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Abstract To explore chip-level parallelism, the PSC (Parallel 
Shared Cache) model is provided in this paper to describe high 
performance shared cache of Chip Multi-Processors (CMP). 
Then for a specific application, parallel sorting, a 
cache-conscious parallel algorithm, PMCC (Partition-Merge 
based Cache-Conscious) is designed based on the PSC model. 
The PMCC algorithm consists of two steps: the partition-based 
in-cache sorting and merge-based k-way merge sorting. In the 
first stage, PMCC first divides the input dataset into multiple 
blocks so that each block can fit into the shared L2 cache, and 
then employs multiple cores to perform parallel cache sorting to 
generate sorted blocks. In the second stage, PMCC first selects an 
optimized parameter k which can not only improve the paral-
lelism but also reduce the cache missing rate, then performs a 
k-way merge sorting to merge all the sorted blocks. The I/O 
complexity of the in-cache sorting step and k-way merge step are 
analyzed in detail. The simulation results show that the PSC 
based PMCC algorithm can out-performance the latest PEM 
based cache-conscious algorithm and the scalability of PMCC is 
also discussed. The low I/O complexity, high parallelism and the 
high scalability of PMCC can take advantage of CMP to improve 
its performance significantly and deal with large scale problem 
efficiently. 
 
Keywords Parallel Sorting; Cache-conscious Algorithm; Chip 
Multi-Processors (CMP) 
 

I. INTRODUCTION 
The “memory wall” is the growing disparity of speed 

between CPU and the off-chip memory. CPU speed improves 
much faster than the memory speed. Given this trend, it was 
expected that memory latency would become an 
overwhelming bottleneck in computer performance. At 
present, the improvements of CPU frequency have been 
slowed due to memory wall and some other physical barriers. 
CPU manufacturers have turned to more efficient architectures 
to improve CPU performance. One of the most important 
innovations in the architecture is Chip Multi-Processors 
(CMP), which integrate multiple processor cores in a single 
chip.∗ 
 In order to overcome the memory wall, we first provided a 
CMP model, the PSC model in this paper, in which the L2 
on-chip caches are shared by the processor cores in some 
degree. The PSC model can take advantage of the high 
performance shared cache and explore chip-level parallelism, 
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which will reduce the I/O complexity (main memory access 
times) of an application. Then for a specific problem, the 
parallel sorting, we designed a cache-conscious parallel 
algorithm based on the PSC model. 

Parallel sorting has been studied extensively during the past 
thirty years [7, 8, 9]. However most of the previous algorithms 
are implemented on SMP machines.  With the emergence of 
CMP, a new kind of parallel platform with different 
characteristics has become reality. The design of parallel 
sorting algorithms which can take advantage of the 
characteristics of CMP is now a challenging task. 
Cache-efficient algorithms reduce the execution time of an 
application by exploiting data parallelisms inherent in the 
transfer of useful data blocks between adjacent memory levels. 
By increasing locality in their memory access patterns, these 
algorithms try to keep the block transfer times small. And the 
I/O complexity of an algorithm is the number of I/Os (i.e. block 
transfers) performed between main memory and on-chip cache. 
As we introduced, the growing disparity of speed between 
CPU and main memory makes it more disastrous to access 
main memory for CPU performance. So reducing the I/O 
complexity is an effective method to overcome the memory 
wall. 

We explore the effect of shared cache in CMP on sorting 
performance and demonstrate a cache-conscious parallel 
sorting algorithm with low parallel I/O complexity, PMCC 
(Partition-Merge based Cache-Conscious). The PMCC 
approach consists of two main steps, the partition-based 
in-cache sorting and merge-based k-way merge sorting. This 
algorithm mainly has two advantages relative to other parallel 
sorting algorithms: (1) The PMCC algorithm can make full use 
of the on-chip shared cache. In the partition-based in-cache 
sorting stage, the input dataset is divided into blocks. The size 
of each block can fit into the shared cache. Then each block 
can be loaded into the cache and sorted without any memory 
access. In the merge-based k-way merge sorting stage, the 
algorithm can calculate the optimized value of k to make the 
shared cache to be fulfilled. Both of the two stages can make 
full use of the capacity of the shared cache; (2) The PMCC 
algorithm can explore the on-chip parallelism and reduce the 
I/O complexity significantly. In the partition-based in-cache 
sorting stage, each block is sorted in parallel by all the 
processor cores, and in the merge-based k-way merge sorting 
stage, each processor core performs a k-way merge sorting 
until the number of sorted subsets is less than the number of 
processor cores. During the two stages, because of the 
existence of the shared cache, most of the synchronization 
operations and data exchanges among the processor cores can 
be performed without accessing main memory, which can 
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reduce the I/O complexity significantly. 
The notations used throughout this paper are summarized in 

Table 1 for clarity.  

TABLE I.  SUMMARY OF NOTATIONS 

NOTATION DESCRIPTION 
N number of elements in the input dataset 

n number of elements in each data block which 
can fit into the shared cache 

C1, C2 capacity of L1 and the shared L2 cache 
B width of each cache line 
p number of processor cores 

D number of processor cores to perform a SBPS 
algorithm 

SD sharing degree, number of processor cores 
sharing the same L2 cache 

PD parallel degree of I/O operations 
ei the i th input element 

listi the i th sorted list 
Corei the i th processor core 

 
The rest of this paper is organized as follows. Section 2 will 

introduce the background and the related work. We will model 
the CMP with a shared cache in Section 3. In Section 4, the 
proposed algorithm is introduced and the complexity analysis 
of our algorithm will be presented in Section 5. The simulation 
experiments are presented in Section 6 and we conclude in 
Section 7. 

II. BACKGROUND AND RELATED WORK 

2.1 Parallel sorting 
 Significant research has been performed in the area of 
parallel sorting. But most of these studies are aimed at specific 
problems or machines. Generally, most parallel sorts suitable 
for multiprocessor computers can be placed into one of two 
general categories: merge-based sorts and partition-based sorts. 
Merge-based sorts consist of multiple merge stages across 
processors. And partition-based sorts consist of two phases: 
partitioning the data set into smaller subsets such that all 
elements in one subset are no greater than any element in 
another, and sorting each subset in parallel. The performance 
of partition-based sorts primarily depends on how well the 
data can be evenly partitioned into smaller ordered subsets. Shi 
et al. [7] proposed a partitioning method based on regular 
sampling. Helman et al. [8, 12] propose two algorithms 
respectively for partitioning the input dataset. These parallel 
sorting algorithms are aiming at traditional SMP machines, but 
our PMCC algorithm is for CMP machines with shared cache. 
The PMCC algorithm can take advantage of the shared on-chip 
cache but the previous algorithms just employ the off-chip 
DRAM. 

2.2 Cache-conscious sorting 
 The influence of caches on sorting performance has been 
discussed in several papers. In [2], M. Goodrich et al. pre-
sented a private-cache CMP model and studied two funda-
mental sorting algorithms in this model. And in [1], V. Ra-
machandran et al. considered three types of caching systems 
for CMPs, and derived results for three classes of problems in 
these systems. These two documents only covered two ex-
treme kinds of cache structures, private cache and full-shared 

cache. And the algorithms and applications they examined 
were limited in these two cache structures. But in our PSC 
model, we introduced the concept Sharing Degree (SD), which 
indicates the number of processor cores sharing the same L2 
cache. For different applications, we can verify the specific 
values of SD to get the best performances. 

Besides, LaMarca et al. [6] restructures some classic sorting 
algorithms by optimizing their cache behavior. Rahman et al. 
[5] analyzed the cache effect on distribution sorting. Wick-
remesinghe et al. [4] explored the effect of memory system 
features on sorting performance and proposed a new 
cache-conscious sorting algorithm. However, these researches 
mainly focus on traditional single core processor and serial 
sorting algorithms, and our algorithm is a parallel sorting al-
gorithm and aims at multi-core processors.  
 Inoue et al. [3] proposed a parallel sorting algorithm, 
AA-Sort, for shared-memory multi-processors, which can take 
advantage of SIMD instructions. AA-Sort can exploit the 
feature of processor cores’ private memory, L1 cache or local 
storage of core, and divide the input data set into subsets 
whose size can fit into the private memory. Then the cores sort 
them with SIMD instructions in parallel and merge all the 
subsets with an improved merge sort algorithm. The difference 
between PMCC and AA-Sort is that, AA-Sort aims at the 
private cache (or other kind of local storage) and sorts each 
subset with serial algorithms, but PMCC makes use of the 
shared cache and performs parallel algorithms to sort each 
subsets. 

III. MODEL THE CMP WITH SHARED CACHE 
Current CMP chips typically include two or three levels of 

cache memory arranged in a hierarchy, and the sizes of 
on-chip L2 and L3 cache memories are expected to continue 
increasing. For example, the Alpha 21364 contains a 1.75MB 
L2 cache, and Intel Itanium2 contains 3MB of on-chip L3 cache, 
and the IBM Power6 contains 8MB of L2 cache. 

In this section we propose a CMP model which can describe 
the characteristics of CMPs with on-chip shared cache. We 
call it the Parallel Shared Cache (PSC) model to underline the 
parallelization in accessing the shared cache. The PSC model 
is a computational model with p processor cores and a 
three-level memory hierarchy. The memory hierarchy consists 
of the main memory shared by all the processor cores and the 
two-level on-chip cache, in which the L1 cache is private for 
each processor core and the L2 cache is shared by a fixed 
number of processor cores. The size of each L1 cache is C1 and 
size of each L2 cache is C2. Both the L1 and L2 caches are 
partitioned into cache lines of size B. So the data is transferred 
between main memory and L2 cache in cache lines of size B. 

We define the sharing degree (SD) as number of processor 
cores sharing the same L2 cache. When the value of SD is 1, L2 
cache becomes the private cache of each processor core, and if 
SD equals to p, L2 cache is shared by all the processor cores. 
Figure 1 shows a PSC example with SD = 2. And we defined 
the parallel degree (PD) as the parallel degree of I/O 
operations, which indicates the cache line number that can be 
transferred between each L2 cache and the main memory in 
one I/O operation. We adopt the same method with PEM 
model [2] to measure PSC model’s I/O complexity. That is, to 
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measure the number of parallel line transfers between the main 
memory and the L2 cache, and each time p/SD (number of L2 
caches) lines can be read from/write into the main memory. 
For example, an algorithm with each of the p processor cores 
simultaneously reading one (different) line from the main 
memory would have an I/O complexity of O(SD/PD), not O 
(p). 

 
Figure 1. PSC Model (SD = 2) 

 In PSC model, we disregard on-chip networks and assume 
that all the communications among the processor cores is 
conducted by writing/reading to/from the shared memory. 
This shared memory can be main memory or shared cache, and 
it’s easy to find that communications through the shared cache 
won’t increase I/O complexity. When it comes to the main 
memory, the I/O complexity of communications depends on 
whether the multiple processor cores will access the same 
block. If processor cores access distinct blocks, the I/O 
complexity is O(1), and if they access the same block, 
according to [2], we can differentiate three variations: 

 Concurrent Read, Concurrent Write (CRCW) 
 Concurrent Read, Exclusive Write (CREW) 
 Exclusive Read, Exclusive Write (EREW) 

And we only consider the CREW model and leave the other 
two models for future work. In the case of CREW the p writes 
from p processor cores to the same block result in p I/Os. But 
this can be improved to O(log p) with some auxiliary blocks. 

 
Algorithm 1: in_cache_sort (array, N, p, C2, SD) 
# The in_cache_sort function sorts each block with a 
# Sample-Based Parallel Sorting algorithm 
# array[0:N-1] : array to be sorted, N : size of array, 
# p : number of processor cores, SD : sharing degree, 
# C2 : capacity of each L2 cache 
1: begin:  
2:     Round = 

2( ) / ( )N SD C p× ×⎡ ⎤⎢ ⎥  
3:     GroupNum = p/SD; 

4:     for i = 0 to Round-1 do 
5:         for each group j  in parallel do 

# j �[0,GroupNum - 1] 
6:             blockBase = i×C2×p/SD + j×C2
7:             Read array[blockBase: blockBase + C2 -1]  

(one block) into L2 cache 
8:             SBPS ( array[blockBase] , C2, SD ) 

# sort one block of C2 elements with 
# Sample-Based Parallel Sorting algorithm  
# by SD processor cores 

9:         end for 
10:   end for 
11:end in_cache_sort 

IV. PMCC ALGORITHM 
In this section, we present our new PMCC parallel sorting 

algorithm. PMCC consists of two sub-algorithms, the parti-
tion-based in-cache sorting and merge-based k-way merge 
sorting. The overall PMCC executes the following phases 
using the two algorithms: (1) Divide all of the data into blocks 
that fit into the L2 cache; Sort each block with the in-cache 
sorting algorithm; (2) Merge the sorted blocks with the merge 
sorting algorithm.  

4.1 In-cache sorting algorithm 
We adopt the Sample-Based Parallel Sorting (SBPS) to sort 

each block (Line 8). The idea behind SBPS algorithm is to find 
a set of d (= SD) -1 splitters to partition the input data set 
containing n=C2 elements into d groups indexed from 1 up to d 
such that every element in the i-th group is less than or equal to 
each of the elements in the (i+1)-th group. The d groups can be 
turned over to the correspondingly indexed processor core, 
after which the n elements will be arranged in sorted order. 

Assume that there are n elements in each block which can be 
indexed from 0 up to n-1, and without loss of generality, we 
assume that d divides n evenly. Generally, the procedure of 
Sampling-Based Parallel Sorting can be described as follows 
(as shown in Figure 2): 

Step 1. Divide the block into d subsets. Each processor core 
icore (0≤ i ≤ d-1) sorts one subset composed of n/d 

elements ( / ) ( / ) 1 ( 1) ( / ) 1{ , ,..., }i n d i n d i n de e e× × + + × −  using a serial sorting 
algorithm;  

Step 2. 0core  selects a sample set 1 2 1{ , ,..., }dy y y −  which is 
used as the pivots to split each subset, and then broadcast the 
sample set; 

Step 3. Each processor core splits its subset into d lists with 
the sample set, where

,i je list∀ ∈ , it meets 1j jy e y− < < ; 
Step 4. For each icore , it performs a mergeSort algorithm to 

merge all the i-th sorted list 0, 1, 1,{ , ,..., }i i d ilist list list − .  
The ability to partition the data evenly into ordered subsets 

is essential for partition-based sorts. If the distribution 
statistics of the data are known, it becomes easy to divide the 
data into equal-sized subsets. Unfortunately, in general, we do 
not know the data distribution. To overcome this difficulty, 
most partition-based sorts apply sampling-based method. That 
is, to select a sample of the input dataset and partition the data 
according to the distribution of the sample. The effectiveness 
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of sampling depends largely on the distribution of the original 
data, the choice of proper sample size, and the way in which 
the sample is drawn.  

 
Figure 2. Sampling-based Parallel Sorting  

In Step 2, we use the sample based method to select the 
pivots and split each ordered subset. Obviously, the more 
evenly we divide the input data, the higher the algorithm’s 
performance is. So the sample should be able to reflect the 
distribution of input. A lot of work has been done on how to 
select the sample of input data. We compare the effectiveness 
of some typical sample-selection approaches including 
Random Sampling (RS) [9], Parallel Sorting by Regular 
Sampling(PSRS) [7], and Deterministic Regular Sampling 
(DRS) [8]. We introduce the three approaches briefly below, 
and the implementation details can be found in [7, 8, 12].  

In Random Sampling (RS), elements in each subset are 
assigned into d buckets randomly. Then the processor cores 
exchange data by sending the contents of bucket j to

jCore , 

which will form d new subsets. After each processor core sorts 
its subset, 

0Core selects the pivots which can divide its subset 
evenly and broadcasts the pivots as splitters of Step3. 

In PSRS, after sorting the subsets in Step1, each processor 
core chooses d-1 samples which are evenly spaced throughout 

the subset and sends them to
0Core . After gathering samples 

from other cores, 
0Core sorts them into an ordered list with a 

serial sorting algorithm and choose pivots from the list, by 
which the list can be divided evenly. Then the pivots are 
broadcasted as splitters of Step3. 

In DRS, each processor core divides the subset into d 
subsequences after Step 1. Then the cores exchange the 
subsequences with each other. From each of the received 
subsequences, 

0Core selects some samples and merges them 
into an ordered list. And the pivots will be selected from the 
list just like PSRS. 

We don’t compare the performance of the three approaches 
here, but focus on the I/O complexity of each approach, which 
is essential to overcome the memory wall. 

4.2 Merge sorting algorithm 
 The input dataset is divided into N/C2 sorted equal-size 
subsets in the in-cache sorting stage. And in the merge sorting 
stage, we need to merge all the subset into one sequential data 
set. 

 Algorithm 2: k_merge_sort (array, N, p, C2, SD) 
# The k_merge_sort function merges N/C2 ordered blocks  
# into one block, 2≤k≤C2/B  
# array[0:N-1] : array to be sorted, N : size of array, 
# p : number of processor cores, SD : sharing degree, 
# C2 : capacity of each L2 cache 
1: begin:  
2:    UsedCoreNum = min {SD, 

2 / ( )C B k×⎢ ⎥⎣ ⎦ } 
3:    Round = (N/C2)/(UsedCoreNum×k×p/SD) 
4:    BlockSize = C2
5:    for core 0  to UsedCoreNum-1 in each group g  

in parallel do
6:        coreIndex = getIntraGroupIndex( ) 
            # get each core’s intra-group index 
7:        for i = 0 to Round-1 do 
8:            blockBase = (UsedCoreNum×(p×i/SD+g) + 

coreIndex) ×k×BlockSize 
9:            if blockBase < N-1 do 
10:              from array[blockBase: 

 blockBase+k×BlockSize] 
read the first line (B elements) of each block into 
L2 cache 

11:              while not all the k blocks are merged do 
12:                  merge the k lines until one of them is finished 
13:                  read the next line from the original block 
14:                  continue 
15:               end while 
16:           end if 
17:       end for
18:       Round = Round / k 
19:       BlockSize = BlockSize ×k 
20:        if BlockSize ≥ N do 
21:            return 
22:        end if 
23:    end for 
24:end k_merge_sort 
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Figure 3. k-way merge sorting (k = 4) 

The most popular algorithm for merging multiple subsets 
into one is 2-way MergeSort. Its time complexity 
is 2( log )O N N  and space complexity can be (1)O . However, in 
2-way MergeSort, each element needs to be accessed 

2log N times. Because in each recursion round the element is 
accessed at least once. From the view of cache, if the size of 
input is larger than capacity of cache, each element will 
cause

2log /N B cache misses, which will significantly increase 
the I/O complexity. 

The pseudo-code of the PSC k-way merge sorting algorithm 
is shown in Algorithm 2. First, given a value of k, we need to 
decide how many processor cores can be used to perform the 
merge sorting in each group. We define UsedCoreNum as 
min{SD, 

2 / ( )C B k×⎢ ⎥⎣ ⎦ } (Line 2) to make sure that at least one 
line of the block to be merged is kept in the L2 cache during the 
merging operation (as shown in figure 3). Then in each round 
UsedCoreNum×k×p/SD blocks are merged in parallel into 
UsedCoreNum×p/SD ones, so after (N/C2)/(UsedCoreNum× 
k×p/SD) rounds, the N/C2 blocks are merged into N/C2×k ones. 
Then we recursively perform this merging procedure until 
only one block is left. 

V. I/O COMPLEXITY ANALYSIS 

5.1 In-cache sorting algorithm 
 In this part, we discuss the I/O complexity of in-cache 
sorting algorithms with different SBPS algorithms respectively. 
We don’t focus on the implementation details of each SBPS 
algorithms, but focus on the I/O complexity only. 
 THEOREM 1. If the input array is located in contiguous 
main memory, the I/O complexity of PSRS algorithm in PSC 
model is 2

2( / / )O C B PD d B PD⋅ + ⋅ . 

 PROOF. The pseudo-code of PSRS algorithm can be 
found in [7]. The PSC PSRS algorithm consists of four phases: 
(1). each of the d (=SD) processor cores performs a serial 
sorting on its subset in parallel; (2). each core select a sample 
vector and send it to core0; (3). core0 selects a splitter vector 
from the sample vectors and broadcasts it; (4). each core splits 
it subsets and performs a merge sorting in parallel. 
 Before the serial sorting, the block needs to be read into the 
L2 cache. Since the input array is located in contiguous main 
memory. The I/O complexity of reading a block is 
O(C2/(B·PD)). Then the serial sorting doesn’t contribute more 
I/O complexity. In the second phase, each of the d processor 
cores writes a sample vector of d-1 elements into a contiguous 
memory. It needs d(d-1)/B·PD I/Os in PSC model. In the third 
phase, Core0 sorts the samples and selects d-1 elements as the 
splitter vector. Since we only consider CREW model in this 
paper, the d processor cores can read the splitter vector con-
currently. So this phase contributes no I/O complexity. In the 
last phase, each of the d processor cores performs a d-way 
merge sorting. In PSC model, the merge operation and data 
movement intra the block can be accomplished with in the L2 
cache. So it doesn’t contribute I/O complexity either.  
 So in total, the PSC PSRS algorithm’s I/O complexity 
is 2

2 2( / ( 1) / ) ( / / )O C B PD d d B PD O C B PD d B PD⋅ + − ⋅ = ⋅ + ⋅ . 
      □ 

COROLLARY 1. If the input array is located in conti-
guous main memory, the I/O complexity of PSRS-based 
in-cache sorting algorithm is  

3
2( ( / ) /( ))O N SD SD C p B PD⋅ + ⋅ ⋅  

 PROOF. If the SBPS of the in-cache sorting algorithm is 
implemented with PSRS algorithm, in each round p/SD blocks 
are sorted. And there are totally (N/C2)/(p/SD) rounds. So the 
I/O complexity of PSRS in-cache sorting algorithm is  

2
2 2((( / ) /( / )) ( / / ))O N C p SD C B PD d B PD⋅ ⋅ + ⋅  

2
2( (1 / ) /( ))O N SD d C p B PD= ⋅ ⋅ + ⋅ ⋅  

Since d = SD, 
2

2( (1 / ) /( ))O N SD d C p B PD⋅ ⋅ + ⋅ ⋅  
3

2( ( / ) /( ))O N SD SD C p B PD= ⋅ + ⋅ ⋅                          □ 

THEOREM 2. If the input array is located in contiguous 
main memory, the I/O complexity of RS algorithm in PSC 
model is O (C2/B·PB). 

PROOF. The difference between RS and PSRS is that the 
cores don’t gather the sample vectors in the second phase of 
PSRS, but do a data exchange before the serial sorting. So RS 
algorithm consists the following four phase: (1). each core 
assigns its subset into d buckets randomly and sends the ele-
ments in bucket j to corej; (2). each of the d cores sorts the 
received elements in phase one; (3). core0 select a splitter 
vector and broadcasts it; (4). each core performs a d-way 
merge sorting. 

In the first phase, one additional auxiliary block is needed to 
place the reassigned block. Since each element is referenced 
only once, the assign operation counts for 2×C2/B·PD I/Os. 
Then after the reassigned block is read into the L2 cache, no 
more I/Os are needed to exchange data. 
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The rest phases are similar to PSRS except that the d cores 
don’t gather the sample vectors in RS. So the I/O complexity 
of RS in PSC model is O(2×C2/B) = O(C2/B·PD).            □ 

COROLLARY 2. If the input array is located in conti-
guous main memory, the I/O complexity of RS-based in-cache 
sorting algorithm is ( /( ))O N SD p B PD⋅ ⋅ ⋅  
 PROOF. The proof the COROLLARY 2 is the same to 
COROLLARY 1. The I/O complexity of running (N/C2)/(p/SD) 
rounds of RS algorithm is 

 (N/C2)/(p/SD)×O(C2/B) = ( /( ))O N SD p B PD⋅ ⋅ ⋅ .          □ 
THEOREM 3. If the input array is located in contiguous 

main memory, the I/O complexity of DRS in PSC model is 
O(C2/B·PD). 

PROOF. The PSC DRS algorithm consists of four phases: 
(1). each of the d cores sorts its subset with a serial sorting 
algorithm in parallel; (2). each core sends every i-th (0≤i≤d-1) 
element of its subset to corei; (3). core0 selects a splitter vector 
and broadcasts it; (4). each core performs a merge sorting al-
gorithms. 

In phase 1, the block is read into L2 cache with the I/O 
complexity O(C2/B·PD) before the serial sorting. The phase 2 
needs an auxiliary block to reorganize the input block, so the 
I/O complexity of data exchange is O (C2/B·PD). The rest 
phases are similar to THEOREM 2 and contribute no I/O 
complexity. So in total the I/O complexity of DRS in-cache 
sorting algorithm is O(2×C2/B·PD) = O(C2/B·PD).              □ 

COROLLARY 3. If the input array is located in conti-
guous main memory, the I/O complexity of DRS-based 
in-cache sorting algorithm is ( /( ))O N SD p B PD⋅ ⋅ ⋅  
 PROOF. The proof the COROLLARY 3 is the same to 
COROLLARY 1. The I/O complexity of running (N/C2)/(p/SD) 
rounds of DRS algorithm is 

 (N/C2)/(p/SD)×O(C2/B·PD) = ( /( ))O N SD p B PD⋅ ⋅ ⋅   □ 
 We can find that the I/O complexity of DRS-based and 
RS-based in-cache sorting algorithm is lower than the 
PSRS-based one. In our simulation experiments, we ap-
plied the DRS-based in-cache sorting algorithm. 

5.2 Merge sorting algorithm 

 THEOREM 4. If the input array is located in contiguous 
main memory, the I/O complexity of the k-way merge sorting 
algorithm in PSC model is

2(( / ) log ( / ))kO N SD PD p B N C⋅ ⋅ ⋅ . 
 PROOF. In the k-way merge sorting algorithm of PMCC, 
the depth of the k-way merge tree is logk(N/C2). That means 

there are totally logk(N/C2) rounds of k-way merge sorting to 
merge N/C2 blocks into one. 
 In each round, each of the N input elements is read into L2 
cache at least once. And in PSC model each time PD·p/SD 
lines can be read into L2 cache. So the I/O complexity of each 
round is O((N/B)/(PD·p/SD)). So in total the logk(N/C2) rounds 
of merge sorting counts for the I/O complexity: 

logk(N/C2)O((N/B) /(PD·p/SD))  
= 

2(( / ) log ( / ))kO N SD PD p B N C⋅ ⋅ ⋅                               □ 
According to the analysis above, the total I/O complexity of 

PMCC is 
2( /( ) log ( / ) /( ))kO N SD p B PD N SD N C PD p B⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅  

2( (1 log ( / )) /( ))kO N SD N C PD p B= ⋅ ⋅ + ⋅ ⋅  

2

( log )k
N SD NO

PD p B C
⋅=
⋅ ⋅

                (1) 

According to THEOREM 4, for a given implementation of 
the PSC model, the I/O complexity of the merge sorting algo-
rithm is decided by the way number k. By increasing k, the I/O 
complexity can be reduced. Since 2≤k≤C2/B, the low bound of 
total I/O complexity is

2 /
2

( log )C B
N SD NO

PD p B C
⋅
⋅ ⋅

. 

VI. SIMULATION EXPERIMENTS 
 In order to examine the I/O complexity, we simulated the 
execution procedure of PMCC and the latest cache-conscious 
parallel sorting algorithm, PEM Distribution sort in the CMP 
environments. 

6.1 Comparison of I/O Complexity 
 We explored the cache behavior of PMCC and PEM Dis-
tribution sort (PEM-D) when executed in CMP environments 
and compared the I/O times of the two algorithms. Figure 4 
shows the ratio of PEM-D’s I/O times to PMCC’s. 
 As we can see in figure 4 (a), for most observations, PEM-D 
requires more I/Os than PMCC. In the 16-core CMP envi-
ronment, a sharing degree of four gives PMCC the greatest 
advantage over PEM-D when the sharing degree equals to the 
parallel degree. The value of IOPEM-D/IOPMCC is over 3.2, 
which means the I/O times of PMCC is only about 31.3% of 
PEM-D’s. On another side, with the growth of L2 cache’s ca-
pacity, the value of IOPEM-D/IOPMCC doesn’t change obviously. 
This means that PMCC has similar scalability with PEM-D 
with the growth of L2 cache’s capacity. 
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(a) p = 16, N = 64M, PD = 4                                                                                   (b) SD = 4, C2= 4MB/SD 

Figure 4. Comparison of I/O times between PMCC and PEM Distribution sort (PEM-D)

 
(a) p = 16, N = 64M, PD = 4                                                                                     (b) p = 32, N = 32M, PD = 4 

Figure 5. Scalability of PMCC with the growth of L2 cache’s capacity 

 
(a)SD = 4, C2 = 4MB/SD                                                                                              (b) SD = 8, C2 = 8MB/SD 

Figure 6. Scalability of PMCC with the growth of processor core number and input size 
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 In figure 4 (b), we can see that, first, with the growth of 
processor core number, the value of IOPEM-D/IOPMCC becomes 
smaller. This means that, given the sharing degree and L2 
cache’s capacity, a smaller processor core number makes 
PMCC’s advantage more obvious. Second, with the input size 
becoming bigger, the advantage of PMCC becomes greater 
and when the input size is 512M and processor core number is 
8, the value of IOPEM-D/IOPMCC is 6.75, which means the I/O 
times of PMCC is only about 14.8% of PEM-D’s. 
6.2 Scalability 
 We explored the scalability of PMCC by increasing the 
capacity of L2 cache, number of processor cores and the input 
size in the simulation.  

We can see in figure 5 that with the growth of L2 cache’s 
capacity, the I/O times are reduced significantly. In the 
in-cache sorting stage of PMCC, the input is divided into small 
sorted blocks, which will be merged in the next stage. By in-
creasing the capacity of L2 cache, we can increase the block 
size and reduce the block number, which will reduce the total 
rounds of the merge sorting and in turn reduce the times of 
I/Os. And we can also see that in both of the 16-core and 
32-core CMP environments, a sharing degree of four gives the 
PMCC least I/O times when the sharing degree equals to the 
parallel degree. 

Figure 6 shows the reduction of I/Os with growths of pro-
cessor core numbers and the I/O growth mode with the growth 
of input size. As we discussed in section 6.1, given a SD, the 
growth of core number will increase the parallelism degree of 
the I/O operations. So when the core number increases, the I/O 
times decreases accordingly. Figure 6 also shows the processor 
core number grows in a log scale in our simulation and the I/O 
times reduce in a log scale too. And the overall tendencies 
obey a linear law. In figure 6, we can also see that with the 
growth of input size, the I/O time grows in a linear law too. 

VII. CONCLUSION 
Chip Multi-Processor has become a new platform for 

parallel computing. In this paper, we explored the 
characteristics of CMP and provided a computational CMP 
model, PSC, which consists of p processor cores and a 
three-level memory hierarchy. Based on the PSC model, we 
designed a new parallel sorting algorithm, PMCC, which 
consists of two parts, the in-cache sorting and merge sorting 
algorithm. PMCC first divides all of the data into blocks that 
fit into the shared cache and sorts each block with the in-cache 
sorting algorithm. Then the sorted blocks are merged together 
with merge sorting. 

PMCC can take advantage of shared L2 cache and 
minimize total number of data transfers. According to our 
analysis, the PSRS in-cache sorting algorithm has an I/O 
complexity of 3

2( ( / ) /( ))O N SD SD C PD p B⋅ + ⋅ ⋅  and the RS 
and DRS in-cache sorting algorithm’s I/O complexity 
is ( /( ))O N SD PD p B⋅ ⋅ ⋅ . The I/O complexity of k-way merge 
sorting algorithm is 

2(( / ) log ( / ))kO N SD PD p B N C⋅ ⋅ ⋅ . And the 
low bound of the I/O complexity of PMCC algorithm 
is

2 /
2

( log )C B
N SD NO

PD p B C
⋅
⋅ ⋅

. 

According to the simulation experiments, PMCC can 
significantly reduce the I/O complexity relative to PEM 
Distribution sort and has considerable scalability. 
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