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Applications

Applications of snapshots include distributed databases,
storing checkpoints or backups for error recovery, garbage
collection, deadlock detection, debugging distributed pro-
grammes and obtaining a consistent view of the values
reported by several sensors. Snapshots have been used
as building blocks for distributed solutions to random-
ized consensus and approximate agreement. They are also
helpful as a primitive for building other data structures.
For example, consider implementing a counter that stores
an integer and provides increment, decrement and read
operations. Each process can store the number of incre-
ments it has performed minus the number of its decre-
ments in its own component of a single-writer snapshot
object, and the counter may be read by summing the val-
ues from a scan. See [10] for references on many of the
applications mentioned here.

Open Problems

Some complexity lower bounds are known for implemen-
tations from registers [9], but there remain gaps between
the best known algorithms and the best lower bounds. In
particular, it is not known whether there is an efficient
wait-free implementation of snapshots from small regis-
ters.

Experimental Results

Riany, Shavit and Touitou gave performance evaluation
results for several implementations [16].

Cross References

� Implementing Shared Registers in Asynchronous
Message-Passing Systems

� Linearizability
� Registers

Recommended Reading

See also Fich’s survey paper on the complexity of imple-
menting snapshots [11].
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ProblemDefinition

This entry describes algorithms for finding the minimum
number of steps needed to sort a signed permutation (also
known as: inversion distance, reversal distance). This is
a real-world problem and for example is used in compu-
tational biology.

Inversion distance is a difficult computational prob-
lem that has been studied intensively in recent years [1,4,
6,7,8,9,10]. Finding the inversion distance between un-
signed permutations is NP-hard [7], but with signed ones,
it can be done in linear time [1].

Key Results

Bader et al. [1] present the first worst-case linear-time al-
gorithm for computing the reversal distance that is simple
and practical and runs faster than previous methods. Their
key innovation is a new technique to compute connected
components of the overlap graph using only a stack, which
results in the simple linear-time algorithm for computing
the inversion distance between two signed permutations.
Bader et al. provide ample experimental evidence that their
linear-time algorithm is efficient in practice as well as in
theory: they coded it as well as the algorithm of Berman
and Hannenhalli, using the best principles of algorithm
engineering to ensure that both implementationswould be
as efficient as possible, and compared their running times
on a large range of instances generated through simulated
evolution.

Bafna and Pevzner introduced the cycle graph of a per-
mutation [3], thereby providing the basic data structure
for inversion distance computations. Hannenhalli and
Pevzner then developed the basic theory for expressing the
inversion distance in easily computable terms (number of
breakpoints minus number of cycles plus number of hur-
dles plus a correction factor for a fortress [3,15]—hurdles
and fortresses are easily detectable from a connected com-
ponent analysis). They also gave the first polynomial-time
algorithm for sorting signed permutations by reversals [9];
they also proposed a O(n4) implementation of their al-
gorithm which runs in quadratic time when restricted to
distance computation. Their algorithm requires the com-
putation of the connected components of the overlap
graph, which is the bottleneck for the distance computa-
tion. Berman and Hannenhalli later exploited some com-
binatorial properties of the cycle graph to give a O(n˛(n))

algorithm to compute the connected components, lead-
ing to a O(n2˛(n)) implementation of the sorting algo-
rithm [6], where ˛ is the inverse Ackerman function.
(The later Kaplan–Shamir–Tarjan (KST) algorithm [10]
reduces the time needed to compute the shortest sequence
of inversions, but uses the same algorithm for computing
the length of that sequence.)

No algorithm that actually builds the overlap graph
can run in linear time, since that graph can be of quadratic
size. Thus, Bader’s key innovation is to construct an over-
lap forest such that two vertices belong to the same tree
in the forest exactly when they belong to the same con-
nected component in the overlap graph. An overlap forest
(the composition of its trees is unique, but their structure
is arbitrary) has exactly one tree per connected component
of the overlap graph and is thus of linear size. The linear-
time step for computing the connected components scans
the permutation twice. The first scan sets up a trivial forest
in which each node is its own tree, labeled with the be-
ginning of its cycle. The second scan carries out an iter-
ative refinement of this first forest, by adding edges and
so merging trees in the forest; unlike a Union-Find, how-
ever, this algorithm does not attempt to maintain the trees
within certain shape parameters. This step is the key to
Bader’s linear-time algorithm for computing the reversal
distance between signed permutations.

Applications

Some organisms have a single chromosome or contain
single-chromosome organelles (such as mitochondria or
chloroplasts), the evolution of which is largely indepen-
dent of the evolution of the nuclear genome. Given a par-
ticular strand from a single chromosome, whether lin-
ear or circular, we can infer the ordering and direction-
ality of the genes, thus representing each chromosome by
an ordering of oriented genes. In many cases, the evolu-
tionary process that operates on such single-chromosome
organisms consists mostly of inversions of portions of
the chromosome; this finding has led many biologists to
reconstruct phylogenies based on gene orders, using as
a measure of evolutionary distance between two genomes
the inversion distance, i. e., the smallest number of inver-
sions needed to transform one signed permutation into the
other [11,12,14].

The linear-time algorithm is in wide-use (as it has been
cited nearly 200 times within the first several years of its
publication). Examples include the handling multichro-
mosomal genome rearrangements [16], genome compari-
son [5], parsing RNA secondary structure [13], and phylo-
genetic study of the HIV-1 virus [2].
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Open Problems

Efficient algorithms for computing minimum distances
with weighted inversions, transpositions, and inverted
transpositions, are open.

Experimental Results

Bader et al. give experimental results in [1].

URL to Code

An implementation of the linear-time algorithm is avail-
able asC code fromwww.cc.gatech.edu/~bader. Two other
dominated implementations are available that are de-
signed to compute the shortest sequence of inversions as
well as its length; one, due to Hannenhalli that implements
his first algorithm [9], which runs in quadratic time when
computing distances, while the other, a Java applet writ-
ten by Mantin (http://www.math.tau.ac.il/~rshamir/GR/)
implements the KST algorithm [10], but uses an explicit
representation of the overlap graph and thus also takes
quadratic time. The implementation due to Hannenhalli
is very slow and implements the original method of Han-
nenhalli and Pevzner and not the faster one of Berman and
Hannenhalli. The KST applet is very slow as well since it
explicitly constructs the overlap graph.

Cross References

For finding the actual sorting sequence, see the entry:
� Sorting Signed Permutations by Reversal (Reversal

Sequence)
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ProblemDefinition

A signed permutation  of size n is a permutation over
f�n; : : : ;�1; 1 : : : ng, where �i = �i for all i.

The reversal � = �i; j (1 � i � j � n) is an operation
that reverses the order and flips the signs of the elements
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