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Abstract—We present a new approach for parallel massive
graph analysis of streaming, temporal data with a dynamic and
extensible representation. Handling the constant stream of new
data from health care, security, business, and social network
applications requires new algorithms and data structures.
We examine data structure and algorithm trade-offs that ex-
tract the parallelism necessary for high-performance updating
analysis of massive graphs. Static analysis kernels often rely
on storing input data in a specific structure. Maintaining
these structures for each possible kernel with high data rates
incurs a significant performance cost. A case study computing
clustering coefficients on a general-purpose data structure
demonstrates incremental updates can be more efficient than
global recomputation. Within this kernel, we compare three
methods for dynamically updating local clustering coefficients:
a brute-force local recalculation, a sorting algorithm, and
our new approximation method using a Bloom filter. On 32
processors of a Cray XMT with a synthetic scale-free graph
of 224 ≈ 16 million vertices and 229 ≈ 537 million edges, the
brute-force method processes a mean of over 50 000 updates
per second and our Bloom filter approaches 200 000 updates
per second.

I. INTRODUCTION

The data deluge from a wide range of application domains
from business and finance to computational biology and
computer security requires development of new analysis
tools and algorithms. To keep pace with the data, these tools
must analyze the resulting interaction networks and graphs
as data arrives in high-volume streams rather than in static
snapshots. With the Facebook user base containing over 350
million people [12], Twitter boasting more than four billion
tweets [21], and an estimated hundreds of millions of blogs
on the Internet [23], the massive graph data sets must be an-
alyzed faster than ever before. These massive networks store
a wealth of community and relationship information. Data
sets from the literature are often constructed statically from
web crawls of a particular domain [3], email correspondence
between colleagues [19], patent and literature citations [15],
and biological networks [16]. Analysis of these data sets
is carried out in a single-shot fashion. Changes to the
input data induce global recomputation. Here we investigate
another approach, computing incremental updates, along
with the data structures necessary and assumptions useful
for achieving high-performance analysis.

Current large graph analysis tools like Pajek [5] contain
three phases. First, the tools preprocess data into appropriate
data structures. Second, a graph kernel analyzes the data.
Finally, the tools post-process and store analysis results for
later presentation. These tools calculate static graph proper-
ties; any dynamic use assumes the properties change slowly
relative to execution time. However, there is increasing
interest in the temporal properties of the dynamic data set.
With millions of users and billions of messages in a social
network, even the preprocessing time is much larger than the
time between potentially large graph changes. Repeatedly
processing graphs as snapshots of a process cannot keep up
with the data rates.

In this paper, we tackle these problems with a new
computational approach for the analysis of complex graphs
and networks with billions of vertices based on the streaming
input of spatio-temporal data. Our approach accumulates as
much of the recent graph data as possible in main memory.
Once the reserved memory is full, older or uninteresting
edges are aged off and removed. We update analytical
kernels after each new edge or block of edges and attempt
to detect significant changes in these metrics. We refer to
this new approach as massive streaming data analytics.

To accommodate a stream of edge data, we present
a new, extensible data structure for massive graphs:
STINGER (Spatio-Temporal Interaction Networks and
Graphs (STING) Extensible Representation) [1]. This data
structure provides a compromise between list- and array-
based graph representations to support both efficient updates
and efficient analysis.

As a case study, we demonstrate the effectiveness of
the streaming approach to computation and the STINGER
dynamic graph representation using an important social net-
work metric called clustering coefficients. Global and local
(per-vertex) clustering coefficients give the analyst an idea
of the “small world-ness” of the graph [25]. The metric is
derived from a count of triangles in the graph. We present an
efficient multithreaded algorithm to calculate and update the
clustering coefficients in an undirected, unweighted graph of
16 million vertices and 537 million edges.

The terms streaming [2] and semi-streaming [14] appear
in related literature to describe a model of computation with
very restrictive properties on data accesses. In streaming
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graph algorithms, the graph edges are read one-by-one in
an arbitrary, unknown order. Streaming algorithms typically
are limited to storing O(n) or O(npolylog n) data, where n
is the number of vertices, and taking at most logarithmically
many passes over the data. The metric of interest must be
maintained or approximated in this fashion without signifi-
cant access to data other than the edge being observed at any
given point in time. Streaming models have been applied to
the approximation of local clustering coefficients [6], [9].
Current high-performance computer platforms like the Cray
XMT and IBM Power 595 support enough main memory
to store a significant amount of graph data at once. On
these platforms, the streaming model’s restrictions are overly
conservative. Our massive streaming data approach leverages
the continued growth in available memory.

This paper presents data structures to support our ap-
proach and a case study with clustering coefficients. Sec-
tion II describes STINGER, an extensible representation
that accumulates the dynamic, streaming graph and sup-
ports efficient analysis kernels. We outline assumptions and
methods for extracting parallelism in Section III. As an
example of our approach, Section IV considers updating
clustering coefficients with streaming data. Section V details
the implementation of STINGER and streaming clustering
coefficients on the Cray XMT, a massively multithreaded
architecture for high performance graph analysis. Using our
framework, Section VI compares our three methods for
updating local clustering coefficients.

II. STINGER: A GENERAL-PURPOSE DATA STRUCTURE
FOR DYNAMIC GRAPHS

Traditional graph data structures choose between effi-
cient traversal or efficient modification. For example, a full
adjacency matrix permits O(1) edge insertion or removal
but requires O(n2) storage and O(n) time to traverse all
edges from any vertex, where n is the number of vertices.
Adjacency lists or arrays require only O(n + m) storage,
where m is the number of edges, and permit O(dv) traversal
of edges out of vertex v, where dv is the degree of vertex
v. Modifying the graph, however, can require O(n + m)
time. STINGER [1] is a general-purpose graph data struc-
ture that aims to support efficient, multithreaded traversal
concurrently with efficient insertion and deletion of edges.

Data structures that focus on graph traversal typically
store edges or destination vertices in a packed array. The
most common high-performance structure for static graph
analysis borrows from sparse matrices and uses a com-
pressed sparse row (CSR) format. In CSR form, each edge’s
end vertex is stored in a single, packed array within a con-
tiguous section corresponding to the edge’s source vertex.
Inserting or deleting edges requires changing the end vertex
array’s length and shifting data throughout that array. This
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Figure 1. An undirected graph and a representation in STINGER with edge
blocks holding two edges. The blanks are holes storing negative numbers
rather than end vertex indices. Our tests use an edge block size of 100.

not only requires a large amount of data motion but also
complicates concurrent access by readers.

The primary traditional approach for representing dy-
namic graphs uses a linked list for storing end vertices.
Insertion and deletion while supporting concurrent readers
is well-understood [24]. List traversal is expensive, however,
often incurring O(n) cache misses. Many graph analysis
kernels spend most of their time traversing the edge lists.

We developed the STINGER data structure to support
efficient edge insertion and deletion with concurrent readers.
STINGER takes the efficient element of CSR, storing end
vertices in arrays, and loosens other requirements. STINGER
also borrows from the list structure and stores edge end
vertices as a list of arrays. Each vertex points to a list of
fixed-size end vertex arrays; see Figure 1. Arrays need not
be fixed size, but we consider this case for simplicity. This
is a common mechanism for representing dynamically sized
lists or arrays while supporting rapid traversal.

The arrays are permitted to have holes or blanks rep-
resented by negative entries. To delete an edge, the end
vertex is found and replaced atomically by a negative
number. Inserting an edge requires replacing an empty slot
or possibly adding a new edge block into the linked list. We
assume that a single process manages all graph updates and
ensures writing does not suffer from race conditions.

Insertion and deletion can occur concurrently with reader
access. By default, low-level consistency is not enforced.
In a massive sparse graph, graph updates very rarely will
conflict with readers. For our applications, the graph is
already assumed to be an approximate model of some real-
world phenomenon, and analysis kernels must account for
some inconsistencies.

Other information is associated with each edge: a weight
and the most recent time stamp. We do not use this infor-
mation here and do not discuss the relevant consistency is-
sues. STINGER models multi-graphs, graphs with multiple,



distinct edges between the same vertices, by associating a
numeric type value with each edge. We do not use these edge
types in this paper; multiple edges are treated as a single
connection. Extra information is stored with the per-vertex
index, including current in- and out-degrees. The degrees
are updated by atomic operations but are not necessarily
consistent with respect to the edge list. Analysis kernels
need to handle extra or missing edges when walking the
edge list.

Alternative graph data structures include forms of binary
trees [18]. Trees pay an extra cost in keeping some order
on the edges. On our target platform, the Cray XMT, the
maintenance cost is substantial and prohibitive. STINGER’s
linked array structure permits simple multithreaded traversal.
Similar work in cache-oblivious algorithms often uses trees
where the leaves are ordered arrays with blank entries [7].
The blank entries limit data movement when inserting a new
edge into the ordered array. We are investigating whether
STINGER can take advantage of a similar technique for
accelerating intersections of edge lists. More radical alterna-
tives exist, including representations using sparse certificates
specific to different analysis kernels [11]. Our target is to
support massive graphs, so we must support a wide variety of
algorithms with a single in-memory structure. STINGER is a
compromise that permits dynamic updates while supporting
a wide variety of analytical algorithms on a single copy.

III. FINDING PARALLELISM IN STREAMS AND
ANALYTICS

We consider a single, unified input stream of edge inser-
tions and deletions. This provides a synchronization point
for analysis but also a bottleneck. For high performance, we
need both to expose parallelism within the analytic kernels
and to extract some parallelism from the sequential stream
for updating the STINGER structure. We make two primary
assumptions that help extract parallelism from streaming
data: Changes in the stream are scattered widely enough
in the massive graph that batches of them are sufficiently
independent to expose parallelism. Analysis kernels have
small support and small effect, and so a change to the graph
only requires access to local portions and affects only a small
portion of the output.

To extract parallelism from the stream, we assume the
changes are somewhat scattered in the graph. In a low-
diameter graph with high degree vertices, as is the case
with many social networks, changes may not be completely
independent, but there is potential for updating separate
STINGER edge lists simultaneously. Considering the stream
as batches of updates creates some loss of temporal reso-
lution but exposes more parallelism in data structure and
kernel updates. If the graph updates do not interact, then
there is little temporal information lost by executing the
updates together.

Analytical kernels with small support lend themselves to
similar scattering across the graph. For example, per-vertex
scores that depend on a fixed radius like Section IV’s local
clustering coefficients naturally parallelize over batches of
affected vertices. On graphs with millions or billions of
vertices, the number of changes to the vertex scores will
be only slightly more than the batch size for a particular set
of edge insertions or deletions.

Large-support kernels like k-betweenness centrality [17]
pose a more difficult challenge. They depend on paths
potentially crossing the entire graph and require large-scale
recalculation. A small change may update analysis results
across the entire graph. Experience with k-betweenness
centrality performance leads us to limit ourselves currently
to kernels with small support.

We expect typical massive graph streaming analytics to
fit into the following framework:

1: Take a section of the incoming stream as a batch.
2: Split the batch into per-vertex STINGER updates.
3: If necessary, save data (e.g. degrees) to permit incre-

mental computation.
4: Process all the data structure updates.
5: Update analytics on the altered portion of the graph.
6: Transfer changed results to a monitoring process.

Sections V and VI investigate steps 2–5 for a simple
analytic: local clustering coefficients.

IV. ALGORITHM FOR UPDATING CLUSTERING
COEFFICIENTS

Clustering coefficients measure the density of closed
triangles in a network and are one method for determining
if a graph is a small-world graph [25]. We adopt the
terminology of [25] and limit our focus to undirected and
unweighted graphs. A triplet is an ordered set of three
vertices, (i, v, j), where v is considered the focal point and
there are undirected edges 〈i, v〉 and 〈v, j〉. An open triplet
is defined as three vertices in which only the required two
are connected, for example the triplet (m, v, n) in Figure 2.
A closed triplet is defined as three vertices in which there
are three edges, or Figure 2’s triplet (i, v, j). A triangle is
made up of three closed triplets, one for each vertex of the
triangle.

v

i

j

m

n

Figure 2. There are two triplets around v in this unweighted, undirected
graph. The triplet (m, v, n) is open, there is no edge 〈m, n〉. The triplet
(i, v, j) is closed.



The global clustering coefficient C is a single number
describing the number of closed triplets over the total
number of triplets,

C =
number of closed triplets

number of triplets
=

3× number of triangles
number of triplets

.

(1)
The local clustering coefficient Cv is defined similarly for
each vertex v,

Cv =
number of closed triplets centered around v

number of triplets centered around v
. (2)

Let ek be the set of neighbors of vertex k, and let |e| be
the size of set e. Also let dv be the degree of v, or dv = |ev|.
We show how to compute Cv by expressing it as

Cv =

∑
i∈ev
|ei ∩ (ev \ {v})|
dv(dv − 1)

=
Tv

dv(dv − 1)
. (3)

To update Cv as edges are inserted and deleted, we maintain
the degree dv and the triangle count Tv separately.

For the remainder of the paper, we concentrate on the
calculation of local clustering coefficients. Computing the
global clustering coefficient requires an additional sum re-
duction over the numerators and denominators.

An inserted edge increments the degree of each adjacent
vertex, and a deleted edge decrements the degrees. Updating
the triangle count Tv is more complicated. Algorithm 1
provides the general framework. Acting on edge 〈u, v〉
affects the degrees only of u and v but may affect the
triangle counts of all neighbors. With atomic increment
operations available on most high-performance platforms,
all of Algorithm 1’s loops can be parallelized fully.

The search in line 5 can be implemented in several ways.
A brute-force method simply iterates over every element in
ev for each x, explicitly searching for all new closed triplets
given a new edge 〈u, v〉. The running time of the algorithm is
O(dudv), which may be problematic when two high-degree
vertices are affected.

If the edge list is kept sorted as in a static computation, the
intersection could be computed more efficiently in O(du +
dv) time. However, the cost of keeping our dynamic data
structure sorted outweighs the update cost. We can, however,
accelerate the method to O((du + dv) log du) by sorting the
current edge list of dv and searching for neighbors with
bisection. The sorting routine can employ a parallel sort,
and iterations of the search loop can be run in parallel given
atomic addition / subtraction operations.

Approximating Clustering Coefficients using a Bloom Filter

We present a novel set intersection approximation algo-
rithm with constant-time search and query properties and
an extremely high degree of accuracy. In addition to our
dynamic data structure described in Section II, we summa-
rize neighbor lists with Bloom filters [8], a probabilistic data

Algorithm 1 An algorithmic framework for updating local
clustering coefficients. All loops can use atomic increment
and decrement instructions to decouple iterations.
Input: Edge 〈u, v〉 to be inserted (+) or deleted (−), local

clustering coefficient numerators T , and degrees d
Output: Updated local triangle counts T and degrees d

1: du ← du ± 1
2: dv ← dv ± 1
3: count ← 0
4: for all x ∈ ev do
5: if x ∈ eu then
6: Tx ← Tx ± 1
7: count ← count ± 1
8: Tu ← Tu ± count
9: Tv ← Tv ± count

structure that gives false positives (but never false negatives)
with some known probability. We then query against this
Bloom filter to determine if the intersection exists.

Edge arrays could be represented as bit arrays. In one
extreme, each neighbor list could be an array using one
bit per vertex as well as an edge list. Then |eu ∩ ev| can
be computed in O(min{du, dv}) time by iterating over
the shorter edge list and checking the bit array. However,
maintaining O(n) storage per source vertex is infeasible for
massive graphs.

Instead, we approximate an edge list by inserting its
vertices into a Bloom filter. A Bloom filter is also a bit array
but uses an arbitrary, smaller number of bits. Each edge list
ev is summarized with a Bloom filter for v. A hash function
maps a vertex w ∈ ev to a specific bit in this much smaller
array. With fewer bits, there may be hash collisions where
multiple vertices are mapped to the same bit. These will
result in an overestimate of the number of intersections.

A Bloom filter attempts to reduce the occurrence of
collisions by using k independent hash functions for each
entry. When an entry is inserted into the filter, the output of
the k hash functions determines k bits to be set in the filter.
When querying the filter to determine if an edge exists, the
same k hash functions are used and each bit place is checked.
If any bit is set to 0, the edge cannot exist. If all bits are set
to 1, the edge exists with a high probability.

Bloom filters have several parameters useful to fix a
given probability of failure. In-depth description of Bloom
filters’ theory is beyond the scope of this paper, but a
few useful features include the following: Bloom filters
never yield false negatives where an edge is ignored, only
false positives where a non-existent edge is counted. The
probability of falsely returning membership is approximately
(1−e−kdu/m)k where m is the length of the filter. This can
be optimized by setting k to an integer near ln 2×m/d [13],
choosing d according to the expected degrees in the graph.



Our initial implementation uses two hash functions, k = 2,
and a 1 MiB filter. The probability of a false-positive will
vary depending on the degree of the vertex. In a scale-free
graph with an average degree of 30 and a maximum degree
of 200,000, the average false-positive rate will be 5×10−11

and the worst-case rate will be 2× 10−3.
When intersecting two high-degree vertices, the Bloom

filter holds a slight asymptotic advantage over sorting one
edge list, but a multithreaded implementation benefits from
additional parallelism throughout the Bloom filter’s oper-
ations. Note that entries cannot be deleted from a Bloom
filter. A new filter is constructed for each application of
Algorithm 1, so we never need to delete entries.

Modifications to Algorithm 1 for supporting a Bloom filter
are straight-forward. After line 3, initialize the Bloom filter
using vertices in eu:

1: for all y ∈ eu do
2: for i = 1→ k do
3: Set bit Hi(y) in Bx to 1

Then implement the search in line 5 as follows:
1: for i = 1→ k do
2: if bit Hi(x) = 0 then
3: Skip to next x

V. MULTITHREADED PLATFORMS AND
IMPLEMENTATIONS

Our implementation is based on multithreaded, shared-
memory parallelism. The single code base uses different
compiler directives, or pragmas, to expose the threaded
parallelism. We use Cray’s compiler (version 6.3.1) and its
pragmas for the massively multithreaded Cray XMT, and
we use OpenMP [20] via the GNU C compiler (version
4.4.1) for a comparison on an Intel Nehalem E5530-based
commodity platform.

The Cray XMT provides an ideal platform for massively
multithreaded massive graph analysis. Each Threadstorm
processor contains 128 hardware streams that maintain a
thread context. Context switches between threads occur
every cycle, with a new thread selected from the pool of
streams ready to execute.

In this architecture, multithreading is used to hide some
or all of the long latency of memory accesses. There is no
cache in the processors; all latency is handled by threading.
The XMT features a large, globally shared memory that
is hashed to break up locality and alleviate hot-spotting.
Synchronization takes place at the level of 64-bit words,
and lightweight primitives such as atomic fetch-and-add are
provided to the programmer. The cost of synchronization is
amortized over the cost of memory access. Combined, these
features enable the algorithm designer to implement highly
scalable parallel algorithms for analyzing massive graphs.

The Cray XMT used for these experiments contains 64
Threadstorm processors running at 500 MHz. The globally

addressable shared memory totals 512 GiB and can hold
graph data structures containing more than 2 billion vertices
and 17 billion edges.

The Intel Nehalem E5530 is a 2.4GHz quad-core proces-
sor with hyperthreading [4]. Each physical core holds two
thread contexts and switches on memory stalls. The context
switches are not as frequent as on the Cray XMT, and only
two contexts are available to hide memory latencies. Each
core has 256 KiB of level two cache, and each processor
module shares 8 MiB of level three cache. The platform
tested has two E5530s, a total of eight cores and 16 threads,
with 12 GiB of main memory.

Our threaded implementation is straight-forward. Each
undirected edge 〈u, v〉 is added to or removed from the
data structure using two threads, one to work from each
end vertex. No explicit locking is involved. The STINGER
structure requires only ordered, atomic read/write of 64-
bit integers (e.g. end vertices, timestamps) and atomic in-
crement/decrement of counters (e.g. degrees, offsets). Both
the Cray intrinsics and the OpenMP pragmas can express
the specific operations we need. For brevity, we use the
GCC/Intel intrinsic functions similar to the Cray intrinsics.

The algorithm to update the triangle counts T above uses
appropriate pragmas to parallelize the outer loops. Inner
loops are not parallelized under OpenMP; the target platform
has insufficient threading resources to benefit from that level
of parallelism. However, the inner loops are parallelized on
the XMT by a loop collapse [22]. An atomic increment
updates the count of a shared neighbor Tw.

Local clustering coefficients’ properties help us batch the
input data. Recomputing changed coefficients only at the
end of the batch’s edge actions frees us to reorder the
insertions and deletions. Reordering repeated insertions and
removals of the same edge may alter the edge’s auxiliary
data, however, so we must take some care to resolve those
in sequence order. After resolving actions on the same edge,
we process all removals before all insertions to open edge
slots and delay memory allocation.

The batch algorithm is as follows:
1: Transform undirected edges 〈i, j〉 into pairs of directed

edges i → j and j → i because STINGER stores
directed edges.

2: Group edges within the batch by their source vertex.
3: Resolve operations on the same edge in sequence order.
4: Apply all removals, then all insertions to the STINGER

structure.
5: Recompute the triangle counts and record which vertices

are affected.
6: Recompute the local clustering coefficients of the af-

fected vertices.

In step 5, we use slight variations of the previous algo-
rithms. The source vertex’s neighboring vertices are gathered
only once, and the array is re-used across the inner loop.



The sorted update and Bloom filter update compute their
summary data using the source vertex rather than choosing
the larger list.

VI. PERFORMANCE

Our test data is generated by sampling from a Kronecker
product using the RMAT recursive matrix generator [10]
with probabilities A = 0.55, B = 0.1, C = 0.1, and D =
0.25. Each generated graph has a few vertices of high degree
and many vertices of low degree. Given the RMAT scale k,
the number of vertices n = 2k, and an edge factor f , we
generate f · n unique edges for our initial graph. We then
select a fraction ρe of those edges and add them to a deletion
queue. For these experiments, ρ = 0.0625.

After generating the initial graph, we generate 1024
actions (edge insertions or deletions) for edge-by-edge runs
and 1 million actions for batched runs. With probability ρ,
a deletion is taken from the deletion queue. Otherwise an
insertion is generated with the same RMAT generator and
parameters. The edge to be inserted may already exist in
the graph. Inserted edges are appended to the deletion queue
with probability ρ. There are no self-loops in our generated
edges, but the implementation does handle self-loop cases
by ignoring edges 〈v, v〉.

Clearly the Cray XMT with a large main memory can
tackle far larger problems than the Intel-based platform. The
latter is limited to scale k = 21 and edge factor f = 16
with our current test harness. On the Cray XMT, our largest
experiments are sixteen times larger, with k = 24 and f =
32, and are limited more by our testing code’s structure than
the XMT’s architecture.

A. Scalability of the Initial Computation
We begin by computing the correct clustering coefficients

for our initial graph. While not the focus of this paper,
performance on the initial computation shows interesting
behavior on the two test platforms.

The initial clustering coefficients algorithm simply counts
all triangles. For each edge 〈u, v〉, we count the size of
the intersection |eu ∩ ev|. This is a static computation, so
we use a packed representation with sorted edge arrays for
efficiency. The algorithm as a whole runs in O(

∑
v d

2
v) time

where v ranges across the vertices and the structure is pre-
sorted. The multithreaded implementation also is straight-
forward; we parallelize over the vertices. The 221 ≈ 2
million vertices in the smallest case provides sufficient
parallelism for both platforms.

The initial computation has not been seriously tuned
for performance on either platform. The algorithm itself is
somewhat coarse-grained with sufficiently sized chunks of
work to amortize run-time overhead. In Figure 3, the Cray
XMT’s performance improves with increasing processors.
Thread creation and management overhead appears respon-
sible for the Intel Nehalem’s decreasing performance.

Figure 3. Performance of the initial clustering coefficient computations,
normalized for problem size by presenting the number of edges in the
graph divided by the total computation time. The Cray XMT (top) scales
well as additional processors are added, while the Intel Nehalem (bottom)
platform’s threading overheads decrease performance.
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B. Number of Individual Updates per Second

Unlike calculating the triangle counts T for the entire
graph, updating T for an individual edge insertion or dele-
tion exposes a variable amount of fine-grained parallelism.
We present results showing how aggregate performance of
a single edge insertion or deletion stays relatively constant.

Table I summarizes the sequential complexity of our up-
date algorithms. Figure 4 presents boxplots summarizing the
updates per second achieved on our test platforms. Figure 5
shows local recomputation’s speed-up of locally relative
to globally recomputing the graph’s clustering coefficients.
Boxes in Figures 4 and 5 span the 25% – 75% quartiles



Figure 4. Updates per second by algorithm.
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Figure 5. Speed up of incremental, local updates relative to recomputing
over the entire graph.
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of the update times. The bar through the box shows the
median. The lines stretch to the farthest non-outlier, those
within 1.5× the distance between the median and the closest
box side. Points are outliers.

In Figure 4, we see the Cray XMT keeps a steady
update rate on this relatively small problem regardless of the
number of processors. The outliers with 16 processors are
a result of sharing resources with other users. The Bloom
filter shows the least variability in performance. Figure 5
shows that local recomputation accelerates the update rate
typically by a factor of over a thousand.

The Intel Nehalem results degrade with additional threads.
The noise at 12 and 16 threads results from over-allocation
and scheduling from hyperthreading. The Intel Nehalem
outperforms the Cray XMT by several orders of magnitude,
but can only hold a graph of approximately 2 million

Algorithm Update complexity

Brute force O(dudv)
Sorted list O((du + dv) log du), du < dv

Bloom filter O(du + dv)

Table I
SUMMARY OF UPDATE ALGORITHMS

Batch Size Brute force Bloom filter

Edge by edge 90 60
Batch of 1000 25,100 83,700
Batch of 4000 50,100 193,300

Table II
COMPARISON OF SINGLE EDGE VERSUS BATCHED EDGE OPERATIONS

ON 32 XMT PROCESSORS, RMAT 24 INPUT, IN UPDATES PER SECOND

vertices. This Cray XMT is capable of holding a graph in
memory up to 135 million vertices.

Table II shows performance obtained from batching op-
erations and extracting parallelism on the Cray XMT. The
sorting algorithm was not considered for batching. Notice
that increasing the batch size greatly improves performance.
For the Bloom filter, this comes at the cost of a proportional
increase in memory footprint. A batch size of 4000 required
choosing a filter size of 1 MiB to fit within the system’s
available memory. Even so, we encountered no false pos-
itives over 1 million edge actions. Increasing the batch
size intuitively improves scalability since data parallelism
is increased in the update phase.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a new massive streaming data ana-
lytics framework for graph analysis and demonstrated its
ability to speed-up a fundamental analysis metric over the
traditional static recomputation. To store the graph data, we
have offered STINGER as a compromise between efficient
graph traversal and flexible edge insertions and deletions
for a wide variety of graph algorithms. We have presented
clustering coefficients as a case study for STINGER and our
new analytical framework.

We are able to handle individual updates rapidly enough
for simple analysis (Figure 4). Updating the clustering
coefficients after each edge insertion or deletion duplicates
setup time, so the sorted update and Bloom filter algorithms
perform relatively poorly.

The serial stream contains enough parallelism when
batched to exploit the Cray XMT’s massively multithreaded
architecture. We achieve a speed-up of 550× over edge-by-
edge updates. The update rates of nearly 200 000 updates
per second almost match gigabit Ethernet packet rates.

False-positives from Bloom filters may introduce an ap-
proximation. A modestly sized filter produces an exact
result with no false-positives from our sampled scale-free
networks. The Bloom filter approach achieved a 4× speed-
up over the brute-force method on the Cray XMT.

In future work, we will use this framework to explore
techniques for determining when an update or a series of
updates in a temporal data stream represents a significant
change in the structure of the graph or a relevant subgraph.
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