

A Partition-Merge based Cache-Conscious Parallel Sorting Algorithm for
CMP with Shared Cache*

Song Hao1, Zhihui Du1+ ,David A. Bader 2, Yin Ye1

1Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University, 100084, Beijing, China

2College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332, USA

+Corresponding Author’s Email: duzh@tsinghua.edu.cn

Abstract To explore chip-level parallelism, the PSC (Parallel
Shared Cache) model is provided in this paper to describe high
performance shared cache of Chip Multi-Processors (CMP).
Then for a specific application, parallel sorting, a
cache-conscious parallel algorithm, PMCC (Partition-Merge
based Cache-Conscious) is designed based on the PSC model.
The PMCC algorithm consists of two steps: the partition-based
in-cache sorting and merge-based k-way merge sorting. In the
first stage, PMCC first divides the input dataset into multiple
blocks so that each block can fit into the shared L2 cache, and
then employs multiple cores to perform parallel cache sorting to
generate sorted blocks. In the second stage, PMCC first selects an
optimized parameter k which can not only improve the paral-
lelism but also reduce the cache missing rate, then performs a
k-way merge sorting to merge all the sorted blocks. The I/O
complexity of the in-cache sorting step and k-way merge step are
analyzed in detail. The simulation results show that the PSC
based PMCC algorithm can out-performance the latest PEM
based cache-conscious algorithm and the scalability of PMCC is
also discussed. The low I/O complexity, high parallelism and the
high scalability of PMCC can take advantage of CMP to improve
its performance significantly and deal with large scale problem
efficiently.

Keywords Parallel Sorting; Cache-conscious Algorithm; Chip
Multi-Processors (CMP)

I. INTRODUCTION
The “memory wall” is the growing disparity of speed

between CPU and the off-chip memory. CPU speed improves
much faster than the memory speed. Given this trend, it was
expected that memory latency would become an
overwhelming bottleneck in computer performance. At
present, the improvements of CPU frequency have been
slowed due to memory wall and some other physical barriers.
CPU manufacturers have turned to more efficient architectures
to improve CPU performance. One of the most important
innovations in the architecture is Chip Multi-Processors
(CMP), which integrate multiple processor cores in a single
chip.∗
 In order to overcome the memory wall, we first provided a
CMP model, the PSC model in this paper, in which the L2
on-chip caches are shared by the processor cores in some
degree. The PSC model can take advantage of the high
performance shared cache and explore chip-level parallelism,

∗ This paper is partly supported by National Natural Science Foundation of

China (No. 60773148 and No.60503039), Beijing Natural Science Foundation
(No. 4082016), China’s National Fundamental Research 973 Program (No.
2004CB217903), NSF Grants CNS-0614915 and an IBM Shared University
Research (SUR) award.

which will reduce the I/O complexity (main memory access
times) of an application. Then for a specific problem, the
parallel sorting, we designed a cache-conscious parallel
algorithm based on the PSC model.

Parallel sorting has been studied extensively during the past
thirty years [7, 8, 9]. However most of the previous algorithms
are implemented on SMP machines. With the emergence of
CMP, a new kind of parallel platform with different
characteristics has become reality. The design of parallel
sorting algorithms which can take advantage of the
characteristics of CMP is now a challenging task.
Cache-efficient algorithms reduce the execution time of an
application by exploiting data parallelisms inherent in the
transfer of useful data blocks between adjacent memory levels.
By increasing locality in their memory access patterns, these
algorithms try to keep the block transfer times small. And the
I/O complexity of an algorithm is the number of I/Os (i.e. block
transfers) performed between main memory and on-chip cache.
As we introduced, the growing disparity of speed between
CPU and main memory makes it more disastrous to access
main memory for CPU performance. So reducing the I/O
complexity is an effective method to overcome the memory
wall.

We explore the effect of shared cache in CMP on sorting
performance and demonstrate a cache-conscious parallel
sorting algorithm with low parallel I/O complexity, PMCC
(Partition-Merge based Cache-Conscious). The PMCC
approach consists of two main steps, the partition-based
in-cache sorting and merge-based k-way merge sorting. This
algorithm mainly has two advantages relative to other parallel
sorting algorithms: (1) The PMCC algorithm can make full use
of the on-chip shared cache. In the partition-based in-cache
sorting stage, the input dataset is divided into blocks. The size
of each block can fit into the shared cache. Then each block
can be loaded into the cache and sorted without any memory
access. In the merge-based k-way merge sorting stage, the
algorithm can calculate the optimized value of k to make the
shared cache to be fulfilled. Both of the two stages can make
full use of the capacity of the shared cache; (2) The PMCC
algorithm can explore the on-chip parallelism and reduce the
I/O complexity significantly. In the partition-based in-cache
sorting stage, each block is sorted in parallel by all the
processor cores, and in the merge-based k-way merge sorting
stage, each processor core performs a k-way merge sorting
until the number of sorted subsets is less than the number of
processor cores. During the two stages, because of the
existence of the shared cache, most of the synchronization
operations and data exchanges among the processor cores can
be performed without accessing main memory, which can

2009 International Conference on Parallel Processing

0190-3918/09 $25.00 © 2009 IEEE

DOI 10.1109/ICPP.2009.26

396

2009 International Conference on Parallel Processing

0190-3918/09 $25.00 © 2009 IEEE

DOI 10.1109/ICPP.2009.26

396

2009 International Conference on Parallel Processing

0190-3918/09 $25.00 © 2009 IEEE

DOI 10.1109/ICPP.2009.26

396

2009 International Conference on Parallel Processing

0190-3918/09 $25.00 © 2009 IEEE

DOI 10.1109/ICPP.2009.26

396

2009 International Conference on Parallel Processing

0190-3918/09 $26.00 © 2009 IEEE

DOI 10.1109/ICPP.2009.26

396

2009 International Conference on Parallel Processing

0190-3918/09 $26.00 © 2009 IEEE

DOI 10.1109/ICPP.2009.26

396

reduce the I/O complexity significantly.
The notations used throughout this paper are summarized in

Table 1 for clarity.

TABLE I. SUMMARY OF NOTATIONS

NOTATION DESCRIPTION
N number of elements in the input dataset

n number of elements in each data block which
can fit into the shared cache

C1, C2 capacity of L1 and the shared L2 cache
B width of each cache line
p number of processor cores

D number of processor cores to perform a SBPS
algorithm

SD sharing degree, number of processor cores
sharing the same L2 cache

PD parallel degree of I/O operations
ei the i th input element

listi the i th sorted list
Corei the i th processor core

The rest of this paper is organized as follows. Section 2 will

introduce the background and the related work. We will model
the CMP with a shared cache in Section 3. In Section 4, the
proposed algorithm is introduced and the complexity analysis
of our algorithm will be presented in Section 5. The simulation
experiments are presented in Section 6 and we conclude in
Section 7.

II. BACKGROUND AND RELATED WORK

2.1 Parallel sorting
 Significant research has been performed in the area of
parallel sorting. But most of these studies are aimed at specific
problems or machines. Generally, most parallel sorts suitable
for multiprocessor computers can be placed into one of two
general categories: merge-based sorts and partition-based sorts.
Merge-based sorts consist of multiple merge stages across
processors. And partition-based sorts consist of two phases:
partitioning the data set into smaller subsets such that all
elements in one subset are no greater than any element in
another, and sorting each subset in parallel. The performance
of partition-based sorts primarily depends on how well the
data can be evenly partitioned into smaller ordered subsets. Shi
et al. [7] proposed a partitioning method based on regular
sampling. Helman et al. [8, 12] propose two algorithms
respectively for partitioning the input dataset. These parallel
sorting algorithms are aiming at traditional SMP machines, but
our PMCC algorithm is for CMP machines with shared cache.
The PMCC algorithm can take advantage of the shared on-chip
cache but the previous algorithms just employ the off-chip
DRAM.

2.2 Cache-conscious sorting
 The influence of caches on sorting performance has been
discussed in several papers. In [2], M. Goodrich et al. pre-
sented a private-cache CMP model and studied two funda-
mental sorting algorithms in this model. And in [1], V. Ra-
machandran et al. considered three types of caching systems
for CMPs, and derived results for three classes of problems in
these systems. These two documents only covered two ex-
treme kinds of cache structures, private cache and full-shared

cache. And the algorithms and applications they examined
were limited in these two cache structures. But in our PSC
model, we introduced the concept Sharing Degree (SD), which
indicates the number of processor cores sharing the same L2
cache. For different applications, we can verify the specific
values of SD to get the best performances.

Besides, LaMarca et al. [6] restructures some classic sorting
algorithms by optimizing their cache behavior. Rahman et al.
[5] analyzed the cache effect on distribution sorting. Wick-
remesinghe et al. [4] explored the effect of memory system
features on sorting performance and proposed a new
cache-conscious sorting algorithm. However, these researches
mainly focus on traditional single core processor and serial
sorting algorithms, and our algorithm is a parallel sorting al-
gorithm and aims at multi-core processors.
 Inoue et al. [3] proposed a parallel sorting algorithm,
AA-Sort, for shared-memory multi-processors, which can take
advantage of SIMD instructions. AA-Sort can exploit the
feature of processor cores’ private memory, L1 cache or local
storage of core, and divide the input data set into subsets
whose size can fit into the private memory. Then the cores sort
them with SIMD instructions in parallel and merge all the
subsets with an improved merge sort algorithm. The difference
between PMCC and AA-Sort is that, AA-Sort aims at the
private cache (or other kind of local storage) and sorts each
subset with serial algorithms, but PMCC makes use of the
shared cache and performs parallel algorithms to sort each
subsets.

III. MODEL THE CMP WITH SHARED CACHE
Current CMP chips typically include two or three levels of

cache memory arranged in a hierarchy, and the sizes of
on-chip L2 and L3 cache memories are expected to continue
increasing. For example, the Alpha 21364 contains a 1.75MB
L2 cache, and Intel Itanium2 contains 3MB of on-chip L3 cache,
and the IBM Power6 contains 8MB of L2 cache.

In this section we propose a CMP model which can describe
the characteristics of CMPs with on-chip shared cache. We
call it the Parallel Shared Cache (PSC) model to underline the
parallelization in accessing the shared cache. The PSC model
is a computational model with p processor cores and a
three-level memory hierarchy. The memory hierarchy consists
of the main memory shared by all the processor cores and the
two-level on-chip cache, in which the L1 cache is private for
each processor core and the L2 cache is shared by a fixed
number of processor cores. The size of each L1 cache is C1 and
size of each L2 cache is C2. Both the L1 and L2 caches are
partitioned into cache lines of size B. So the data is transferred
between main memory and L2 cache in cache lines of size B.

We define the sharing degree (SD) as number of processor
cores sharing the same L2 cache. When the value of SD is 1, L2
cache becomes the private cache of each processor core, and if
SD equals to p, L2 cache is shared by all the processor cores.
Figure 1 shows a PSC example with SD = 2. And we defined
the parallel degree (PD) as the parallel degree of I/O
operations, which indicates the cache line number that can be
transferred between each L2 cache and the main memory in
one I/O operation. We adopt the same method with PEM
model [2] to measure PSC model’s I/O complexity. That is, to

397397397397397397

measure the number of parallel line transfers between the main
memory and the L2 cache, and each time p/SD (number of L2
caches) lines can be read from/write into the main memory.
For example, an algorithm with each of the p processor cores
simultaneously reading one (different) line from the main
memory would have an I/O complexity of O(SD/PD), not O
(p).

Figure 1. PSC Model (SD = 2)

 In PSC model, we disregard on-chip networks and assume
that all the communications among the processor cores is
conducted by writing/reading to/from the shared memory.
This shared memory can be main memory or shared cache, and
it’s easy to find that communications through the shared cache
won’t increase I/O complexity. When it comes to the main
memory, the I/O complexity of communications depends on
whether the multiple processor cores will access the same
block. If processor cores access distinct blocks, the I/O
complexity is O(1), and if they access the same block,
according to [2], we can differentiate three variations:

 Concurrent Read, Concurrent Write (CRCW)
 Concurrent Read, Exclusive Write (CREW)
 Exclusive Read, Exclusive Write (EREW)

And we only consider the CREW model and leave the other
two models for future work. In the case of CREW the p writes
from p processor cores to the same block result in p I/Os. But
this can be improved to O(log p) with some auxiliary blocks.

Algorithm 1: in_cache_sort (array, N, p, C2, SD)
The in_cache_sort function sorts each block with a
Sample-Based Parallel Sorting algorithm
array[0:N-1] : array to be sorted, N : size of array,
p : number of processor cores, SD : sharing degree,
C2 : capacity of each L2 cache
1: begin:
2: Round =

2() / ()N SD C p× ×⎡ ⎤⎢ ⎥
3: GroupNum = p/SD;

4: for i = 0 to Round-1 do
5: for each group j in parallel do

j �[0,GroupNum - 1]
6: blockBase = i×C2×p/SD + j×C2
7: Read array[blockBase: blockBase + C2 -1]

(one block) into L2 cache
8: SBPS (array[blockBase] , C2, SD)

sort one block of C2 elements with
Sample-Based Parallel Sorting algorithm
by SD processor cores

9: end for
10: end for
11:end in_cache_sort

IV. PMCC ALGORITHM
In this section, we present our new PMCC parallel sorting

algorithm. PMCC consists of two sub-algorithms, the parti-
tion-based in-cache sorting and merge-based k-way merge
sorting. The overall PMCC executes the following phases
using the two algorithms: (1) Divide all of the data into blocks
that fit into the L2 cache; Sort each block with the in-cache
sorting algorithm; (2) Merge the sorted blocks with the merge
sorting algorithm.

4.1 In-cache sorting algorithm
We adopt the Sample-Based Parallel Sorting (SBPS) to sort

each block (Line 8). The idea behind SBPS algorithm is to find
a set of d (= SD) -1 splitters to partition the input data set
containing n=C2 elements into d groups indexed from 1 up to d
such that every element in the i-th group is less than or equal to
each of the elements in the (i+1)-th group. The d groups can be
turned over to the correspondingly indexed processor core,
after which the n elements will be arranged in sorted order.

Assume that there are n elements in each block which can be
indexed from 0 up to n-1, and without loss of generality, we
assume that d divides n evenly. Generally, the procedure of
Sampling-Based Parallel Sorting can be described as follows
(as shown in Figure 2):

Step 1. Divide the block into d subsets. Each processor core
icore (0≤ i ≤ d-1) sorts one subset composed of n/d

elements (/) (/) 1 (1) (/) 1{ , ,..., }i n d i n d i n de e e× × + + × − using a serial sorting
algorithm;

Step 2. 0core selects a sample set 1 2 1{ , ,..., }dy y y − which is
used as the pivots to split each subset, and then broadcast the
sample set;

Step 3. Each processor core splits its subset into d lists with
the sample set, where

,i je list∀ ∈ , it meets 1j jy e y− < < ;
Step 4. For each icore , it performs a mergeSort algorithm to

merge all the i-th sorted list 0, 1, 1,{ , ,..., }i i d ilist list list − .
The ability to partition the data evenly into ordered subsets

is essential for partition-based sorts. If the distribution
statistics of the data are known, it becomes easy to divide the
data into equal-sized subsets. Unfortunately, in general, we do
not know the data distribution. To overcome this difficulty,
most partition-based sorts apply sampling-based method. That
is, to select a sample of the input dataset and partition the data
according to the distribution of the sample. The effectiveness

398398398398398398

of sampling depends largely on the distribution of the original
data, the choice of proper sample size, and the way in which
the sample is drawn.

Figure 2. Sampling-based Parallel Sorting

In Step 2, we use the sample based method to select the
pivots and split each ordered subset. Obviously, the more
evenly we divide the input data, the higher the algorithm’s
performance is. So the sample should be able to reflect the
distribution of input. A lot of work has been done on how to
select the sample of input data. We compare the effectiveness
of some typical sample-selection approaches including
Random Sampling (RS) [9], Parallel Sorting by Regular
Sampling(PSRS) [7], and Deterministic Regular Sampling
(DRS) [8]. We introduce the three approaches briefly below,
and the implementation details can be found in [7, 8, 12].

In Random Sampling (RS), elements in each subset are
assigned into d buckets randomly. Then the processor cores
exchange data by sending the contents of bucket j to

jCore ,

which will form d new subsets. After each processor core sorts
its subset,

0Core selects the pivots which can divide its subset
evenly and broadcasts the pivots as splitters of Step3.

In PSRS, after sorting the subsets in Step1, each processor
core chooses d-1 samples which are evenly spaced throughout

the subset and sends them to
0Core . After gathering samples

from other cores,
0Core sorts them into an ordered list with a

serial sorting algorithm and choose pivots from the list, by
which the list can be divided evenly. Then the pivots are
broadcasted as splitters of Step3.

In DRS, each processor core divides the subset into d
subsequences after Step 1. Then the cores exchange the
subsequences with each other. From each of the received
subsequences,

0Core selects some samples and merges them
into an ordered list. And the pivots will be selected from the
list just like PSRS.

We don’t compare the performance of the three approaches
here, but focus on the I/O complexity of each approach, which
is essential to overcome the memory wall.

4.2 Merge sorting algorithm
 The input dataset is divided into N/C2 sorted equal-size
subsets in the in-cache sorting stage. And in the merge sorting
stage, we need to merge all the subset into one sequential data
set.

 Algorithm 2: k_merge_sort (array, N, p, C2, SD)
The k_merge_sort function merges N/C2 ordered blocks
into one block, 2≤k≤C2/B
array[0:N-1] : array to be sorted, N : size of array,
p : number of processor cores, SD : sharing degree,
C2 : capacity of each L2 cache
1: begin:
2: UsedCoreNum = min {SD,

2 / ()C B k×⎢ ⎥⎣ ⎦ }
3: Round = (N/C2)/(UsedCoreNum×k×p/SD)
4: BlockSize = C2
5: for core 0 to UsedCoreNum-1 in each group g

in parallel do
6: coreIndex = getIntraGroupIndex()
 # get each core’s intra-group index
7: for i = 0 to Round-1 do
8: blockBase = (UsedCoreNum×(p×i/SD+g) +

coreIndex) ×k×BlockSize
9: if blockBase < N-1 do
10: from array[blockBase:

 blockBase+k×BlockSize]
read the first line (B elements) of each block into
L2 cache

11: while not all the k blocks are merged do
12: merge the k lines until one of them is finished
13: read the next line from the original block
14: continue
15: end while
16: end if
17: end for
18: Round = Round / k
19: BlockSize = BlockSize ×k
20: if BlockSize ≥ N do
21: return
22: end if
23: end for
24:end k_merge_sort

399399399399399399

Core 0 k

B

B

L2
cache

Main
memory

Core 1 k

Figure 3. k-way merge sorting (k = 4)

The most popular algorithm for merging multiple subsets
into one is 2-way MergeSort. Its time complexity
is 2(log)O N N and space complexity can be (1)O . However, in
2-way MergeSort, each element needs to be accessed

2log N times. Because in each recursion round the element is
accessed at least once. From the view of cache, if the size of
input is larger than capacity of cache, each element will
cause

2log /N B cache misses, which will significantly increase
the I/O complexity.

The pseudo-code of the PSC k-way merge sorting algorithm
is shown in Algorithm 2. First, given a value of k, we need to
decide how many processor cores can be used to perform the
merge sorting in each group. We define UsedCoreNum as
min{SD,

2 / ()C B k×⎢ ⎥⎣ ⎦ } (Line 2) to make sure that at least one
line of the block to be merged is kept in the L2 cache during the
merging operation (as shown in figure 3). Then in each round
UsedCoreNum×k×p/SD blocks are merged in parallel into
UsedCoreNum×p/SD ones, so after (N/C2)/(UsedCoreNum×
k×p/SD) rounds, the N/C2 blocks are merged into N/C2×k ones.
Then we recursively perform this merging procedure until
only one block is left.

V. I/O COMPLEXITY ANALYSIS

5.1 In-cache sorting algorithm
 In this part, we discuss the I/O complexity of in-cache
sorting algorithms with different SBPS algorithms respectively.
We don’t focus on the implementation details of each SBPS
algorithms, but focus on the I/O complexity only.
 THEOREM 1. If the input array is located in contiguous
main memory, the I/O complexity of PSRS algorithm in PSC
model is 2

2(/ /)O C B PD d B PD⋅ + ⋅ .

 PROOF. The pseudo-code of PSRS algorithm can be
found in [7]. The PSC PSRS algorithm consists of four phases:
(1). each of the d (=SD) processor cores performs a serial
sorting on its subset in parallel; (2). each core select a sample
vector and send it to core0; (3). core0 selects a splitter vector
from the sample vectors and broadcasts it; (4). each core splits
it subsets and performs a merge sorting in parallel.
 Before the serial sorting, the block needs to be read into the
L2 cache. Since the input array is located in contiguous main
memory. The I/O complexity of reading a block is
O(C2/(B·PD)). Then the serial sorting doesn’t contribute more
I/O complexity. In the second phase, each of the d processor
cores writes a sample vector of d-1 elements into a contiguous
memory. It needs d(d-1)/B·PD I/Os in PSC model. In the third
phase, Core0 sorts the samples and selects d-1 elements as the
splitter vector. Since we only consider CREW model in this
paper, the d processor cores can read the splitter vector con-
currently. So this phase contributes no I/O complexity. In the
last phase, each of the d processor cores performs a d-way
merge sorting. In PSC model, the merge operation and data
movement intra the block can be accomplished with in the L2
cache. So it doesn’t contribute I/O complexity either.
 So in total, the PSC PSRS algorithm’s I/O complexity
is 2

2 2(/ (1) /) (/ /)O C B PD d d B PD O C B PD d B PD⋅ + − ⋅ = ⋅ + ⋅ .
 □

COROLLARY 1. If the input array is located in conti-
guous main memory, the I/O complexity of PSRS-based
in-cache sorting algorithm is

3
2((/) /())O N SD SD C p B PD⋅ + ⋅ ⋅

 PROOF. If the SBPS of the in-cache sorting algorithm is
implemented with PSRS algorithm, in each round p/SD blocks
are sorted. And there are totally (N/C2)/(p/SD) rounds. So the
I/O complexity of PSRS in-cache sorting algorithm is

2
2 2(((/) /(/)) (/ /))O N C p SD C B PD d B PD⋅ ⋅ + ⋅

2
2((1 /) /())O N SD d C p B PD= ⋅ ⋅ + ⋅ ⋅

Since d = SD,
2

2((1 /) /())O N SD d C p B PD⋅ ⋅ + ⋅ ⋅
3

2((/) /())O N SD SD C p B PD= ⋅ + ⋅ ⋅ □

THEOREM 2. If the input array is located in contiguous
main memory, the I/O complexity of RS algorithm in PSC
model is O (C2/B·PB).

PROOF. The difference between RS and PSRS is that the
cores don’t gather the sample vectors in the second phase of
PSRS, but do a data exchange before the serial sorting. So RS
algorithm consists the following four phase: (1). each core
assigns its subset into d buckets randomly and sends the ele-
ments in bucket j to corej; (2). each of the d cores sorts the
received elements in phase one; (3). core0 select a splitter
vector and broadcasts it; (4). each core performs a d-way
merge sorting.

In the first phase, one additional auxiliary block is needed to
place the reassigned block. Since each element is referenced
only once, the assign operation counts for 2×C2/B·PD I/Os.
Then after the reassigned block is read into the L2 cache, no
more I/Os are needed to exchange data.

400400400400400400

The rest phases are similar to PSRS except that the d cores
don’t gather the sample vectors in RS. So the I/O complexity
of RS in PSC model is O(2×C2/B) = O(C2/B·PD). □

COROLLARY 2. If the input array is located in conti-
guous main memory, the I/O complexity of RS-based in-cache
sorting algorithm is (/())O N SD p B PD⋅ ⋅ ⋅
 PROOF. The proof the COROLLARY 2 is the same to
COROLLARY 1. The I/O complexity of running (N/C2)/(p/SD)
rounds of RS algorithm is

 (N/C2)/(p/SD)×O(C2/B) = (/())O N SD p B PD⋅ ⋅ ⋅ . □
THEOREM 3. If the input array is located in contiguous

main memory, the I/O complexity of DRS in PSC model is
O(C2/B·PD).

PROOF. The PSC DRS algorithm consists of four phases:
(1). each of the d cores sorts its subset with a serial sorting
algorithm in parallel; (2). each core sends every i-th (0≤i≤d-1)
element of its subset to corei; (3). core0 selects a splitter vector
and broadcasts it; (4). each core performs a merge sorting al-
gorithms.

In phase 1, the block is read into L2 cache with the I/O
complexity O(C2/B·PD) before the serial sorting. The phase 2
needs an auxiliary block to reorganize the input block, so the
I/O complexity of data exchange is O (C2/B·PD). The rest
phases are similar to THEOREM 2 and contribute no I/O
complexity. So in total the I/O complexity of DRS in-cache
sorting algorithm is O(2×C2/B·PD) = O(C2/B·PD). □

COROLLARY 3. If the input array is located in conti-
guous main memory, the I/O complexity of DRS-based
in-cache sorting algorithm is (/())O N SD p B PD⋅ ⋅ ⋅
 PROOF. The proof the COROLLARY 3 is the same to
COROLLARY 1. The I/O complexity of running (N/C2)/(p/SD)
rounds of DRS algorithm is

 (N/C2)/(p/SD)×O(C2/B·PD) = (/())O N SD p B PD⋅ ⋅ ⋅ □
 We can find that the I/O complexity of DRS-based and
RS-based in-cache sorting algorithm is lower than the
PSRS-based one. In our simulation experiments, we ap-
plied the DRS-based in-cache sorting algorithm.

5.2 Merge sorting algorithm

 THEOREM 4. If the input array is located in contiguous
main memory, the I/O complexity of the k-way merge sorting
algorithm in PSC model is

2((/) log (/))kO N SD PD p B N C⋅ ⋅ ⋅ .
 PROOF. In the k-way merge sorting algorithm of PMCC,
the depth of the k-way merge tree is logk(N/C2). That means

there are totally logk(N/C2) rounds of k-way merge sorting to
merge N/C2 blocks into one.
 In each round, each of the N input elements is read into L2
cache at least once. And in PSC model each time PD·p/SD
lines can be read into L2 cache. So the I/O complexity of each
round is O((N/B)/(PD·p/SD)). So in total the logk(N/C2) rounds
of merge sorting counts for the I/O complexity:

logk(N/C2)O((N/B) /(PD·p/SD))
=

2((/) log (/))kO N SD PD p B N C⋅ ⋅ ⋅ □
According to the analysis above, the total I/O complexity of

PMCC is
2(/() log (/) /())kO N SD p B PD N SD N C PD p B⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅

2((1 log (/)) /())kO N SD N C PD p B= ⋅ ⋅ + ⋅ ⋅

2

(log)k
N SD NO

PD p B C
⋅=
⋅ ⋅

 (1)

According to THEOREM 4, for a given implementation of
the PSC model, the I/O complexity of the merge sorting algo-
rithm is decided by the way number k. By increasing k, the I/O
complexity can be reduced. Since 2≤k≤C2/B, the low bound of
total I/O complexity is

2 /
2

(log)C B
N SD NO

PD p B C
⋅
⋅ ⋅

.

VI. SIMULATION EXPERIMENTS
 In order to examine the I/O complexity, we simulated the
execution procedure of PMCC and the latest cache-conscious
parallel sorting algorithm, PEM Distribution sort in the CMP
environments.

6.1 Comparison of I/O Complexity
 We explored the cache behavior of PMCC and PEM Dis-
tribution sort (PEM-D) when executed in CMP environments
and compared the I/O times of the two algorithms. Figure 4
shows the ratio of PEM-D’s I/O times to PMCC’s.
 As we can see in figure 4 (a), for most observations, PEM-D
requires more I/Os than PMCC. In the 16-core CMP envi-
ronment, a sharing degree of four gives PMCC the greatest
advantage over PEM-D when the sharing degree equals to the
parallel degree. The value of IOPEM-D/IOPMCC is over 3.2,
which means the I/O times of PMCC is only about 31.3% of
PEM-D’s. On another side, with the growth of L2 cache’s ca-
pacity, the value of IOPEM-D/IOPMCC doesn’t change obviously.
This means that PMCC has similar scalability with PEM-D
with the growth of L2 cache’s capacity.

401401401401401401

(a) p = 16, N = 64M, PD = 4 (b) SD = 4, C2= 4MB/SD

Figure 4. Comparison of I/O times between PMCC and PEM Distribution sort (PEM-D)

(a) p = 16, N = 64M, PD = 4 (b) p = 32, N = 32M, PD = 4

Figure 5. Scalability of PMCC with the growth of L2 cache’s capacity

(a)SD = 4, C2 = 4MB/SD (b) SD = 8, C2 = 8MB/SD

Figure 6. Scalability of PMCC with the growth of processor core number and input size

402402402402402402

 In figure 4 (b), we can see that, first, with the growth of
processor core number, the value of IOPEM-D/IOPMCC becomes
smaller. This means that, given the sharing degree and L2
cache’s capacity, a smaller processor core number makes
PMCC’s advantage more obvious. Second, with the input size
becoming bigger, the advantage of PMCC becomes greater
and when the input size is 512M and processor core number is
8, the value of IOPEM-D/IOPMCC is 6.75, which means the I/O
times of PMCC is only about 14.8% of PEM-D’s.
6.2 Scalability
 We explored the scalability of PMCC by increasing the
capacity of L2 cache, number of processor cores and the input
size in the simulation.

We can see in figure 5 that with the growth of L2 cache’s
capacity, the I/O times are reduced significantly. In the
in-cache sorting stage of PMCC, the input is divided into small
sorted blocks, which will be merged in the next stage. By in-
creasing the capacity of L2 cache, we can increase the block
size and reduce the block number, which will reduce the total
rounds of the merge sorting and in turn reduce the times of
I/Os. And we can also see that in both of the 16-core and
32-core CMP environments, a sharing degree of four gives the
PMCC least I/O times when the sharing degree equals to the
parallel degree.

Figure 6 shows the reduction of I/Os with growths of pro-
cessor core numbers and the I/O growth mode with the growth
of input size. As we discussed in section 6.1, given a SD, the
growth of core number will increase the parallelism degree of
the I/O operations. So when the core number increases, the I/O
times decreases accordingly. Figure 6 also shows the processor
core number grows in a log scale in our simulation and the I/O
times reduce in a log scale too. And the overall tendencies
obey a linear law. In figure 6, we can also see that with the
growth of input size, the I/O time grows in a linear law too.

VII. CONCLUSION
Chip Multi-Processor has become a new platform for

parallel computing. In this paper, we explored the
characteristics of CMP and provided a computational CMP
model, PSC, which consists of p processor cores and a
three-level memory hierarchy. Based on the PSC model, we
designed a new parallel sorting algorithm, PMCC, which
consists of two parts, the in-cache sorting and merge sorting
algorithm. PMCC first divides all of the data into blocks that
fit into the shared cache and sorts each block with the in-cache
sorting algorithm. Then the sorted blocks are merged together
with merge sorting.

PMCC can take advantage of shared L2 cache and
minimize total number of data transfers. According to our
analysis, the PSRS in-cache sorting algorithm has an I/O
complexity of 3

2((/) /())O N SD SD C PD p B⋅ + ⋅ ⋅ and the RS
and DRS in-cache sorting algorithm’s I/O complexity
is (/())O N SD PD p B⋅ ⋅ ⋅ . The I/O complexity of k-way merge
sorting algorithm is

2((/) log (/))kO N SD PD p B N C⋅ ⋅ ⋅ . And the
low bound of the I/O complexity of PMCC algorithm
is

2 /
2

(log)C B
N SD NO

PD p B C
⋅
⋅ ⋅

.

According to the simulation experiments, PMCC can
significantly reduce the I/O complexity relative to PEM
Distribution sort and has considerable scalability.

REFERENCES

[1] R. Chowdhury, V. Ramachandran. “Cache-efficient Dynamic

Programming Algorithms for Multicores”. In the 20th Annual ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA
2008), Munich, Germany, 2008, Page(s): 207-216.

[2] L. Madalgo, M. Goodrich, M. Nelson. “Fundamental Parallel
Algorithms for Private-Cache Chip Multiprocessors”. In the 20th
Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA 2008), Munich, Germany, 2008, Page(s):
197-206

[3] H. Inoue, T. Moriyama, H. Komatsu, T. Nakatani. “AA-Sort: A New
Parallel Sorting Algorithm for Multi-Core SIMD Processors”. 16th
International Conference on Parallel Architecture and Compilation
Techniques (PACT2007). Page(s): 189-198.

[4] R. Wickremesinghe, L. Arge, J. S. Chase, J. S. Vitter. “Efficient sorting
using registers and caches”. Lecture notes in Computer Science.
Volume 1982/2001, Page(s): 51-62.

[5] N. Rahman, R. Raman. “Analyzing Cache Effects in Distribution
Sorting”. ACM Journal of Experimental Algorithms, 2000. Volume: 5.

[6] A. LaMarca, R. E. Ladner. “The influence of caches on the performance
of sorting”. Journal of Algorithms archive, Volume 31 , Issue 1 (April
1999), Page(s): 370-379

[7] H. Shi, J. Schaeffer. “Parallel Sorting by Regular Sampling”. Journal of
Parallel and Distributed Computing, Volume 14 , Issue 4 (April 1992)
Page(s): 361 – 372, ISSN:0743-7315

[8] D. R. Helman, J. JaJa, D. A. Bader. “A new deterministic parallel
sorting algorithm with an experimental evaluation”. ACM Journal of
Experimental Algorithmics (JEA), September 1998, Volume 3.

[9] D. R. Helman, D. A. Bader, J. JaJa. “A Randomized Parallel Sorting
Algorithm with an Experimental Study”. ACM Journal of Parallel and
Distributed Computing , July 1998, Volume 52

403403403403403403

