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Abstract By 2010, the global options and equity markets
will average over 128 billion messages per day, amount-
ing to trillions of dollars in trades. Trading systems, the
backbone of the low-latency high-frequency business, need
fundamental research and innovation to overcome their cur-
rent processing bottlenecks. With market data rates rapidly
growing, the financial community is demanding solutions
that are extremely fast, flexible, adaptive, and easy to man-
age. This paper explores multiple avenues to deal with the
decoding and normalization of Option Price Reporting Au-
thority (OPRA) stock market data feeds encoded with FIX
Adapted for Streaming (FAST) representation, on commod-
ity multicore platforms, and describes a novel solution that
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encodes the OPRA protocol with a high-level description
language. Our algorithm achieves a processing rate of 15
million messages per second in the fastest single socket con-
figuration on an Intel Xeon E5472, which is an order of
magnitude higher than the current needs of the financial sys-
tems. We also present an in-depth performance evaluation
that exposes important properties of our OPRA parsing al-
gorithm on a collection of multicore processors.

1 Introduction

A typical market data processing system consists of sev-
eral functional units that receive data from external sources
(such as exchanges), publish financial data of interest to
their subscribers (such as traders at workstations), and route
trade data to various exchanges or other venues. This sys-
tem, known as a ticker plant, is shown in Fig. 1a. Examples
of functional units include feed handlers, services man-
agement (such as permission, resolution, arbitration, etc.),
value-added, trading system, data access, and client dis-
tribution. The feed handler is the component that directly
interacts with the feed sources for handling real time data
streams, in either compressed or uncompressed format, and
decodes them converting the data streams from source-
specific format into an internal format, a process called data
normalization. According to the message structure in each
data feed, the handler processes each field value with a spec-
ified operation, fills in the missing data with value and state
of its cached records, and maps it to the format used by the
system. The ability of a feed handler to process high volume
market data stream with low latency is critical to the success
of the market data processing system, and is the main focus
of this paper.
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Fig. 1 a High-Level Overview of a Ticker Plant, b OPRA market peak data rates

1.1 Skyrocketing data rates

The Options Price Reporting Authority (OPRA) is the secu-
rities information processor that disseminates, in real-time
on a current and continuous basis, information about trans-
actions that occurred on the options markets. It receives
options transactions generated by participating U.S. ex-
changes, calculates and identifies the “Best Bid and Best Of-
fer”, consolidates this information and disseminates it elec-
tronically to the financial community. Fueled by the growth
of algorithmic and electronic trading, the global options and
equities markets are expected to produce an average of more
than 128 billion messages/day by 2010, rising from an aver-
age of more than 7 billion messages a day in 2007 [12].
In the options market, the OPRA consolidated feed for all
US derivatives business represents a very significant por-
tion of market data in the national market system. Figure 1b
shows that the OPRA market data rates have dramatically
increased over the course of the past 4 years, approaching
a peak of 1 million messages per second. The traffic pro-
jection for OPRA alone is expected to reach an average of
more than 14 billion messages/day in 2010 [7]. As market
data rates continue to skyrocket, high speed, low latency,
and reliable market data processing systems are becoming
increasingly critical to the success of the financial institu-
tions both in the U.S. and abroad.

1.2 High performance computing in the data center

It is important to note that low latency is critical, especially
with the increasing competition as well as diminishing profit
margin. How fast a trading system can respond to the market
will determine who wins and who loses, even a few millisec-

onds gap in latency is enough to make the difference. Not
surprisingly, many of the technologies that are commonly
used in high performance computing are rapidly appearing
in the data centers of many financial institutions [1, 3, 4]. To-
gether with the increased performance, data centers are also
encountering typical problems in high performance com-
puting: the complexity of developing, testing and validating
parallel software. The need is to reduce power consump-
tion in the processing units that are often “co-located” near
the data feeds to minimize the communication latency and
reduce floor space requirement, which typically comes at
a high premium. For these reasons, the financial community
is demanding solutions that are extremely fast, easy to pro-
gram, and adaptable to dynamically changing requirements.

1.3 Contribution

In this paper we explore several avenues to implement an
OPRA FAST decoder and data normalization on commod-
ity multicore processors. We have first attacked the problem
by optimizing a publicly available version of an OPRA de-
coder, and based on this preliminary implementation we
have developed two more versions of the decoder, one that
has been written from scratch and hand-optimized for multi-
core processors and one that uses DotStar [10], a high-level
protocol parsing tool that we have recently designed and im-
plemented. The paper provides four main contributions. (1)
The implementation of a high-speed hand-optimized OPRA
decoder for multicore processors. In the fastest configura-
tion, this decoder achieves an impressive processing rate
of 14.6 (3.4 per thread) millions messages per second with
a single Intel Xeon E5472 quad-core socket. (2) A second
implementation, based on the DotStar protocol processing
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tool is described in Sect. 4, that is able to capture the essence
of the OPRA structure in a handful of lines of a high-level
description language. This is combined with the same set of
building blocks (actions) described above, triggered by the
protocol scanner. The DotStar protocol parser is comparable
with the hand-optimized parser, on average only 7% slower
on 5 distinct processor architectures. In the fastest single-
socket configuration, a single Intel Xeon E5472 quad-core is
able to achieve a rate of 15 million messages per second. (3)
An extensive performance evaluation that exposes import-
ant properties of the DotStar OPRA protocol and parser, and
analyzes the scalability of five reference systems, two vari-
ants of Intel Xeon, AMD Opteron, the IBM Power6, and the
SUN UltraSPARC T2. (4) Finally, we provide insight onto
the behavior of each architecture trying to explain where
the time is spent by analyzing, for all the processor archi-
tectures under evaluation, each action associated to DotStar
events. All the action profiles are combined in a cycle-
accurate performance model, presented in Sect. 6, that helps
determine the optimality of the approach, and to evaluate
the impact of architectural or algorithmic changes for this
type of workload. We believe that this level of accuracy can
be useful to both application developers and processor de-
signers to clearly understand how these algorithms map to
specific processor architectures, allowing interesting what-if
scenarios.

One evident limitation of this work is that it addresses
only a part of the feed handler, leaving many important
questions unanswered. For example, the network and the
network stack are still areas of primary concern. Neverthe-
less, we believe that the initial results presented in this paper
are ground-breaking because they show that it is possible to
match or exceed speeds that are typical of specialized de-
vices, such as FPGAs, using commodity components and
a high-level formalism that allows quick configurability.

2 OPRA feed decoding

OPRA messages are delivered through the national market
system with a UDP-based IP multicast. These messages are
divided into 24 data lines or channels (48 when counting
redundant delivery) based on their underlying symbol. Mul-
tiple OPRA messages are encapsulated in a block and then
inserted in an Ethernet frame. The original definition of an
OPRA message is based on an ASCII format, which uses

Fig. 2 OPRA FAST encoded packet format. a Version 1.03, b Version 2.0

string based encoding and contains redundant information.
With the growth of volume, a more compact representation
for messages was introduced: OPRA FAST (FIX Adapted
for STreaming).

The techniques used in the FAST protocol include im-
plicit tagging, field encoding, stop bits, and binary encoding.
Implicit tagging eliminates the overhead of field tags trans-
mission. The order of fields in the FAST message is fixed
and the meaning of each field can be determined by its pos-
ition in the message. The implicit tagging is usually done
through the XML-based FAST template. The presence map
(PMAP) is a bit array of variable length at the beginning of
each message where each bit is used to indicate whether its
corresponding field is present. Field encoding defines each
field with a specific action, which is specified in a template
file. The final value for a field is the outcome of the action
taken for the field. Actions such as “copy code”, “incre-
ment”, and “delta” allow FAST to remove redundancy from
the messages. A stop bit is used for variable-length coding,
by using the most significant bit in each byte as a delim-
iter. This limits the amount of useful information to 7 bits
for every byte of data. FAST uses binary format to represent
field values.

Figure 2a shows the format of an encoded OPRA ver-
sion 1.03 packet. Start of Header (SOH) and End of Text
(ETX) are two control characters that mark the start and
end of the packet. In OPRA FAST version 2.0 (Fig. 2b)
there is a header after SOH and before the first message.
The first byte of an encoded message contains the length in
bytes and is followed by the presence map, e.g., presence
map 01001010 means field 1, field 4 and field 6 are present,
counting from left. The presence map field is followed by
several variable length integer and string fields that contain
the data encapsulated by the message. Data fields that are
not present in an encoded message but that are required by
the category have their value copied from the same field of
previous messages and optionally incremented. OPRA data
fields can be unsigned integer or string.

We use the reference OPRA FAST decoder provided
along with the standard. This implementation starts by cre-
ating a new message, parses the presence map, computes
its length by checking the stop bit of every byte until one
is found set, masks the stop bit and copies all the data into
temporary storage. The presence map bits are then exam-
ined to determine which fields are present and which require
dictionary values. The implementation proceeds by check-

1 3



252 Agarwal et al.

ing the category of the message and calls a specific decoder
function, which implements the actual decoder for each field
in the message. We initially tried to optimize the reference
decoder using a top-down approach, by speeding up the
functions that are more time-consuming. Unfortunately the
computational load is distributed across a large number of
functions, and our effort resulted in a very limited perform-
ance improvement.

3 A streamlined bottom-up implementation

We identified primary compute intensive kernels, such as
processing variable length encoded presence map (PMAP),
integer and string fields, identifying field index, and cate-
gory dependent field copy, from the decoding algorithm. We
optimize these kernels using various techniques: unroll to
efficiently utilize instruction pipelines, analyze the instruc-
tions from assembly level and minimize average processor
cycles consumed per byte of input data.

The reference implementation decodes the input stream
by first identifying the category of the input message and
then calls a category specific routine to process subse-
quent data fields. This leads to a very branchy code. Our
implementation replaces the category-specific routines by
category-specific bitmaps. The number of bits in this bitmap
is equal to the total number of fields contained in the OPRA
protocol specification. In the current version of this speci-
fication the bitmap can be represented by a 64 bit variable.
The index of the bit in the bitmap specifies the field it repre-
sents, and only bits corresponding to fields required by the
category are set. Once the category of the message is deter-
mined, this bitmap is passed to the next building block for

Fig. 3 Presence and field map bit
manipulation

specifying the fields that are relevant to a message of this
category.

Another optimization is related to processing the PMAP
field. The reference code processes this field bit by bit, test-
ing every bit to check if it set or not. However, since a subset
of fields are required for each message category, and given
that only a fraction of bits are typically set in an incoming
message, it becomes very inefficient to process each PMAP
bit. We use PMAP to specify the data fields that are con-
tained in the incoming message, that need to be processed
and updated in the decoded format. An xor operation be-
tween this PMAP and the category-specific bitmap gives the
fields that are relevant to the incoming message but are not
present. We call this the copy PMAP, that specifies the fields
that need to be copied from last received values.

To determine the next field present in the incoming mes-
sage we count leading zeroes (clz) from the PMAP field.
This bit (in PMAP) is set to zero after the data field is
processed to enable repetition of the clz operation for sub-
sequent data fields. The clz operation is also used for the
copy PMAP to determine the indexes of the fields that are re-
quired to be copied from previous values. Figure 3 illustrates
our optimized decoding algorithm.

We employ another optimization for parsing string fields.
To maintain an efficient data structure we maintain a sepa-
rate buffer for string values. The strings from the incoming
message are copied into the buffer and the decoded message
only contains the offset of the string from this buffer. This
increases the efficiency of the decoding algorithm because,
rather than replicating the entire string, we only store the
string offset.

These optimizations create efficient high performance
kernels for basic decoding tasks and increase the elegance of
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the design. This bottom-up approach eliminates the complex
control flow structure that exists in the reference implemen-
tation. In the next section we will discuss how these kernels
can also be integrated into a high level protocol parser.

4 High-level protocol processing with DotStar

A fundamental step in the semantic analysis of network
data is to parse the input stream using a high-level for-
malism. A large amount of work approached these issues
by using declarative languages to describe data layout and
transfer protocols. Examples are Interface Definition Lan-
guages (IDL), such as XDR [11], RPC [11], and regular lan-
guages and grammars, like BNF, ABNF [8], lex and yacc;
or declarative languages like binpac [9]. These solutions are
often tailored for a specific class of protocols, like binary
data or text oriented communication. A common character-
istic of all these solutions is that they are very high level
and “elegant”, and provide the user with great expressive-
ness, but the generated parser performance is often one
order of magnitude slower than an equivalent handcrafted
one, and may be unable to parse real-time heavy-volume
applications.

While exploring how to extend our fast keyword scanner
automaton to handle regular expression sets, we developed
DotStar [10], a complete tool-chain that builds a Determin-
istic Finite Automaton (DFA) for recognizing the language
of a regular expression set. The automaton is an extension of
the Aho-Corasick [6], the de facto standard for fast keyword
scanning.

Fig. 4 A graphical representation of DotStar compiler steps: a) is the pre-processor, which reduces the number of states, step b) builds individual
automata for each regular expression, c) combines them in a unique automaton and d) computes the failure function

Finding every instance of a regular expression pattern,
including overlaps, is a “complex” problem both in space
and time [5]. Matching a complete set of regular expressions
adds another level of complexity: DotStar employs a novel
mechanism for combining several regular expressions into
a single engine while keeping the complexity of the problem
under control. DotStar is based on a sophisticated compile
time analysis of the input set of regular expression and on
a large number of automatic transformations and optimiz-
ing algorithms. The compilation process proceeds through
several stages (see Fig. 4): at first simplifies each regular
expression in a normal form, rewrites it and splits it into
sub-expressions and transforms into a Glushkov [2] Non-
deterministic Finite Automaton (NFA) and then turns it into
a DFA, These automata are combined together by an algo-
rithm that operates on their topology. The resulting graph
is extended, as in the Aho-Corasick algorithm, by a “fail-
ure” function, that can further modify the graph structure.
The result is a single pass DFA that: (1) groups all regular
expression in a single automaton, (2) reports all matches, in-
cluding every overlapping pattern, and (3) it is as memory
efficient as an NFA.

We defined a simple declarative language, called DSPar-
ser, that describes a data layout as a sequence of regular ex-
pression fragments “connected” using standard imperative
constructs, like if/then/else/while. Actions can be inserted
after a (partial) expression is recognized; these actions are
either system actions, that perform common operations or
user defined functions on blocks of input data. A precom-
piler tool parses the declarative language and builds a suit-
able regular expression set that is compiled using the Dot-
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CPU Speed Sockets Cores Threads Threads Cache Size
(GHz) /Socket /Core (KB)

INTEL Xeon Q6600 2.4 1 4 1 4 4096
INTEL Xeon E5472 3.0 1 4 1 4 6144
AMD Opteron 2352 2.1 1 4 1 4 512
Sun UltraSPARC T2 1.2 1 8 8 64 4096
IBM Power6 4.7 4 2 2 16 4096

Table 1 Processor description

Star toolchain. A small number of states of the resulting
automaton is then annotated with the system and user de-
fined actions specified in the initial protocol definition. The
DSParser source code for analyzing OPRA version 2.0 mes-
sages is remarkably simple, compact and easy to manage:1

MATCH “..........................................” WSWITCH
MATCH “\x01\x02” CASE “[\x80-\xff]”
PUSH EXECUTE action_field
MATCH “..........” PUSH
EXECUTE sequence_number ENDCASE
MATCH “...” CASE “[\x00-\x7f]”
LOOP MATCH “[\x00-\x7f]*[\x80-\xff]”

WHILECNT “.” SEND 0x02 0
PUSH EXECUTE action_field
MATCH “[\x00-\x7f]*[\x80-\xff]” ENDCASE
EXECUTE action_pmap ENDWSWITCH
PUSH ENDWHILECNT

(contd ...) ENDLOOP

Intuitively the resulting automaton will start by skipping
the IP/UDP headers and will match the OPRA version 2.0
start byte and version number. It will then mark the stream
position for the successive action and recognize the initial
sequence number for the packet, calling the appropriate user
defined code; after that, it will loop and examine every mes-
sage in the packet to detect first the PMAP and then all
individual fields.

User defined actions operate on blocks of input data
recognized by the parser and the overall system process-
ing model proceeds along the following steps: (1) look for
a section of data – the automaton reads input symbols and
switches state until a PUSH action is reached; (2) save the
start of data: the current stream position is saved in state
machine memory; (3) look for the end of a data field – the
automaton reads more input symbols until a state with a user
defined action is found; (4) handle the data field – the user
defined action is invoked over the block of data from the
saved position to the current position.

5 Experimental results

For performance analysis, we assume that each channel
(total 24) can inject messages at full speed by storing the
OPRA feeds in main memory, and therefore is not the bot-
tleneck of the decoder. OPRA packets are 400 bytes on aver-
age, each containing multiple messages that are encoded

1 It is worth noting that the full OPRA FAST protocol is described in
a 105-page manual!!

using the FAST representation. The messages are typically
distributed across the 10–50 byte range, with an average
message size of 21 bytes. Thus, each packet contains 19
messages on average. Under the assumption of full injec-
tion, we observe that the feeds across the various channels
have very similar data pattern and distribution and they tend
to have the similar processing rate. Since, the performance is
insensitive to the OPRA protocol version, we will consider
only OPRA version 2.0 traces in the rest of this paper.

In this section, we present an extensive performance ana-
lysis of our algorithm on a variety of multicore architec-
tures. In our tests, we use Intel Xeon Q6600 (Quad), Intel
Xeon 5472 (Quad, a.k.a. Harpertown), AMD Opteron 2352
(Quad), IBM Power 6, and Sun UltraSparc T2 (a.k.a. Nia-
gara-2). Power6 and Niagara-2 are hardware multithreaded
with 2 threads and 8 threads per core, respectively. Table 1
gives more information about the speeds and feeds of each
architecture. We first discuss the performance of the three
approaches for processing OPRA FAST messages, the top-
down reference implementation, the hand-optimized bottom-
up version and DotStar as discussed in Sects. 2, 3 and 4,
respectively. Figure 5a gives the decoding rate per thread
in millions of messages per second. We observe that our
bottom-up and DotStar implementations are consistently 3
to 4 times faster than the reference implementation; the Intel
Xeon E5472 gives the maximum processing rate for a given
thread, and that our optimized Bottom-Up and DotStar im-
plementations are similar in terms of performance, with the
hand-optimized version that is only 7% faster, on average.
The Sun UltraSparc T2 processor is designed to operate with
multiple threads per core, thus the single thread performance
is much lower than other processors. It is also important to
note that our single core OPRA decoding rate is much higher
than the current needs of the market, as shown in Fig. 1b.

Figure 5b presents a scalability study of our high-level
DotStar implementation. In these tests the threads operate in
parallel on different parts of the data from the same OPRA
channel. For the Intel Xeon processors our implementation
scales almost linearly and processes 15 million messages per
second, on a single E5472 quad-core socket and 12 million
messages per second, on the Q6600. On Niagara-2, the per-
formance scales linearly up to 16 threads, and reaches 6.8
million messages per second using 64 threads (8 threads/8
cores). For the IBM Power6, we get a scaling advantage up to
16 threads using 8 cores, giving a performance of 26 million
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Fig. 5 a Performance Comparison, b Speedup

messages per second. The performance scales linearly up to 8
threads (1 thread per core), with a performance improvement
of 1.5x on 16 threads (2 threads per core).

6 Discussion

In this section we provide detailed insight into the perform-
ance results presented in the previous section. The OPRA

Table 2 Optimality analysis

INTEL INTEL AMD SUN IBM
Xeon Q6600 Xeon E5472 Opteron 2352 UltraSPARC T2 Power6

size % instr ns cyc instr ns cyc instr ns cyc instr ns cyc instr ns cyc

INT 1 62.6 3.0 1.4 3.4 3.0 1.5 4.5 3.0 4.0 8.4 3.0 6.5 7.8 4 2.3 10.8
2 22.1 3.5 1.3 3.2 3.5 1.6 4.9 3.5 4.8 10.1 3.0 6.8 8.2 3.5 2.2 10.3
3 13.6 3.7 1.4 3.4 3.7 1.7 5.2 3.7 5.0 10.5 3.0 5.4 6.5 3.3 2.0 9.4
4 2.7 3.7 1.5 3.6 3.7 1.8 5.4 3.7 5.1 10.7 3.0 6.6 7.9 3.2 1.9 8.9
5 0.0 3.8 1.5 3.8 3.8 1.8 5.5 3.8 5.1 10.8 3.0 6.6 7.9 3.2 1.9 8.8

PMAP 1 0.0 7.0 2.6 6.3 7.0 3.3 9.9 7.0 9.4 19.7 8.0 17.3 20.7 7 4.4 20.7
2 0.0 6.0 2.5 6.0 6.0 3.0 9.0 6.0 8.0 16.9 7.4 16.5 19.8 6.5 4.2 19.7
3 0.0 5.7 2.5 6.0 5.7 2.8 8.5 5.7 7.6 15.9 7.3 16.0 19.2 6.3 4.1 19.0
4 8.1 5.5 2.4 5.9 5.5 2.8 8.3 5.5 7.4 15.5 7.5 16.9 20.3 6.2 3.9 18.6
5 87.1 5.4 2.4 5.8 5.4 2.7 8.1 5.4 7.3 15.4 7.2 15.9 19.1 6.2 3.9 18.1
6 4.8 5.3 2.3 5.6 5.3 2.7 8.0 5.3 7.1 15.0 7.7 17.5 21.0 6.0 3.8 17.8
7 0.0 5.2 2.3 5.5 5.2 2.6 7.8 5.2 7.0 14.7 7.9 18.2 21.8 6 3.8 17.9
8 0.0 5.1 2.3 5.5 5.1 2.6 7.7 5.1 6.9 14.4 7.5 16.9 20.3 6 3.9 18.1

Dcopy/msg – 11.0 26.4 – 15.0 45.0 – 45.1 94.7 – 706.0 847.2 – 14.0 65.8
Scopy/byte – 1.4 3.4 – 1.9 5.7 – 4.5 9.5 – 15.2 18.2 – 3.9 18.6
CLZ/field 6 2.8 6.7 5 2.0 6 5 4.1 8.5 17 36.9 44.3 6 4 18.8

msgs ns cyc msgs ns cyc msgs ns cyc msgs ns cyc msgs ns cyc
M/s /b /b M/s /b /b M/s /b /b M/s /b /b M/s /b /b

Basic blocks peak 11.8 3.6 8.5 11.8 3.5 10.6 4.7 9.0 19.0 0.7 59.0 70.8 7.5 5.6 26.2
Actions only 8.8 4.8 11.5 9.5 4.4 20.6 4.3 9.7 20.3 0.6 69.3 83.2 5.3 7.9 37.2
Dotstar rate only 5.8 8.1 19.4 7.5 6.4 30.0 5.7 7.5 15.7 0.4 109.8 131.8 4.1 11.2 52.6
Optimal 3.5 – – 4.2 – – 2.5 – – 0.24 – – 2.3 – –
Actions w/Dotstar 3.1 13.3 32.0 3.8 11.0 51.7 2.4 17.5 36.8 0.2 200.0 240.0 2.1 20.0 94.0
Optimality ratio 0.89 – – 0.91 – – 0.96 – – 0.84 – – 0.92 – –

FAST decoding algorithm can be broken down into 5 main
components, processing of the (1) PMAP field, (2) inte-
ger fields, (3) string fields, (4) copying previous values, (5)
computing index of fields using clz. Every OPRA message
contains on an average one PMAP field of 5 bytes, integer
fields occupying in total 13 bytes, string fields of 4 bytes, in
total 22 bytes.

Decoding a message requires copying the last known
values into a new data structure, as the encoded message
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INTEL INTEL AMD Sun IBM
Xeon Q6600 Xeon E5472 Opteron 2352 UltraSparc T2 Power6

Latency/msg (nsec) 317 261 409 4545 476

Table 3

only contains information on a subset of fields. To find the
index of each new data fields, we perform a clz (count lead-
ing zeroes) operation. For each of these actions we calculate
the instructions from assembly level, Table 2 gives the in-
structions per byte for processing the PMAP, integer and
string fields, on each multicore processor. For nsec and cy-
cles per byte we compute actual performance, by perform-
ing multiple iterations of the algorithm with and without
the corresponding action and normalizing the difference.
Similarly, for the clz action, we compute cycles, nsec, and
instructions per data field, and for the copy msg we compute
average nsec and cycles/message.

Using the field length distributions, their occurrence
probability rates, and individual action performance, we
compute the aggregate estimated peak performance in the
first row of the last block in the table. Note that this peak
estimate does not take into account any control flow or I/O
time. In the second row we give the actual actions-only per-
formance that is computed by taking the difference between
the total performance and performance after commenting
out the actions, lets call it A. The DotStar rate is the peak
performance of our parsing algorithm on OPRA feeds, that
does not include any actions on the recognized data fields,
lets call it B. We notice that: The optimal row in that block is
the estimated peak performance that we should have got by
combining the DotStar routine and our optimized kernels,
that is computed using the formula ( 1

A + 1
B )−1. We compare

this to our actual performance and compute the optimality
ratio in the last row of the table. We observe the following.

• On the IBM Power6, we get similar nsec/byte perform-
ance as compared to Intel Xeon processor. We believe
that our code is not able to take advantage of the deep
pipeline and in-order execution model of the Power6.

• To get maximum performance for the copy msg routine,
we developed our own vectorized memory copy using
SSE intrinsics, and pipelined load and stores to obtain
best performance. On the Sun Niagara-2 we used a man-
ual copy, at the granularity of an integer, and unrolled
the load and store instructions. With vectorized memory
copy we get about 2x performance advantage over the
memcpy library routine, whereas for the manual scalar
copy we get an advantage of 1.2x on Sun Niagara-2.

• On Sun-Niagara, the copy action is much slower than on
other processors.

• Our implementation requires integer/string processing as
opposed to floating point computation, this fails to utilize
the much improved floating point units on Sun Niagara-2.

• On Intel Q6600, cycles/byte performance matches closely
with instructions/byte count.

• Our implementation is close to the optimal performance
obtained with the high-level approach, with an average
optimality ratio of 0.9.

• Table 3 gives the latency for decoding/processing an
OPRA message on each of the multicore processors dis-
cussed in the papers. We decode one message at a time
on a single processing thread, thus the average latency
to process a message is given by taking the inverse of
the processing rate. We observe a latency between 200
and 500 nsec on the Intel/IBM/AMD processors, which
accounts for only a negligible latency inside the ticker
plant, under a very high throughput.

7 Conclusions

The increasing rate of market data traffic is posing a very
serious challenge to the financial industry and to the cur-
rent capacity of trading systems worldwide. This requires
solutions that protect the inherent nature of the business
model, i.e., providing low processing latency with ever in-
creasing capacity requirements. We presented a novel solu-
tion for OPRA FAST feed decoding and normalization, on
commodity multicore processors. Our approach captures the
essence of OPRA protocol specification in a handful of lines
of DSParser, the high-level descriptive language that is the
programming interface of the DotStar protocol parser, thus
providing a solution that is high-performance, yet flexible
and adaptive. We showed impressive processing rates of 15
million messages per second on the fastest single socket In-
tel Xeon, and over 24 million messages per second using the
IBM Power6 on a server with 4 sockets. We presented an
extensive performance evaluation to understand the intrica-
cies of the decoding algorithm, and exposed many distinct
features of the multicore processors, that can be used to es-
timate performance. In the future, we plan to extend our ap-
proach to other components of the ticket plant, and evaluate
a threaded-model in DotStar, to help pipeline independent
analytics processing kernels seamlessly.
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