-16

2. Andrews GR, Schneider FB (Mar 1983) Concepts and notations
for concurrent programming. ACM Comput Surv 15(1):3-43

3. Auslander MA, Edelsohn DJ, Krieger OY, Rosenburg BS, Wis-
niewski RW (2003) Enhancement to the MCS lock for increased
functionality and improved programmability. U.S. patent applica-
tion 20030200457, submitted 23 Oct 2003

4. Craig TS (Feb 1993) Building FIFO and priority-queueing spin
locks from atomic swap. Technical Report 93-02-02, University of
Washington Computer Science Department

5.

10.

1L

12.

13.

14.

15.

16.

17.

18.

19.

20.

Dijkstra EW (Sept 1965) Cooperating sequential processes. Tech-
nical report, Technological University, Eindhoven, The Nether-
lands. Reprinted in Genuys F (ed) Programming Languages,
Academic Press, New York, 1968, pp 43-112. Also avail-
able at www.cs.utexas.edu/users/EWD/transcriptions/EWDO01xx/
EWD123.html.

. Gupta R (Apr 1989) The fuzzy barrier: a mechanism for high

speed synchronization of processors. Proceedings of the 3rd Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems, Boston, MA, pp 54-63

. Gupta R, Hill CR (June 1989) A scalable implementation of barrier

synchronization using an adaptive combining tree. Int J Parallel
Progr 18(3):161-180

. He B, Scherer IIIl WN, Scott ML (Dec 2005) Preemption adaptivity

in time-published queuebased spin locks. Proceeding of the 2005
International Conference on High Performance Computing, Goa,
India

. Herlihy MP (Jan 1991) Wait-free synchronization. ACM Trans

Progr Lang Syst 13(1):124-149

Herlihy MP, Moss JEB (1993) Transactional memory: architec-
tural support for lock-free data structures. Proceedings of the 20th
International Symposium on Computer Architecture, San Diego,
CA, May 1993 pp 289-300

Herlihy MP, Shavit N (2008) The Art of Multiprocessor Program-
ming. Morgan Kaufmann, Burlington, MA

Hoare CAR (Oct 1974) Monitors: an operating system structuring
concept. Commun ACM 17(10):549-557

Hoare CAR (Aug 1978) Communicating sequential processes.
Commun ACM 21(8):666-677

Kontothanassis LI, Wisniewski R, Scott ML (Feb 1997) Scheduler-
conscious synchronization. ACM Trans Comput Sys 15(1):3-40
Lampson BW, Redell DD (Feb 1980) Experience with processes
and monitors in Mesa. Commun ACM 23(2):105-117

Magnussen P, Landin A, Hagersten E (Apr 1994) Queue locks
on cache coherent multiprocessors. Proceedings of the 8th
International Parallel Processing Symposium, Cancun, Mexico,
pp 165-171

Mellor-Crummey JM, Scott ML (Feb 1991) Algorithms for scalable
synchronization on sharedmemory multiprocessors. ACM Trans
Comput Syst 9(1):21-65

Scott ML (2009) Programming Language Pragmatics, 3rd edn.
Morgan Kaufmann, Burlington, MA

Scott ML, Mellor-Crummey JM (Aug 1994) Fast, contention-free
combining tree barriers. Int] Parallel Progr 22(4):449-481
Taubenfeld G (2006) Synchronization Algorithms and Concur-
rent Programming. Prentice Hall, Upper Saddle River

System Integration

» Terrestrial Ecosystem Carbon Modeling

http://dx.doi.org/10.1007/978-0-387-09766-4_125
http://dx.doi.org/10.1007/978-0-387-09766-4_375
http://dx.doi.org/10.1007/978-0-387-09766-4_238
http://dx.doi.org/10.1007/978-0-387-09766-4_282
http://dx.doi.org/10.1007/978-0-387-09766-4_419
http://dx.doi.org/10.1007/978-0-387-09766-4_301
http://dx.doi.org/10.1007/978-0-387-09766-4_185
http://dx.doi.org/10.1007/978-0-387-09766-4_283
http://dx.doi.org/10.1007/978-0-387-09766-4_448
http://dx.doi.org/10.1007/978-0-387-09766-4_36
http://dx.doi.org/10.1007/978-0-387-09766-4_66
http://dx.doi.org/10.1007/978-0-387-09766-4_142
http://dx.doi.org/10.1007/978-0-387-09766-4_487
http://dx.doi.org/10.1007/978-0-387-09766-4_395
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html

Systems Biology, Network Inference in

1997

! System on Chip (SoC)

»SoC (System on Chip)
» VLSI Computation

! Systems Biology, Network
Inference in

JAROSLAW ZoLAl, SRINTvAS ALURU
"lowa State University, Ames, IA, USA
*Indian Institute of Technology Bombay,
Mumbai, India

Synonyms
Gene networks reconstruction; Gene networks reverse-
engineering

Definition

Inference of gene regulatory networks, also called
reverse-engineering of gene regulatory networks, is a
process of characterizing, either qualitatively or quanti-
tatively, regulatory mechanisms in a cell or an organism
from observed expression data.

Discussion

Biological processes in every living organism are gov-
erned by complex interactions between thousands of
genes, gene products, and other molecules. Genes that
are encoded in the DNA are transcribed and translated
to form multiple copies of gene products including pro-
teins and various types of RNAs. These gene products
coordinate to execute cellular processes — sometimes by
forming supramolecular complexes (e.g., ribosome), or
by acting in a concerted fashion, e.g., in biochemical
or metabolic pathways. They also regulate the expres-
sion of genes, often through binding to cis-regulatory
sequences upstream of the coding region of the genes, to
calibrate gene expression depending on the endogenous
and exogenous stimuli carried by, e.g., small molecules.

Gene regulatory networks are conceptual represen-
tations of interactions between genes in a cell or an
organism. They are depicted as graphs with vertices
corresponding to genes and edges representing regu-
latory interactions between genes (see Fig. 1). Overall,

gene regulatory networks are mathematical models to
explain the observed gene expression levels. Network
inference, or reconstructing, is the process of iden-
tifying the underlying network from multiple obser-
vations of gene expressions (outputs of the network).
To infer a gene network, one relies on experimen-
tal data from high-throughput technologies such as
microarrays, quantitative polymerase chain reaction, or
short-read sequencing, which measure a snapshot of all
gene expression levels under a particular condition or
in a time series.

Consider a set of n genes {g1,£2, . . ., gx }» where for each
gene a set of m expression measurements is given. One
can represent expression of gene i (g;) as a random vari-
able X; ¢ X, X = {Xj,...,X,}, with marginal proba-
bility px, derived from some unknown joint probability
characterizing the entire system. This random variable
is described by observations {x;1,...,Xim}, where x;;
corresponds to the expression level of g; under con-
dition j. The vector (x;1,%i2,-..,Xim) is called profile
of g;. Given a profile matrix Y,xm, Y[i,j] = i, one can
formulate network inference problem as that of finding
a model that best explains the data in Y.

Such formulated problem can be approached using
a variety of methods, including Bayesian networks [21]
and Gaussian graphical models [20]; one class of meth-
ods that has been widely adopted uses the concept of
mutual information. These methods [15] operate under
the assumption that correlation of expression implies
coregulation, and proceed in two main phases: First sig-
nificant dependencies (connection between two genes)
or independencies (lack of connections) are determined
by means of computing mutual information for every
pair of genes. Then, identification and removal of indi-
rect interactions (e.g., when two genes are coregulated
by a third) is performed.

Mutual information is arguably the best measure
of correlation between two random variables, and is
defined based on entropy # in the following way:

Z(XisXj) = H(X:) + H(X) - H(Xi X)),
where entropy H is given by:

H(X) = -3 px(x)logpx(x),

http://dx.doi.org/10.1007/978-0-387-09766-4__5
http://dx.doi.org/10.1007/978-0-387-09766-4_111
http://dx.doi.org/10.1007/978-0-387-09766-4_2428
http://dx.doi.org/10.1007/978-0-387-09766-4_2429
http://dx.doi.org/10.1007/978-0-387-09766-4_2429

1998

Systems Biology, Network Inference in

N

. ()
830

Chey e 7

@@@

€

Systems Biology, Network Inference in. Fig. 1 Example gene regulatory network. Nodes represent genes, “T"-edges
denote regulation in which a source gene represses expression of the target gene. Arrow-edges denote regulation

in which a source gene induces expression of the target gene

and px defines the probability distribution of X, and)
is replaced by integral if X is continuous. Mutual infor-
mation is a symmetric, nonnegative function, and is
equal to zero if and only if two random variables are
independent.

Application of mutual information for gene network
inference poses two significant challenges. As the prob-
ability distribution of the random variable describing a
gene is unknown, it has to be estimated from the expres-
sion profile. Consequently, gene comparison becomes
more difficult because even independent expression
profiles can result in mutual information greater than
zero (owing to sampling and estimation errors). This in
turn requires some mechanism to decide if the given
mutual information estimate is statistically significant.
The second challenge is due to the fact that a typical

genome-level network covers thousands of genes, and
hence “all-pairs” comparison adds considerably to com-
putational requirements. In practice, several mutual
information estimators are available that offer differ-
ent precision to complexity ratios (e.g., Gaussian kernel
estimator, B-spline estimator), and complex statistical
techniques are employed to decide if observed mutual
information implies dependency.

Although all information theoretic approaches for
reverse-engineering depend on “all-pairs” mutual infor-
mation kernel executed in the first stage, they differ in
how they identify indirect interactions in the second
stage. For example, in relevance networks [4] the second
stage is omitted, in ARACNe [3] and TINGe [22, 23]
the Data Processing Inequality concept is used, while
CLR algorithm [6] depends on estimates of a likelihood

Systems Biology, Network Inference in

1999

of obtained mutual information values. Some other
methods extend mutual information into conditional
mutual information or augment it with feature selection
techniques.

Parallel Information Theoretic Approach
Reverse engineering of regulatory networks using
mutual information is compute and memory intensive
especially if whole-genome (i.e., covering all genes of an
organism) networks are considered. Memory consump-
tion arises from the ®(nm) size of input data, and from
the ®(n*) dense initial network generated in the first
phase of the reconstruction algorithm. Adding to this
is complexity of mutual information estimators, which
for Gaussian kernel estimator for instance is O(m?).
Taking into account that the number of genes typi-
cally considered is in the thousands, and at the same
time genome-level inference requires that the num-
ber of observations m is large, the problem becomes
prohibitive for sequential computers.

In [23], Zola et al. proposed a parallel information
theory-based inference method that efficiently exploits
multiple levels of parallelism inherent to mutual infor-
mation computations and uses a generalized scheme for
pairwise computation scheduling. The method has been
implemented in the MPI-based software package called
TINGe (Tool Inferring Networks of Genes), along with
a version that supports the use of cell accelerators.

The algorithm proceeds in three stages. In the first
stage, input expression profiles are rank-transformed
and mutual information is computed for each of the
(g) pairs of genes, and q randomly chosen permuta-
tions per pair. Rank transformation substitutes a gene
expression profile with a permutation of (1,...,m) by
replacing a gene expression with its rank among all gene
expressions within the same expression profile. It has
been shown that mutual information is invariant under
this transformation [5]. By applying it the algorithm can
reduce the total number of mutual information estima-
tions between gene expression vectors and their random
permutations [22]. In the second phase, the threshold
value above which mutual information is considered to
signify dependence is computed, and edges below this
threshold are discarded. The threshold is computed by
finding the element with rank (1-¢) - q- (;) among
q- (;) values contributed by permutations generated

in the earlier stage, where ¢ is specifies the desired sta-
tistical significance of the corresponding permutation
test. Finally, in the third stage data processing inequal-
ity is applied with the consequence that if g; inter-
acts with g via some other gene g; then Z(Xj;Xy) <
min(Z(X;;X;), Z(Xj5 Xk))-

The algorithm represents gene network using the
standard adjacency matrix D,,. The input and out-
put data are distributed row-wise among p processors.
Each processor stores up to [%] consecutive rows of
matrix Y and the same number of consecutive rows
from matrix D. Matrix D is then partitioned into p x
p blocks of submatrices which are computed in [‘77“]
iterations, where in iteration i processor with rank j
computes submatrix Dj (i) mod p- 10 implement the
second stage a simple reduction operation is used to find
the threshold value followed by pruning of matrix D.
Finally, removing of indirect interactions is performed
based on streaming of matrix D in p — 1 communica-
tion rounds, where in iteration i only processors with
ranks lower than p—i participate in communication and
computation.

In their method, Zola et al. use B-spline mutual
information estimator which is implemented to take
advantage of SIMD extensions of modern processors.
However, any mutual information estimator could be
used. Furthermore, they report modification of the
first stage of the algorithm that enables execution on
cell heterogeneous processors. The method has been
used to reconstruct a 15,222 network of the model
plant Arabidopsis thaliana from 3,137 microarray exper-
iments in 30 minutes on a 2,048 core IBM Blue Gene/L,
and in 2 h and 25 min on a 8-node QS20 cell blade
cluster.

Bayesian networks are a class of graphical models that
represent probabilistic relationships among random
variables of a given domain. Formally, a Bayesian net-
work isa pair (N, P), where P is the joint probability dis-
tribution and N is a directed acyclic graph, with vertices
representing random variables and edges correspond-
ing to “parent — child” relationship between variables,
which encodes the Markov assumption that a node is
conditionally independent from its non-descendants,
given its parents in N. Under this assumption one can

2000

Systems Biology, Network Inference in

represent the joint probability as a product of condi-
tional probabilities:

P(Xy,....X,) = HP(Xi|7ri),

where 7; is a set of parents of X; in N. Given a set of
realizations (observations) of random variables one can
learn a structure of the Bayesian network that best fits
the observed data.

Bayesian networks have been widely employed
for reverse-engineering of gene regulatory networks
[8,18, 21]. Following the same formalization as for infor-
mation theoretic approaches described above, the prob-
lem of gene network inference becomes that of learning
the structure of the corresponding Bayesian network.
Nodes of the network are random variables assigned to
genes X = {Xj,..., X, }, expression profiles are realiza-
tions of those variables, and a Bayesian network learned
from such data represents a gene regulatory network,
where 7; is interpreted as a set of regulators of gene g;. In
order to learn the structure of a Bayesian network, a sta-
tistically motivated scoring function that evaluates the
posterior probability of a network given the input data
is typically assumed: Score(N) = log P(N|Y). To find
the optimal network efliciently such a function should
be decomposable into individual score contributions
s(X;,), e

Score(N) = Z s(Xi, 7).

A major difficulty in Bayesian network structure
learning is the super exponential search space in the

number of rand?m variables - for a set of n variables

n123(n-1

————— possible directed acyclic graphs,
r-z

where r ~ 0.57436 and z ~ 1.4881.

there exist

Parallel Exact Structure Learning
Even assuming that the cost of evaluating scoring func-
tion is negligible, exhaustive enumeration of all possi-
ble network structures remains prohibitive. Although
heuristics have been proposed to tackle the problem,
e.g., based on simulated annealing, oftentimes recon-
structing the optimal network is advantageous as it
enables more meaningful conclusions.

Nikolova et al. [17] proposed an elegant parallel
exact algorithm for learning Bayesian networks that
builds on top of earlier sequential methods [18]. In this

approach a network is represented as a permutation
of nodes where each node is preceded by its parents.
The algorithm identifies the optimal ordering, and a
corresponding optimal network, using a dynamic pro-
gramming approach that operates on the lattice formed
on the power set of X' by the partial order “set inclu-
sion” The lattice is organized into n + 1 levels, where
level I € [0, n] contains all subsets of size /, and a node
at level [has / incoming and #n — [outgoing edges. At
each node of the lattice (n —I) evaluations of individual
scores s have to be performed as a part of dynamic pro-
gramming search, which next have to be communicated
along outgoing edges.

The key component of the approach by Nikolova
et al. is the observation that dynamic programming
lattice forms an n-dimensional hypercube that can
be decomposed on p =
dimensional hypercubes, each mapping to p proces-
sors. These hypercubes can be processed in a pipelined
fashion that provides a work optimal algorithm.

The reported method has been used to reverse-
engineer regulatory networks using synthetic data with
up to 30 genes and 500 microarray observations, and
applying Minimum Description Length principle [11]
as a scoring function. To reconstruct a network for the
largest data it took 1 h and 30 min on 1,024 processors
of an IBM BlueGene/L.

2k processors into 2" k-

Under several simplifying assumptions the dynamics
of a gene’s expression can be modeled as a function of
abundance of all other genes and the rate of degrada-
tion:
Xi = fi(x) = A(xi),

where f; is called input function of gene i, x; is expres-
sion of gene i, vector x represents expression levels of
all genes, and A describes the rate of degradation. One
can further assume that input functions are linear and
in such cases the dynamics of the entire system can be
represented as:

X=A-Xx,

where A, is a matrix describing influences of genes on
each other (including rates of degradation), i.e., A[i,]]
represents the influence of gene g; on g;. Consequently

Systems Biology, Network Inference in

2001

by solving such system of equations one would obtain
the underlying gene network represented by matrix
A. Unfortunately finding the solution requires a large
number of measurements of x and % since otherwise the
system is greatly underdetermined. At the same time
obtaining representative measurements is experimen-
tally very challenging and sometimes infeasible.

To overcome this limitation, and to enable lineariza-
tion of systems with nonlinear gene input functions,
Gardner et al. [9] proposed an approach in which m
perturbation experiments (i.e., experiments in which
expression of selected genes is affected in a controlled
way) are performed, and resulting expression profiles
are used to write the following system of differential
equations:

Y=AY+U,
which at steady state gives:
AY = -U.

Here Y, is a matrix describing expression of all genes
in all experiments, i.e., Y[i,j] describes expression of
gene i under perturbation j, and matrix U,«,, represents
the effect of perturbations on every gene in all m exper-
iments. Because in the majority of cases m < n and the
resulting system remains underdetermined, Gardner
et al. assumed that each gene can have at most k regu-
latory inputs (which is biologically plausible), and then
applied multiple regression for every possible combina-
tion of k regulators, choosing the one that best fits the
data to approximate A.

Parallelization of Multiple Regression
Algorithms

The approach of Gardner et al., named Network Identi-
fication by Multiple Regression, is computationally pro-
hibitive for networks with more than a few dozen genes
as it is infeasible to consider all (Z) combinations of
regulators, especially that for each gene and each com-
bination of regulators the following expression must be
evaluated

a = -wzl(zz")7,
to find the combination for which 4; minimizes the sum

squared errors with respect to the observed data. Here,
u; represents row of matrix U for gene i, and Z consists

of k rows selected from Y that correspond to k selected
regulator genes.

In [10], Gregoretti et al. describe parallel implemen-
tation of the algorithm that replaces the exact enumer-
ation of all combinations of regulators with a greedy
search heuristic that starts with d best candidate regula-
tors that are next iteratively combined with other genes
to form the final set of regulators. Furthermore, they
observe that it is possible to obtain 4; by solving the
system of linear equations Sa; = —r, where S is the sym-
metric submatrix of YY7 of k rows and columns that
correspond to the considered regulators, and r is the
i-th row of YT. Because S is positive definite the
Cholesky factorization can be used to efficiently solve
this system. In practice, the implementation uses the
PPSV routine, which has multiple parallel implemen-
tations. Finally, searching for regulators of a gene can
be performed independently for every gene. Conse-
quently, in the parallel version each of p processors is
assigned at most [Iﬂ)] genes for which it executes the
search heuristic.

The main limitation of the multiple regression algo-
rithm is that it requires perturbation data as an input.
Because in many cases such data is not available,
Gregoretti et al. used synthetic data consisting of 2,500
genes with a single perturbation experiment for each
gene. This data has been analyzed on a cluster with 100
nodes, each with dual core Itanium2 processor, and with
Quadrics ELAN 4 interconnect in approximately 3 h
and 25 min.

The problem of reverse engineering gene regulatory
networks is one of many in the broad area of com-
putational systems biology, and parallel processing
only recently attracted attention of systems biology
researchers. Together with the rapid progress in high-
throughput biological technologies one can expect
accumulation of massive and diverse data, which will
enable more complex and realistic models of regula-
tion. Most likely these models will be evolving such
as to enable in silico simulation of biological systems,
which is one of the goals of the emerging field of syn-
thetic biology. Consequently, parallel processing in its
various flavors, ranging from accelerators and multicore

2002

Systolic Architecture

processors to clusters, grids, and clouds, will be neces-
sary to tackle the resulting computational complexity.

Bibliographic Notes and Further
Reading

The textbook by Alon [1] and articles by Kitano [12, 13]
and Murali and Aluru [16] provide a good general intro-
duction to systems biology. A brief overview of existing
approaches and challenges in gene networks inference
can be found in [2, 14]. In [7] Friedman gives an intro-
duction to using graphical models for network infer-
ence, and Meyer et al. review information theoretic
approaches in [15]. The “Dialogue for Reverse Engi-
neering Assessments and Methods” project [19] pro-
vides a robust set of benchmark data that can be used to
assess the quality of inference methods, and it is a good
source of information about developments in the area
of networks reconstruction.

Bibliography
1. Alon U (2006) An Introduction to Systems Biology: Design Prin-
ciples of Biological Circuits. Chapman & Hall/CRC, Boca Raton
2. Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D
(2007) How to infer gene networks from expression profiles. Mol
Syst Biol 3:78
3. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R,
Califano A (2005) Reverse engineering of regulatory networks in
human B cells. Nat Genet 37(4):382-390
4. Butte AJ, Kohane IS (2000) Mutual information relevance net-
works: functional genomic clustering using pairwise entropy mea-
surements. In Pacific Symposium on Biocomputing, pp 418-429
5. Cover TM, Thomas JA (2006) Elements of Information Theory,
2nd edn. Wiley, New York
6. Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski], Cottarel G,
Kasif S, Collins JJ, Gardner TS (2007) Large-scale mapping and
validation of Escherichia coli transcriptional regulation from a
compendium of expression profiles. PLoS Biol 5(1):e8
7. Friedman N (2004) Inferring cellular networks using probabilistic
graphical models. Science 303:799-805
8. Friedman N, Linial M, Nachman I, Péer D (2000) Using Bayesian
networks to analyze expression data.] Comput Biol 7:601-620
9. Gardner TS, di Bernardo D, Lorenz D, Collins JJ (2003) Inferring
genetic networks and identifying compound mode of action via
expression profiling. Science 301(5629):102-105
10. Gregoretti F, Belcastro V, di Bernardo D, Oliva G (2010) A par-
allel implementation of the network identification by multiple
regression (NIR) algorithm to reverse-engineer regulatory gene
networks. PLoS One 5(4):€10179
11. Grunwald PD (2007) The Minimum Description Length Princi-
ple. MIT Press, Cambridge
12. Kitano H (2002) Computational systems biology. Nature
420(6912):206-210

13. Kitano H (2002) Systems biology: a brief overview. Science
295(5560):1662-1664

14. Margolin A, Califano A (2007) Theory and limitations of genetic
network inference from microarray data. Ann N Y Acad Sci
1115:51-72

15. Meyer PE, Kontos K, Lafitte F, Bontempi G (2007) Information-
theoretic inference of large transcriptional regulatory networks.
EURASIP] Bioinform Syst Biol 2007:79879

16. Murali TM, Aluru S (2009) Algorithms and Theory of Computa-
tion Handbook, chapter Computational Systems Biology. Chap-
man & Hall/CRC, Boca Raton

17. Nikolova O, Zola J, Aluru S (2009) A parallel algorithm for exact
Bayesian network inference. In IEEE Proceedings of the Inter-
national Conference on High Performance Computing (HiPC
2009), pp 342-349

18. Ott S, Imoto S, Miyano S (2004) Finding optimal models for
small gene networks. In Pacific Symposium on Biocomputing,
pp 557-567

19. Prill R], Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos
LG, Xue X, Clarke ND, Altan-Bonnet G, Stolovitzky G (2010)
Towards a rigorous assessment of systems biology models: the
DREAMS3 challenges. PLoS One 5(2):€9202

20. Schafer J, Strimmer K (2005) An empirical Bayes approach to
inferring large-scale gene association networks. Bioinformatics
21(6):754-764

21. Yu J, Smith V, Wang PP, Hartemink AJ, Jarvis ED (2004)
Advances to Bayesian network inference for generating causal
networks from observational biological data. Bioinformatics
20(18):3594-3603

22. Zola J, Aluru M, Aluru S (2008) Parallel information theory
based construction of gene regulatory networks. In Proceedings
of the International Conference on High Performance Computing
(HiPC 2008). LNCS, vol 5375, pp 336-349

23. Zola], Aluru M, Sarje A, Aluru S (2010) Parallel information-
theory-based construction of genome-wide gene regulatory net-
works. IEEE Trans Parallel Distributed Syst 21(12):1721-1733

! Systolic Architecture

» Systolic Arrays

! Systolic Arrays

JamEs R. REINDERS
Intel Corporation, Hillsboro, OR, USA

Synonyms
Instruction systolic arrays; Processor arrays; Systolic
architecture; Wavefront arrays

http://dx.doi.org/10.1007/978-0-387-09766-4_467
http://dx.doi.org/10.1007/978-0-387-09766-4_2430
http://dx.doi.org/10.1007/978-0-387-09766-4_2431
http://dx.doi.org/10.1007/978-0-387-09766-4_2432
http://dx.doi.org/10.1007/978-0-387-09766-4_2432
http://dx.doi.org/10.1007/978-0-387-09766-4_2433

Systolic Arrays

2003

Definition

A Spystolic Array is a collection of processing elements,
called cells, that implements an algorithm by rhyth-
mically computing and transmitting data from cell to
cell using only local communication. Cells of a Systolic
Array are arranged and connected in a regular pattern
with a design that emphasizes a balance between com-
putational and communicational capabilities. Systolic
Arrays have proven particularly effective for real-time
applications in signal and image processing.

Systolic Algorithms are algorithms specifically
designed to make effective use of Systolic Arrays.
Systolic Algorithms have also been shown to make par-
ticularly efficient use of many general-purpose parallel
computers.

The name Systolic Arrays derives from an analogy
with the regular pumping of blood by the heart. Systolic,
in medical terms, refers to the phase of blood circulation
in which the pumping chambers of the heart, ventricles,
are contracting forcefully and therefore blood pressure
is at its highest.

Discussion

Systolic Arrays, first described in 1978 by H. T. Kung and
Charles E. Leiserson, were originally described as a sys-
tematic approach to take advantage of rapid advances in
VLSI technology and coping with difficulties present in
designing VLSI systems. The simplicity and regularity of
Systolic Arrays lead to a cheaper VLSI implementation
as well as higher chip density.

Systolic Arrays were originally proposed for VLSI
implementation of some matrix operations that were
shown to have efficient solutions thereafter known
as Systolic Algorithms. Systolic Algorithms sup-
port high degrees of concurrency while requiring
only simple, regular communication and control,
which in turn allows for efficient implementation in
hardware.

Early VLSI offered high degrees of integration but
no speed advantage over the decade-old TTL tech-
nology. While tens of thousands of gates could be
integrated on a single chip, it appeared that com-
putational speed would only come from the con-
current use of many processing elements. In 1982,

H. T. Kung wrote, “Since the technological trend clearly
indicates a diminishing growth rate for component
speed, any major improvement in computation speed
must come from the concurrent use of many processing
elements.”

Furthermore, large-scale designs were pushing the
limits of the methodologies of the day. It was observed
at the time that the general practice of ad hoc designs
for VLSI systems was not contributing to sufficient
accumulation of experiences, and errors were often
repeated. By providing general guidelines, the concept
of a Systolic Array, a general methodology emerged
for mapping high-level computations into hardware
structures.

Cost-effectiveness emerged as a chief concern with
special-purpose systems; costs need to be low enough to
justify construction of any device with limited applica-
bility. The cost of special-purpose systems can be greatly
reduced if a limited number of simple substructures or
building blocks, such as a cell, can be reused repeatedly
for the overall design.

The VLSI implications of Systolic Array designs
proved to be substantial. Spatial locality divides the time
to design a chip by the degree of regularity. Locality
avoids the need for long and therefore high capacitive
wires, temporal regularity and synchrony reduces con-
trol issues, pipelinability yields performance, I/O close-
ness holds down I/O bandwidth, and modularity allows
for parameterized designs.

Special-purpose systems pushed the limits of tech-
nology in order to achieve the performance needed to
justify their cost. Systolic Arrays embraced VLSI circuit
technology to achieve high performance via parallelism,
honoring the scarcity of power and resistive delay
by using a communication topology devoid of long
inter-processor wires. Such communication topologies
require chip area that is only linear in the number of
processors. Systolic Arrays also embraced the design
economics of special-purpose processors by reusing a
limited number of cell designs.

Systolic Arrays proved especially well suited for
processing data from sensor devices as an attached pro-
cessor. Stringent time requirements of real-time sig-
nal processing and large-scale scientific computation
strongly favor special-purpose devices that can be built
in a cost-effective and reliable fashion because they
deliver the performance needed.

2004

Systolic Arrays

Unlike general-purpose processors, a Systolic Array is
characterized by its regular data flow. Typically, two or
more data streams flow through a Systolic Array in vari-
ous speeds and directions. The crux of the Systolic Array
approach is that once a stream of data is formed, it
can be used effectively by each processing element it
passes. A higher computational throughput is therefore
achieved as compared with a general-purpose proces-
sor in which its computational speed may be limited by
the I/O bandwidth. When a complex algorithm can be
decomposed to fine-grained, regular operations, each
operation will then be simpler to implement.

A Systolic Array consists of a set of interconnected
cells, each capable of performing at least simple com-
putational operations, and communicating only with
cells in close proximity. Simple, regular communica-
tion and control structures offer substantial advantages
over complicated ones in both design and implementa-
tion. Many shapes for an “array” are possible, and have
been proposed including triangular, but simple two-
dimensional meshes, or tori, have dominated as Systolic
Arrays have trended to become more general because of
the flexibility and simplicity of meshes and tori (Fig. 1).

Systolic Arrays are specifically designed to address
the communication requirements of parallel computer
systems by placing an emphasis on strong connections
between computation and communication in order
to achieve both balance and scaling. Systolic Arrays
directly address the importance of the communication
system for scalable parallel systems by providing direct
paths between the communication system and the com-
putational units. Systolic Algorithms address the need
for “balanced algorithms” to best utilize parallelism.

In a Systolic Array, data flows from the computer
memory in a rhythmic fashion, passing through many

processing cells before it returns to memory, much as
blood circulates into and out of the heart. The system
works like an assembly line where many people work
on the same automobile at different times and many cars
are assembled simultaneously. The network for the flow
of data can offer different degrees of parallelism, and
data flow itself may be at different speeds and multi-
ple directions. Traditional pipelined systems flow only
results, whereas a Systolic Array flow includes inputs
and partial results.

The essential characteristic of a Systolic Array is an
emphasis on balance between computational and com-
municational capabilities, and the scalability of practical
parallel systems. The features of Systolic Arrays, in pur-
suit of this emphasis on balance and scalability, are
generally as follows:

o Spatial regularity and locality: the variety of pro-
cessing cells is limited, and connections are limited
to nearby processors. Cells are not connected via
shared busses, which would not scale due to con-
tention. There is neither global broadcasting nor
global memory.

e Temporal regularity and synchrony: each cell acts as
a finite state transducer. Cells do not need to execute
the same program.

o Pipelinability: a design of N cells will exhibit a linear
speedup O(N).

e I/O closeness: only cells on the boundaries of the
array have access to “the outside world” to per-
form I/0.

e Modularity/scaling: a larger array can handle a
larger instance of a problem than the smaller version
of which it is an extension. Replacing a processing
cell with an array of cells offers a higher computation
throughput without increasing memory bandwidth.
This realization of parallelism offers the advantages

Cell 0 Cell 1

Cell 2 eee

CellN

Memory

Connection to outside world

Systolic Arrays. Fig.1 Simple linear systolic array configuration

Systolic Arrays

2005

of both increased performance from increased con-
currency and increased designer productivity from
component reuse.

Synchronous global clocking is not a requirement of
Systolic Arrays despite it being a property of many early
implementations. Systolic Arrays are distinguished by
their pursuit of both balance and scaling with a design
emphasis on strong connections between computation
and communication in order to achieve both.

A central issue for every parallel system is how the
computational nodes of a parallel computer commu-
nicate with other nodes. There are problems that have
been dubbed “embarrassingly parallel,” where little or
no communication is necessary between the multi-
ple processors performing subsets of the problem. For
those applications, the computation speed alone will
determine the speed of execution on a parallel system.
There are numerous important problems that are not
embarrassingly parallel, in which communication plays
a critical role in determining the effective speed of exe-
cution as well as the degree to which the problem can
scale to utilize parallelism.

The exploration of “balanced algorithms” looked to
find algorithms that scale without bounds. Such algo-
rithms are marked by a constant ratio of computation to
communication steps. These algorithms became known
as “Systolic Algorithms.” While Systolic Algorithms can
be mapped to a wide range of hardware, it was found
that these algorithms tended to rely on finer and finer-
grained communication as machine sizes increased. To
efficiently deal with this fine-grained parallelism, com-
munication with little to no overhead is needed.

Systolic Arrays accomplish this goal by providing a
method to directly couple computation to communica-
tion. In such machines, the design will seek to match
the communicational capabilities to the computational
capabilities of the machine.

Systolic Arrays are one approach to addressing
the communication requirements of parallel systems.
Systolic Arrays acknowledge the importance of the
communication system for scalable parallel systems
and provide direct paths between the communication
system and the computational units. The key concepts

behind a Systolic Array are the balance between compu-
tational and communicational capabilities, and the scal-
ability of practical parallel systems. A balanced design
minimizes inefficiencies as measured by underutiliza-
tion of portions of a system due to stalls and bottlenecks.
A scalable design allows for expanding performance
by increasing the number of computational nodes in
a system. Regularity, an often-noted characteristic of a
Systolic Array, is a consequence of the scalability goal
and not itself part of the definition of a Systolic Array.
Another advantage of regularity is that the system can
be scaled by repeating a common subsystem design, a
benefit to designers that has reinforced use of regularity
as a way to accomplish scalability.

The Systolic Array approach initially led to very
rigidly synchronous hardware designs that, while ele-
gant, proved overly constraining for many program-
ming solutions. While balance is desirable, the tight
coupling of systolic systems is not always desirable.
Designs of more programmable Systolic Arrays worked
to preserve the benefits of systolic communication while
generalizing the framework to allow for more applica-
tion diversity.

With tight coupling, any stall in communication will
stall computation and vice versa. For many applications,
alooser coupling that allowed coupling at a level of data
blocks instead of individual data elements was advan-
tageous. Looser coupling also leads to increased ability
to overlap communication and computation in prac-
tice. As a result, the idea of Systolic Arrays evolved from
an academic concept to realization in microprocessors
such as the CMU/Intel iWarp.

Increasing the degree of independence of individual
processors in an array adds complexity for flexibility
and affects the efficiency and performance of an array.
One design consideration is whether individual pro-
cessors have a local control store or a design where
instructions were delivered via the processor intercon-
nects to be executed upon arrival. The latter was some-
times referred to as an Instruction Systolic Array (ISA).
Synchronous broadcasting of instructions to an array, as
opposed to the flow of instructions via the interconnect,
would be inconsistent with the goals of Systolic Array
designs because it would introduce long paths and the
associated delays. Processors with individual control

2006

Systolic Arrays

stores have been referred to as programmable Systolic
Arrays, and therefore incur some overhead for the ini-
tial loading of the control stores.

As a design methodology for VLSI, silicon imple-
mentations were generally hard coded to a large degree
once a design was determined. The resulting array per-
formed a fixed function and offered no ability to be
loaded with a new algorithm for other functions. Such
designs could be optimized to offer the most efficient
implementations with the least flexibility for future
changes by customizing the cells and the connection
networks. More flexible designs offered more design
reuse, and thereby offered the opportunity to amor-
tize development costs over multiple uses in exchange
for some loss of efficiency, increase in silicon size and
generally some loss of array performance.

The most flexible implementations of Systolic
Arrays were machines developed principally for aca-
demic and research purposes to host the exploration
and demonstration of Systolic Algorithms. The Warp
and iWarp machines, developed under the guidance of
H. T. Kung at Carnegie Mellon University, were such
machines.

Systolic Arrays have garnered substantial attention in
the development of Systolic Algorithms, which have
proven to be efficient at creating solutions suited to the

demands of real-time systems in terms of reliability and
the ability to meet stringent time constraints. Develop-
ment of error detections and fault tolerance in Systolic
Algorithms has also received substantial attention.

Systolic Algorithms are among the most efficient
class of algorithms for massively parallel implementa-
tion. A systolic algorithm can be thought of as having
two major parts: a cell program and a data flow specifi-
cation. The cell program defines the local operations of
each processing element, while the data flow describes
the communication network and its use (Fig. 2).

One nice property of a Systolic Algorithm is that
each processor communicates only with a few other
processors. It is thus suitable for implementation on a
cluster of computers in which we seek to avoid costly
global communication operations. Systolic Algorithms
require preservation of data ordering within a stream
but do not require that streams of data proceed in
lockstep as they would have in the earliest hardware
implementations of Systolic Arrays.

A Systolic Algorithm will make multiple uses of
each input data item, make extensive use of concur-
rency, rely on only a few simple cell types, and utilize
simple and regular data and control flows. Bottlenecks
to computational speedups are often caused by limited
system memory bandwidths, known as von Neumann
bottlenecks, rather than limited processing capabilities

(Fig. 3).

e Xay — Xy — Xpy = Xo Cell0 Cell 1
preloaded preloaded
with W, with W,

Yo Y Yo Y3

Cell 2 Cell 3
preloaded preloaded
with W, with W,

0,000,0,...

Outputs (every two cycles):
Yi = WoXj+ WiXip1+ WoXij o+ WaXj,3

Each cell computes:
Xout = Xin

Yout = Yint Wiocal ® Xin

Systolic Arrays. Fig. 2 Systolic array implementation for a convolution product

Cell O Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9 Cell 10
Radix-4 Radix-4 Radix-4 Radix-4 Radix-4 Radix-4 Radix-4 Radix-4 Radix-4 Radix-4 Radix-4
butterfly data butterfly data butterfly data butterfly data butterfly data butterfly
computation reordering computation reordering computation reordering computation reordering computation reordering computation

(256) (64) (16) (1)

Systolic Arrays. Fig. 3 Systolic array implementation for a 4096-point FFT

Systolic Arrays

2007

Systolic Algorithms have been shown to have wide
applicability. They utilize a computational model for a
wide range of parallel processing structures not lim-
ited to the initially targeted special-purpose needs, and
which offer efficient operations on parallel computers in
general, not just special-purpose designs. For instance,
linear algebra algorithms and FFT algorithms are com-
putationally demanding, especially when high through-
put rates are expected, and they display a high degree
of regularity. These algorithms are ideal candidates for
parallel implementation via Systolic Algorithms.

The Colossus Mark II, built in 1944, has been cited as the
first digital computer known to have used a technique
similar to Systolic Arrays.

In 1978, H. T. Kung and Charles E. Leiserson pub-
lished their concept of Systolic Arrays. They made sys-
tematic use of ideas that were already present in older
architectural paradigms in order to respond to the new
challenges posed by VLSI technology. This sparked
much interest and many designs for Systolic Arrays.
While there have been many designs, only a handful
have been actually built and put into use. Here is a brief
review of key systems in chronological order.

The earliest Systolic Arrays were introduced as a
straightforward way to create scalable, balanced, sys-
tems for special-purpose computations, by directly
embodying a systolic algorithm in the hardware design.
These early Systolic Arrays were very limited in appli-
cations because the algorithm was expressed in efficient
and special-purpose designs. Changing an algorithm
implemented as a Systolic Array may be difficult or
impossible without redesigning the hardware, particu-
larly the communication interconnects. More general
processors used in parallel have been shown to be able
to perform a broad range of applications, but are often
too large, too slow, or too expensive due to inefliciencies
imposed by communication overhead.

Systolic Convolution Chip

The systolic convolution chip was created at CMU
in 1979 to solve finite-sized two-dimensional convo-
lutions. All nodes in a system performed the same
operation while data flowed through the systems in a
completely regular synchronous manner (Fig. 4).

Latch

Input

Latch

Register

MUL

Qutput ADD

Systolic Arrays. Fig. 4 2-D convolution systolic system cell
architecture

ESL Systolic Processor

A Systolic Array to compute convolutions and other sig-
nal processing computations was designed and imple-
mented at ESL and operational by 1982. Seven nodes
fit on a board measuring 37 cm by 40 cm using dis-
crete high-performance components with each node
capable of ten million operations per second. Up to
five boards could be linked together in a system, which
was attached to a VAX 11/780 host machine. Accessing
the capabilities of the Systolic Array from a high-level
language was a key innovation of this Systolic Array.
A Fortran program viewed capabilities as a function
to call with information on the kernel to execute the
input data and where to store the output data. The ESL
systolic processor was able to greatly expand the appli-
cation domain for which it was suited by including local
memory to hold more kernel elements and a control
unit to create addresses to access data from memory.
This systolic system could perform 1-D and 2-D convo-
lutions, matrix multiplication, and Fourier and cosine
transforms (Fig. 5).

NOSC Systolic Array Test Bed

A programmable Systolic Array, formed using standard
off-the-shelf Intel 8051 microprocessors, was built by
the Naval Ocean Systems Center (NOSC) from 1981
to 1983. The microprocessor operated as the control
unit, while a separate arithmetic unit on the board con-
sumed and output data. The arithmetic processor was
directly connected to the communication ports so as
to tightly link computations and communications. The
NOSC test bed contained 64 nodes arranged in an 8 x 8
grid. Each node fits on a 6 x 24-cm board. Each node
in the system is connected to five other nodes. The

2008

Systolic Arrays

Control
(data) Latch
Control
(addr) Latch
Memory
Control
MUL ADD
MAC
Input
Latch
Results
(output) Latch

Systolic Arrays. Fig. 5 ESL systolic cell architecture

topology allows for direct implementation of several key
Systolic Algorithms such as matrix multiplication by a
hexagonal array.

All programming was done in assembly language.
Node performance was about 24 K FLOPs for a total
performance of 1.5 MFlop for the system. The machine
was a test bed for software development, and the design
could not extend beyond 64 nodes. NOSC research
into Systolic Arrays spanned a number of machines
from 1979 to 1991 including the Systolic Array Proces-
sor (SAP), the Systolic Linear Algebra Parallel Processor
(SLAPP), the Video Analysis Transputer Array (VATA),
and the High-Speed Systolic Array Processor (HISSAP)
test bed. Subsequent algorithm development moved to
iWarp and on to general-purpose machines (Fig. 6).

Programmable Systolic Chip (PSC)

A programmable Systolic Array chip designed at CMU
led to a functional nine-node system in 1984. The archi-
tecture of the PSC was similar to the NOSC Systolic
Array but was organized around three buses instead of
one, cells had three input and output ports to attach to
other cells. All programming was in assembly language.
The machine was used for low-level image processing
computations (Fig. 7).

Controller
(Intel 8051
Microprocessor)

MUL

Memory
ADD

Communication

Systolic Arrays. Fig. 6 NOSC test bed cell architecture

Geometric Arithmetic Processor
(GAPP)

The NCR GAPP programmable Systolic Array is
a mesh-connected single-bit cell that communicates
directly with neighbors to the North, East, South, and
West. It was first implemented as a medium-scale inte-
gration (MSI) breadboard in 1982 for a 6 x 12 cell array.
GAPP I was a PLA-based 3 x 6 cell chip, GAPP II
was a 6 x 12 cell in 3-"m CMOS, and finally a ver-
sion in two-micron CMOS clocked at 10 MHz with
30 MB/s input and 30 MB/s output bandwidth was sold
as NCR45CG72 and could perform 28 million eight-
bit additions per second. The use of one-bit data paths
and one-bit registers minimize the size of a single
cell. Local memory on a node was only 128 bits. The
machine broadcast long instruction words to control
the machine in pure lockstep SIMD. Programming was
originally done in STOIC, a variant of Forth, but later
development of an “Ada-like” language compiler eased
programming to create important libraries of com-
monly used functions. VAX, IBM PC-AT, and Sun 3
workstation host support existed. Military and space
systems leveraged GAPP for use in image processing,
and the construction of the largest array of processing
elements of their generation (82,944 processing cells in
one system reported in 1988) (Fig. 8).

Warp and iWarp
The Warp project (1984-1993) was a series of increas-
ingly general-purpose programmable Systolic Array

Systolic Arrays

2009

Micro
sequencer

Microcode

RAM ALU

Register

MAC file

Ports

Systolic Arrays. Fig.7 PSC cell architecture

North

West East
Memory
ALU
Carry
Sum

South

Systolic Arrays. Fig. 8 Geometric arithmetic cell
architecture

systems and related software, created by Carnegie Mel-
lon University (CMU) and developed in conjunction
with industrial partners G.E., Honeywell, and Intel
with funding from the US Defense Advanced Research
Projects Agency (DARPA) (see Warp and iWarp). Warp
was a highly programmable Systolic Array computer
with a linear array of ten or more cells, capable
of performing ten million single-precision floating-
point operations per second (10 MFLOPS). A ten-cell
machine had a peak performance of 100 MFLOPS. The
iWarp machines doubled this performance, delivering
20 MFLOPS single-precision and supporting double-
precision floating point at half the performance.

Bus 1
Bus 2

Bus 3

iWarp was based on a full custom VLSI component
integrating a 700,000 transistor LIW microprocessor, a
network interface, and a switching node into one sin-
gle chip of 1.2 x 1.2 ¢m silicon. The processor dissipated
up to 15 watts and was packaged in a ceramic pin grid
array with 280 pins. Intel marketed the iWarp with the
tag line “Building Blocks for GigaFLOPs” The standard
iWarp machines configuration arranged iWarp nodes in
a2m x 2n torus. All iWarp machines included the “back
edges” and, therefore, were tori.

Warp and iWarp were programmed using high-
level languages and domain-specific program genera-
tors. About 20 Warp machines were built, and more
than 1,500 iWarp processors were manufactured. Warp
and iWarp handled a large number of image and signal
processing algorithms (Figs. 9 and 10).

Future Directions

Faced with relatively little growth in transistor speeds
coupled with ever-expanding transistor densities in the
late 1970s and early 1980s, the use of transistors for many
forms for parallelism, from multiple cells to LIW, were
urgently explored. Investigations in Systolic Arrays gave
rise to fruitful exploration of Systolic Algorithms. Tran-
sistor speeds did finally explode, which helped divert
interest from parallelism including Systolic Arrays and
Systolic Algorithms.

By 2005, once again clock speed gains dramatically
slowed, while transistor densities continued growing
in accord with Moore’s Law as much as they had at
the dawn of VLSI. Hardware parallelism, this time as
multicore processors, and parallel programming have

2010

Systolic Arrays

y to X (node+1)
5| XQueue N =
512 x 32 toY (node—1)
>
Y
> Y Queue —_ <
512 x 32 J
! AReg [
5! 31x32 [—>|FADD
Data Y
Memory — crossbar Mem
32k x 32 | 2k x 32
A A
2| MReg FMUL
> 31x32 > —|
_ €
literal
Address
Address | € Gen
addr Address crossbar
queue
512 x 32 to Addr (node+1)

Systolic Arrays. Fig. 9 PC-warp cell architecture

Up
addr Memory
data
>
Left — 7] IWarp ' Right
< processor [€——
Down

Systolic Arrays. Fig. 10 iWarp cell architecture

once again found widespread interest. Single proces-
sor designs have become the cells in multicore and
many core processor designs, and interconnect debates
are being revisited. Interconnection of many processor

cores faces the same challenges Systolic Arrays worked
to solve the first time the industry found transistor den-
sity on the rise without transistor performance moving
nearly as quickly, and Systolic Algorithms proved their
usefulness via programmability.

Related Entries
» VLIW Processors
» Warp and iWarp

Bibliographic Notes and Further
Reading

Application-specific solutions, like the early Systolic
Arrays, continue today in the annual IEEE International
Conference on Application-specific Systems, Architec-
tures and Processors. This conference traces its ori-
gins back to the International Workshop on Systolic
Arrays, first organized in 1986. It later developed into
the International Conference on Application-Specific

http://dx.doi.org/10.1007/978-0-387-09766-4_471
http://dx.doi.org/10.1007/978-0-387-09766-4_472

Systolic Arrays

20Mm

Array Processors. With its current title, it was organized
for the first time in Chicago, USA, in 1996.

Systolic Arrays were first described in 1978 by
H. T. Kung and Charles E. Leiserson [3, 4]. VLSI designs
took serious note of the concept and the design princi-
ples [4, 6]. Digital systems operating in a synchronous
fashion utilizing a central clock predated the description
of Systolic Arrays and VLSI by many years, the earliest
such machine has been cited as the Colossus [3] built
in 1944. Additional reading about actual realizations of
Systolic Arrays are available[1, 7-13].

Bibliography

1. Cloud EL (1988) Frontiers of massively parallel computation. In:
Proceedings of the 2nd symposium on the frontiers of massively
parallel computation, Fairfax, VA, pp 373-381

2. Cragon HG (2003) From fish to colossus: how the German Lorenz
cipher was broken at Bletchley park. Cragon Books, Dallas, ISBN:
0-9743045-0-6

3. Frank GA, Greenawalt EM, Kulkarni AV (1982) A systolic proces-
sor for signal processing. In: Proceedings of AFIPS 82, June 7-10.
ACM, New York, pp 225-231

10.

1L

. Fisher AL, Kung HT, Monier LM, Dohi Y (1983) Architecture of

the PSC: a programmable systolic chip. In: Proceedings of the
10th annual international symposium on computer architecture
(ISCA ’83), Stockholm, Sweden. ACM, New York, Vol 11, Issue 3,
pp 48-53

. Gross T, O’Hallaron DR (1998) iWarp: anatomy of a parallel

computing system. MIT Press, Cambridge, MA, 488 p

. Kung HT, Leiserson CE (1978) Systolic arrays (for VLSI). In: Duff

IS, Stewart GW (eds) Proceedings of sparse matrix proceedings
1978. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, pp 256-282

Kung HT, Song SW (1981) A systolic 2-D convolution chip. In:
Proceedings of 1981 IEEE computer society workshop on com-
puter architecture for pattern analysis and image database man-
agement, 11-13 Nov 1981, Hot Springs, Virginia, pp 159-160

. Kung HT (1982) Why systolic architectures? IEEE Comput

15(1):37-46

. Kung SY (1988) VLSI array processors. Prentice Hall, Upper

Saddle River

Mead C, Conway L (1980) Chap. 8, Highly concurrent systems.
In: Introduction to VLSI systems. Addison-Westey series in com-
puter science, Addison-Wesley, Menlo Park, CA, pp 263-332
Tirpak FM Jr (1991) Software development on the high-speed sys-
tolic array processor (HISSAP): lessons learned. Technical report
1429. Naval Ocean Systems Center, San Diego, CA

	S
	Scalability
	Scalable Coherent Interface (SCI)
	Definition
	Discussion
	Related Entries

	Scalasca
	Synonyms
	Definition
	Discussion
	Introduction
	Functionality
	Instrumentation
	Measurement
	Call-Path Profiling
	Wait-State Analysis
	Parallel Wait-State Search
	Wait-State Search on Clusters without Global Clock

	Future Directions
	Time-Series Call-Path Profiling
	Identifying the Root Causes of Wait-State Formation

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Scaled Speedup
	Scan for Distributed Memory, Message-Passing Systems
	Synonyms
	Definition
	Discussion
	Algorithms
	Linear Array
	Binary Tree
	Binomial Tree
	Simultaneous Trees

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Scan, Reduce and
	Scatter
	Scheduling
	Scheduling Algorithms
	Synonyms
	Definition
	Discussion
	Introduction
	Task Graphs and Scheduling
	Scheduling One-Dimensional Loops
	Scheduling Multidimensional Loops
	From Loops to Recurrences

	Scheduling Today and Future Directions
	Bibliographic Notes and Further Reading
	Bibliography

	SCI (Scalable Coherent Interface)
	Synonyms
	Definition
	Discussion
	Introduction
	Goals of SCI's Development
	Main Concepts of SCI
	Implementations and Applications of SCI
	System Area Network for Clusters
	Memory Interconnect for Cache-Coherent Multiprocessors
	I/O Subsystem Interconnect

	Concluding Remarks

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Semantic Independence
	Definition
	Discussion
	Introduction
	Central Idea and Program Example
	Formal Definition
	Independence Between Two Statements
	Mutual Independence Between More than Two Fragments
	Independence Inside a Single Statement

	Disjoint Parallelism and Its Limitations
	Practical Relevance

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Semaphores
	Sequential Consistency
	Server Farm
	Shared Interconnect
	Shared Virtual Memory
	Shared-Medium Network
	Shared-Memory Multiprocessors
	Synonyms
	Definition
	Discussion
	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	SHMEM
	SIGMA-1
	Synonyms
	Definition
	Architecture
	Organization
	Packet and Instruction Architecture

	Software
	System Performance
	Discussion
	Bibliography

	SIMD (Single Instruction, Multiple Data) Machines
	SIMD Extensions
	SIMD ISA
	Single System Image
	Synonyms
	Definition
	Discussion
	Introduction
	Application User's View
	Programmer's View
	Administrator's View

	Implementation of an SSI
	Shared Memory
	Management of System Components
	Debugger Support
	Process Migration
	Stdin/Stdout
	File System
	System Calls
	Checkpoint/Restart
	Batch System
	Login Load Leveling
	System Log Management
	Software Maintenance

	Imperfect SSI
	Future Directions

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Singular-Value Decomposition (SVD)
	Sisal
	Definition
	Discussion
	Introduction
	Language Definition
	Build-in-Place Analysis
	Update-in-Place Analysis

	Runtime System
	Performance

	Bibliographic Notes and Further Reading
	Bibliography

	Small-World Network Analysis and Partitioning (SNAP) Framework
	SNAP (Small-World Network Analysis and Partitioning) Framework
	Synonyms
	Definition
	Discussion
	Introduction
	Graph Representation
	Parallelization Strategies
	SNAP Kernels for Exploratory Network Analysis
	Community Identification Algorithmsin SNAP

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	SoC (System on Chip)
	Definition
	Discussion
	Historical View
	What Is a SoC?
	Processors
	Busses
	Dedicated Components
	Other Components
	Quality Criteria
	An Example

	Why Is It a SoC ``Revolution''?
	SoC Design Methodology
	MPSoC and Future Trends

	Bibliographic Notes and Further Reading
	Bibliography

	Social Networks
	Introduction
	Background and Notation
	Petascale Computing Challenges for Social Network Problems
	Techniques
	Massive Multithreading Techniques
	Distributed Streaming Algorithms
	Dynamical Processes on Social Networks

	Conclusions
	Acknowledgments
	Bibliography

	Software Autotuning
	Software Distributed Shared Memory
	Synonyms
	Definition
	Discussion
	Introduction
	Implementation Issues
	Implementations Using Virtual Memory
	Implementations Using Instrumentation
	Language-Level Implementations

	Single- Versus Multiple-Writer Protocols
	Memory Models
	Data and Metadata Location
	Leveraging Hardware Coherence
	Leveraging Additional Hardware Support
	Sharing in the Wide Area
	Compiler and Language-Level Support
	Future Directions

	Related Entries
	Bibliographic Notes and Further Reading
	Acknowledgment
	Bibliography

	Sorting
	Definition
	Discussion
	Introduction
	Parallel Sorting Algorithms
	Parallel Quicksort
	Bitonic Sort
	Parallel Radix Sort
	Sample Sort
	Histogram Sort

	Architectures and Theoretical Models
	Sorting Networks and Early Theoretical Models
	GPU-Based Sorting
	Shared Memory Sorting
	Distributed Memory Sorting

	Future Directions

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Space-Filling Curves
	Synonyms
	Definition
	Discussion
	Introduction
	Construction
	Computation of Mappings
	Examples of Space-Filling Curves
	Locality Properties of Space-Filling Curves
	High Performance Computing and Load Balancing with Space-Filling Curves

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	SPAI (SParse Approximate Inverse)
	Synonyms
	Definition
	Discussion
	Introduction
	The SPAI Algorithm
	Modifications of SPAI
	Properties and Applications

	Related Entries
	Bibliographic Notes and Further Reading
	Books
	Software

	Bibliography

	Spanning Tree, Minimum Weight
	Definition
	Sequential Algorithms
	Parallel Algorithms
	Implementation of Parallel Bor'27uvka
	Edge List Representation
	Adjacency List Representation
	Flexible Adjacency List Representation

	Analysis of Implementations
	A Hybrid Parallel MST Algorithm
	Implementation with Fine-Grained Locks
	Implementation on Distributed-Memory Machines
	Experimental Results
	Bibliography

	Sparse Approximate Inverse Matrix
	Sparse Direct Methods
	Synonyms
	Definition
	Discussion
	Task Graph Model of Sparse Factorization
	Supernodes
	An Effective Parallelization Strategy
	Sparse Factorization Formulations Based on Task Roles
	Pivoting in Parallel Sparse LDLT and LU Factorization
	Parallel Solution of Triangular Systems

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Sparse Gaussian Elimination
	Sparse Iterative Methods, Preconditioners for
	SPEC Benchmarks
	Synonyms
	Definition
	Discussion
	Introduction
	SPEC HPC96
	SPEC HPC2002
	SPEC OMP2001
	SPEC MPI2007

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	SPEC HPC2002
	SPEC HPC96
	SPEC MPI2007
	SPEC OMP2001
	Special-Purpose Machines
	Speculation
	Speculation, Thread-Level
	Synonyms
	Definition
	Discussion
	Basic Concepts in Thread-Level Speculation
	Classification of Thread-Level Speculation Schemes
	Buffering and Managing Speculative State
	Multiple Versions of the Same Variablein the System
	Multiple Speculative Tasks per Processor
	Multiple Versions of the Same Variablein a Single Processor
	Merging of Task State

	Detecting and Handling Dependence Violations
	Basic Concepts
	Techniques to Avoid Squashes

	Initial Efforts in Thread-Level Speculation
	Other Uses of Thread-Level Speculation
	Machines that Use Thread-Level Speculation
	Bibliography

	Speculative Multithreading (SM)
	Speculative Parallelization
	Speculative Parallelization of Loops
	Synonyms
	Definition
	Discussion
	Introduction
	Fundamentals of Loop Parallelization
	Compiler Limitation and Run-time Parallelization
	DOALL Speculative Parallelization: The LRPD Test
	DOACROSS Speculative Parallelization
	While Loop Speculative Parallelization
	Speculative Parallelization as a Parallel Programming Paradigm
	Future Directions

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Speculative Run-Time Parallelization
	Speculative Threading
	Speculative Thread-Level Parallelization
	Speedup
	SPIKE
	Definition
	Discussion
	Introduction
	The SPIKE Algorithm: Basics
	SPIKE: A Hybrid and Polyalgorithm
	The Truncated SPIKE Scheme for Diagonally Dominant Systems
	LU/UL Strategy
	Unconventional Partitioning Schemes
	Speed-Up Performances on Small Number of Processors

	The Recursive SPIKE Scheme for Non-Diagonally Dominant Systems
	The SPIKE Solver: Current and Future Implementation

	Related Entries
	Bibliography Notes and Further Reading
	Bibliography

	Spiral
	Definition
	Discussion
	Introduction
	Algorithm Representation
	Spiral Program Generation: Overview
	Fixed Input Size: Straightline Code
	Fixed Input Size: Loop Code
	Fixed Input Size: Parallel Code
	General Input Size
	Extensions

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	SPMD Computational Model
	Definition of the Subject
	Introduction

	The SPMD Model
	The EPEX Programming Environment – Implementation of the SPMD Model
	Advancing into the Future: Directions, Opportunities, Challenges, and Approaches
	Summary
	Acknowledgment
	Bibliography

	SSE
	Stalemate
	State Space Search
	Stream Processing
	Stream Programming Languages
	Synonyms
	Definition
	Discussion
	Overview
	Example Programming Models
	Messaging
	Methods for Graph Wiring

	Parallelism in Stream Programs
	Optimization and Scheduling
	Program Transformation
	Algorithms
	Data Structures and Synchronization

	Relation to Other Parallel Programming Models
	Functional Reactive Programming
	Relation to Data-parallel Models
	Relation to Fork-Join Shared-Memory Parallelism

	Future Directions

	Related Entries
	Bibliography

	Strong Scaling
	Suffix Trees
	Synonyms
	Definition
	Discussion
	Introduction
	Applications
	Suffix Tree Construction
	Serial Suffix Tree Construction Algorithms
	Parallel Suffix Tree Construction
	Practical Parallel Algorithms for In-Core Strings
	Practical Parallel Algorithms for Out-of-Core Strings

	Suffix Arrays

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Superlinear Speedup
	SuperLU
	Synonyms
	Definition
	Discussion
	Introduction
	Overall Algorithm
	Simple Driver (assumes Dr = Dc = I)
	Expert Driver
	Common Features of the Three Libraries
	Supernodes in the Factors
	Sparse Matrix Data Structure
	Options Input Argument
	Performance-Tuning Parameters
	Example Programs

	Differences Between SuperLU/ SuperLU_MT and SuperLU_DIST
	Numerical Pivoting
	Sparsity-Preserving Reordering
	Task Ordering

	Parallelization and Performance
	Future Directions

	Related Entries
	Bibliography

	Supernode Partitioning
	Superscalar Processors
	Synonyms
	Definition
	Discussion
	Introduction
	Instruction-Level Parallelism and Dependences
	Register Renaming
	Speculative Execution
	Out-of-Order Execution
	Brief Early History
	Bibliography

	SWARM: A Parallel Programming Framework for Multicore Processors
	Definition
	Motivation
	Model for Multicore Architectures
	Multicore Model
	Case Study: Merge Sort

	Programming in SWARM
	Algorithm Design and Examples in SWARM
	Related Entries
	History
	Bibliography

	Switch Architecture
	Synonyms
	Definition
	Discussion
	Canonical Switch Architecture
	Alternative Switch Architectures
	Input Buffer Organization
	Pipelined Organization
	High-Radix Switch Architectures

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

	Switched-Medium Network
	Switching Techniques
	Definition
	Discussion
	Introduction
	A Generic Router Model
	Basic Concepts
	Basic Switching Techniques
	Circuit Switching
	Packet Switching
	Virtual Cut-Through (VCT) Switching
	Wormhole Switching

	Virtual Channels
	A Comparison of Switching Techniques

	Related Entries
	Bibliographic Notes and Further Reading
	Acknowledgments
	Bibliography

	Symmetric Multiprocessors
	Synchronization
	Synonyms
	Definition
	Discussion
	Hardware Primitives
	NB:

	Atomicity
	Relaxations of Mutual Exclusion
	Fairness
	Simple Busy-Wait Locks
	Scalable Busy-Wait Locks
	Scheduler-Based Locks

	Condition Synchronization
	Barriers

	Semaphores
	Monitors
	Semantic Details

	Message Passing
	Distributed Locking
	Rendezvous and Remote Procedure Call

	Related Entries
	Bibliographic Notes
	Bibliography

	System Integration
	System on Chip (SoC)
	Systems Biology, Network Inference in
	Synonyms
	Definition
	Discussion
	Introduction
	Information Theoretic Approaches
	Parallel Information Theoretic Approach

	Approaches Based on Bayesian Networks
	Parallel Exact Structure Learning

	Approaches Based on Differential Equations
	Parallelization of Multiple Regression Algorithms

	Future Directions

	Bibliographic Notes and Further Reading
	Bibliography

	Systolic Architecture
	Systolic Arrays
	Synonyms
	Definition
	Discussion
	Background: Motivated by Emergence of VLSI
	Concept
	Importance of Interconnect Design
	Variations
	Systolic Algorithms
	Systolic Array Machines

	Systolic Convolution Chip
	ESL Systolic Processor
	NOSC Systolic Array Test Bed
	Programmable Systolic Chip (PSC)
	Geometric Arithmetic Processor (GAPP)
	Warp and iWarp
	Future Directions

	Related Entries
	Bibliographic Notes and Further Reading
	Bibliography

