
An Efficient Transactional Memory Algorithm for Computing
Minimum Spanning Forest of Sparse Graphs ∗

Seunghwa Kang David A. Bader
Georgia Institute of Technology

Abstract
Due to power wall, memory wall, and ILP wall, we are facing
the end of ever increasing single-threaded performance. For this
reason, multicore and manycore processors are arising as a new
paradigm to pursue. However, to fully exploit all the cores in a chip,
parallel programming is often required, and the complexity of par-
allel programming raises a significant concern. Data synchroniza-
tion is a major source of this programming complexity, and Trans-
actional Memory is proposed to reduce the difficulty caused by data
synchronization requirements, while providing high scalability and
low performance overhead.

The previous literature on Transactional Memory mostly fo-
cuses on architectural designs. Its impact on algorithms and ap-
plications has not yet been studied thoroughly. In this paper, we in-
vestigate Transactional Memory from the algorithm designer’s per-
spective. This paper presents an algorithmic model to assist in the
design of efficient Transactional Memory algorithms and a novel
Transactional Memory algorithm for computing a minimum span-
ning forest of sparse graphs. We emphasize multiple Transactional
Memory related design issues in presenting our algorithm. We also
provide experimental results on an existing software Transactional
Memory system. Our algorithm demonstrates excellent scalability
in the experiments, but at the same time, the experimental results
reveal the clear limitation of software Transactional Memory due to
its high performance overhead. Based on our experience, we high-
light the necessity of efficient hardware support for Transactional
Memory to realize the potential of the technology.

Categories and Subject Descriptors G.2.2 [Discrete Mathmat-
ics]: Graph Theory—graph algorithms

General Terms Algorithms, Experimentation, Performance

Keywords Minimum Spanning Tree, Minimum Spanning Fore-
set, Transactional Memory

∗ This work was supported in part by NSF Grants CNS-0614915 and CA-
REER CCF-0611589 and by MIT Lincoln Laboratory. We acknowledge
Sun Microsystems for their Academic Excellence Grant and donation of
Niagara 1 and Niagara 2 systems used in this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’09, February 14–18, 2009, Raleigh, North Carolina, USA.
Copyright c© 2009 ACM 978-1-60558-397-6/09/02. . . $5.00

1. Introduction
Over the past several decades, parallel programming was often con-
sidered in its own niche for supercomputing applications, and for
desktop applications, sequential programming was sufficient ow-
ing to the ever increasing single-threaded performance. However,
this does not hold anymore. Power wall, memory wall, and ILP
wall [2] are forcing a paradigm shift to multicore and manycore
architectures. However, we are also facing multiple challenges in
software productivity to harness the increasing number of cores,
and the data synchronization issue is identified as one of the most
prominent bottlenecks for the widespread and efficient use of mul-
ticore computing. A major class of supercomputing applications
is based on array data structures and has regular data access pat-
terns; thus data partitioning for parallel programming is relatively
simple, and data synchronization is required only at the boundaries
of partitioned data. In contrast, another class of important applica-
tions uses pointer-based irregular data structures. This raises com-
plex data synchronization issues and significantly exacerbates the
situation.

Researchers have attempted to solve this problem in several di-
rections targeting a spectrum of programming efforts and flexibility
trade-offs. Thread Level Speculation [28,31] extracts an additional
level of parallelism without programmer intervention by specula-
tively executing the codes with unresolved data dependency. Kulka-
rni et al. [16] have developed the Galois run-time system to auto-
matically parallelize irregular applications with user provided hints.
However, to achieve the highest level of flexibility or chip utiliza-
tion over widely varying applications using ever increasing number
of cores, explicit parallel programming is often mandated.

Lock and barrier are the most popular data synchronization
primitives for parallel programming until now but are problematic
in programming complexity, scalability, or composability for com-
plex applications. Coarse-grained locking has affordable program-
ming complexity but often sequentializes the program execution.
Fine-grained locking provides superior scalability at the expense
of notoriously complex programming. Frequent invocation of bar-
rier primitives can be a significant performance bottleneck as well.
Also, for the lock-based codes, even correct implementations can-
not be simply combined to form larger programs [13].

Transactional Memory (TM) [14] attempts to remedy this prob-
lem and promises to provide the scalability of fine-grained lock-
ing at the programming complexity of a single lock approach. TM
also has great potential to resolve the composability problem [13].
Within a TM framework, we can seamlessly combine different
transaction-based codes while maintaining atomicity of the trans-
actions. Moreover, the assumption under TM fits quite well to the
requirements to benefit from parallelization. von Praun et al. [29]
classify applications based on data dependence densities and argue
that applications with high data dependency cannot benefit signifi-
cantly from parallelization while applications with low data depen-

15

dency can. TM also becomes more efficient as the degree of data
dependency drops, and this suggests that if an application can ben-
efit from parallelization, then that application can also benefit from
TM.

Programmers only need to demarcate the critical sections for
shared data accesses based on TM semantics. Then, if there is no
conflict in the shared data accesses, the underlying TM system
executes critical sections (or transactions) in parallel. If there are
conflicts, the affected transactions are aborted and re-executed to
provide the semantics of sequential execution for transactions. TM
systems based on software (STM) [10, 15, 17], hardware (HTM)
[1,5,12,21,24], and hybrid (HyTM) [8,20,26] approaches are pro-
posed, which have trade-offs in flexibility, dedicated hardware re-
quirements, and performance overhead for the different stages of
deployment. There are already multiple open source STM imple-
mentations, and in 2009, Sun Microsystems expects to release its
Rock processor [27], the first microprocessor with hardware sup-
port for accelerating TM.

Up to this point, most research on Transactional Memory has
focused on systems and architectures, but few have considered its
impact on algorithms and applications. There are several existing
benchmark codes [7, 9, 11, 23] for TM systems, but these applica-
tions do not reveal the full potential of TM for real-world appli-
cations. Scott et al. [25] implement Delaunay triangulation using
their TM system as a real-world application. Yet, for their imple-
mentation, data synchronization is required only at the boundaries
of partitioned data. Watson et al. [30] report the implementation of
Lee’s circuit routing algorithm using TM. They achieve a high level
of parallelism using TM in combination with the deep understand-
ing of the algorithm to reduce the number of aborted transactions.

In this paper, we investigate the impact of Transactional Mem-
ory on algorithm design for applications with intensive data syn-
chronization requirements. We believe that TM has great potential
to facilitate scalable parallel algorithm design without involving the
complexity of fine-grained locking or the ingenuity of lockfree al-
gorithms. We provide an algorithmic model for TM to assist the
development of efficient TM algorithms. Perfumo et al. [23] sug-
gest commit phase overhead, read-to-write ratio, wasted time, use-
ful work, and cache accesses per transactional access as metrics
for characterizing STM applications. System researchers may feel
comfortable with these metrics, but algorithm designers may not.
Our model aims to reveal the key features of TM systems to be con-
sidered in designing algorithms. Then, we move our focus to graph
algorithms. Graph algorithms are typically pointer-based and have
irregular data access patterns with intensive data synchronization
requirements. Graph algorithms also have interesting characteris-
tics that fit well to TM systems at the same time. As a case study,
we design an efficient Transactional Memory algorithm for com-
puting minimum spanning forest (MSF) of sparse graphs. Our algo-
rithm adopts a key idea from Bader and Cong’s MSF algorithm [3],
which implements a lockfree parallel MSF algorithm by combin-
ing Prim’s algorithm with Borůvka’s algorithm. Our algorithm re-
places the Borůvka’s algorithm part with the data merging and ex-
ploits TM to achieve high scalability with minimum parallel over-
head. We present our algorithm with special emphasis on the TM
specific design issues. We implement and test our algorithm using
the Stamp [19] framework based on Transactional Locking II [10]
STM. Our implementation demonstrates remarkable speedup for
the different sparse graphs throughout the experiments. Yet, as our
algorithm executes a significant fraction of the code inside trans-
actions, the high STM overhead nullifies the speedup. This reveals
the limitation of STM and highlights the necessity of the low over-
head hardware support. The following summarizes our key contri-
butions.

1. We identify the TM’s potential to reduce the gap between find-
ing the parallel tasks in computation and its actual implementa-
tion by replacing fine-grained locking based approach or lock-
free implementations.

2. We provide an algorithmic model to assist designing efficient
TM algorithms.

3. We design an efficient MSF algorithm for sparse graphs using
TM support. Our parallel algorithm has minimum additional
computation over sequential Prim’s algorithm.

4. We exemplify multiple TM related programming issues while
presenting our newly designed MSF algorithm.

5. We provide experimental results on the Stamp framework using
Transactional Locking II STM. Based on the experimental re-
sults, we reveal the limitation of STM and the necessity for low
overhead hardware support.

The remainder of this paper is organized as following. We de-
scribe the impact of Transactional Memory in algorithm design in
Section 2. Section 3 summarizes the previous work in MSF algo-
rithm design for sparse graphs, and Section 4 describes our efficient
parallel MSF algorithm assuming TM support. In Section 5, we
provide the detailed experimental results on the STM, and the dis-
cussion about the limitation of STM and the requirements for HTM
is provided in Section 6. Finally, Section 7 concludes the paper.

2. Transactional Memory and Algorithm Design
2.1 Transactional Memory and Lockfree Algorithms

Lock is a popular synchronization primitive in multi-threaded pro-
gramming. If multiple threads access shared variables concurrently,
fine-grained locking is required to avoid sequentialization on a
single lock. However, this approach involves a notoriously dif-
ficult programming challenge. Remembering the relationship be-
tween multiple locks and multiple shared variables is already a
non-trivial issue. Deadlock and livelock problems, starvation, and
other related issues, often increase the programming complexity
to a prohibitive level. Therefore, many algorithm designers use
coarse-grained locking instead and make an effort to reduce the
size of critical sections to minimize the sequentialization problem.
Unfortunately, this does not always work especially with the large
number of cores. Ambitious researchers devote their effort to write
lockfree algorithms that avoid race conditions using novel algorith-
mic innovations instead of locks. Yet, lockfree algorithm design re-
quires deep understanding of an algorithm and the underlying sys-
tem. As a consequence, lockfree algorithms are usually hard to un-
derstand and often rely on architecture-specific assumptions. Also,
lockfree algorithms often involve additional computation to avoid
data races.

Transactional Memory has great potential to change this situa-
tion. Programmers only need to mark the start and the end of trans-
actions in their explicitly parallel code. Then, the TM system will
automatically run non-conflicting transactions in parallel to achieve
high performance while roll-back and re-execute conflicting trans-
actions to provide the semantics of sequential execution for trans-
actions. If the TM system can support this mechanism with high
scalability and low performance overhead, we may not need to rely
on lockfree algorithms anymore. Bader and Cong’s parallel MSF
algorithm [3] is a lockfree algorithm and incurs the overheads dis-
cussed above. As an illustration of our arguments, we design a new
algorithm for computing a MSF using Transactional Memory. This
will be further discussed in Section 4.

16

Figure 1. When multiple transactions access one shared variable
at the same time, those transactions are highly likely to conflict
(top). In contrast, if concurrent transactions mostly access different
shared variables, those transactions will conflict with low probabil-
ity (bottom).

2.2 Algorithmic Model for Transactional Memory System

Transactional Memory can help programmers to write explicitly
parallel programs, but TM cannot guarantee the scalable perfor-
mance for every implementation. To best exploit TM, we need to
write an algorithm that fits well with the underlying TM frame-
work. However, it is difficult for algorithm designers to decide
which design choice will lead to the better result without in depth
knowledge of TM systems. We design our algorithmic model for
TM towards this goal. Our model focuses on revealing the com-
mon key features of widely varying TM systems, which need to be
considered in algorithm design. Our model does not aim to esti-
mate precise execution time as this complicates the model without
providing significant intuition in algorithm design.

Let, Tpar. and Tseq. denote parallel and sequential execution
time, respectively, and p is the number of concurrent threads (as-
suming w.l.o.g. one thread per core). Then, the following equation
states our model assuming that an algorithm does not have an in-
herently sequential part.

Tpar. =
Ttr. + Tnon−tr.

p

Ttr. = Tseq. ×
transactions∑

i=1

(τi × # trials × ov(si))

Tnon−tr. = Tseq. × (1 − τ)

trials =
∞∑

j=1

j × pi
j−1 × (1 − pi)

τ =

transactions∑

i=1

τi

where, Ttr.
p

and Tnon−tr.

p
denote the execution time for the trans-

actional part and the non-transactional part of an algorithm with
p threads. An algorithm may consists of multiple transactions
(# transactions), which account for the different fraction of the
total number of operations to run the algorithm (τi) and conflict
with other transactions with the probability pi. Transactions may
execute several times to commit (# trials) due to conflicts. pi

in each trial may vary according to the system specific contention
management schemes. Also, an operation inside a transaction runs
ov(si) times slower than an operation outside a transaction ow-
ing to the TM overhead, where si is the transaction size. We rely

Figure 2. Transactional overhead ov(si) varies as a function of the
transaction size si. This figure assumes per core transactional cache
for HyTM or full HTM and two-level memory hierarchy.

on algorithm designers to estimate the value of pi, as algorithm
designers are likely to best understand the data access patterns of
their own algorithm. To systematically estimate the level of data
conflict in the legacy code, we refer the readers to von Praun et al.’s
work [29]. ov(si) is specific to the underlying TM system and also
varies as the function of the transaction size. Figure 2 portrays the
overhead assuming per core transactional cache. If the underlying
TM system has a shared transactional cache, the overhead becomes
a function of the aggregate concurrent transaction size.

Our model provides several guidelines to algorithm designers.
STM incurs large ov(si) regardless of the transaction size, and this
suggests that algorithm designers should focus on minimizing τ .
Yet, this increases the programming complexity and hampers the
benefit of Transactional Memory. Moreover, if τ is small, a single
lock approach may suffice to achieve scalability. The key disadvan-
tage of a single lock approach is the sequentialization of critical
sections on a single lock. This may not significantly limit the scala-
bility of the algorithm if every thread spends only a negligible frac-
tion of the time inside critical sections. HyTM incurs only low over-
head for the transactions that fit to the transactional cache. The ex-
cessively large transactions still can incur high overhead. Full HTM
may able to provide the relatively low overhead even in the case of
overflow, and Ananian et al. [1] present UTM (Unbounded Trans-
actional Memory) towards this goal. However, full HTM requires
significant modification to the existing microprocessor architecture
or even the DRAM architecture. This may not happen within the
foreseeable future. Even with the full HTM support, an excessively
large transaction can still be a problem as it spans a longer period
of time and accesses multiple memory locations; thus likely to get
aborted multiple times or aborts many other transactions and in-
creases pi. In summary, our model suggests that algorithm design-
ers should focus on minimizing pi while avoiding excessively large
transactions.

2.3 Transactional Memory and Graph Algorithms

Graph algorithms represent one important class of applications that
use pointer-based irregular data structures and have multiple fea-
tures that can take advantage of Transactional Memory. While some
of the synthetic graphs, scientific meshes, and regular grids can be
easily partitioned in advance [16], many other graphs representing
real-world data are hard to partition and thus, are challenging to
efficiently execute on parallel systems [4]. Many graph algorithms
also finish their computation by visiting multiple vertices in the in-
put graph, and even with the optimal partitioning, we can traverse
from one partition to the other partitions with a relatively small
number of hops. Therefore, any vertex in the graph can be con-

17

Figure 3. A common graph operation: pick one vertex (black) and
find (and apply operations on) its neighbors (gray)

currently accessed by multiple threads, and this necessitates data
synchronization over the entire graph. However, if the graph size is
large enough relative to the number of threads, two or more threads
will access the same vertex at the same time with very low probabil-
ity. This leads to low pi in our TM model. Then, TM can abstract
the complex data synchronization requirements involving a large
number of vertices, and high scalability can be achieved owing to
the low degree of data contention.

In addition, we can easily decompose many graph algorithms
to multiple transactions. Figure 3 depicts a common graph oper-
ation: pick one vertex and find (and apply operations on) its
neighbors. Many graph algorithms iterate this process, and this
common routine can be implemented as a single transaction. Thus,
an algorithm can be implemented as an iteration of transactions.
This leads to large τ and exemplifies the key benefit of TM over
lock-based approaches. A single lock approach will sequentialize
nearly the entire computation while fine-grained locking involves
a prohibitively difficult programming challenge. In contrast, TM
can significantly reduce the gap between high level algorithm de-
sign and its efficient implementation, as the independent tasks can
easily map to transactions without compromising scalability. How-
ever, if the underlying TM system incurs high overhead, this over-
head can nullify the high scalability as most operations need to be
executed inside transactions. This necessitates low overhead hard-
ware mechanism to obtain superior performance from high scal-
ability. We may see low overhead HTMs (or HyTMs) within the
near future, but excessively large transactions are likely to incur
high overhead for longer time period, if not forever, as full HTM
design is more challenging. If we decompose graph algorithms in
the above way, a vertex degree determines the size of a transaction,
and for sparse graphs, most transactions have relatively small size;
thus, transactional cache overflow may not be an issue. Still, there
can be a small number of vertices with exceptionally large vertex
degree, and this can be a performance bottleneck. In our MSF al-
gorithm, we modify the algorithm to address this issue, and this is
further discussed in Section 4.2.

3. Minimum Spanning Forest Algorithm for
Sparse Graphs

3.1 Sequential Minimum Spanning Forest Algorithm

Given a fully connected undirected graph, the minimum spanning
tree (MST) algorithm finds a set of edges which fully connects all
the vertices in the graph without cycles while minimizing the sum
of edge weights. If an input graph has multiple connected compo-
nents, the minimum spanning forest (MSF) algorithm finds mul-
tiple MSTs, one MST per each connected component. MST has
multiple practical applications in the area of VLSI layout, wire-
less communication, distributed networks, problems in biology and
medicine, national security and bioterrorism, and is often a key
module for solving more complex graph algorithms [3]. Prim’s,
Kruskal’s, and Borůvka’s algorithms are three well known ap-

proaches for solving MST problems. Even though there are other
algorithms with lower asymptotic complexity, they run slower in
the experiments than these algorithms [22] due to large hidden con-
stants in the asymptotic complexities. Based on the experimental
results in [3, 22], there is often no clear winner among these three
algorithms as execution time depends on the topology of the input
graph and the characteristics of the computing system.

3.2 Parallel Minimum Spanning Forest Algorithm

Prim’s and Kruskal’s algorithms are inherently sequential, while
Borůvka’s algorithm has natural parallelism. Therefore, most pre-
vious parallel MST algorithms are based on Borůvka’s approach
(see Bader and Cong’s paper [3] for a summary). Even though these
algorithms’ achieve parallel speedup for relatively regular graphs,
none of these Borůvka’s algorithm-based implementations runs sig-
nificantly faster than the best sequential algorithm for a wide range
of irregular and sparse graphs. Bader and Cong’s paper [3] also in-
troduces a new parallel MST algorithm which marries Prim’s algo-
rithm with Borůvka’s algorithm. This new algorithm grows multi-
ple MSTs using Prim’s algorithm until conflict occurs. While grow-
ing MSTs, each thread marks the vertices in its own MST as vis-
ited and also colors all the neighbors of the marked vertices with its
own color. If the algorithm encounters a vertex marked or colored
by other threads, conflict occurs. Then, the thread starts to grow a
new MST with a new vertex. If there is no remaining unmarked
and uncolored vertex, the algorithm switches to the Borůvka’s al-
gorithm stage, finds the connected components, and compacts the
graph. The algorithm iterates this process until the number of re-
maining vertices falls below the given threshold value. When this
happens, the algorithm runs the best sequential algorithm to finish
the computation. If an input graph has multiple connected compo-
nents, this algorithm finds a MSF of the graph. Actually, if there is
only one thread, this algorithm behaves similar to Prim’s algorithm
while it works as Borůvka’s algorithm if the number of threads is
equal to the number of vertices.

This algorithm avoids data races without using locks. To achieve
this goal, this algorithm uses two arrays, visited and color. How-
ever, it is not trivial to fully understand the mechanisms to avoid
data races. Also, this algorithm assumes sequential consistency for
the underlying system, and if the underlying system supports only
a relaxed consistency model, additional fence operations are re-
quired. Therefore, even assuming that high level description of the
algorithm is given, expertise in both algorithm and architecture is
required to implement the algorithm correctly.

Moreover, the lockfree nature of the algorithm is achieved at
the cost of additional performance overhead. If a vertex is colored
by other threads but not marked as visited, adding this vertex to the
thread’s own MST may not lead to true conflict in most cases. How-
ever, this algorithm takes a conservative position and treats this case
as a conflict to avoid possible race conditions. If an input graph has
relatively small diameter, this can lead to excessive number of con-
flicts, and the algorithm may not perform much useful work in the
Prim’s algorithm stage. Then, the Prim’s algorithm stage will just
waste computing cycles, and the Borůvka’s algorithm stage will
perform the most useful work. Even when the graph has a large
diameter, and conflicts occur infrequently, this algorithm runs both
Prim’s algorithm and Borůvka’s algorithm and also additional com-
putation to achieve lockfree nature; this leads to additional perfor-
mance overhead. Due to this overhead, this algorithm requires 2 to
6 processors to outperform the best sequential algorithm depending
on the input graphs.

18

4. An Efficient Transactional Memory Algorithm
for Computing Minimum Spanning Forest of
Sparse Graphs

Figure 4. A high level illustration of our algorithm

Figure 5. State transition diagram for our algorithm

In our new MSF algorithm, each thread runs Prim’s algo-
rithm independently similar to Bader and Cong’s algorithm [3].
However, our MSF algorithm does not have the Borůvka’s al-
gorithm stage. Instead, if one thread attempts to add a vertex in
another thread’s MST, or conflict occurs, one thread merges two
MSTs, and the other thread starts Prim’s algorithm again with a
new randomly picked vertex. Our new algorithm also does not
detect conflict in a conservative way as Bader and Cong’s al-
gorithm. Instead, our new algorithm relies on the semantics of
transactions to avoid data races. Figure 4 illustrates our algorithm
in high level, and Figure 5 and Algorithm 1 give further detail.
There are three states: THREAD INVALID, THREAD PRIM, and
THREAD MERGING. A thread starts in THREAD INVALID
state, and changes its state from THREAD INVALID state to
THREAD PRIM by assigning a new color for the thread and also
randomly picking a new start vertex. Then it runs Prim’s algo-
rithm in THREAD PRIM state, and grows its MST (newly added
vertices are colored with the thread’s color). In this state, we it-
erate a common graph operation, pick one vertex and find (and

while true do
TM BEGIN();
if current thread’s state is THREAD PRIM then

w = heap extract min(H); /* pick one vertex */
if w is already in the current thread’s MST then

TM END();
continue();

end
if w is unmarked by other threads then

Add w to the current thread’s MST and insert its
neighbors to the heap H . /* find (and apply
operations on) its neighbors */
TM END();

else
/* w is already marked by another thread */
if the other thread marked w is in
THREAD PRIM state then

Steal the other thread’s MST data and
invalidate that thread.
TM END();
break; /* go to THREAD MERGING state
*/

else
/* the other thread marked w is in
THREAD MERGING state */
Release own MST data to that thread.
TM END();
break; /* go to THREAD INVALID state */

end
end

else
/* invalidated by other thread */
TM END();
break; /* go to THREAD INVALID state */

end
end

Algorithm 1: Pseudo-code for THREAD PRIM state.
TM BEGIN() marks the start of a transaction, and TM END()
marks its end.

apply operations on) its neighbors, as a single transaction as de-
picted in Algorithm 1. When two threads (assume Thread A and
Thread B) conflict, we merge two trees of the conflicting threads
by merging their MST data. When Thread A detects a conflict
and finds Thread B is in THREAD PRIM state, Thread A in-
validates Thread B and merges the MST data of two threads.
Thread B restarts by picking a new vertex. When Thread A
detects a conflict and finds Thread B is in THREAD MERGING
state, Thread A releases its MST data to Thread B and moves to
THREAD INVALID state to restart with a new vertex. In a single-
threaded case, our algorithm runs nearly identical to sequential
Prim’s algorithm with a small additional overhead related to the
state management.

To implement our algorithm, a complex data synchronization
issue arises. Every vertex can be accessed concurrently, and every
thread’s state variable can be modified by multiple threads at the
same time. To implement this algorithm with fine-grained locking,
one thread may need to acquire up to four locks (one for its own
state variable, two for the source and destination vertices in a new
MST edge, and one more for the conflicting thread’s state variable).
This can lead to many complex scenarios that can cause race con-
ditions, deadlocks, or other complications, and it is far from trivial
to write correct and scalable code. In contrast, Transactional Mem-
ory can gracefully abstract all the complications related to the data

19

synchronization issues in our algorithm. As our algorithm executes
a large fraction of the code inside the transactions (τ is large), this
may not fit well with STM, but future TM systems with efficient
hardware support may resolve this problem. Also, if an input graph
is large enough, the level of data contention will be low (low pi in
our TM model), and our algorithm will fit well with TM systems.

However, our algorithm has other sources for parallel overhead.
First, we need to pick a new start vertex multiple times. If a newly
picked vertex is already included in other threads’ MST, we need to
pick a new one again. Second, MST data merging can take a signif-
icant amount of time. The first overhead may not be significant at
the beginning of the algorithm, and even at the end of the algorithm
(when almost every vertex is included in other threads’ MST), this
will not significantly slow down other threads’ execution if we ig-
nore the impact on the memory subsystem. To minimize the impact
on the memory subsystem, if a thread picks a vertex in another
thread’s MST, we suspend the thread for a short time before pick-
ing a new vertex. Therefore, we need to focus on estimating and
minimizing the overhead of MST data merging.

4.1 MST Data Merging and Composability

Assuming Thread A merges its own MST data with Thread B’s
MST data, MST data merging consists of two tasks. First, as all the
vertices in Thread A and Thread B’s MST need to be marked
with a same color after the merging, Thread A needs to recolor
all the vertices in Thread B’s MST to Thread A’s color. Second,
Thread A needs to merge its own heap (a heap data structure is
maintained to find the minimum weight edge efficiently as other
Prim’s algorithm based implementations) with Thread B’s heap.
We can also expect that there will be a few merges of large MST
data at the beginning of the algorithm followed by more frequent
merges of large MST data with small MST data at the end of the
algorithm.

If we recolor all the vertices in other thread’s MST in a
naı̈ve way, it will significantly increase the parallel overhead of
our algorithm. Instead, we add one level of indirection. We create
a color array that maps an index to a color. When we add a new
vertex to the MST, we mark that vertex with the index to the color
array element for the thread instead of the color of the thread. Thus,
for re-coloring, we need to only update the color array elements for
the MST data of Thread B. The number of color array elements
to be updated is identical to the number of MST data mergings that
happened in Thread B’s MST data.

For actual implementation, this requires two additional shared
data arrays to map an index to a color and a color to the owner
thread. Under fine-grained locking, this requires additional lock ar-
rays, and we need to re-design the entire lock acquisition proto-
col to avoid dead-lock or other lock related issues. Within a TM
framework, in contrast, we can easily extend our algorithm without
re-designing data synchronization schemes. This exemplifies TM’s
benefit over lock in composability.

To exploit the fact that there will be more frequent merges
of large and small MST data, we switch Thread A’s MST data
with Thread B’s MST data before merging if Thread B’s heap
is larger than Thread A’s heap. Then, we merge two heaps by
inserting the elements of the smaller heap (Thread B’s heap) to
the larger heap (Thread A’s heap). These inserts are the most
expensive parallel overhead in our algorithm.

We grow multiple MSTs concurrently, and this involves the
overhead of MST data merging. However, this also decreases the
average heap size throughout the execution. Instead of one thread
growing a large MST to the end, there will be multiple small MSTs
grown by multiple threads. A small MST will have less elements in
its heap. If a heap has n elements, heap inserts or extracts will cost
O(log(n)) memory accesses. Therefore, a single heap operation

will cost less for the smaller MST. Especially, if a heap does
not fit into the cache memory, multiple non-contiguous memory
accesses in a single heap operation will lead to multiple cache
misses, and these cache misses can be the most expensive cost of
the algorithm. Combined with the modern cache subsystem with
multiple layers, smaller heap size can have more significant impact
on the performance than it appears in the asymptotic notation. If
the impact of this is larger than the MST data merging overhead,
our algorithm can scale super-linearly.

4.2 Avoiding Excessively Large Transactions and Strong
Atomicity

As discussed in Section 2.2, excessively large transactions are un-
desirable for performance. There are two sources for large transac-
tions in our algorithm. First, if we merge tree data inside a trans-
action, this will create a very large transaction. Second, if there are
vertices with high degree, this will lead to large transactions.

In our state transition diagram, if a thread in THREAD PRIM
state (let Thread A) attempts to add a vertex in the MST of a
thread in THREAD MERGING state (let Thread B), Thread A
invalidates itself and appends its own MST data to Thread B’s
queue for MST data. If MST data are fetched out from the queue
for merging, this data cannot be accessed by other threads, and
only the queue access needs to be executed inside a transaction.
Therefore, MST data merging in our algorithm does not create a
large transaction.

Figure 6. Modified state transition diagram for our algorithm

High degree vertices can also create a large transaction. If we
extract a vertex and insert all the neighbors of the extracted vertex
in a single transaction, the size of a transaction grows proportional
to the vertex degree. This can be solved in a similar way to the
first case. If we change our state transition diagram to Figure 6
and insert neighbors outside a transaction, we can avoid large
transactions even with very high degree vertices.

These changes require accessing shared data both inside and
outside transactions. At first glance, as MST data fetched out from
the queue can only be accessed by a single thread, one can easily
assume that this may not cause a problem. This is true assuming
strong atomicity [6] but can leave a subtle hole under weak atomic-
ity, which does not define the correct semantics among interleaved
transactional and non-transactional codes. If a transaction doomed
to abort reads data updated outside a transaction, which in turn can
raise a segmentation fault, or non-transactional code reads data up-
dated by a doomed transaction before it is restored, this can intro-
duce a bug that is hard to find. One can easily assume that access-
ing shared data outside a transaction is a naı̈ve program bug, but
this may not true if we consider algorithm optimization. Our expe-
rience advocates the necessity for a strong atomicity guarantee in
TM semantics.

20

4.3 Color Filtering

Figure 7. Color filtering: filter out unnecessary inserts

Our algorithm works well if an input graph has a large diameter
as conflict occurs only infrequently in that case. However, if an in-
put graph has a small diameter and conflict occurs more frequently,
increased MST data merging cost can reduce the performance ben-
efit of parallelization. However, for the graphs with a small diam-
eter, there is another opportunity for the optimization. Assume we
insert a neighbor vertex into the heap. If the heap already includes
a vertex, which connects the current thread’s MST to other threads’
MST with lower weight than the new vertex to insert, we do not
need to insert the new vertex as it cannot be an MST edge. Figure 7
illustrates the case. We can use the color of a vertex to filter out
heap inserts. We maintain an additional data structure that maps a
color to the minimum edge weight to connect the current thread’s
MST to the MST of that color. Considering that the heap operations
account for the large fraction of the total execution time, reduced
heap inserts can mitigate the increased parallel overhead owing to
the frequent conflicts. Actually, this has similar impact to the con-
nected component and compact graph steps in Borůvka’s algorithm
without incurring the high overhead of those steps.

4.4 Heap Pruning

When we merge the heap of two threads (assume Thread A
and Thread B), Thread A’s heap can include the vertices in
Thread B’s MST, and Thread B’s heap can include the ver-
tices in Thread A’s MST. If Thread B’s heap has less elements,
we merge two heaps by inserting Thread B’s heap elements to
Thread A’s heap. In this case, we do not insert Thread B’s heap
element which belongs to Thread A’s MST. Yet, Thread A’s
heap can still include the vertices in Thread B’s MST. Thus, after
merging, the heap can include the vertices in its own MST, which
cannot be an MST edge. When we extract the heap element, we
check whether the extracted vertex is in its own MST or not, and
this does not affect the correctness. Still, if the merging iterates
multiple times, and near the end of the algorithm, there can be a
very large heap with almost every vertex included in its own MST.
At this time, there will be only one thread that includes almost
all the vertices in the graph with few remainings. This thread will
spend the most time for extracting the vertices in its own MST,
while all the other threads are idling. To prevent this situation, we
count the number of extracted heap elements that belong to its own
MST. If this number grows above the given threshold, we scan
the heap and remove the vertices in its own MST. By combining
this heap pruning with the above color filtering, this can signifi-
cantly reduce the heap size, especially for the graphs with a small
diameter.

5. Experimental Results on STM
5.1 Test Graphs

Figure 8. A pathological case for our algorithm.

We use a variety of graphs to experimentally test the perfor-
mance of our algorithm. These inputs are chosen because they
represent diverse collection of real-world instances, or because
they have been used in the previous MST studies. We use the road
map graph from 9th DIMACS implementation challenge website
(http://www.dis.uniroma1.it/~challenge9) and also use
EM-BFS and GTgraph graph generators available from the DI-
MACS website in addition to LEDA [18]. The scalability of our
algorithm is highly affected by the number of MST data merg-
ings and accordingly, is related to the diameter of an input graph.
The test graphs summarized in Table 1 cover different graphs with
varying diameters.

5.2 Experimental Setup

Figure 9. Sun UltraSparc T2 (Niagara 2) processor.

We test our implementation on a Sun UltraSparc T2 Niagara 2
processor (Figure 9) with 32 GB main memory. The Niagara 2 pro-
cessor has 8 cores, and each core has 8 hardware threads (HTs). 8
HTs share a single execution pipeline. If an application kernel has
frequent non-contiguous memory accesses and the execution time
is limited by memory access latency, HTs can efficiently share the
single execution pipeline without significant performance degrada-
tion in a single-threaded performance. As our MSF algorithm has
multiple non-contiguous memory accesses and the memory latency
of the accesses is the key cost of the kernel, the Sun Niagara 2 pro-
cessor can be a suitable architecture for the algorithm. Especially,
the Sun Rock processor architecture, likely to be the first micro-
processor with hardware TM support, is based on the UltraSparc
architecture, and we can better estimate the performance of our al-
gorithm on the upcoming Sun Rock processor by the experimental
results on the Niagara 2 processor.

21

graph type generator comments
2-D grid LEDA -
3-D grid LEDA 3-D grid has relatively small diameter.
Web graph EM-BFS Web graph with 2K levels, and each level has 3M/2K vertices.
USA West graph - USA West roadmap graph. Included as a real word graph.
Random GTgraph Edges added by randomly picking two vertices among entire vertices of the

graph. Reveals the worst case behavior of our algorithm except for few patho-
logical cases (Figure 8)

Table 1. Test graphs for the experiments. For the graph generators which generate edges with uniform weight, we modify the code to
generate random weight edges.

2-D grid 3-D grid web graph USA West Random
with STM overhead 983.1 1197 911.2 1143 1017
without STM overhead 12.96 18.60 12.00 17.33 97.34
MST data merging time 1.386 5.459 1.330 0.2734 59.31

Table 2. Comparison of the single-threaded execution time (in seconds) with the STM overhead (compiled with Makefile.stm in the Stamp
framework), single-threaded execution time without STM overhead (compiled with Makefile.seq in the Stamp framework), and total MST
data merging time in 64 threads case.

We use the Stamp (STAMP 0.9.9) framework [19] based on
Transactional Locking II (TL2-x86 0.9.5) STM [10] for the imple-
mentation and the experiments. We use gcc 4.0.4 compiler with -O3
-mcpu=niagara2 -mtune=niagara optimization flags. We compile
the code with Makefile.stm (in the Stamp framework) for the STM-
based executable and Makefile.seq (also included in the Stamp
framework) for the executable without STM overhead. Also, we in-
crease the STM lock array size (TABSZ in tl2.c) from 220 (default
value) to 225 to reduce the number of false transaction conflicts.

5.3 Experimental Results

Figure 10. Execution time and speedup for the 2-D grid graph
(3.24M vertices, 6.48M edges).

Figures 10, 11, 12, 13, and 14 summarize the execution time
and speedup in the experiments. The dashed horizontal line in the
figures denotes the single-threaded execution time for running the
same algorithm (nearly identical to the sequential Prim’s algorithm)
without STM overhead. Our algorithm scales more than 8 times
(18.5 in the best case) for 8 cores for all the test graphs and demon-
strates remarkable speedup up to 64 HTs for all the test graphs
except for the random graph. Super-linear speedup is achieved by
reduced average heap size and the color filtering as expected in
Section 4. For the graphs with a relatively large diameter (the 2-
D grid, the web graph, and the USA West graph), our algorithm
exhibits smaller number of conflicts, which leads to the high scala-
bility. For the graphs with a smaller diameter (the 3-D grid and the
random graph as the worst case), the number of conflicts increases

Figure 11. Execution time and speedup for the 3-D grid graph
(3.38M vertices, 10.1M edges).

Figure 12. Execution time and speedup for the web graph (3M
vertices, 6M edges).

but the color filtering compensates for this increase. Our implemen-
tation demonstrates remarkable speedup for the 2-D grid, the 3-D
grid, the web graph, and the USA West graph. Even for the random
graph that involves more frequent data mergings, we achieve par-
allel speedup using up to 16 threads. The lower scalability after 8
threads in the random graph case is also affected by higher spatial

22

Figure 13. Execution time and speedup for the USA West
roadmap graph (6.26M vertices, 7.62M edges).

Figure 14. Execution time and speedup for the random graph (3M
vertices, 90M edges).

locality; the random graph has higher average vertex degree, which
leads to higher spatial locality in accessing neighbor arrays, and in
turn, reduce the effectiveness of hardware threads. However, even
with this level of scalability, our parallel algorithm runs only at the
comparable speed to the single-threaded case which does not incur
the STM overhead.

6. Limitations of STM and Requirements for
HTM

Even though our STM implementation demonstrates remarkable
scalability, the high overhead of the STM system nullifies the
speedup. A single memory read or write operation outside a trans-
action is translated to a single LOAD or STORE instruction. A sin-
gle shared data read or write operation inside a STM transaction,
in contrast, involves multiple checks and data structure accesses,
and this requires significantly larger number of instructions. Initial
bookkeeping and commit time overhead exacerbates the situation.
This overhead is not acceptable if we execute a large fraction of
the code inside transactions. Ironically, if we execute only a small
fraction of the code inside transactions, a single lock approach will
suffice to achieve scalability, and we may not need Transactional
Memory. This reveals the clear limitation of STM.

HTM can change this situation as a single read or write opera-
tion inside a HTM transaction requires only one LOAD or STORE
instruction in the most currently proposed HTM papers. Still, initial
bookkeeping or final commit time overhead can increase the cost
of transactions, but this can be managed to a moderate level with
hardware support. If HTM can realize this low overhead mecha-

Figure 15. Abort rate for the varying number of threads on the
STM.

nism in commercial microprocessors, then we can replay the high
scalability of our algorithm with only moderate overhead assum-
ing sufficient memory bandwidth and scalable memory subsystem.
Then, our algorithm can run significantly faster than the best se-
quential algorithm for irregular sparse graphs to the level that has
not yet been demonstrated by others.

One remaining point to check is the MST data merging over-
head, as it can be underestimated owing to the high STM over-
head. In Table 2, we can compare the MST data merging time in 64
threads case (the sum of MST data merging time for all 64 threads)
with the single-threaded execution time without STM overhead,
which will be similar to the single-threaded execution time in the
efficient HTM system. Based on the comparison, we can identify
that MST data merging time will not significantly lower the scala-
bility except for the case of the random graph.

Also, we can expect lower abort rates in HTM systems as exe-
cution time for the transactions will account for a smaller fraction
of the total execution time owing to the lower transactional over-
head. Accordingly, there will be fewer concurrent transactions, and
this will contribute to the lower abort rates than the case of STM
(summarized in Figure 15).

7. Conclusions
Transactional memory is a promising architectural feature to re-
duce the difficulty of writing parallel programs with complex data
synchronization issues. In this paper, we provide an algorithmic
model for TM systems, and design an efficient transactional mem-
ory algorithm for computing a minimum spanning forest of sparse
graphs. We evaluate our algorithm on an existing STM system, and
identify the limitation of STM and the requirements for HTM. If
TM researchers in academia and industry can deliver the low over-
head commercial HTM systems, we believe TM can significantly
reduce the complexity of data synchronization in parallel program-
ming while achieving high performance. As future work, we will
study the impact of TM on different algorithms and applications.
We also plan to test our algorithm on future HTM systems, when
they become available in the market.

References
[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and

S. Lie. Unbounded transactional memory. In Proc. 11th Int’l Conf. on
High-Performance Computer Architecture (HPCA), San Francisco,
CA, Feb. 2005.

23

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W.
Williams, and K. A. Yelick. The landscape of parallel computing
research: A view from berkeley. Technical Report UCB/EECS-2006-
183, Electrical Engineering and Computer Sciences, University of
California at Berkeley, Dec. 2006.

[3] D. A. Bader and G. Cong. Fast shared-memory algorithms for
computing the minimum spanning forest of sparse graphs. Journal of
Parallel and Distributed Computing, 66(11), 2006.

[4] D. A. Bader and K. Madduri. SNAP, small-world network analysis
and partitioning: an open-source parallel graph framework for the
exploration of large-scale networks. In Proc. 22nd Int’l Parallel and
Distributed Processing Symp. (IPDPS), Miami, FL, Apr. 2008.

[5] C. Blundell, J. Devietti, E. C. Lewis, and M. M. K. Martin. Making
the fast case common and the uncommon case simple in unbounded
transactional memory. In Proc. 34th Ann. Int’l Symp. on Computer
Architecture (ISCA), San Diego, CA, Jun. 2007.

[6] C. Blundell, E. C. Lewis, and M. M. K. Martin. Deconstructing
transactional semantics: The subtleties of atomicity. In Proc. 4th Ann.
Workshop on Duplicating, Deconstructing, and Debunking (WDDD),
Madison, WI, Jun. 2005.

[7] J. Chung, C. C. Minh, B. D. Carlstrom, and C. Kozyrakis. Paralleliz-
ing SPECjbb2000 with transactional memory. In In Proc. Workshop
on Transactional Memory Workloads (WTW), Ottawa, Canada, Jun.
2006.

[8] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and
D. Nussbaum. Hybrid transactional memory. In Proc. 12th Int’l
Conf. on Architecture Support for Programming Languages and
Operating Systems (ASPLOS), San Jose, CA, Oct. 2006.

[9] D. Dice, M. Herlihy, D. Lea, Y. Lev, V. Luchangco, W. Mesard,
M. Moir, K. Moore, and D. Nussbaum. Applications of the adaptive
transactional memory test platform. In Proc. 3rd ACM SIGPLAN
Workshop on Transactional Computing (TRANSACT), Salt Lake City,
UT, Feb. 2008.

[10] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In
Proc. 20th Int’l Symp. on Distributed Computing (DISC), Stockholm,
Sweden, Sep 2006.

[11] R. Guerraoui, M. Kapalka, and J. Vitek. STMBench7: a bench-
mark for software transactional memory. In Proc. 2nd ACM
SIGOPS/EuroSys European Conf. on Computer Systems (EuroSys),
Lisbon, Portugal, Mar. 2007.

[12] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Oluko-
tun. Transactional memory coherence and consistency. In Proc.
31st Ann. Int’l Symp. on Computer Architecture (ISCA), Munich,
Germany, Jun. 2004.

[13] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy. Composable
memory transactions. In Proc. 10th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), Chicago,
IL, Jun. 2005.

[14] M. Herlihy, J. Eliot, and B. Moss. Transactional memory: Architec-
tural support for lock-free data structures. In Proc. 20th Ann. Int’l
Symp. on Computer Architecture (ISCA), New York, NY, May 1993.

[15] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software
transactional memory for dynamic-sized data structures. In Proc.
22nd Ann. Symp. on Principle of Distributed Computing (PODC),
Boston, MA, Jul. 2003.

[16] M. Kulkarni, K. Pingali, G. Ramanarayanan, B. Walter, K. Bala, and
L. P. Chew. Optimistic parallelism benefits from data partitioning.
In Proc. 13th Int’l Conf. on Architecture Support for Programming
Languages and Operating Systems (ASPLOS), Seattle, WA, Mar.
2008.

[17] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive software
transactional memory. In Proc. 19th Int’l Symp. on Distributed
Computing (DISC), Cracow, Poland, Mar. 2005.

[18] K. Mehlhorn and S. Näher. The LEDA platform of combinatorial and
geometric computing. Communications of the ACM, 38(1):96–102,
1995.

[19] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford transactional applications for multi-processing. In Proc. 11th
IEEE Int’l Symp. on Workload Characterization (IISWC), Seattle,
WA, Sep. 2008.

[20] C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson,
J. Casper, C. Kozyrakis, and K. Olukotun. An effective hybrid
transactional memory system with strong isolation guarantees. In
Proc. 34th Ann. Int’l Symp. on Computer Architecture (ISCA), San
Diego, CA, Jun. 2007.

[21] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood.
LogTM: Log-based transactional memory. In Proc. 12th Int’l Conf.
on High-Performance Computer Architecture (HPCA), Austin, TX,
Feb. 2006.

[22] B. M. E. Moret and H. D. Shapiro. An empirical assessment of
algorithms for constructing a minimal spanning tree. In DIMACS
Monographs in Discrete Mathematics and Theoretical Computer
Science: Computational Support for Discrete Mathematics 15, pages
99–117. American Mathematical Society, 1994.

[23] C. Perfumo, N. Sonmez, S. Stipic, O. Unsal, A. Cristal, T. Har-
ris, and M. Valero. The limits of software transactional memory
(STM):dissecting Haskell STM applications on a many-core environ-
ment. In Proc. 5th ACM Int’l Conf. on Computing Frontiers (CF),
Ischia, Italy, May 2008.

[24] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional memory.
In Proc. 32nd Ann. Int’l Symp. on Computer Architecture (ISCA),
Madison, WI, Jun. 2005.

[25] M. L. Scott, M. F. Spear, L. Dalessandro, and V. J. Marathe. Delaunay
triangulation with transactions and barriers. In Proc. 10th IEEE Int’l
Symp. on Workload Characterization (IISWC), Boston, MA, Sep.
2007.

[26] A. Shriraman, M. F. Spear, H. H., V. J. Marathe, S. Dwarkadas, and
M. L. Scott. An integrated hardware-software approach to flexible
transactional memory. In Proc. 34th Ann. Int’l Symp. on Computer
Architecture (ISCA), San Diego, CA, Jun. 2007.

[27] M. Tremblay and S. Chaudhry. A third-generation 65nm 16-core
32-thread plus 32-scout-thread CMT SPARC processor. In Proc. Int’l
Solid State Circuits Conf. (ISSCC), San Francisco, CA, Feb. 2008.

[28] T. Vijaykumar, S. Gopal, J. E. Smith, and G. Sohi. Speculative
versioning cache. In Proc. 5th Int’l Conf. on High-Performance
Computer Architecture (HPCA), Las Vegas, NV, Jan. 1998.

[29] C. von Praun, R. Bordawekar, and C. Cascaval. Modeling optimistic
concurrency using quantitative dependence analysis. In Proc. 13th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), Salt Lake City, UT, Feb. 2008.

[30] I. Watson, C. Kirkham, and M. Lujan. A study of a transactional
parallel routing algorithm. In Proc. 16th Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT), Brasov, Romania,
Sep. 2007.

[31] Y. Zhang, L. Rauchwerger, and J. Torrellas. Hardware for specu-
lative run-time parallelization in distributed shared-memory multi-
processors. In Proc. 5th Int’l Conf. on High-Performance Computer
Architecture (HPCA), Las Vegas, NV, Jan. 1998.

24

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

