
High Performance Algorithm Engineering for Large-scale Problems H 387

Open Problems

A number of problems related to proper learning in the
PAC model and its extensions are open. Almost all hard-
ness of proper learning results are for learning with respect
to unrestricted distributions. For most of the problems
mentioned in Sect. “Key Results” it is unknown whether
the result is true if the distribution is restricted to belong
to some natural class of distributions (e. g. product distri-
butions). It is unknown whether decision trees are learn-
able properly in the PAC model or in the PAC model with
membership queries. This question is open even in the
PAC model restricted to the uniform distribution only.
Note that decision trees are learnable (non-properly) if
membership queries are available [5] and are learnable
properly in time O(nlog s ), where s is the number of leaves
in the decision tree [1].

An even more interesting direction of research would
be to obtain hardness results for learning by richer repre-
sentations classes, such as AC0 circuits, classes of neural
networks and, ultimately, unrestricted circuits.

Cross References

� Cryptographic Hardness of Learning
� Graph Coloring
� Learning DNF Formulas
� PAC Learning

Recommended Reading
1. Alekhnovich,M., Braverman,M., Feldman, V., Klivans, A., Pitassi,

T.: Learnability and automizability. In: Proceeding of FOCS, pp.
621–630 (2004)

2. Ben-David, S., Eiron, N., Long, P. M.: On the difficulty of approx-
imately maximizing agreements. In: Proceedings of COLT, pp.
266–274 (2000)

3. Blum, A.L., Rivest, R.L.: Training a 3-node neural network is NP-
complete. Neural Netw. 5(1), 117–127 (1992)

4. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.: Learn-
ability and the Vapnik-Chervonenkis dimension. J. ACM 36(4),
929–965 (1989)

5. Bshouty, N.: Exact learning via the monotone theory. Inf. Com-
put. 123(1), 146–153 (1995)

6. Feldman, V.: Hardness of Approximate Two-level Logic Mini-
mization and PAC Learning with Membership Queries. In: Pro-
ceedings of STOC, pp. 363–372 (2006)

7. Feldman, V.: Optimal hardness results for maximizing agree-
ments with monomials. In: Proceedings of Conference on
Computational Complexity (CCC), pp. 226–236 (2006)

8. Garey, M., Johnson, D.S.: Computers and Intractability. W. H.
Freeman, San Francisco (1979)

9. Guruswami, V., Raghavendra, P.: Hardness of Learning Halfs-
paces with Noise. In: Proceedings of FOCS, pp. 543–552 (2006)

10. Hancock, T., Jiang, T., Li, M., Tromp, J.: Lower bounds on learn-
ing decision lists and trees. In: 12th Annual Symposiumon The-
oretical Aspects of Computer Science, pp. 527–538 (1995)

11. Haussler, D.: Decision theoretic generalizations of the PAC
model for neural net and other learning applications. Inf. Com-
put. 100(1), 78–150 (1992)

12. Jackson, J.: An efficientmembership-query algorithm for learn-
ing DNF with respect to the uniform distribution. J. Comput.
Syst. Sci. 55, 414–440 (1997)

13. Kearns, M., Schapire, R., Sellie, L.: Toward efficient agnostic
learning. Mach. Learn. 17(2–3), 115–141 (1994)

14. Kearns, M., Valiant, L.: Cryptographic limitations on learning
boolean formulae and finite automata. J. ACM 41(1), 67–95
(1994)

15. Kearns, M., Vazirani, U.: An introduction to computational
learning theory. MIT Press, Cambridge, MA (1994)

16. Pitt, L., Valiant, L.: Computational limitations on learning from
examples. J. ACM 35(4), 965–984 (1988)

17. Valiant, L.: A theory of the learnable. Commun. ACM 27(11),
1134–1142 (1984)

High Performance Algorithm
Engineering for Large-scale Problems
2005; Bader

DAVID A. BADER
College of Computing, Georgia Institute of Technology,
Atlanta, GA, USA

Keywords and Synonyms

Experimental algorithmics

ProblemDefinition

Algorithm engineering refers to the process required to
transform a pencil-and-paper algorithm into a robust, effi-
cient, well tested, and easily usable implementation. Thus
it encompasses a number of topics, from modeling cache
behavior to the principles of good software engineering;
its main focus, however, is experimentation. In that sense,
it may be viewed as a recent outgrowth of Experimen-
tal Algorithmics [14], which is specifically devoted to the
development of methods, tools, and practices for assess-
ing and refining algorithms through experimentation. The
ACM Journal of Experimental Algorithmics (JEA), at URL
www.jea.acm.org, is devoted to this area.

High-performance algorithm engineering [2] focuses
on one of the many facets of algorithm engineering: speed.
The high-performance aspect does not immediately imply
parallelism; in fact, in any highly parallel task, most of the
impact of high-performance algorithm engineering tends
to come from refining the serial part of the code.

The term algorithm engineering was first used with
specificity in 1997, with the organization of the firstWork-
shop on Algorithm Engineering (WAE 97). Since then, this



388 H High Performance Algorithm Engineering for Large-scale Problems

workshop has taken place every summer in Europe. The
1998Workshop on Algorithms and Experiments (ALEX98)
was held in Italy and provided a discussion forum for re-
searchers and practitioners interested in the design, ana-
lyzes and experimental testing of exact and heuristic algo-
rithms. A sibling workshop was started in the Unites States
in 1999, the Workshop on Algorithm Engineering and Ex-
periments (ALENEX99), which has taken place every win-
ter, colocated with theACM/SIAM Symposium on Discrete
Algorithms (SODA).

Key Results

Parallel computing has two closely relatedmain uses. First,
with more memory and storage resources than available
on a single workstation, a parallel computer can solve
correspondingly larger instances of the same problems.
This increase in size can translate into running higher-
fidelity simulations, handling higher volumes of informa-
tion in data-intensive applications, and answering larger
numbers of queries and datamining requests in corpo-
rate databases. Secondly, with more processors and larger
aggregate memory subsystems than available on a single
workstation, a parallel computer can often solve problems
faster. This increase in speed can also translate into all of
the advantages listed above, but perhaps its crucial advan-
tage is in turnaround time. When the computation is part
of a real-time system, such as weather forecasting, finan-
cial investment decision-making, or tracking and guid-
ance systems, turnaround time is obviously the critical is-
sue. A less obvious benefit of shortened turnaround time
is higher-quality work: when a computational experiment
takes less than an hour, the researcher can afford the lux-
ury of exploration—running several different scenarios in
order to gain a better understanding of the phenomena be-
ing studied.

In algorithm engineering, the aim is to present repeat-
able results through experiments that apply to a broader
class of computers than the specific make of com-
puter system used during the experiment. For sequen-
tial computing, empirical results are often fairly machine-
independent. While machine characteristics such as word
size, cache and main memory sizes, and processor and
bus speeds differ, comparisons across different unipro-
cessor machines show the same trends. In particular, the
number of memory accesses and processor operations re-
mains fairly constant (or within a small constant factor).
In high-performance algorithm engineering with parallel
computers, on the other hand, this portability is usually
absent: each machine and environment is its own special
case. One obvious reason is major differences in hardware

that affect the balance of communication and computation
costs—a true shared-memory machine exhibits very dif-
ferent behavior from that of a cluster based on commodity
networks.

Another reason is that the communication libraries
and parallel programming environments (e. g., MPI [12],
OpenMP [16], and High-Performance Fortran [10]), as
well as the parallel algorithm packages (e. g., fast Fourier
transforms using FFTW [6] or parallelized linear algebra
routines in ScaLAPACK [4]), often exhibit differing per-
formance on different types of parallel platforms. When
multiple library packages exist for the same task, a user
may observe different running times for each library ver-
sion evenon the same platform. Thus a running-time anal-
ysis should clearly separate the time spent in the user code
from that spent in various library calls. Indeed, if partic-
ular library calls contribute significantly to the running
time, the number of such calls and running time for each
call should be recorded and used in the analysis, thereby
helping library developers focus on the most cost-effective
improvements. For example, in a simple message-passing
program, one can characterize the work done by keep-
ing track of sequential work, communication volume, and
number of communications. A more general program us-
ing the collective communication routines of MPI could
also count the number of calls to these routines. Several
packages are available to instrumentMPI codes in order to
capture such data (e. g., MPICH’s nupshot [8], Pablo [17],
and Vampir [15]). The SKaMPI benchmark [18] allows
running-time predictions based on such measurements
even if the target machine is not available for program
development. SKaMPI was designed for robustness, ac-
curacy, portability, and efficiency; For example, SKaMPI
adaptively controls how often measurements are repeated,
adaptively refines message-length and step-width at “in-
teresting” points, recovers from crashes, and automatically
generates reports.

Applications

The following are several examples of algorithm engineer-
ing studies for high-performance and parallel computing.
1. Bader’s prior publications (see [2] and http://www.

cc.gatech.edu/~bader) contain many empirical studies
of parallel algorithms for combinatorial problems like
sorting, selection, graph algorithms, and image pro-
cessing.

2. In a recent demonstration of the power of high-per-
formance algorithm engineering, a million-fold speed-
up was achieved through a combination of a 2,000-fold
speedup in the serial execution of the code and a 512-

http://www.cc.gatech.edu/~bader
http://www.cc.gatech.edu/~bader


High Performance Algorithm Engineering for Large-scale Problems H 389

fold speedup due to parallelism (a speed-up, however,
that will scale to any number of processors) [13]. (In
a further demonstration of algorithm engineering, ad-
ditional refinements in the search and bounding strate-
gies have added another speedup to the serial part of
about 1,000, for an overall speedup in excess of 2 bil-
lion)

3. JáJá and Helman conducted empirical studies for prefix
computations, sorting, and list-ranking, on symmetric
multiprocessors. The sorting research (see [9]) extends
Vitter’s external Parallel Disk Model to the internal
memory hierarchy of SMPs and uses this new computa-
tional model to analyze a general-purpose sample sort
that operates efficiently in shared-memory. The per-
formance evaluation uses 9 well-defined benchmarks.
The benchmarks include input distributions commonly
used for sorting benchmarks (such as keys selected uni-
formly and at random), but also benchmarks designed
to challenge the implementation through load imbal-
ance and memory contention and to circumvent algo-
rithmic design choices based on specific input prop-
erties (such as data distribution, presence of duplicate
keys, pre-sorted inputs, etc.).

4. In [3] Blelloch et al. compare through analysis and im-
plementation three sorting algorithms on the Thinking
Machines CM-2. Despite the use of an outdated (and
no longer available) platform, this paper is a gem and
should be required reading for every parallel algorithm
designer. In one of the first studies of its kind, the au-
thors estimate running times of four of the machine’s
primitives, then analyze the steps of the three sorting
algorithms in terms of these parameters. The experi-
mental studies of the performance are normalized to
provide clear comparison of how the algorithms scale
with input size on a 32K-processor CM-2.

5. Vitter et al. provide the canonical theoretic founda-
tion for I/O-intensive experimental algorithmics using
external parallel disks (e. g., see [1,19,20]). Examples
from sorting, FFT, permuting, and matrix transposi-
tion problems are used to demonstrate the parallel disk
model.

6. Juurlink and Wijshoff [11] perform one of the first de-
tailed experimental accounts on the preciseness of sev-
eral parallel computation models on five parallel plat-
forms. The authors discuss the predictive capabilities
of the models, compare the models to find out which
allows for the design of the most efficient parallel algo-
rithms, and experimentally compare the performance
of algorithms designed with the model versus those de-
signed with machine-specific characteristics in mind.
The authors derive model parameters for each plat-

form, analyses for a variety of algorithms (matrix mul-
tiplication, bitonic sort, sample sort, all-pairs shortest
path), and detailed performance comparisons.

7. The LogP model of Culler et al. [5] provides a realis-
tic model for designing parallel algorithms for message-
passing platforms. Its use is demonstrated for a number
of problems, including sorting.

8. Several research groups have performed extensive al-
gorithm engineering for high-performance numerical
computing. One of the most prominent efforts is that
led by Dongarra for ScaLAPACK [4], a scalable lin-
ear algebra library for parallel computers. ScaLAPACK
encapsulates much of the high-performance algorithm
engineering with significant impact to its users who re-
quire efficient parallel versions of matrix–matrix lin-
ear algebra routines. New approaches for automatically
tuning the sequential library (e. g., LAPACK) are now
available as the ATLAS package [21].

Open Problems

All of the tools and techniques developed over the last
several years for algorithm engineering are applicable to
high-performance algorithm engineering. However, many
of these tools need further refinement. For example, cache-
efficient programming is a key to performance but it is not
yet well understood, mainly because of complex machine-
dependent issues like limited associativity, virtual address
translation, and increasingly deep hierarchies of high-per-
formance machines. A key question is whether one can
find simple models as a basis for algorithm development.
For example, cache-oblivious algorithms [7] are efficient
at all levels of the memory hierarchy in theory, but so far
only few work well in practice. As another example, pro-
filing a running program offers serious challenges in a se-
rial environment (any profiling tool affects the behavior
of what is being observed), but these challenges pale in
comparison with those arising in a parallel or distributed
environment (for instance, measuring communication
bottlenecks may require hardware assistance from the net-
work switches or at least reprogramming them, which
is sure to affect their behavior). Designing efficient and
portable algorithms for commodity multicore and many-
core processors is an open challenge.

Cross References

� Analyzing Cache Misses
� Cache-Oblivious B-Tree
� Cache-Oblivious Model
� Cache-Oblivious Sorting
� Engineering Algorithms for Computational Biology



390 H Hitting Set

� Engineering Algorithms for Large Network
Applications

� Engineering Geometric Algorithms
� Experimental Methods for Algorithm Analysis
� External Sorting and Permuting
� Implementation Challenge for Shortest Paths
� Implementation Challenge for TSP Heuristics
� I/O-model
� Visualization Techniques for Algorithm Engineering

Recommended Reading

1. Aggarwal, A., Vitter, J.: The input/output complexity of sorting
and related problems. Commun. ACM 31, 1116–1127 (1988)

2. Bader, D.A., Moret, B.M.E., Sanders, P.: Algorithm engineering
for parallel computation. In: Fleischer, R., Meineche-Schmidt,
E., Moret, B.M.E. (ed) Experimental Algorithmics. Lecture Notes
in Computer Science, vol. 2547, pp. 1–23. Springer, Berlin
(2002)

3. Blelloch, G.E., Leiserson, C.E., Maggs, B.M., Plaxton, C.G., Smith,
S.J., Zagha, M.: An experimental analysis of parallel sorting al-
gorithms. Theor. Comput. Syst. 31(2), 135–167 (1998)

4. Choi, J., Dongarra, J.J., Pozo, R., Walker, D.W.: ScaLAPACK:
A scalable linear algebra library for distributed memory con-
current computers. In: The 4th Symp. the Frontiers ofMassively
Parallel Computations, pp. 120–127, McLean, VA (1992)

5. Culler, D.E., Karp, R.M., Patterson, D.A., Sahay, A., Schauser, K.E.,
Santos, E., Subramonian, R., von Eicken,T.: LogP: Towards a re-
alistic model of parallel computation. In: 4th Symp. Principles
and Practice of Parallel Programming, pp. 1–12. ACM SIGPLAN
(1993)

6. Frigo, M., Johnson, S. G.: FFTW: An adaptive software architec-
ture for the FFT. In: Proc. IEEE Int’l Conf. Acoustics, Speech,
and Signal Processing, vol. 3, pp. 1381–1384, Seattle, WA
(1998)

7. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-
oblivious algorithms. In: Proc. 40th Ann. Symp. Foundations
of Computer Science (FOCS-99), pp. 285–297, New York, NY,
1999. IEEE Press

8. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance,
portable implementation of the MPI message passing inter-
face standard. Technical report, Argonne National Laboratory,
Argonne, IL, (1996) www.mcs.anl.gov/mpi/mpich/

9. Helman, D.R., JáJá, J.: Sorting on clusters of SMP’s. In: Proc.
12th Int’l Parallel Processing Symp., pp. 1–7, Orlando, FL,
March/April 1998

10. High Performance Fortran Forum. High Performance Fortran
Language Specification, 1.0 edition, May 1993

11. Juurlink, B.H.H., Wijshoff, H.A.G.: A quantitative comparison of
parallel computation models. ACM Trans. Comput. Syst. 13(3),
271–318 (1998)

12. Message Passing Interface Forum. MPI: A message-passing in-
terface standard. Technical report, University of Tennessee,
Knoxville, TN, June 1995. Version 1.1

13. Moret, B.M.E., Bader, D.A., Warnow, T.: High-performance algo-
rithm engineering for computational phylogenetics. J. Super-
comput. 22, 99–111 (2002) Special issue on the best papers
from ICCS’01

14. Moret, B.M.E., Shapiro, H.D.: Algorithms and experiments: The
new (and old) methodology. J. Univers. Comput. Sci. 7(5),
434–446 (2001)

15. Nagel, W.E., Arnold, A., Weber, M., Hoppe, H.C., Solchenbach,
K.: VAMPIR: visualization and analysis of MPI resources. Super-
computer 63. 12(1), 69–80 (1996)

16. OpenMP Architecture Review Board. OpenMP: A proposed in-
dustry standard API for shared memory programming. www.
openmp.org, October 1997

17. Reed, D.A., Aydt, R.A., Noe, R.J., Roth, P.C., Shields, K.A.,
Schwartz, B., Tavera, L.F.: Scalable performance analysis: The
Pablo performance analysis environment. In: Skjellum, A., (ed)
Proc. Scalable Parallel Libraries Conf., pp. 104–113, Mississippi
State University, October 1993. IEEE Computer Society Press

18. Reussner, R., Sanders, P., Träff, J.: SKaMPI: A comprehensive
benchmark for public benchmarking of MPI. Scientific Pro-
gramming, 2001. accepted, conference version with Prechelt,
L., Müller, M. In: Proc. EuroPVM/MPI (1998)

19. Vitter, J. S., Shriver, E.A.M.: Algorithms for parallel memory. I:
Two-level memories. Algorithmica. 12(2/3), 110–147 (1994)

20. Vitter, J. S., Shriver, E.A.M.: Algorithms for parallel memory II:
Hierarchical multilevel memories. Algorithmica 12(2/3), 148–
169 (1994)

21. Whaley, R., Dongarra, J.: Automatically tuned linear algebra
software (ATLAS). In: Proc. Supercomputing 98, Orlando, FL,
November 1998. www.netlib.org/utk/people/JackDongarra/
PAPERS/atlas-sc98.ps

Hitting Set
� Greedy Set-Cover Algorithms
� Set Cover with Almost Consecutive Ones

Hospitals/Residents Problem
1962; Gale, Shapley

DAVID F. MANLOVE
Department of Computing Science,
University of Glasgow, Glasgow, UK

Keywords and Synonyms

College admissions problem; University admissions prob-
lem; Stable admissions problem; Stable assignment prob-
lem; Stable b-matching problem

ProblemDefinition

An instance I of the Hospitals/Residents problem
(HR) [5,6,14] involves a set R = fr1; : : : ; rng of residents
and a set H = fh1; : : : ; hmg of hospitals. Each hospital
hj 2 H has a positive integral capacity, denoted by cj. Also,
each resident ri 2 R has a preference list in which he ranks
in strict order a subset ofH. A pair (ri ; hj) 2 R � H is said

http://www.mcs.anl.gov/mpi/mpich/
http://www.openmp.org
http://www.openmp.org
http://www.netlib.org/utk/people/JackDongarra/PAPERS/atlas-sc98.ps
http://www.netlib.org/utk/people/JackDongarra/PAPERS/atlas-sc98.ps

	High Performance Algorithm Engineering for Large-scale Problems



