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Abstract—Many important problems in computational sci-
ences, social network analysis, security, and business analytics,
are data-intensive and lend themselves to graph-theoretical analy-
ses. In this paper we investigate the challenges involved in explor-
ing very large graphs by designing a breadth-first search (BFS)
algorithm for advanced multi-core processors that are likely to
become the building blocks of future exascale systems. Our new
methodology for large-scale graph analytics combines a high-
level algorithmic design that captures the machine-independent
aspects, to guarantee portability with performance to future
processors, with an implementation that embeds processor-
specific optimizations. We present an experimental study that
uses state-of-the-art Intel Nehalem EP and EX processors and
up to 64 threads in a single system. Our performance on
several benchmark problems representative of the power-law
graphs found in real-world problems reaches processing rates
that are competitive with supercomputing results in the recent
literature. In the experimental evaluation we prove that our
graph exploration algorithm running on a 4-socket Nehalem EX
is (1) 2.4 times faster than a Cray XMT with 128 processors
when exploring a random graph with 64 million vertices and
512 millions edges, (2) capable of processing 550 million edges
per second with an R-MAT graph with 200 million vertices and 1
billion edges, comparable to the performance of a similar graph
on a Cray MTA-2 with 40 processors and (3) 5 times faster than
256 BlueGene/L processors on a graph with average degree 50.

I. INTRODUCTION

With the advent of multicore processors, and their

widespread use in the data centers of numerous industrial,

business and governmental institutions, parallelism is here to

stay.

One of the biggest challenges in effectively using this

unprecedented level of parallelism is in supplying high-level

and simple approaches to develop parallel applications. There

are many hurdles with developing such applications, but

certainly one of the main difficulties is dealing with the

communication costs between processing nodes and within the

memory hierarchy of each node. The typical way programmers

and algorithmic designers improve performance is through

locality, trying to re-use data as much as possible. This is

a complex task because there are different types of locality:

hierarchical networks, distributed, shared and local caches,

local and non-local memory, and various cache-coherence

effects. In an ideal spectrum of parallel applications, those

that have high locality, rely on limited communication and

closely match the cache hierarchy, can readily take advantage

of existing multicore processors and accelerators [1], [2]. At

the other end of the spectrum there are problems, such as graph

exploration, with very little data reuse and a random access

pattern. Searching large graphs poses difficult challenges,

because the potentially vast data set is combined with the

lack of spatial and temporal locality in the access pattern. In

fact, few parallel algorithms outperform their best sequential

implementations on clusters due to long memory latencies and

high synchronization costs [3]. Additionally, these difficulties

call for more attention if dealing with commodity multicore

architectures because of the complexity of their memory

hierarchy and cache-coherence protocols.

Many areas of science (genomics, astrophysics, artificial

intelligence, data mining, national security and information

analytics, to quote a few) demand techniques to explore large-

scale data sets which are, in most cases, represented by graphs.

In these areas, search algorithms are determinant to discover

nodes, paths, and groups of nodes with desired properties.

Among graph search algorithms, Breadth-First Search (BFS)

is often used as a building block for a wide range of graph

applications. For example, in the analysis of semantic graphs

the relationship between two vertices is expressed by the

properties of the shortest path between them, given by a

BFS search. Applications in community analysis often need

to determine the connected components of a semantic graph

[4], [5], [6], [7], and connected components algorithms [8]

often employ a BFS search. BFS is also the basic building

block for best-first search, uniform-cost search, greedy-search

and A*, which are commonly used in motion planning for

robotics [9], [10].

A good amount of literature deals with the design of BFS

solutions, either based on commodity processors [11], [12] or

special purpose hardware [13], [14], [15], [16]. Some recent

publications describe successful parallelization strategies of

list ranking [17] and phylogenetic trees on the Cell BE

[18]. Recently Xia et al. [19] have achieved high-quality

results for BFS explorations on state-of-the-art Intel and AMD

processors.

This paper describes the challenges we have faced to

implement an efficient BFS algorithm on the latest families of

Intel Nehalem processors, including a newly-released system

based on the 8-core Nehalem EX. The choice of a conceptually

simple algorithm, such as the BFS exploration, allows for a

complete, in-depth analysis of the locality and communication

protocols.
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The primary contribution of this paper is the development

of a simple and scalable BFS algorithm for multicore, shared-

memory systems that can efficiently parse graphs with billions

of vertices and beyond. To the best of our knowledge, as

discussed in detail in Section IV, the results presented in

this paper outperform in absolute value any other commodity

or specialized architecture on the same classes of problems,

reaching aggregate processing rates that in some cases exceed

a billion edges per second. The main aspects of the algorithm

are:

• an innovative data layout that enhances memory locality

and cache utilization through a well-defined hierarchy of

working sets;

• a software design that decouples computation and com-

munication, keeping multiple memory requests in flight

at any given time, taking advantage of the hardware

capabilities of the latest Nehalem processors;

• an efficient, low-latency channel mechanism for inter-

socket communication that tolerates the potentially high

delays of the cache-coherent protocol;

• the extreme simplicity: the proposed algorithm relies

on a handful of native mechanisms provided by the

Linux operating system, (namely pthreads, the atomic

instructions sync fetch and add() and -
sync or and fetch(), and the thread and memory

affinity libraries).

Other contributions include an in-depth performance eval-

uation that considers different classes of graphs and analyzes

scalability, processing rate sensitivity to vertex arity and graph

size, and a comprehensive comparative analysis of the related

work in graph exploration in Section IV.

By combining our innovative algorithmic design with new

architectural features, such as the capability of keeping many

memory requests in flight that for the first time is available

in commodity processors, we are able to achieve rates that

are competitive with supercomputing results in the recent

literature. More specifically, a 4-socket Nehalem EX is:

• 2.4 times faster than a Cray XMT with 128 processors

when exploring a random graph with 64 million vertices

and 512 million edges [15],

• capable of processing 550 million edges per second with

an R-MAT graph with 200 million vertices and 1 billion

edges, comparable to the performance of a similar graph

on a Cray MTA-2 with 40 processors [16],

• 5 times faster than 256 BlueGene/L processors on a graph

with average degree 50 [20].

Finally the paper exposes important properties of the latest

families of Nehalem processors and gives a fresh look to the

recently announced Nehalem EX. In our experiments we used

a four-socket eight-core system (a total of 64 threads, based

on dual-threading per each of the 32 cores) equipped with 256

GB of memory.

Our work provides a valuable contribution for application

developers, by identifying a software path that potentially

can be followed by other applications, in particular in the

security and business analytics domains. We expect that the

hand-crafted techniques described in this paper will eventually

migrate into parallelizing tools and compilers. Processor de-

signers might also find interesting information to develop the

new generation of streaming processors, that will likely target

from the very beginning the computing needs of streaming and

irregular applications. We believe that the results presented in

this paper can be used as algorithmic and architectural building

blocks to develop the next generation of exascale machines.

The rest of this paper is organized as follows. Section II

describes the speeds and feeds of the Nehalem EP and EX

systems used in our experimental evaluation. The essential

aspects of the algorithmic design are summarized in Section

III, while a rich body of experimental results is presented in

Section IV. Finally, some concluding remarks are given in

Section V.

II. SYSTEM ARCHITECTURE AND EXPERIMENTAL

PLATFORMS

We focus our design and experimental evaluation on two

systems: a dual-socket Xeon 5500 (Nehalem-EP) and a four

socket Xeon 7560 (Nehalem-EX). Figure 1 provides a visual

overview of the system architecture of the two processors,

and describes how larger systems with 4 and 8 Nehalem-EX

sockets can be assembled to build a shared-memory SMP;

table I summarizes system parameters.

The Xeon 5570 (Nehalem-EP) is a 45nm quad core pro-

cessor. Each core has a private L1 and L2 cache, while the

L3 cache is shared across the cores on a socket. Each core

supports Simultaneous Multi Threading (SMT), allowing two

threads to share processing resources in parallel on a single

core. Nehalem EP has a 32KB L1, 256KB L2 and a 8MB

L3 cache. As opposed to older processor configurations, this

architecture implements an inclusive last level cache. Each

cache line contains ‘core valid bits’ that specify the state of

the cache line across the processor. A set bit corresponding to

a core indicates that the core may contain a copy of this line.

When a core requests for a cache line that is contained in the

L3 cache, the bits specify which cores to snoop, for the latest

copy of this line, thus reducing the snoop traffic. The MESIF

cache-coherence protocol extends the native MESI protocol

to include ‘forwarding’. This feature enables forwarding of

unmodified data that is shared by two cores to a third one.

The Xeon 7560 (Nehalem-EX), on the other hand, contains

8 cores per socket. The configuration of each core is identical

to the Xeon 5600 but they operate at lower frequency. This

architecture expands the shared L3 cache size to 24 MB per

processor with a fast kilobit-wide ringbus between the different

cache segments to boost access speed. Nehalem EX also

implements two-way SMT per processing core and contains 4

DDR3 channels per chip, each capable of simultaneous read

and write transactions, effectively doubling memory band-

width. The 4-channel QPI interconnect at 6.4 GigaTransactions

per second gives over a 100 GB/sec bandwidth to the other

neighbouring sockets in a blade. In Table I we can see some

interesting architectural trade-offs. The Nehalem EP can run
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Fig. 1: Nehalem EP and EX: architectural overview and

topology of 4- and 8-core Nehalem-EX systems.

at higher frequencies (high-end EP processors can reach 3.4

GHz), while the top frequency for an EX is only 2.26 GHz.

The EP has three DDR3 memory channels for four cores,

while the EX has four channels for eight cores, with a less

favorable communication to computation ratio.

Processors Nehalem-EP Nehalem-EX

Core affinities Proc 0 : 0-3 & 8-11 Proc 0 : 0-7 & 32-39
Proc 1 : 4-7 & 12-15 Proc 1 : 8-15 & 40-47

Proc 2 : 16-23 & 48-55
Proc 3 : 24-31 & 56-63

Cores per socket 4 8
Core frequency 2.93 GHz 2.26 GHz
L1 cache size 32 KB/32 KB 32 KB/32 KB
L2 cache size 256KB 256 KB
L3 cache size 8 MB 24 MB
Cache line size 64 Bytes 64 Bytes
Memory type 3 channels per socket,

DDR3-1066
4 channels per socket,
DDR3-1066

TABLE I: System configuration

Figure 2 reports the results of a simple benchmark. We

consider a collection of data arrays of increasing size, ranging

from 4KB to 8GB, that are accessed in read-only mode by a

single core using a pseudo-random pattern. The core issues

a batch of up to 16 memory requests and then waits for

the completion of all of them before continuing to the next

iteration.

The graph clearly shows the well known performance

impact of the memory hierarchy: a sequence of performance-

degrading steps that happen when we overflow each level of

cache memory. As expected, by narrowing the working set size

to fit in one of caches we can greatly increase performance.

The graphs also shows an important property of the new

Nehalem processors: we can hide the memory latency by

keeping a number of read requests in flight, as traditionally

done by multi-threaded architectures [16], [15]. Surprisingly,

with a simple software pipelining strategy we can increase by

a factor of eight the number of transactions per second: for

example, with a working set of 8MB, the memory subsystem

can satisfy up to 160 millions reads per second, and with

2 GB we can achieve 40 millions of random reads per

second. In accordance with the results presented in [21], we

have experimentally determined that the maximum number of

outstanding requests is about 10 for both Nehalem EP and

EX. When we consider the aggregate behavior of all cores

in the socket and we add SMT threads we can keep up to

50 and 75 requests in flight, respectively for the Nehalem EP

and EX.1 So, we can take advantage of one of the pillars of

multi-threaded processors with commodity processors.

In Figure 3 we refine the previous experiment by running

atomic fetch-and-adds, another important building block of our

1The maximum number of outstanding requests is influenced by the
working set size and type of memory operation. While a full analysis of the
memory pipelining properties is beyond the scope of this paper, we have
noticed that the degree of memory pipelining is not a bottleneck for the
most optimized version of our BFS algorithm, allowing linear scaling in both
Nehalem architectures.



Fig. 2: Impact of memory pipelining, Nehalem EP.

algorithmic design. In this case we used a buffer of fixed size,

4MB, which is shared by an increasing number of threads

mapped on two distinct Nehalem EP sockets.

Fig. 3: Processing rates with Fetch-and-add and a dual socket

configuration.

We observe that atomic ops cannot be pipelined as effec-

tively as memory reads, mostly because the implementation

of the primitives relies on the lockb2 assembly instruction

that locks the access to part of the memory hierarchy. More

interesting is the performance gap when we transition from

4 to 5 threads, crossing the socket boundary. In this case

the coherency traffic and the locking instructions limit the

scalability of the access pattern: using 8 cores on two sockets,

we achieve the same processing rate of only 3 cores on a

single socket.

The insight provided by these two simple experiments is

that, while a read-only access pattern can be easily scaled

2lockb is the basic instruction to implement atomic operations on x86
processors, so the results can be directly generalized to other primitives such
as read-and-or, that we use in the graph exploration.

across multiple sockets relying on the native memory pipelin-

ing units, more sophisticated patterns that put pressure on the

cache-coherency protocol require an innovative algorithmic

solution.

III. BFS ALGORITHMS

In this section we present the methodology that we used to

parallelize the BFS algorithm. We first introduce the notation

employed throughout the rest of this paper and a simplified

parallel version of BFS. Then, we refine the algorithm and

introduce several optimizations that explicitly manage the

hierarchy of working sets and enable scaling across cores and

sockets.

A graph G(V ,E) is composed of a set of vertices V and a

set of edges E. Given a graph G(V ,E) and a root vertex r ∈ V ,

the BFS algorithm explores the edges of G to discover all the

vertices reachable from r, and it produces a breadth-first tree

rooted at r. Vertices are visited in levels: when a vertex is

visited at level l, it is also said to be at a distance l from the

root. When we visit the adjacency list of vertex u, for each

vertex v not already visited, we set the parent of v to be u or

P[v]←− u.

Algorithm 1 presents an initial, simplified parallel BFS

algorithm. At any time, CQ (current queue) is the set of

vertices that must be visited at the current level. Initially CQ
is initialized with the root r (see line 4). At level 1, CQ will

contain the neighbours of r, at level 2, it will contain these

neighbour’s neighbours (the ones that have not been visited

in levels 0 and 1), and so on. The algorithm maintains a next

queue NQ, containing the vertices that should be visited in

the next level. After reaching all nodes in a BFS level, the

queues CQ and NQ are swapped. The high-level description

Algorithm 1 exposes the nature of the parallelism, but abstracts

several important details. For example in the assignment in line

10-12 and 8 must be executed atomically in order to avoid race

conditions.

Algorithm 1 Parallel BFS algorithm: high-level overview.

Input: G(V ,E), source vertex r
Output: Array P[1..n] with P[v] holding the parent of v
Data: CQ : queue of vertices to be explored in the current level

NQ : queue of vertices to be explored in the next level

1 for all v ∈ V in parallel do
2 P[v] ←− ∞;

3 P[r] ←− 0;
4 CQ←− Enqueue r;
5 while CQ � φ do
6 NQ←− φ;
7 for all u ∈ CQ in parallel do
8 u←− Dequeue CQ;
9 for each v adjacent to u in parallel do

10 if P[v] = ∞ then then
11 P[v] ←− u;
12 NQ←− Enqueue v;

13 Swap(CQ,NQ);



Algorithm 2 refines the original design by adding atomic

operations (lines 11, 15 and 18) and two important optimiza-

tions.

Algorithm 2 Parallel BFS algorithm for a single socket

configuration.

Input: G(V ,E), source vertex r
Output: Array P[1..n] with P[v] holding the parent of v
Data: Bitmap[v] : bit set to 1 if vertex v is visited, otherwise 0

CQ : queue of vertices to be explored in the current level
NQ : queue of vertices to be explored in the next level

Functions: LockedDequeue(Q) : Returns the front element of the queue
Q and updates the front pointer atomically
LockedReadSet(a,val) : Returns the current value of a and
sets it to val atomically
LockedEnqueue(Q,val) : Inserts val to the end of the queue
and updates the pointer atomically

1 for all v ∈ V in parallel do
2 P[v] ←− ∞;

3 for i←− 1..n in parallel do
4 Bitmap[i] ←− 0;

5 P[r] ←− 0;
6 CQ←− Enqueue r;
7 fork;
8 while CQ � φ do
9 NQ←− φ;

10 while CQ � φ in parallel do
11 u←−LockedDequeue (CQ);
12 for each v adjacent to u do
13 a←− Bitmap[v];
14 if a = 0 then
15 prev←− LockedReadSet (Bitmap[v],1);
16 if prev = 0 then
17 P[v] ←− u;
18 LockedEnqueue (NQ, v);

19 Synchronize;
20 Swap(CQ,NQ);

21 join;

The first optimization is the use of a bitmap (line 4 in

Algorithm 2) to mark the vertices during the visit. While the

access pattern is still random across all vertices, this greatly

reduces the working set size. For example, in 4MB we can

store all the visit information for a graph with 32 million

vertices. In Figure 2, we can see that this can improve the

processing rate (number of reads per unit of time) by at least

a factor of four.
A more subtle optimization is performed in lines 13 and 14:

in this case we avoid the potentially expensive atomic in line

15, i.e., LockedReadSet (a sync or and fetch() in

the actual implementation), by first checking whether the

vertex has already been visited. It is worth noting that the

bit assigned in line 13 may be overwritten by another thread,

so to avoid race-conditions we still need to perform an atomic

operation. But as shown in Figure 4, the number of atomic

operations is much lower than the number of queries in the

later stages of the BFS exploration.
Algorithm 3 includes two important final optimizations.

As shown in Figure 3, a random access pattern that re-

quires atomic memory updates cannot scale efficiently across

multiple sockets due to heavy traffic for line invalidation

Algorithm 3 Multicore Multi Socket Parallel BFS algo-

rithm
Input: G(V ,E), source vertex r, n number of vertices (multiple of

number of sockets)

Output: Array P[1..n] with P[v] holding the parent of v
Data: Bitmap[v] : bit set to 1 if vertex v is visited, otherwise 0

CQ[s] : queue of vertices to be explored in the current level for
socket s
NQ[s] : queue of vertices to be explored in the next level for
socket s
S Q[s] : queue for inter-socket communication channel for
socket s, resides in memory of s, stores tuple (v,u), where u is
the father of v

Functions: LockedDequeue(Q) : Returns the front element of the
queue Q and updates the front pointer atomically
LockedReadSet(a,val) : Returns the current value of a and
sets it to val atomically
LockedEnqueue(Q,val) : Inserts val to the end of the queue
and updates the pointer atomically
GetTotalSockets() : returns the total number of sockets
used in the algorithm
DetermineSocket(v) : returns the socket ID on which graph
node v resides

1 sockets =GetTotalSockets();
2 Partition graph, allocate ns = n

sockets nodes to each socket
Partition P and Bitmap corresponding to the graph partition, such that
if graph node v ∈ socket s then both P[v] and Bitmap[v] ∈ socket s;

3 for v←− 1 to n do
4 P[v] ←− ∞;
5 Bitmap[v] ←− 0;

6 P[r] ←− 0;
7 for s←− 1 to sockets do
8 CQ[s] ←− φ;
9 NQ[s] ←− φ;

10 CQ[DetermineSocket(r)] ←− Enqueue r;
11 fork;
12 this = GetMyS ocket();
13 while CQ[this] � φ do
14 while CQ[this] � φ do
15 u←−LockedDequeue (CQ[this]);
16 for each v adjacent to u do
17 s ←− DetermineSocket(v);
18 if s = this then
19 a←− Bitmap[v];
20 if a = 0 then
21 prev←− LockedReadSet (Bitmap[v],1);
22 if prev = 0 then
23 P[v] ←− u;
24 LockedEnqueue (NQ[this], v);

25 else
26 LockedEnqueue (S Q(s),(v, u));

27 Synchronize;
28 while S Q(this) � φ do
29 (v, u) ←− LockedDequeue (S Q(this));
30 a←− Bitmap[v];
31 if a = 0 then
32 prev←− LockedReadSet (Bitmap[v],1);
33 if prev = 0 then
34 P[v] ←− u;
35 LockedEnqueue (NQ[this], v);

36 Synchronize;
37 Swap(CQ[this],NQ[this]);
38 NQ[this]←− φ;
39 join;



Fig. 4: Number of bitmap accesses and atomic operations in

a BFS search, random uniform graph with 16 millions of

edges, and average arity 8. By using a simple check we can

dramatically reduce the number of atomic operations in the

later stages of the exploration.

Fig. 5: Impact of various optimizations

and cache locking that will limit the amount of memory

pipelining. In order to mitigate this problem we implemented

a race-free, lightweight communication mechanism between

groups of cores residing on different sockets. Our remote

communication channels, those used for inter-socket commu-

nication, rely on two important algorithmic building blocks:

an efficient locking mechanism, based on the Ticket Lock
[22] that protects a single-producer/single consumer lock-free

queue based on the FastForward algorithm [23]. In a nutshell,

the remote channel is implemented as a FastForward queue

where both producers and consumers are protected on their

respective side by a Ticket Lock. FastForward, is a cache-

optimized single-producer/single-consumer concurrent lock-

free queue for pipeline parallelism on multicore architectures,

with weak to strongly ordered consistency models. Enqueue

and dequeue times are as low as 20 nanoseconds on the

Nehalem architectures considered in this paper. One important

property of the FastForward queues is that both sender and

receiver can make independent progress without generating

any unneeded coherence traffic. The activity and the coherency

traffic of the FastForward queues can be almost entirely

overlapped with the computation when the application is

operating in throughput mode, which is the case of our BFS

graph exploration. Algorithm 3 shows how these channels are

implemented using socket queue S Q (lines 26, 28-35). While

scanning the adjacency list of a node, we insert local vertices

into the same socket next queue NQ by checking the Bitmap
(lines 18-24), otherwise we use the socket queue S Q of the

corresponding remote node (line 26). At the end of every stage,

each socket reads its S Q and processes the nodes by checking

their Bitmap and inserting the vertices into the socket next

queue NQ (lines 28-35).

The final optimization is the use of batching when inserting

and removing from the inter-socket communication channel,

as shown in Algorithm 3 in lines 26 and 29. Rather than

inserting at a granularity of a single vertex, each thread batches

a set of vertices to amortize the locking overhead. Overall,

including all the synchronization, locking and unlocking and

buffer copies, the normalized cost per vertex insertion is only

30 nanoseconds. The inter-socket channels proved to be the

key optimization, that allowed us to achieve very good scaling

across multiple Nehalem EX sockets.

The overall impact of all optimizations is summarized in

Figure 5 for the Nehalem EP. It is worth noting that the change

of slope of the most optimized version of the algorithm be-

tween 4 and 8 threads is mostly due to the change of algorithm

–we rely on a two-phase algorithm, the first one processing the

local vertices and the second one processing the remote ones

sent through the inter-socket communication channels, and not

to the communication overhead, given that most operations

are overlapped with carefully placed mm prefecth()
instrinsics [24].

The proposed algorithm can be easily generalized to dis-

tributed memory machines that use fast and lightweight

communication mechanisms, such as PGAS language and

libraries [25].

IV. EXPERIMENTAL RESULTS

We tested our algorithm on two different classes of graphs.

• Uniformly Random Graphs : Graphs with n vertices each

with degree d, where the d neighbours of a vertex are

chosen randomly.

• Scale-free graphs (R-MAT): Graphs generated using the

GTgraph [26] suite based on the R-MAT graph model to

represent real-world large-scale networks. Using a small

number of parameters, R-MAT samples from a Kronecker

product to produce scale-free graphs with community

structure. These graphs have a few high degree vertices

and many low-degree ones.

Table II provides the configuration details of the two Intel

systems under consideration, a dual-socket Nehalem EP and

a four-socket Nehalem EX, and several other parallel systems

for BFS discussed in the literature.



CPU Speed Sockets Cores Threads Threads Cache Size Cache Size Memory
(GHz) /Socket /Core /Socket

INTEL Xeon 7500 2.26 4 8 2 64 24M 96M 256G
(Nehalem EX)
INTEL Xeon X5570 2.93 2 4 2 16 8M 16M 48G
(Nehalem EP)
INTEL Xeon X5580 3.2 2 4 2 16 8M 16M 16G
(Nehalem EP)
CRAY XMT 500MHz 128 - - 16K 1TB
CRAY MTA-2 220MHz 40 - - 5120 160G
AMD Opteron 2350 2.0 2 4 1 8 2M 4M 16G
(Barcelona)

TABLE II

We measure the performance of the proposed BFS algo-

rithm in edges processed per second. This is computed using
ma

running time , where ma is the actual number of edges traversed

during the BFS computation (ma < m for graphs that are

not fully connected, where m is the total number of edges

in the graph). In our measurements we noticed a maximum

difference of 2% between m and ma. The source vertex was

chosen randomly in all the experiments given in this section.

Figures 6a & 6b plot the processing rate and speedup

obtained on a uniformly random graph with 32 million vertices

when the number of edges varies from 256 million to 1 billion,

and number or threads varies from 1 to 16 on a Nehalem

EP. The speedup is defined as the ratio of processing rate

on t threads over 1 thread. We used the best performing

algorithm for each thread configuration. When the threads run

on the same socket, we disable inter-socket channels to get

the highest performance. We use one thread per core up to 8

threads and use SMT to scale to 16 threads. We see that the

performance of our algorithm not only scales well to multiple

cores on the same socket but also across the two sockets of

an EP system. Figure 6c plots the maximum processing rate

obtained on a 2-socket Nehalem EP for uniformly random

graphs when the number of edges varies from 256 million to

1 billion and the number of vertices varies from 1 million to

32 million. We observe in this plot that the processing rate

only drops by a small factor when increasing the number of

vertices. This is due to the higher random access latency with

larger working set sizes. We obtain a processing rate between

200 to 800 million edges per second on a Nehalem EP with

2 sockets for both uniformly random and R-MAT graphs with

32 million vertices when the number of edges is varied from

256 million to 1 billion.

Similarly, Figure 7 plots the processing rate and speedup

of R-MAT graphs on a Nehalem EP. We notice that the

R-MAT graphs have higher processing rates than uniformly

random graphs. This is because R-MAT graphs have a few

high degree vertices that lead to a performance advantage

more than the performance degradation caused by the low

degree vertices in the graph. The slight reduction in the slope

of the speedup curve from 4 to 8 threads is because of the

change in the algorithm used when running on 1 socket vs 2

sockets (each socket of Nehalem EP contains 4 cores). The

multi-socket algorithm performs extra insert/delete operations

on inter-socket communication channels. We obtain a constant

slope speedup curve, when the same channel-based algorithm

is used on a single socket.
Figures 8 & 9 show the processing rate and speedup of

uniformly random and R-MAT graphs on a 4 socket Nehalem

EX. Our algorithm scales well to all 64 threads (32 cores)

available on this blade, giving a speedup between 14-24 over

the performance of a single thread. Again, as we noticed

before, the slope of the speedup curve tails off from 8 to 16

threads, when the algorithm starts using inter-socket channels

for task division and communication (each socket of Nehalem

EX contains 8 cores). We also note in Figures 8c & 9c that the

processing rate is not influenced by the number of vertices in

the graph. This is due to a larger cache size on the Nehalem

EX. We obtain a processing rate from 0.55 to 1.3 billion edges

per second on 4 sockets of this processor for both uniformly

random and R-MAT graphs with 32 million vertices when the

number of edges varies from 256 million to 1 billion.
We provide a reference table (Table III) that summarizes

several published results on parallel breadth first search. These

results are categorized based on the graph size/types used,

scalability with processors and with graph size, and choose

some selected performance results that can be compared with

the performance of our algorithm. The performance column in

this table gives the performance in million edges per second

(ME/s) for a graph with N vertices and M edges. When

compared with these results, our BFS algorithm running on

4-socket Nehalem EX is:

• 2.4 times faster than a Cray XMT [15] with 128 proces-

sors running at 500 MHz with 1 TB shared memory, when

exploring a uniformly random graph with 64 million

vertices and 512 million edges;

• 5 times faster than 256 BlueGene/L [20] processors, on

a graph with average degree 50. The system consists of

512 MB memory per compute node (each node with 2

PowerPC 440 processors running at 700 MHz);

• capable of processing 550 million edges per second with

an R-MAT graph with 200 million vertices and 1 billion

edges, comparable to the performance of a similar graph

on a Cray MTA-2 [16] with 40 processors running at 220

MHz with 160 GB shared memory.

Please note that the Cray XMT and MTA-2 systems cur-

rently can handle graphs of much larger sizes due to the large



(a) Processing rates

(b) Scalability

(c) Sensitivity to graph size

Fig. 6: Uniformly random graphs, Nehalem EP

system memory, whereas our algorithm can only handle the

graphs that can fit inside the main memory of the Intel systems

(256GB on 4-socket Nehalem EX that is expected to increase

to 1TB and more on future systems).

Figure 10 plots the throughput of our algorithm, where

we run a single BFS per socket and run multiple instances

of the algorithm on different graphs on different sockets.

This is representative of the SSCA#2 benchmarks, and gives

an estimate on the performance of our algorithm for such

(a) Processing rates

(b) Scalability

(c) Sensitivity to graph size

Fig. 7: RMAT graphs, Nehalem EP

workloads.

V. CONCLUSION

In this paper we have presented a scalable breadth-first

search (BFS) algorithm for commodity multicore processors.

In spite of the highly irregular access pattern of the BFS,

our algorithm was able enforce various degrees of memory

and processor locality, minimizing the negative effects of

the cache-coherency protocol between processor sockets. The

experimental results, conducted on two Nehalem platforms, a



(a) Processing rates

(b) Scalability

(c) Sensitivity to graph size

Fig. 8: Uniformly random graphs, Nehalem EX

dual-socket Nehalem EP and a four-socket Nehalem EX, have

demonstrated an impressive processing rate in parsing graphs

that have up to a billion edges. Using several graph configura-

tions the Nehalem EX system has reached, and in many cases

exceeded, the performance of special-purpose supercomputers

designed to handle irregular applications. These are significant

results in parallel computing as prior results in graph traversal

report very limited or no speedup on irregular graphs when

compared to their best sequential implementation. We believe

(a) Processing rates

(b) Scalability

(c) Sensitivity to graph size

Fig. 9: RMAT graphs, Nehalem EX

that the results presented in this paper forms a valuable foun-

dation to develop the architectural and algorithmic building

blocks of upcoming exascale machines. We plan to extend the

algorithmic design in the near future to map the graph explo-

ration on distributed-memory machines that integrate powerful

processing nodes, such as those considered in this paper, with

high-performance, low-latency communication networks and

lightweight PGAS programming languages.
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