
Optimizing JPEG2000 Still Image Encoding
on the Cell Broadband Engine

Seunghwa Kang David A. Bader
Georgia Institute of Technology, Atlanta, GA 30332

s.kang@gatech.edu bader@cc.gatech.edu

Abstract

JPEG2000 is the latest still image coding standard from
the JPEG committee, which adopts new algorithms such
as Embedded Block Coding with Optimized Truncation
(EBCOT) and Discrete Wavelet Transform (DWT). These al-
gorithms enable superior coding performance over JPEG
and support various new features at the cost of the in-
creased computational complexity. The Sony-Toshiba-IBM
Cell Broadband Engine (or the Cell/B.E.) is a heteroge-
neous multicore architecture with SIMD accelerators. In
this work, we optimize the computationally intensive algo-
rithmic kernels of JPEG2000 for the Cell/B.E. and also in-
troduce a novel data decomposition scheme to achieve high
performance with low programming complexity. We com-
pare the Cell/B.E.’s performance to the performance of the
Intel Pentium IV 3.2 GHz processor. The Cell/B.E. demon-
strates 3.2 times higher performance for lossless encoding
and 2.7 times higher performance for lossy encoding. For
the DWT, the Cell/B.E. outperforms the Pentium IV proces-
sor by 9.1 times for the lossless case and 15 times for the
lossy case. We also provide the experimental results on one
IBM QS20 blade with two Cell/B.E. chips and the perfor-
mance comparison with the existing JPEG2000 encoder for
the Cell/B.E.

1 Introduction

JPEG2000 [4] is the latest still image coding standard
issued by the JPEG committee, which supports both loss-
less and lossy compression with superior image quality in
a low bit rate and additional new features. This standard
adopts Embedded Block Coding with Optimized Trunca-
tion (EBCOT) [13] and Discrete Wavelet Transform (DWT)
[2, 14] as key algorithms. The EBCOT algorithm consists
of three steps: bit modeling, arithmetic coding, and tag tree
building. JPEG2000 executes the EBCOT algorithm in two
tiers, Tier-1 and Tier-2. Bit modeling and arithmetic cod-
ing are performed in Tier-1, whereas tag tree building is

performed in Tier-2. Prior analysis of JPEG2000 execution
time [1, 8, 9] shows that Tier-1 coding in the EBCOT and
the DWT are the most computationally expensive algorith-
mic kernels.

The Cell Broadband Engine (or the Cell/B.E.) has unique
architectural features with a simple core design and an al-
ternative memory subsystem. The Cell/B.E. chip consists
of two types of cores, one PPE and eight SPEs. The PPE
is a power efficient version of PowerPC architecture, and
the SPE is a SIMD accelerator. The SPE lacks dynamic
branch prediction and runtime out-of-order execution sup-
port. It has a 256 KB local memory called Local Store.
Data transfers among main memory and the Local Stores
require explicit DMA instructions. This necessitates novel
programming paradigms to achieve high performance.

Previously, Muta et al. optimize Motion JPEG2000 en-
coder on the Cell/B.E. [10]. Motion JPEG2000 encoding
lacks inter-frame compression and is nearly identical to
JPEG2000 still image encoding, and the authors optimize
the DWT and EBCOT algorithms. However, their DWT
implementation does not scale beyond a single SPE despite
having high single SPE performance. Their EBCOT imple-
mentation shows better scalability but does not scale above
a single Cell/B.E. processor. This suggests that in order
to achieve high performance, we need to take different ap-
proaches.

Our Cell/B.E. JPEG2000 library adopts Jasper [1], a
still image transcoder, as a baseline program. Jasper
is previously parallelized by Meerwald et al. [9] using
OpenMP. However, the authors parallelize Tier-1 coding in
the EBCOT and the DWT only to minimize the code modifi-
cation. The maximum achievable speedup is limited by the
sequentialization in this loop-level parallelization approach.

We analyze the whole code to investigate the existing
concurrency in JPEG2000 and parallelize the level shift
stage, the inter-component transform stage, the quantization
stage, and a portion of the stream I/O routine in addition to
the Tier-1 encoding and DWT stages. We also introduce a
novel data decomposition scheme (discussed in Section 2)
to achieve high performance while reducing the program-

37th International Conference on Parallel Processing

0190-3918/08 $25.00 © 2008 IEEE

DOI 10.1109/ICPP.2008.39

83

ming complexity, and we apply it to the multiple algorith-
mic kernels in JPEG2000.

The DWT is one of the most computationally intensive
parts in JPEG2000 and also an important kernel in other
application areas [11]. We provide a detailed analysis of
its performance on the Cell/B.E. We optimize and tune the
column grouping strategy based on our data decomposition
scheme to increase spatial locality and design a new loop
merging approach to increase temporal locality. In addi-
tion, we investigate the relative performance of the floating
point operations and its fixed point approximation [1] on the
Cell/B.E.

We achieve an overall speedup of 6.6 and 3.1 for loss-
less and lossy encoding with 8 SPEs compared to the sin-
gle SPE performance. Also, our implementation obtains 6.9
and 7.4 times higher performance over the PPE-only case.
The Cell/B.E. demonstrates 3.2 and 2.7 times faster encod-
ing time relative to the Intel Pentium IV 3.2 GHz proces-
sor for the lossless and lossy cases, respectively. For the
DWT, the Cell/B.E. outperforms the Pentium IV proces-
sor by 9.1 and 15 times for the lossless and lossy cases,
respectively. We further test our implementation on a sin-
gle IBM QS20 blade with two Cell/B.E. processors. The
performance scales up to 16 SPEs, and this suggests that
our implementation can benefit from the future Cell/B.E.
processor, which may include 32 SPEs. Also, significantly
higher performance is obtained in comparison with the pre-
vious Motion JPEG2000 encoder implementation [10] for
the Cell/B.E. The source code of this project is freely avail-
able from our CellBuzz project in SourceForge (http:
//sourceforge.net/projects/cellbuzz).

This paper is organized as following: We describe our
data decomposition scheme in Section 2. Parallelization
and vectorization strategies of JPEG2000 are explained in
Section 3 and Section 4, respectively. In Section 5, we
provide detailed performance results, and finally, Section 6
concludes the paper.

2 Data Decomposition Scheme

Data layout is an important design issue in parallel pro-
gramming. It is even more important for the Cell/B.E. due
to the alignment and size requirements for DMA data trans-
fer and SIMD load/store. DMA on the Cell/B.E. requires 1,
2, 4, 8 byte alignment to transfer 1, 2, 4, 8 bytes of data and
16 byte alignment to transfer a multiple of 16 bytes. DMA
data transfer becomes most efficient if data addresses are
cache line aligned in both main memory and the SPE Local
Store, and data transfer size is an even multiple of the cache
line size [5]. SIMD load/store instructions for vectorization
also require quad-word data alignment.

Our data decomposition scheme, shown in Figure 1, sat-
isfies the above requirements for the two dimensional array

Figure 1: Data decomposition scheme for two dimensional
array

with an arbitrary width and height, assuming that every row
can be arbitrarily partitioned into multiple chunks for inde-
pendent processing. First, we pad every row to force the
start address of every row to be cache line aligned. Then,
we partition the data array to multiple chunks, and every
chunk except for the last has the width a multiple of the
cache line size. All the chunks have the height identical to
the data array height. These data chunks become a unit of
data distribution to the processing elements. The constant
width chunks are distributed to the SPEs and the PPE pro-
cesses the last remainder chunk. The SPE traverses the as-
signed chunks by processing every single row in the chunk
as a unit of data transfer and computation.

This data decomposition scheme has several impacts
on the performance and the programmability. First, ev-
ery DMA transfer in the SPE becomes cache line aligned,
and the transfer size becomes a multiple of the cache line
size. This results in efficient DMA transfers and reduced
programming complexity. If data are not properly aligned,
or the data transfer size has an arbitrary value, additional
programming would have been required to satisfy the con-
ditions for correctness. Reduced programming complexity,
or in other words, shorter code size also saves the Local
Store space, and this is important for the Cell/B.E. since the
Local Store size is relatively small. Also, under our data
decomposition scheme, there is no cache conflict since ev-
ery cache line in the data array is accessed either by the
PPE or a DMA instruction issued by one SPE. The remain-
der chunk with an arbitrary width is processed by the PPE
to enhance the overall chip utilization. Our data decompo-
sition scheme also satisfies the alignment requirement for
SIMD load/store.

Second, the Local Store space requirement becomes con-
stant independent of the data array size. As mentioned
above, a single row in the chunk, which has the constant

84

width, becomes a unit of data transfer and computation in
the SPE. This leads to a constant memory requirement, and
we can easily adopt the optimization techniques that require
additional Local Store space. For example, double buffer-
ing or multi-level buffering is an efficient technique for hid-
ing latency but increases the Local Store space requirement
at the same time. However, owing to the constant memory
requirement in our data decomposition scheme, we can in-
crease the level of buffering to a higher value that fits within
the Local Store.

In addition, fixed data size leads to a constant loop
count, which enables the compiler to better predict the pro-
gram’s runtime behavior. This helps the compiler to use
optimization techniques such as loop unrolling, instruction
rescheduling, and compile time branch prediction. Compile
time instruction rescheduling and branch prediction com-
pensate for the lack of runtime out-of-order execution and
dynamic branch prediction support in the SPE.

3 Parallelization of JPEG2000

3.1 Parallelism in JPEG2000

The level shift, inter-component transform, and quanti-
zation stages are basically pixel-wise independent. There-
fore, arbitrary partitioning is possible. Discrete Wavelet
Transform (DWT) consists of two steps. First, the vertical
filtering step partitions the original image to the low pass
subband and the high pass subband in the vertical direction,
and then the horizontal filtering step is followed to partition
in the horizontal direction. In the vertical filtering, every
column can be processed independently, and in the horizon-
tal filtering, every row can be processed independently. For
Tier-1 encoding in the EBCOT algorithm, an image array
is partitioned to multiple code blocks, and every code block
can be processed independently.

3.2 Parallelization Strategy

Figure 2 summarizes the work partitioning among the
PPE and the SPEs for JPEG2000 encoding. The level
shift, inter-component transform, DWT, Tier-1 encoding
and quantization stages are fully parallelized using both the
PPE and the SPEs. The level shift and inter-component
transform stages are merged to minimize the data transfer.
The read component data stage, which includes type conver-
sion from the Jasper specific intermediate data type to four
byte integer data type, is partially parallelized. We apply
our data decomposition scheme to every parallelized stage
except for the Tier-1 encoding stage. For the Tier-1 encod-
ing stage, we adopt a work queue to distribute the workloads
to the processing elements.

Figure 2: Work partitioning among the PPE and the SPEs
for encoding

In Tier-1 encoding, efficient DMA data transfer is less
important owing to the relatively high computation to com-
munication ratio. Thus, we focus on increasing the over-
all chip utilization while minimizing the interaction among
the processing elements. We use the PPE and SPE threads
to encode the code blocks and maintain a work queue for
load balancing. Note that the processing time for Tier-1 en-
coding is dependent on the input data characteristics, and
we cannot achieve load balancing by merely distributing
an identical number of code blocks to the processing ele-
ments. Both our implementation and the previous Motion
JPEG2000 encoder [10] use a work queue for load balanc-
ing but use the PPE for different purposes. In [10], the au-
thors support lossless encoding only and overlap the Tier-1
encoding stage with the Tier-2 encoding stage. In their im-
plementation, the PPE (or the PPEs in their two Cell/B.E.
implementations) performs Tier-2 encoding and the code
block distribution to the SPEs, while only the SPE threads
perform Tier-1 encoding. In the lossy encoding process,
the rate control stage appears between the Tier-1 encoding
stage and the Tier-2 encoding stage. This prevents the over-
lap in our implementation, and we use the PPE and SPE
threads for Tier-1 encoding. Another distinction is the code
block size. In [10], the authors select 32 by 32 pixels code

85

block size instead of 64 by 64, the maximum code block
size in the standard. Smaller code block size reduces the Lo-
cal Store memory requirements and enables double buffer-
ing, but increases the interaction among the PPE and SPE
threads. This lowers the scalability of the implementation.

Previous parallelization strategies for the DWT [3,11,15]
suggest the trade-offs between computation and communi-
cation overheads for the different underlying architectures.
Lifting based DWT is also proposed in [12], by which,
in-place DWT can be performed faster than previous con-
volution based DWT [6]. Still, poor cache behavior in a
column-major traversal in a C language implementation be-
comes a bottleneck in performance. Initially, a matrix trans-
pose, which converts a column-major traversal to a row-
major traversal, is adopted to improve cache behavior. Loop
tiling, or column grouping, is introduced in [3] to improve
cache behavior without matrix transpose. In [10], the au-
thors parallelize convolution based DWT for the Cell/B.E.
by partitioning the data array to 128 by 128 pixels tiles with
the overlap among the adjacent tiles. The net tile size is
112 by 112 pixels. Their implementation does not satisfy
the cache line alignment requirements for the most efficient
DMA transfer due to the overlapped area. We optimize lift-
ing based DWT for the Cell/B.E. For the horizontal filtering,
we assign an identical number of rows to each SPE, and a
single row becomes a unit of data transfer and computation.
Every row is cache line aligned, and the data transfer size
becomes a multiple of the cache line size owing to the row
padding in our data decomposition scheme. For the verti-
cal filtering, we tune the column grouping approach by fix-
ing column group size to a multiple of the cache line size
and partition the data array based on our data decomposi-
tion scheme. Our implementation enhances the DMA data
transfer efficiency, which is essential to achieve high scala-
bility.

4 Vectorization of JPEG2000

Based on our data decomposition scheme, we vectorize
the level shift, inter-component transform, and quantization
stages in a straightforward way. Yet, vectorization of the
DWT involves interesting issues related to the Cell/B.E.,
and we discuss the issues in this section.

Instruction Description Latency

mpyh two byte integer multiply high 7 cycles
mpyu two byte integer multiply unsigned 7 cycles

a add word 2 cycles
fm single precision floating point multiply 6 cycles

Table 1: Latency for the SPE instructions

In [1], the authors suggest the fixed point representation
for the real numbers in the JPEG2000 lossy encoding pro-

cess to enhance the performance and the portability. The
authors assume that fixed point instructions are generally
faster than floating point instructions. However, the current
version of the Cell/B.E. chip is optimized for (single pre-
cision) floating point operations, and the floating point in-
structions have comparable speed to the fixed point instruc-
tions. Moreover, the SPE instruction set architecture does
not support four byte integer multiplication; thus four byte
integer multiplication needs to be emulated by two byte in-
teger multiplications and additions. Table 1 summarizes the
latency for the two byte integer multiplications, four byte
integer addition, and single precision floating point multi-
plication. Therefore, the fixed point representation loses its
benefit on the Cell/B.E. We replace the fixed point represen-
tation in Jasper code with the floating point representation
to achieve high performance.

Input: an image data array array data, number of rows
number of rows, row width including padding
stride

Output: an image data array array data

high start← number of rows/2;

/* 1st lifting step for the vertical filtering */

p low ← array data[0];
p high← array data[high start ∗ stride];

n← high start− 1;
for i← 0 to n− 1 do
∗p high← ∗p high−((∗p low+∗(p low+stride))/2);
p low ← p low + stride;
p high← p high + stride;

end

∗p high← ∗p high− ∗p low;

/* 2nd lifting step for the vertical filtering */

p low ← array data[0];
p high← array data[high start ∗ stride];

∗p low ← ∗p low + ((∗p high + 1)/2);
p low ← p low + stride;

n← high start− 1;
for i← 0 to n− 1 do
∗p low ← ∗p low + ((∗p high + ∗(p high + stride) +
2)/4);
p low ← p low + stride;
p high← p high + stride;

end

Algorithm 1: Pseudo code for original implementation

The DWT algorithm consists of multiple steps: one split-
ting step and two lifting steps in the lossless mode and one
splitting step, four lifting steps, and one optional scaling
step in the lossy mode. Considering that the entire col-
umn group data for a large image does not fit into the Lo-
cal Store, 3 or 6 steps in the vertical filtering involve 3 or
6 DMA data transfer of the entire column group data. As

86

Input: an image data array array data, number of rows
number of rows, row width including padding
stride

Output: an image data array array data

high start← number of rows/2;

/* interleaves 1st and 2nd lifting steps for the vertical filtering
*/

p low← array data[0];
p high← array data[high start ∗ stride];

∗p high = ∗p high− ((∗p low + ∗(p low + stride))/2);
∗p low = ∗p low + ((∗p high + 1)/2);
p low← p low + stride;
p high← p high + stride;

n← high start− 2;
for i← 0 to n− 1 do
∗p high← ∗p high−((∗p low+∗(p low+stride))/2);
∗p low← ∗p low + ((∗(p high− stride) + ∗p high +
2)/4);
p low ← p low + stride;
p high← p high + stride;

end

∗p high← ∗p high− ∗p low;
∗p low ← ∗p low+((∗(p high−stride)+∗p high+2)/4);

Algorithm 2: Pseudo code for our interleaved implementa-
tion

Figure 3: The splitting step and the interleaved lifting step
for the vertical filtering

the number of SPEs increases, the limited off-chip memory
bandwidth becomes a bottleneck and nullifies the perfor-
mance enhancement achieved by vectorization. To reduce
the amount of DMA data transfer, we interleave the lifting
steps. Algorithm 1 illustrates the original algorithm for the
lossless mode assuming that the number of rows is even and
larger than four. By analyzing the data dependency in Algo-
rithm 1, we notice that two lifting steps can be interleaved.
Algorithm 2 depicts our interleaved algorithm. The split-
ting step can also be merged with the next two lifting steps.
Figure 3 illustrates the splitting step and the interleaved lift-
ing step in the lossless vertical filtering. Initially, the low
and high pass components are interleaved in the input array,

and the splitting step separates the low and high pass com-
ponents. This splitting step involves the DMA data transfer
of the whole column group data. If we adjust the pointer
addresses for the low and high pass components and in-
crease the increment size in the next interleaved lifting step,
the splitting step can be merged with the interleaved lifting
step. This merges three steps in the lossless mode to a sin-
gle step and reduces the amount of data transfer. However,
updating the high pass part in the merged single step will
overwrite the input data before it is read, and this leaves us
with a problem. In Figure 3, high0 and low0 are updated
first in the interleaved lifting step, and high1 and low1 are
updated next. If we adjust the input data pointer and skip
the splitting step, updating high0 overwrites low2 in the in-
put data array before it is read. To remedy this problem, we
use an auxiliary buffer (in main memory), and the updated
high pass data are written to the buffer first and copied to the
original data array after the single merged step is finished.
The amount of data transfer related to the auxiliary buffer is
half of the entire column group, and this halves the amount
of data transfer for the splitting step. We recently find that
a similar idea is published in [7] for the lossy case. Loop
fusion for the four lifting steps is described in the paper. By
combining this idea with our approach, we merge one split-
ting step, four lifting steps, and the optional scaling step in
the lossy mode into a single loop to further reduce the DMA
bandwidth requirement.

5 Performance Results

We use the gcc compiler in the Cell SDK 2.1 with
-O5 optimization flag for the performance analysis. Our
baseline code is the open source Jasper 1.900.1 (http:
//www.ece.uvic.ca/∼mdadams/Jasper), and the
test file is a 28.3 MB 3800 × 2600 color image (http://
www.jpeg.org/jpeg2000guide/testimages/
WalthamWatch/Original/waltham dial.bmp).
The default option and -O mode=real -O rate=0.1 are
applied for lossless and lossy encoding, respectively. We
transcode the image from the BMP format to the JPEG2000
format and analyze the JPEG2000 encoding time. The
BMP decoding time is disregarded. Our experiments use
real hardware, the IBM QS20 Cell blade server with dual
Cell/B.E. 3.2 GHz chips (rev. 3) and 1 GB main memory.

5.1 The Encoding Time and the Scalabil-
ity

Figures 4 and 5 display the execution time and the
speedup for lossless and lossy encoding, respectively. Con-
sidering that the EBCOT algorithm is branchy and integer
based, the PPE runs the code faster than the SPE for Tier-1

87

Figure 4: The execution time and the speedup for lossless
encoding. Additional PPEs participate in Tier-1 encoding.

Figure 5: The execution time and the speedup for lossy En-
coding. Additional PPEs participate in Tier-1 encoding.

encoding. Therefore, 1 PPE only case outperforms the sin-
gle SPE performance. Still, we achieve near linear speedup
with the increasing number of SPEs and the extra speedup
with the additional PPE threads. As a consequence, 16 SPE
+ 2 PPE case completes Tier-1 encoding significantly faster

than 1 PPE only case.
In the case of the DWT, 1 SPE case outperforms 1 PPE

only case by far, and we demonstrate a remarkable speedup
with additional SPEs. vectorization contributes to the su-
perb single SPE performance, and in the lossy encoding
case, execution time is further reduced by replacing the
fixed point representation with the floating point represen-
tation. The efficient use of the off-chip memory bandwidth
based on our data decomposition scheme and the reduced
bandwidth requirement owing to the loop interleaving real-
ize the high scalability.

Overall lossless encoding demonstrates a parallel
speedup while the lossy encoding performance flattens with
the increasing number of SPEs due to the sequential rate
allocation stage, which takes around 60% of the total exe-
cution time in 16 SPE + 2 PPE case.

5.2 Comparison with the Previous Imple-
mentation

Figure 6: The overall performance comparison with the pre-
vious implementations for the Cell/B.E. The numbers above
the bars denote the speedup relative to Muta0.

Figures 6, 7, and 8 summarize the performance compar-
ison. Muta0 and Muta1 in the figures denote the implemen-
tations in [10], where the Motion JPEG2000 encoding algo-
rithm is optimized for the Cell/B.E. In Muta0, two encoding
threads encode two different frames concurrently with two
Cell/B.E. processors. The two chips work in a synergistic
way to increase the overall throughput. In Muta1, one en-
coding thread encodes all the frames using two Cell/B.E.
processors.

We use the performance numbers reported by the au-
thors for the comparison. The authors exclude the Motion
JPEG2000 format building time and measure the encoding

88

Figure 7: The EBCOT (Tier-1 + Tier2) encoding per-
formance comparison with the previous implementations
for the Cell/B.E. The numbers above the bars denote the
speedup relative to Muta0.

Figure 8: The DWT performance comparison with the pre-
vious implementations for the Cell/B.E. The numbers above
the bars denote the speedup relative to Muta0

time for 24 frames with the size of 2048 × 1080. Total ex-
ecution time is divided by the number of encoded frames to
compute the per frame encoding time. In Muta0, the encod-
ing time for one frame can be up to two times higher than
the reported number. We scale down the test image for our
implementation to 2048× 1080 for the fair comparison.

Still, there are multiple caveats in the comparison. First,
the Cell/B.E. 2.4GHz, instead of the Cell/B.E. 3.2 GHz,
is used in [10]. Second, our implementation based on
Jasper includes the reading and type conversion time from
the Jasper specific intermediate stream, JPEG2000 format

building time, and the final file I/O time to save the encoded
file. This may be different from [10]. Third, even though
the test images have the identical size, different characteris-
tics of the images may affect the result.

Our implementation with one Cell/B.E. processor and
two Cell/B.E. processors demonstrates superior overall per-
formance than the previous implementations with the two
Cell/B.E. processors. This is mainly due to the following
reasons. First, our EBCOT implementation reveals higher
scalability than the previous implementation. Minimized
communication among the PPE and the SPEs enhances the
scalability in addition to the implementation details. Sec-
ond, adopting a lifting based scheme instead of a convo-
lution based scheme, combined with the higher chip clock
frequency, leads to the higher single SPE performance for
the DWT, and our data decomposition scheme and the loop
interleaving contribute to the higher scalability. Third, we
parallelize the level shift, inter-component transform, and
quantization stages while these stages are executed on the
PPE in [10] to avoid the offloading overhead. The offload-
ing overhead is insignificant based on our data decomposi-
tion scheme.

5.3 Comparison with the Intel x86 Archi-
tecture

Figure 9: The encoding performance comparison of the
Cell/B.E. to that of the Intel Pentium IV 3.2 GHz processor.
The numbers above the bars denote the speedup relative to
the Intel Pentium IV processor.

Figure 9 summarizes the performance comparison be-
tween the Cell/B.E. and the Intel Pentium IV 3.2 GHz with

89

2 MB cache memory and 2 GB main memory. Jasper code
on the Pentium IV processor is compiled with the gcc ver-
sion 4.1.2 and -O5 optimization flag (instead of the default
-g -O2). To make the comparison as fair as possible, we
apply the optimizations except for parallelization, vector-
ization, and other optimizations specific to the Cell/B.E. to
both architectures. Note that the Pentium IV processor also
supports SIMD instructions, but vectorization is not imple-
mented in the Jasper code for the Pentium IV processor.
Also, for lossy encoding, the Cell/B.E. performs the float-
ing point arithmetic while the Pentium IV processor em-
ulates the floating point operations with the fixed point in-
structions. The Cell/B.E. outperforms the Pentium IV in the
comparison. Especially, the Cell/B.E. boasts the impressive
performance for the DWT while the sequential part of the
code running on the PPE lowers the overall speedup. These
performance numbers show that the Cell/B.E. has superb
performance for the floating point based loop intensive al-
gorithms, and its relatively low single core performance for
the branchy and integer based algorithms can be compen-
sated by exploiting multiple SPEs.

6 Conclusion

We analyze the underlying parallelism in JPEG2000 and
design new high-performance parallelization strategies in-
cluding the novel data decomposition scheme. Our data de-
composition scheme enhances the performance and reduces
the programming complexity at the same time. The effi-
ciency of the approach is demonstrated by the experimen-
tal results. In addition to the superior performance within
a single Cell/B.E., our implementation shows the scalable
performance on a single blade with two Cell/B.E. proces-
sors. This suggests that our approach will work efficiently
even in the future Cell/B.E. processors with more SPEs. In
conclusion, to unveil the Cell/B.E.’s full performance, ju-
dicious implementation strategy is required. Yet, under the
proper implementation strategy, the Cell/B.E. can unleash
superb performance, especially for the floating point based
loop intensive algorithms such as the DWT.

Acknowledgments

This work was supported in part by an IBM Shared
University Research (SUR) award and NSF Grants CNS-
0614915 and CAREER CCF-0611589. We acknowledge
Georgia Institute of Technology, its Sony-Toshiba-IBM
Center of Competence, and the National Science Founda-
tion, for the use of Cell Broadband Engine resources that
have contributed to this research.

References

[1] M. D. Adams and F. Kossentini. Jasper: a software-based
JPEG-2000 codec implementation. In Image Processing,
2000. Proceedings. 2000 International Conference on, vol-
ume 2, pages 53–56, Vancouver, BC, Canada, Sep. 2000.

[2] P. J. Burt and E. H. Anderson. The Laplacian pyramid as
a compact image code. IEEE Trans. Commun., 31(4):532–
540, Apr. 1983.

[3] D. Chaver, M. Prieto, L. Pinuel, and F. Tirado. Parallel
wavelet transform for large scale image processing. In Proc.
Int’l Parallel and Distributed Processing Symp. (IPDPS
2002), pages 4–9, Ft. Lauderdale, FL, USA, Apr. 2002.

[4] ISO and IEC. ISO/IEC 15444-1: Information technology-
JPEG2000 image coding system-part 1: Core coding sys-
tem, 2000.

[5] M. Kistler, M. Perrone, and F. Petrini. Cell multiproces-
sor communication network: Built for speed. IEEE Micro,
26(3):10–23, 2006.

[6] D. Krishnaswamy and M. Orchard. Parallel algorithms for
the two-dimensional discrete wavelet transform. In Proc.
Int’l Conf. Parallel Processing, volume 3, pages 47–54,
1994.

[7] R. Kutil. A single-loop approach to simd parallelization
of 2-D wavelet lifting. In Proc. Euromicro Int’l Conf. on
Parallel, Distributed, and Network-Based Processing (PDP
2006), Montbeliard, France, Feb. 2006.

[8] C.-J. Lian, K.-F. Chen, H.-H. Chen, and L.-G. Chen. Anal-
ysis and architecture design of block-coding engine for
EBCOT in JPEG 2000. IEEE Trans. Circuits and Systems,
13(3):219–230, Mar. 2003.

[9] P. Meerwald, R. Norcen, and A. Uhl. Parallel JPEG2000
image coding on multiprocessors. In Proc. Int’l Parallel and
Distributed Processing Symp. (IPDPS 2002), pages 2–7, Ft.
Lauderdale, FL, USA, Apr. 2002.

[10] H. Muta, M. Doi, H. Nakano, and Y. Mori. Multilevel paral-
lelization on the Cell/B.E. for a Motion JPEG 2000 encoding
server. In Proc. ACM Multimedia Conf. (ACM-MM 2007),
Augsburg, Germany, Sep. 2007.

[11] O. Nielsen and M. Hegland. Parallel performance of fast
wavelet transform. International Journal of High Speed
Computing, 11(1):55–73, Jun. 2000.

[12] W. Sweldens. The lifting scheme: A construction of second
generation wavelets. SIAM J. Math. Anal., 29(2):511–546,
Mar. 1998.

[13] D. Taubman. High performance scalable image compression
with EBCOT. IEEE Trans. Image Processing, 9(7):1158–
1170, Jul. 2000.

[14] P. P. Vaidyanathan. Quadrature mirror filter banks, m-band
extensions, and perfect reconstruction techniques. IEEE
ASSP Magazine, 4(7):4–20, Jul. 1987.

[15] L. Yang and M. Misra. Coarse-grained parallel algorithms
for multi-dimensional wavelet transforms. J. Supercomput-
ing, 12(1-2):99–118, Jan. 1998.

90

