
A Prediction based CMP Cache Migration Policy﹡

Song Hao1, Zhihui Du1+, David Bader2 and Man Wang1
1 Tsinghua National Laboratory for Information Science and Technology

 Department of Computer Science and Technology, Tsinghua University, 100084, Beijing, China
2College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332, USA

+Corresponding Author’s Email: duzh@tsinghua.edu.cn

Abstract

The large L2 cache’s access latency, which is mainly

caused by wire delay, is a critical problem to improve the
performance of CMP (Chip Multi-Processor) in NUCA (Non-
Uniform Cache Architecture). A CMP L2 cache accessing
performance model is provided first to analyze and evaluate
the L2 access efficiency in this paper. The total L2 cache
access latency problem is formalized as an optimal problem
and the lower bound of L2 cache access latency is given
based on this model. A novel PBM (Prediction based L2
cache data Migration) algorithm, which employs the
sequential prediction technology to identify the data to be
accessed in the near future, is designed to migrate the data to
be accessed toward their users in early and this method can
enable the cores to perform their accesses to the L2 cache in
close banks. The analysis results show that this active data
migration algorithm can take advantage of the principle of
locality to reduce the data access latency much more than the
traditional lazy data migration policy. To evaluate the
theoretic analysis results, the HMTT toolkit is used to
capture the complete memory trace of the SPEC 2000
benchmark running on an SMP computer. The memory trace
shows that our prediction technology can work well and at
the same time, an L2 cache access simulator is developed to
deal with the memory trace data. The simulation experiments
show that both the shorter block transfer distance and the
lower average access latency can be achieved in the PBM
policy. The average block transfer distance can be reduced
by up to 16.9%, and the average L2 access latency can be
reduced by up to 8.4%.

Key words Chip Multi-Processor, L2-cache, Non-Uniform
Cache Architecture, Migration policy, sequential prediction

1. Introduction1

1.1. Background

CMP (Chip multiprocessor) has become more and more
important both in academic research and industrial
applications. Small-scale CMPs, with two or four cores per

1 ﹡This paper is partly supported by National Natural Science Foundation
of China((No. 60773148, No.60503039 and No.10778604), and China’s
National Fundamental Research 973 Program (No. 2004CB217903)

chip, are already commercially available [1, 2]. With the
increase of transistor integration density, more and more
cores will be integrated in a single chip [3, 4]. At the same
time, on-chip memory hierarchies are summoning innovative
designs.

Most of the CMPs available on the market use the private
L1 cache structure. But the proposals for the organization of
the on-chip L2 cache are different. A shared L2 cache
architecture was widely used now, but with the growth of the
number of cores and the size of L2 cache, the average L2
cache access latency is heavily influenced by the latency of
accessing remote cache banks, which in turn is influenced by
on-chip wire delays. Private L2 cache has the advantage that
most L1 misses can be handled locally, which could reduce
remote accesses, but this will result in relatively much more
off-chip accesses than a shared L2 caches.

Wire delay plays a significant role in cache design. For
example, in the 65-nm technology (2004), transmitting data 1
cm requires only 2-3 cycles, but in the 32-nm technology
(which will be achieved around 2010 according to Moore’s
Law), this will necessitate over 12 cycles [5]. So the data in
the shared cache should be placed close to the core(s) to
minimize the access latency. This makes it difficult to
provide uniform access latencies to all the shared cache
banks.

A Non-Uniform Cache Architecture (NUCA) was provided
in [6] by Kim et al, which allows nearer cache banks to have
lower access latency than further banks. This idea could hide
the wire delay effectively. And in [7], Kim et al. proposed the
application of NUCA on CMP system. The main
improvement is that, by allowing data block to move in both
vertical and horizontal directions, each processor core can
perform its accesses in nearer banks, which will reduce the
access latency.

1.2. Migration policy of NUCA

The main design points of NUCA are as follows (as shown
in figure 1):
- The L2 cache is divided into multiple banks which are

organized as a 2-D matrix;
- An on-chip 2-D mesh network connects all the banks. Each

processor core has an interface to the network, and it can
access data in any bank;

- Data blocks can be moved among the banks in both vertical
and horizontal directions.

The 10th IEEE International Conference on High Performance Computing and Communications

978-0-7695-3352-0/08 $25.00 © 2008 IEEE

DOI 10.1109/HPCC.2008.83

374

The 10th IEEE International Conference on High Performance Computing and Communications

978-0-7695-3352-0/08 $25.00 © 2008 IEEE

DOI 10.1109/HPCC.2008.83

374

The 10th IEEE International Conference on High Performance Computing and Communications

978-0-7695-3352-0/08 $25.00 © 2008 IEEE

DOI 10.1109/HPCC.2008.83

374

Traditional data migration policy (called TMP below for
short) of NUCA uses an improved LRU algorithm. That is, if
a data block is accessed by a processor core, it will be moved
into an adjacent bank which is nearer to the user. And to
prevent migration conflicts, a two-bit saturated counter is
embedded in each cache tag. When a block is accessed, the
relevant counter increases, and if the counter is saturated,
migration is started and the counter is reset.

core
coreco

re
co

re

Figure 1. NUCA based CMP L2 cache

1.3. Prediction based migration

A lot of hardware prediction techniques have been
developed for data prefetch [8, 9, 10, 16]. Generally they can be
classified into sequential prefetch, related prefetch and stride
prefetch. Next-line or one-block look-ahead prefetch is one
kind of the sequential prefetch techniques. When cache miss
occurs, it can prefetch not only the block which cache misses
but also the next block. This method uses the spatial locality
of the program. Related prefetch techniques use the history
information of addresses to prefetch the data. But in this
method a very large related prediction table must be set.
Stride prefetch technique checks the memory access address
to find the available stride. If the stride is available, the
prefetch request is sent. This method can improve the
precision of prediction.

Most prediction techniques mentioned above are used for
data prefetch only when L2 miss occurs. That’s because, in
traditional cache architecture, data movement in cache only
happens when L2 miss occurs and a block has to be replaced
by another one. However, in NUCA architecture, data in L2
cache move not only when L2 miss occurs, but also when
migration happens. So we propose that prediction techniques
can also be used to design migration policy, which is called
prediction based migration, or PBM for short. That is, when a
block is accessed and migrated toward the processor core, the
predicted block should also be migrated toward the same core.
There are two advantages for the proposed policy:

(i) The PBM policy is very suitable for NUCA because it
makes the assumption of NUCA become reality. NUCA can
achieve high performance only when the processor core can
perform its accesses to L2 cache in a near bank. The PBM
policy can migrate the data toward its user before it is
actually referenced.

(ii) The PBM policy does not need to add more hardware
than traditional policy, because the pre-fetching circuit can
also be used for migration prediction.

In section 3, we will give out a migration algorithm based
on sequential prediction. The rest of the paper is organized as
follows. In section 2 the CMP L2 cache access problem is
formulated as an optimal problem. Section 3 gives the data
migration algorithm based on the problem provided in section
2. Section 4 provides the experimental results. Related work
is discussed in Section 5 and the conclusion is presented in
section 6.

2. Description of the problem

2.1. Model of the problem

In order to analyze and evaluate different applications
performance on NUCA based L2 cache, L2 Cache Accessing
Performance (CL2AP) model is provided. It can be defined as
a tuple of five elements:

, , , ,Location bank to network wire off chip contentionT T T T T− − −< >
in which:

LocationT is the searching time to identify the location
of a given memory address in L2 cache. networktobankT −− is the
time of accessing a given bank and put the referenced L2
cache block onto the network. wireT is the time of transferring
the given cache block on wire from source bank to target core.

chipoffT −
is the time to get missed data from off-chip memory to

L2 cache. contentionT is the waiting time when the referenced
bank is being accessed by another processor core.

Given an L2 Cache implementation, the value of
networktobankT −− and chipoffT − can’t be changed. And the value of

LocationT depends on the hardware implementation of the tag
array. For centralized tag array LocationT can’t be changed, and
for distributed tag array

LocationT depends on the locating
algorithm [6, 17]. In our experiment, we simulated a
centralized tag array, so LocationT is constant. The value of

contentionT depends on when the previous access from another
core to the same bank will finish. The value of wireT is highly
dependent on two factors: the distance from the processor
core to the referenced cache bank, and the contention of the
network-links. The first is the foremost factor to determine
the wireT , if the bank, which the cache block belongs to, is
very close to the core, the transport path will be short, so that
both the cache blocks’ transport latency and the probability of
network-links’ contention caused by intersecting transport
paths can be reduced. This is why it is critical to migrate data
toward its user. The second factor is quite dependent on the
router algorithm and in a NUCA-based L2 cache with the
sharing degree of two (which has been proved most effective
in [7]), the probability of network-links contention is quite
small.

2.2. Formulation of the Problem

375375375

Based on the CL2AP model provided in section 2.1, it will
take time

,
Single

i jT to finish each L2 cache access for
iCore to

get data from jBank

, ,

, , ,

, if hit and no contention

, if contention
,if miss

Location bank to network wire i j
Single

i j Location contention bank to network wire i j

Location off chip

T T T

T T T T T
T T

− −

− −

−

⎧ + +
⎪

= + + +⎨
⎪ +⎩

For a given application or task, let
iR be the average L2

cache hit rate of iCore . Let iC be the average bank contention
rate between iCore and other processor cores sharing the same
L2 cache. Let

jiNA ,
 be the total number of L2 cache accesses

to
jBlock for iCore . Let iNA be the total number of L2 cache

accesses for iCore . Let NB be the total number of L2 cache
blocks which has been accessed during the application’s
runtime, then ∑

=

=
NB

j
jii NANA

1
,

.

So for a given application or task running on iCore , the
total L2 cache access time total

iT will be

, , ,
1
[()

NB
total

i Location bank to network wire i j i j i
j

T T T T NA R− −
=

= + + × ×∑

, (1) ()]contention i j i i i i Location off chipT NA R C NA R T T −+ × × × + × − × +

i Location i bank to network iNA T NA T R− −= × + × ×

, , ,
1

() (1)
NB

i j wire i j contention i i i i off chip
j

NA T T C R NA R T −
=

+ × + × × + × − ×∑

To get the optimal solution of problem
: total

iMin T (1)
Two methods to reduce the value of total

iT . The first is to
make iCore perform its accesses to

jBlock in the nearest banks.

The second is to increase the value of iR as large as possible.
Let iwireT , be the least time for

iCore to access any bank, we
can get the lower bound of the problem (1),

)(,iwirenetworktobankLocationii TTTNALB ++×= −−
For all the cores, we can get the optimal problem as

1
: ()

C
Total

i
i

Min Max T
=

 (2)

And the lower bound will be
CiLBLB i ≤≤= 1),max(

in which: C is the total number of cores.

3. Migration algorithm design

3.1. Baseline policies

In this paper, our work mainly aims at reducing wireT . That
is, to reduce the time of transferring the cache block from the
source bank to the target processor core by pre-migrating the
predicted cache block toward its user. Before we introduce
the PBM policy, some baseline policies of Dynamic-NUCA
[7] are listed as follows:
 Location Policy, which will decide how to find a data block
in the L2 cache. There are two approaches: centralized tag

array and distributed tag array. The advantages and
shortcomings of each approach have been discussed in [7].
In our simulation experiments, we simulated a centralized
tag array to get an uniform locating time, in order that the

LocationT won’t disturb our comparison and evaluation on wireT ;
 Replacement policy. That is, when a cache block is
migrated from one bank to a nearer bank to the user or from
off-chip memory into L2 cache, which cache block will be
replaced. For the first condition, an improved LRU
algorithm will be used in the target cache bank to find a
least recently used cache block, this block is swapped with
the required block. For the second condition, the cache
block fetched from off-chip memory is placed in a farthest
bank to the user and the least used cache block is evicted
(as shown in figure 2).

Figure 2. Replacement policy: (a) on-chip migration; (b)
data fetching from off-chip memory or other L2 caches.

 Migration counter. In CMP system, the cache block may be
accessed by multiple processor cores concurrently, so
according to the migration policy the accessed block may
thrash in different directions. The migration counter is used
to prevent this. When a processor core accesses a block, the
counter increases, and if the counter is saturated, migration
is started and the counter is reset.

3.2. PBM policy

In this part, we present a PBM policy based on sequential
prediction.

3.2.1 Sequential prediction. As we mentioned in 1.3, in
sequential pre-fetching techniques, when a cache miss occurs,
it can prefetch not only the block which the cache misses, but
also the next block. This method uses the spatial locality of
the program, which follows the principle that the likelihood
of referencing a storage location is greater if a storage
location near it has been recently referenced. We checked the
feature of spatial locality of applications in SPEC2000
benchmark, and collected the address distances between two
sequential accesses to memory, which is called stride. Figure
6 shows that the sequential prediction, which is also called
Next-line prediction, is very effective and for most
applications a stride of one block accounts for the largest
proportion. The detailed simulation experiment is in section 4.

3.2.2 PBM algorithm. We import the sequential prediction
into traditional migration policy, and provide a prediction

376376376

based migration (PBM) policy. And in the PBM policy, when
a block is migrated among the banks, the next block (if it is
available on chip) is also migrated. So the procedure of an
access to L2 cache can be described in step as follows, where
the symbol A is the accessed block and B is the next block
after A in off-chip memory.

Prediction based migration:
 Step 1: search A in L2 cache. If A is unavailable in L2

cache, issue an off-chip access, else access A ;
 Step 2: increase A ’s migration counter by 1, if the

migration counter of A is saturated and A hasn’t reach the
nearest bank column, migrate block A towards the user and
reset the counter;
 Step 3: search B in L2 cache. If B is available in L2 cache

and B hasn’t reach the nearest bank column, increase B ’s

migration counter by 1, if the migration counter of B is

saturated, migrate block B towards the user and reset the
counter.

Here are some explanations to the algorithm:
1) in step 1, the searching mechanism we used in our

simulation experiment is the centralized tag array policy.
Because in the centralized tag array, the searching
time LocationT is uniform and will not affect the comparison of

wireT in different migration policies;

2)in step 1, if an L2 miss occurs, an off-chip memory
access will be launched through DMA operation. In our
simulation experiments we will give a constant parameter to
denote the off-chip overhead. One more radical policy is to
launch an off-chip memory access even if the predicted
block B is unavailable on chip, but this will make it unclear
that whether the performance contribution comes from the
migration policy or from the off-chip pre-fetching, and
what’s more, this may result in cache pollution.

3) In order to prevent the block from thrashing between
two processor cores, we use a migration counter. When a
block is accessed, the migration counter increases. And when
the counter reaches a threshold [7], the block is migrated. And
what’s more, the prediction will stop when the block has been
in the nearest bank column to the processor cores, which will
also reduce the thrashing (according to [11], the processor
cores sharing the same L2 cache are placed on the same side
of L2 cache, and they share the same closest bank column).

3.3 Performance analysis

As we discussed in 2.2, there are two ways to reduce the L2
cache access latency. The first is to make L2 cache access
occur in as nearer banks to the core as possible, which
contributes to reduce wireT ; the second is to make the L2 cache
miss rate be as lower as possible. The policy provided in 3.2
mainly aims to reduce wireT by migrate the predicted block
toward the user without increasing other access time. In this
section, we will analyze the performance improvement of the
policy.

The main notations used throughout this paper are
summarized in Table 1 for clarity.

TABLE 1
SUMMARY OF NOTATIONS

Symbol Description
Cache block parameters

md the normalized distance between a data
block and a processor core

Block cache block being accessed by a
processor core

Applications’ parameters
Core a processor core on which the

application is running during its
runtime

NB Total number of blocks which has
been accessed during an application’s

runtime
iNA Total number of L2 accesses for

iCore

,i jNA Total time of the application
accessing

jBlock during the runtime.

Other symbols
TD Latency increment of transferring a

cache block for one further bank

As we discussed in 2.2, for a given application or task

running on iCore , the total L2 cache access time total
iT will be:

total
i i Location i bank to network iT NA T NA T R− −= × + × ×

, , ,
1

()
NB

i j wire i j contention i i
j

NA T T C R
=

+ × + × ×∑ (3)

(1)i i off chipNA R T −+ × − ×
So the average L2 latency can be formulated as:

2

total
i

l
i

TL
NA

= (1)Location bank to network i i off chipT T R R T− − −= + × + − ×

, , ,
1

(())
NB

i j wire i j contention i i i
j

NA T T C R NA
=

+ × + × ×∑

So

2lL ∝
, , ,

1

NB

i j wire i j
j

NA T
=

⋅∑ (4)

In formula (4), , , ,i j wire i jNA T⋅ is the total transfer time when
accessing

jBlock and for a single access the transport time can
be calculated as:

,wire m mT d TD= ×
in which: md is the normalized distance between jBlock and
processor

iCore . TD is the latency increment of transporting a
cache block for one further bank.

The object of our PBM policy is to reduce the average L2
access latency by reducing the average transfer distance
between the block and the processor core.

Let the average transfer distance in TMP policy be d , and
that in PBM policy be 'd . According to our analysis, in any
situation we can get 'd d≤ . We didn’t list the detail
procedure because of the limit on paper’s length. But we can
find that the PBM policy can reduce the average transfer

377377377

distance and the proportion of reduction can be expressed
as '

100%d d
d
− × . In order to find out the upper bound of

reduction, we define md as:

0m nd d d= +
in which: 0d is the distance between the nearest bank and the
interface of

iCore to the on-chip network. nd is the distance

between jBlock to the nearest bank of
iCore . So d and 'd can

be expressed as:
0 1nd d d= +

'
0 2nd d d= +

in which
1nd and

2nd are the distances between the average
position of

jBlock to the nearest bank of
iCore .

In the best situation, the PBM can pre-migrate
jBlock into

the nearest bank of
iCore before it is actually accessed,

then
2 0nd = , '

0d d= , so the upper bound of reduction is

1 100%n
reduction

dUB
d

= × (5)

We can find from (5) that the upper bound of reduction
depends on

1nd and in TMP policy
1nd depends on the initial

distance between jBlock and processor
iCore , so if the data

block is initially quite far from the processor core, the
reduction of average transfer distance can be considerable.

4. Simulation experiment and results

4.1 Experiment setup

In order to evaluate the proposed PBM policy, we set up a
NUCA-based L2 cache model, as shown in figure 3, and the
system parameters we list in Table 2 have been verified to be
optimized in [7].

Figure 3. The simulation model for experiment

To simulate real applications’ L2 cache behavior, we ran
the SPEC2000 benchmark on an SMP computer (the
parameters are shown in table 3), and we captured the
memory trace with the HMTT toolkit [16]. The HMTT toolkit
is designed especially for memory trace capture. It is
composed of a Memory Trace Board (MTB) and a trace
Packets Capture and Analysis Toolkits (PCAT). The MTB is

a hardware monitor board. When the SPEC2000 is running
on the SMP machine, the MTB is plugged in an idle DIMM
slot and it can snoop on memory command signals which are
sent to DDR SDRAM from memory controller. We shut
down the L2 cache of the processors, so the required memory
addresses in the command signal is directly leaked from the
L1 cache. Then MTB forwards the command to a Recorder
machine. The Recorder machine extracts the memory
addresses from the memory command signal and organizes
them into trace items (see figure 4) which is a tuple <address,
r/w, timestamp>.After SPEC2000 finished running on the
SMP machine, the Recorder machine will get the whole
memory trace.

Figure 4. The format of memory trace items

TABLE 2
 SYSTEM PARAMETERS

PARAMETER VALUE
Number of CPUs 16
Processor Model In-order

L2 cache 8×8 banks
L2 cache bank 64k, 4 cycle latency
Sharing degree 2

Cache block size 64B
Network 1 cycle latency between two

adjacent banks
On-chip directory Centralized partial tag arrays

TABLE 3
 PARAMETERS OF COMPUTER USED FOR

CAPTURING MEMORY TRACE

FEATURE PARAMETER

CPU 2 × Intel P4 2.0GHz

L1 Cache 12KB I, 64B/Line, pseudo-LRU

8KB D, 64B/Line, pseudo-LRU

L2 Cache Shut down

Memory DDR 200, 512M

OS Fedora Core 7 (Kernel 2.6.22)

Benchmark SPEC 2000, 12 CINT+13CFP
programs

Then we decode the memory with the PCAT and feed them
into a simulator we write in C language. The simulator is

378378378

composed of three modules: Task synchronizer, Network
assigner and Block container.

Figure 5. The simulator’s working mechanism

The mechanism of the simulator is shown in figure 5. A

simulated tag array is kept in the Task synchronizer. When
the simulation starts, the Task synchronizer reads the memory
trace items in batches, and extracts the block number and the
timestamp, then searches the block number in the tag array
sequentially. If cache hits, the Task synchronizer sends a
request to the Network assigner according to the timestamp,
or else start an off-chip access, then updates the tag array and
the Block container. The request which is sent by the Task
synchronizer to the Network assigner contains the
information of source, target, and block number. The
Network assigner contains a soft X-Y on-chip router. When it
receives a request from the Task synchronizer, the network
assigner marks all the links on the path form the source to the
target as OCCUPIED, and return a SUCCESS signal to the
Task synchronizer. Or else if there is no available path found,
it will return a signal of FAILED. According to the signal
from the Network assigner, the Task synchronizer can choose
to send a new request or resend the old request a fixed period
of time later. The Block container records the block numbers
in each bank, and what’s more it implements the mapping
policy, migration policy and the replacement policy. For each
operation to the blocks, the Block container will return a
signal to the Task synchronizer to update the tag array.

4.2 Experimental results
In this part, we introduce the result of our simulation

experiments which will show the effect of our PBM policy.

4.2.1 Sequential Prediction. Our PBM policy is based on the
sequential prediction, which claims that the block after the
presently accessed block will be referenced right away. We
record the memory stride of the sequential memory trace. The
result is show in figure 6.

We can see from figure 6 that for both integer and floating-
point applications the memory stride of one block accounts
for the largest proportion. So sequential prediction is accurate
for most applications to foretell which block will be
referenced before long. However, we can also see that for
some applications (e.g. bzip2, vpr and apsi), the one-block
stride only accounts for over 30% (but still the largest
proportion). For such applications, the memory stride’s
distribution is quite out of order. So how to get more accurate
prediction will be our next research.

4.2.2 Average Transfer distance. The target of our PBM
policy is to reduce the transfer distance between the source
bank to the target processor core, which will reduce the wireT
and consequently reduce the average L2 access latency.

Figure 7 shows the comparison of average transfer distance
between TMP and PBM policy. We can see that for each
application the average transfer distance is reduced in a
certain proportion. In the best situation, the average transfer
distance is reduced by 16.9%.

Figure 8 shows the improvement on average access latency
owing to the reduction of average transfer distance. We can
see the reduction of L2 access latency is achieved in all the
applications. And the improvement can reach up to 8.4%.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 4 7 10 13 16 19 22 25 28 31 34 37 40

bzip2

crafty

eon

gap

gcc

gzip

mcf

parser

perlbmk

twolf

vortex

vpr

A
cc

um
ul

at
iv

e
D

is
tri

bu
tio

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 4 7 10 13 16 19 22 25 28 31 34 37 40

applu

swim

apsi

art

equake

facerec

mesa

mgrid

sixtrack

wupwise

fma3d

lucas

(a) Memory Stride of SPEC 2000 (CINT) (b) Memory Stride of SPEC 2000 (CFP)

Figure 6. Spatial locality feature of SPEC 2000

379379379

0

1

2

3

4

5

6

7

8

16
4.g

zip

16
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

16
8.w

upw
ise

17
1.s

wim

17
2.m

gri
d

17
3.a

pp
lu

17
7.m

es
a

17
9.a

rt

18
3.e

qu
ak

e

18
7.f

ac
ere

c

18
9.l

uc
as

19
1.f

ma3
d

20
0.s

ixt
rac

k

30
1.a

ps
i

TMP

PBM

Figure 7. Comparison of the average transfer distance between TMP and PBM policy.

The results are normalized by wire length between two adjacent routers

0

2

4

6

8

10

12

14

16

16
4.g

zip

16
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

16
8.w

upw
ise

17
1.s

wim

17
2.m

gri
d

17
3.a

pp
lu

17
7.m

es
a

17
9.a

rt

18
3.e

qu
ak

e

18
7.f

ac
ere

c

18
9.l

uc
as

19
1.f

ma3
d

20
0.s

ixt
rac

k

30
1.a

ps
i

TMP

PBM

Figure 8. Comparison of L2 cache’s average access latency (cycles)

5. Related work

The increasing wire delay makes the physical
position of data in the cache very important to the
access latency. If a core in the CMP wants to use the
data far from it, the access latency will be
significantly high compared to the data near the core.

The NUCA architecture [6, 11] was first presented to
hide the wire delay. In the NUCA, the cache was
divided into several banks, if a core wants to use data
in a remote bank, the data will be provided to it, and
at the same time the data will be moved to a bank
near the core for the next access.

As a development, Huh et al. [7] design a CMP
cache to support a spectrum of sharing degrees,
denoting the number of processors sharing a pool of
their local L2 banks. The average access latency can
be decreased by partitioning the aggregate on-chip
cache into disjoint pools, to fit the run application’s
capacity requirement and sharing patterns.

Lastly, Chang and Sohi present the Cooperative
Caching (CC) [13], which could achieve the benefits
of both private and shared cache designs. But the
shortage of CC is its lack of support to TLP which
could improve the performance of CMP significantly.
CC uses a private cache based architecture which can
reduce the number of expensive cross-chip and off-
chip accesses.

6. Conclusion

In this paper, a CMP L2 cache accessing
performance model to analyze and evaluate the L2
access efficiency is designed. According to this model,
a prediction based migration policy is proposed and an
active data migration algorithm is designed. This
proposed policy is based on the principle of locality
and employs the sequential prediction technology to
indicate the data to be accessed in the near future.
According to the applications’ features of accessing L2
cache, the predicted block will be pre-migrated toward
its user before it is actually accessed.

380380380

Two objects of the proposed PBM policy are to
achieve shorter block transfer distance and lower
average access latency. The analysis results show that
this active data migration algorithm can take advantage
of the features of L2 cache access to improve the
performance of L2 cache much more than the
traditional data migration policy.

According to the simulation experiment, the
proposed policy exhibits significant improvements in
L2 cache access latency compared to traditional
migration policy. The experiment shows that the
average block transfer distance can be reduced up to
16.9%, and the average access latency can be reduced
by up to 8.4%.

Acknowledgement

The authors would like to thank the Advanced
System Laboratory of the Institute of Computing
Technology, Chinese Academy of Science for
providing their HMTT toolkit and especially thank Dr.
Yungang Bao for spending several weeks with us to
help to capture the memory trace of SPEC2000.

References

[1] R. Kalla, B. Sinharoy, and J.M. Tendler. “IBM Power5
Chip: A Dual-Core Multithreaded Processor”. Micro, IEEE
Volume 24, Issue 2, Mar-Apr 2004, Page(s): 40 – 47
[2] C. McNairy, R. Bhatia. “Montecito: A Dual-Core, Dual-
Thread Itanium Processor”. Micro, IEEE Volume 25, Issue
2, March-April 2005, Page(s): 10 – 20
[3] P. Congetira, K. Aingaran, and K. Olukotum. “Niagara:
A 32-Way Multithreaded Sparc Processor”. Micro, IEEE
Volume 25, Issue 2, March-April 2005, Page(s): 21 - 29
[4] D. Pham, S. Asaon, M. Bolliger and etc. “The Design
and Implementation of a First-Generation CELL Processor”.
Solid-State Circuits Conference, 2005. Digest of Technical
Papers. ISSCC. 2005 IEEE International Volume 1, 6-10 Feb.
2005, Page(s): 184 – 592
[5] B. M. Bechmann, and D. A. Wood. “Managing Wire
Delay in Large Chip-Multiprocessor Caches”.
Microarchitecture, 2004. MICRO-37 2004. 37th International
Symposium on 04-08 Dec. 2004, Page(s): 319 - 330
[6] C. Kim, D. Burger, S.W. Keckler. “An Adaptive Non-
Uniform Cache Structure for Wire-Delay Dominated On-chip

Caches”. Proc. Int'l Conf. Architectural Support for
Programming Languages and Operating Systems (ASPLOS-
10), ACM Press, 2002, Page(s): 211-222.
[7] J. Huh, C. Kim, H. Shafi, L.X. Zhang. “A NUCA
Substrate for Flexble CMP Cache Sharing”. In the 19th ICS,
June 2005, Page(s): 31–40.
[8] P.J. Denning, S.C. Schwartz. “Locality of reference”.
Communications of the ACM, Volume 15 , Issue 3 (March
1972), Page(s): 191-198
[9] X. Li, L. Ji, B. Shen, W. Li, Q. Zhang. “VLSI
implementation of a high-performance 32-bit RISC
microprocessor”. Communications, Circuits and Systems and
West Sino Expositions, IEEE 2002 International Conference
on, Volume 2, 29 June-1 July 2002, Page(s): 1458 – 1461
[10] D. Prycker, M. “Representing the Effect of Instruction
Prefetch in a Microprocessor Performance Model”.
Transactions on Computers, Volume C-32, Issue 9, Sept.
1983, Page(s): 868 – 872
[11] C. Kim, D. Burger, S. W. Kechler. “Nonuniform Cache
Architectures for Wire-Delay Dominated On-Chip Caches”.
Micro, IEEE Volume 23, Issue 6, Nov.-Dec. 2003
Page(s):99 – 107
[12] M. Zhang, K. Asanovic. “Victim Migration:
Dynamically Adapting Between Private and Shared CMP
Caches”. Technical Report of Computer Science and
Artificial Intelligence Laboratory, MIT. Oct. 10, 2005.
[13] J. Chang, and G. S. Sohi. “Cooperative Caching for Chip
Multiprocessors”. Computer Architecture, 2006. ISCA '06.
33rd International Symposium on 2006 Page(s):264 – 276
[14] M. Zhang, K. Asanovic. “Victim Replication:
Maximizing Capacity while Hiding Wire Delay in Tiled Chip
Multiprocessor”. Computer Architecture, 2005. ISCA '05.
Proceedings. 32nd International Symposium on Jun. 4-8
2005 Page(s):336 – 345
[15] K. Asanovic et al. “The Landscape of Parallel
Computing Research: A View from Berkeley”. Technical
Report No. UCB/EECS-2006-183,
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-
2006-183.html
[16] Y. Bao, M. Chen, Y. Ruan, L. Liu, J. Fan, Q. Yuan, B.
Song, J. Xu. HMTT: a platform independent full-system
memory trace monitoring system. SIGMETRICS 2008,
Annapolis, Maryland, USA, June 2-6,2008
[17] A. Sayaka, L. Feihui, K. Mahmut, R. Padma, I.M. Jane.
“Ring Prediction for Non-Uniform Cache Architecture”.
Parallel Architecture and Compilation Techniques, 2007.
PACT 2007. 16th International Conference on, 15-19 Sept.
2007 Page(s):401 - 401

381381381

