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Modularity Optimization

Let G represent a directed, unweighted graph with adjacency
matrix A. Assume that L is the total number of edges in the
network and that G has been partitioned into m disjoint sets of
nodes Ms , s = 1, 2, ...,m.

Consider the set Ms and let lss represent the number of observed
transitions from Ms to Ms . Now define lss̄ to be the total number
of transitions from within to outside the node set Ms .

The quantities ls̄s and ls̄ s̄ are defined analogously.

Note that we have “collapsed” the adjacency matrix into a 2× 2
table of transition counts where L = lss + lss̄ + ls̄s + ls̄ s̄ .
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Modularity Optimization

Let the row and column marginal sums of the 2× 2 transition table
be defined as l+s = lss + ls̄s , and ls+ = lss + lss̄ .

We observe lss transitions within node set Ms . Under the
hypothesis of independence the estimated number of transitions
is as follows:

l̂ss = L

(
l+s

L

) (
ls+
L

)
=

ls+l+s

L
.

The residual is defined as Rss = lss − l̂ss . If Rss > 0 then we
observe more transitions than expected. If Rss is significantly larger
than zero then we might suspect that Ms is a module (cluster).
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Modularity Optimization

Following CNM we let Qs = Rss/L. The set of nodes Ms to said to
be a module if and only if Qs > 0.

Next we define the modularity function Q as follows:

Q =
m∑

s=1

Qs =
1

L

m∑
s=1

Rss =
1

L

m∑
s=1

(
lss − l̂ss

)
.

The goal of modularity optimization is to efficiently find a
decomposition of G into a set of m modules Ms , s = 1, 2, ...,m
that maximizes the modularity function Q.
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Cross-Product Formulation of Q

It follows that the residual Rss = lss − l̂ss = lss − ls+l+s

L > 0 if and
only if lss ls̄ s̄ − lss̄ ls̄s > 0. Moreover,

Q =
1

L2

m∑
s=1

(lss ls̄ s̄ − lss̄ ls̄s) ,

and Ms is a module if and only if c12 = lss ls̄ s̄
ls̄s lss̄

> 1, where c12 is the
cross-product ratio of a 2× 2 contingency table.

The expected value of c12 equals one if and only if the rows and
columns of the table are statistically independent. c12 > 1
indicates positive dependence.
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Modularity Optimization

Now let G represent an undirected graph. The adjacency matrix A
is now symmetric and it follows that

lss̄ = ls̄s , and L = lss + ls̄s + ls̄ s̄ .

Since there are L edges in the graph, the sum of all of the entries
of the adjacency matrix is equal to N = 2L.

Let X represent the 2× 2 contingency table obtained by collapsing
the adjacency matrix with respect to module Ms . Because of
symmetry xss = 2lss , xs̄ s̄ = 2ls̄ s̄ , and xs̄s = xss̄ = ls̄s = lss̄ .
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Modularity Optimization

Let m̂ij represent the estimated entries of table X under
independence. The marginal sums of X with respect to module Ms

are xs = x+s = xs+ = xss + xss̄ = 2lss + lss̄ .

The expected number of transitions within Ms is seen to be

l̂ss =
m̂ss

2
= (2L)

(x+s

2L

) (xs+

2L

) (
1

2

)
=

(xs)
2

4L
.

As before Q =
m∑

s=1

Qs =
1

L

m∑
s=1

Rss =
1

L

m∑
s=1

(
lss − l̂ss

)
.
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Cross-Product Formulation of Q

The residual Rss = lss − l̂ss = lss − x2
s

4L , and Ms is a module if and
only if 4Lss > x2

s . Equivalently, Ms is a module if and only if
4lss ls̄ s̄ − l2ss̄ > 0.

The cross-product ratio becomes

c12 =

(
xss

xss̄

) (
xs̄ s̄

xss̄

)
=

(
2lss
lss̄

) (
2ls̄ s̄
lss̄

)
=

4lss ls̄ s̄
l2ss̄

.
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Cross-Product Formulation of Q

The modularity function Q can be rewritten in the following
useful form where the cross-product ratio is more apparent:

Q =
m∑

s=1

Qs =
1

L

m∑
s=1

Rss =
1

4L2

m∑
s=1

(
4lss ls̄ s̄ − l2ss̄

)
.

Clauset, Newman, and Moore (2004) have developed a scalable,
agglomerative algorithm to maximize the modularity function.

Their greedy algorithm makes use of “efficient data structures”
and for certain networks can run in time O

(
L log2L

)
.
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The Resolution Limit in Community Detection

“It is a-priori impossible to tell whether a module (large or small),
detected through modularity optimization, is indeed a single
module or a cluster of smaller modules.”

Fortunato and Barthelemy (2007)
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The Most Modular Connected Network

Let G be composed of n cliques, n even, where each clique has m
nodes. Each clique is connected by a single edge to an adjacent
clique. The number of edges in this graph is equal to

L = 1
2nm(m − 1) + n = n

2 (m(m − 1) + 2).

Consider two partitions of G into hypothesized modules. In the
first partition every module is a clique, while in the second
partition every module is a pair of adjacent cliques. Then

Q1 = 1− 2

m(m − 1) + 2
− 1

n
, Q2 = 1− 1

m(m − 1) + 2
− 2

n
.
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The Most Modular Connected Network

It follows that Q2 > Q1 if n > m(m − 1) + 2.

Since L = n
2 (m(m − 1) + 2) this further implies that Q2 > Q1 if

n2 > 2L.

If n = 25, and m = 5, then Q2 = 0.8745 > Q1 = 0.8691 and
modularity optimization has not determined the ”best” partition.

Fortunato and Barthelemy have analyzed real world data sets
that exhibit the property that the ”best” partition does not
have the maximum modularity score.
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An Improved Resolution Limit

Berry, Hendrickson, Laviolette, and Phillips (2010) use the local
topology of the graph to infer edge weights. Then they generalize
the results of Fortunato and Barthelemy to show it is possible to
resolve much smaller communities.

They also suggest that the dendrogram constructed by the CNM
algorithm can be mined to resolve smaller communities. This
might be even more effective with their modified CNM algorithm.
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A Different Resolution?

Claim: The failure of the CNM algorithm to resolve
communities is due to the properties of the modularity
function Q and not the information that it uses.

Can CNM be salvaged?

Is it possible to optimize a different objective function that uses
the same information and resolves communities?

David Bader Georgia Institute of Technology Joe McCloskey National Security AgencyModularity and Graph Algorithms

15



Modularity Optimization and the CNM Algorithm
The Resolution Limit in Community Detection

The CNM Algorithm Revisited
Final Comments

The CNM Algorithm Revisited
Two Equivalent Representations of ∆Q
A Modified CNM Algorithm

The CNM Algorithm Revisited

Consider a graph with L edges and three modules. Let lij represent
the number of transitions from module Mi to module Mj . Then

L = l11 + l12 + l13 + l22 + l23 + l33.

What happens to the modularity function if modules M1 and
M2 are merged together?

We find two equivalent representations of the difference
Q1,2,3 −Q1∪2,3 of the modularity functions due to the merge of M1

and M2. If Q1∪2,3 > Q1,2,3 then CNM will merge M1 and M2.
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The CNM Algorithm Revisited

Use the three modules M1,M2 and M3 to collapse the undirected
graph into a 3× 3 table X1,2,3 of counts xij . The xij are
determined from the transition counts lij as follows:

xjj = 2ljj ,

xij = xji = lij for i 6= j ,

x1 = x1+ = x+1 = 2l11 + l12 + l13,

x2 = x2+ = x+2 = l12 + 2l22 + l23.

Because of symmetry the total sample size of the xij ’s is N = 2L.
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The CNM Algorithm Revisited

If we further merge M1 and M2 together then the collapsed graph
has transition counts of the form

l
′
11 = l11 + l12 + l22,

l
′
12 = l

′
21 = l13 + l23,

l
′
22 = l33.

The resulting 2× 2 symmetric table X1∪2,3 of counts x
′
ij has entries

x
′
11 = 2l11 + 2l12 + 2l22,

x
′
12 = x

′
21 = l13 + l23,

x
′
22 = 2l33.
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Properties of the Modularity Function

Let Q1,2,3 be the modularity function when modules M1,M2, M3

are considered to be separate modules, and Q1∪2,3 the modularity
function when modules M1 and M2 are merged together.

Let ∆Q = Q1,2,3 − Q1∪2,3 be the difference of the two modularity
functions. If Q1∪2,3 > Q1,2,3 then ∆Q < 0, and CNM will merge
M1 and M2.

To understand the properties of the modularity function we find
two equivalent representations of ∆Q = Q1,2,3 − Q1∪2,3.
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Properties of the Modularity Function

Module M3 makes the same contribution Q3 = R33/L to each of
the modularity functions Q1,2,3 and Q1∪2,3. Thus,

L∆Q = L (Q1,2,3 − Q1∪2,3)

= LQ1,2,3 − LQ1∪2,3

= (R11 + R22 + R33)− (R1∪2,1∪2 + R33)

= R11 + R22 − R1∪2,1∪2.

We have left to compute R1∪2,1∪2 = l
′
11 − l̂

′
11.
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Properties of the Modularity Function

Now l̂
′
11 = 1

4Lx
′
1
2
, where x

′
1 = 2l11 + 2l12 + 2l22 + l13 + l23.

A straightforward calculation yields

2L2∆Q = c0 + c1 + c2 + c3,

where we define

c0 = 4l11l22 − l212,

c1 = 2l11l23 − l12l13,

c2 = 2l22l13 − l12l23,

c3 = l13l23 − 2l12l33.

The c ′j s have cross-product interpretations as 2× 2 subtables of
X1,2,3.
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Properties of the Modularity Function

With this representation it is easy to“manufacture” examples
where ∆Q < 0 and modules M1 and M2 will be merged in error by
the CNM algorithm.

Note that l33 is the number of transitions in the rest of the graph
and recall that

c3 = l13l23 − l12l33.

If l12 > 0 and l33 is “large” then c3 << 0 and ∆Q < 0.

The most modular connected network is a simple example where
this happens.
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Properties of the Modularity Function

A second representation of ∆Q leads to a simple observation
that addresses several flaws in the current CNM algorithm.

Standard properties of symmetric contingency tables can be used
to show that the residuals of the 3× 3 contingency table X1,2,3

satisfy

2R11 + R12 + R13 = 0,

R12 + 2R22 + R23 = 0,

R13 + R23 + 2R33 = 0.

Analogously, the residuals of the 2× 2 collapsed contingency table
X1∪2,3 satisfy R1∪2,1∪2 = R33.
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Properties of the Modularity Function

These equations lead to another representation of L∆Q.

L∆Q = L (Q1,2,3 − Q1∪2,3)

= R11 + R22 − R1∪2,1∪2

= R11 + R22 − R33

=
1

2
(−R12 − R13) +

1

2
(−R12 − R23)−

1

2
(−R13 − R23)

= −R12.

Hence,
R12 > 0 if and only if ∆Q < 0.
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A Modified CNM Algorithm

This last inequality means that two modules M1 and M2 are
candidates to be merged by the CNM algorithm if their
residual R12 > 0.

The greedy CNM algorithm merges the two modules Mi and
Mj with the largest residual Rij > 0.

CNM Modification: Before two modules Mi and Mj are
merged their residual Rij > 0 should be deemed “statistically
significant.”

The residuals Rij are “not comparable” since their variances

are not necessarily equal. Let Sij =
Rij

std(Rij)
be standardized

residuals.
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A Modified CNM Algorithm

CNM Modification: Before two modules Mi and Mj are
merged their standardized residual Sij > 0 should be deemed
“statistically significant.”

The greedy modified CNM algorithm will merge the two
modules Mi and Mj with the largest statistically significant
standardized residual Sij > 0.

This adjustment to the CNM algorithm will alleviate the
resolution limit problem, and the tendency for CNM to favor
the merging of ”large” modules.
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Final Comments

Modularity optimization can fail to resolve communities.

This failure is due to the properties of the modularity function.

The CNM algorithm can be modified to avoid the resolution
limit problem.

Algorithms that use spectral information from the modularity
matrix can detect modules when CNM “fails.”
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