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Abstract

In this paper, we present a GPU-based sorting algo-
rithm, GPUMemSort, which achieves high performance
in sorting large-scale in-memory data by exploiting high-
parallel GPU processors. It consists of two algorithms:
in-core algorithm, which is responsible for sorting data in
GPU global memory efficiently, and out-of-core algorithm,
which is responsible for dividing large scale data into mul-
tiple chunks that fit GPU global memory. GPUMemSort
is implemented based on NVIDIA CUDA framework and
some critical and detailed optimization methods are also
presented. The tests of different algorithms have been run
on multiple data sets. The experimental results show that
our in-core sorting can outperform other comparison-based
algorithms and GPUMemSort is highly effective in sorting
large-scale in-memory data.
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1. Introduction

With the improvement of CPU performance and multi-
core CPU, bandwidth between CPU and memory becomes
the bottleneck of large-scale computing. Many hard-
ware vendors, such as AMD, IBM, NVIDIA integrate co-
processors to offload tasks from CPU and this can alleviate
the effect caused by low CPU-memory bandwidth. Mean-
while, high performance computers own much larger mem-
ory than before, so it is very important to develop efficient
co-processors algorithm to deal with large-scale in-memory
data.

Recently, GPU has become the best-known co-processor.
It has been utilized in many different sorts of general
purpose applications. GPU is suitable for highly paral-
lel,compute intensive workloads, because of higher mem-
ory bandwidth, thousands of hardware thread contexts with
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hundreds of parallel compute pipelines executing programs
in a SIMD fashions. The peak performance of GPUs has
been increasing at the rate of 2.5 - 3.0 times a year, much
faster than the performance of CPUs based on Moore’s law.

Nowadays, several GPGPU (General Purpose comput-
ing on GPUs) languages,such as OpenCL[2] and NVIDIA
CUDA [1]are proposed for developers to use GPUs with ex-
tended C programming language, instead of graphics API.
In CUDA, threads are organized in a hierarchy of grids,
blocks, and threads, which are executed in a SIMT (single-
instruction, multiple-thread) manner; threads are virtually
mapped to an arbitrary number of streaming multiproces-
sors (SMs) through warps. There exists several types of
memory, such as register, local memory, shared memory,
global memory, constant memory, etc. Different type of
memory owns different characteristics. Therefore, how to
organize the memory access hierarchy is very important to
improve programs’ performance. In this paper, the GPU
part of our algorithm is implemented with CUDA and we
will show how we design and optimize memory access pat-
tern in details.

Main Contribution: We proposes a novel graphics co-
processor sorting algorithm to sort large-scale in-memory
data. Our idea is to split a large-scale sorting task into a
number of disjoint ones which can fit GPU memory. In gen-
eral, our contributions are as follows:

(1) We provide the design, detailed implementation and
tests of a graphics co-processors sorting algorithm, which
can sort large-scale in-memory data.

(2) We enhance GPU Sample Sort[12] algorithm, the
fastest comparison-based GPU sorting algorithm. The en-
hanced algorithm outperforms the others because it can
achieve better load balancing.

The notations in this paper are summarized in Table 1.

The paper is organized as follows. Section 2 will intro-
duce the background and the related work. In section 3, the
proposed algorithm is introduced. Detailed implementation
and optimization will be presented in section 4. Our exper-
imental results are shown in section 5. In section 6, we will
give the conclusion and future work.



Table 1. NOTATIONS
NOTATION DESCRIPTION

N number of elements in the input
data set

n size of elements which can
fit into the global memory

d number of chunks
s number of sample points

s[i] the i th sample point
e[i] the i th input element

list[i] the i th sorted list

2. Background and Related Work

2.1. Parallel Sorting Algorithm

Parallel sorting has been studied extensively during the
past 30 years. Generally, parallel sorting algorithms can be
divided into two categories[3]:

• Partition-based Sorting: First, use partition keys to
split the data into disjoint buckets. Second, sort each bucket
independently, then concatenate sorted buckets.

• Merge-based Sorting: First, partition the input data
into data chunks of approximately equal size and sort these
data chunks in different processors. Second, merge the data
across all the processors.

Each category has its own potential bottleneck. Partition-
based algorithms have to deal with problem of how to keep
load balancing among all the processors. Merge-based sort-
ing algorithms perform well only for a small number of pro-
cessors.

To solve the load balance problem, Parallel Sorting by
Regular Sample (PSRS)[5] guarantees that the size of data
chunk assigned to processor is less than ( 2n

p − n
p2 − p + 1).

A new one [4] can guarantee that each processor will have
at most (n

p + n
s − p) elements , where p ≤ s ≤ n

p2 and s is
a parameter.

2.2. GPU Programming with CUDA

The NVIDIA CUDA programming model is created for
developing applications on GPU. Some major principles [6]
on this platform are: (1) Leverage zero-overhead thread
scheduling to hide memory latency. (2) Optimize the use of
on-chip memory to reduce bandwidth usage and redundant
execution. (3) Group threads to avoid SIMD penalties and
memory port/bank conflicts. (4) Threads within a thread
block can communicate via synchronization, but there is no
built-in global communication mechanism for all threads.

2.3. Parallel Sorting Algorithm based on GPU

Since most sorting algorithms are bounded by mem-
ory bandwidth, sorting on the high-bandwidth GPUs be-
comes a popular topic. Purcell[7] introduced bitonic merge

sort, while Kipfer and Westermann [8]improved it to odd-
even merge sort. Greβ and Zachmann[9] introduced the
GPUABiSort based on adaptive bitonic sorting. Naga
K. Govindaraju[3] presented an GPUTeraSort algorithm
to sort billion record wide-key databases. Also, some
CUDA-based sorting algorithms have been proposed re-
cently. Erik Sintorn [10]introduced a hybrid algorithm com-
bining bucket sort and merge sort, but can only sort floats
as it uses a float4 in merge sort. Cederman [11]proposed
Quicksort in CUDA, which is sensitive to the distribution of
the input data. The comparison-based Thrust Merge method
by Nadathur Satish, etc combines odd-even merge and two-
way merge to balance the load. Satishet.al.[13] presented
GPU radix sort for integers. [12] is a randomized sample
sort that significantly outperforms Thrust Merge. Because
of its random selection, the load balancing is bad.

However, most of them are designed for small-scale data
sorting and are ineffective when data size is larger than the
global memory size.

3. GPUMemSort Algorithm

In this section, we will present the two parts of
GPUMemSort.The Out-of-core sorting can divide large-
scale data into multiple disjointed subsets and assign them
to GPU. The In-core sorting can sort the subsets efficiently.

3.1 Outofcore algorithm

We adopt the idea of Deterministic Sample-based Par-
allel Sorting (DSPS) in out-of-core sorting algorithm. The
idea behind DSPS algorithm is to find s-1 samples to parti-
tion the input data set into several data chunks. Elements in
(i+1)-th chunk are no less than those in (i)-th chunk. The
sizes of these chunks has a deterministic upper bound. They
can be put into GPU global memory by adjusting parameter
d in the algorithm according to the value of n.

The out-of-core algorithm can be described as follows:
Step 1: Divide the input data set into d chunks, each

contains n
d elements. Without loss of generality, we assume

that d divides n evenly.
Step 2: Copy the chunks to GPU global memory one by

one, sort them by in-core algorithm. Then split the chunk
into d buckets, bucket j of chunk i is called Bin[i][j]. The x
th data in chunk i will be put into bucket Bin[i][

⌊
x
d

⌋
]. Copy

these buckets back to main memory.
Step 3: Swap buckets among chunks, ∀i ∈ [0, d-1], j ∈

(i, d-1], switch Bin[i][j] and Bin[j][i]. So that new chunk i
consists of {Bin[0][i],Bin[1][i],...,Bin[d-1][i]}.

Step 4: In the d-1 th chunk, ∀i ∈ [0, d-1],Bin[i][d-1]
selects the ((x+1) n

d2∗s ) th element as a sample candidate.
0≤ x ≤ s-1. The sample candidates list should contain s*d
sample points.

Step 5: Sort the sample candidate list, select each
(k+1)*s sample point, k∈[0,d-2] as s[k], where s[d-1] is the
largest. Copy the sample points array from main memory to
GPU global memory.



Step 6: Copy each chunk to GPU global memory again,
split the chunk into d buckets based on d sample points.
The bucket j of chunk i is called NS[i][j] 0≤j≤d-1. After
splitting, all the elements in NS[i][j] should be no larger
than s[j]. At last, copy these buckets back to main memory.

Step 7: Swap buckets among chunks again, new chunk
i consists of {NS[0][i],NS[1][i],...,NS[d-1][i]}. i∈[0,d-1].
All the elements in chunk i are no larger than s[i].

Step 8: ∀ i ∈ [0,d-1], calculate the total length of
chunk i. If the length is less than the threshold Θ,
copy the whole chunk to GPU global memory, use in-
core sorting algorithm to sort it. Otherwise, we will
copy NS[0][i],NS[1][i],...,NS[d-1][i] to GPU one by one.
For NS[j][i], split it into two parts called part[j][i][0]
and part[j][i][1], part[j][i][0] contains elements equal
to s[i] while part[j][i][1] contains the rest. Copy back
the part[j][i][1] to the main memory, then merge all the
part[j][i][1], 0≤j≤d-1 into one array. At last, sort this ar-
ray by GPU and write it back to the result set, fill out the
rest part of result set using s[i].

In step 8, the threshold Θ is the maximum size of ar-
ray that can be sorted on GPU. According to conduction
in [5], we can easily get that: n

d + n
s − d ≤ θ, so d ≥

n

Θ
2 − n

2s +
2
√

(
n
s

−Θ

4 +n)

. This means that if every chunk’s size

is guaranteed to be less than Θ, the number of chunks split-

ted in step1 must be larger than

 n

Θ
2 − n

2s +
2
√

(
n
s

−Θ

4 +n)

.

Suppose that GPU is able to sort 128MB data set once,
the sample number s=64, the N = 1 GB, according to the
conduct above, d ≥ 8.47, so that d must be larger than or
equal to 9.

3.2 Incore algorithm

In-core algorithm is based on GPU Sample Sort, which
is currently the fastest comparison-based sorting algorithm.
However, it encounters load balancing problem. The key to
make subsets well-balanced in sample sorting algorithm is
to find appropriate splitters, such as PSRS(Parallel Sorting
by Regular Sample) and DSPS. However, if they are directly
ported to GPU, overhead of generating splitters will be even
much larger than that of sorting imbalanced subsets. So it
is important to find the tradeoff point between them.

Let’s review the procedure of PSRS. Supposed that the
size of data set is n. First, split the data set into p sub-
sets. Then, for each subset, select s-1 equidistant points as
sample candidate points. Finally, merge the (s-1)*p sample
candidate points, sort them and select s-1 equidistant points
as splitters.

Overhead brought by splitters generation in PSRS is
splitting the whole data set and sorting all the subsets and it
is proportional to the data size.

In-core sorting algorithm uses an innovative strategy to
select sample points. First pick up a set from whole data
set randomly. The size of set equals to (s-1)*k*M (k ≤ p),
M is the maximum size of array that can be sorted in share

memory of one SM. Then, split the set into k subsets and
assign k blocks to sort these subsets in parallel. Afterward,
for each subset, select s-1 equidistant points as sample can-
didate points. At last, merge the (s-1)*k samples, sort them
and select s-1 equidistant points as splitters. The parameter
k should be assigned at runtime depending on data size.

4. Detailed Implementation and Optimization

Here we present the detailed implementation and opti-
mization of GPUMemSort. First describe the task execution
engine, which can overlap data transfer with GPU computa-
tion based on pipeline. Second indicate how to swap buck-
ets between chunks. At last show the compensation algo-
rithm based on optimistic mechanism.

4.1 Task Execution Engine based on Pipeline

The Data transfer between CPU and GPU is a significant
overhead in GPUMemSort algorithm. Without optimiza-
tion, more than 30% of the time would be spent on data
transfer operations between CPU and GPU. On one hand,
GPU can not be fully used because it will remain idle when
data transfer operations are performed. On the other hand,
since the bandwidth between CPU and GPU is fully-duplex,
only 50% bandwidth resource can be used at most simulta-
neously. So Overlapping data transfer from CPU to GPU,
GPU computation and data transfer from GPU to CPU will
bring remarkable performance improvement.

Thus a task execution engine is implemented based on
pipeline mechanism. First, divide a sorting task into three
subtasks: CPU-GPU data transfer, kernel sorting and GPU-
CPU data transfer. Then,pipeline these three type of sub-
tasks based on streaming with asynchronous memory copy
technology proposed by CUDA.Streaming maintains the
dependency, while asynchronous memory copy parallelizes
data transfer operations and sorting operation. Fig. 1 shows
the comparison between GPU classic computation pattern
and pipeline-based one.

4.2 Implementation of Buckets Swap

In the implementation of DSPS, different buckets are
swaped through network communication because different
chunks are scattered in distributed memory. Pointers are
used to avoid hard memory copy.

In Algorithm 1, we present the data structure of pointer
array to swap buckets, and the function of data transfer
from main memory to GPU global memory. Assign each
data chunks TransposeChunk structure, including a vector
of TransposeBlock to record the start address and the size
of a bucket. Then swap the start address and size in the
corresponding TransposeBlock structures. In the coming
data transfer, traverse the buckets and copy them from main
memory to GPU global memory, thus hard memory copy is
avoided.



Figure 1. Comparison between GPU classic
computation pattern and pipeline based com
putation pattern

4.3 Compensation Algorithm based on Optimistic
Machanism

In the step 4 of DSPS, Est[i] is calculated to record the
size of elements equals to s[i] in sample candidate list. In
the coming splitting operation for chunks, it should be guar-
anteed that in NS[i], the number of elements equal to s[i] is
smaller than Est[i] ∗ n

p2∗s . If not, we should try to shift this
element to the adjacent buckets when splitting.

To add the comparison logic above into chunks split-
ting module, a global variable should be maintained for
each bucket to keep record of the number of elements equal
to corresponding splitter. Atomic FAA (Fetch And Add)
method will be called a few times to keep consistency,
thus deteriorating the performance. Otherwise, the size of
chunks in the last step may exceed the threshold θ.

In order to solve this problem, we propose an innova-
tive compensation algorithm based on optimistic mecha-
nism. Assume that ∀iϵ[0, d-1], the number of elements
in NS[i] equal to s[i] is no less than Est[i] ∗ n

p2∗s is a
small probability event and a compensation logic is added
in step 8. First, judge whether the size of each chunk
is no larger than the given θ. If yes, copy this chunk
to GPU global memory and sort it with in-core algo-
rithm. Otherwise, copy NS[0][i],NS[1][i],...,NS[d-1][i] to
GPU one by one. For NS[j][i], split it into two parts:
part[j][i][0] and part[j][i][1], the former contains ele-
ments equal to s[i] while the latter contains the rest. Copy
back the part[j][i][1] to the main memory, then merge all
the part[j][i][1], 0≤j≤d-1 into one array, then sort this ar-
ray employing GPU and write it back to the result set. At
last, fill the rest part of result set with s[i]. In Algorithm 2,

Algorithm 1 Data Structure for buckets swap and coming
data transfer algorithm
Struct TransposeBlock{
int* block ptr;
long size;
};
Struct TransposeChunk{
TransposeBlock blocks[d];
};
procedure memcpyFromHostToDevice(Transpose
Chunk&chunk, int ∗ dvalue)

offset ⇐ 0;
for q = 0 to d do

TransposeBlock& tmpBlock ⇐ chunk.blocks[q];
cudaMemcpyHostToDevice (dvalue + off-
set,tmpBlock.block ptr,sizeof(int) * tmpBlock.size);
offset ⇐ offset + tmpBlock.size;

end for

presented is the pseudo code of compensation algorithm.

5. Experimental Results

In this section, we introduce our hardware environment
and compare our in-core sorting with GPU SampleSort,
GPU QuickSort and Thrust Merge Sort based on six dif-
ferent data sets and show the performance and scalability of
GPUMemSort.

5.1 Hardware Environment

Our system consists of two GPU 260GTX co-processors,
16GB DDR3 main memory and an Intel Quad Core i5-750
CPU. Each GPU connects the main memory through exclu-
sive PCIe 16X data bus, providing 4GB/s bandwidth with
full duplex. Experiments have shown that data transmis-
sions between each GPU and main memory will not be af-
fected too much. Also, time consumed by data transmission
between GPU and main memory can be almost overlapped
by GPU computation. Table 1 shows the bandwidth mea-
surement results in different scenarios.

Table 2. GPUMemory bandwidth measure
ment results

Test Cases Single GPU Two GPUs
Device to Host 3038.5MB/s 2785.1MB/s
Host to Device 3285.5MB/s 2802.1MB/s

Device to Device 106481.5MB/s 106377.1MB/s

GTX 260 with CUDA consists of 16 SMs(Streaming
Multiprocessor), each has 8 processors executing the same
instruction on different data. In CUDA, each SM supports
up to 768 threads, owns 16KB of share memory and has



Algorithm 2 Compensation algorithm in CPU Side
# chunk: [input] TrasnposeChunk of chunk which will be
processed,
# splitter: [input] the corresponding splitter value
# outputBlock: [output] the pointer of array in which re-
sults will be written back
# splitterSize: [output] the number of elements which
equals to splitter in the chunk
procedure handleLongArrayException(const Trans-
poseChunk& chunk, const int splitter, int* & outputBlock,
int& splitterSize)

int boundary[d]; // splitter of each bucket
struct TransposeChunk m chunk;
alloc memory whose size equal to d in dBoundary and
copy boundary to dBoundary;
for q = 0 to d do

// handle blocks in chunk one by one.
int* dBucketValue = NULL;
int* dBucketOutputValue = NULL;
const TransposeBlock& tmpBlock = chunk.blocks[q];
alloc memory whose size equal to tmpBlock.size in
dBucketValue and copy tmpBlock.block ptr to device
memory;
malloc tmpBlock.size length array to dBucketOutput-
Value;
splitEquality kernel
<<<BLOCK NUM,THREADS NUM>>>
(dBucketValue, tmpBlock.size, splitter, dBoundary);
boundary[q] ⇐ ΣdBoundary[i]; iϵ[0, BLOCK NUM);
prefixSum(dBoundary);
divide kernel
<<<BLOCK NUM,THREADS NUM>>>
(dBucketValue, tmpBlock.size, splitter, dBoundary);
copy dBucketOutputValue back to outputBlock in
main memory;

end for
copy all buckets in m chunk to global memory;
employ incore sorting algorithm to sort them;
copy sorted buckets back to outputBlock;
pad the rest of outputBlock using splitter;
free memory in device and main memory;
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Figure 2. Performance comparison between
incore sort and other existing sort algo
rithms

8192 available registers. Threads are logically divided into
blocks assigned to a specific SM. Depending on how many
registers and how many local memory the block of threads
requires, there could be multiple blocks assigned to a SM.
GPU Data is stored in a 512MB global memory. Each block
can use share memory as cache. Hardware can coalesce sev-
eral read or write operations into a big one, so it is necessary
to keep threads visiting memory consecutively.

5.2 Performance Evaluation

In this section, we first compare the performance of in-
core sort, GPU SampleSort, GPU QuickSort and Thrust
Merge Sort based on different data sets of unsigned integers.
Six different types of data sets including Uniform,Sorted
Zero,Bucket,Gaussian,Staggered [11]. Fig. 2 shows the re-
sult on data of different array sizes: in-core sorting outper-
forms the others because it can achieve good load balancing
with small cost.

The performance evaluation of out-of-core algorithm on
single GPU is shown in Fig. 3, indicating that out-of-core
algorithm is robust and is capable of handling data effi-
ciently with different distributions and sizes.

At last, the comparison of the out-of-core algorithm per-
formance between single GPU and two GPUs is shown in
Fig.4. It is clear that out-of-core sorting algorithm can reach
near-linear speedup in two GPUs, showing that our out-of-
core algorithm has good scalability when the bandwidth be-
tween main memory and GPU memory is not a bottleneck.
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6. Conclusion and Future Work

In this paper, we present GPUMemSort: a high perfor-
mance graphics co-processor sorting framework for large-
scale in-memory data by exploiting high-parallel GPU pro-
cessors. We test the performance of the algorithm based on
multiple data sets and it shows that GPUMemSort sorting
algorithm outperforms other multi-core based parallel sort-
ing algorithms.

In the future, we will try to extend our algorithm to mul-
tiple GPUs augmented cluster, implement and optimize this
algorithm in distributed heterogeneous architecture. In ad-
dition, we will try to enhance in-core sorting algorithm to
help GPUMemSort reach even higher performance.

A significant conclusion drawn from this work, is that
our GPUMemSort can break through the limitation of GPU
global memory and can sort large-scale in-memory data ef-
ficiently.
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