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a b s t r a c t

Discrete transforms are of primary importance and fundamental kernels in many compu-
tationally intensive scientific applications. In this paper, we investigate the performance of
two such algorithms; Fast Fourier Transform (FFT) and Discrete Wavelet Transform (DWT),
on the Sony–Toshiba–IBM Cell Broadband Engine (Cell/B.E.), a heterogeneous multicore
chip architected for intensive gaming applications and high performance computing.

We design an efficient parallel implementation of Fast Fourier Transform (FFT) to fully
exploit the architectural features of the Cell/B.E. Our FFT algorithm uses an iterative out-
of-place approach and for 1K to 16K complex input samples outperforms all other parallel
implementations of FFT on the Cell/B.E. including FFTW. Our FFT implementation obtains a
single-precision performance of 18.6 GFLOP/s on the Cell/B.E., outperforming Intel Duo
Core (Woodcrest) for inputs of greater than 2K samples. We also optimize Discrete Wavelet
Transform (DWT) in the context of JPEG2000 for the Cell/B.E. DWT has an abundant paral-
lelism, however, due to the low temporal locality of the algorithm, memory bandwidth
becomes a significant bottleneck in achieving high performance. We introduce a novel data
decomposition scheme to achieve highly efficient DMA data transfer and vectorization
with low programming complexity. Also, we merge the multiple steps in the algorithm
to reduce the bandwidth requirement. This leads to a significant enhancement in the sca-
lability of the implementation. Our optimized implementation of DWT demonstrates 34
and 56 times speedup using one Cell/B.E. chip to the baseline code for the lossless and lossy
transforms, respectively. We also provide the performance comparison with the AMD Bar-
celona (Quad-core Opteron) processor, and the Cell/B.E. excels the AMD Barcelona proces-
sor. This highlights the advantage of the Cell/B.E. over general purpose multicore
processors in processing regular and bandwidth intensive scientific applications.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The Cell Broadband Engine (or the Cell/B.E.) [20,12,13,31] is a novel high-performance architecture designed by Sony, Tos-
hiba, and IBM (STI), primarily targeting multimedia and gaming applications. The Cell/B.E. is used in Sony’s PlayStation 3
gaming console, Mercury Computer System’s blade servers, and IBM’s QS20, QS21, and QS22 Cell Blades. In this paper we
design efficient parallel implementations of two discrete transform routines, fast Fourier transform (FFT) and discrete wave-
let transform (DWT) on the Cell/B.E.

FFT is of primary importance and a fundamental kernel in many computationally intensive scientific applications such as
computer tomography, data filtering, and fluid dynamics. Another important application area of FFT is in spectral analysis of
. All rights reserved.
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speech, sonar, radar, seismic and vibration detection. FFT is also used in digital filtering, signal decomposition, and in solver
of partial differential equations. The performance of these applications rely heavily on the availability of a fast routine for
computing forward and inverse Fourier transforms. The literature contains several publications related to FFTs on the
Cell/B.E. processor. Williams et al. [37] analyze the Cell/B.E.’s peak performance for FFT of various types (1D, 2D), accuracy
(single-, double-precision) and input sizes. Cico et al. [11] estimate the performance of 22.1 GFLOP/s for a single FFT that is
resident in the local store of one SPE, or 176.8 GFLOP/s for computing 8 independent FFTs with 8K complex input samples.
Note that all the other computation rates given in this paper – except for Cico et al. – consider the performance of a single FFT
and include the off-loading overheads assuming that the source and the output of the FFT are both stored in main memory. In
another work, Chow et al. [10] achieve 46.8 GFLOP/s for a large FFT (16 million complex samples) on the Cell/B.E. that is
highly-specialized for this particular input size. FFTW on the Cell/B.E. [15] is a highly-portable FFT library of various types,
precisions, and input sizes.

In our design of FFT routine for the Cell/B.E. (FFTC) we use an iterative out-of-place approach to solve 1D FFTs with 1K to
16K complex input samples. We describe our methodology to partition the work among the SPEs to efficiently parallelize a
single FFT computation where the source and the output of the FFT are both stored in main memory. This differentiates our
work from the prior literature and better represents the performance that one realistically sees in practice. The algorithm re-
quires a synchronization among the SPEs after each stage of FFT computation. Especially, if input size is relatively small, the
synchronization overhead becomes a significant bottleneck in performance. We introduce an optimized tree based barrier
synchronization primitive for the Cell/B.E. Our synchronization barrier requires only 2 log p stages (p: number of SPEs) of in-
ter-SPE communication by using a tree-based approach. Also, our implementation achieves synchronization without any PPE
intervention. This significantly improves the performance, as the PPE intervention not only results in a high communication
latency but also leads to a sequentialization of the synchronization step. We achieve a performance improvement of over 4 as
we vary the number of SPEs from 1 to 8. Considering that synchronization overhead becomes higher as the number of SPEs
increases, the parallel speedup for relatively small input size demonstrates the efficiency of our barrier implementation. We
obtain a performance of 18.6 GFLOP/s for a single-precision FFT with 8K complex input samples and also show significant
speedup in comparison with various architectures. Our implementation is generic for this range of complex inputs.

DWT [7,36] is an important kernel in various application areas such as data analysis, numerical analysis, and image pro-
cessing [28]. Also, JPEG2000 [18] employs DWT as its key algorithm, and prior analysis of JPEG2000 execution time [25,1,26]
shows that DWT is one of the most computationally expensive algorithmic kernels. Previous parallelization strategies for the
DWT [38,28,8] suggest the trade-offs between computation and communication overheads for the different underlying
architectures. Lifting based DWT is also proposed in [33], by which, in-place DWT can be performed faster than the previous
convolution based DWT [23]. Still, efficient implementation of DWT is challenging due to the distinct memory access pat-
terns in horizontal and vertical filtering. In a naive implementation, poor cache behavior in a column-major traversal for ver-
tical filtering becomes a performance bottleneck. Initially, a matrix transpose, which converts a column-major traversal to a
row-major traversal, is adopted to improve the cache behavior. Column grouping, which interleaves the processing of adja-
cent columns, is introduced in [8] to improve cache behavior without a matrix transpose. For the Cell/B.E., Muta et al. opti-
mize DWT in Motion JPEG2000 encoder using pseudo-tile approach [27]. However, their DWT implementation does not scale
beyond a single SPE despite having high single SPE performance. This suggests that in order to achieve high performance, we
need to take different approaches.

We adopt Jasper [1], a reference JPEG2000 implementation, as a baseline program and optimize lifting based forward
DWT for the Cell/B.E. First, we introduce a novel data decomposition scheme to achieve highly efficient DMA data transfer
and vectorization with low programming complexity. Then, we tune the column grouping strategy based on our data decom-
position scheme to increase spatial locality and also design a new loop merging approach to increase temporal locality. In
addition, we investigate the relative performance of the floating point operations and its fixed point approximation [1] on
the Cell/B.E. Lastly, we fine tune the DMA data transfer to show how the Cell/B.E.’s software controlled data transfer mech-
anism can further improve the performance. These optimization approaches contribute to superior scalability in addition to
high single SPE performance. Using one Cell/B.E. chip, our optimized code demonstrates 34 and 56 times speedup to the
baseline code running on the PPE for the lossless and lossy DWT, respectively. Also, our Cell/B.E. optimized code runs 4.7
and 3.7 times faster than the code optimized for the AMD Barcelona (Quad-core Opteron) processor. Further, our implemen-
tation scales up to two Cell/B.E. chips in a single blade, especially for the lossy case.

This paper extends our previous FFT paper [5] and JPEG2000 paper [21]. We include the detailed explanation about FFT
and DWT with the performance issues and the optimization approaches. We enhance the DWT performance from our pre-
vious conference paper by further tuning data transfer in the algorithm. This leads to additional 16 % and 7 % speedup for the
lossless and lossy transform to the previous implementation. Also, we append the performance comparison with the AMD
Barcelona (Quad-core Opteron) processor for DWT. We apply various optimization techniques using PGI C compiler for the
Barcelona processor, which enables head to head comparison of the Cell/B.E. with the current general purpose multicore pro-
cessor. The source code of our FFT and DWT implementations is freely available as open source from our CellBuzz project in
SourceForge (http://sourceforge.net/projects/cellbuzz/).

This paper is organized as following. We first describe the fast Fourier and discrete wavelet transforms in Section 2. The
novel architectural features of the Cell/B.E. are reviewed in Section 3. We then present our design to parallelize these trans-
forms on the Cell/B.E. and optimize for the SPEs in Section 4. The performance analysis of our implementation is presented in
Section 5, and we give conclusions in Section 6.

http://sourceforge.net/projects/cellbuzz/
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2. Fast Fourier and discrete wavelet transform

2.1. Fast Fourier transform

Fast Fourier transform (FFT) is an efficient algorithm that is used for computing discrete Fourier transform (DFT). The DFT
of an m-element vector v is defined as,
F � v
where; F½j; k� ¼ xj�k

and;x ¼ e2pi=m ¼ cosð2p=mÞ þ i � sinð2p=mÞ
The jth element of the FFT of a vector v can be represented by polynomial V,
ðF � vÞ½j� ¼ VðxjÞ
where;VðxÞ ¼ Rm�1

k¼0 xk � vðkÞ
Using a divide-and-conquer approach V is reduced into Vodd and Veven.
VðxÞ ¼ Vevenðx2Þ þ x � Voddðx2Þ
These polynomials are evaluated at points ðxjÞ2, which essentially are m=2 different points, as ðxjþm=2Þ2 ¼ ðxjÞ2. This reduces
the original problem (V) at m-points to two half-size problems ðVeven;VoddÞ at m=2 points. Extending from these definitions,
Algorithm 1 gives the pseudo-code of a naive Cooley-Tukey radix-2 Decimate in Frequency (DIF) algorithm. The algorithm
runs in log N stages and each stage requires OðNÞ computation, where N is the input size. This algorithm uses the out-of-place
approach, where at each stage two complex-element arrays (a&b) are used for computation, one input and one output that
are swapped at every stage. The array xv contains the twiddle factors required for FFT computation. At each stage the
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Fig. 1. Butterflies of the ordered DIF FFT algorithm.
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computed complex samples are stored at their respective locations thus saving a bit-reversal stage for output data. This is an
iterative algorithm which runs until the parameter problemSize reduces to 1.

Fig. 1 shows the butterfly stages of this algorithm for an input of 16 sample points. The FFT computation for this input size
runs into 4 stages. The input in this figure is the left-most array and the output of the FFT algorithm is the array on the right.
At every stage the lines represent the input elements used and location where the computed elements are stored in the out-
put array. The computation involved is given in steps 14 and 15 of Algorithm 1. The colored boxes indicate that the offset
between the output elements doubles with every stage.
Algorithm 1: Sequential FFT algorithm.
There are several algorithmic variants of the FFTs that have been well studied for parallel processors and vector architec-
tures [2–4,6].

Apart from the theoretical complexity, another common performance metric used for the FFT algorithm is the floating
point operation (FLOP) count. On analyzing the sequential algorithm, we see that during each iteration of the innermost
for loop there is one complex addition for the computation of first output sample, which accounts for two FLOPs. The second
output sample requires one complex subtraction and multiplication that account for eight FLOPs. Thus, for the computation
of two output samples during each innermost iteration we require 10 FLOPs, which suggests that we require five FLOPs for
the computation of a complex sample at each stage. The total computations in all stages are N log N which makes the total
FLOP count for the algorithm as 5N log N. The canonical FLOP count is used in most performance studies of the FFT, such as
the benchFFT [15].

2.2. Discrete wavelet transform in JPEG2000

Fourier transform translates the time domain representation of a signal to the frequency domain representation. How-
ever, in the translation, Fourier transform does not preserve the signal’s time varying nature. Or, in terms of image process-
ing, Fourier transform does not preserve spatial information of the image. Wavelet transform, in contrast, preserves spatial
information in the transform, and this enhances the image quality especially for the low bit rate representation. Wavelet
transform, in general, represents a signal based on the basis wavelets wa;bðtÞ created by scaling and shifting a single function
wðtÞ, called mother wavelet. In mathematical form, wa;bðtÞ ¼ 1ffiffi

a
p w t�b

a

� �
represents the relationship between a mother wavelet

and the basis wavelets. The narrower wavelets capture the detail of a signal while the wider wavelets contribute in building



Fig. 2. 1-D, two channel subband transform [35].
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coarse representation of a signal. The wavelets with different shift amounts capture the time (or spatial) information of a
signal.

JPEG2000 adopts discrete wavelet transform (DWT) and applies the algorithm to an entire tile (note that a single image
can be composed of a single tile or multiple tiles) in contrast to applying discrete cosine transform (DCT) to independent
small blocks as the case of JPEG. Taubman and Marcellin well explains the DWT in the context of JPEG2000 in [35]. The
DWT in JPEG2000 applies 1-D DWT for every line in both vertical and horizontal directions to achieve 2-D decomposition
of an image. In the 1-D DWT, an input sequence x½n� is filtered through the low pass and high pass filters with impulse re-
sponse h0½n� and h1½n�. This filtering generates two subband data for the coarse and detail part of the input. Then, the low pass
and high pass filter outputs are subsampled by the factor of 2. After subsampling, the input sequence x½n� and output
sequence y½n� (constructed by interleaving two filter outputs y0½k� and y1½k�) have same number of samples. There exist filters
h0½n� and h1½n� and their inverse filters (g0½n� and g1½n�) that enable perfect reconstruction. This feature enables lossless
Fig. 3. The DWT output for a 2-D image array with two levels.
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transform. Fig. 2 summarizes the 1-D DWT in JPEG2000. By applying 1-D DWT in both horizontal and vertical direction, DWT
generates four subbands (LL, HL, LH and HH). The LL subband represents the low pass part in both vertical and horizontal
directions and the HH subband represents the high pass part in both directions. The HL and LH subbands represent the
mix of the low and high pass part in vertical and horizontal directions. This process can be repeated for multiple levels
by recursively applying DWT to the LL subband of the previous level as portrayed in Fig. 3.

Basically, the low pass or high pass filtering in the 1-D DWT is a convolution of two sequences y½n� ¼ Rix½i� � hn mod 2½n� i�
([34]), and DWT is initially implemented using convolution based approach [23]. Later, Sweldens [32] introduces lifting
based approach. Lifting based approach requires (maximum factor of two times) fewer operations and runs faster than con-
volution based DWT. Sweldens describes the algorithm as following. Lifting based approach consists of multiple steps: split-
ting, predicting, and updating steps. Splitting step splits an input sequence to two subsequences with high correlation. This is
achieved by constructing two subsequences using even and odd elements of the input sequence. Then, the second subse-
quence is predicted based on the first sequence, and only the differences between real and predicted subsequences are re-
corded. In the last updating step, the first subsequence is updated to maintain certain scalar quantity (e.g. the average of the
sequence). Lifting based approach requires one splitting step and two lifting steps (one predict and one update step) for the
lossless mode and one splitting step and four lifting steps (two predict and two update steps) with one optional scaling step
for the lossy mode [35].

3. Cell broadband engine architecture

The Cell Broadband Engine (Cell/B.E.) processor is a heterogeneous multi-core chip that is significantly different from con-
ventional multiprocessor or multi-core architectures. The Cell/B.E. consists of a traditional microprocessor (called the PPE),
eight SIMD co-processing units named as synergistic processor elements (SPEs), a high speed memory controller, and a high
bandwidth bus interface (termed the element interconnect bus, or EIB), all integrated on a single chip. Fig. 4 gives an archi-
tectural overview of the Cell/B.E. processor. We refer the reader to [29,14,22,16,9] for additional details.
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The PPE runs the operating system and coordinates the SPEs. It is a 64-bit PowerPC core with a vector multimedia exten-
sion (VMX) unit, 32 KB L1 instruction and data caches, and a 512 KB L2 cache. The PPE is a dual issue, in-order execution
design, with two way simultaneous multithreading.

Each SPE consists of a synergistic processor unit (SPU) and a memory flow controller (MFC). The MFC includes a DMA con-
troller, a memory management unit (MMU), a bus interface unit, and an atomic unit for synchronization with other SPEs and
the PPE. The SPE is a micro-architecture designed for high performance data streaming and data intensive computations. It
includes a 256 KB local store (LS) memory to hold SPE program’s instructions and data. The SPE cannot access main memory
directly, but it can issue DMA commands to the MFC, with 16 outstanding DMAs per SPE, to bring data into the local store or
write computation results back to main memory. DMA is non-blocking so that the SPE can continue program execution while
DMA transactions are performed. Peak DMA performance is achievable when both the effective address and the local store
address are 128 bytes aligned and the transfer size is an even multiple of 128 bytes.

The SPE is an in-order dual-issue statically scheduled architecture. Two SIMD [19] instructions can be issued per cycle for
even and odd pipelines. The SPE does not support dynamic branch prediction, but instead relies on user-provided or com-
piler-generated branch hints using prepare-to-branch instructions to redirect instruction prefetch to branch targets. Thus
branches should be minimized on the SPE as far as possible.

With a clock speed of 3.2 GHz, the Cell processor has a theoretical peak performance of 204.8 GFLOP/s (single-precision).
The EIB supports a peak bandwidth of 204.8 GB/s for intra-chip transfers among the PPE, the SPEs, and the memory and I/O
interface controllers. The memory interface controller (MIC) provides a peak bandwidth of 25.6 GB/s to main memory. The I/
O controller provides peak bandwidths of 25 GB/s inbound and 35 GB/s outbound.

IBM has recently announced the PowerXCell 8i second-generation Cell/B.E. processor available in the IBM QS22 blade that
performs native double-precision floating point operations at over 100 GFLOP/s [17].

4. Cell/B.E.-optimized algorithms for fast Fourier and discrete wavelet transform

4.1. FFT algorithm for the Cell/B.E. processor

There are several architectural features that make it difficult to parallelize and optimize the Cooley-Tukey FFT algorithm
on the Cell/B.E. The algorithm is branchy due to the presence of a doubly nested for loop within the outer while loop. This
results in a compromise on the performance due to the absence of a dynamic branch predictor on the Cell/B.E. The algorithm
requires an array that consists of the N=2 complex twiddle factors. Since each SPE has a limited local store of 256 KB, this
array cannot be stored entirely on the SPEs for a large input size. The limit in the size of the local store memory also restricts
the maximum input data that can be transferred to the SPEs.

Parallelization of a single FFT computation involves synchronization between the SPEs after every stage of the algorithm,
as the input data of a stage is the output data of the previous stage. To achieve high performance it is necessary to divide the
work equally among the SPEs so that no SPE waits at the synchronization barrier. Also, the algorithm requires log N synchro-
nization stages which impacts the performance.
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It is difficult to vectorize every stage of the FFT computation. For vectorization of the first two stages of the FFT compu-
tation it is necessary to shuffle the output data vector, which is not an efficient operation in the SPE instruction set architec-
ture. Also, the computationally intensive loops in the algorithm need to be unrolled for the best pipeline utilization. This
becomes a challenge given a limited local store space on the SPEs.

4.1.1. Parallelizing FFT for the Cell/B.E.
As mentioned in the previous section, for the best performance it is important to partition work among the SPEs to

achieve load balancing. We parallelize by dividing the input array held in main memory into 2p chunks, each of size N
2p, where

p is the number of SPEs.
During every stage, SPE i is allocated chunk i and iþ p from the input array. The basis for choosing these chunks for an SPE

lies in the fact that these chunks are placed at an offset of N=2 input elements. For the computation of an output complex
sample we need to perform complex arithmetic operation between input elements that are separated by this offset. Fig. 5
gives an illustration of this approach for work partitioning among 8 SPEs.

The PPE does not intervene in the FFT computation after this initial work allocation. After spawning the SPE threads it
waits for the SPEs to finish execution.

4.1.2. Optimizing FFT for the SPEs
After dividing the input array among the SPEs, each SPE is allocated two chunks each of size N

2p. Each SPE, fetches this
chunk from main memory using DMA transfers and uses double-buffering to overlap memory transfers with computation.
Within each SPE, after computation of each buffer, the computed buffer is written back into main memory at the correct off-
set using DMA transfers.

The detailed pseudo-code is given in Algorithm 2. The first two stages of the FFT algorithm are duplicated, that correspond
to the first two iterations of the outer while loop in the sequential algorithm. This is necessary as the vectorization of these
stages requires a shuffle operation (spu_shuffle()) over the output to re-arrange the output elements to their correct locations.
Please refer to Fig. 6 for an illustration of this technique for stages 1 and 2 of the FFT computation.

The innermost for loop (in the sequential algorithm) can be easily vectorized for NP > 4, that correspond to the stages 3
through log N. However, it is important to duplicate the outer while loop to handle stages where NP < buffersize, and other-
wise. The global parameter buffersize is the size of a single DMA get buffer. This duplication is required as we need to stall for
a DMA transfer to complete, at different places within the loop for these two cases. We also unroll the loops to achieve better
pipeline utilization. This significantly increases the size of the code thus limiting the unrolling factor.

For relatively small inputs and as the number of SPEs increases, the synchronization cost becomes a significant issue since
the time per stage decreases but the cost per synchronization increases. The SPEs are synchronized after each stage, using
inter-SPE communication. This is achieved by constructing a binary synchronization tree, so that synchronization is achieved
in 2 log p stages. The synchronization involves the use of inter-SPE mailbox communication without any intervention from
the PPE. Please refer to Fig. 7 for an illustration of the technique.

This technique performs significantly better than other synchronization techniques that either use chain-like inter-SPE
communication or require the PPE to synchronize between the SPEs. The chain-like technique requires 2p stages of inter-
SPE communication whereas with the intervention of the PPE latency of communication reduces the performance of this bar-
rier. With instruction level profiling we determine that the time required per synchronization stage using our tree-synchro-
nization barrier is about 1 microsecond (3200 clock cycles) as opposed to 20 microseconds in the PPE-coordinated
synchronization.
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4.2. Cell/B.E. optimized DWT algorithm

4.2.1. Data decomposition scheme
Data layout and partitioning is an important design issue for the Cell/B.E. due to the alignment and size requirements for

DMA data transfer and SIMD load/store. Our data decomposition scheme, shown in Fig. 8, satisfies the above requirements
for the two dimensional array with an arbitrary width and height, assuming that every row can be arbitrarily partitioned into
multiple chunks for independent processing. First, we pad every row to force the start address of every row to be cache line



Fig. 8. Data decomposition scheme for two dimensional array.

128 D.A. Bader et al. / Parallel Computing 35 (2009) 119–137
aligned. Then, we partition the data array to multiple chunks, and every chunk except for the last has the width a multiple of
the cache line size. These data chunks become a unit of data distribution to the PPE and the SPEs. The constant width chunks
are distributed to the SPEs and the PPE processes the last remainder chunk. The SPE traverses the assigned chunks by pro-
cessing every single row in the chunk as a unit of data transfer and computation.

This data decomposition scheme has several impacts on the performance and the programmability. First, every DMA
transfer in the SPE becomes cache line aligned, and the transfer size becomes a multiple of the cache line size. This results
in efficient DMA transfers and reduced programming complexity. Reduced programming complexity, or in other words,
shorter code size also saves the local store space, and this is important for the Cell/B.E. since the local store size (256 KB)
is relatively small. The remainder chunk with an arbitrary width is processed by the PPE to enhance the overall chip utili-
zation. Our data decomposition scheme also satisfies the alignment requirement for SIMD load/store.

Second, the local store space requirement becomes constant independent of the data array size. As mentioned above, a
single row in the chunk, which has a constant width, becomes a unit of data transfer and computation in the SPE. This leads
to a constant memory requirement, and we can easily adopt the optimization techniques that require additional local store
space. For example, double buffering or multi-level buffering (Fig. 9) is an efficient technique for hiding latency but increases
Fig. 9. Illustration of multi-level buffering within a single SPE.
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the local store space requirement at the same time. However, owing to the constant memory requirement in our data
decomposition scheme, we can increase the level of buffering to a higher value that fits within the local store.

In addition, fixed data size leads to a constant loop count, which enables the compiler to better predict the program’s run-
time behavior. This helps the compiler to use optimization techniques such as loop unrolling, instruction rescheduling, and
compile time branch prediction. Compile time instruction rescheduling and branch prediction compensate for the lack of
runtime out-of-order execution and dynamic branch prediction support in the SPE.

4.2.2. Parallelization and vectorization of DWT based on the data decomposition scheme
For the horizontal filtering, we assign an identical number of rows to each SPE, and a single row becomes a unit of data

transfer and computation. We parallelize and vectorize vertical filtering based on our data decomposition scheme, and par-
allelization and vectorization of vertical filtering are straightforward based on our data decomposition scheme. Still, there
are additional performance issues need to be discussed related to the bandwidth requirement and the real number repre-
sentation. This will be described in the remainder of this section (see Fig. 10).

4.2.3. Loop merging algorithm
Algorithm 3: Pseudo code for original implementation.

Fig. 10. Illustration of column-major traversal with column grouping.
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The DWT algorithm consists of multiple steps: one splitting step and two lifting steps in the lossless mode and one split-
ting step, four lifting steps, and one optional scaling step in the lossy mode. Considering that the entire column group data for
a large image does not fit into the local store, 3 or 6 steps in the vertical filtering involve 3 or 6 DMA data transfers of the
entire column group data. As the number of SPEs increases, the limited off-chip memory bandwidth becomes a bottleneck.
To reduce the amount of DMA data transfer, we merge the lifting steps. Algorithm 3 illustrates the original algorithm for the
lossless mode assuming that the number of rows is even and larger than four. Algorithm 4 depicts our merged algorithm. The
splitting step can also be merged with the next two lifting steps. Fig. 11 illustrates the splitting step and the merged lifting
step in the lossless vertical filtering. In the splitting step, the even and odd elements of the input array are split to two sub-
sequences with high correlation for the following lifting steps (prediction and updating). This splitting step involves the DMA
data transfer of the whole column group data. If we adjust the pointer addresses for the two subsequences (to compute low
and high pass subbands) and increase the increment size in the following merged lifting step, the splitting step can be
merged with the merged lifting step. This merges three steps in the lossless mode to a single step and reduces the amount
of data transfer. However, updating the high frequency part in the merged single step will overwrite the input data before it
is read, and this leaves us with a problem. In Fig. 11, high0* and low0* are updated first in the merged lifting step, and high1*

and low1* are updated next. If we adjust the input data pointer and skip the splitting step, updating high0* overwrites low2 in
the input data array before it is read. To remedy this problem, we use an auxiliary buffer (in main memory), and the updated
high pass data are written to the buffer first and copied to the original data array later. As this buffer needs to hold a upper
half of the column group data, it cannot be placed in the local store. Still, the amount of data transfer related to the auxiliary
buffer is half of the entire column group, and this halves the amount of data transfer for the splitting step. We find that a
similar idea is published in [24] for the lossy case. Loop fusion for the four lifting steps is described in the paper. By com-
bining this idea with our approach, we merge one splitting step, four lifting steps, and the optional scaling step in the lossy
mode into a single loop to further reduce the DMA bandwidth requirement.
Fig. 11. The splitting step and the merged lifting step for the vertical filtering.



Table 1
Latency for the SPE instructions.

Instruction Description Latency

mpyh Two byte integer multiply high Seven cycles
mpyu Two byte integer multiply unsigned Seven cycles
a Add word Two cycles
fm Single-precision floating point multiply Six cycles
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The Cell/B.E.’s software controlled DMA data transfer mechanism gives an opportunity for further optimization. We note
that the data transfer from the auxiliary buffer to the original data array can be started before the merged lifting step is fin-
ished. For the above example, we can update high0* in the final output after low2 is read. This, in combination with the Cell/
B.E.’s data transfer mechanism, enables the overlap of the last data copy with the merged lifting step. This fine tuning of data
transfer based on the application specific requirements leads to additional 16% and 7% speedup for the lossless and lossy case
to the already highly optimized implementation.

4.2.4. Real number representation and its performance impact on the Cell/B.E.
In [1], Adams and Kossentini suggest the fixed point representation for the real numbers in the JPEG2000 lossy encoding

process to enhance the performance and the portability. The authors assume that fixed point instructions are generally faster
than floating point instructions. However, the current Cell/B.E. processor is optimized for (single-precision) floating point
operations, and the floating point instructions have comparable speed to the fixed point instructions. Moreover, the SPE
instruction set architecture does not support four-byte integer multiplication; thus four-byte integer multiplication needs
to be emulated by two-byte integer multiplications and additions. Table 1 summarizes the latency for the instructions used
in the integer and floating point multiplications. Therefore, replacing floating point arithmetic with fixed point arithmetic
loses its benefit on the Cell/B.E. in both performance and programmability. Jasper adopts the fixed point approximation,
and we re-implement the routine to use floating point operations before vectorization.

5. Performance analysis

In this section we present the performance analysis of our Cell/B.E. optimized FFT and DWT implementations. In each of
the sections below we give details on the compilers used, platform description and optimization levels. We also present
extensive performance comparisons with other optimized implementations and leading architectures.

5.1. Cell/B.E. optimized FFT

For compiling, instruction level profiling, and performance analysis we use the IBM Cell Broadband Engine SDK 3.0.0-1.0,
gcc 4.1.1 with level 3 optimization. From ’/proc/cpuinfo’ we determine the clock frequency as 3.2 GHz with revision 5.0. We
use gettimeofday() on the PPE before computation on the SPE starts, and after it finishes. For profiling measurements we iter-
ate the computation 10000 times to eliminate the noise of the timer. For parallelizing a single 1D FFT on the Cell/B.E., it is
important to divide the work among the SPEs. Fig. 12 shows the performance of our algorithm with varying the number of
a b

Fig. 12. Running time of our FFTC code on 1K and 4K inputs as we increase the number of SPEs.
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SPEs for 1K and 4K complex input samples. The performance scales well with the number of SPEs which suggests that load is
balanced among the SPEs.

We focus on FFTs that have from 1K to 16K complex input samples. Fig. 13 shows the single-precision performance for
complex inputs of FFTC, our optimized FFT, as compared with the following architectures:

� IBM Power 5: IBM OpenPower 720, Two dual-core 1.65 GHz POWER5 processors.
� AMD Opteron: 2.2 GHz Dual Core AMD Opteron Processor 275.
� Intel Duo Core: 3.0 GHz Intel Xeon Core Duo (Woodcrest), 4MB L2 cache.
� Intel Pentium 4: Four-processor 3.06 GHz Intel Pentium 4, 512 KB L2.

We use the performance numbers from benchFFT [15] for the comparison with the above architectures. We consider the
FFT implementation that gives best performance on these architectures for comparison.

The Cell/B.E. has a two instruction pipelines, and for achieving high performance it is important to optimize the code so
that the processor can issue two instructions per clock cycle. This level of optimization requires inspecting the assembly
dump of the SPE code. We use the IBM Assembly Visualizer for the Cell/B.E. tool to analyze this optimization. The tool highlights
the stalls in the instruction pipelines and helps the user to reorganize the code execution while maintaining correctness. In
many cases the tool helped us analyze the stalls and dependencies, that helped us reorder instructions and increase pipeline
utilization. It also helped in determining the level of unrolling for the loops to fully utilize the available registers on the
machine.

5.2. Cell/B.E. optimized DWT

We use gcc compiler with –O5 optimization flag for the performance analysis. We use gcc instead of xlc as gcc produces
the executable with smaller code size. Based on our data decomposition scheme, the output code is highly static and gcc pro-
vides comparable performance to xlc with smaller code size. As we optimize the DWT routine in the context of JPEG2000, the
SPE program image includes all the optimized routines for JPEG2000 encoding. Thus, the SPE program image compiled with
xlc, which attempts more aggressive optimization, leaves only a small fraction of the local store for dynamic memory allo-
cation. Our baseline code is the open source Jasper 1.900.1, and the test file is a 28.3 MB 3800� 2600 color image (http://
www.jpeg.org/jpeg2000guide/testimages/WalthamWatch/Original/waltham_dial.bmp). The default option and -O mode=r-
eal -O rate=0.1 are applied for lossless and lossy encoding, respectively. Our experiments use real hardware, the IBM QS20
Cell blade server with dual Cell/B.E. 3.2 GHz chips (rev. 3) and 1 GB main memory. We use gettimeofday() function for timing
and do not iterate the experiments multiple times owing to the low variance in execution time.

5.2.1. The execution time and the scalability
Figs. 14 and 15 display the execution time and the speedup for forward DWT for the lossless and lossy cases, respectively.

Single SPE performance outperforms single PPE performance by far, and we demonstrate a remarkable speedup with addi-
tional SPEs. Vectorization contributes to the superb single SPE performance, and in the lossy encoding case, execution time is
further reduced by replacing the fixed point representation with the floating point representation. Loop merging, applied to
vertical filtering, removes the execution time for the splitting step and also reduces the bandwidth requirement. The reduced
off-chip memory traffic, in combination with our data decomposition scheme, leads to higher scalability. Figs. 16 and 17
summarizes the impact of the adopted optimization schemes. The best execution time is achieved with 11 SPEs for the loss-
Fig. 13. Performance comparison of FFTC with other architectures for various input sizes of FFT. The performance numbers are from benchFFT from the
FFTW website.

http://www.jpeg.org/jpeg2000guide/testimages/WalthamWatch/Original/waltham_dial.bmp
http://www.jpeg.org/jpeg2000guide/testimages/WalthamWatch/Original/waltham_dial.bmp


Fig. 14. The execution time and the speedup for lossless DWT.

Fig. 15. The execution time and the speedup for lossy DWT.

Fig. 16. The execution time for lossless DWT with the different levels of optimization.
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Fig. 17. The execution time for lossy DWT with the different levels of optimization.
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less case and 15 SPEs for the lossy case as off-chip memory bandwidth becomes a performance bottleneck. The lossy case
shows higher scalability than the lossless case as the lossy case has more computation (four lifting steps instead of two,
one additional scaling step, and more computation in a single lifting step) per unit data transfer.

As vertical filtering and horizontal filtering have distinct data access patterns, and this affects both DMA data transfer and
vectorization efficiency. In our case, the horizontal filtering takes longer than vertical filtering (1.07 and 1.28 times for the
lossless and lossy cases) in a single SPE case owing to more efficient vectorization. Also, as a result of loop merging, vertical
filtering does not involve the splitting step while horizontal filtering does. In 16 SPEs case, in contrast, vertical filtering takes
2.04 and 1.43 times longer than horizontal filtering, respectively. As the vertical filtering requires larger amount of data
transfer, the horizontal filtering achieves higher scalability than vertical filtering and this leads to the performance gap.

5.2.2. Comparison with the previous implementation
Fig. 18 summarizes the performance comparison. Muta0 and Muta1 in the figure denote the implementations in [27],

where Motion JPEG2000 encoding algorithm is optimized for the Cell/B.E. In Muta0, two encoding threads are executed
on two Cell/B.E. chips while one encoding thread is executed using two Cell/B.E. chips in Muta1. The authors measure the
Fig. 18. The DWT performance comparison with the previous implementations for the Cell/B.E. The numbers above the bars denote the speedup relative to
the Muta0 (2 Cell/B.E.)



Fig. 19. The encoding performance comparison of the Cell/B.E. to that of the AMD Barcelona (Quad-core Opteron) processor. The numbers above the bars
denote the speedup relative to the baseline implementation on the Cell/B.E.
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encoding time for 24 frames with the size of 2048� 1080. Total execution time is divided by the number of encoded frames
to compute the per frame encoding time. In the first implementation (Muta0), the encoding time for one frame can be up to
two times higher than the reported number. We use the performance numbers reported by the authors for the comparison.
We also scale down the test image size to 2048� 1080 for fair comparison. Note that the timings in [27] use the slower pre-
production Cell/B.E. 2.4 GHz processor.

Our implementation with one Cell/B.E. processor and two Cell/B.E. processors demonstrate superior overall performance
than the previous implementations with the two Cell/B.E. processors. This is mainly due to the following reasons. First, we
run the experiments on the Cell/B.E. 3.2 GHz processor, which is faster than the Cell/B.E. 2.4 GHz used in [27]. Second, we
adopt a lifting scheme, which is known to be faster than a convolution based scheme [30]. Third, we achieve 6.7 and 7.4
times speedup with 8 SPEs and additional speedup using two chips based on our data decomposition scheme and loop merg-
ing while in [27] performance does not scale above one SPE.

5.2.3. Comparison with the AMD Barcelona (Quad-core Opteron) processor
Fig. 19 summarizes the performance comparison between the Cell/B.E. and the AMD Barcelona 2.0 GHz (Quad-Core

Opteron Processor 8350). We optimize the code for Barcelona using PGI C compiler, a parallel compiler for multicore opti-
mization, and user provided compiler directives. Following summarizes the optimization approaches.

� Parallelization: OpenMP based parallelization.
� Vectorization: Auto-vectorization with compiler directives for pointer disambiguation.
� Real number representation: Identical to the Cell/B.E. case.
� Loop merging: Identical to the Cell/B.E. case.
� Run-time profile feedback: Compile with the run-time profile feedback (–Mpfo).

The above result shows that the baseline implementation for the Cell/B.E. (running on the PPE only) has lower perfor-
mance, but the Cell/B.E. optimized code runs significantly faster than the AMD Barcelona optimized code. This demonstrates
the Cell/B.E. processor’s performance potential in processing regular and bandwidth intensive applications.

6. Conclusions

In summary, we present our design for computing two important discrete transform routines; fast Fourier and discrete
wavelet transforms on the Cell Broadband Engine processor. For FFT, we use an iterative out-of-place approach and focus on
inputs with 1K to 16K complex samples. We describe our methodology to partition the work among the SPEs to efficiently
parallelize a single FFT computation. Our synchronization barrier is designed to use inter-SPE communication only without
any intervention from the PPE. The synchronization barrier requires only 2 log p stages (p:number of SPEs) of inter-SPE com-
munication by using a tree-based approach. This significantly improves the performance, as the PPE intervention not only
results in a high communication latency but also results in sequentializing the synchronization step. The computation on



136 D.A. Bader et al. / Parallel Computing 35 (2009) 119–137
the SPEs is fully vectorized with other optimization techniques such as loop unrolling and double buffering. Our implemen-
tation outperforms the Intel Duo Core (Woodcrest) for input sizes greater than 2K and to our knowledge, we have the fastest
Fourier transform for the Cell/B.E. For DWT, we provide the novel data decomposition scheme and analyze its performance
impact. Then, our data decomposition scheme is applied to DWT implementation to achieve efficient DMA data transfer and
vectorization. We also introduce loop merging approach to reduce the bandwidth requirement. Our data decomposition
scheme enhances the performance and reduces the programming complexity at the same time. The efficiency of the ap-
proach is demonstrated by the experimental results. In addition to the superior performance within a single Cell/B.E., our
implementation shows the scalable performance on a single blade with two Cell/B.E. processors. This suggests that our ap-
proach will work efficiently even in the future Cell/B.E. processors with more SPEs. In conclusion, to unveil the Cell/B.E.’s full
performance, judicious implementation strategy is required. Yet, under the proper implementation strategy, the Cell/B.E. can
unleash its superb performance, especially for the floating point based loop intensive algorithms such as FFT and DWT. Our
future work investigates novel strategies for computing transforms on the PowerXCell 8i double-precision Cell/B.E.
processor.
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