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Abstract

High performance computing is critical for finan-
cial markets where analysts seek to accelerate complex
optimizations such as pricing engines to maintain a
competitive edge. In this paper we investigate the per-
formance of financial workloads on the Sony-Toshiba-
IBM Cell Broadband Engine, a heterogeneous multicore
chip architected for intensive gaming applications and
high performance computing. We analyze the use of
Monte Carlo techniques for financial workloads and de-
sign efficient parallel implementations of different high
performance pseudo and quasi random number gener-
ators as well as normalization techniques. Our im-
plementation of the Mersenne Twister pseudo random
number generator outperforms current Intel and AMD
architectures by over an order of magnitude. Using
these new routines, we optimize European Option (EO)
and Collateralized Debt Obligation (CDO) pricing al-
gorithms. Our Cell-optimized EO pricing achieves a
speedup of over 2 in comparison with using RapidMind
SDK for Cell, and comparing with GPU, a speedup of
1.26 as compared with using RapidMind SDK for GPU
(NVIDIA GeForce 8800), and a speedup of 1.51 over
NVIDIA GeForce 8800 (using CUDA). Our detailed
analyses and performance results demonstrate that the
Cell/B.E. processor is well suited for financial work-
loads and Monte Carlo simulation.

1. Introduction

The Cell Broadband Engine (or the Cell/B.E.)
[20, 17, 18, 35] is a novel high-performance architec-
ture designed by Sony, Toshiba, and IBM (STI), pri-
marily targeting multimedia and gaming applications.
The Cell/B.E. consists of a traditional microproces-
sor (called the PPE) that controls eight SIMD co-
processing units called synergistic processor elements
(SPEs), a high speed memory controller, and a high
bandwidth bus interface (termed the element intercon-
nect bus, or EIB), all integrated on a single chip. The
Cell is used in Sony’s PlayStation 3 gaming console,
Mercury Computer System’s dual Cell-based blade
servers, and IBM’s QS21 Cell Blades.

High performance computing is critical in the Fi-
nancial Sector to aid complex analytics in financial
models. These models aim to understand and deal
with uncertainties prevalent in the market. The use
of technologies such as multicore processors, clusters
and grid computing is well established in this market,
with growing interest in the Cell/B.E., GPUs and FP-
GAs [15]. The IBM Cell/B.E. is known to perform well
for applications that are compute-intensive [36].

Option pricing is a basic financial model and is used
extensively throughout the Financial Services sector
for pricing European, American, Bermuda and vari-
ous other options. An option is a contract between
two parties (buyer/seller), where the buyer has the
right but not the obligation to engage in a future



transaction based on a financial instrument. The lit-
erature contains several publications related to paral-
lel option pricing algorithms. Parallel algorithms for
pricing various types of options using the multino-
mial lattice model are discussed in [4, 16, 10]. Op-
timizing this on the Cell requires communication and
synchronization after every stage which leads to de-
graded performance. Option pricing using parallel al-
gorithms based on Monte Carlo method are presented
in [24, 29, 37]. Collateralized Debt Obligation (CDO)
is the fastest growing sector of the asset backed securi-
ties market. According to the Securities Industry and
Financial Markets Association (SIFMA), global CDO
issuance increased to $549.2 billion in 2006, over twice
the $271.8 billion issued in 2005 [33]. Collateralized
Debt Obligation pricing algorithms are discussed in
[7, 6].

Monte Carlo simulation is a popular technique used
in financial markets to compute stock/asset prices,
commodity prices and risk valuation that require es-
timating losses based on an underlying stochastic pro-
cess. It also has wide application in computational
physics, physical chemistry and computational biology.
In this work, we design an efficient parallel pseudo-
random number generator based on Mersenne Twister
algorithm [25] and a quasi-random number genera-
tor based on the Hammersley Sequence [12]. For our
implementation of Mersenne Twister, Cell achieves a
speedup of over 11 as compared to the performance on
current Intel and AMD architectures. We explore and
analyze the performance of various normalization tech-
niques such as Low Distortion Map (LDM) [34], Box
Mueller transform [3] in Cartesian and Polar forms.
Using these routines for Monte Carlo simulation we
develop an efficient parallel implementation for pricing
European options using the Black Scholes option pric-
ing model. We also present the design of an efficient
parallel CDO pricing algorithm. Monte Carlo simula-
tion has been the most popular method for CDO valua-
tion and can be very resource intensive for large CDOs.
In our design, we use the Monte Carlo approach with
Gaussian Copula. This algorithm consists of several
important scientific kernels that are proven to achieve
high performance on the Cell/B.E.

Section 5 provides an extensive performance com-
parison of our implementation over NVIDIA G80 us-
ing CUDA SDK and RapidMind Development Plat-
form v2.1 for GPUs. The RapidMind development
platform helps developers create high performance ap-
plications with less effort and low cost. We also com-
pare the performance of our hand tuned code as com-

pared to using RapidMind Development platform v2.1
for Cell. Our implementation achieves a speedup of
1.51 over NVIDIA G80 (using CUDA), a speedup of
over 2 as compared with using RapidMind for Cell and
a speedup of 1.26 as compared with using RapidMind
for GPU.

Our detailed analyses and performance results sug-
gest that Cell is well suited for financial workloads.
Also, the Monte Carlo method is highly scalable among
the various SPEs. This is particularly important for
the next generation of the Cell processor that may of-
fer 32 SPEs [14].

2. Cell Broadband Engine Architecture

The Cell Broadband Engine (Cell/B.E.) processor is
a heterogeneous multi-core chip that is significantly dif-
ferent from conventional multiprocessor or multi-core
architectures. It consists of a traditional microproces-
sor (the PPE) that controls eight SIMD co-processing
units called synergistic processor elements (SPEs), a
high speed memory controller, and a high bandwidth
bus interface (termed the element interconnect bus, or
EIB), all integrated on a single chip. Fig. 1 gives an
architectural overview of the Cell/B.E. processor. We
refer the reader to [30, 8, 21, 13, 5] for additional de-
tails.

The PPE runs the operating system and coordinates
the SPEs. It is a 64-bit PowerPC core with a vector
multimedia extension (VMX) unit, 32 KByte L1 in-
struction and data caches, and a 512 KByte L2 cache.
The PPE is a dual issue, in-order execution design,
with two way simultaneous multithreading. Ideally,
all the computation should be partitioned among the
SPEs, and the PPE only handles the control flow.

Each SPE consists of a synergistic processor unit
(SPU) and a memory flow controller (MFC). The MFC
includes a DMA controller, a memory management
unit (MMU), a bus interface unit, and an atomic unit
for synchronization with other SPUs and the PPE. The
SPU is a micro-architecture designed for high perfor-
mance data streaming and data intensive computation.
It includes a 256 KByte local store (LS) memory to
hold SPU program’s instructions and data. The SPU
cannot access main memory directly, but it can issue
DMA commands to the MFC to bring data into the
Local Store or write computation results back to the
main memory. DMA is non-blocking so that the SPU
can continue program execution while DMA transac-
tions are performed.
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Figure 1. Cell Broadband Engine Architecture.

The SPU is an in-order dual-issue statically sched-
uled architecture. Two SIMD [19] instructions can
be issued per cycle: one compute instruction and one
memory operation. The SPU branch architecture does
not include dynamic branch prediction, but instead re-
lies on compiler-generated branch hints using prepare-
to-branch instructions to redirect instruction prefetch
to branch targets. Thus branches should be minimized
on the SPE as far as possible.

The MFC supports naturally aligned transfers of
1,2,4, or 8 bytes, or a multiple of 16 bytes to a maxi-
mum of 16 KBytes. DMA list commands can request
a list of up to 2,048 DMA transfers using a single MFC
DMA command. Peak performance is achievable when
both the effective address and the local storage address
are 128 bytes aligned and the transfer is an even multi-
ple of 128 bytes. In the Cell/B.E., each SPE can have
up to 16 outstanding DMAs, for a total of 128 across
the chip, allowing unprecedented levels of parallelism
in on-chip communication. Kistler et al. [21] analyze
the communication network of the Cell/B.E. and state
that applications that rely heavily on random scatter
and or gather accesses to main memory can take ad-
vantage of the high communication bandwidth and low
latency.

With a clock speed of 3.2 GHz, the Cell processor
has a theoretical peak performance of 204.8 GFLOP/s
(single precision). The EIB supports a peak band-
width of 204.8 GB/s for intrachip transfers among the
PPE, the SPEs, and the memory and I/O interface
controllers. The memory interface controller (MIC)
provides a peak bandwidth of 25.6 GB/s to main mem-
ory. The I/O controller provides peak bandwidths of
25 GB/s inbound and 35 GB/s outbound.

3. Financial modeling using Monte Carlo
simulation

In this section we give a brief overview of Option
pricing and Collateralized Debt Obligation pricing. We
also discuss the use of Monte Carlo simulation in finan-
cial modeling.

3.1. Option pricing

An option is a contract between two parties where
one party has the right but not the obligation to en-
gage in a future transaction on an underlying security.
Option pricing involves the computation of the option
payoff value that depends on the current price of the
underlying asset, expiration time, volatility of asset,
and risk-free rate. The Black Scholes formula [2] is a
celebrated model used to price options that is based on
the assumption that the price of the underlying secu-
rity follows the geometric Brownian Motion described
as a continuous time stochastic differential equation. In
a situation where there is no arbitrage the price can be
calculated as the discounted expected value under the
risk-neutral measure. Using the Monte Carlo method
[27], this value can be calculated by averaging over a
large number of sample values.

The pseudo-code for option pricing using the Monte
Carlo method is given in Alg. 1. In the option pric-
ing algorithm, Steps 1 & 2 are the most computation-
ally intensive steps, i.e. generating standard Gaussian
(normal) random numbers. These are random numbers
that have the following probability density function.

f(x) = 1
2π e−

1
2 x2

mean = 0, variance = 1



Algorithm 1: Monte Carlo method for option pricing
Input: Current Price (S, Strike Price (K), Expiration time (T ), Volatility (v), Yield rate (r), Number of

cycles (N)

Output: Ĉ: Discounted payoff value

1 for j ← 1 to N do
2 Generate uniform random number x;
3 Transform x to Gaussian (normal) random number x̂;
4 Compute Cj = S ∗ e(r−0.5v2)∗T+v∗√T∗x̂;
5 Compute Cj = max(0, Cj −K) for Call, Cj = max(0, K − Cj) for Put;

6 Average current option value Ĉ = e−rT ∗ 1
N ΣN

j=1Cj ;

Option pricing is fundamental workload to the Fi-
nancial Services Sector and is widely used to trade
stock, commodity, bond and index options.

3.2. Collateralized Debt Obligation (CDO)
pricing

A Collateralized Debt Obligation (CDO) [7, 6] is
a structured finance product that assembles a portfo-
lio from an underlying diversified pool of defaultable
assets such as corporate loans, junk bonds, and mort-
gages with potential high or low correlation. These
defaultable assets introduce risk exposures to the port-
folio. A CDO segments the risk into various tranches
with a unique risk/return/maturity profile to appeal
to a wide variety of investors. The risk can then
be transferred to the investors through these various
tranches. While pricing a multi-asset portfolio the cor-
relation of defaults (which forms the correlation matrix
C) within the portfolio becomes an important factor
along with the individual default probability distribu-
tions. A higher correlation of defaults within a port-
folio implies a higher risk of many assets defaulting at
the same time. Thus, for pricing the CDO we need to
model the joint distribution of the default times of the
assets in the portfolio. Pricing a CDO using Monte
Carlo simulation involves creating sample paths of cor-
related default times of the various assets in the port-
folio. We use Monte Carlo simulation with Gaussian
Copula approach [23] to sample the default times. As-
suming the number of assets in a CDO is N , pricing
the CDO using Monte Carlo simulation with Gaussian
copula involves the following steps.

1. Generate independent uniform random numbers.

2. From uniform random numbers generate a vector
of normal random numbers W (of length N), using
Box Mueller transform in Polar form.

3. Perform Cholesky decomposition on the correla-
tion matrix, R = C · CT .

4. Generate correlated normal random numbers with
X = C ·W .

5. Convert this sample to correlated uniform random
numbers by applying normal cumulative distribu-
tion function. Generate default times from corre-
lated uniforms by inversion.

6. Sort default times to discard the ones that are after
the maturity date.

7. Using the default times calculate CDO payments,
and discount these payments to get present value.

8. Repeat this procedure for a given input of Monte
Carlo paths.

4. Financial Modeling on the Cell/B.E.

From the previous section we observe that one of the
most computationally intensive steps in using Monte
Carlo simulation for financial modeling is the gener-
ation of standard Gaussian (normal) random num-
bers. To compute these we first compute uniform-
pseudo/quasi random numbers and then transform
them to standard normal random numbers using stan-
dard normalization techniques.

4.1. Random Number Generation

pseudo-random
The Monte Carlo method requires a high quality ran-
dom number generator. We use the Mersenne Twister
algorithm [25] as the pseudo-random number generator
in our design. Fig. 2 gives an illustration of the algo-
rithm for (N=624, M=397). It uses an input seed to



initialize an array of size N . This array is traversed in
a round robin manner during the subsequent iterations
of the algorithm. During each iteration, element i is
updated using element i + 1 and i + M . A series of
shift and bitwise operations on the ith element gives
the output random number.

0 1 i i+1 i+M N-1

OR

UB LB

y

A

if LS(y) == 0
    A = 0
else
    A = a

+

+

y

A series of shift operations
on y produces the output
random number

Figure 2. Illustration of the Mersenne Twister
Algorithm. The function LS extracts the least
significant bit from the input, and a is a con-
stant in the algorithm.

There are two ways to parallelize this for the Cell.
One technique is to optimize the algorithm for a single
SPE and use different seeds for various SPEs to gen-
erate multiple random streams. Using a dynamic seed
for each SPE ensures that the combined stream has
high quality of randomness [26]. Another technique
is to generate a single stream of random numbers us-
ing the various SPEs. It is important to note that in
this algorithm the computation from the latter part of
the array requires the updated data from the first part
which makes the algorithm data dependent. To obtain
high performance on Cell, we use the first paralleliza-
tion technique in our design. However, using different
seeds on different SPEs is not enough since the gener-
ated random numbers from the various SPEs may be
correlated, leading to degraded quality of Monte Carlo
simulations. A solution to this is Dynamic Creator
[26] that is based on the Mersenne Twister algorithm.
This generates different algorithm parameters for the
various SPEs which helps in generating multiple inde-
pendent streams.

The data access pattern of the algorithm introduces

challenges for optimizing this on the SPEs. For
vectorization, the data access should be aligned to a
16 byte boundary. Calculating random number from
array element i requires the value from element i+ M ,
which may not be aligned in most cases. This requires
using shuffle intrinsics within the SPE that degrades
performance. In our implementation we use several
techniques for optimization such as loop unrolling,
branch hints, vectorization and use compare and select
instructions to eliminate the branch in the algorithm.

quasi-random
Another technique uses the quasi Monte Carlo simula-
tion for option pricing. This requires a quasi-random
number generator.

1       2       3      4        5      6       7      8

Figure 3. Illustration of the Cell parallelization
for quasi-random number generation using
Hammersley sequence. In this figure 8 SPEs
are used for illustration. Here, SPE i is re-
sponsible for generating Hammersley points
from the domain i.

In our approach we use the Hammersley sequence
[12] that generates points uniformly within a square
and has better statistical properties than many pseudo-
random number generators. These sequences are
known as low discrepancy sequences [28, 11].

The pseudo-code of the algorithm is given in Alg. 2.
This algorithm is computationally more expensive than
Mersenne Twister, but is less branchy.

For parallelizing this on the Cell processor we di-
vide the square domain into p equal parts (where p is
the number of SPEs). SPE i generates Hammersley
sequence from block i. Note that this algorithm gener-
ates a deterministic sequence and thus it is important
to parallelize a single stream of random numbers. This
is in contrast to the technique we used for paralleliz-



Algorithm 2: Generating Hammersley point set
Input: Number of Simulations: N

Output: {(xi, yi)}, i ∈ [1, N/2]
//Divide loop iterations among p SPEs.

1 for j ← 1 to N
2 do

2 xj = j
N //Unroll and vectorize for Cell optimization.

3 yj = bit reverse(j)
MAX INT

Algorithm 3: Box Mueller transform in Cartesian form.
Input: Independent uniform random numbers (x,y)
Output: Normal random numbers (x̄, ȳ)

1 R =
√−2 ∗ ln x //One multiplication, One logarithm, One square root

2 θ = 2π ∗ y //One multiplication
3 x̄ = R ∗ cos θ //One multiplication, One trigonometric function
4 ȳ = R ∗ sin θ //One multiplication, One trigonometric function

ing the Mersenne twister algorithm. Fig. 3 gives an
illustration of this technique. The x-coordinate of the
domain is divided into p equal parts, where p is the
number of SPEs. For each xj ∈ part i, SPE i gener-
ates the corresponding yj .

4.2. Normalization

The random number generators discussed in the
previous section generate uniform random numbers
(random numbers uniformly distributed in the interval
[0, 1]). The Monte Carlo approach for financial
modeling (Alg. 1) requires a random variable with
Gaussian (normal) distribution (range ∈ [−1, 1], mean
= 0, variance = 1). In this section we analyze three
techniques that could be used for transforming a set
of uniform random numbers to normalized random
numbers, and report their performance on the Cell
processor.

Box Mueller transformation in Cartesian form
For every pair of input random numbers, Box Mueller
transformation [3] in Cartesian form generates a pair of
normalized random numbers. Alg. 3 gives this trans-
formation along with the computational effort required
at each step.

For compute intensive operations such as log, sqrt,
sin and cos we use the latest MASS (Mathematical
Acceleration Subsystem) library that is available with
Cell SDK 3.0. The MASS library routines take array
inputs and give the best performance for large array
sizes. We structure our implementation to provide

long array inputs to the MASS routines in order to
attain high performance.

Box Mueller transformation in Polar form
In the Polar form for every pair of input random num-
bers, a pair of normalized numbers is generated if the
input pair lies within a unit disc. Alg. 4 gives this trans-
formation along with the computation effort required
at each step.

In comparison to the Box Mueller transform in
Cartesian form, this algorithm discards about one in
four pairs of input random numbers, but it prevents
the use of a trigonometric function (which is compar-
atively an expensive operation). Thus, Box Mueller in
Polar form is a computationally less expensive as com-
pared to the Cartesian form.

The presence of a branch in the algorithm poses
issues during optimization on the Cell. The branch
restricts vectorization of the algorithm. Also, due
to the absence of a branch predictor on the SPEs
it leads to a degradation in performance. This first
problem reduces to extracting elements from a long
input array A that satisfy a given condition X (let’s
call these ‘good’ elements), using vector intrinsics. To
solve this problem in an elegant manner we create
another array B, that stores the counter value for the
corresponding element of A, i.e., If A[i] is ‘good’, then
B[i] is 1 otherwise 0. Using B we extract the ‘good’
elements of A. The pseudo-code of this technique is
given in Alg. 5. Step 4 of the algorithm writes into
the array C regardless of the value of A[i]. Note that



Algorithm 4: Box Mueller transform in Polar form.
Input: Independent uniform random numbers (x,y)
Output: Normal random numbers (x̄, ȳ)

1 s = x2 + y2 //Two multiplications, One addition
2 if 0 < s ≤ 1 then
3 z =

√
−2∗ln s

s //One multiplication, One division, One square root, One logarithm
4 x̄ = u ∗ z //One multiplication
5 ȳ = v ∗ z //One multiplication

Algorithm 5: Extracting elements from array A that satisfy a condition X , using a vectorized approach
Input: array A, length N

Output: array C, number of extracted elements j

1 for i← 1 to N do
2 B[i] = X(A[i]) //Vectorize and Unroll for Cell optimization.

3 j ← 0
4 for i← 1 to N do
5 C[j] = A[i] //Unroll for Cell optimization.
6 j = j + B[i]

this is correct as the array index of C increments only
when a ‘good’ element is written to it. This leads to
extra work but prevents branching from a conditional
store. Although, Steps 4 & 5 of the algorithm are
scalar, branch elimination significantly boosts the
performance of the algorithm on the Cell processor.
We use the MASS library for compute intensive
operations such as sqrt and log.

LDM : Low Distortion Map between square and
disc

a

b
r φ

Figure 4. Illustration of the Low Distortion
Map transformation. r = a, φ = π∗b

4∗a

Shirley and Chiu [34] describe a low distortion map
(LDM) between a unit square and disk. This map pre-
serves fractional area and introduces low distortion in
shape. For a given point (a, b) within a unit square this
transformation calculates values r = a, φ = πb

4a . This
maps to the output transformed point (ā, b̄), where
a = r cosφ, and b = r sin φ. Fig. 4 gives an illustration
of the algorithm. In our implementation we map every
point in the unit square to the first quadrant and apply
the LDM transformation. We use various optimiza-
tion techniques such as vectorization, loop-unrolling
and use the IBM MASS library to achieve high per-
formance.

4.3. Optimizing option pricing for Cell

In Monte Carlo Simulation the number of cycles N

(Alg. 1) in general is very large, and the cycles are in-
dependent of one another. Thus, we divide the number
of cycles among the various SPEs, with each SPE com-
puting results from N

p cycles, where p is the number of
SPEs. We use our optimized kernels of random num-
ber generation and normalization as described earlier.
Given the limited local store on an SPE pre-computing
the normal random numbers and storing them on the
PPE should be avoided. Instead, we calculate these
numbers during each Monte Carlo cycle. Using Cell
SIMD instructions we simultaneously calculate payoff



values from four standard normal random numbers.
Also for efficient pipeline utilization, we unroll the for

loop in Alg. 1 by a factor of 8.
The role of the PPE in the algorithm is to gather

input data from the user, partition the work among
the various SPEs (divide the total number of cycles),
create SPE threads, gather the computed payoff value
from each SPE, and average them to compute the final
payoff value.

4.4. Optimizing Collateralized Debt Obliga-
tion (CDO) pricing for Cell

Similar to the option pricing algorithm, the number
of Monte Carlo cycles in the CDO pricing algorithm is
large. Thus, we equally divide the N cycles among the
various available SPEs, and each SPE is responsible for
simulating N

p paths, where p is the number of available
SPEs.

L V

Load part of
vector into registers

Compute partial 
sum of part of each

row.

Figure 5. Illustration of the technique for Ma-
trix Vector Multiplication.

For the first two stages of the algorithm we use our
Cell optimized implementation of Mersenne Twister,
and Box Mueller transform in Polar form as discussed
in the previous sections. This accounts for a major
part of the running time of the algorithm. Cholesky
decomposition accounts for a very small fraction (2-
3%) of the profile time for CDOs where the number
of assets in the portfolio is less than 150. Since, this
is generally the case while pricing CDOs and a matrix
of this size fits entirely within the SPE local store, we

use a sequential Cholesky decomposition that resides
on the SPEs.

To minimize the communication between the PPE
and the SPEs, we structure our implementation so that
all stages of the CDO pricing algorithm happen within
the SPE, the results from one stage are used directly
by the next stage within the SPE, and only the final
result after stage 7 is transferred back to the PPE.

For Step 4 of the algorithm, the normalized ran-
dom numbers vector from Step 2 is multiplied with the
output of Cholesky decomposition to produce corre-
lated random numbers. This can be achieved by an
efficient SPE matrix-vector multiplication implemen-
tation. The algorithm suggests the use of the madd
vector intrinsic within the SPEs that does a multiply
and add in 6 clock cycles. This instruction requires
2 loads that require 6 clock cycles each. For achiev-
ing high performance for this routine it is important
to prevent one of these loads by reusing the registers
for several vector dot product computations. This is
possible when we know the size of the input vectors at
the beginning. For implementing a generic routine we
propose a strategy that reuses the loaded registers from
earlier vector dot product computation. This technique
is illustrated in Fig. 5. A part of the vector (say 8 ele-
ments) is loaded into the registers and the correspond-
ing part from each row of the matrix is multiplied to
generate partial sums.

Step 6 of the algorithm sorts the vector of default
times during each iteration of the Monte Carlo method.
This vector is of length N , the number of assets in the
portfolio. Since CDO pricing does not involve pricing
arbitrarily large portfolios, we can assume that this
vector fits within the SPE for practical purposes. This
problem reduces to optimizing a sequential sorting al-
gorithm for a single SPE.

The above analysis suggests that the CDO pricing
algorithm using Monte Carlo method is a good fit for
the Cell/B.E.. The algorithm is compute-intensive and
does not require any communication between the SPEs.
The SPEs communicate with the PPE during the final
stage for storing results. Also, the various stages of
this algorithm are popular scientific kernels that have
been proven to give high performance on the Cell ar-
chitecture [36, 22, 1, 9].

5. Performance Results

We report our performance results from actual runs
on a IBM BladeCenter QS20, with two 3.2 GHz



Table 1. Time in seconds to generate 100 million random samples in sequential and block pattern on
various architectures. For the Cell/B.E. our timings are from a single chip. The performance results
on the Intel, AMD and IBM PowerPC processors are from Saito and Matsumoto [32].

CPU/Compiler Output MT MT(SIMD)
Intel Pentium-M 1.4 GHz block 1.122 0.627
Intel C/C++ v9.0 [32] seq 1.511 1.221
Intel Pentium-4 3.0 GHz block 0.633 0.391
Intel C/C++ v9.0 [32] seq 1.014 0.757
AMD Athlon 64 3800+ block 0.686 0.376
2.4 GHz, gcc v4.0.2 [32] seq 0.756 0.607
IBM PowerPC G4 1.33 GHz block 1.089 0.490
gcc v4.0.0 [32] seq 1.794 1.358
IBM Cell/B.E. 3.2 GHz block - 0.034
xlc seq - 0.036

Figure 6. Comparison of running times to
generate 100 million random samples in se-
quential and block pattern on various archi-
tectures as reported in Table 1. The number
above each bar represents the speedup of
Cell/B.E. as compared with the correspond-
ing architecture.

Cell/B.E. processors, 512 KB Level 2 cache per proces-
sor, and 1 GB memory (512 MB per processor). For
performance comparisons we compile our code using
the xlc compiler provided with Cell SDK 2.1, with level
3 optimization.

Table 1 lists the running time of our Mersenne
Twister implementation on Cell and compares with
other architectures. For performance comparisons with
Intel, AMD and IBM PowerPC processors we use re-
sults from optimized implementations (using SIMD in-

structions) of the Mersenne Twister algorithm as re-
ported by Saito and Matsumoto [32]. Fig. 6 plots
the performance and reports speedup of our Cell opti-
mized implementation (using one Cell/B.E. processor)
as compared to the corresponding architecture. Block
approach generates a block of random numbers and Se-
quential approach generates one random number per
iteration. MT(SIMD) gives the performance of a vec-
torized implementation of the Mersenne Twister algo-
rithm. We achieve speedup of 11.5 over Intel Pentium
4, 3.0 GHz in the block random number generation and
a speedup of 22.2 using the sequential approach.

We use different combinations of random number
generators and normalization techniques to compare
performance across several platforms. For the remain-
der of this section we use both of the Cell/B.E. proces-
sors available on the blade for measuring performance.
Table 2 gives a performance comparison of option pric-
ing using Monte Carlo simulation with these architec-
tures. The performance column reports the number of
Monte Carlo experiments that can be performed per
second. EOP-BMP demonstrates the performance of
our implementation that uses Box Mueller in Polar
form and EOP-BMC uses the Box Mueller in Carte-
sian form.

For CUDA-BMC we use an optimized implementa-
tion by Podlozhnyuk [31], that is based on the CUDA
Software Development Toolkit, to show performance
comparisons with NVIDIA G80. The code generates
an array (domain set) of random samples, normal-
izes the array and uses that for pricing many options.
For performance comparisons we aggregate the run-
ning time of all stages for pricing a single option. Our
Cell optimized implementation (EOP-BMC ) achieves



Table 2. Performance comparison of option pricing using Monte Carlo simulation with other archi-
tectures. Mersenne Twister is used as the pseudo-random number generator.

Version Platform Performance Transformation Software

EOP-BMP (this paper) Cell/B.E. 1040M/s Box Mueller Cell SDK 2.1
/Polar form

IBM SDK Sample [17] Cell/B.E. 190M/s Box Mueller Cell SDK 2.1
/Polar form

RMCell-BMP Cell/B.E. 605M/s Box Mueller RapidMind
/Polar form SDK 2.1

EOP-BMC (this paper) Cell/B.E. 1824M/s Box Mueller Cell SDK 2.1
/Cartesian form

CUDA-BMC [31] NVIDIA G80 1209M/s Box Mueller CUDA SDK 1.0
(GPU) /Cartesian form

Table 3. Performance comparison of option pricing using quasi-Monte Carlo simulation with other
architectures. Hammersley sequence is used as the quasi-random number generator.

Version Platform Performance Transformation Software

EOP-LDM (this paper) Cell/B.E. 1770M/s Low Distortion Cell SDK 2.1
Map (LDM)

RMCell-LDM Cell/B.E. 888M/s Low Distortion RapidMind
Map (LDM) SDK 2.1

RMGPU-LDM NVIDIA G80 1400M/s Low Distortion RapidMind
(GPU) Map (LDM) SDK 2.1

a speedup of 1.51 over CUDA-BMC. The performance
number for RMCell-BMP is based on an implementa-
tion that uses the RapidMind development platform for
optimizing option pricing on Cell. We change the nor-
malization technique to optimize this code for perfor-
mance comparisons. We observe that our hand-tuned
code obtains a performance advantage of 1.72 as com-
pared with using the RapidMind SDK for Cell. IBM
SDK Sample gives the performance of an implementa-
tion of this algorithm provided as a sample with Cell
SDK 2.1.

Table 3 gives a performance comparison of op-
tion pricing using quasi-Monte Carlo simulation with
other architectures. EOP-LDM shows the performance
of our Cell-optimized implementation based on Ham-
mersley quasi-random number generator and the Low
Distortion Map (LDM) transformation. RMCell-LDM
represents the performance of the latest implementa-
tion from RapidMind Inc. of this algorithm compiled
using RapidMind v2.1. RMGPU-LDM shows the per-
formance of the same implementation run on NVIDIA

GeForce 8800. RapidMind’s performance on Cell is
within a factor of 2 as compared to our hand-tuned
implementation, and we obtain a speedup of 1.26 as
compared to RMGPU-LDM.

6. Conclusion

We use Monte Carlo techniques to design efficient
parallel algorithms for European Option and Collater-
alized Debt Obligation pricing. To achieve high perfor-
mance, we design, analyze and optimize different high
performance pseudo (such as Mersenne Twister) and
quasi (such as Hammersley sequence) random number
generators as well as normalization techniques, while
maintaining high accuracy. Our Cell-optimized EO
pricing attains a speedup of 1.51 over NVIDIA GeForce
8800 (using CUDA), a speedup of over 2 as compared
to using RapidMind SDK for Cell and a speedup of
1.26 as compared to using RapidMind SDK for GPU.
We also present the design of a parallel CDO pricing
algorithm. Our detailed analyses and performance re-



sults suggest that the IBM Cell/B.E. is well suited for
financial workloads, and Monte Carlo simulation pro-
vides high scalability among the SPEs.
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