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Due to fundamental physical limitations and power constraints, we are witnessing a par-
adigm shift in commodity microprocessor architecture to multicore designs. Continued
performance now requires the exploitation of concurrency at the algorithm level. In this
article, we demonstrate the application of high performance computing techniques in sys-
tems biology and present multicore algorithms for the important research problem of pro-
tein-interaction network (PIN) analysis.

PINs play an important role in understanding the functional and organizational princi-
ples of biological processes. Promising computational techniques for key systems biology
research problems such as identification of signaling pathways, novel protein function pre-
diction, and the study of disease mechanisms, are based on topological characteristics of
the protein interactome. Several complex network models have been proposed to explain
the evolution of protein networks, and these models primarily try to reproduce the topo-
logical features observed in yeast, the model eukaryote interactome. In this article, we
study the structural properties of a high-confidence human interaction network, con-
structed by assimilating recent experimentally derived interaction data. We identify topo-
logical properties common to the yeast and human protein networks.

Betweenness is a quantitative measure of centrality of an entity in a complex network,
and is based on computing all-pairs shortest paths in the graph. A novel contribution of
our work is the analysis of the degree–betweenness centrality correlation in the human
PIN. Jeong et al. empirically showed that betweenness is positively correlated with the
essentiality and evolutionary age of a protein. We observe that proteins with high
betweenness, but low degree (or connectivity) are abundant in the human PIN. We have
designed efficient and portable parallel implementations for the exact calculation of
betweenness and other compute-intensive centrality metrics relevant to interactome anal-
ysis. For example, on the Sun Fire T2000 server with the UltraSparc T1 (Niagara) processor,
we achieve a relative speedup of about 16 using 32 threads for a typical instance of
betweenness centrality on a PIN, reducing the running time from nearly 3 1

2 min to 13 s.
Published by Elsevier B.V.
1. Introduction

Recent advances in high-throughput genomic experimental techniques have resulted in an abundance of diverse gene se-
quence and structure data. As a consequence, we are also faced with a significant volume of novel, unannotated gene products.
The traditional methods of gene and protein annotation, such as homology-based transfer, are insufficient to characterize no-
vel proteins, and are proving to be erroneous in many cases. This has led to a shift in research focus from the study of
r B.V.

der), http://www.cc.gatech.edu/~kamesh (K. Madduri).

http://www.cc.gatech.edu/~bader
http://www.cc.gatech.edu/~kamesh
http://www.sciencedirect.com/science/journal/01678191
http://www.elsevier.com/locate/parco


628 D.A. Bader, K. Madduri / Parallel Computing 34 (2008) 627–639
individual proteins to an integrative analysis of global characteristics and interactions between various cellular components
using quantitative approaches. This research field, systems biology, has served as the foundation for the reconstruction of
metabolic pathways, regulatory and signaling networks, and the identification of disease mechanisms. Protein function pre-
diction is one of the key drivers for systems biology research. There are various approaches available for deducing the function
of novel proteins, among which the study of interaction networks is one of the most promising techniques [40,10,41].

In order to design efficient computational techniques that are based on global connectivity patterns, it is essential to
understand the topology of the network first. Genomic research in the past few years has enabled us to map high-confi-
dence interactomes of model eukaryotes such as yeast [40,39], worm [24] and fly [16]. These protein interactions are
mainly derived using the yeast two-hybrid (Y2H) assay technique, and have provided encouraging evidence that global
topological structure and network features relate to known biological properties [20]. This has in-turn motivated several
research groups to work on a global map of the human interaction network, and there have been several recent efforts
on mapping the global human genome [34] using the Y2H assay. However, this system is prone to a high rate of false-pos-
itives and the interactions need to be validated with sophisticated techniques. Also, the identity of essential interactions in
PINs differ significantly, depending on the experimental methodology [7]. The high-confidence interactions have been iden-
tified, filtered and are now readily available from online public domain databases (for example, BIND [1], DIP [35] and
HPRD [28]). Most of these databases are literature-based and hand-curated with a sizable percentage of overlapping
interactions.

The interaction networks of model eukaryotes such as yeast are analyzed extensively [43,22] using graph-theoretic and
complex network analysis concepts. The yeast protein-interaction network (PIN) topology exhibits several interesting fea-
tures that distinguish it from a random graph. For instance, the yeast PIN contains a larger number of highly connected (high
degree) proteins than one would expect in a random Erd}os-Rényi network. Jeong and Mason also observed that in the yeast
network, the connectivity of a protein appears to be positively correlated with its essentiality [20], i.e., highly connected pro-
teins tend to be more essential to the viability of the organism.

Large-scale network analysis is currently an active area of research in the social sciences [32,36], and several concepts
from this field are being applied to computational biology. Important contributions from this field include analytical tools
for visualizing networks [8,33], empirical quantitative indices to determine the key nodes in a network, and clustering algo-
rithms [17]. Betweenness centrality [14] is a popular quantitative index that has been extensively used in recent years for the
analysis of large-scale complex networks. Some applications include biological networks [20,29], study of sexual networks
and AIDS [25], identifying key actors in terrorist networks [12], organizational behavior and transportation networks [18].
Joy et al. [22] report that in the yeast network, proteins with high betweenness are more likely to be essential, and that
the evolutionary age of proteins is positively correlated with betweenness. Also, they observe that there are several proteins
with low degree but high centrality scores in the yeast PIN.

Gandhi et al. [15] present a comprehensive analysis of a large-scale human interaction network [23,30]. They study a
dataset of about 26,000 human protein interactions obtained from various public databases, compare the human interac-
tome with the yeast, worm and fly datasets, and observe that only 42 interactions were common to all species. Also, they
observe that unlike the yeast network, the available human PIN data does not support the presumption on the positive cor-
relation between connectivity and essentiality.

We extend the work of Gandhi et al. [15] and Joy et al. [22] in this article. Our main contributions are the following:

� Topological study of the largest human PIN constructed to date, comprising nearly 18,000 proteins and 34,000 interactions. We
analyze the global connectivity and clustering properties of a human PIN composed of high-confidence pairwise protein
interactions. We do not model complex interactions as pairwise interactions, since it is not always known which proteins
in the complex interact with each other.

� Computation of centrality metrics for the human PIN. We analyze betweenness centrality scores and find that proteins with
high-betweenness centrality but low connectivity are abundant in the human PIN. We also observe that this finding can-
not be explained by the widely-accepted models for scale-free networks.

� Applying high performance computing techniques for large-scale PIN analysis. Our efficient multicore implementation reduces
the computation time of betweenness centrality to 13 s on 32 processors of the Sun Fire T2000 system, with a relative
speedup of 16.

2. Preliminaries

2.1. Interactome datasets

There are several online databases devoted to the human interactome (see Table 1). In our previous study of the human
PIN [5], we constructed the interaction map by merging information from Gandhi et al.’s human proteome analysis dataset
[15] (updated February 2006), an interaction dataset from the Human Protein Reference Database [28] (updated May 2006),
and IntAct (updated October 2006). The interaction network used in this article (referred to as HPIN throughout this article)
is an updated dataset (January 2007) of binary interactions from HPRD. The latest version of the HPRD dataset includes inter-
actions from MIPS, BIND, DIP and MINT. There is a complication using protein complex data (for example, from the MIPS



Table 1
Popular online human protein-interaction databases

Database Details

HPRD [28] Human Protein Reference Database. Experimentally verified protein–protein interactions obtained from manual curation of literature.
25,205 proteins and 37,581 interactions

BIND Biomolecular Interaction Network Database. Collection of molecular interactions including high-throughput data submissions and hand-
curated information from the scientific literature. 4644 human protein interactions

MIPS Munich Information Center for Protein Sequences. 334 interactions
MINT Molecular Interactions Database. 3544 interactions
IntAct [19] Freely available, open source database system and analysis tools for protein-interaction data. European Bioinformatics Institute. 2420

interactions
OPHID Online Predicted Human Interaction Database. Repository of already known experimentally derived human protein interactions, as well as

23,889 additional predicted interactions. This dataset is not included in our human PIN
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database) to obtain protein interactions, since it is not always known which proteins in a complex interact with each other.
Note that we do not model complex interactions as pairwise interactions in this study.

We also present the topological characteristics of two large-scale yeast PINs for comparison with HPIN. The yeast PIN
from Jeong et al. [20] (YPIN) is an undirected network of 2112 proteins and 7182 interactions, while Reguly et al. [31] (YPIN2)
provide an undirected network of 3289 proteins and 11,334 interactions. Both the network are well studied, and all the re-
ported interactions are high-confidence ones.

2.2. Definitions

We represent the PIN as an undirected graph GðV ; EÞ in the analysis that follows. The set V represents the proteins, and E
the set of interactions. The number of vertices and edges are denoted by n and m, respectively. The interaction networks are
unweighted. Since the interaction networks are unweighted, and so we assume that each edge e 2 E has unit weight. A path
from protein (vertex) s to t is a sequence of interactions (edges) hui;uiþ1i, 0 6 i 6 l, where u0 ¼ s and ul ¼ t. The length of a
path is the sum of the weights of edges. We use dðs; tÞ to denote the distance between vertices s and t (the minimum length
of any path connecting s and t in G). Let us denote the total number of shortest paths between vertices s and t by rst , and the
number passing through vertex v by rstðvÞ.

Betweenness centrality is a global shortest paths enumeration-based metric, introduced by Freeman [14]. Let dstðvÞ denote
the pairwise dependency, or the fraction of shortest paths between s and t that pass through v: dstðvÞ ¼ rstðvÞ

rst
. Betweenness cen-

trality of a vertex v is defined as
BCðvÞ ¼
X

s–v–t2V

dstðvÞ:
This metric measures the control a vertex has over communication in the network, and can be used to identify key vertices in
the network. High centrality indices indicate that a vertex can reach other vertices on relatively short paths, or that a vertex
lies on a considerable fraction of shortest paths connecting pairs of other vertices.

3. Parallel computation of betweenness centrality

A straight-forward way of computing Betweenness Centrality is to augment a single-source shortest path algorithm such
as Dijkstra’s algorithm to compute the pairwise dependencies. Define a set of predecessors of a vertex v on shortest paths
from s as predðs; vÞ. Now each time an edge hu; vi is scanned for which dðs; vÞ ¼ dðs;uÞ þ dðu; vÞ, that vertex is added to the
predecessor set predðs; vÞ. Setting the initial condition of predðs; vÞ ¼ s for all neighbors v of s, we can proceed to compute
the number of shortest paths between s and all other vertices. The computation of predðs; vÞ can be easily integrated into
breadth-first search (BFS) for unweighted graphs.

To exploit the sparse nature of typical real-world graphs, Brandes [11] gives an algorithm that computes the betweenness
centrality score for all vertices in the graph in OðmnÞ time for unweighted graphs. The main idea is as follows. We define the
dependency of a source vertex s 2 V on a vertex v 2 V as dsðvÞ ¼

P
t2VdstðvÞ. The betweenness centrality of a vertex v can be

then expressed as BCðvÞ ¼
P

s–v2VdsðvÞ. It can be shown that the dependency dsðvÞ satisfies the following recursive relation:
dsðvÞ ¼

P
w:v2predðs;wÞ

rsv
rsw
ð1þ dsðwÞÞ.

The algorithm is now stated as follows. First, n BFS computations are done, one for each s 2 V . The predecessor sets
predðs; vÞ are maintained during these computations. Next, for every s 2 V , using the information from the shortest paths tree
and predecessor sets along the paths, compute the dependencies dsðvÞ for all other v 2 V . To compute the centrality value of a
vertex v, we finally compute the sum of all dependency values. The computational complexity of the algorithm is OðmnÞ and
the space requirements are Oðmþ nÞ.

We present novel parallel algorithms for exactly computing betweenness and other centrality measures in [4]. Algorithm
1 outlines the general approach for unweighted graphs. On each BFS computation from s, the queue Q stores the current set
of vertices to be visited, S contains all the vertices reachable from s, and PðvÞ is the predecessor set associated with each
vertex v 2 V . The arrays d and r store the distance from s, and shortest path counts, respectively. The centrality values
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are computed in steps 22–25, by summing the dependencies dðvÞ, v 2 V . The final scores need to be divided by two if the
graph is undirected, as all the shortest paths are counted twice.

We observe that parallelism can be exploited at two levels:

� The BFS/SSSP computations from each vertex can be done concurrently, provided the centrality running sums are updated
atomically.

� The actual BFS/SSSP can be also be parallelized. When visiting the adjacencies of a vertex, edge relaxation can be done
concurrently.

We will refer to the parallelization approach that concurrently computes the shortest path trees (steps 3–25 in Algorithm
1) as the coarse-grained parallel betweenness centrality algorithm, and the latter approach in which a single BFS/SSSP tra-
versal is parallelized, as the fine-grained algorithm.

There are performance trade-offs associated with both these algorithms when implemented on parallel systems. The
coarse-grained algorithm assigns each processor a fraction of the vertices from which to initiate SSSP computations. The ver-
tices can be assigned dynamically to processors, so that work is distributed as evenly as possible. For this approach, graph
traversal requires no synchronization, and the centrality metrics can be computed exactly provided they are accumulated
atomically (step 25 in Algorithm 1). Alternately, each processor can store its partial sum of the centrality score for every ver-
tex, and all the sums can be merged using an efficient global reduction operation. However, the problem with the coarse-
grained algorithm is that the auxiliary data structures – the stack S, list of predecessors P, and the BFS queue Q – need to
be replicated on each processor for doing concurrent traversals. The memory requirements scale as Oðpðmþ nÞÞ, and this
approach becomes infeasible for large-scale graphs.

In the fine-grained algorithm, we parallelize each BFS/SSSP computation, and the memory requirement is Oðmþ nÞ. Note
that every centrality computation iteration is composed of two phases, the BFS tree computation (steps 3–18), and accumu-
lation of centrality scores (steps 19–24). In previous work, we discuss algorithms and efficient implementations for fine-
grained parallel BFS [3] and single-source shortest paths [26,13]. These algorithms can be directly applied for parallelizing
the traversal phase. In the subsequent phase, we need to visit vertices in the non-increasing order of their distance from the
source vertex. Real-world social and technological networks typically demonstrate the small-world property, i.e., the graph
diameter is usually a constant value, or in some cases Oðlog nÞ. Thus, there will be a significant number of vertices at a given
depth from the source vertex, and the centrality scores of all these vertices can be accumulated in parallel.
Algorithm 1: Parallel betweenness centrality for unweighted graphs
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3.1. Parallel multicore performance

The sequential complexity for computing betweenness centrality and other shortest-path-based centrality metrics is
OðmnÞ. The parallel algorithms for betweenness centrality described in the prior section are well suited for implementation
on multicore and multiprocessor systems that have high memory bandwidth and a modest number of processor cores. While
betweenness is compute-intensive, finding the clustering coefficients, assortativity, the joint degree distribution, and other
topological measures are straight-forward to compute with linear-work algorithms. Portable, efficient implementations of
these algorithms are freely available from our website as part of the SNAP (Small-world Network Analysis and Partitioning)
framework [6]. As a representative case study for performance on multicore systems, we will present results of computing
betweenness, closeness centrality, and diameter for HPIN in this section.

We report performance results on the Sun Fire T2000 multicore server, with the Sun UltraSPARC T1 (Niagara) processor.
This system has eight cores running at 1.0 GHz, each of which is four-way multithreaded. There are eight integer units with a
six-stage pipeline on chip, and four threads running on a core share the pipeline. The cores also share a 3 MB L2 cache, and
the system has a main memory of 16 GB. Since there is only one floating point unit (FPU) for all cores, the UltraSparc T1 pro-
cessor is mainly suited for programs with few or no floating point operations. We compile our codes with the Sun C compiler
v2.8 and the flags -xtarget=ultraT1 -xarch=v9b -xopenmp.

Fig. 1 plots the execution time and relative speedup achieved on the Sun Fire T2000 for the exact computation of
betweenness centrality. The performance scales nearly linearly up to 16 threads, but drops between 16 and 32 threads. This
can be attributed to insufficient memory bandwidth on 32 threads, as well as the presence of only one floating point unit on
the entire chip. We use the floating point unit for accumulating pair dependencies and centrality values. The execution times
for other shortest path-based centrality metrics such as closeness (Fig. 2) and betweenness centrality differ by a constant
multiplicative factor. Betweenness centrality computation is much more involved, as it requires maintaining a BFS stack,
a queue and a predecessor list. Also, the BFS tree is traversed twice in the algorithm. For additional performance results
and a discussion of scalability related to network properties, please refer to [2,4].

Computing the graph diameter and average path length also have a OðmnÞ work complexity, and the parallel approach is
very similar to betweenness centrality. In both cases, we need to run n breadth-first searches. We report performance results
for computing the graph diameter on a dual-core 2.8 GHz Intel Xeon system. The two cores share a 2 MB L2 cache, and the
system has 4 GB physical memory. Each processor is also equipped with hyper-threading, which gives an impression of four
virtual processors as a whole. The code is compiled with the Intel C Compiler v9.1 and the flags (-O3 -ipo -unroll_loops).
Fig. 3 plots the execution time and speedup as the number of threads is varied from 1 to 4. We achieve near-linear speedup
up to 4 threads in this case.

4. Biological analysis

In this section, we will quantify connectivity, centrality and clustering in the human and yeast PINs using relevant social
network analysis metrics.
Fig. 1. Execution time and speedup on the Sun Fire T2000 system for the HPIN betweenness centrality computation.



Fig. 3. Execution time and Speedup on a dual-core Intel Xeon system for graph diameter computation.

Fig. 2. Execution time and speedup on the Sun Fire T2000 system for the HPIN betweenness centrality computation.
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The HPIN dataset we obtain from HPRD [28] has 18,755 proteins and 34,367 pairwise interactions. We process this net-
work and extract the largest connected component, which is composed of 8503 proteins and 32,191 interactions. Thus, the
original dataset includes around 10,000 non-interacting proteins. Apart from the large component, there are 89 connected
components of size 2, 16 connected components of size 3 and 5 components of size 5. We also ignore complex interactions in
the dataset.

4.1. Connectivity

Fig. 4a plots the degree distribution of the vertices in the largest component of HPIN. We report the normalized frequency
count pðkÞ ¼ nðkÞ

n , where nðkÞ is the total number of degree-k vertices. Similarly, Fig. 4b gives the degree distribution of the
yeast PIN. In HPIN, nearly 25% of vertices have a degree of 1, and 15% are of degree-2. In comparison, 31% of vertices are
of degree-1 and 15% are degree-2 in YPIN. The degree distribution can be roughly approximated by a power-law, but with
a heavy tail.



Fig. 4. Degree distributions of protein-interaction networks.
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The protein with the highest degree in HPIN is TP53 (230 interactions). TP53 stands for tumor-protein 53 – it regulates
the cell division process by keeping cells from growing and dividing too fast, or in an uncontrolled way. The p53 tumor pro-
tein is located in the nucleus of cells throughout the body and can bind directly to DNA. Since the p53 tumor protein is essen-
tial for regulating cell division, it is also known as the guardian of the genome.

4.2. Clustering

We calculate the average clustering coefficient, a measure of the tendency of proteins in a network to form clusters or
groups. For a vertex v of degree d, the clustering coefficient CC is defined as the CCðvÞ ¼ 2k

dðd�1Þ, where k is the number of links
connecting the d neighbors of v, considered pairwise. The average clustering coefficient CCaðdÞ for a particular degree d is
simply the average of the clustering coefficients of all vertices of degree d. We find that, on an average, CCa is a constant value
of 0.1 for both HPIN and YPIN (see Fig. 5). This is a strong indicator that these networks do not have a hierarchical organi-
zation, or trivially noticeable community structure [17]. Newman [27] observes that networks with high clustering coeffi-
cients are prone to virus outbreaks, and faster epidemic spreading. A constant average clustering coefficient across the
network might be one of the distinguishing features of PINs. Also, we observe that low-degree vertices in HPIN and YPIN
show some variation in the clustering coefficient values, whereas high-degree vertices (degree greater than 20) show little
or no variation (see error bars in Fig. 5). Also, note that we do not model protein complexes as pairwise interactions in this
study. Complex interactions lead to an occurrence of proteins of sizable degree as well as high clustering coefficients in the
graph.
Fig. 5. Average clustering coefficient for degree-k vertices (the error bars indicate the maximum and minimum values).



Fig. 6. Joint degree distribution.
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There are several metrics to study correlations between vertex degree and the connectivity of neighbors of that vertex.
Based on extensive empirical studies, Newman [27] proposes a simple classification of networks into three classes: assorta-
tive, disassortative, and neutral mixing [27]. A vertex with high degree in an assortative (disassortative) network tends to
connect to nodes with other higher (low) degree vertices, whereas in a neutral mixing there are no such patterns. Disassor-
tative networks are vulnerable to both random failures and targeted attacks at the high-degree vertices. Other metrics, such
as likelihood, radial, and tangential, are also directly related to assortativity. Tangential links are used to refer to edges con-
necting vertices of similar degrees, and radial links refer the links connecting high-degree vertices with low-degree ones. On
calculating Newman’s assortativity coefficient, we found that both HPIN and YPIN exhibit mildly disassortative to neutral
mixing.

The joint degree distribution (JDD) is another metric similar to assortativity that is used to study clustering. JDD is the
probability that a randomly selected edge connects vertices of degree k1 and k2, respectively, Pðk1; k2Þ ¼ mðk1 ;k2Þ

m , where
mðk1; k2Þ is the total number of edges between vertices of degree k1 and k2, respectively. We plot the joint degree distribu-
tions of HPIN and YPIN in Fig. 6. In HPIN, we find that the majority of edges are links between low-degree vertices (bottom-
left corner). For yeast, there are some links connecting high-degree vertices with low-degree ones (bottom-right and to-
p-left). However, observe that there are no tangential links between high-degree vertices (top-right). This is an important
network characteristic for which the PIN topology differs significantly from a physical network, such as the AS-level network
topology.
4.3. Centrality

Next we study centrality and criticality in PINs. The problem of identifying central nodes in large complex networks is of
fundamental importance with applications in several areas varying from computational biology to social and business net-
works. Many quantitative metrics for this purpose have originated from the social network analysis community, commonly
referred to as centrality measures. We will use the Betweenness centrality metric to analyze the human interactome.
Researchers have paid particular attention to the relation between centrality and essentiality or lethality of a protein (for in-
stance [20]). A protein is said to be essential if the organism cannot survive without it. Essential proteins can only be deter-
mined experimentally, so alternate approaches to predicting essentiality are of great interest and have potentially significant
applications such as drug target identification [21]. Previous studies on yeast have shown that proteins acting as hubs (or
high-degree vertices) are three times more likely to be essential [20]. So we wish to analyze the interplay between degree
and centrality scores for proteins in the human PIN in this section.

Fig. 7 plots the normalized betweenness centrality scores (absolute centrality score divided by ðn� 1Þ � ðn� 2Þ=2, the
highest possible centrality score for a vertex in an undirected network) of all the proteins in HPIN, ordered by degree. We
repeat the analysis for both the yeast datasets (see Fig. 8). In all the cases, we observe that there is a strong correlation be-
tween the degree of a vertex and its betweenness centrality score. All highly connected vertices have high centrality scores.
However, observe that low-degree vertices show a significant variation in their centrality scores. The protein with the high-
est degree (p53) also has the highest centrality score.

We now try to explain the variation in the centrality scores of low-degree vertices. Clearly, all degree-1 vertices have a
centrality score of zero. We would like to determine the connectivity patterns of high centrality, low-degree vertices in the



Fig. 7. Normalized betweenness centrality vs. degree in HPIN.

Fig. 8. Normalized betweenness centrality vs. degree.

Fig. 9. Betweenness centrality scores of articulation and non-articulation vertices.
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graph. For this purpose, consider decomposing the graph into its biconnected components. These are the maximal subsets of
vertices such that the removal of a vertex from a particular component will not disconnect the component. Unlike connected



Fig. 10. Percentage of articulation points in HPIN.
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components, vertices may belong to multiple biconnected components: vertices that belong to more than one biconnected
component are called articulation points or, equivalently, cut vertices. A graph without articulation points is biconnected.
Fig. 9 replots betweenness centrality scores of vertices in the graph, indicating articulation points separately this time.
We observe that nearly all articulation vertices have high centrality scores. We can filter a significant percentage of vertices
in the graph based on the observation that low-degree vertices that are not articulation points have low centrality scores,
and are unlikely to be critical.

Fig. 10 plots the percentage of articulation points vs. degree in the Human PIN. Observe that 20% of all low-degree vertices
are articulation points. Similarly, a high percentage of high-degree vertices are again articulation points. We can filter non-
articulation low-degree vertices and high-degree articulation vertices, as the centrality scores for these vertices are predict-
ably low and high, respectively.

We now plot betweenness centrality scores in the pruned graph (after removing non-articulation low-degree vertices).
The average centrality scores for a given vertex degree are indicated on a linear scale in Fig. 11, along with the maximum
and minimum values. Observe that centrality scores only vary by two orders of magnitude in this case. For a given degree,
the centrality scores vary by an order of magnitude in both HPIN and YPIN. The centrality score variation is slightly higher in
YPIN.

Based on analysis of the betweenness measure, we identify a new topological feature in the yeast and Human PINs that
may not found in randomly generated scale-free networks: a significant percentage of proteins characterized by high
betweenness (one order of magnitude less than the maximum), yet low connectivity. The fact that a majority of these pro-
teins are also articulation points indicates suggests that these proteins may represent important that link components with a
low degree of clustering.

We now investigate whether synthetic models for network evolution reproduce this low-degree, high-betweenness
behavior. To address this question, we analyzed different computational models of biological network evolution that gener-
Fig. 11. Average betweenness centrality vs. degree after removing low-degree non-articulation vertices (the error bars indicate the maximum and
minimum values).



Fig. 12. Degree–betweenness correlation for synthetic graphs.
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ate scale-free networks. We experimented with a range of parameters for these models and selected ones that gave a power-
law distribution that matched the slope of HPIN. In each case, we quantified the variation of betweenness for a particular
connectivity, and its change for the value of connectivity. Thus, an increase in the standard deviation of betweenness values
for low-degree values indicated the presence of high centrality, low-degree proteins.

The simplest generative algorithm, first proposed by Barabasi and Albert (BA preferential attachment model) to explain
the power-law distribution of connectivity, does not predict the existence of low-degree, high centrality vertices. Between-
ness and degree are almost linearly correlated in this graph (see Fig. 12a). Also, the extended Barabasi–Albert (EBA) model,
where link addition and rewiring occur along with node addition with preferential attachment, also did not produce net-
works with this characteristic, although low-degree vertices showed a better spread in this case. Moreover, this algorithm
has no biological basis.

A biologically motivated model put forward by Sole et al. [38] and Vazquez et al. [42] incorporated gene duplication as the
driving mechanism for genome growth. In this model, the existing nodes (proteins) are copied with all their existing links,
followed by divergence of the duplicated nodes introduced by rewiring and/or addition of connections, imitating mutations
of duplicated genes. For the model parameter range that produces power-law networks, the Sole–Vazquez (SV) model also
failed to produce the same bias towards betweenness exhibited by HPIN (see Fig. 12b). These results show that existing evo-
lutionary algorithms that produce scale-free networks do not predict the existence of high-betweenness, low-degree vertices
found within the yeast and human PINs.

Joy et al. [22] propose a model to explain a similar occurrence in the yeast PIN. They present a new model based on the
Berg model [9], which considers point mutations in addition to gene duplication. With this model, the authors generate a
synthetic network that matches the low degree, high centrality property in the yeast PIN. However, the paper [22] does
Fig. 13. Core-k distribution.



Fig. 14. The dominant molecular classes (left) and biological functions (right) among proteins that are common to both the top 1% betweenness centrality
and degree lists.
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not discuss algorithms for determining model parameters (the duplication and point mutation rates) to fit data given an arbi-
trary dataset, such as HPIN in our study. Thus, we were unable to determine whether this model could explain the centrality
variance in HPIN.

Finally, we study the coreness of the graph using a simple heuristic. The k-core of a graph is defined as the subgraph ob-
tained by recursively removing all vertices of degree less than k from the original graph. If a vertex belongs to the k-core but
not to the ðkþ 1Þ-core, we say that its vertex coreness is k. Vertices with degree-1 have core ¼ 0. Coreness gives us an idea of
how deep in the core a vertex is. It is related to vertex degree, but is a more sophisticated measure. A node with small core-
ness is not well connected and can be disconnected easily by removing its poorly connected neighbors, even if its degree is
high. We see that this is exactly the case in both the human and yeast PINs (see Fig. 13). This indicates an absence of a high-
degree core in these PINs, which implies that the network may be vulnerable to attacks on select hub proteins.

Fig. 14 is a graphical representation of the dominant molecular class and biological function among high-betweenness
and high-connectivity proteins (the common proteins in the top 1% lists). These proteins belong to a variety of molecular
classes (Fig. 14a), with cell communication and signal transduction being the most common biological function (Fig. 14b).
The functional annotations are derived from Gene Ontology data. Due to the lack of comprehensive functional annotation
datasets for the human interactome and software tools to process human interaction datasets, we could not complete func-
tional enrichment tests on HPIN.

5. Conclusions

In this article, we demonstrate the use of multicore algorithmic techniques for large-scale protein-interaction network
analysis. The source code of the various graph analysis programs is freely available online from our web site. We also intend
to provide our centrality analysis codes as plug-ins to the biological network visualization tool Cytoscape [37].

Using complex network analysis techniques, we conduct an extensive study of the global topological characteristics of the
human protein-interaction network. We report a new topology feature in the yeast and human PINs not found in synthetic
scale-free networks: the prevalence of low-degree proteins with high-betweenness values. Our results show that existing
evolutionary algorithms that produce scale-free networks do not predict the existence of high-betweenness, low-degree ver-
tices found within the yeast and human PINs. The high-betweenness, low-centrality vertices also provide some insight into
the clustering nature and coreness of the network. We find that vertices with high centrality scores are very likely to be artic-
ulation points in the graph, and also have low clustering coefficients.
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