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Abstract

We present a new parallel algorithm that extends and gen-
eralizes the traditional graph analysis metric of betweenness
centrality to include additional non-shortest paths according
to an input parameter k. Betweenness centrality is a useful
kernel for analyzing the importance of vertices or edges in
a graph and has found uses in social networks, biological
networks, and power grids, among others. k-betweenness
centrality captures the additional information provided by
paths whose length is within k units of the shortest path
length. These additional paths provide robustness that is not
captured in traditional betweenness centrality computations,
and they may become important shortest paths if key edges
are missing in the data. We implement our parallel algorithm
using lock-free methods on a massively multithreaded Cray
XMT. We apply this implementation to a real-world data set
of pages on the World Wide Web and show the importance
of the additional data incorporated by our algorithm.

1. Introduction

The development of algorithms for the analysis of large
graph data sets has driven much research in high perfor-
mance computing today. Real-world networks from appli-
cation domains, such as computational biology, economics,
sociology, and computer networks, are sparse in nature and
often exhibit “small world” properties. The algorithms often
exhibit low amounts of temporal and spatial locality, while
revealing little computation to hide the latency of memory
accesses. Thus, their performance is often limited by the
speed of main memory. Additionally, it can be difficult to
obtain a balanced workload across processors in a parallel
cluster computer when working with massive real-world
graphs.

A useful analytic for large graphs has been the compu-
tation of betweenness centrality. As defined by Freeman in
[7], betweenness centrality is a measure of the number of
shortest paths in a graph passing through a given vertex. For
a graph G(V,E), let σst denote the number of shortest paths
between vertices s and t, and σst(v) the count of shortest

paths that pass through a specified vertex v. The betweenness
centrality of v is defined as:

BC(v) =
∑

s�=v �=t∈V

σst(v)
σst

(1)

Betweenness centrality can be used to identify critical
vertices in a network. High centrality scores indicate that
a vertex lies on a considerable fraction of shortest paths
connecting pairs of vertices. This metric has been applied
extensively to the study of various networks including bio-
logical networks [9], sexual networks and the transmission
of the AIDS virus [11], identifying key actors in terrorist
networks [6], organizational behavior, and transportation
networks [8].

In our earlier work, we developed the first parallel algo-
rithm for betweenness centrality [1, 13]. In the remainder
of this paper, we will motivate and present an extension
of Freeman’s betweenness centrality and our previous algo-
rithm. We generalize the definition to include paths in the
graph whose length is within a specified value k of the length
of the shortest path. We extend our recent parallel, lock-free
algorithm for computing betweenness centrality to compute
generalized k-betweenness centrality scores. Next, we will
give details of an implementation of our new algorithm on
the massively multithreaded Cray XMT and describe the
performance effects of this extension in terms of execution
time and memory usage. Last, we will compare the results
of this algorithm on synthetic and real-world data sets.

2. Extending Betweenness Centrality

The traditional definition of betweenness centrality [7]
enumerates all shortest paths in a graph and defines be-
tweenness centrality in terms of the percentage of shortest
paths passing through a vertex v. This metric has proved
valuable for a number of graph analysis applications, but
fails to capture the robustness of a graph. A vertex that lies
on a number of paths whose length is just one greater than
the shortest path receives no additional value compared to
a vertex with an equally large number of shortest paths, but
few paths of length one greater.
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δsk
(v) =

∑
w∈Succ[v]

⎛
⎝τsv(k−ΔD)

σswk

+
k∑

i=0

k−i∑
j=0

[
W (k − i − j, k − i) · τsv(j−ΔD)

] δsi(w)
τk−i+1
sw0

⎞
⎠ (2)

W (n, d) =

{
τd
sw0

, n = 0

−∑n
i=1 τswi

· W (n − i, d − 1), n > 0
(3)

Figure 1. Recursive relation for the dependency of a vertex s on a vertex v in the graph.

We will define k-betweenness centrality in the following
manner. For an arbitrary graph G(V,E), let d(s, t) denote
the length of the shortest path between vertices s and t. We
define σstk

to be the number of paths between s and t whose
length is less than or equal to d(s, t)+ k. Likewise, σstk

(v)
is the count of the subset of these paths that pass through
vertex v. Therefore, k-betweenness centrality is given by:

BCk(v) =
∑

s�=v �=t∈V

σstk
(v)

σstk

(4)

This definition of k-betweenness centrality subsumes
Freeman’s definition of betweenness centrality for k = 0.
From this definition, it is clear that there are multiple ways
to count paths whose length is within k of d(s, t).

3. A Parallel Algorithm for k-Betweenness
Centrality

Fast sequential and parallel algorithms are available
for computing several variations of betweenness centrality.
Brandes described a fast sequential algorithm for computing
betweenness in O(mn) time for an unweighted graph [4].
Madduri and Bader developed the first parallel betweenness
centrality algorithm motivated by Brandes’ approach that
exploits both coarse- and fine-grained parallelism in low-
diameter graphs in [1] and improved the performance of this
algorithm using lock-free methods in [13]. In this paper, we
extend the latter work to incorporate our new analytic of
k-betweenness centrality.

We define d(s, t) to be the length of the shortest path
between s and t. Paths must be acyclic and directed outwards
from the source vertex. Let τstk

be the number of paths
between s and t with length equal to exactly d(s, t)+k, and
let τstk

(v) be the number of these paths that pass through
vertex v. Then, τstk

(v) is given by:

τstk
(v) =

k∑
i=0

τsvi
· τvtk−i

(5)

Clearly, for k = 0 (where τst0 = σst0 by definition), we
have reproduced the original value of σst(v) from Brandes
where d(s, t) ≥ d(s, v) + d(v, t) (the Bellman criterion).

The k-betweenness centrality of vertex v may be obtained
by summing the pair-dependencies for that vertex:

BCk(v) =
k∑

i=0

∑
s�=v �=t∈V

δstk
(v) (6)

δstk
(v) is given by a ratio of the number of paths whose

length is equal to d(s, t) + k passing through vertex v over
the total count of the paths of length less than or equal to
d(s, t) + k between s and t.

δstk
(v) =

τstk
(v)

σstk

(7)

In his work, Brandes cleverly derives a recursive relation
for the dependency of s on any other vertex v in the graph.
Likewise, we have derived the general expression for any
path length k greater than the shortest path. We define
ΔD(w, v) as d(s, v) − d(s, w) + 1, where s is the source
vertex and w is a neighbor of v. ΔD is bounded by k for
neighbors lying on a +k−path in which we are interested.
We define δsk

(v), the dependence of s on v through paths
of length d(s, t) + k, to be:

δsk
(v) =

∑
t∈V,t�=s

δstk
(v) (8)

BCk(v) =
k∑

i=0

∑
s∈V

δsk
(v) (9)

It follows that BCk(v) can be directly calculated from a
sum of these dependence values. A formula for this relation
is given in Fig. 1. Note that for negative i, σsvi

is defined
to be zero. The reasoning for this equation is as follows: In
[4], Brandes gives a definition for δst(v, {v, w}) being the
ratio of shortest paths from s to t that travel through both
the vertex v and the edge {v, w}. Similarly we can define
δstk

(v, {v, w}) as the ratio of paths of length d(s, t)+k from
s to t that travel through v and {v, w}. If we do this, it is easy
to see that we can express δstk

as a sum of δstk
(v, {v, w})

across all neighbors w of v.
Now we see that if t = w then δstk

(v, {v, w}) is simply
τsvk−ΔD(w,v)/σswk

. The interesting part is when t �= w. In
the shortest paths case, δst(v, {v, w}) can be derived as the
ratio of shortest paths to w that go through v times the
fraction of shortest paths from s to t that go through w,
via the Bellman criterion. However we do not have the
luxury of doing this as δstk

(v, {v, w}) depends not only
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on τstk
(w) but on τsti

(w), ∀ i ≤ k. To construct this
dependency we take our general formula for τstk

(w) and
extend it to take into account the constraint that we need
to pass through a certain edge {v, w}. To do this we can
consider τswk

(v, {v, w}), which is exactly τsvk−ΔD(w,v)(v),
and τwtk

, which is the number of shortest paths from w to
t with length exactly d(w, t) + k, and which is unknown in
our algorithm. It can be seen that for w �= t:

δstk
(v, {v, w}) =

1
σstk

k−ΔD(w,v)∑
i=0

τsvk−ΔD(w,v)−i
· τwti

(10)
But here the problem is that we do not compute the value

τwtk
at all. Therefore, we must derive it from other data. We

want to get some expression in terms of τstk
(w), since this

will reduce in summation to a recurrence on δsk
(w). From

Eq. (5) we can derive a recurrence relation for τwtk
:

τwtk
=

τstk
(w) − ∑k

i=1 τswi · τwtk−i

τsw0

(11)

Then we are prepared to calculate a formula for δsk
(v).

Combining (11) with (10), and summing over all t’s, if we
notice that δsk

(v) = Σt
τstk

(w)

σstk
, we obtain equations (2) and

(3) in Fig. 1.
For the case when k = 0, this formula quickly reduces

to shortest path dependency of s on v from Brandes’
betweenness centrality algorithm:

δs(v) =
∑
w

σsv

σsw
· (1 + δs(w)) (12)

The recursive relation involves a combinatorial number
of terms and quickly becomes intractable for large values
of k (see next subsection on complexity analysis). For our
purposes, small values of k (less than 5) may be interesting
in practice, meaning that we are concerned with how a few
edge changes could heavily influence a vertex’s importance.
For these, it may be possible to directly derive the expression
for δsk

(v).
Now that a recurrence relation for the δ values is estab-

lished, we can summarize the algorithm outlined in Algo-
rithms 1, 2, and 3. In the first stage we calculate τsvk

, ∀ v, k
from a particular source vertex s. Then we use these τ values
to recursively calculate the δsk

(v), ∀ v, k. The first step is
achieved by using breadth-first search to traverse the graph.
In the second stage, we traverse the graph in backward order
from which it was explored during the search stage. We
repeat this for each source vertex s and sum the δ values
for each vertex v to obtain the BCk value.

We must modify the graph traversal phase from that of our
previous work in [13] in order to correctly propagate values
of τstk

. When k = 0, it suffices to do a single breadth first
search and propagate the value of τ from each level to the
next. For k > 0, we must do k + 1 breadth first searches.

Algorithm 1 A level-synchronous parallel algorithm for
computing k-betweenness centrality of vertices in un-
weighted graphs.
Input: G(V,E), k
Output: kBC[1..n], where kBC[v] gives the k-centrality

score (BCk(v)) for vertex v
1: for all v ∈ V in parallel do
2: kBC[v] ← 0
3: for all s ∈ V do

I. Initialization
4: for all t ∈ V in parallel do d[t] ← −1
5: for 0 ≤ i ≤ k in parallel do
6: Succ[i][t] ← empty multiset, τ [i][t] ← 0,
7: τ [0][s] ← 1, d[s] ← 0
8: phase ← 0, S[phase] ← empty stack
9: push s → S[phase]

Algorithm 2 Part II - Graph traversal for shortest path
discovery and counting

1: count ← 1
2: while count > 0 do
3: count ← 0
4: for all v ∈ S[phase] in parallel do
5: for each neighbor w of v in parallel do
6: if d[w] < 0 then
7: push w → S[phase + 1]
8: count ← count + 1
9: d[w] ← d[v] + 1

10: ΔD = d[v] − d[w] + 1
11: if ΔD ≤ min(k, 1) then
12: τ [ΔD][w] ← τ [ΔD][w] + τ [0][v]
13: if ΔD ≤ k then
14: append w → Succ[ΔD][v]
15: phase ← phase + 1
16: for 1 ≤ i ≤ k do
17: for 0 ≤ p < phase do
18: for all v ∈ S[p] in parallel do
19: for all w ∈ Succ[0][v] in parallel do
20: τ [i][w] ← τ [i][w] + τ [i][v]
21: if i < k then
22: for 0 < j ≤ i + 1 in parallel do
23: for all w ∈ Succ[j][v] in parallel do
24: τ [i + 1][w] = τ [i + 1][w] + τ [i + 1 − j][v]
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Figure 2. Illustration of τ propagation in the k = 2 case. Shown is a segment of the breadth-first search. The
table represents the ΔD value as well as the propagation occurring as the result of each edge. The color of the τ
propagation represents in which stage that addition will occur.

Algorithm 3 Part III - Dependency accumulation by back-
propagation

1: phase ← phase − 1
2: δ[i][t] ← 0 ∀ t ∈ V, 0 ≤ i ≤ k
3: for 0 ≤ k′ ≤ k do
4: p ← phase
5: while p > 0 do
6: for all v ∈ S[p] in parallel do
7: for 0 ≤ d ≤ k′ in parallel do
8: for all w ∈ Succ[d][v] in parallel do
9: for 0 ≤ i ≤ k′ − d do

10: sum ← 0
11: e ← k′ − d − i
12: for 0 ≤ j ≤ e do
13: sum ← sum + W (e− j, e, w, τ) ∗ τ [j][v]
14: δ[k′][v] ← δ[k′][v] + sum ∗ δ[i][w]

τ [0][w]e+1

15: δ[k′][v] ← δ[k′][v] + τ [k′−d][v]
Σiτ [i][w]

16: kBC[v] ← kBC[v] + δ[k′][v]
17: p ← p − 1

Notice that when we are updating τ values, for neighbors
on the next level in the breadth-first search, we have that
τswi = τsvi , ∀ i, based on our generalized Bellman criterion.
But we must also increment the τ values for neighbors in
the current or previous levels of the search, which can be
a problem since these neighbors then also need to pass on

Algorithm 4 Function W (k, d, w, τ): a recursive method
producing a polynomial expansion with constant subscript
sum.
Input: k, d, w, two-dimensional array τ
Output: A multivariate polynomial in τ [xi][w] where each

term has sum of exponents d and also in each term
Σixi = k, evaluated with values from τ .

1: if k = 0 then return τ [0][w]d

2: else
3: sum ← 0
4: for 0 < i ≤ k in parallel do
5: sum ← sum − τ [i][w] ∗ W (k − i, d − 1, w, τ)

return sum

these values to their neighbors.
We solve this by only passing on different levels of τ to

forward vertices and to those that are behind the breadth first
search frontier. Specifically, the forward propagation always
trails the backward propagation by one level. For example,
in the first step, we calculate and forward-propagate τ0 and
back-propagate τ1. See Fig. 2 for an illustration of this
process. We back-propagate τk to neighbors of the current
vertex with appropriate ΔD and which have already been
explored. We forward-propagate τk to neighboring vertices
on the shortest path that we discover during the breadth
first search. During the first breadth first search we store
k + 1 successor (or child) arrays. When we find a neighbor
during breadth first search whose ΔD ≤ k, we append that
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neighbor’s index to the ΔDth successor array.

Therefore, we need not re-run the breadth first search after
the first time: as long as we synchronize on the phases,
we may directly scan the successor arrays to perform our
propagation, avoiding contention on a common vertex queue,
and also allowing us to ignore far away neighbors and jump
exactly to the neighbors of interest. In each case we exploit
parallelism in the traversal by exploring the neighbors of
the current level of vertices concurrently. For a small-
world graph, where graph diameter is small, the number of
levels in the breadth-first search is correspondingly small,
and parallelism is thus high. In the first traversal, all the
vertices must add newly discovered vertices to an atomically
accessed queue, which is the main bottleneck in the search.
Since that work is done in the first phase, we can store
some data so that subsequent searches do not rely on this
queue and thus do not have a sequential bottleneck to their
parallelism.

For the δ−accumulation step, we start by performing
shortest-path accumulation as before, in Brandes’s original
algorithm. However, having these δ0 values allows us to
repeat the backward traversal to recursively calculate δ1,
and so on and so forth. Notice that in Fig. 1, the δk value
of the current vertex sometimes relies on the δk values of
vertices after, before, and on the same level of the breadth
first search. This may seem to preclude recursion, however as
it works out, for the same level of δ, the −ΔD term on the
subscript of τsv cancels out any dependencies on vertices
on the same level or lower, meaning we can perform the
recursive step as before, so long as we only calculate one
level of δ per recursive traversal.

Complexity analysis: In Brandes’ original algorithm the
betweenness centrality of any vertex can be calculated in
O(mn) time and O(m + n) space. It is easily seen that
the memory requirements of our new algorithm are exactly
k + 1 times the original, as we make k + 1 copies of the
arrays for τ, δ, and the successor and successor count
arrays, one for each level between 0 and k. The sequential
time analysis is a bit more difficult. The breadth-first search
phase is roughly k + 1 times O(mn), as we essentially
traverse the graph k + 1 times (and in the worst case we
traverse each edge during each iteration). However in the
accumulation phase we are actually weighed down by the
calculation of the W function which grows combinatorically:
more specifically, the number of terms in W (k, d) grows as
the number of integer partitions of k, which is O

(
e
√

k
)

. So

the amount of work in this algorithm is O
(
e
√

kmn
)

. For
large k we can see that this becomes intractable to compute.
However at small k it is quite manageable. For example,
if we are only interested in k < 5 then the multiplier is
bounded by e2 
 mn.

4. Computing k-Betweenness on the Cray
XMT

Current hardware utilize a hierarchy of caches to give the
illusion of reducing the gap to memory by exploiting the
principles of spatial and temporal locality. This approach
works well when the memory access pattern is predictable
or when application codes demonstrate significant levels
of temporal or spatial locality. However, graph analysis
kernels usually exhibit fairly low levels of spatial or temporal
locality [2], and execution on these platforms is limited
by the speed of the memory subsystem. Hardware mul-
tithreading has been shown to be effective for producing
efficient implementations of parallel graph algorithms when
a significant amount of parallelism can be revealed [12].

The Cray XMT [10] uses massive numbers of hardware
threads to tolerate latency to main memory. The XMT uses
a 500 MHz 64-bit Threadstorm processor that supports 128
hardware streams of execution. Context switching between
threads is lightweight and requires a single clock cycle. Each
processor can support up to 16 GB of main memory that is
hashed and globally addressed. The memory has a 128 KB,
4-way set associative data buffer that caches local data only.
The system is built around Cray’s XT infrastructure and can
scale to 8,024 processors.

The Cray XT infrastructure provides the I/O facilities
and the interconnection network for the XMT. The system
utilizes the Seastar-2 interconnection network that connects
nodes in a 3D-torus topology. As a result, per-processor
bisection bandwidth decreases as the number of processors
is increased. Service nodes provide access to a Lustre file
system for the storage and retrieval of large data sets.

A novel feature of the Cray XMT is its support for
lightweight word-level synchronization mechanisms. Each
64-bit word of memory has a full/empty bit associated with
it. C-language primitives are provided to the programmer for
managing this bit and mutual exclusion locks are common.
The architecture also provides an atomic int_fetch_-
add instruction that allows for integer read-modify-write
operations. This is commonly used for zero-overhead shared
data structures like queues and stacks. See [13] for a more
detailed explanation of the synchronization and lock-free
methods used in this algorithm.

Implementation and optimization: In terms of imple-
mentation on the XMT, the underlying structure is similar
to that used in our previous work [13]. As before, utiliza-
tion of the child arrays allows us to update our δ−values
without locking. The further optimizations in our code for
k−betweenness can be seen as utilizing the fact that we will
mostly be using small k values. As one can see in Algorithm
3, there are several nested loops, however most of them are
very simple for small k and unfurl quickly. By manually
coding these loops for smaller values of k′, we significantly
reduce the execution time since the time to set up and iterate
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Figure 3. Parallel scaling on the Cray XMT, for an
R-MAT generated graph of SCALE 24 (224 vertices).
Scaling is linear up to 32 processors and speedup is
roughly 58 at all 64 processors (about 6400 hardware
threads). k = 1, K4approx = 8 for balanced runtime
and complexity (single node time 181 minutes).

over the small number of loop iterations quickly outstrips the
actual useful work inside of them. For a SCALE 20 R-MAT
(Recursive MATrix graph generator [5]) graph (having 220

vertices and 223 edges), the time to compute 1-betweenness
drops by a factor of two with this optimization. We use this
R-MAT generator to realize inputs that are similar to small-
world graphs in degree distribution.

We begin unrolling at the loop over d values. Notice that
for d = k′ the loops collapse into a very nice form, in that
it becomes the following simplified algorithm:

Algorithm 5 Loop at line 8 from Algorithm 3, reduced form.
Note that W (0, 0) = 1.

1: for all w ∈ Succ[k′][v]in parallel do
2: δ[k′][v] ← δ[k′][v] + τ [0][v] ∗

(
δ[0][w]
τ [0][w] + 1

Σiτ [i][w]

)

Just from this simple equation we have reduced three loops
into one. Now since we have a formulation for d = k′ in
the d loop, we may pull it out of the loop and run the rest
of the loop from 0 to k′ − 1. Similarly we may wish to
pull the formulation when d = k′− 1, which we have done,
or beyond, depending on the number of iterations we wish
to unroll by hand. However, as i in d = k′ − i grows, the
complexity of the resulting reduced formula grows at an
exponential rate, meaning that for larger i this reduction is
intractable.

In addition, just as we wish to take advantage of small k
values in this outer loop, we may also utilize this property in
writing our recursive W function that creates a τ polynomial

with an exponentially growing number of terms. For small
values of k′ this will already be built into the reduced loop
iterations, however since larger inputs to the W function
recurse downward to more manageable numbers, it will be
convenient to quickly return the correct answer at lower
input sizes, saving a couple recursion steps.

Apart from manually optimizing for lower loop iterations,
other considerations were taken for this architecture. For
example, the malloc system call is rather expensive in the
case of these lightweight threads: if we have a malloc
in parallel its cost compared to the number of operations
in that thread’s lifetime can actually be quite significant.
Initially temporary arrays were kept to store the number of
children accumulated for a particular vertex during graph
traversal; however since temporary arrays require dynamic
allocation, we modified the code to skip these temporary
arrays and access the source arrays directly, at the cost of
addressing the larger array repeatedly. Reorganizing memory
accesses to avoid dynamic allocation within the loop reduced
runtime by more than 75%. Furthermore, since the system
has a plentiful amount of memory which can in essence be
accessed with minimal latency, we are encouraged to utilize
extra memory in lieu of performing extra calculations (as
long as we have sufficient network bandwidth): thus, the
expression Σiτ [i][w] in Algorithm 3 is precomputed and
stored in an array for all values of w.

In Fig. 3 we show the parallel scaling of our optimized
code on the 64-processor Cray XMT. We have reduced
the execution time from nearly an hour down to a few
minutes for this problem. To accommodate the more than
6,400 hardware thread contexts available on this machine,
we run multiple breadth-first searches in parallel and instruct
the compiler to schedule main loop iterations using loop
futures. This is necessary since each breadth first search
is dependent upon a single vertex queue which must be
accessed atomically and which quickly becomes a hotspot.
By doing this, however, the memory footprint is multiplied
by the number of concurrent searches. On 64 processors, a
graph of SCALE 24 takes about 190 seconds to run for
k = 1 approximate betweenness. This approximation is
based on selecting a random sample of source vertices s,
in this case, when K4approx = 8, the number of starting
vertices is 28 = 256. The plot shows good scaling up to our
machine size.

Comparison with x86: We ported our code to x86 cores
using OpenMP, relying solely on running multiple breadth-
first searches for parallelism. We do not provide detailed
scaling results here since running on an eight core 2.0GHz
Intel Clovertown Xeon we see no parallel speedup. On a
single Xeon core we were able to run 1-BC on a SCALE 21
RMAT graph in 2306 seconds, as compared to 1100 seconds
on a single 500MHz XMT processor (here in both cases we
only run one BFS at a time).
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Percentile k = 1 k = 2
90th 513 683
95th 96 142
99th 11 12

Figure 4. The number of vertices ranked in selected
percentiles for k = 1 and k = 2 whose betweenness
centrality score was 0 for k = 0 (traditional BC). There
were 14,320 vertices whose traditional BC score was
0, but whose BCk score for k = 1 was greater than
0. The ND-www graph contains 325,729 vertices and
1,497,135 edges.

5. Evaluating k-Betweenness

In order to explore the effect of various values of k on
the calculation of k-betweenness centrality, we apply our
Cray XMT implementation to the ND-www graph data set
[3]. This graph represents the hyperlink connections of web
pages on the Internet. It is a directed graph with 325,729
vertices and 1,497,135 edges. Its structure demonstrates a
power-law distribution in the number of neighbors. The
graph displays characteristics typical of scale-free graphs
found in social networks, biological networks, and computer
networks.

To examine the graph data, we ran k-betweenness central-
ity for k from 0 (traditional betweenness centrality) to 2. The
betweenness scores are compared for each value of k. An
analysis directly follows. Also, after computing betweenness
centrality for k = 0, we remove one or more of the highest
ranking vertices and re-examine the results.

Looking at the highest ranking vertices going from k = 0
to k = 2, the subset of vertices and the relative rankings
change little. This would seem to indicate that the paths k
longer than the shortest path lie along the same vertices as
the shortest path in this graph. Moreover, as predicted, the
traditional betweenness centrality metric fails to capture all
of the information in the graph. When examining the BCk

score for k > 0 of vertices whose score for k = 0 was 0
(no shortest paths pass through these vertices), it becomes
clear that a number of very important vertices in the graph
are not counted in traditional betweenness centrality. For
k = 1, 417 vertices are ranked in the top 10 percent, but
received a score of 0 for k = 0. In the 99th percentile are
11 vertices. Likewise, 12 vertices received a traditional BC
score of 0, but ranked in the top 1 percent for k = 2. Fig. 5
shows 14,320 vertices whose betweenness centrality score
for k = 0 was 0, but had a k-betweenness centrality score
of greater than 0 for k = 1.

Given that the execution time of this algorithm grows
exponentially with k, it is desirable to understand the effect
of choosing a given value for k. Fig. 6 shows that increasing
k from 0 to 1 captures significantly more path data. However,

Figure 5. Per-vertex betweenness centrality scores for
k = 0, 1, and 2, sorted in ascending order for k = 0.
Note the number of vertices whose score is several
orders of magnitude larger for k = 1 or 2 than for
traditional betweenness centrality.

increasing from k = 1 to k = 2 displays much less change.
It is reasonable to believe that small values of k for some
applications may capture an adequate amount of information
while remaining computable.

The vertices that get overlooked by traditional between-
ness centrality but are captured by k-betweenness centrality
play an important role in the network. They do not lie
along any shortest paths, but they lie along paths that are
very close to the shortest path. If an edge is removed that
breaks one or more shortest paths, these vertices could
likely become very central to the graph. The traditional
definition of betweenness centrality fails to capture this
subtle importance, but k-betweenness centrality is more
robust to noisy data and makes it possible to identify these
vertices.

When a vertex of high betweenness is removed from the
graph, it causes a number of changes in betweenness scores
for all values of k that we are studying. Many vertices
gain a small number of shortest paths and their ranking is
fairly unchanged. In general, those vertices ranked highest
on the list remain at the top. This would seem to indicate
that there is a network of short paths between vertices of
extremely high betweenness. Interestingly, however, other
vertices jump wildly within the rankings. Often, several of
these are neighbors of the removed vertex. This underscores
the previous conclusion that a vertex of relatively little

ICPP09.pdf   7ICPP09.pdf   7 7/11/2009   6:47:35 AM7/11/2009   6:47:35 AM

548548



Figure 6. Per-vertex betweenness centrality scores for
k = 0, 1, and 2, sorted independently in ascending
order for each value of k.

importance in the graph can become extremely important
if the right vertex or combination of vertices are removed.
Future work will study the effect of removing edges of
high betweenness, rather than vertices, on the rankings of
k-betweenness centrality in these real-world networks.

6. Conclusions and Future Work

Betweenness centrality is known to be a useful metric for
graph analysis. We have extended traditional betweenness
centrality to the general case taking into account additional
paths longer than the shortest paths. We analyze the effects
of this metric on real world graphs such as the World
Wide Web graph using the massively multithreaded Cray
XMT. We believe that this new tool will have important
consequences in the study of contingency analysis and plan-
ning, failover routing in computer networks, and extended
relationships in social networks. In future work, we will
apply this new tool to a wider range of graphs stemming
from real world data in an effort to understand the impact
that various types of paths have on the structure, robustness,
and resiliency of the graph.
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