
A Faster Parallel Algorithm and Efficient Multithreaded Implementations for
Evaluating Betweenness Centrality on Massive Datasets

Kamesh Madduri
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, CA, USA

David Ediger Karl Jiang David A. Bader
College of Computing

Georgia Institute of Technology
Atlanta, GA, USA

Daniel Chavarrı́a-Miranda
High Performance Computing

Pacific Northwest National Laboratory
Richland, WA, USA

Abstract

We present a new lock-free parallel algorithm for com-
puting betweenness centrality of massive complex networks
that achieves better spatial locality compared with previ-
ous approaches. Betweenness centrality is a key kernel in
analyzing the importance of vertices (or edges) in applica-
tions ranging from social networks, to power grids, to the
influence of jazz musicians, and is also incorporated into
the DARPA HPCS SSCA#2, a benchmark extensively used
to evaluate the performance of emerging high-performance
computing architectures for graph analytics. We design an
optimized implementation of betweenness centrality for the
massively multithreaded Cray XMT system with the Thread-
storm processor. For a small-world network of 268 million
vertices and 2.147 billion edges, the 16-processor XMT
system achieves a TEPS rate (an algorithmic performance
count for the number of edges traversed per second) of
160 million per second, which corresponds to more than
a 2× performance improvement over the previous parallel
implementation. We demonstrate the applicability of our
implementation to analyze massive real-world datasets by
computing approximate betweenness centrality for the large
IMDb movie-actor network.

1. Introduction

Graphs are a fundamental abstraction for representing data
sets, and graph-theoretic algorithms and analysis routines
are pervasive in several application domains today. Com-
putations involving sparse real-world graphs such as socio-
economic interactions, the world-wide web, and biological
networks only manage to achieve a tiny fraction of the
computational peak performance on the majority of current
computing systems. The primary reason is that sparse graph
analysis tends to be highly memory-intensive: codes typi-
cally have a large memory footprint, exhibit low degrees
of spatial and temporal locality in their memory access
patterns (compared to other workloads), and there is very
little computation to hide the latency to memory accesses.
Thus, the execution time of a graph-theoretic computation

strongly correlates with the memory subsystem performance,
rather than the processor clock frequency or the floating-
point processing capabilities of the system. The design of
efficient parallel graph algorithms is quite challenging as
well [15], due to the fact that massive graphs that occur in
real-world applications are often not amenable to a balanced
partitioning among processors of a parallel system [13].

The DARPA HPCS [8] graph theory benchmark was
introduced as part of the Scalable Synthetic Compact Ap-
plications (SSCA) benchmark suite [4], and is representa-
tive of key computations in graph informatics applications
such as social network analysis, epidemiological studies,
and network analysis in systems biology. It is designed to
be a compact mini-application that has multiple analysis
techniques (kernels) accessing a single data structure rep-
resenting a weighted, directed graph. The second version of
the benchmark specification was released in August 2006
[1], and consists of four kernels that operate on a synthetic
graph instance. We use the Recursive MATrix (R-MAT) [6]
random graph generation algorithm to generate input data
sampled from a Kronecker product that are representative of
real-world networks with a small-world topology. The most
complex kernel of the SSCA#2 benchmark is the evaluation
of betweenness centrality, which is the focus of the paper.

Betweenness centrality is a popular graph analysis tech-
nique based on shortest-path enumeration for identifying key
entities in large-scale interaction networks. For any arbitrary
graph G(V,E), let σst denote the number of shortest paths
between vertices s and t, and σst(v) the count of shortest
paths that pass through a specified vertex v. The betweenness
centrality of v is defined as follows:

BC(v) =
∑

s6=v 6=t∈V

σst(v)
σst

(1)

Intuitively, betweenness measures the control a vertex has
over communication in the network, and can be used to
identify critical vertices in the network (a similar measure
of betweenness centrality exists for edges). High centrality
indices indicate that a vertex can reach other vertices on
relatively short paths, or that a vertex lies on a considerable
fraction of shortest paths connecting pairs of other vertices.



This metric has been extensively used for analyzing key
features in networks with small-world properties. Some ap-
plications include lethality in biological networks [11], study
of sexual networks and AIDS [14], identifying key actors in
terrorist networks [7], organizational behavior, supply chain
management processes, and transportation networks [9].

In [3], we present the first parallel algorithms for the exact
evaluation of betweenness and other centrality metrics. The
betweenness implementation in version 2.2 of the SSCA#2
benchmark is based on the fine-grained parallel algorithm
discussed in [3]. In this paper, we present a new parallel
algorithm for computing betweenness centrality, which
significantly reduces the synchronization overhead in com-
parison to the previous algorithm, and also exhibits better
cache locality. The key idea in the design of this algorithm
– eliminating predecessor multisets associated with each
vertex – can be applied to build efficient algorithms for other
path-based centrality metrics. We discuss this new algorithm
in more detail in Section 2.

Current hardware designs utilize multi-level caches or
multithreading to hide the latency to main memory. Hard-
ware multithreading in particular has been shown to be
very effective in the design and implementation of efficient
parallel graph algorithms [16]. In this paper, we focus on
optimizing vertex betweenness centrality on the massively
multithreaded Cray XMT system [12]. In Section 3, we
discuss the architectural features of this system, and present
centrality implementation details and architecture-specific
optimizations. Our key performance results are summarized
below:
• On a 16-processor XMT system with 128 GB of

main memory, we compute approximate betweenness
centrality for a small-world network of 268 million
vertices and 2.147 billion edges in 50.1 minutes. This
corresponds to a Traversed Edges Per Second (or TEPS)
rate of 160 million per second.

• The parallel speedup of the XMT implementation is
on an average 10.5 on 16 processors for large-scale
networks.

• We utilize the Cray XMT betweenness implementa-
tion to compute the approximate centrality scores of
all the vertices in a large-scale social network, con-
structed from a recent snapshot of the IMDb movie-
actor database [10]. In comparison to a parallel run on
a quad-core Intel workstation, we are able to perform
this computation roughly 4.75 times faster on the 16-
processor XMT system.

2. Computing Betweenness

We can evaluate the betweenness centrality of a vertex
v (defined in Eq. 1) by determining the number of shortest
paths between every pair of vertices s and t, and the number
of shortest paths that pass through v. There is no known

algorithm to compute the exact betweenness centrality score
of a single vertex without solving an all-pairs shortest paths
problem instance in the graph.

Let the number of vertices in the graph G(V,E) be
given by n, and the number of edges by m. Let d(s, v)
denote the length of the shortest path to v from a source
vertex s. For unweighted and sparse real-world networks,
Brandes [5] presents a sequential algorithm to compute
the betweenness centrality score for all vertices in O(mn)
time and O(m+ n) space. The main idea is to perform n
breadth-first graph traversals, and augment each traversal to
compute the number of shortest paths passing through each
vertex. The second key idea is that pairwise dependencies

δst(v)(=
σst(v)
σst

) can be aggregated without computing all

of them explicitly. Define the dependency of a source vertex
s ∈ V on a vertex v ∈ V as δs(v) =

∑
t∈V δst(v).

The betweenness centrality of a vertex v can be then
expressed as BC(v) =

∑
s6=v∈V δs(v). Brandes shows that

the dependency values δs(v) satisfy the following recursive
relation:

δs(v) =
∑

w:d(s,w)=d(s,v)+1

σsv
σsw

(1 + δs(w)) (2)

Thus, the sequential algorithm computes betweenness in
O(mn) time by iterating over all the vertices s ∈ V , and
computing the dependency values δs(v) in two stages. First,
the distance and shortest path counts from s to each vertex
are determined. Second the vertices are revisited starting
with the farthest vertex from s first, and dependencies are
accumulated according to Eq. 2.

In prior work, we presented new parallel algorithms for
computing betweenness on low-diameter graphs [3] with
the same work complexity as Brandes’ algorithm. Algo-
rithm 1 gives a high-level schematic describing the two
main steps in each iteration of the fine-grained parallelization
discussed in [3]. Starting from the source vertex s, we
successively expand the frontier of visited vertices and
augment breadth-first graph traversal (we also refer to this
as level-synchronous graph traversal) to count the number
of shortest paths passing through each vertex. We maintain
a multiset P of predecessors associated with each vertex.
A vertex v belongs to the predecessor multiset of w if
〈v, w〉 ∈ E and d(s, w) = d(s, v) + 1. Clearly, the size of a
predecessor multiset for a vertex is bounded by its in-degree.
The predecessor information is used in the dependency
accumulation step (step III in Algorithm 1). We also indicate
the steps in the algorithm that are amenable to parallel
execution. However, note that accesses to the shared data
structures (such as the predecessor multisets and the stack)
and updates to the distance and path counts need to be
protected with appropriate synchronization constructs, which
we do not indicate in Algorithm 1.

In Algorithms 2 and 3, we give more detailed pseudo-



Algorithm 1 A level-synchronous parallel algorithm for
computing betweenness centrality of vertices in unweighted
graphs.
Input: G(V,E)
Output: BC[1..n], where BC[v] gives the centrality score

for vertex v
1: for all v ∈ V in parallel do
2: BC[v] ← 0
3: for all s ∈ V do

I. Initialization
4: for all t ∈ V in parallel do
5: P [t]← empty multiset, σ[t]← 0, d[t]← −1
6: σ[s]← 1, d[s]← 0
7: phase← 0, S[phase]← empty stack
8: push s→ S[phase]
9: count← 1

II. Graph traversal for shortest path discovery and
counting

10: while count > 0 do
11: count← 0
12: for all v ∈ S[phase] in parallel do
13: for each neighbor w of v in parallel do
14: if d[w] < 0 then
15: push w → S[phase+ 1]
16: count← count+ 1
17: d[w]← d[v] + 1
18: if d[w] = d[v] + 1 then
19: σ[w]← σ[w] + σ[v]
20: append v → P [w]
21: phase← phase+ 1
22: phase← phase− 1

III. Dependency accumulation by back-propagation
23: δ[t]← 0 ∀ t ∈ V
24: while phase > 0 do
25: for all w ∈ S[phase] in parallel do
26: for all v ∈ P [w] do
27: δ[v]← δ[v] + σ[v]

σ[w] (1 + δ[w])

28: BC[w]← BC[w] + δ[w]
29: phase← phase− 1

code for implementing the traversal and dependency ac-
cumulation steps. We assume that our target architecture
supports two atomic operations: compare_and_swap and
fetch_and_add. fetch_and_add atomically incre-
ments a memory location by the specified integer value, and
returns the value initially read from the memory location.
compare_and_swap atomically compares the value of
the memory location with the given value, and swaps it
with the new value if they are equal. We assume that
compare_and_swap also returns the value read from
the memory location before the comparison. In case these

two instructions are not supported on a parallel system,
we can protect access to the shared variables with fine-
grained mutual exclusion locks. Note that increments to the
path count and the predecessor multiset are performance
bottlenecks in the graph traversal step, but we show that
they can be implemented with atomic operations. However,
the dependence accumulation step requires locks, as δ and
BC values are stored as floating-point numbers.

Algorithm 2 Pseudo-code for the augmented breadth-first
graph traversal step in Algorithm 1.

for all v ∈ S[phase] in parallel do
for each neighbor w of v in parallel do
dw ← compare and swap(&d[w],−1, phase+ 1)
if dw = −1 then
p← fetch and add(&count, 1)
Insert w at position p of S[phase+ 1]
dw ← phase+ 1

if dw = phase+ 1 then
p← fetch and add(&Pcount[w], 1)
Insert v at position p of P [w]
fetch and add(&sigma[w], sigma[v])

Algorithm 3 Pseudo-code for the dependency accumulation
step in Algorithm 1.

for all w ∈ S[phase] in parallel do
for all v ∈ P [w] do

acquire lock on vertex v
δ[v]← δ[v] + σ[v]

σ[w] (1 + δ[w])
release lock on vertex v

BC[w]← BC[w] + δ[w]

2.1. A lock-free parallel algorithm

To the best of our knowledge, all previous serial and
parallel algorithms for computing betweenness centrality
(and other shortest-path based centrality metrics) require the
use of predecessor multisets. Updates to these multisets tend
to limit concurrency in level-synchronous graph traversal,
and can be a serious bottleneck in some cases. For instance,
see Figure 1 for a possible scenario. Vertices v1, v2, v3 are
being processed in parallel and are all predecessors to vertex
w, which is one hop farther away from the source vertex.
Appends to the predecessor multiset of w will serialize
in this case. Even in the case of the serial betweenness
centrality algorithm, the appends tend to be cache-unfriendly
memory accesses, as we are touching w when we are
processing vi’s. Similarly, we need fine-grained locking in
the dependence accumulation step (Algorithm 3) due to this
representation of the predecessor multisets.



Predecessor updates in Algorithm 1 New approach
append v1 → P [w] append w → Succ[v1]
append v1 → P [w] append w → Succ[v1]
append v2 → P [w] append w → Succ[v2]
append v3 → P [w] append w → Succ[v2]

Figure 1. An illustration of the our new representation of the predecessor multisets.

Algorithm 4 Pseudo-code for the augmented breadth-first
graph traversal step in our new parallel algorithm (replacing
lines 12–20 in Algorithm 1).

for all v ∈ S[phase] in parallel do
for each neighbor w of v in parallel do
dw ← compare and swap(&d[w],−1, phase+ 1)
if dw = −1 then
p← fetch and add(&count, 1)
Insert w at position p of S[phase+ 1]
dw ← phase+ 1

if dw = phase+ 1 then
p← fetch and add(&Succ count[v], 1)
Insert w at position p of Succ[v]
fetch and add(&sigma[w], sigma[v])

To improve the performance of our fine-grained paral-
lel approach, we consider alternate representations for the
predecessor multisets. We observe that it is possible to
simplify both the serial and parallel algorithms by slightly
restructuring the code, and by not storing the predecessors
in their current form. Consider the illustration in Figure 1,
where we store the adjacencies of a vertex that lie along
shortest paths when processing the vertices themselves. Note
that the correctness is not affected for an unweighted graph,
as the presence of a directed edge 〈u, v〉 implies a shortest
path along that edge, and that u belongs to the predecessor
multiset of v. Since the shortest path counts are accumulated
as the graph traversal proceeds, we still need to store them as
before. However, with this simple change to the predecessor
set representation, the dependence accumulation code is
greatly simplified and we do not need locking at all for
updates. Algorithms 4 and 5 list the new pseudo-code for the
traversal and dependence accumulation steps respectively.
We now maintain the successor multisets (denoted by the
array Succ in the pseudo-code) instead, the size of which
is conveniently bounded by the out-degree. Observe that the
algorithm is more cache-friendly as well, as the updates are
applied to the vertex that is currently being processed.

Algorithm 5 Pseudo-code for the dependency accumulation
step in our new parallel algorithm (replacing lines 24–29 in
Algorithm 1).
phase← phase− 1
for all w ∈ S[phase] in parallel do
dsw ← 0
sw ← σ[w]
for all v ∈ Succ[w] do
dsw ← dsw + sw

σ[v] (1 + δ[v])

δ[w]← dsw
BC[w]← BC[w] + dsw

3. Centrality Implementations on the Cray
XMT

We next demonstrate the empirical performance of our
improved betweenness centrality algorithm by modifying the
SSCA#2 graph analysis benchmark. Kernel 4 of the SSCA#2
benchmark computes exact or approximate betweenness
centrality scores of all the vertices in a synthetic small-world
network. We approximate betweenness values by traversing
the graph from a randomly chosen subset of vertices in V
(the number of vertices is specified by a benchmark param-
eter K4Approx), and then extrapolating the accumulated
dependence scores. In practice, this approach generates a
reasonably good approximation of the centrality scores for
several real-world networks [2].

To compare the performance of this kernel across various
implementations and architectures, we use a performance
rate called traversed edges per seconds, or TEPS. Given the
running time of the kernel to be t seconds, we define this
normalized metric as follows:

BC TEPS =
7n · 2K4Approx

t
edges/second (3)

2K4Approx is the number of vertices we perform graph
traversals from, and 7n is the estimated number of edges
visited in the SSCA#2 graph.

We next present betweenness performance optimizations
for the Cray XMT. We discuss implementation details on



cache-based multicore architectures such as the Sun Niagara
blades in an extended version of this paper [17].

3.1. The Cray XMT

The Cray XMT [12] is built on the idea of tolerating
latency to memory by massive multithreading. The building
block of the XMT is a 500 MHz 64-bit Threadstorm pro-
cessor, which supports 128 hardware streams of execution
mapped onto a single instruction pipeline. A processor can
keep up to 1024 memory operations in flight, and so a
memory reference latency of 1024 clock cycles can be tol-
erated without the use of cache memory. Context switching
between threads is extremely light-weight and takes just 1
clock cycle. Each processor can support up to 16 GB of
commodity memory that is hashed and globally accessible
in the system. A processor also has a 128 KB, 4-way set
associate data buffer for caching local memory references.

The XMT system design differs significantly from its
predecessor, the Cray MTA-2. XMT leverages the Cray XT
infrastructure for its I/O, network, and operating system
modules. It uses the Seastar-2 interconnection network; the
network chips are connected in a 3D-torus network, which
leads to a drop in per-processor bisection bandwidth as the
system is scaled up. In contrast, the MTA-2 uses a custom
modified Cayley graph interconnect, where the bisection
bandwidth scales linearly with the number of processors.
Also, the MTA-2 uses an older version of the Threadstorm
processor clocked at 220 MHz, and there is no data buffer.

The Threadstorm processor provides excellent support for
light-weight synchronization. Each memory word has an
associated full-empty bit, which can be modified for fine-
grained atomic reads and writes. Atomic increments (using
the int_fetch_add operation) are light-weight and just
cost one instruction cycle.

3.2. Betweenness Implementation

It is relatively easy to adapt the pseudo-code listed in
Algorithms 4 and 5 to implement approximate betweenness
on the XMT. We use the int_fetch_add instructions for
atomic increments. Since the Threadstorm processor does
not have an atomic compare_and_swap instruction, we
modify slightly the pseudo-code in Algorithm 4. We add
an additional check to see if a vertex is visited for the first
time, and only then add it to the stack. Its corresponding
distance value from the source vertex is then updated atom-
ically. Alternately, we can emulate compare_and_swap
with Threadstorm readfe and writeef instructions that
modify the full/empty bit associated with each memory
word. The primary difference between our new betweenness
implementation and the old one (see Algorithm 1) is that we
do not store the predecessors multisets associated with the

vertices. This simplifies the accumulation step, removing the
need for locking.

We need to parallelize two loops in every betweenness
iteration, one in the graph traversal step and the other in
the dependency accumulation step. On the XMT, this is
achieved by using a pragma to mark the loop “parallel”.
Note that there are two levels of parallelism in the graph
traversal step: all the vertices in the current frontier can be
visited in parallel, and all the adjacencies of a vertex can
be processed in parallel. Algorithm 4 gives the pseudo-code
with both the loops parallelized. If we do not parallelize
the inner loop, then we do not need to update Succ_-
count[v] atomically. Parallelizing the inner loop results
in better work distribution among the threads, particularly in
the case of small-world networks. This is because vertices
in a small-world network tend to exhibit an unbalanced
degree distribution, with a high percentage of low-degree
vertices, and a few high-degree (O(

√
n)) or higher) vertices.

For SSCA#2 synthetic networks, however, since the vertex
identifiers are randomly permuted in the graph generation
stage, parallelizing only the outer loop results in a reasonably
load-balanced work distribution.

Through inspection of our implementation, we determine
that the number of memory operations per iteration of
centrality for SSCA#2 R-MAT graphs is approximately
6.75m, where m is the number of edges in the graph. This
matches with the value of 6.5m obtained from performance
counter data. Comparing with performance counter data
helps us ensure that our implementation is frugal in the
use of memory bandwidth, and that there are no extraneous
memory references that we did not account for in manual
inspection of the code.

The atomic increment instructions are potential perfor-
mance bottlenecks to scalability on large XMT systems.
Insertions of vertices to the stack representing the frontier of
visited vertices can be alleviated by replicating stacks and
merging them at the end of the iteration. Similarly, we can
replicate the successor multisets for high-degree vertices to
prevent any performance drop due to serialization of inser-
tions into the multisets. These issues do not pose significant
performance bottlenecks on the 16-processor XMT system
on which we ran our experiments.

4. Performance Analysis

We now present a detailed analysis of our new between-
ness centrality algorithm performance, using the SSCA#2
graph analysis benchmark kernel 4 (approximate between-
ness) as the reference implementation. We will refer to
performance in terms of the normalized TEPS rate, as
defined in Eq. 3.

We report Threadstorm performance results on a 16-
processor 500 MHz Cray XMT system with 128 GB
memory. We build our code using the C compiler of the



Table 1. Average execution time of the SSCA#2
centrality kernel (SCALE 21) on 16 processors of the

XMT with various loop scheduling modes.

Scheduling mode Average time (seconds)

Block 41.78
Block Dynamic 29.95
Interleaved 35.49
Dynamic 30.71

Cray XMT programming environment (version 5.2.1) and
flags -par -O3. We also compare performance with a
40 processor 220 MHz Cray MTA-2 system with 140 GB
memory.

We set K4Approx to 8 in the SSCA#2 benchmark, thus
approximating centrality scores by traversing the graph from
256 randomly chosen vertices. A synthetic graph instance
generated by the SSCA#2 benchmark is typically composed
of one large strongly connected component with more than
95% vertices, and so we touch almost all the edges in
the network in most of these 256 iterations. Using large
K4Approx values gives better centrality score approxima-
tions. However, since we parallelize a single iteration of
the centrality computation, the parallel scaling results are
independent of the value of K4Approx we choose. The
number of vertices and edges in the graph are set by a
parameter SCALE: n = 2SCALE and m = 8n.

Stream Allocation on the XMT. Running our new
implementation on 16 processors of the XMT, we achieve a
TEPS rate of 117 million per second for a graph of SCALE
21 (2.09 million vertices and 16.77 million edges). The
loops in the centrality kernel are annotated using #pragma
mta assert no dependence (indicating that the loop
iterations can be scheduled independently) and the com-
piler automatically parallelizes them. The static analysis
tool Canal reports that 60 streams are requested on each
processor, for each loop. We experimented with several
values between 60 and 120, and achieved peak performance
of 132 million (an increase of nearly 13%) with 100 streams
on 16 processors.

Parallel loop scheduling on the XMT. The Cray XMT
compiler supports several different ways of scheduling itera-
tions of a parallel loop, including block or static scheduling,
dynamic, interleave, and block dynamic. The compiler picks
an appropriate scheduling scheme, but the programmer can
override it with a specific choice. We experiment with
different scheduling modes for the two parallel loops in the
betweenness implementation. For a graph of SCALE 21, we
record the average execution time of five trials on 16 proces-
sors (see Table 1). We observe that the best performance is
achieved with block dynamic scheduling, while static block
scheduling performs the worst. This is most likely due to
the power-law vertex degree distribution. Block dynamic

Figure 2. SSCA#2 betweenness kernel performance on
the Cray XMT system.

scheduling, as the name suggests, combines aspects of block
and dynamic scheduling. Threads are assigned blocks of
iterations through a shared counter, and a thread gets its next
block after completion of its current block by incrementing
the counter. In pure dynamic scheduling, the block size
can be just one iteration and the overhead is higher than
static and block dynamic scheduling. We override the default
dynamic scheduling with block dynamic scheduling in all
further experiments. Again, this setting is dependent on the
graph topology, size, and number of processors. In future
work, we will automate this process to pick the appropriate
scheduling scheme.

Variation of performance with problem size. An im-
portant performance metric associated with the SSCA#2
benchmark is the largest problem instance that can be solved
on a particular system. Figure 2 plots the performance on 16
processors of the XMT for SSCA#2 graphs of various sizes
(SCALE = 18 to SCALE = 28). The largest problem
instances we could run on the XMT was a graph of scale
SCALE 28. The performance picks up by a factor of 2.45
(64 to 160 million TEPS) as the problem size is increased
from SCALE 18 to SCALE 24. This is due to the lack of
sufficient concurrency for the problem instances to saturate
all the threads on 16 processors.

Parallel performance. Since the XMT system perfor-
mance is relatively constant for problem instances greater
than SCALE 24, we study strong scaling of the betweenness
kernel for this problem instance. Figure 3 plots the TEPS
rate achieved by varying the number of processors from 1
to 16. On 16 processors, we achieve a parallel speedup of
10.41. The speedup is near-linear until 8 processors, but
drops slightly for the case of 12- and 16-processor runs.
Atomic insertions to a single stack of discovered vertices
is likely one cause for the slowdown. This can be fixed by



Figure 3. Parallel performance of SSCA#2 between-
ness kernel on the Cray XMT for a graph of 16.77 million
vertices and 134.21 million edges (SCALE 24).

Table 2. A comparison of the performance of the new
algorithm and the old approach on the Cray XMT for a

graph of SCALE 24.

Original running time (seconds) 434.84
Original TEPS rate 69.14
(Millions of edges per second)
Improved running time 187.90
(this paper, seconds)
Speedup factor 2.31

replicating the number of stacks to reduce contention. The
reduced per-processor bisection bandwidth may be another
reason for the performance drop. In future work, we will
undertake a detailed analysis of performance bottlenecks, as
well as study scaling on larger XMT systems.

Performance comparison with older algorithm. In
Table 2, we report the performance of the previous parallel
approach (using predecessor sets) on the XMT for the same
SSCA#2 graph instance of SCALE 24. We observe that
the XMT implementation is significantly faster than the
corresponding older implementation. We observe the same
trend for larger problem instances as well.

Performance comparison with the Cray MTA-2. From
the results in Table 3, we observe that the single-processor
XMT implementation is 47% faster than the single-processor
MTA-2. However, the performance is comparable on 16
processors, and the MTA-2 scales extremely well for even
the 40-processor run, with a relative speedup of 34. We
clearly notice the impact of XMT 3D-torus interconnect on
the parallel performance scaling.

Betweenness computation on the IMDb dataset. To
demonstrate the applicability of our implementation to real-
world data analysis, we perform a large-scale approximate

Table 3. Performance of the SSCA#2 betweenness
centrality kernel for a graph of SCALE 24 on the Cray

XMT and the Cray MTA-2.

System/Configuration TEPS rate (Millions of edges per second)

XMT, 1 processor 15.33
XMT, 16 processors 160.00
MTA-2, 1 processor 10.39
MTA-2, 16 processors 160.16
MTA-2, 40 processors 353.53

Figure 4. Centrality analysis (Node degree vs. approxi-
mate betweenness value) of the IBDb movie actor data
set (1.54 million vertices and 78 million edges). Vertices
represent actors, and edges correspond to actors co-
starring in movies.

betweenness calculation on a network constructed from the
Internet Movie Database (IMDb) [10]. We obtained raw text
data files that make up IMDb and used the actor, actress, and
movie data to construct a graph with vertices representing
actors (and actresses), and edges connecting actors who have
co-starred in a movie. We removed television shows as well
as uncredited roles.

The input dataset we developed produces an undirected
graph with 1.54 million vertices (movie actors) and 78
million edges. On the XMT, the approximate betweenness
calculation takes about 83.6 seconds (using 256 randomly
selected sources). The same problem run on a 2.4 GHz
quad-core Intel Xeon workstation requires 398 seconds to
complete. Thus, we achieve a speedup of 4.75 using the
16-processor XMT. Studying the distribution of centrality
scores (Figure 4), it is interesting to note that the degree
of the actor with the highest centrality score is one order
of magnitude less than highest degree in the network. It
is also interesting that a number of actors appearing in
movies with only 10 or fewer other actors have centrality
scores 100 times less then the maximum, but a million times



greater than the minimum. The actors of low-degree but high
betweenness (or a high number of shortest paths passing
through them) are particularly of interest in a social network,
as we cannot identify them by a linear-time computation.
Approximate centrality computation reveals these actors, and
it is important to note that there are quite a few of these in
the IMDb network.

5. Conclusions and Future Work

We present a new parallel approach for computing be-
tweenness centrality, and conduct a detailed performance
analysis of an optimized multithreaded implementation for
the Cray XMT. We show that the new algorithm has a lower
synchronization overhead and better cache locality compared
to the previous approach, and this results in more than a 2×
performance improvement for parallel runs.

This paper raises several interesting questions that we
hope to answer in future work. With our new algorithm,
we have eliminated a few performance bottlenecks for any
centrality implementation on the XMT. However, it is still
unclear on how this approach will scale on larger XMT
systems. Continued performance scaling on larger systems
may necessitate changes in the graph data structures we are
using, as well as the data representations in the centrality
algorithms. We are also working on adapting this fine-
grained parallel betweenness centrality algorithm to develop
optimized implementations for local-store memory based
architectures such as the IBM Cell processor.

Acknowledgments

This work was supported in part by the PNNL CASS-MT
Center, NSF Grant CNS-0614915, and the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231. We
would like to thank PNNL for providing access to the Cray
XMT, and Cray Inc. for access to the MTA-2. We are
grateful to Jonathan Berry, Bruce Hendrickson, John Feo,
Jeremy Kepner, and John Gilbert, for discussions on large-
scale graph analysis and algorithm design for massively
multithreaded systems.

References

[1] D. Bader, J. Gilbert, J. Kepner, and K. Madduri, “HPC
graph analysis benchmark,” 2006, http://www.graphanalysis.
org/benchmark.

[2] D. Bader, S. Kintali, K. Madduri, and M. Mihail, “Approx-
imating betweenness centrality,” in Proc. 5th Workshop on
Algorithms and Models for the Web-Graph (WAW2007), ser.
Lecture Notes in Computer Science, vol. 4863. San Diego,
CA: Springer-Verlag, December 2007, pp. 134–137.

[3] D. Bader and K. Madduri, “Parallel algorithms for evaluating
centrality indices in real-world networks,” in Proc. 35th Int’l
Conf. on Parallel Processing (ICPP). Columbus, OH: IEEE
Computer Society, Aug. 2006.

[4] D. Bader, K. Madduri, J. Gilbert, J. Kepner, T. Meuse, and
A. Krishnamurthy, “Scalable synthetic compact applications
for benchmarking high productivity computing systems,” CT-
Watch Quarterly, vol. 2, no. 4B, pp. 41–51, 2006.

[5] U. Brandes, “A faster algorithm for betweenness centrality,”
J. Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[6] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A
recursive model for graph mining,” in Proc. 4th SIAM Intl.
Conf. on Data Mining (SDM). Orlando, FL: SIAM, Apr.
2004.

[7] T. Coffman, S. Greenblatt, and S. Marcus, “Graph-based
technologies for intelligence analysis,” Communications of
the ACM, vol. 47, no. 3, pp. 45–47, 2004.

[8] DARPA Information Processing Technology Office, “High
productivity computing systems project,” 2004, http://www.
highproductivity.org.

[9] R. Guimerà, S. Mossa, A. Turtschi, and L. Amaral, “The
worldwide air transportation network: Anomalous centrality,
community structure, and cities’ global roles,” Proceedings
of the National Academy of Sciences USA, vol. 102, no. 22,
pp. 7794–7799, 2005.

[10] IMDb.com, Inc., “The internet movie database,” 2008, http:
//www.imdb.com/interfaces.

[11] H. Jeong, S. Mason, A.-L. Barabási, and Z. Oltvai, “Lethality
and centrality in protein networks,” Nature, vol. 411, pp. 41–
42, 2001.

[12] P. Konecny, “Introducing the Cray XMT,” in Proc. Cray User
Group meeting (CUG 2007). Seattle, WA: CUG Proceedings,
May 2007.

[13] K. Lang, “Finding good nearly balanced cuts in power law
graphs,” Yahoo! Research, Tech. Rep., 2004.

[14] F. Liljeros, C. Edling, L. Amaral, H. Stanley, and Y. Åberg,
“The web of human sexual contacts,” Nature, vol. 411, pp.
907–908, 2001.

[15] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry,
“Challenges in parallel graph processing,” Parallel Processing
Letters, vol. 17, no. 1, pp. 5–20, 2007.

[16] K. Madduri, D. Bader, J. Berry, J. Crobak, and B. Hen-
drickson, “Multithreaded algorithms for processing massive
graphs,” in Petascale Computing: Algorithms and Applica-
tions, D. Bader, Ed. Chapman and Hall/CRC, 2007, ch. 12,
pp. 237–262.

[17] K. Madduri, D. Ediger, K. Jiang, D. Bader, and D. Chavarrı́a-
Miranda, “A faster parallel algorithm and efficient multi-
threaded implementations for evaluating betweenness cen-
trality on massive datasets,” Lawrence Berkeley National
Laboratory, Tech. Rep., 2009.


