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ProblemDefinition

Given two strings S = s1s2 : : : sn and R = r1r2 : : : rm
(wlog let n � m) over an alphabet � = f�1; �2; : : : �`g,
the standard edit distance between S and R, denoted
ED(S,R) is the minimum number of single character edits,
specifically insertions, deletions and replacements, to trans-
form S into R (equivalently R into S).

If the input strings S and R are permutations of the al-
phabet � (so that jSj = jRj = j� j) then an analogous per-
mutation edit distance between S andR, denoted PED(S,R)
can be defined as theminimumnumber of single character
moves, to transform S into R (or vice versa).

A generalization of the standard edit distance is edit
distance with moves, which, for input strings S and R is
denoted EDM(S,R), and is defined as the minimum num-
ber of character edits and substring (block) moves to trans-
form one of the strings into the other. A move of block
s[j, k] to position h transforms S = s1s2 : : : sn into S0 =
s1 : : : s j�1sk+1sk+2 : : : sh�1s j : : : sk sh : : : sn [4].

If the input strings S and R are permutations of the
alphabet � (so that jSj = jRj = j� j) then EDM(S,R) is
also called as the transposition distance and is denoted
TED(S,R) [1].

Perhaps themost general form of the standard edit dis-
tance that involves edit operations on blocks/substrings
is the block edit distance, denoted BED(S,R). It is de-

fined as the minimum number of single character edits,
block moves, as well as block copies and block uncopies
to transform one of the strings into the other. Copying
of a block s[j, k] to position h transforms S = s1s2 : : : sn
into S0 = s1 : : : s j s j+1 : : : sk : : : sh�1s j : : : sksh : : : sn .
A block uncopy is the inverse of a block copy: it deletes
a block s[j, k] provided there exists s[ j0; k0] = s[ j; k] which
does not overlap with s[j, k] and transforms S into S0 =
s1 : : : s j�1sk+1 : : : sn .

Throughout this discussion all edit operations have
unit cost and they may overlap; i. e. a character can be
edited on multiple times.

Key Results

There are exact and approximate solutions to comput-
ing the edit distances described above with varying per-
formance guarantees. As can be expected, the best avail-
able running times as well as the approximation factors for
computing these edit distances vary considerably with the
edit operations allowed.

Exact Computation of the Standard
and Permutation Edit Distance

The fastest algorithms for exactly computing the standard
edit distance have been available for more than 25 years.

Theorem 1 (Levenshtein [9]) The standard edit distance
ED(S, R) can be computed exactly in time O(n � m) via dy-
namic programming.

Theorem 2 (Masek-Paterson [11]) The standard edit dis-
tance ED(S, R) can be computed exactly in time O(n +
n � m/log2j� j n) via the “four-Russians trick”.

Theorem 3 (Landau-Vishkin [8]) It is possible to com-
pute ED(S, R) in time O(n � ED(S; R)).

Finally, note that if S and R are permutations of the al-
phabet � , PED(S,R) can be computed much faster than
the standard edit distance for general strings: Observe
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that PED(S; R) = n � LCS(S; R) where LCS(S,R) repre-
sents the longest common subsequence of S and R. For
permutations S, R, LCS(S,R) can be computed in time
O(n � log log n) [3].

Approximate Computation
of the Standard Edit Distance

If some approximation can be tolerated, it is possible to
considerably improve the Õ(n �m) time (Õ notation hides
polylogarithmic factors) available by the techniques above.
The fastest algorithm that approximately computes the
standard edit distance works by embedding strings S and R
from alphabet � into shorter strings S0 and R0 from a larger
alphabet � 0 [2]. The embedding is achieved by applying
a general version of the Locally Consistent Parsing [13,14]
to partition the strings R and S into consistent blocks of
size c to 2c � 1; the partitioning is consistent in the sense
that identical (long) substrings are partitioned identically.
Each block is then replaced with a label such that identi-
cal blocks are identically labeled. The resulting strings S0

and R0 preserve the edit distance between S and R approx-
imately as stated below.

Theorem 4(Batu-Ergun-Sahinalp [2]) ED(S, R) can be
computed in time Õ(n1+�) within an approximation factor
ofminfn

1��
3 +o(1); (ED(S; R)/n� )

1
2 +o(1)g.

For the case of � = 0, the above result provides an Õ(n)
time algorithm for approximating ED(S,R) within a factor
of minfn

1
3 +o(1); ED(S; R)

1
2 +o(1)g.

Approximate Computation
of Edit Distances Involving Block Edits

For all edit distance variants described above which in-
volve blocks, there are no known polynomial time algo-
rithms; in fact it is NP-hard to compute TED(S,R) [1],
EDM(S,R) and BED(S,R) [10]. However, in case S and
R are permutations of � , there are polynomial time al-
gorithms that approximate transposition distance within
a constant factor:

Theorem 5 (Bafna-Pevzner [1]) TED(S, R) can be ap-
proximated within a factor of 1.5 in O(n2) time.

Furthermore, even if S and R are arbitrary strings from
� , it is possible to approximately compute both BED(S,R)
and EDM(S,R) in near linear time. More specifically ob-
tain an embedding of S and R to binary vectors f (S) and
f (R) such that:

Theorem 6 (Muthukrishnan-Sahinalp [12])
jj f (S)� f (R)jj1

log� n � BED(S; R) � jj f (S)� f (R)jj1 � log n:

In other words, the Hamming distance between f (S) and
f (R) approximates BED(S,R) within a factor of log n �
log� n. Similarly for EDM(S,R), it is possible to embed S
and R to integer valued vectors F(S) and F(R) such that:

Theorem 7 (Cormode-Muthukrishnan [4])
jjF(S)�F(R)jj1

log� n � EDM(S; R) � jjF(S)� F(R)jj1 � log n:

In other words, the L1 distance between F(S) and F(R) ap-
proximates EDM(S,R) within a factor of log n � log� n.

The embedding of strings S and R into binary vectors
f (S) and f (R) is introduced in [5] and is based on the Lo-
cally Consistent Parsing described above. To obtain the
embedding, one needs to hierarchically partition S and R
into growing size core blocks. Given an alphabet � , Locally
Consistent Parsing can identify only a limited number of
substrings as core blocks. Consider the lexicographic or-
dering of these core blocks. Each dimension i of the em-
bedding f (S) simply indicates (by setting f (S)[i] = 1)
whether S includes the ith core block corresponding to the
alphabet � as a substring. Note that if a core block exists in
S as a substring, Locally Consistent Parsing will identify it.

Although the embedding above is exponential in size,
the resulting binary vector f (S) is very sparse. A simple
representation of f (S) and f (R), exploiting their sparseness
can be computed in time O(n log� n) and the Hamming
distance between f (S) and f (R) can be computed in linear
time by the use of this representation [12].

The embedding of S and R into integer valued vectors
F(S) and F(R) are based on similar techniques. Again, the
total time needed to approximate EDM(S,R) within a fac-
tor of log n � log� n is O(n log� n).

Applications

Edit distances have important uses in computational evo-
lutionary biology, in estimating the evolutionary distance
between pairs of genome sequences under various edit op-
erations. There are also several applications to the docu-
ment exchange problem or document reconciliation prob-
lem where two copies of a text string S have been subject
to edit operations (both single character and block edits)
by two parties resulting in two versions S1 and S2, and the
parties communicate to reconcile the differences between
the two versions. An information theoretic lower bound
on the number of bits to communicate between the two
parties is then ˝(BED(S; R)) � log n. The embedding of
S and R to binary strings f (S) and f (R) provides a sim-
ple protocol [5] which gives a near-optimal tradeoff be-
tween the number of rounds of communication and the
total number of bits exchanged and works with high prob-
ability.
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Another important application is to the Sequence
Nearest Neighbors (SNN) problem, which asks to prepro-
cess a set of strings S1, . . . , Sk so that given an on-line query
string R, the string Si which has the lowest distance of
choice to R can be computed in time polynomial with |R|
and polylogarithmic with

Pk
j=1 jS jj. There are no known

exact solutions for the SNN problem under any edit dis-
tance considered here. However, in [12], the embedding
of strings Si into binary vectors f (Si), combined with the
Approximate Nearest Neighbors results given in [6] for
Hamming Distance, provides an approximate solution to
the SNN problem under block edit distance as follows.

Theorem 8 (Muthukrishnan-Sahinalp [12]) It is possi-
ble to preprocess a set of strings S1, . . . , Sk from a given
alphabet � in O(pol y(

Pk
j=1 jS jj)) time such that for any

on-line query string R from � one can compute a string Si
in time O(pol ylog(

Pk
j=1 jS jj) � pol y(jRj)) which guaran-

tees that for all h 2 [1; k]; BED(Si ; R) � BED(Sh ; R) �
log(max j jS jj) � log�(max j jS jj).

Open Problems

It is interesting to note that when dealing with permuta-
tions of the alphabet � the problem of computing both
character edit distances and block edit distances become
much easier; one can compute PED(S,R) exactly and
TED(S,R) within an approximation factor of 1.5 in Õ(n)
time. For arbitrary strings, it is an open question whether
one can approximate TED(S,R) or BED(S,R) within a fac-
tor of o(log n) in polynomial time. One recent result in this
direction shows that it is not possible to obtain a polylog-
arithmic approximation to TED(S,R) via a greedy strat-
egy [7]. Furthermore, although there is a lower bound of
˝(n

1
3 ) on the approximation factor that can be achieved

for computing the standard edit distance in Õ(n) time by
the use of string embeddings, there is no general lower
bound on how closely one can approximate ED(S,R) in
near linear time.
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ProblemDefinition

Multiple sequence alignment is an important problem
in computational biology. Applications include finding
highly conserved subregions in a given set of biological
sequences and inferring the evolutionary history of a set
of taxa from their associated biological sequences (e. g.,
see [6]). There are a number of measures proposed for
evaluating the goodness of a multiple alignment, but prior
to this work, no efficient methods are known for comput-
ing the optimal alignment for any of these measures. The
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work of Gusfield [5] gives two computationally efficient
multiple alignment approximation algorithms for two of
the measures with approximation ratio of less than 2. For
one of the measures, they also derived a randomized al-
gorithm, which is much faster and with high probability,
reports a multiple alignment with small error bounds. To
the best knowledge of the entry authors, this work is the
first to provide approximation algorithms (with guarantee
error bounds) for this problem.

Notations and Definitions

Let X and Y be two strings of alphabet ˙ . The pair-
wise alignment of X and Y maps X and Y into strings
X 0 and Y 0 that may contain spaces, denoted by ‘_’, where
(1) jX 0j = jY 0j = `; and (2) removing spaces from X 0 and
Y 0 returns X and Y , respectively. The score of the align-
ment is defined as d(X 0;Y 0) =

P`
i=1 s(X

0(i);Y 0(i)) where
X 0(i) (and Y 0(i)) denotes the ith character in X 0 (and Y 0)
and s(a; b) with a; b 2 ˙ [ ‘_0 is the distance-based scor-
ing scheme that satisfies the following assumptions.
1. s(‘_0; ‘_0) = 0;
2. triangular inequality: for any three characters, x, y, z,

s(x; z) � s(x; y) + s(y; z)).
Let � = X1; X2; : : : ; Xk be a set of k > 2 strings of alpha-
bet ˙ . A multiple alignment A of these k strings maps
X1; X2; : : : ; Xk to X 01; X

0
2; : : : ; Xk ’ that may contain spaces

such that (1) jX 01j = jX
0
2j = � � � = jX

0
kj = `; and (2) remov-

ing spaces from Xi’ returns Xi for all 1 � i � k. The mul-
tiple alignment A can be represented as a k � `matrix.

The Sum of Pairs (SP) Measure

The score of a multiple alignment A, denoted by SP(A),
is defined as the sum of the scores of pairwise alignments
induced by A, that is,

P
i< j d(X

0
i ; X
0
j) =P

i< j
P`

p=1 s(X
0
i [p]; X

0
j[p]) where 1 � i < j � k.

Problem 1 Multiple Sequence Alignment with Minimum
SP score
INPUT: A set of k strings, a scoring scheme s.
OUTPUT: A multiple alignment A of these k strings with
minimum SP(A).

The Tree Alignment (TA) Measure

In this measure, the multiple alignment is derived from
an evolutionary tree. For a given set � of k strings, let
�0 � �. An evolutionary tree T�0 for � is a tree with at
least k nodes, where there is a one-to-one correspondence
between the nodes and the strings in �’. Let X 0u 2 �’ be the
string for node u. The score of T�0 , denoted by TA(T�0 ),

is defined as
P

e=(u;v) D(X
0
u; X 0v ) where e is an edge in

T�0 and D(X 0u; X 0v ) denotes the score of the optimal pair-
wise alignment for X 0u and X 0v . Analogously, the multiple
alignment of � under the TA measure can also be repre-
sented by a j�0j � ` matrix, where j�0j � k, with a score
defined as

P
e=(u;v) d(X

0
u ; X 0v )(e is an edge in T�0 ), sim-

ilar to the multiple alignment under the SP measure in
which the score is the summation of the alignment scores
of all pairs of strings. Under the TA measure, since it is
always possible to construct the j�0j � ` matrix such that
d(X 0u ; X 0v ) = D(X 0u; X 0v ) for all e = (u; v) in T�0 and we are
usually interested in finding the multiple alignment with
the minimum TA value, so D(X 0u ; X 0v ) is used instead of
d(X 0u ; X 0v ) in the definition of TA(T�0 ).

Problem 2 Multiple Sequence Alignment with Minimum
TA score
INPUT: A set of k strings, a scoring scheme s.
OUTPUT: An evolutionary tree T for these k strings with
minimum TA(T).

Key Results

Theorem 1 Let A* be the optimal multiple align-
ment of the given k strings with minimum SP score.
They provide an approximation algorithm (the center star
method) that gives a multiple alignment A such that
SP(A)
SP(A�) �

2(k�1)
k = 2 � 2

k .

The center star method is to derive a multiple align-
ment which is consistent with the optimal pairwise align-
ments of a center string with all the other strings. The
bound is derived based on the triangular inequality of
the score function. The time complexity of this method is
O(k2`2), where `2 is the time to solve the pairwise align-
ment by dynamic programming and k2 is needed to find
the center string, Xc, which gives the minimum value ofP

i¤c D(Xc ; Xi ).

Theorem 2 Let A* be the optimal multiple alignment
of the given k strings with minimum SP score. They pro-
vide a randomized algorithm that gives a multiple align-
ment A such that SP(A)

SP(A�) � 2 + 1
r�1 with probability at least

1 �
� r�1

r
�pfor any r > 1 and p � 1.

Instead of computing
�k
2
�
optimal pairwise alignments to

find the best center string, the randomized algorithm only
considers p randomly selected strings to be candidates for
the best center string, thus this method needs to x compute
only (k � 1)p optimal pairwise alignments in O(kp`2)
time where 1 � p � k.

Theorem 3 Let T* be the optimal evolutionary tree of the
given k strings with minimum TA score. They provide an
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approximation algorithm that gives an evolutionary tree T
such that TA(T)

TA(T�) �
2(k�1)

k = 2 � 2
k .

In the algorithm, they first compute all the
�k
2
�
optimal

pairwise alignments to construct a graph with every node
representing a distinct string Xi and the weight of each
edge (Xi ; Xj) as D(Xi ; Xj). This step determines the over-
all time complexity O(k2`2). Then, they find a minimum
spanning tree from the graph. The multiple alignment has
to be consistent with the optimal pairwise alignments rep-
resented by the edges of this minimum spanning tree.

Applications

Multiple sequence alignment is a fundamental problem in
computational biology. In particular, multiple sequence
alignment is useful in identifying those common struc-
tures, which may only be weakly reflected in the sequence
and not easily revealed by pairwise alignment. These com-
mon structures may carry important information for their
evolutionary history, critical conserved motifs, common
3D molecular structure, as well as biological functions.

More recently, multiple sequence alignment is also
used in revealing non-coding RNAs (ncRNAs) [3]. In this
type of multiple alignment, we are not only align the un-
derlying sequences, but also the secondary structures (re-
fer to chap. 16 of [10] for a brief introduction of secondary
structure of a RNA) of the RNAs. Researchers believe that
ncRNAs that belong to the same family should have com-
mon components giving a similar secondary structure.
The multiple alignment can help to locate and identify
these common components.

Open Problems

A number of open problems related to the work of Gus-
field remain open. For the SP measure, the center star
method can be extended to the q-star method (q > 2) with
approximation ratio of 2 � q/k ([1,7], sect. 7.5 of [8]).
Whether there exists an approximation algorithm with
better approximation ratio or with better time complex-
ity is still unknown. For the TA measure, to be the best
knowledge of the entry authors, the approximation ratio
in Theorem 3 is currently the best result.

Another interesting direction related to this problem is
the constrained multiple sequence alignment problem [9]
which requires the multiple alignment to contain certain
aligned characters with respect to a given constrained se-
quence. The best known result [2] is an approximation
algorithm (also follows the idea of center star method)
which gives an alignment with approximation ratio of
2 � 2/k for k strings.

For the complexity of the problem, Wang and
Jiang [11] were the first to prove the NP-hardness of the
problem with SP score under a non-metric distance mea-
sure over a 4 symbol alphabet. More recently, in [4], the
multiple alignment problem with SP score, star alignment,
and TA score have been proved to be NP-hard for all bi-
nary or larger alphabets under any metric. Developing effi-
cient approximation algorithms with good bounds for any
of these measures is desirable.

Experimental Results

Two experiments have been reported in the paper showing
that the worst case error bounds in Theorems 1 and 2 (for
the SP measure) are pessimistic compared to the typical
situation arising in practice.

The scoring scheme used in the experiments is:
s(a; b) = 0 if a = b; s(a; b) = 1 if either a or b is a space;
otherwise s(a; b) = 2. Since computing the optimal mul-
tiple alignment with minimum SP score has been shown
to be NP-hard, they evaluate the performance of their al-
gorithms using the lower bound of

P
i< j D(Xi ; Xj) (recall

that D(Xi ; Xj) is the score of the optimal pairwise align-
ment of Xi and Xj). They have aligned 19 similar amino
acid sequences with average length of 60 of homeoboxs
from different species. The ratio of the scores of reported
alignment by the center star method to the lower bound
is only 1.018 which is far from the worst case error bound
given in Theorem 1. They also aligned 10 not-so-similar
sequences near the homeoboxs, the ratio of the reported
alignment to the lower bound is 1.162. Results also show
that the alignment obtained by the randomized algorithm
is usually not far away from the lower bound.

Data Sets

The exact sequences used in the experiments are not pro-
vided.
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ProblemDefinition

In the 50 years since the discovery of the structure of DNA,
and with new techniques for sequencing the entire genome
of organisms, biology is rapidly moving towards a data-
intensive, computational science. Many of the newly faced
challenges require high-performance computing, either
due to the massive-parallelism required by the problem, or
the difficult optimization problems that are often combi-
natoric and NP-hard. Unlike the traditional uses of super-
computers for regular, numerical computing, many prob-
lems in biology are irregular in structure, significantly
more challenging to parallelize, and integer-based using
abstract data structures.

Biologists are in search of biomolecular sequence data,
for its comparison with other genomes, and because its
structure determines function and leads to the under-
standing of biochemical pathways, disease prevention and
cure, and the mechanisms of life itself. Computational bi-

ology has been aided by recent advances in both technol-
ogy and algorithms; for instance, the ability to sequence
short contiguous strings of DNA and from these recon-
struct the whole genome and the proliferation of high-
speed microarray, gene, and protein chips for the study of
gene expression and function determination. These high-
throughput techniques have led to an exponential growth
of available genomic data.

Algorithms for solving problems from computational
biology often require parallel processing techniques due
to the data- and compute-intensive nature of the compu-
tations. Many problems use polynomial time algorithms
(e. g., all-to-all comparisons) but have long running times
due to the large number of items in the input; for ex-
ample, the assembly of an entire genome or the all-to-all
comparison of gene sequence data. Other problems are
compute-intensive due to their inherent algorithmic com-
plexity, such as protein folding and reconstructing evolu-
tionary histories from molecular data, that are known to
be NP-hard (or harder) and often require approximations
that are also complex.

Key Results

None

Applications

Phylogeny Reconstruction: A phylogeny is a represen-
tation of the evolutionary history of a collection of or-
ganisms or genes (known as taxa). The basic assumption
of process necessary to phylogenetic reconstruction is re-
peated divergence within species or genes. A phylogenetic
reconstruction is usually depicted as a tree, in which mod-
ern taxa are depicted at the leaves and ancestral taxa oc-
cupy internal nodes, with the edges of the tree denoting
evolutionary relationships among the taxa. Reconstruct-
ing phylogenies is a major component of modern research
programs in biology and medicine (as well as linguistics).
Naturally, scientists are interested in phylogenies for the
sake of knowledge, but such analyses also have many uses
in applied research and in the commercial arena. Existing
phylogenetic reconstruction techniques suffer from seri-
ous problems of running time (or, when fast, of accuracy).
The problem is particularly serious for large data sets: even
though data sets comprised of sequence from a single gene
continue to pose challenges (e. g., some analyses are still
running after two years of computation on medium-sized
clusters), using whole-genome data (such as gene content
and gene order) gives rise to even more formidable com-
putational problems, particularly in data sets with large
numbers of genes and highly-rearranged genomes.

http://www.cs.washington.edu/education/courses/527/00wi/.
http://www.cs.washington.edu/education/courses/527/00wi/.
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To date, almost every model of speciation and ge-
nomic evolution used in phylogenetic reconstruction has
given rise to NP-hard optimization problems. Three ma-
jor classes of methods are in common use. Heuristics
(a natural consequence of the NP-hardness of the prob-
lems) run quickly, but may offer no quality guarantees and
may not even have a well-defined optimization criterion,
such as the popular neighbor-joining heuristic [9]. Opti-
mization based on the criterion of maximum parsimony
(MP) [4] seeks the phylogeny with the least total amount
of change needed to explain modern data. Finally, opti-
mization based on the criterion of maximum likelihood
(ML) [5] seeks the phylogeny that is the most likely to have
given rise to the modern data.

Heuristics are fast and often rival the optimization
methods in terms of accuracy, at least on datasets of mod-
erate size. Parsimony-based methods may take exponen-
tial time, but, at least for DNA and amino acid data, can
often be run to completion on datasets of moderate size.
Methods based on maximum likelihood are very slow (the
point estimation problem alone appears intractable) and
thus restricted to very small instances, and also require
many more assumptions than parsimony-based methods,
but appear capable of outperforming the others in terms of
the quality of solutions when these assumptions are met.
Both MP- and ML-based analyses are often run with vari-
ous heuristics to ensure timely termination of the compu-
tation, with mostly unquantified effects on the quality of
the answers returned.

Thus there is ample scope for the application of high-
performance algorithm engineering in the area. As in all
scientific computing areas, biologists want to study a par-
ticular dataset and are willing to spend months and even
years in the process: accurate branch prediction is the
main goal. However, since all exact algorithms scale expo-
nentially (or worse, in the case of ML approaches) with the
number of taxa, speed remains a crucial parameter – oth-
erwise few datasets of more than a few dozen taxa could
ever be analyzed.

Experimental Results

As an illustration, this entry briefly describes a high-per-
formance software suite, GRAPPA (Genome Rearrange-
ment Analysis through Parsimony and other Phyloge-
netic Algorithms) developed by Bader et al. GRAPPA ex-
tends Sankoff and Blanchette’s breakpoint phylogeny al-
gorithm [10] into the more biologically-meaningful inver-
sion phylogeny and provides a highly-optimized code that
can make use of distributed- and shared-memory parallel
systems (see [1,2,6,7,8,11] for details). In [3], Bader et al.

gives the first linear-time algorithm and fast implementa-
tion for computing inversion distance between two signed
permutations. GRAPPA was run on a 512-processor IBM
Linux cluster with Myrinet and obtained a 512-fold speed-
up (linear speedup with respect to the number of pro-
cessors): a complete breakpoint analysis (with the more
demanding inversion distance used in lieu of breakpoint
distance) for the 13 genomes in the Campanulaceae data
set ran in less than 1.5 hours in an October 2000 run,
for a million-fold speedup over the original implemen-
tation. The latest version features significantly improved
bounds and new distance correction methods and, on the
same dataset, exhibits a speedup factor of over one billion.
GRAPPA achieves this speedup through a combination of
parallelism and high-performance algorithm engineering.
Although such spectacular speedups will not always be re-
alized, many algorithmic approaches now in use in the bi-
ological, pharmaceutical, and medical communities may
benefit tremendously from such an application of high-
performance techniques and platforms.

This example indicates the potential of applying high-
performance algorithm engineering techniques to appli-
cations in computational biology, especially in areas that
involve complex optimizations: Bader’s reimplementation
did not require new algorithms or entirely new techniques,
yet achieved gains that turned an impractical approach
into a usable one.

Cross References
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ProblemDefinition

Dealing effectively with applications in large networks, it
typically requires the efficient solution of one ore more un-

derlying algorithmic problems. Due to the size of the net-
work, a considerable effort is inevitable in order to achieve
the desired efficiency in the algorithm.

One of the primary tasks in large network applications
is to answer queries for finding best routes or paths as effi-
ciently as possible. Quite often, the challenge is to process
a vast number of such queries on-line: a typical situation
encountered in several real-time applications (e. g., traffic
information systems, public transportation systems) con-
cerns a query-intensive scenario, where a central server has
to answer a huge number of on-line customer queries ask-
ing for their best routes (or optimal itineraries). The main
goal in such an application is to reduce the (average) re-
sponse time for a query.

Answering a best route (or optimal itinerary) query
translates in computing a minimum cost (shortest) path
on a suitably defined directed graph (digraph) with non-
negative edge costs. This in turn implies that the core
algorithmic problem underlying the efficient answering
of queries is the single-source single-target shortest path
problem.

Although the straightforward approach of pre-com-
puting and storing shortest paths for all pairs of vertices
would enabling the optimal answering of shortest path
queries, the quadratic space requirements for digraphs
with more than 105 vertices makes such an approach pro-
hibitive for large and very large networks. For this reason,
the main goal of almost all known approaches is to keep
the space requirements as small as possible. This in turn
implies that one can afford a heavy (in time) preprocess-
ing, which does not blow up space, in order to speed-up
the query time.

The most commonly used approach for answering
shortest path queries employs Dijkstra’s algorithm and/or
variants of it. Consequently, the main challenge is how to
reduce the algorithm’s search-space (number of vertices
visited), as this would immediately yield a better query
time.

Key Results

All results discussed concern answering of optimal (or ex-
act or distance-preserving) shortest paths under the afore-
mentioned query-intensive scenario, and are all based on
the following generic approach. A preprocessing of the in-
put network G = (V ; E) takes place that results in a data
structure of size O(jV j + jEj) (i. e., linear to the size of G).
The data structure contains additional information re-
garding certain shortest paths that can be used later during
querying.
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Depending on the pre-computed additional informa-
tion as well as on the way a shortest path query is answered,
two approaches can be distinguished. In the first approach,
graph annotation, the additional information is attached to
vertices or edges of the graph. Then, speed-up techniques
to Dijkstra’s algorithm are employed that, based on this
information, decide quickly which part of the graph does
not need to be searched. In the second approach, an auxil-
iary graph G0 is constructed hierarchically. A shortest path
query is then answered by searching only a small part of
G0, using Dijkstra’s algorithm enhanced with heuristics to
further speed-up the query time.

In the following, the key results of the first [3,4,9,11]
and the second approach [1,2,5,7,8,10] are discussed, as
well as results concerning modeling issues.

First Approach – Graph Annotation

The first work under this approach concerns the study
in [9] on large railway networks. In that paper, two new
heuristics are introduced: the angle-restriction (that tries
to reduce the search space by taking advantage of the ge-
ometric layout of the vertices) and the selection of sta-
tions (a subset of vertices is selected among which all pairs
shortest paths are pre-computed). These two heuristics
along with a combination of the classical goal-directed or
A* search turned out to be rather efficient. Moreover, they
motivated two important generalizations [10,11] that gave
further improvements to shortest path query times.

The full exploitation of geometry-based heuristics was
investigated in [11], where both street and railway net-
works are considered. In that paper, it is shown that the
search space of Dijkstra’s algorithm can be significantly re-
duced (to 5%–10% of the initial graph size) by extracting
geometric information from a given layout of the graph
and by encapsulating pre-computed shortest path infor-
mation in resulted geometric objects, called containers.
Moreover, the dynamic case of the problem was investi-
gated, where edge costs are subject to change and the geo-
metric containers have to be updated.

A powerful modification to the classical Dijkstra’s al-
gorithm, called reach-based routing, was presented in [4].
Every vertex is assigned a so-called reach value that deter-
mines whether a particular vertex will be considered dur-
ing Dijkstra’s algorithm. A vertex is excluded from con-
sideration if its reach value is small; that is, if it does not
contribute to any path long enough to be of use for the
current query.

A considerable enhancement of the classical A* search
algorithm using landmarks (selected vertices like in [9,10])
and the triangle inequality with respect to the shortest path

distances was shown in [3]. Landmarks and triangle in-
equality help to provide better lower bounds and hence
boost A* search.

Second Approach – Auxiliary Graph

The first work under this approach concerns the study
in [10], where a new hierarchical decomposition tech-
nique is introduced called multi-level graph. A multi-level
graphM is a digraph which is determined by a sequence of
subsets ofV and which extends E by addingmultiple levels
of edges. This allows to efficiently construct, during query-
ing, a subgraph ofMwhich is substantially smaller thanG
and in which the shortest path distance between any of its
vertices is equal to the shortest path distance between the
same vertices inG. Further improvements of this approach
have been presented recently in [1]. A refinement of the
above idea was introduced in [5], where the multi-level
overlay graphs are introduced. In such a graph, the de-
composition hierarchy is not determined by application-
specific information as it happens in [9,10].

An alternative hierarchical decomposition technique,
called highway hierarchies, was presented in [7]. The ap-
proach takes advantage of the inherent hierarchy pos-
sessed by real-world road networks and computes a hierar-
chy of coarser views of the input graph. Then, the shortest
path query algorithm considers mainly the (much smaller
in size) coarser views, thus achieving dramatic speed-ups
in query time. A revision and improvement of this method
was given in [8]. A powerful combination of the highway
hierarchies with the ideas in [3] was reported in [2].

Modeling Issues

The modeling of the original best route (or optimal
itinerary) problem on a large network to a shortest path
problem in a suitably defined directed graph with appro-
priate edge costs also plays a significant role in reducing
the query time. Modeling issues are thoroughly investi-
gated in [6]. In that paper, the first experimental compar-
ison of two important approaches (time-expanded versus
time-dependent) is carried out, along with new extensions
of them towards realistic modeling. In addition, several
new heuristics are introduced to speed-up query time.

Applications

Answering shortest path queries in large graphs has a mul-
titude of applications, especially in traffic information sys-
tems under the aforementioned scenario; that is, a central
server has to answer, as fast as possible, a huge number
of on-line customer queries asking for their best routes
or itineraries. Other applications of the above scenario
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involve route planning systems for cars, bikes and hik-
ers, public transport systems for itinerary information of
scheduled vehicles (like trains or buses), answering queries
in spatial databases, and web searching. All the above ap-
plications concern real-time systems in which users con-
tinuously enter their requests for finding their best con-
nections or routes. Hence, the main goal is to reduce the
(average) response time for answering a query.

Open Problems

Real-world networks increase constantly in size either as
a result of accumulation of more and more information
on them, or as a result of the digital convergence of me-
dia services, communication networks, and devices. This
scaling-up of networks makes the scalability of the under-
lying algorithms questionable. As the networks continue
to grow, there will be a constant need for designing faster
algorithms to support core algorithmic problems.

Experimental Results

All papers discussed in Sect. “Key Results” contain impor-
tant experimental studies on the various techniques they
investigate.

Data Sets

The data sets used in [6,11] are available from http://
lso-compendium.cti.gr/ under problems 26 and 20, re-
spectively.

The data sets used in [1,2] are available from http://
www.dis.uniroma1.it/~challenge9/.

URL to Code

The code used in [9] is available from http://doi.acm.org/
10.1145/351827.384254.

The code used in [6,11] is available from http://
lso-compendium.cti.gr/ under problems 26 and 20, re-
spectively.

The code used in [3] is available from http://www.
avglab.com/andrew/soft.html.
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ProblemDefinition

Transforming a theoretical geometric algorithm into an
effective computer program abounds with hurdles. Over-
coming these difficulties is the concern of engineering ge-
ometric algorithms, which deals, more generally, with the
design and implementation of certified and efficient solu-
tions to algorithmic problems of geometric nature. Typ-
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ical problems in this family include the construction of
Voronoi diagrams, triangulations, arrangements of curves
and surfaces (namely, space subdivisions), two- or higher-
dimensional search structures, convex hulls and more.

Geometric algorithms strongly couple topologi-
cal/combinatorial structures (e. g., a graph describing the
triangulation of a set of points) on the one hand, with
numerical information (e. g., the coordinates of the ver-
tices of the triangulation) on the other. Slight errors in the
numerical calculations, which in many areas of science
and engineering can be tolerated, may lead to detrimental
mistakes in the topological structure, causing the com-
puter program to crash, to loop infinitely, or plainly to
give wrong results.

Straightforward implementation of geometric algo-
rithms as they appear in a textbook, using standard ma-
chine arithmetic, is most likely to fail. This entry is con-
cerned only with certified solutions, namely, solutions that
are guaranteed to construct the exact desired structure or
a good approximation of it; such solutions are often re-
ferred to as robust.

The goal of engineering geometric algorithms can be
restated as follows: Design and implement geometric algo-
rithms that are at once robust and efficient in practice.

Much of the difficulty in adapting in practice the ex-
isting vast algorithmic literature in computational geome-
try comes from the assumptions that are typically made in
the theoretical study of geometric algorithms that (1) the
input is in general position, namely, degenerate input is
precluded, (2) computation is performed on an ideal com-
puter that can carry out real arithmetic to infinite preci-
sion (so-called real RAM), and (3) the cost of operating on
a small number of simple geometric objects is “unit” time
(e. g., equal cost is assigned to intersecting three spheres
and to comparing two integer numbers).

Now, in real life, geometric input is quite often de-
generate, machine precision is limited, and operations on
a small number of simple geometric objects within the
same algorithm may differ hundredfold and more in the
time they take to execute (when aiming for certified re-
sults). Just implementing an algorithm carefully may not
suffice and often redesign is called for.

Key Results

Tremendous efforts have been invested in the design and
implementation of robust computational-geometry soft-
ware in recent years. Two notable large-scale efforts are
the CGAL library [1] and the geometric part of the LEDA li-
brary [14]. These are jointly reviewed in the survey by Ket-
tner and Näher [13]. Numerous other relevant projects,

which for space constraints are not reviewed here, are sur-
veyed by Joswig [12] with extensive references to papers
andWeb sites.

A fundamental engineering decision to take when
coming to implement a geometric algorithm is what will
the underlying arithmetic be, that is, whether to opt for ex-
act computation or use the machine floating-point arith-
metic. (Other less commonly used options exist as well.)
To date, the CGAL and LEDA libraries are almost exclu-
sively based on exact computation. One of the reasons
for this exclusivity is that exact computation emulates the
ideal computer (for restricted problems) and makes the
adaptation of algorithms from theory to software easier.
This is facilitated by major headway in developing tools
for efficient computation with rational or algebraic num-
bers (GMP [3], LEDA [14], CORE [2] and more). On top of
these tools, clever techniques for reducing the amount of
exact computation were developed, such as floating-point
filters and the higher- level geometric filtering.

The alternative is to use the machine floating-point
arithmetic, having the advantage of being very fast. How-
ever, it is nowhere near the ideal infinite precision arith-
metic assumed in the theoretical study of geometric algo-
rithms and algorithms have to be carefully redesigned. See,
for example, the discussion about imprecision in the man-
ual of QHULL, the convex hull program by Barber et al. [5].
Over the years a variety of specially tailored floating-point
variants of algorithms have been proposed, for example,
the carefully crafted VRONI package by Held [11], which
computes the Voronoi diagram of points and line seg-
ments using standard floating-point arithmetic, based on
the topology-oriented approach of Sugihara and Iri. While
VRONI works very well in practice, it is not theoretically
certified. Controlled perturbation [9] emerges as a system-
atic method to produce certified approximations of com-
plex geometric constructs while using floating-point arith-
metic: the input is perturbed such that all predicates are
computed accurately even with the limited-precision ma-
chine arithmetic, and a method is given to bound the nec-
essary magnitude of perturbation that will guarantee the
successful completion of the computation.

Another decision to take is how to represent the output
of the algorithm, where the major issue is typically how to
represent the coordinates of vertices of the output struc-
ture(s). Interestingly, this question is crucial when using
exact computation since there the output coordinates can
be prohibitively large or simply impossible to finitely enu-
merate. (One should note though that many geometric al-
gorithms are selective only, namely, they do not produce
new geometric entities but just select and order subsets of
the input coordinates. For example, the output of an al-
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gorithm for computing the convex hull of a set of points
in the plane is an ordering of a subset of the input points.
No new point is computed. The discussion in this para-
graph mostly applies to algorithms that output new ge-
ometric constructs, such as the intersection point of two
lines.) But even when using floating-point arithmetic, one
may prefer to have a more compact bit-size representation
than, say, machine doubles. In this direction there is an ef-
fective, well-studied solution for the case of polygonal ob-
jects in the plane, called snap rounding, where vertices and
intersection points are snapped to grid vertices while re-
taining certain topological properties of the exact desired
structure. Rounding with guarantees is in general a very
difficult problem, and already for polyhedral objects in 3-
space the current attempts at generalizing snap rounding
are very costly (increasing the complexity of the rounded
objects to the third, or even higher, power).

Then there are a variety of engineering issues depend-
ing on the problem at hand. Following are two examples
of engineering studies where the experience in practice is
different from what the asymptotic resource measures im-
ply. The examples relate to fundamental steps in many ge-
ometric algorithms: decomposition and point location.

Decomposition

A basic step in many geometric algorithms is to decom-
pose a (possibly complex) geometric object into simpler
subobjects, where each subobject typically has constant de-
scriptive complexity. A well-known example is the trian-
gulation of a polygon. The choice of decomposition may
have a significant effect on the efficiency in practice of vari-
ous algorithms that rely on decomposition. Such is the case
when constructing Minkowski sums of polygons in the
plane. TheMinkowski sum of two setsA and B inRd is the
vector sum of the two sets A˚ B = fa + bja 2 A; b 2 Bg.
The simplest approach to computing Minkowski sums of
two polygons in the plane proceeds in three steps: triangu-
late each polygon, then compute the sum of each triangle
of one polygon with each triangle of the other, and finally
take the union of all the subsums. In asymptotic measures,
the choice of triangulation (over alternative decomposi-
tions) has no effect. In practice though, triangulation is
probably the worst choice compared with other convex de-
compositions, even fairly simple heuristic ones (not neces-
sarily optimal), as shown by experiments on a dozen dif-
ferent decomposition methods [4]. The explanation is that
triangulation increases the overall complexity of the sub-
sums and in turn makes the union stage more complex–-
indeed by a constant factor, but a noticeable factor in prac-
tice. Similar phenomena were observed in other situations

as well. For example, when using the prevalent vertical de-
composition of arrangements–-often it is too costly com-
pared with sparser decompositions (i. e., decompositions
that add fewer extra features).

Point Location

A recurring problem in geometric computing is to pro-
cess given planar subdivision (planar map), so as to effi-
ciently answer point-location queries: Given a point q in
the plane, which face of the map contains q? Over the years
a variety of point-location algorithms for planar maps
were implemented in CGAL, in particular, a hierarchical
search structure that guarantees logarithmic query time af-
ter expected O(n log n) preprocessing time of a map with
n edges. This algorithm is referred to in CGAL as the RIC
point-location algorithm after the preprocessing method
which uses randomized incremental construction. Several
simpler, easier-to-program algorithms for point location
were also implemented. None of the latter beats the RIC
algorithm in query time. However, the RIC is by far the
slowest of all the implemented algorithms in terms of pre-
processing, which in many scenarios renders it less effec-
tive. One of the simpler methods devised is a variant of
the well-known jump-and-walk approach to point loca-
tion. The algorithm scatters points (so-called landmarks)
in the map and maintains the landmarks (together with
their containing faces) in a nearest-neighbor search struc-
ture. Once a query q is issued it finds the nearest landmark
` to q, and “walks” in the map from ` toward q along the
straight line segment connecting them. This landmark ap-
proach offers query time that is only slightly more expen-
sive than the RIC method while being very efficient in pre-
processing. The full details can be found in [10]. This is yet
another consideration when designing (geometric) algo-
rithms: the cost of preprocessing (and storage) versus the
cost of a query. Quite often the effective (practical) tradeoff
between these costs needs to be deduced experimentally.

Applications

Geometric algorithms are useful in many areas. Triangu-
lations and arrangements are examples of basic constructs
that have been intensively studied in computational ge-
ometry, carefully implemented and experimented with, as
well as used in diverse applications.

Triangulations

Triangulations in two and three dimensions are imple-
mented in CGAL [7]. In fact, CGAL offers many variants of
triangulations useful for different applications. Among the
applications where CGAL triangulations are employed are
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meshing, molecular modeling, meteorology, photogram-
metry, and geographic information systems (GIS). For
other available triangulation packages, see the survey by
Joswig [12].

Arrangements

Arrangements of curves in the plane are supported by
CGAL [15], as well as envelopes of surfaces in three-
dimensional space. Forthcoming is support also for ar-
rangements of curves on surfaces. CGAL arrangements
have been used in motion planning algorithms, computer-
aided design and manufacturing, GIS, computer graphics,
and more (see Chap. 1 in [6]).

Open Problems

In spite of the significant progress in certified implemen-
tation of effective geometric algorithms, the existing theo-
retical algorithmic solutions for many problems still need
adaptation or redesign to be useful in practice. One ex-
ample where progress can have wide repercussions is de-
vising effective decompositions for curved geometric ob-
jects (e. g., arrangements) in the plane and for higher-
dimensional objects. As mentioned earlier, suitable de-
compositions can have a significant effect on the perfor-
mance of geometric algorithms in practice.

Certified fixed-precision geometric computing lags be-
hind the exact computing paradigm in terms of avail-
able robust software, and moving forward in this direc-
tion is a major challenge. For example, creating a certi-
fied floating-point counterpart to CGAL is a desirable (and
highly intricate) task.

Another important tool that is largely missing is
consistent and efficient rounding of geometric objects.
As mentioned earlier, a fairly satisfactory solution exists
for polygonal objects in the plane. Good techniques are
missing for curved objects in the plane and for higher-
dimensional objects (both linear and curved).

URL to Code

http://www.cgal.org

Cross References

� LEDA: a Library of Efficient Algorithms
� Robust Geometric Computation

Recommended Reading

Conferences publishing papers on the topic include the
ACM Symposium on Computational Geometry (SoCG),

the Workshop on Algorithm Engineering and Exper-
iments (ALENEX), the Engineering and Applications
Track of the European Symposium on Algorithms (ESA),
its predecessor and the Workshop on Experimental Al-
gorithms (WEA). Relevant journals include the ACM
Journal on Experimental Algorithmics, Computational Ge-
ometry: Theory and Applications and the International
Journal of Computational Geometry and Applications.
A wide range of relevant aspects are discussed in the re-
cent book edited by Boissonnat and Teillaud [6], titled
Effective Computational Geometry for Curves and Sur-
faces.

1. The CGAL project homepage. http://www.cgal.org/. Accessed
6 Apr 2008

2. The CORE library homepage. http://www.cs.nyu.edu/exact/
core/. Accessed 6 Apr 2008

3. The GMP webpage. http://gmplib.org/. Accessed 6 Apr 2008
4. Agarwal, P.K., Flato, E., Halperin, D.: Polygon decomposition

for efficient construction of Minkowski sums. Comput. Geom.
Theor. Appl. 21(1–2), 39–61 (2002)

5. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.T.: Imprecision in
QHULL. http://www.qhull.org/html/qh-impre.htm. Accessed 6
Apr 2008

6. Boissonnat, J.-D., Teillaud, M. (eds.) Effective Computational
Geometry for Curves and Surfaces. Springer, Berlin (2006)

7. Boissonat, J.-D., Devillers, O., Pion, S., Teillaud, M., Yvinec, M.:
Triangulations in CGAL. Comput. Geom. Theor. Appl. 22(1–3),
5-19 (2002)

8. Fabri, A., Giezeman, G.-J., Kettner, L., Schirra, S., Schönherr, S.:
On the design of CGAL a computational geometry algorithms
library. Softw. Pract. Experience 30(11), 1167–1202 (2000)

9. Halperin, D., Leiserowitz, E.: Controlled perturbation for ar-
rangements of circles. Int. J. Comput. Geom. Appl. 14(4–5),
277–310 (2004)

10. Haran, I., Halperin, D.: An experimental study of point location
in general planar arrangements. In: Proceedings of 8th Work-
shop on Algorithm Engineering and Experiments, pp. 16–25
(2006)

11. Held, M.: VRONI: An engineering approach to the reliable
and efficient computation of Voronoi diagrams of points and
line segments. Comput. Geom. Theor. Appl. 18(2), 95–123
(2001)

12. Joswig, M.: Software. In: Goodman, J.E., O’Rourke, J. (eds.)
Handbook of Discrete and Computational Geometry, 2nd edn.,
chap. 64, pp. 1415–1433. Chapman & Hall/CRC, Boca Raton
(2004)

13. Kettner, L., Näher, S.: Two computational geometry libraries:
LEDA and CGAL. In: Goodman, J.E., O’Rourke, J. (eds.) Hand-
book of Discrete and Computational Geometry, Chapter 65,
pp. 1435–1463, 2nd edn. Chapman & Hall/CRC, Boca Raton
(2004)

14. Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial
and Geometric Computing. Cambridge University Press, Cam-
bridge (2000)

15. Wein, R., Fogel, E., Zukerman, B., Halperin, D.: Advanced pro-
gramming techniques applied to CGAL’s arrangement pack-
age. Comput. Geom. Theor. Appl. 36(1–2), 37–63 (2007)

http://www.cgal.org
http://www.cgal.org/
http://www.cs.nyu.edu/exact/core/
http://www.cs.nyu.edu/exact/core/
http://gmplib.org/
http://www.qhull.org/html/qh-impre.htm


278 E Equivalence Between Priority Queues and Sorting

Equivalence Between
Priority Queues and Sorting
2002; Thorup

REZAUL A. CHOWDHURY
Department of Computer Sciences,
University of Texas at Austin,
Austin, TX, USA

Keywords and Synonyms

Heap

ProblemDefinition

A priority queue is an abstract data structure that main-
tains a set Q of elements, each with an associated value
called a key, under the following set of operations [4,7].

insert(Q; x; k): Inserts element x with key k into Q.
find-min(Q): Returns an element ofQwith the minimum

key, but does not change Q.
delete(Q; x; k): Deletes element x with key k from Q.

Additionally, the following operations are often sup-
ported.

delete-min(Q): Deletes an element with the minimum
key value from Q, and returns it.

decrease-key(Q; x; k): Decreases the current key k0 of x to
k assuming k < k0.

meld(Q1;Q2): Given priority queues Q1 and Q2, returns
the priority queue Q1 [ Q2.

Observe that a delete-min can be implemented as a find-
min followed by a delete, a decrease-key as a delete fol-
lowed by an insert, and ameld as a series of find-min, delete
and insert. However, more efficient implementations of
decrease-key andmeld often exist [4,7].

Priority queues have many practical applications
including event-driven simulation, job scheduling on
a shared computer, and computation of shortest paths,
minimum spanning forests, minimum cost matching, op-
timum branching, etc. [4,7].

A priority queue can trivially be used for sorting by
first inserting all keys to be sorted into the priority queue
and then by repeatedly extracting the current minimum.
The major contribution in [15] is a reduction showing that
the converse is also true. The results in [15] imply that
priority queues are computationally equivalent to sorting,

that is, asymptotically, the per key cost of sorting is the up-
date time of a priority queue.

A result similar to those in [15] was presented in [14]
which resulted in monotone priority queues (i. e., mean-
ing that the extracted minimums are non-decreasing) with
amortized time bounds only. In contrast, general priority
queues with worst-case bounds are constructed in [15].

In addition to establishing the equivalence between
priority queues and sorting, the reductions in [15] are also
used to translate several known sorting results into new
results on priority queues.

Background

Some relevant background information is summarized be-
low which will be useful in understanding the key results
in Sect. “Key Results”.
� A standard word RAM models what one programs in

a standard programming language such as C. In addi-
tion to direct and indirect addressing and conditional
jumps, there are functions, such as addition and mul-
tiplication, operating on a constant number of words.
The memory is divided into words, addressed linearly
starting from 0. The running time of a program is
the number of instructions executed and the space is
the maximal address used. The word-length is a ma-
chine dependent parameterwhich is big enough to hold
a key, and at least logarithmic in the number of input
keys so that they can be addressed.

� A pointer machine is like the word RAM except that
addresses cannot be manipulated.

� The AC0 complexity class consists of constant-depth
circuits with unlimited fan-in [18]. Standard AC0 oper-
ations refer to the operations available via C, but where
the functions on words are in AC0. For example, this
includes addition but not multiplication.

� Integer keys will refer to non-negative integers. How-
ever, if the input keys are signed integers, the correct
ordering of the keys is obtained by flipping their sign
bits and interpreting them as unsigned integers. Simi-
lar tricks work for floating point numbers and integer
fractions [14].

� The atomic heaps of Fredman andWillard [6] are used
in one of the reductions in [15]. These heaps can sup-
port updates and searches in sets of O(log2 n) keys in
O(1) worst-case time [19]. However, atomic heaps use
multiplication operations which are not in AC0.

Key Results

The main results in this paper are two reductions from
priority queues to sorting. The stronger of the two, stated
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in Theorem 1, is for integer priority queues running on
a standard word RAM.

Theorem 1 If for some non-decreasing function S, up to
n integer keys can be sorted in S(n) time per key, an in-
teger priority queue can be implemented supporting find-
min in constant time, and updates, i. e., insert and delete,
in S(n) + O(1) time. Here n is the current number of keys
in the queue. The reduction uses linear space. The reduction
runs on a standard word RAM assuming that each integer
key is contained in a single word.

The reduction above provides the following new bounds
for linear space integer priority queues improving previ-
ous bounds in [8,14] and [5], respectively.
1. (Deterministic) O(log log n) update time using a sort-

ing algorithm in [9].
2. (Randomized) O

�p
log log n

�
expected update time

using the sorting algorithm in [10].
3. (Randomized with O(1) decrease-key)

O
�
(log n)

1
(2��)

�
expected update time for word

length � log n and any constant � > 0, using the sort-
ing algorithm in [3].

The reduction in Theorem 1 employs atomic heaps [6]
which in addition to being very complicated, use non-AC0

operations. The following slightly weaker recursive reduc-
tion which does not restrict the domain of the keys is com-
pletely combinatorial.

Theorem 2 Given a sorter that sorts up to n keys in S(n)
time per key, a priority queue can be implemented support-
ing find-min in constant time, and updates in T(n) time
where n is the current number of keys in the queue and T(n)
satisfies the recurrence:

T(n) = O
�
S(n) + T(log2 n)

�
:

The reduction runs on a pointer machine in linear space
using only standard AC0 operations. Key values are only
accessed by the sorter.

This reduction implies the following new priority queue
bounds not implied by Theorem 1, where the first two
bounds improve previous bounds in [13] and [16], respec-
tively.
1. (Deterministic in Standard AC0) O

�
(log log n)1+�

�
update time for any constant � > 0 using a standard
AC0 integer sorting algorithm in [10].

2. (Randomized in Standard AC0) O
�
log log n

�
ex-

pected update time using a standard AC0 integer sort-
ing algorithm in [16].

3. (String of l Words) O(l + log log n) deterministic and
O
�
l +
p
log log n

�
randomized expected update time

using the string sorting results in [10].

The Reduction in Theorem 1

Given a sorting routine that can sort up to n keys in S(n)
time per key, the priority queue is constructed as follows.

The data structure has twomajor components: a sorted
list of keys and a set of update buffers. The key list is parti-
tioned into small segments, each of which is maintained in
an atomic heap allowing constant time update and search
operations on that segment. Each update buffer has a dif-
ferent capacity and accumulates updates (insert/delete)
with key values in a different range. Smaller update buffers
accept updates with smaller keys. An atomic heap is used
to determine in constant time which update buffer col-
lects a new update. When an update buffer accumulates
enough updates, they first enter a sorting phase and then
a merging phase. In the merging phase each update is ap-
plied on the proper segment in the key list, and invari-
ants on segment size and ranges of update buffers are
fixed. These phases are not executed immediately, instead
they are executed in fixed time increments over a period
of time. An update buffer continues to accept new up-
dates while some updates accepted by it earlier are still
in the sorting phase, and some even older updates are in
the merging phase. Every time it accepts a new update,
S(n) time is spent on the sorting phase associated with
it, and O(1) time on its merging phase. This strategy al-
lows the sorting and merging phases to complete execu-
tion by the time the update buffer becomes full again, and
thus keeping the movement of updates through different
phases smooth while maintaining an S(n) + O(1) worst-
case time bound per update. Moreover, the size and ca-
pacity constraints ensure that the smallest key in the data
structure is available in O(1) time. More details are given
below.

The Sorted Key List: The sorted key list contains most
of the keys in the data structure including the minimum
key, and is known as the base list. This list is partitioned
into base segments containing 	((log n)2) keys each. Keys
in each segment are maintained in an atomic heap so that
if a new update is known to apply to a particular segment
it can be applied in O(1) time. If a base segment becomes
too large or too small, it is split or joined with an adjacent
segment.

Update Buffers: The base segments are separated by
base splitters, and O(log n) of them are chosen to become
top splitters so that the number of keys in the base list be-
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low the ith (i > 0) top splitter si is 	
�
4i(log n)2

�
. These

splitters are placed in an atomic heap. As the base list
changes the top splitters are moved, as needed, in order
to maintain their exponential distribution.

Associated with each top splitter si, i > 1, are three
buffers: an entrance, a sorter, and a merger, each with ca-
pacity for 4i keys. Top splitter si works in a cycle of 4i

steps. The cycle starts with an empty entrance, at most
4i updates in the sorter, and a sorted list of at most 4i

updates in the merger. In each step one may accept an
update for the entrance, spend O(4i ) = S(n) time in the
sorter, and O(1) time in merging the sorted list in the
merger with the O(4i ) base splitters in [si�2; si+1) (assum-
ing s0 = 0, s�1 = �1) and scanning for a new si among
them. The implementation guarantees that all keys in the
buffers of si lie in [si�2; si+1). Therefore, after 4i such steps,
the sorted list is correctly merged with the base list, a new
si is found, and a new sorted list is produced. The sorter
then takes the role of the merger, the entrance becomes
the sorter, and the empty merger becomes the new en-
trance.

Handling Updates: When a new update key k (in-
sert/delete) is received, the atomic heap of top splitters is
used to find in O(1) time the si such that k 2 [si�1; si ). If
k 2 [s0; s1), its position is identified among the O(1) base
splitters below s1, and the corresponding base segment is
updated in O(1) time using the atomic heap over the keys
of that segment. If k 2 [si�1; si ) for some i > 1, the up-
date is placed in the entrance of si, performing one step
of the cycle of si in S(n) + O(1) time. Additionally, during
each update another splitter sr is chosen in a round-robin
fashion, and a fraction 1/ log n of a step of a cycle of sr is
executed in O(1) time. The work on sr ensures that after
every O((log n)2) updates some progress is made on mov-
ing each top splitter.

A find-min returns the minimum element of the base
list which is available in O(1) time.

The Reduction in Theorem 2

This reduction follows from the previous reduction by re-
placing all atomic heaps by the buffer systems developed
for the top splitters.

Further Improvement

In [1] Alstrup et al. present a general reduction that trans-
forms a priority queue to support insert inO(1) time while
keeping the other bounds unchanged. This reduction can
be used to reduce the cost of insertion to a constant in The-
orems 1 and 2.

Applications

The equivalence results in [15] can be used to translate
known sorting results into new results on priority queues
for integers and strings in different computational models
(see Sect. “Key Results”). These results can also be viewed
as a new means of proving lower bounds for sorting via
priority queues.

A new RAM priority queue that matches the bounds
in Theorem 1 and also supports decrease-key in O(1) time
is presented in [17]. This construction combines Anders-
son’s exponential search trees [2] with the priority queues
implied by Theorem 1. The reduction in Theorem 1 is also
used in [12] in order to develop an adaptive integer sorting
algorithm for the word RAM. Reductions from meldable
priority queues to sorting presented in [11] use the reduc-
tions from non-meldable priority queues to sorting given
in [15].

Open Problems

As noted before, the combinatorial reduction for pointer
machines given in Theorem 2 is weaker than the word
RAM reduction. For example, for a hypothetical linear
time sorting algorithm, Theorem 1 implies a priority
queue with an update time of O(1) while Theorem 2 im-
plies 2O(log

� n)-time updates. Whether this gap can be re-
duced or removed is still an open question.

Cross References

� Cache-Oblivious Sorting
� External Sorting and Permuting
� String Sorting
� Suffix Tree Construction in RAM
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This entry considers geometric optimization NP-hard
problems like the Euclidean Traveling Salesperson prob-
lem and the Euclidean Steiner Tree problem. These prob-
lems are geometric variants of standard graph optimiza-
tion problems, and the restriction of the input instances
to geometric or Euclidean case arise in numerous appli-
cations (see [1,2]). The main focus of this chapter is the
Euclidean Traveling Salesperson problem.

Notation

The Euclidean Traveling Salesperson Problem (TSP): For
a given set S of n points in the Euclidean space Rd , find
a path of minimum length that visits each point exactly
once.

The cost ı(x; y) of an edge connecting a pair of points
x; y 2 Rd is equal to the Euclidean distance between

points x and y. That is, ı(x; y) =
qPd

i=1(xi � yi )2, where
x = (x1; : : : ; xd ) and y = (y1; : : : ; yd ). More generally, the
distance can be defined using other norms, such as `p

norms for any p > 1, ı(x; y) =
�Pd

i=1(xi � yi )p
�1/p

.
For a given set S of points in the Euclidean space

Rd , for an integer d, d � 2, an Euclidean graph (network)
is a graph G = (S; E), where E is the set of straight-line
segments connecting pairs of points in S. If all pairs of
points in S are connected by edges in E, then G is called
a complete Euclidean graph on S. The cost of the graph is
equal to the sum of the costs of the edges of the graph:
cost(G) =

P
(x;y)2E ı(x; y).

A polynomial-time approximation scheme (PTAS) is
a family of algorithms fA"g such that, for each fixed " > 0,
A" runs in a time which is a polynomial of the size of the
input, and produces a (1 + ")-approximation.
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Related work

The classical book by Lawler et al. [12] provides extensive
information about the TSP. Also, the survey exposition of
Bern and Eppstein [7] presents state of the art research
done on the geometric TSP up to 1995, and the survey of
Arora [2] discusses the research done after 1995.

Key Results

In general graphs the TSP graph problem is well known to
beNP-hard, and the same claim holds for the Euclidean
TSP problem [11], [14].

Theorem 1 The Euclidean TSP problem isNP-hard.
Perhaps rather surprisingly, it is still not known if the de-
cision version of the problem isNP-complete [11]. (The
decision version of the Euclidean TSP problem is for a
given point set in the Euclidean space Rd and a number
t, verify if there is a simple path of length smaller than t
that visits each point exactly once.)

The approximability of TSP has been studied exten-
sively over the last few decades. It is not hard to see
that TSP is not approximable in polynomial-time (unless
P =NP) for arbitrary graphs with arbitrary edge costs.
When the weights satisfy the triangle inequality (the so
calledmetric TSP), there is a polynomial-time 3/2-approx-
imation algorithm due to Christofides [8], and it is known
that no PTAS exists (unless P =NP). This result has
been strengthened by Trevisan [17] to include Euclidean
graphs in high-dimensions (the same result holds also for
any `p metric).

Theorem 2 (Trevisan [17]) If d � log n, then there exists
a constant � > 0 such that the Euclidean TSP problem in
Rd isNP-hard to approximate within a factor of 1 + �.

In particular, this result implies that if d � log n, then
the Euclidean TSP problem in Rd has no PTAS unless
P =NP.

The same result also holds for any `p metric. Further-
more, Theorem 2 implies that the Euclidean TSP in Rlog n

is APXPB-hard under E-reductions andAPX-complete un-
der AP-reductions.

It was believed that Theorem 2 might hold for smaller
values of d, in particular even for d = 2, but this has been
disproved independently by Arora [1] and Mitchell [13].

Theorem 3 (Arora [1],Mitchell [13]) The Euclidean TSP
on the plane has a PTAS.

The main idea of the algorithms of Arora and Mitchell is
rather simple, but the details of the analysis are quite com-
plicated. Both algorithms follow the same approach. First,

one proves a so-called Structure Theorem. This demon-
strates that there is a (1 + �)-approximation that has some
local properties. In the case of the Euclidean TSP problem,
there is a quadtree partition of the space containing all the
points, such that each cell of the quadtree is crossed by the
tour at most a constant number of times, and only in some
pre-specified locations. After proving the Structure The-
orem, one uses dynamic programming to find an optimal
(or almost optimal) solution that obeys the local properties
specified in the Structure Theorem.

The original algorithms presented in the first confer-
ence version of [1] and in the early version of [13] have
running times of the form O(n1/�) to obtain a (1 + �)-ap-
proximation, but this has been subsequently improved.
In particular, Arora’s randomized algorithm in [1] runs
in time O(n(log n)1/�), and it can be derandomized with
a slow-down of O(n). The result from Theorem 3 can be
also extended to higher dimensions. Arora shows the fol-
lowing result.

Theorem 4 (Arora [1]) For every constant d, the Eu-
clidean TSP in Rd has a PTAS.

For every fixed c > 1 and given any n nodes in Rd ,
there is a randomized algorithm that finds a (1 + 1/c)-ap-
proximation of the optimum traveling salesman tour in
O(n (log n)(O(

p
dc))d�1 ) time. In particular, for any con-

stant d and c, the running time isO(n (log n)O(1)). The algo-
rithm can be derandomized by increasing the running time
by a factor of O(nd ).

This was later extended by Rao and Smith [15], who
proved the following theorem.

Theorem 5 (Rao and Smith [15]) There is a determin-
istic algorithm that computes a (1 + 1/c)-approximation
of the optimum traveling salesman tour in O(2(cd)O(d) n +
(cd)O(d) n log n) time.

There is also a randomized Monte Carlo algorithm
that succeeds with probability at least 1/2 and that com-
putes a (1 + 1/c)-approximation of the optimum travel-
ing salesman tour in the expected (c

p
d)O(d(c

p
d)d�1) n +

O(d n log n) time.

In the special and most interesting case, when d = 2, Rao
and Smith show the following.

Theorem 6 (Rao and Smith [15]) There is a de-
terministic algorithm that computes a (1 + 1/c)-approx-
imation of the optimum traveling salesman tour in
O(n 2cO(1) + cO(1) n log n) time.

There is a randomized Monte Carlo algorithm (which
fails with probability smaller than 1/2) that computes
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a (1 + 1/c)-approximation of the optimum traveling sales-
man tour in the expectedO(n 2cO(1) + n log n) time.

Applications

The techniques developed by Arora [1] and Mitchell [13]
found numerous applications in the design of polynomial-
time approximation schemes for geometric optimization
problems.

EuclideanMinimum Steiner Tree Problem For a given
set S of n points in the Euclidean space Rd , find the min-
imum cost network connecting all the points in S (where
the cost of a network is equal to the sum of the lengths of
the edges defining it).

Theorem 7 ([1], [15]) For every constant d, the Euclidean
Minimum Steiner tree problem inRd has a PTAS.

Euclidean k-median Problem For a given set S of n
points in the Euclidean space Rd and an integer k, find
k medians among the points in S so that the sum of the
distances from each point in S to its closest median is min-
imized.

Theorem 8 ([5]) For every constant d, the Euclidean k-
median problem inRd has a PTAS.

Euclidean k-TSP Problem For a given set S of n points
in the Euclidean spaceRd and an integer k, find the short-
est tour that visits at least k points in S.

Euclidean k-MST Problem For a given set S of n points
in the Euclidean spaceRd and an integer k, find the short-
est tree that contains at least k points from S.

Theorem 9 ([1]) For every constant d, the Euclidean
k-TSP and the Euclidean k-MST problems in Rd have
a PTAS.

Euclidean Minimum-cost k-connected Subgraph Prob-
lem For a given set S of n points in the Euclidean space
Rd and an integer k, find the minimum-cost subgraph (of
the complete graph on S) that is k-connected

Theorem 10 ([9]) For every constant d and constant k, the
Euclidean minimum-cost k-connected subgraph problem in
Rd has a PTAS.

The technique developed by Arora [1] and Mitchell [13]
also led to some quasi-polynomial-time approximation
schemes, that is, the algorithms with the running time
of nO(log n). For example, Arora and Karokostas [4] gave
a quasi-polynomial-time approximation scheme for the

Euclidean minimum latency problem, and Remy and
Steger [16] gave a quasi-polynomial-time approximation
scheme for the minimum-weight triangulation problem.

For more discussion, see the survey by Arora [2]
and [10].

Extensions to Planar Graphs

The dynamic programming approach used by Arora [1]
and Mitchell [13] is also related to the recent advances
for a number of optimization problems for planar graphs.
For example, Arora et al. [3] designed a PTAS for the TSP
problem in weighted planar graphs, and there is a PTAS
for the problem of finding a minimum-cost spanning 2-
connected subgraph of a planar graph [6].

Open Problems

One interesting open problem is if the quasi-polynomial-
time approximation schemes mentioned above (for the
minimum latency and the minimum-weight triangula-
tion problems) can be extended to obtain polynomial-
time approximation schemes. For more open problems,
see Arora [2].
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ProblemDefinition

The dominating set problem is a classical NP-hard opti-
mization problem which fits into the broader class of cov-
ering problems. Hundreds of papers have been written on
this problem that has a natural motivation in facility loca-
tion.

Definition 1 For a given undirected, simple graph
G = (V ; E) a subset of vertices D  V is called a dominat-
ing set if every vertex u 2 V � D has a neighbor in D. The

minimum dominating set (MDS) problem is to find amin-
imum dominating set of G, i. e. a dominating set of G of
minimum cardinality.

Problem 1 (MDS)
Input: Undirected simple graph G = (V ; E).
Output: A minimum dominating set D of G.

Various modifications of the dominating set problem are
of interest, some of them obtained by putting additional
constraints on the dominating set such as, for example, re-
questing it to be an independent set or to be connected.
In graph theory there is a huge literature on domination
dealing with the problem and its many modifications (see
e. g.[9]). In graph algorithms the MDS problem and some
of its modifications like Independent Dominating Set and
Connected Dominating Set have been studied as bench-
mark problems for attacking NP-hard problems under
various algorithmic approaches.

Known Results

The algorithmic complexity of MDS and its modifications
when restricted to inputs from a particular graph class has
been studied extensively (see e. g. [10]). Among others, it
is known that MDS remains NP-hard on bipartite graphs,
split graphs, planar graphs and graphs of maximum de-
gree three. Polynomial time algorithms to compute a min-
imum dominating set are known, for example, for permu-
tation, interval and k-polygon graphs. There is also a O(4k

nO(1)) time algorithm to solveMDS on graphs of treewidth
at most k.

The dominating set problem is one of the basic prob-
lems in parameterized complexity [3]; it is W[2]-com-
plete and thus it is unlikely that the problem is fixed
parameter tractable. On the other hand, the problem
is fixed parameter tractable on planar graphs. Concern-
ing approximation, MDS is equivalent to MINIMUM SET
COVER under L-reductions. There is an approximation al-
gorithm solving MDS within a factor of 1 + ln jV j and it
cannot be approximated within a factor of (1 � �) ln jV j
for any � > 0, unless NP� DTIME(nlog log n) [1].

Moderately Exponential Time Algorithms

If P ¤ NP then no polynomial time algorithm can solve
MDS. Even worse, it has been observed in [7] that un-
less SNP SUBEXP (which is considered to be highly un-
likely), there is not even a subexponential time algorithm
solving the dominating set problem.

The trivial O(2n (n+m)) algorithm, which simply
checks all the 2n vertex subsets as to whether they are
dominating, clearly solves MDS. Three faster algorithms
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were established in 2004. The algorithm of Fomin et al. [7]
uses a deep graph-theoretic result due to B. Reed, stat-
ing that every graph on n vertices with minimum degree
at least three has a dominating set of size at most 3n/8,
to establish an O(20.955n) time algorithm solving MDS.
The O(20.919n) time algorithm of Randerath and Schier-
meyer [11] uses very nice ideas including matching tech-
niques to restrict the search space. Finally, Grandoni [8]
established an O(20.850n) time algorithm to solve MDS.

The work of Fomin, Grandoni, and Kratsch [5]
presents a simple and easy to implement recursive branch
& reduce algorithm to solve MDS. The running time of
the algorithm is significantly faster than the ones stated
for previous algorithms. This is heavily based on the anal-
ysis of the running time by measure & conquer, which is
a method to analyze the worst case running time of (sim-
ple) branch & reduce algorithms based on a sophisticated
choice of the measure of a problem instance.

Key Results

Theorem 1 There is a branch & reduce algorithm solving
MDS in time O(20:610n) using polynomial space.

Theorem 2 There is an algorithm solving MDS in time
O(20:598n using exponential space.

The algorithms of Theorem 1 and 2 are simple conse-
quences of a transformation from MDS to MINIMUM SET
COVER (MSC) combined with new moderately exponen-
tial time algorithms for MSC.

Problem 2 (MSC)
Input: Finite setU and a collection S of subsets S1,S2,. . . St
ofU.
Output: Aminimum set cover S0, where S0  S is a set cover
of (U;S) ifSSi2S0 Si = U.

Theorem 3 There is a branch & reduce algorithm solving
MSC in time O(20:305(jUj+jSj)) using polynomial space.

Applying memorization to the polynomial space algo-
rithm of Theorem 3 the running time can be improved as
follows.

Theorem 4 There is an algorithm solving MSC in time
O(20:299(jSj+jUj)) using exponential space.

The analysis of the worst case running time of the simple
branch & reduce algorithm solving MSC (of Theorem 3)
is done by a careful choice of the measure of a problem
instance which allows one to obtain an upper bound that
is significantly smaller than the one that could be obtained
using the standard measure. The refined analysis leads to

a collection of recurrences. Then random local search is
used to compute the weights, used in the definition of the
measure, aiming at the best achievable upper bound of the
worst-case running time.

Since current tools to analyze the worst-case running
time of branch & reduce algorithms do not seem to pro-
duce tight upper bounds, exponential lower bounds of the
worst-case running time of the algorithm are of interest.

Theorem 5 The worst-case running time of the branch &
reduce algorithm solvingMDS (see Theorem 1) is˝(2n/3).

Applications

There are various other NP-hard domination-type prob-
lems that can be solved by a moderately exponential time
algorithm based on an algorithm solving MINIMUM SET
COVER: any instance of the initial problem is transformed
to an instance of MSC (preferably with jUj = jSj), and
then the algorithm of Theorem 3 or 4 is used to solve MSC
and thus the initial problem. Examples of such problems
are TOTAL DOMINATING SET, k-DOMINATING SET, k-
CENTER and MDS on split graphs.

Measure & Conquer and the strongly related quasi-
convex analysis of Eppstein [4] have been used to design
and analyze a variety of moderately exponential time algo-
rithms for NP-hard problems: optimization, counting and
enumeration problems. See for example [2,6].

Open Problems

A number of problems related to the work of Fomin,
Grandoni, and Kratsch remain open. Although for vari-
ous graph classes there are algorithms to solve MDS which
are faster than the one for general graphs (of Theorem 1
and 2), no such algorithm is known for solving MDS on
bipartite graphs.

The worst-case running times of simple branch & re-
duce algorithms like those solving MDS and MSC remain
unknown. In the case of the polynomial space algorithm
solving MDS there is a large gap between the O(20.610n)
upper bound and the ˝(2n/3) lower bound. The situation
is similar for other branch & reduce algorithms. Conse-
quently, there is a strong need for new and better tools to
analyze the worst-case running time of branch & reduce
algorithms.

Cross References
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ProblemDefinition

The satisfiability problem (SAT) for Boolean formulas in
conjunctive normal form (CNF) is one of the first NP-
complete problems [2,13]. Since itsNP-completeness cur-
rently leaves no hope for polynomial-time algorithms, the
progress goes by decreasing the exponent. There are sev-
eral versions of this parametrized problem that differ in
the parameter used for the estimation of the running time.

Problem 1 (SAT) INPUT: Formula F in CNF containing
n variables, m clauses, and l literals in total.

OUTPUT: “Yes” if F has a satisfying assignment, i. e.,
a substitution of Boolean values for the variables that makes
F true. “No” otherwise.

The bounds on the running time of SAT algorithms can
be thus given in the form jFjO(1) � ˛n ; jFjO(1) � ˇm , or
jFjO(1) �� l , where |F| is the length of a reasonable bit repre-
sentation of F (i. e., the formal input to the algorithm). In
fact, for the present algorithms the bases ˇ and � are con-
stants while ˛ is a function ˛(n;m) of the formula param-
eters (because no better constant than ˛ = 2 is known).

Notation

A formula in conjunctive normal form is a set of clauses
(understood as the conjunction of these clauses), a clause
is a set of literals (understood as the disjunction of these
literals), and a literal is either a Boolean variable or the
negation of a Boolean variable. A truth assignment as-
signs Boolean values (false or true) to one or more
variables. An assignment is abbreviated as the list of liter-
als that are made true under this assignment (for exam-
ple, assigning false to x and true to y is denoted by
:x; y). The result of the application of an assignment A
to a formula F (denoted F[A]) is the formula obtained
by removing the clauses containing the true literals from
F and removing the falsified literals from the remaining
clauses. For example, if F = (x _:y _ z)^ (y _:z), then
F[:x; y] = (z). A satisfying assignment for F is an assign-
ment A such that F[A] = true. If such an assignment
exists, F is called satisfiable.

Key Results

Bounds for ˇ and �

General Approach and a Bound for ˇ The trivial brute-
force algorithm enumerating all possible assignments to
the n variables runs in 2n polynomial-time steps. Thus
˛ � 2, and by trivial reasons also ˇ; � � 2. In the early
1980s Monien and Speckenmeyer noticed that ˇ could be
made smaller1. Then Kullmann and Luckhardt [12] set
up a framework for divide-and-conquer2 algorithms for
SAT that split the original problem into several (yet usu-

1They and other researchers also noticed that ˛ could be made
smaller for a special case of the problem where the length of each
clause is bounded by a constant; the reader is referred to another entry
(Local search algorithms for k-SAT) of the Encyclopedia for relevant
references and algorithms.

2Also called DPLL due to the papers of Davis and Putnam [7] and
Davis, Logemann, and Loveland [6].
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ally a constant number of) subproblems by substituting the
values of some variables and simplifying the obtained for-
mulas. This line of research resulted in the following upper
bounds for ˇ and � :

Theorem 1 (Hirsch [8]) SAT can be solved in time
1. jFjO(1) � 20:30897m;
2. jFjO(1) � 20:10299l .

A typical divide-and-conquer algorithm for SAT consists
of two phases: splitting of the original problem into several
subproblems (for example, reducing SAT(F) to SAT(F[x])
and SAT(F[:x])) and simplification of the obtained sub-
problems using polynomial-time transformation rules that
do not affect the satisfiability of the subproblems (i. e., they
replace a formula by an equi-satisfiable one). The subprob-
lems F1; : : : ; Fk for splitting are chosen so that the corre-
sponding recurrent inequality using the simplified prob-
lems F 01; : : : ; F

0
k ,

T(F) �
kX
i=1

T(F 0i) + const ;

gives a desired upper bound on the number of leaves
in the recurrence tree and, hence, on the running time
of the algorithm. In particular, in order to obtain the
bound jFjO(1) � 20:30897m one takes either two subproblems
F[x]; F[:x] with recurrent inequality

tm � tm�3 + tm�4

or four subproblems F[x; y]; F[x;:y]; F[:x; y]; F[:x;
:y] with recurrent inequality

tm � 2tm�6 + 2tm�7

where ti = maxm(G)�i T(G). The simplification rules used
in the jFjO(1) �20:30897m-time and the jFjO(1) �20:10299l -time
algorithms are as follows.

Simplification Rules

Elimination of 1-clauses If F contains a 1-clause (a), re-
place F by F[a].

Subsumption If F contains two clausesC andD such that
C  D, replace F by F n fDg.

Resolution with Subsumption Suppose a literal a and
clauses C andD are such that a is the only literal satisfying
both conditions a 2 C and:a 2 D. In this case, the clause
(C [ D) n fa;:ag is called the resolvent by the literal a of
the clauses C and D and denoted by R(C;D).

The rule is: if R(C;D)  D, replace F by (F n fDg) [
fR(C;D)g.

Elimination of a Variable by Resolution [7] Given a lit-
eral a, construct the formula DPa(F) by
1. adding to F all resolvents by a;
2. removing from F all clauses containing a or :a.

The rule is: if DPa(F) is not larger inm (resp., in l) than
F, then replace F by DPa(F).

Elimination of Blocked Clauses A clause C is blocked for
a literal a w.r.t. F if C contains the literal a, and the literal
:a occurs only in the clauses of F that contain the nega-
tion of at least one of the literals occurring in C n fag. For
a CNF-formula F and a literal a occurring in it, the assign-
ment I(a; F) is defined as

fag [ fliterals x … fa;:agj the clause f:a; xg
is blocked for :a w:r:t: Fg :

Lemma 2 (Kullmann [11])

(1) If a clause C is blocked for a literal a w.r.t. F, then F and
F n fCg are equi-satisfiable.

(2) Given a literal a, the formula F is satisfiable iff at least
one of the formulas F[:a] and F[I(a; F)] is satisfiable.

The first claim of the lemma is employed as a simplifica-
tion rule.

Application of the Black and White Literals Principle Let
P be a binary relation between literals and formulas in
CNF such that for a variable v and a formula F, at most
one of P(v; F) and P(:v; F) holds.

Lemma 3 Suppose that each clause of F that contains a lit-
eral w satisfying P(w; F) contains also at least one literal b
satisfying P(:b; F). Then F and F[fl jP(:l ; F)g] are equi-
satisfiable.

A Bound for � To obtain the bound jFjO(1) � 20:10299l , it
is enough to use a pair F[:a]; F[I(a; F)] of subproblems
(see Lemma 2(2)) achieving the desired recurrent inequal-
ity tl � tl�5 + tl�17 and to switch to the jFjO(1) � 20:30897m-
time algorithm if there are none. A recent (much more
technically involved) improvement to this algorithm [16]
achieves the bound jFjO(1) � 20:0926l .

A Bound for ˛

Currently, no non-trivial constant upper bound for ˛ is
known. However, starting with [14] there was an interest
to non-constant bounds. A series of randomized and de-
terministic algorithms showing successive improvements
was developed, and at the moment the best possible bound
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is achieved by a deterministic divide-and-conquer algo-
rithm employing the following recursive procedure. The
idea behind it is a dichotomy: either each clause of the in-
put formula can be shortened to its first k literals (then a k-
CNF algorithm can be applied), or all these literals in one
of the clauses can be assumed false. (This clause-shorten-
ing approach can be attributed to Schuler [15] who used
it in a randomized fashion. The following version of the
deterministic algorithm achieving the best known bound
both for deterministic and randomized algorithms appears
in [5].)

Procedure S
Input: a CNF formula F and a positive integer k.

1. Assume F consists of clauses C1; : : : ;Cm . Change each
clause Ci to a clause Di as follows: If jCi j > k then
choose any k literals in Ci and drop the other literals;
otherwise leave Ci as is, i. e., Di = Ci . Let F0 denote the
resulting formula.

2. Test satisfiability of F0 using them � poly(n) � (2� 2/(k +
1))n-time k-CNF algorithm defined in [3].

3. If F0 is satisfiable, output “satisfiable” and halt. Other-
wise, for each i, do the following:
(a) Convert F to Fi as follows:

i. Replace Cj by Dj for all j < i;
ii. Assign false to all literals in Di.

(b) Recursively invoke Procedure S on (Fi ; k).
4. Return “unsatisfiable”.

The algorithm just invokes Procedure S on the
original formula and the integer parameter k = k � (m; n).
The most accurate analysis of this family of algorithms by
Calabro, Impagliazzo, and Paturi [1] implies that, assum-
ing that m > n, one can obtain the following bound by
taking k(m; n) = 2 log(m/n) + const. (This explicit bound
is not stated in [1] and is inferred in [4].)

Theorem 4 (Dantsin, Hirsch [4]) Assuming m > n, SAT
can be solved in time

jFjO(1) � 2n
�
1� 1

O(log(m/n))

�
:

Applications

While SAT has numerous applications, the presented al-
gorithms have no direct effect on them.

Open Problems

Proving a constant upper bound on ˛ < 2 remains amajor
open problem in the field, as well as the hypothetic exis-
tence of (1 + ")l -time algorithms for arbitrary small " > 0.

It is possible to perform the analysis of a divide-and-
conquer algorithm and even to generate simplification

rules automatically [10]. However, this approach so far led
to new bounds only for the (NP-complete) optimization
version of 2-SAT [9].

Experimental Results

Jun Wang has implemented the algorithm yielding the
bound on ˇ and collected some statistics regarding the
number of applications of the simplification rules [17].
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ProblemDefinition

A k-coloring of a graph G = (V ; E) assigns one of k colors
to each vertex such that neighboring vertices have different
colors. This is sometimes called vertex coloring.

The smallest integer k for which the graph G admits
a k-coloring is denoted �(G) and called the chromatic
number. The number of k-colorings ofG is denoted P(G;k)
and called the chromatic polynomial.

Key Results

The central observation is that �(G) and P(G;k) can be ex-
pressed by an inclusion–exclusion formula whose terms
are determined by the number of independent sets of
induced subgraphs of G. For X  V , let s(X) denote
the number of nonempty independent vertex subsets dis-
joint from X, and let sr(X) denote the number of ways to
choose r nonempty independent vertex subsets S1; : : : ; Sr
(possibly overlapping and with repetitions), all disjoint
from X, such that jS1j + � � � + jSr j = jV j.

Theorem 1 Let G be a graph on n vertices.
1.
�(G) = min

k2f1;:::;ng

n
k :

X
X	V

(�1)jXjs(X)k > 0
o
:

2. For k = 1; : : : ; k,

P(G; k) =
kX
r=1

 
k
r

!� X
X	V

(�1)jXjsr(X)
�
;

(k = 1; 2; : : : ; n) :

The time needed to evaluate these expressions is dom-
inated by the 2n evaluations of s(X) and sr(X), respec-
tively. These values can be pre-computed in time and space
within a polynomial factor of 2n because they satisfy

s(X) =
(
0; if X = V ;

s
�
X [ fvg

�
+ s
�
X [ fvg [ N(v)

�
+ 1; for v … X ;

where N(v) are the neighbors of v in G. Alterna-
tively, the values can be computed using exponential-time,
polynomial-space algorithms from the literature.

This leads to the following bounds:

Theorem 2 For a graph G on n vertices, �(G) and P(G;k)
can be computed in
1. time and space 2nnO(1).
2. time O(2:2461n) and polynomial space

An optimal coloring that achieves �(G) can be found
within the same bounds.

The techniques generalize to arbitrary families of sub-
sets over a universe of size n, provided membership in the
family can be decided in polynomial time.

Applications

In addition to being a fundamental problem in combina-
torial optimization, graph coloring also arises in many ap-
plications, including register allocation and scheduling.

Cross References
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1. Björklund, A., Husfeldt, T.: Exact algorithms for exact satisfia-
bility and number of perfect matchings. In: Proc. 33rd ICALP.
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doi:10.1007/s00453-007-9149-8
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ProblemDefinition

Experimental analysis of algorithms describes not a spe-
cific algorithmic problem, but rather an approach to al-
gorithm design and analysis. It complements, and forms
a bridge between, traditional theoretical analysis, and the
application-driven methodology used in empirical analy-
sis.

The traditional theoretical approach to algorithm anal-
ysis defines algorithm efficiency in terms of counts of dom-
inant operations, under some abstract model of compu-
tation such as a RAM; the input model is typically either
worst-case or average-case. Theoretical results are usually
expressed in terms of asymptotic bounds on the function
relating input size to number of dominant operations per-
formed.

This contrasts with the tradition of empirical analysis
that has developed primarily in fields such as operations
research, scientific computing, and artificial intelligence.
In this tradition, the efficiency of implemented programs is
typically evaluated according to CPU or wall-clock times;
inputs are drawn from real-world applications or collec-
tions of benchmark test sets, and experimental results are
usually expressed in comparative terms using tables and
charts.

Experimental analysis of algorithms spans these two
approaches by combining the sensibilities of the theoreti-
cian with the tools of the empiricist. Algorithm and pro-
gram performance can be measured experimentally ac-
cording to a wide variety of performance indicators, in-
cluding the dominant cost traditional to theory, bottleneck
operations that tend to dominate running time, data struc-
ture updates, instruction counts, andmemory access costs.
A researcher in experimental analysis selects performance
indicators most appropriate to the scale and scope of the
specific research question at hand. (Of course time is not
the only metric of interest in algorithm studies; this ap-

proach can be used to analyze other properties such as so-
lution quality or space use.)

Input instances for experimental algorithm analysis
may be randomly generated or derived from application
instances. In either case, they typically are described in
terms of a small- to medium-sized collection of controlled
parameters. A primary goal of experimentation is to inves-
tigate the cause-and-effect relationship between input pa-
rameters and algorithm/program performance indicators.

Research goals of experimental algorithmics may in-
clude discovering functions (not necessarily asymptotic)
that describe the relationship between input and perfor-
mance, assessing the strengths and weaknesses of dif-
ferent algorithm/data structures/programming strategies,
and finding best algorithmic strategies for different input
categories. Results are typically presented and illustrated
with graphs showing comparisons and trends discovered
in the data.

The two terms “empirical” and “experimental”, are of-
ten used interchangeably in the literature. Sometimes the
terms “old style” and “new style” are used to describe, re-
spectively, the empirical and experimental approaches to
this type of research. The related term “algorithm engi-
neering” refers to a systematic design process that takes
an abstract algorithm all the way to an implemented pro-
gram, with an emphasis on program efficiency. Experi-
mental and empirical analysis is often used to guide the
algorithm engineering process. The general term algorith-
mics can refer to both design and analysis in algorithm re-
search.

Key Results

None

Applications

Experimental analysis of algorithms has been used to
investigate research problems originating in theoretical
computer science. One example arises in the average-case
analysis of algorithms for the One-Dimensional Bin Pack-
ing problem. Experimental analyses have led to new the-
orems about the performance of the optimal algorithm;
new asymptotic bounds on average-case performance of
approximation algorithms; extensions of theoretical re-
sults to new models of inputs; and to new algorithms
with tighter approximation guarantees. Another example
is the experimental discovery of a type of phase-transition
behavior for random instances of the 3CNF-Satisfiabilty
problem, which has led to new ways to characterize the
difficulty of problem instances.
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A second application of experimental algorithmics is
to find more realistic models of computation, and to de-
sign new algorithms that perform better on these mod-
els. One example is found in the development of new
memory-based models of computation that give more ac-
curate time predictions than traditional unit-cost models.
Using these models, researchers have found new cache-ef-
ficient and I/O-efficient algorithms that exploit properties
of the memory hierarchy to achieve significant reductions
in running time.

Experimental analysis is also used to design and select
algorithms that work best in practice, algorithms that work
best on specific categories of inputs, and algorithms that
are most robust with respect to bad inputs.

Data Sets

Many repositories for data sets and instance generators to
support experimental research are available on the Inter-
net. They are usually organized according to specific com-
binatorial problems or classes of problems.

URL to Code

Many code repositories to support experimental research
are available on the Internet. They are usually organized
according to specific combinatorial problems or classes
of problems. Skiena’s Stony Brook Algorithm Repository
(www.cs.sunysb.edu/~algorith/) provides a comprehen-
sive collection of problem definitions and algorithm de-
scriptions, with numerous links to implemented algo-
rithms.

Recommended Reading

The algorithmic literature containing examples of experi-
mental research is much too large to list here. Some arti-
cles containing advice and commentary on experimental
methodology in the context of algorithm research appear
in the list below.

The workshops and journals listed below are specifi-
cally intended to support research in experimental anal-
ysis of algorithms. Experimental work also appears in
more general algorithm research venues such as SODA
(ACM/IEEE Symposium on Data Structures and Algo-
rithms), Algorithmica, and ACM Transactions on Algo-
rithms.

1. ACMJournal of Experimental Algorithmics. Launched in 1996, this
journal publishes contributed articles as well as special sections
containing selected papers from ALENEX and WEA. Visit www.
jea.acm.org, or visit portal.acm.org and click on ACM Digital Li-
brary/Journals/Journal of Experimental Algorithmics

2. ALENEX. Beginning in 1999, the annual workshop on Algo-
rithm Engineering and Experimentation is sponsored by SIAM
and ACM. It is co-located with SODA, the SIAM Symposium
on Data Structures and Algorithms. Workshop proceedings are
published in the Springer LNCS series. Visit www.siam.org/
meetings/ for more information

3. Barr, R.S., Golden, B.L., Kelly, J.P., Resende, M.G.C., Stewart, W.R.:
Designing and reporting on computational experiments with
heuristic methods. J. Heuristic 1(1), 9–32 (1995)

4. Cohen, P.R.: Empirical Methods for Artificial Intelligence. MIT
Press, Cambridge (1995)

5. DIMACS Implementation Challenges. Each DIMACS Implemen-
tation Challenge is a year-long cooperative research event in
which researchers cooperate to find the most efficient algo-
rithms and strategies for selected algorithmic problems. The
DIMACS Challenges since 1991 have targeted a variety of op-
timization problems on graphs; advanced data structures; and
scientific application areas involving computational biology
and parallel computation. The DIMACS Challenge proceedings
are published by AMS as part of the DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. Visit dimacs.
rutgers.edu/Challenges for more information

6. Johnson, D.S.: A theoretician’s guide to the experimental anal-
ysis of algorithms. In: Goodrich, M.H., Johnson, D.S., McGeoch,
C.C. (eds.) Data Structures, Near Neighbors Searches, and
Methodology: Fifth and Sixth DIMACS Implementation Chal-
lenges, DIMACS Series in Discrete Mathematics and Theoreti-
cal Computer Science, vol. 59. American Mathematical Society,
Providence (2002)

7. McGeoch, C.C.: Toward an experimental method for algorithm
simulation. INFORMS J. Comp. 1(1), 1–15 (1996)

8. WEA. Beginning in 2001, the annual Workshop on Experimen-
tal and Efficient Algorithms is sponsored by EATCS. Workshop
proceedings are published in the Springer LNCS series
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Out-of-core sorting

ProblemDefinition

Notations The main properties of magnetic disks and
multiple disk systems can be captured by the commonly
used parallel disk model (PDM), which is summarized
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below in its current form as developed by Vitter and
Shriver [16]:

N = problem size (in units of data items) ;
M = internal memory size (in units of data items) ;
B = block transfer size (in units of data items) ;
D = number of independent disk drives ;
P = number of CPUs ;

where M < N , and 1 � DB � M/2. The data items are
assumed to be of fixed length. In a single I/O, each of
the D disks can simultaneously transfer a block of B con-
tiguous data items. (In the original 1988 article [2], the D
blocks per I/O were allowed to come from the same disk,
which is not realistic.) If P � D, each of the P processors
can drive about D/P disks; if D < P, each disk is shared by
about P/D processors. The internal memory size is M/P
per processor, and the P processors are connected by an
interconnection network.

It is convenient to refer to some of the above PDM pa-
rameters in units of disk blocks rather than in units of data
items; the resulting formulas are often simplified. We de-
fine the lowercase notation

n =
N
B
; m =

M
B
; q =

Q
B
; z =

Z
B

(1)

to be the problem input size, internal memory size, query
specification size, and query output size, respectively, in
units of disk blocks.

The primary measures of performance in PDM are
1. the number of I/O operations performed,
2. the amount of disk space used, and
3. the internal (sequential or parallel) computation time.
For reasons of brevity in this survey, focus is restricted to
only the first two measures. Most of the algorithms run in
optimal CPU time, at least for the single-processor case.
Ideally algorithms and data structures should use linear
space, which means O(N/B) = O(n) disk blocks of stor-
age.

Problem 1 (External sorting) INPUT: The input data
records R0, R1, R2, . . . are initially “striped” across the D
disks, in units of blocks, so that record Ri is in block bi/Bc,
and block j is stored on disk j mod D.

OUTPUT: A striped representation of a permuted or-
dering R�(0), R�(1), R�(2), . . . of the input records with the
property that key(R�(i)) � key(R�(i+1)) for all i � 0.

Permuting is the special case of sorting in which the per-
mutation that describes the final position of the records is
given explicitly and does not have to be discovered, for ex-
ample, by comparing keys.

Problem 2 (Permuting) INPUT: Same input assumptions
as in external sorting. In addition, a permutation � of the
integers f0; 1; 2; : : : ;N � 1g is specified.

OUTPUT: A striped representation of a permuted order-
ing R�(0); R�(1); R�(2); : : : of the input records.

Key Results

Theorem 1 ([2,12]) The average-case and worst-case
number of I/Os required for sorting N = nB data items us-
ing D disks is

Sort(N) = 	
� n
D

logm n
�
: (2)

Theorem 2 ([2]) The average-case and worst-case number
of I/Os required for permuting N data items using D disks
is

	

�
min

�
N
D
; Sort(N)

��
: (3)

Matrix transposition is the special case of permuting in
which the permutation can be represented as a transposi-
tion of a matrix from row-major order into column-major
order.

Theorem 3 ([2]) With D disks, the number of I/Os re-
quired to transpose a p � q matrix from row-major order
to column-major order is

	
� n
D

logm minfM; p; q; ng
�
; (4)

where N = pq and n = N/B.

Matrix transposition is a special case of a more gen-
eral class of permutations called bit-permute/complement
(BPC) permutations, which in turn is a subset of the class
of bit-matrix-multiply/complement (BMMC) permuta-
tions. BMMC permutations are defined by a log N � logN
nonsingular 0-1 matrix A and a (log N)-length 0-1 vec-
tor c. An item with binary address x is mapped by the per-
mutation to the binary address given by Ax ˚ c, where
˚ denotes bitwise exclusive-or. BPC permutations are
the special case of BMMC permutations in which A is
a permutation matrix, that is, each row and each column
of A contain a single 1. BPC permutations include ma-
trix transposition, bit-reversal permutations (which arise
in the FFT), vector-reversal permutations, hypercube per-
mutations, and matrix reblocking. Cormen et al. [6] char-
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acterize the optimal number of I/Os needed to perform
any given BMMC permutation solely as a function of the
associated matrix A, and they give an optimal algorithm
for implementing it.

Theorem 4 ([6]) With D disks, the number of I/Os re-
quired to perform the BMMC permutation defined by ma-
trix A and vector c is

	

�
n
D

�
1 +

rank(� )
logm

��
; (5)

where � is the lower-left log n � log B submatrix of A.

The two main paradigms for external sorting are distribu-
tion andmerging, which are discussed in the following sec-
tions for the PDMmodel.

Sorting by Distribution

Distribution sort [9] is a recursive process that uses a set
of S � 1 partitioning elements to partition the items into
S disjoint buckets. All the items in one bucket precede all
the items in the next bucket. The sort is completed by re-
cursively sorting the individual buckets and concatenating
them together to form a single fully sorted list.

One requirement is to choose the S � 1 partitioning
elements so that the buckets are of roughly equal size.
When that is the case, the bucket sizes decrease from one
level of recursion to the next by a relative factor of 	(S),
and thus there are O(logS n) levels of recursion. During
each level of recursion, the data are scanned. As the items
stream through internal memory, they are partitioned into
S buckets in an online manner. When a buffer of size B
fills for one of the buckets, its block is written to the disks
in the next I/O, and another buffer is used to store the
next set of incoming items for the bucket. Therefore, the
maximum number of buckets (and partitioning elements)
is S = 	(M/B) = 	(m), and the resulting number of levels
of recursion is	(logm n). How to perform each level of re-
cursion in a linear number of I/Os is discussed in [2,11,16].

An even better way to do distribution sort, and deter-
ministically at that, is the BalanceSort method developed
by Nodine and Vitter [11]. During the partitioning pro-
cess, the algorithm keeps track of how evenly each bucket
has been distributed so far among the disks. It maintains
an invariant that guarantees good distribution across the
disks for each bucket.

The distribution sort methods mentioned above for
parallel disks performwrite operations in complete stripes,
which make it easy to write parity information for use in
error correction and recovery. But since the blocks writ-
ten in each stripe typically belong to multiple buckets, the

buckets themselves will not be striped on the disks, and
thus the disks must be used independently during read op-
erations. In the write phase, each bucket must therefore
keep track of the last block written to each disk so that the
blocks for the bucket can be linked together.

An orthogonal approach is to stripe the contents of
each bucket across the disks so that read operations can
be done in a striped manner. As a result, the write op-
erations must use disks independently, since during each
write, multiple buckets will be writing to multiple stripes.
Error correction and recovery can still be handled effi-
ciently by devoting to each bucket one block-sized buffer
in internal memory. The buffer is continuously updated to
contain the exclusive-or (parity) of the blocks written to
the current stripe, and after D � 1 blocks have been writ-
ten, the parity information in the buffer can be written to
the final (Dth) block in the stripe.

Under this new scenario, the basic loop of the distribu-
tion sort algorithm is, as before, to read one memoryload
at a time and partition the items into S buckets. However,
unlike before, the blocks for each individual bucket will re-
side on the disks in contiguous stripes. Each block there-
fore has a predefined place where it must be written. With
the normal round-robin ordering for the stripes (name-
ly, : : : ; 1; 2; 3; : : : ;D; 1; 2; 3; : : : ;D; : : :), the blocks of dif-
ferent buckets may “collide,” meaning that they need to be
written to the same disk, and subsequent blocks in those
same buckets will also tend to collide. Vitter and Hutchin-
son [15] solve this problem by the technique of random-
ized cycling. For each of the S buckets, they determine the
ordering of the disks in the stripe for that bucket via a ran-
dom permutation of f1; 2; : : : ;Dg. The S random permu-
tations are chosen independently. If two blocks (from dif-
ferent buckets) happen to collide during a write to the
same disk, one block is written to the disk and the other
is kept on a write queue. With high probability, subse-
quent blocks in those two buckets will be written to dif-
ferent disks and thus will not collide. As long as there is
a small pool of available buffer space to temporarily cache
the blocks in the write queues, Vitter and Hutchinson [15]
show that with high probability the writing proceeds opti-
mally.

The randomized cycling method or the related merge
sort methods discussed at the end of Section Sorting by
Merging are the methods of choice for sorting with paral-
lel disks. Distribution sort algorithms may have an advan-
tage over the merge approaches presented in Section Sort-
ing by Merging in that they typically make better use of
lower levels of cache in the memory hierarchy of real sys-
tems, based upon analysis of distribution sort and merge
sort algorithms on models of hierarchical memory.
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Sorting by Merging

Themerge paradigm is somewhat orthogonal to the distri-
bution paradigm of the previous section. A typical merge
sort algorithmworks as follows [9]: In the “run formation”
phase, the n blocks of data are scanned, one memoryload
at a time; each memoryload is sorted into a single “run,”
which is then output onto a series of stripes on the disks. At
the end of the run formation phase, there are N/M = n/m
(sorted) runs, each striped across the disks. (In actual im-
plementations, “replacement-selection” can be used to get
runs of 2M data items, on the average, when M � B [9].)
After the initial runs are formed, the merging phase be-
gins. In each pass of the merging phase, R runs are merged
at a time. For each merge, the R runs are scanned and its
items merged in an online manner as they stream through
internal memory. Double buffering is used to overlap I/O
and computation. At most R = 	(m) runs can be merged
at a time, and the resulting number of passes is O(logm n).

To achieve the optimal sorting bound (2), each merg-
ing pass must be done in O(n/D) I/Os, which is easy to do
for the single-disk case. In the more general multiple-disk
case, each parallel read operation during the mergingmust
on the average bring in the next 	(D) blocks needed for
the merging. The challenge is to ensure that those blocks
reside on different disks so that they can be read in a sin-
gle I/O (or a small constant number of I/Os). The difficulty
lies in the fact that the runs being merged were themselves
formed during the previous merge pass. Their blocks were
written to the disks in the previous pass without knowl-
edge of how they would interact with other runs in later
merges.

The Greed Sort method of Nodine and Vitter [12] was
the first optimal deterministic EM algorithm for sorting
with multiple disks. It works by relaxing the merging pro-
cess with a final pass to fix the merging. Aggarwal and
Plaxton [1] developed an optimal deterministic merge sort
based upon the Sharesort hypercube parallel sorting algo-
rithm. To guarantee even distribution during the merging,
it employs two high-level merging schemes in which the
scheduling is almost oblivious. Like Greed Sort, the Share-
sort algorithm is theoretically optimal (i. e., within a con-
stant factor of optimal), but the constant factor is larger
than the distribution sort methods.

One of the most practical methods for sorting is based
upon the simple randomized merge sort (SRM) algorithm
of Barve et al. [5], referred to as “randomized striping” by
Knuth [9]. Each run is striped across the disks, but with
a random starting point (the only place in the algorithm
where randomness is utilized). During the merging pro-
cess, the next block needed from each disk is read into

memory, and if there is not enough room, the least needed
blocks are “flushed” (without any I/Os required) to free up
space.

Further improvements in merge sort are possible by
a more careful prefetching schedule for the runs. Barve et
al. [4], Kallahalla andVarman [8], Shah et al. [13], and oth-
ers have developed competitive and optimal methods for
prefetching blocks in parallel I/O systems. Hutchinson et
al. [7] have demonstrated a powerful duality between par-
allel writing and parallel prefetching, which gives an easy
way to compute optimal prefetching and caching sched-
ules for multiple disks. More significantly, they show that
the same duality exists between distribution and merg-
ing, which they exploit to get a provably optimal and very
practical parallel disk merge sort. Rather than use ran-
dom starting points and round-robin stripes as in SRM,
Hutchinson et al. [7] order the stripes for each run in-
dependently, based upon the randomized cycling strategy
discussed in Section Sorting by Distribution for distribu-
tion sort.

Handling Duplicates: Bundle Sorting

For the problem of duplicate removal, in which there are
a total of K distinct items among the N items, Arge et
al. [3] use a modification of merge sort to solve the prob-
lem in O

�
nmax

˚
1; logm(K/B)

��
I/Os, which is optimal in

the comparison model. When duplicates get grouped to-
gether during a merge, they are replaced by a single copy
of the item and a count of the occurrences. The algorithm
can be used to sort the file, assuming that a group of equal
items can be represented by a single item and a count.

A harder instance of sorting called bundle sorting
arises when there are K distinct key values among the N
items, but all the items have different secondary informa-
tion that must be maintained, and therefore items cannot
be aggregated with a count. Matias et al. [10] develop op-
timal distribution sort algorithms for bundle sorting using

O
�
nmax

˚
1; logm minfK; ng

��
(6)

I/Os and prove the matching lower bound. They also show
how to do bundle sorting (and sorting in general) in place
(i. e., without extra disk space).

Permuting and Transposition

Permuting is the special case of sorting in which the
key values of the N data items form a permutation of
f1; 2; : : : ;Ng. The I/O bound (3) for permuting can be re-
alized by one of the optimal sorting algorithms except in
the extreme case B logm = o(log n), where it is faster to
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move the data items one by one in a nonblocked way. The
one-by-one method is trivial if D = 1, but with multiple
disks there may be bottlenecks on individual disks; one so-
lution for doing the permuting in O(N/D) I/Os is to apply
the randomized balancing strategies of [16].

Matrix transposition can be as hard as general permut-
ing when B is relatively large (say, 1/2M) and N is O(M2),
but for smaller B, the special structure of the transposition
permutation makes transposition easier. In particular, the
matrix can be broken up into square submatrices of B2 el-
ements such that each submatrix contains B blocks of the
matrix in row-major order and also B blocks of the matrix
in column-major order. Thus, if B2 < M, the transposi-
tions can be done in a simple one-pass operation by trans-
posing the submatrices one at a time in internal memory.

Fast Fourier Transform and Permutation Networks

Computing the fast Fourier transform (FFT) in external
memory consists of a series of I/Os that permit each com-
putation implied by the FFT directed graph (or butterfly)
to be done while its arguments are in internal memory.
A permutation network computation consists of an obliv-
ious (fixed) pattern of I/Os such that any of the N! possi-
ble permutations can be realized; data items can only be
reordered when they are in internal memory. A permuta-
tion network can be realized by a series of three FFTs.

The algorithms for FFT are faster and simpler than
for sorting because the computation is nonadaptive in na-
ture, and thus the communication pattern is fixed in ad-
vance [16].

Lower Bounds on I/O

The following proof of the permutation lower bound (3)
of Theorem 2 is due to Aggarwal and Vitter [2]. The idea
of the proof is to calculate, for each t � 0, the number of
distinct orderings that are realizable by sequences of t I/Os.
The value of t for which the number of distinct orderings
first exceeds N!/2 is a lower bound on the average number
of I/Os (and hence the worst-case number of I/Os) needed
for permuting.

Assuming for the moment that there is only one disk,
D = 1, consider how the number of realizable orderings
can change as a result of an I/O. In terms of increas-
ing the number of realizable orderings, the effect of read-
ing a disk block is considerably more than that of writ-
ing a disk block, so it suffices to consider only the effect
of read operations. During a read operation, there are at
most B data items in the read block, and they can be in-
terspersed among the M items in internal memory in at

most
�M
B
�
ways, so the number of realizable orderings in-

creases by a factor of
�M
B
�
. If the block has never before

resided in internal memory, the number of realizable or-
derings increases by an extra B! factor, since the items in
the block can be permuted among themselves. (This extra
contribution of B! can only happen once for each of the
N/B original blocks.) There are at most n + t � N logN
ways to choose which disk block is involved in the tth I/O
(allowing an arbitrary amount of disk space). Hence, the
number of distinct orderings that can be realized by all
possible sequences of t I/Os is at most

(B!)N/B

 
N(logN)

 
M
B

!!t

: (7)

Setting the expression in (7) to be at least N!/2, and sim-
plifying by taking the logarithm, the result is

N log B + t
�
log N + B log

M
B

�
= ˝(N logN) : (8)

Solving for t gives the matching lower bound˝(n logm n)
for permuting for the case D = 1. The general lower
bound (3) of Theorem 2 follows by dividing by D.

A stronger lower bound follows from a more re-
fined argument that counts input operations separately
from output operations [7]. For the typical case in which
B logm = !(logN), the I/O lower bound, up to lower or-
der terms, is 2n logm n. For the pathological in which
B logm = o(logN), the I/O lower bound, up to lower or-
der terms, is N/D.

Permuting is a special case of sorting, and hence, the
permuting lower bound applies also to sorting. In the un-
likely case that B logm = o(log n), the permuting bound
is only ˝(N/D), and in that case the comparison model
must be used to get the full lower bound (2) of Theo-
rem 1 [2]. In the typical case in which B logm = ˝(log n),
the comparison model is not needed to prove the sorting
lower bound; the difficulty of sorting in that case arises not
from determining the order of the data but from permut-
ing (or routing) the data.

The proof used above for permuting also works for
permutation networks, in which the communication pat-
tern is oblivious (fixed). Since the choice of disk block
is fixed for each t, there is no N logN term as there is
in (7), and correspondingly there is no additive logN term
in the inner expression as there is in (8). Hence, solving
for t gives the lower bound (2) rather than (3). The lower
bound follows directly from the counting argument; un-
like the sorting derivation, it does not require the com-
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parison model for the case B logm = o(log n). The lower
bound also applies directly to FFT, since permutation net-
works can be formed from three FFTs in sequence. The
transposition lower bound involves a potential argument
based upon a togetherness relation [2].

For the problem of bundle sorting, in which the N
items have a total of K distinct key values (but the sec-
ondary information of each item is different), Matias et
al. [10] derive the matching lower bound.

The lower bounds mentioned above assume that the
data items are in some sense “indivisible,” in that they are
not split up and reassembled in some magic way to get
the desired output. It is conjectured that the sorting lower
bound (2) remains valid even if the indivisibility assump-
tion is lifted. However, for an artificial problem related to
transposition, removing the indivisibility assumption can
lead to faster algorithms. Whether the conjecture is true is
a challenging theoretical open problem.

Applications

Sorting and sorting-like operations account for a signif-
icant percentage of computer use [9], with numerous
database applications. In addition, sorting is an impor-
tant paradigm in the design of efficient EM algorithms, as
shown in [14], where several applications can be found.
With some technical qualifications, many problems that
can be solved easily in linear time in internal memory,
such as permuting, list ranking, expression tree evaluation,
and finding connected components in a sparse graph, re-
quire the same number of I/Os in PDM as does sorting.

Open Problems

Several interesting challenges remain. One difficult theo-
retical problem is to prove lower bounds for permuting
and sorting without the indivisibility assumption. Another
question is to determine the I/O cost for each individual
permutation, as a function of some simple characteriza-
tion of the permutation, such as number of inversions.
A continuing goal is to develop optimal EM algorithms
and to translate theoretical gains into observable improve-
ments in practice. Many interesting challenges and oppor-
tunities in algorithm design and analysis arise from new
architectures being developed, such as networks of work-
stations, hierarchical storage devices, disk drives with pro-
cessing capabilities, and storage devices based upon mi-
croelectromechanical systems (MEMS). Active (or intelli-
gent) disks, in which disk drives have some processing ca-
pability and can filter information sent to the host, have
recently been proposed to further reduce the I/O bot-

tleneck, especially in large database applications. MEMS-
based nonvolatile storage has the potential to serve as
an intermediate level in the memory hierarchy between
DRAM and disks. It could ultimately provide better la-
tency and bandwidth than disks, at less cost per bit than
DRAM.

URL to Code

Two systems for developing external memory algo-
rithms are TPIE and STXXL, which can be down-
loaded from http://www.cs.duke.edu/TPIE/ and http://
sttxl.sourceforge.net/, respectively. Both systems include
subroutines for sorting and permuting and facilitate de-
velopment of more advanced algorithms.
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