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Abstract 

 
The large L2 cache’s access latency, which is mainly 

caused by wire delay, is a critical problem to improve the 
performance of CMP (Chip Multi-Processor) in NUCA (Non-
Uniform Cache Architecture). A CMP L2 cache accessing 
performance model is provided first to analyze and evaluate 
the L2 access efficiency in this paper. The total L2 cache 
access latency problem is formalized as an optimal problem 
and the lower bound of L2 cache access latency is given 
based on this model. A novel PBM (Prediction based L2 
cache data Migration) algorithm, which employs the 
sequential prediction technology to identify the data to be 
accessed in the near future, is designed to migrate the data to 
be accessed toward their users in early and this method can 
enable the cores to perform their accesses to the L2 cache in 
close banks. The analysis results show that this active data 
migration algorithm can take advantage of the principle of 
locality to reduce the data access latency much more than the 
traditional lazy data migration policy. To evaluate the 
theoretic analysis results,   the  HMTT toolkit is used to 
capture the complete memory trace of the SPEC 2000 
benchmark running on an SMP computer. The memory trace 
shows that our prediction technology can work well and at 
the same time, an L2 cache access simulator is developed to 
deal with the memory trace data. The simulation experiments 
show that both the shorter block transfer distance and the 
lower average access latency can be achieved in the PBM 
policy. The average block transfer distance can be reduced 
by up to 16.9%, and the average L2 access latency can be 
reduced by up to 8.4%. 

Key words Chip Multi-Processor, L2-cache, Non-Uniform 
Cache Architecture, Migration policy, sequential prediction 
 
1. Introduction1 
 
1.1.  Background 
 

CMP (Chip multiprocessor) has become more and more 
important both in academic research and industrial 
applications. Small-scale CMPs, with two or four cores per 
                                                           
1 ﹡This paper is partly supported by National Natural Science Foundation 
of China((No. 60773148, No.60503039 and No.10778604), and China’s 
National Fundamental Research 973 Program (No. 2004CB217903) 

chip, are already commercially available [1, 2]. With the 
increase of transistor integration density, more and more 
cores will be integrated in a single chip [3, 4]. At the same 
time, on-chip memory hierarchies are summoning innovative 
designs. 

Most of the CMPs available on the market use the private 
L1 cache structure. But the proposals for the organization of 
the on-chip L2 cache are different. A shared L2 cache 
architecture was widely used now, but with the growth of the 
number of cores and the size of L2 cache, the average L2 
cache access latency is heavily influenced by the latency of 
accessing remote cache banks, which in turn is influenced by 
on-chip wire delays. Private L2 cache has the advantage that 
most L1 misses can be handled locally, which could reduce 
remote accesses, but this will result in relatively much more 
off-chip accesses than a shared L2 caches. 

Wire delay plays a significant role in cache design. For 
example, in the 65-nm technology (2004), transmitting data 1 
cm requires only 2-3 cycles, but in the 32-nm technology 
(which will be achieved around 2010 according to Moore’s 
Law), this will necessitate over 12 cycles [5]. So the data in 
the shared cache should be placed close to the core(s) to 
minimize the access latency. This makes it difficult to 
provide uniform access latencies to all the shared cache 
banks.  

A Non-Uniform Cache Architecture (NUCA) was provided 
in [6] by Kim et al, which allows nearer cache banks to have 
lower access latency than further banks. This idea could hide 
the wire delay effectively. And in [7], Kim et al. proposed the 
application of NUCA on CMP system. The main 
improvement is that, by allowing data block to move in both 
vertical and horizontal directions, each processor core can 
perform its accesses in nearer banks, which will reduce the 
access latency. 

 
1.2.  Migration policy of NUCA 
 

The main design points of NUCA are as follows (as shown 
in figure 1): 
- The L2 cache is divided into multiple banks which are 

organized as a 2-D matrix; 
- An on-chip 2-D mesh network connects all the banks. Each 

processor core has an interface to the network, and it can 
access data in any bank; 

- Data blocks can be moved among the banks in both vertical 
and horizontal directions. 
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Traditional data migration policy (called TMP below for 
short) of NUCA uses an improved LRU algorithm. That is, if 
a data block is accessed by a processor core, it will be moved 
into an adjacent bank which is nearer to the user. And to 
prevent migration conflicts, a two-bit saturated counter is 
embedded in each cache tag. When a block is accessed, the 
relevant counter increases, and if the counter is saturated, 
migration is started and the counter is reset. 

core
coreco

re
co

re

 
Figure 1. NUCA based CMP L2 cache 

 

1.3. Prediction based migration 
 

A lot of hardware prediction techniques have been 
developed for data prefetch [8, 9, 10, 16]. Generally they can be 
classified into sequential prefetch, related prefetch and stride 
prefetch. Next-line or one-block look-ahead prefetch is one 
kind of the sequential prefetch techniques. When cache miss 
occurs, it can prefetch not only the block which cache misses 
but also the next block. This method uses the spatial locality 
of the program. Related prefetch techniques use the history 
information of addresses to prefetch the data. But in this 
method a very large related prediction table must be set. 
Stride prefetch technique checks the memory access address 
to find the available stride. If the stride is available, the 
prefetch request is sent. This method can improve the 
precision of prediction. 

Most prediction techniques mentioned above are used for 
data prefetch only when L2 miss occurs. That’s because, in 
traditional cache architecture, data movement in cache only 
happens when L2 miss occurs and a block has to be replaced 
by another one. However, in NUCA architecture, data in L2 
cache move not only when L2 miss occurs, but also when 
migration happens. So we propose that prediction techniques 
can also be used to design migration policy, which is called 
prediction based migration, or PBM for short. That is, when a 
block is accessed and migrated toward the processor core, the 
predicted block should also be migrated toward the same core. 
There are two advantages for the proposed policy: 

(i) The PBM policy is very suitable for NUCA because it 
makes the assumption of NUCA become reality. NUCA can 
achieve high performance only when the processor core can 
perform its accesses to L2 cache in a near bank. The PBM 
policy can migrate the data toward its user before it is 
actually referenced. 

(ii) The PBM policy does not need to add more hardware 
than traditional policy, because the pre-fetching circuit can 
also be used for migration prediction. 

In section 3, we will give out a migration algorithm based 
on sequential prediction. The rest of the paper is organized as 
follows. In section 2 the CMP L2 cache access problem is 
formulated as an optimal problem. Section 3 gives the data 
migration algorithm based on the problem provided in section 
2. Section 4 provides the experimental results. Related work 
is discussed in Section 5 and the conclusion is presented in 
section 6. 
 
2. Description of the problem 
 
2.1. Model of the problem 
 

In order to analyze and evaluate different applications 
performance on NUCA based L2 cache, L2 Cache Accessing 
Performance (CL2AP) model is provided. It can be defined as 
a tuple of five elements: 

, , , ,Location bank to network wire off chip contentionT T T T T− − −< >  
in which: 

LocationT is the searching time to identify the location 
of a given memory address in L2 cache. networktobankT −− is the 
time of accessing a given bank and put the referenced L2 
cache block onto the network. wireT is the time of transferring 
the given cache block on wire from source bank to target core. 

chipoffT −
is the time to get missed data from off-chip memory to 

L2 cache. contentionT is the waiting time when the referenced 
bank is being accessed by another processor core. 

Given an L2 Cache implementation, the value of 
networktobankT −− and chipoffT −  can’t be changed. And the value of 

LocationT  depends on the hardware implementation of the tag 
array. For centralized tag array LocationT can’t be changed, and 
for distributed tag array 

LocationT  depends on the locating 
algorithm [6, 17]. In our experiment, we simulated a 
centralized tag array, so LocationT is constant. The value of 

contentionT  depends on when the previous access from another 
core to the same bank will finish. The value of wireT is highly 
dependent on two factors: the distance from the processor 
core to the referenced cache bank, and the contention of the 
network-links. The first is the foremost factor to determine 
the wireT , if the bank, which the cache block belongs to, is 
very close to the core, the transport path will be short, so that 
both the cache blocks’ transport latency and the probability of 
network-links’ contention caused by intersecting transport 
paths can be reduced. This is why it is critical to migrate data 
toward its user. The second factor is quite dependent on the 
router algorithm and in a NUCA-based L2 cache with the 
sharing degree of two (which has been proved most effective 
in [7]), the probability of network-links contention is quite 
small. 

 
2.2. Formulation of the Problem 
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Based on the CL2AP model provided in section 2.1, it will 
take time 

,
Single

i jT  to finish each L2 cache access for 
iCore  to 

get data from jBank  

, ,

, , ,

, if hit and no contention

, if contention
,if miss

Location bank to network wire i j
Single

i j Location contention bank to network wire i j

Location off chip

T T T

T T T T T
T T

− −

− −

−

⎧ + +
⎪

= + + +⎨
⎪ +⎩

 

For a given application or task, let 
iR  be the average L2 

cache hit rate of iCore . Let iC be the average bank contention 
rate between iCore and other processor cores sharing the same 
L2 cache. Let 

jiNA ,
 be the total number of L2 cache accesses 

to
jBlock for iCore . Let iNA  be the total number of L2 cache 

accesses for iCore . Let NB be the total number of L2 cache 
blocks which has been accessed during the application’s 
runtime, then ∑

=

=
NB

j
jii NANA

1
,

. 

So for a given application or task running on iCore , the 
total L2 cache access time total

iT will be 

, , ,
1
[( )

NB
total

i Location bank to network wire i j i j i
j

T T T T NA R− −
=

= + + × ×∑  

, (1 ) ( )]contention i j i i i i Location off chipT NA R C NA R T T −+ × × × + × − × +  

i Location i bank to network iNA T NA T R− −= × + × ×  

, , ,
1

( ) (1 )
NB

i j wire i j contention i i i i off chip
j

NA T T C R NA R T −
=

+ × + × × + × − ×∑  

To get the optimal solution of problem 
: total

iMin T        (1) 
Two methods to reduce the value of total

iT . The first is to 
make iCore perform its accesses to

jBlock in the nearest banks. 

The second is to increase the value of iR as large as possible. 
Let iwireT ,  be the least time for 

iCore  to access any bank, we 
can get the lower bound of the problem (1), 

)( ,iwirenetworktobankLocationii TTTNALB ++×= −−  
For all the cores, we can get the optimal problem as 

1
: ( )

C
Total

i
i

Min Max T
=

     (2)  

And the lower bound will be  
CiLBLB i ≤≤= 1),max(  

in which: C is the total number of cores. 
 

3. Migration algorithm design 
 
3.1. Baseline policies 

In this paper, our work mainly aims at reducing wireT . That 
is, to reduce the time of transferring the cache block from the 
source bank to the target processor core by pre-migrating the 
predicted cache block toward its user. Before we introduce 
the PBM policy, some baseline policies of Dynamic-NUCA 
[7] are listed as follows: 
 Location Policy, which will decide how to find a data block 
in the L2 cache. There are two approaches: centralized tag 

array and distributed tag array. The advantages and 
shortcomings of each approach have been discussed in [7]. 
In our simulation experiments, we simulated a centralized 
tag array to get an uniform locating time, in order that the 

LocationT won’t disturb our comparison and evaluation on wireT ; 
 Replacement policy. That is, when a cache block is 
migrated from one bank to a nearer bank to the user or from 
off-chip memory into L2 cache, which cache block will be 
replaced. For the first condition, an improved LRU 
algorithm will be used in the target cache bank to find a 
least recently used cache block, this block is swapped with 
the required block. For the second condition, the cache 
block fetched from off-chip memory is placed in a farthest 
bank to the user and the least used cache block is evicted 
(as shown in figure 2). 
 

 
Figure 2. Replacement policy: (a) on-chip migration; (b) 
data fetching from off-chip memory or other L2 caches. 

 
 Migration counter. In CMP system, the cache block may be 
accessed by multiple processor cores concurrently, so 
according to the migration policy the accessed block may 
thrash in different directions. The migration counter is used 
to prevent this. When a processor core accesses a block, the 
counter increases, and if the counter is saturated, migration 
is started and the counter is reset. 
 

3.2. PBM policy 
 

In this part, we present a PBM policy based on sequential 
prediction.  

 
3.2.1 Sequential prediction. As we mentioned in 1.3, in 
sequential pre-fetching techniques, when a cache miss occurs, 
it can prefetch not only the block which the cache misses, but 
also the next block. This method uses the spatial locality of 
the program, which follows the principle that the likelihood 
of referencing a storage location is greater if a storage 
location near it has been recently referenced. We checked the 
feature of spatial locality of applications in SPEC2000 
benchmark, and collected the address distances between two 
sequential accesses to memory, which is called stride. Figure 
6 shows that the sequential prediction, which is also called 
Next-line prediction, is very effective and for most 
applications a stride of one block accounts for the largest 
proportion. The detailed simulation experiment is in section 4. 
 
3.2.2 PBM algorithm. We import the sequential prediction 
into traditional migration policy, and provide a prediction 
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based migration (PBM) policy. And in the PBM policy, when 
a block is migrated among the banks, the next block (if it is 
available on chip) is also migrated. So the procedure of an 
access to L2 cache can be described in step as follows, where 
the symbol A  is the accessed block and B is the next block 
after A in off-chip memory. 

Prediction based migration: 
 Step 1: search A  in L2 cache. If A  is unavailable in L2 

cache, issue an off-chip access, else access A ; 
 Step 2: increase A ’s migration counter by 1, if the 

migration counter of A is saturated and A hasn’t reach the 
nearest bank column, migrate block A  towards the user and 
reset the counter; 
 Step 3: search B in L2 cache. If B is available in L2 cache 

and B hasn’t reach the nearest bank column, increase B ’s 

migration counter by 1, if the migration counter of B is 

saturated, migrate block B towards the user and reset the 
counter. 

Here are some explanations to the algorithm: 
1) in step 1, the searching mechanism we used in our 

simulation experiment is the centralized tag array policy. 
Because in the centralized tag array, the searching 
time LocationT is uniform and will not affect the comparison of 

wireT  in different migration policies; 

2)in step 1, if an L2 miss occurs, an off-chip memory 
access will be launched through DMA operation. In our 
simulation experiments we will give a constant parameter to 
denote the off-chip overhead. One more radical policy is to 
launch an off-chip memory access even if the predicted 
block B is unavailable on chip, but this will make it unclear 
that whether the performance contribution comes from the 
migration policy or from the off-chip pre-fetching, and 
what’s more, this may result in cache pollution.  

3) In order to prevent the block from thrashing between 
two processor cores, we use a migration counter. When a 
block is accessed, the migration counter increases. And when 
the counter reaches a threshold [7], the block is migrated. And 
what’s more, the prediction will stop when the block has been 
in the nearest bank column to the processor cores, which will 
also reduce the thrashing (according to [11], the processor 
cores sharing the same L2 cache are placed on the same side 
of L2 cache, and they share the same closest bank column). 

 
3.3 Performance analysis 
 

As we discussed in 2.2, there are two ways to reduce the L2 
cache access latency. The first is to make L2 cache access 
occur in as nearer banks to the core as possible, which 
contributes to reduce wireT ; the second is to make the L2 cache 
miss rate be as lower as possible. The policy provided in 3.2 
mainly aims to reduce wireT  by migrate the predicted block 
toward the user without increasing other access time. In this 
section, we will analyze the performance improvement of the 
policy. 

The main notations used throughout this paper are 
summarized in Table 1 for clarity.  

TABLE 1 
SUMMARY OF NOTATIONS 

Symbol Description 
Cache block parameters 

md  the normalized distance between a data 
block and a processor core  

Block  cache block being accessed by a 
processor core 

Applications’ parameters 
Core  a processor core on which the 

application is running during its 
runtime 

NB Total number of blocks which has 
been accessed during an application’s 

runtime 
iNA  Total number of L2 accesses for 

iCore  

,i jNA Total time of the application 
accessing

jBlock during the runtime. 

Other symbols 
TD  Latency increment of transferring a 

cache block for one further bank 
 
As we discussed in 2.2, for a given application or task 

running on iCore , the total L2 cache access time total
iT will be: 

total
i i Location i bank to network iT NA T NA T R− −= × + × ×  

, , ,
1

( )
NB

i j wire i j contention i i
j

NA T T C R
=

+ × + × ×∑   (3) 

(1 )i i off chipNA R T −+ × − ×  
So the average L2 latency can be formulated as: 

2

total
i

l
i

TL
NA

= (1 )Location bank to network i i off chipT T R R T− − −= + × + − ×  

, , ,
1

( ( ) )
NB

i j wire i j contention i i i
j

NA T T C R NA
=

+ × + × ×∑  

So  

2lL ∝
, , ,

1

NB

i j wire i j
j

NA T
=

⋅∑   (4) 

In formula (4), , , ,i j wire i jNA T⋅ is the total transfer time when 
accessing

jBlock and for a single access the transport time can 
be calculated as: 

,wire m mT d TD= ×  
in which: md is the normalized distance between jBlock and 
processor 

iCore . TD is the latency increment of transporting a 
cache block for one further bank. 

The object of our PBM policy is to reduce the average L2 
access latency by reducing the average transfer distance 
between the block and the processor core. 

Let the average transfer distance in TMP policy be d , and 
that in PBM policy be 'd . According to our analysis, in any 
situation we can get 'd d≤ . We didn’t list the detail 
procedure because of the limit on paper’s length. But we can 
find that the PBM policy can reduce the average transfer 
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distance and the proportion of reduction can be expressed 
as '

100%d d
d
− × . In order to find out the upper bound of 

reduction, we define md as: 

0m nd d d= +  
in which: 0d is the distance between the nearest bank and the 
interface of

iCore to the on-chip network. nd is the distance 

between jBlock to the nearest bank of
iCore . So d and 'd can 

be expressed as: 
0 1nd d d= +  

'
0 2nd d d= +  

in which 
1nd and

2nd are the distances between the average 
position of

jBlock to the nearest bank of 
iCore . 

In the best situation, the PBM can pre-migrate 
jBlock into 

the nearest bank of 
iCore  before it is actually accessed, 

then
2 0nd = , '

0d d= , so the upper bound of reduction is  

1 100%n
reduction

dUB
d

= ×   (5) 

We can find from (5) that the upper bound of reduction 
depends on

1nd and in TMP policy 
1nd  depends on the initial 

distance between jBlock and processor 
iCore , so if the data 

block is initially quite far from the processor core, the 
reduction of average transfer distance can be considerable. 
 
4. Simulation experiment and results 
 
4.1 Experiment setup 
 

In order to evaluate the proposed PBM policy, we set up a 
NUCA-based L2 cache model, as shown in figure 3, and the 
system parameters we list in Table 2 have been verified to be 
optimized in [7].  

 

 
Figure 3. The simulation model for experiment 

To simulate real applications’ L2 cache behavior, we ran 
the SPEC2000 benchmark on an SMP computer (the 
parameters are shown in table 3), and we captured the 
memory trace with the HMTT toolkit [16]. The HMTT toolkit 
is designed especially for memory trace capture. It is 
composed of a Memory Trace Board (MTB) and a trace 
Packets Capture and Analysis Toolkits (PCAT). The MTB is 

a hardware monitor board. When the SPEC2000 is running 
on the SMP machine, the MTB is plugged in an idle DIMM 
slot and it can snoop on memory command signals which are 
sent to DDR SDRAM from memory controller. We shut 
down the L2 cache of the processors, so the required memory 
addresses in the command signal is directly leaked from the 
L1 cache. Then MTB forwards the command to a Recorder 
machine. The Recorder machine extracts the memory 
addresses from the memory command signal and organizes 
them into trace items (see figure 4) which is a tuple <address, 
r/w, timestamp>.After SPEC2000 finished running on the 
SMP machine, the Recorder machine will get the whole 
memory trace.  

 

 
Figure 4. The format of memory trace items 

 

TABLE 2 
 SYSTEM PARAMETERS 

PARAMETER VALUE 
Number of CPUs 16 
Processor Model In-order 

L2 cache 8×8 banks 
L2 cache bank 64k, 4 cycle latency 
Sharing degree 2 

Cache block size 64B 
Network 1 cycle latency between two 

adjacent banks 
On-chip directory Centralized partial tag arrays 

 

TABLE 3 
 PARAMETERS OF COMPUTER USED FOR 

CAPTURING MEMORY TRACE 

FEATURE PARAMETER

CPU 2 × Intel P4 2.0GHz 

L1 Cache 12KB I, 64B/Line, pseudo-LRU 

8KB D, 64B/Line, pseudo-LRU 

L2 Cache Shut down 

Memory DDR 200, 512M 

OS Fedora Core 7 (Kernel 2.6.22) 

Benchmark SPEC 2000, 12 CINT+13CFP 
programs 

 

Then we decode the memory with the PCAT and feed them 
into a simulator we write in C language. The simulator is 
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composed of three modules: Task synchronizer, Network 
assigner and Block container. 

 

 
Figure 5. The simulator’s working mechanism 

 
The mechanism of the simulator is shown in figure 5. A 

simulated tag array is kept in the Task synchronizer. When 
the simulation starts, the Task synchronizer reads the memory 
trace items in batches, and extracts the block number and the 
timestamp, then searches the block number in the tag array 
sequentially. If cache hits, the Task synchronizer sends a 
request to the Network assigner according to the timestamp, 
or else start an off-chip access, then updates the tag array and 
the Block container. The request which is sent by the Task 
synchronizer to the Network assigner contains the 
information of source, target, and block number. The 
Network assigner contains a soft X-Y on-chip router. When it 
receives a request from the Task synchronizer, the network 
assigner marks all the links on the path form the source to the 
target as OCCUPIED, and return a SUCCESS signal to the 
Task synchronizer. Or else if there is no available path found, 
it will return a signal of FAILED. According to the signal 
from the Network assigner, the Task synchronizer can choose 
to send a new request or resend the old request a fixed period 
of time later. The Block container records the block numbers 
in each bank, and what’s more it implements the mapping 
policy, migration policy and the replacement policy. For each 
operation to the blocks, the Block container will return a 
signal to the Task synchronizer to update the tag array.  

 

4.2 Experimental results 
In this part, we introduce the result of our simulation 

experiments which will show the effect of our PBM policy. 

 
4.2.1 Sequential Prediction. Our PBM policy is based on the 
sequential prediction, which claims that the block after the 
presently accessed block will be referenced right away. We 
record the memory stride of the sequential memory trace. The 
result is show in figure 6. 

We can see from figure 6 that for both integer and floating-
point applications the memory stride of one block accounts 
for the largest proportion. So sequential prediction is accurate 
for most applications to foretell which block will be 
referenced before long. However, we can also see that for 
some applications (e.g. bzip2, vpr and apsi), the one-block 
stride only accounts for over 30% (but still the largest 
proportion). For such applications, the memory stride’s 
distribution is quite out of order. So how to get more accurate 
prediction will be our next research. 

 
4.2.2 Average Transfer distance. The target of our PBM 
policy is to reduce the transfer distance between the source 
bank to the target processor core, which will reduce the wireT  
and consequently reduce the average L2 access latency. 

Figure 7 shows the comparison of average transfer distance 
between TMP and PBM policy. We can see that for each 
application the average transfer distance is reduced in a 
certain proportion. In the best situation, the average transfer 
distance is reduced by 16.9%.  

Figure 8 shows the improvement on average access latency 
owing to the reduction of average transfer distance. We can 
see the reduction of L2 access latency is achieved in all the 
applications. And the improvement can reach up to 8.4%. 
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Figure 6. Spatial locality feature of SPEC 2000 
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Figure 7. Comparison of the average transfer distance between TMP and PBM policy. 

The results are normalized by wire length between two adjacent routers 
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Figure 8. Comparison of L2 cache’s average access latency (cycles) 

 
5. Related work 
 

The increasing wire delay makes the physical 
position of data in the cache very important to the 
access latency. If a core in the CMP wants to use the 
data far from it, the access latency will be 
significantly high compared to the data near the core. 

The NUCA architecture [6, 11] was first presented to 
hide the wire delay. In the NUCA, the cache was 
divided into several banks, if a core wants to use data 
in a remote bank, the data will be provided to it, and 
at the same time the data will be moved to a bank 
near the core for the next access. 

As a development, Huh et al. [7] design a CMP 
cache to support a spectrum of sharing degrees, 
denoting the number of processors sharing a pool of 
their local L2 banks. The average access latency can 
be decreased by partitioning the aggregate on-chip 
cache into disjoint pools, to fit the run application’s 
capacity requirement and sharing patterns. 

Lastly, Chang and Sohi present the Cooperative 
Caching (CC) [13], which could achieve the benefits 
of both private and shared cache designs. But the 
shortage of CC is its lack of support to TLP which 
could improve the performance of CMP significantly. 
CC uses a private cache based architecture which can 
reduce the number of expensive cross-chip and off-
chip accesses. 
 
6. Conclusion 
 

In this paper, a CMP L2 cache accessing 
performance model to analyze and evaluate the L2 
access efficiency is designed. According to this model, 
a prediction based migration policy is proposed and an 
active data migration algorithm is designed. This 
proposed policy is based on the principle of locality 
and employs the sequential prediction technology to 
indicate the data to be accessed in the near future. 
According to the applications’ features of accessing L2 
cache, the predicted block will be pre-migrated toward 
its user before it is actually accessed. 
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Two objects of the proposed PBM policy are to 
achieve shorter block transfer distance and lower 
average access latency. The analysis results show that 
this active data migration algorithm can take advantage 
of the features of L2 cache access to improve the 
performance of L2 cache much more than the 
traditional data migration policy.  

According to the simulation experiment, the 
proposed policy exhibits significant improvements in 
L2 cache access latency compared to traditional 
migration policy. The experiment shows that the 
average block transfer distance can be reduced up to 
16.9%, and the average access latency can be reduced 
by up to 8.4%. 
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