
Dynamic Load Balancing in Distributed
Systems in the Presence of Delays:
A Regeneration-Theory Approach

Sagar Dhakal, Majeed M. Hayat, Senior Member, IEEE, Jorge E. Pezoa,

Cundong Yang, and David A. Bader, Senior Member, IEEE

Abstract—A regeneration-theory approach is undertaken to analytically characterize the average overall completion time in a distributed

system. The approach considers the heterogeneity in the processing rates of the nodes as well as the randomness in the delays imposed

by the communication medium. The optimal one-shot load balancing policy is developed and subsequently extended to develop an

autonomous and distributed load-balancing policy that can dynamically reallocate incoming external loads at each node. This adaptive

and dynamic load balancing policy is implemented and evaluated in a two-node distributed system. The performance of the proposed

dynamic load-balancing policy is compared to that of static policies as well as existing dynamic load-balancing policies by considering the

average completion time per task and the system processing rate in the presence of random arrivals of the external loads.

Index Terms—Renewal theory, queuing theory, distributed computing, dynamic load balancing.

Ç

1 INTRODUCTION

THE computing power of any distributed system can be
realized by allowing its constituent computational

elements (CEs), or nodes, to work cooperatively so that
large loads are allocated among them in a fair and effective
manner. Any strategy for load distribution among CEs is
called load balancing (LB). An effective LB policy ensures
optimal use of the distributed resources whereby no CE
remains in an idle state while any other CE is being utilized.

In many of today’s distributed-computing environments,
the CEs are linked by a delay-limited and bandwidth-
limited communication medium that inherently inflicts
tangible delays on internode communications and load
exchange. Examples include distributed systems over
wireless local-area networks (WLANs) as well as clusters
of geographically distant CEs connected over the Internet,
such as PlanetLab [1]. Although the majority of LB policies
developed heretofore take account of such time delays [2],
[3], [4], [5], [6], they are predicated on the assumption that
delays are deterministic. In actuality, delays are random in
such communication media, especially in the case of
WLANs. This is attributable to uncertainties associated
with the amount of traffic, congestion, and other unpre-
dictable factors within the network. Furthermore, unknown
characteristics (e.g., type of application and load size) of the
incoming loads cause the CEs to exhibit fluctuations in
runtime processing speeds. Earlier work by our group has

shown that LB policies that do not account for the delay
randomness may perform poorly in practical distributed-
computing settings where random delays are present [7].
For example, if nodes have dated, inaccurate information
about the state of other nodes, due to random communica-
tion delays between nodes, then this could result in
unnecessary periodic exchange of loads among them.
Consequently, certain nodes may become idle while loads
are in transit, a condition that would result in prolonging
the total completion time of a load.

Generally, the performance of LB in delay-infested
environments depends upon the selection of balancing
instants as well as the level of load-exchange allowed
between nodes. For example, if the network delay is
negligible within the context of a certain application, the
best performance is achieved by allowing every node to
send all its excess load (e.g., relative to the average load per
node in the system) to less-occupied nodes. On the other
hand, in the extreme case for which the network delays are
excessively large, it would be more prudent to reduce the
amount of load exchange so as to avoid time wasted while
loads are in transit. Clearly, in a practical delay-limited
distributed-computing setting, the amount of load to be
exchanged lies between these two extremes and the amount
of load-transfer has to be carefully chosen. A commonly
used parameter that serves to control the intensity of load
balancing is the LB gain.

In our earlier work [7], [8], we have shown that, for
distributed systems with realistic random communication
delays, limiting the number of balancing instants and
optimizing the performance over the choice of the balancing
times as well as the LB gain at each balancing instant can
result in significant improvement in computing efficiency.
This motivated us to look into the so-called one-shot
LB strategy. In particular, once nodes are initially assigned
a certain number of tasks, all nodes would together execute
LB only at one prescribed instant [8]. Monte Carlo studies
and real-time experiments conducted over WLAN con-
firmed our notion that, for a given initial load and average

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, APRIL 2007 485

. S. Dhakal, M.M. Hayat, J.E. Pezoa, and C. Yang are with the Department
of Electrical and Computer Engineering, University of New Mexico,
Albuquerque, NM 87131-0001.
E-mail: {dhakal, hayat, jpezoa, cundongyang}@eece.unm.edu.

. D.A. Bader is with the College of Computing, Georgia Institute of
Technology, Atlanta, GA 30332. E-mail: bader@cc.gatech.edu.

Manuscript received 17 Dec. 2005; revised 27 June 2006; accepted 6 July 2006;
published online 9 Jan. 2007.
Recommended for acceptance by R. Thakur.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0508-1205.
Digital Object Identifier no. 10.1109/TPDS.2007.1007.

1045-9219/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

processing rates, there exist an optimal LB gain and an
optimal balancing instant associated with the one-shot
LB policy, which together minimize the average overall
completion time. This has also been verified analytically
through our regeneration-theory-based mathematical
model [9]. However, this analysis has been limited to only
two nodes and has focused on handling an initial load
without considering subsequent arrivals of loads.

In practice, external loads of different size (possibly
corresponding to different applications) arrive at a distrib-
uted-computing system randomly in time and node space.
Clearly, scheduling has to be done repeatedly to maintain
load balance in the system. Centralized LB schemes [10], [11]
store global information at one location and a designated
processor initiates LB cycles. The drawback of this scheme
is that the LB is paralyzed if the particular node that
controls LB fails. Such centralized schemes also require
synchronization among nodes. In contrast, in a distributed
LB scheme, every node executes balancing autonomously.
Moreover, the LB policy can be static or dynamic [2], [12]. In
a static LB policy, the scheduling decisions are predeter-
mined, while, in a dynamic load-balancing (DLB) policy,
the scheduling decisions are made at runtime. Thus, a
DLB policy can be made adaptive to changes in system
parameters, such as the traffic in the channel and the
unknown characteristics of the incoming loads. Addition-
ally, DLB can be performed based on either local informa-
tion (pertaining to neighboring nodes) [13], [14] or global
information, where complete knowledge of the entire
distributed system is needed before an LB action is
executed.

Due to the emergence of heterogeneous computing
systems over WLANs or the Internet, there is presently a
need for distributed DLB policies designed by considering
the randomness in delays and processing speeds of the
nodes. To date, a robust policy suited to delay-infested
distributed systems is not available, to the best of our
knowledge [3]. In this paper, we propose a sender-initiated
distributed DLB policy where each node autonomously
executes LB at every external load arrival at that node. The
DLB policy utilizes the optimal one-shot LB strategy each
time an LB episode is conducted, and it does not require
synchronization among nodes. Every time an external load
arrives at a node, only the receiver node executes a locally
optimal one-shot-LB action, which aims to minimize the
average overall completion time. This requires the general-
ization of the regeneration-theory-based queuing model for
the centralized one-shot LB [9]. Furthermore, every
LB action utilizes current system information that is
updated during runtime. Therefore, the DLB policy adapts
to the dynamic environment of the distributed system.

This paper is organized as follows: Section 2 contains the
general description of the LB model in a delay-limited
environment. In Section 3, we present the regeneration-
based stochastic analysis of the optimal multinode one-shot
LB policy and develop the proposed DLB policy. Experi-
mental results as well as analytical predictions and Monte
Carlo (MC) simulations are presented in Section 5. Finally,
our conclusions are given in Section 6.

2 PRELIMINARIES

To introduce the basic LB model, we present a review of the
queuing model that characterizes the stochastic dynamics of
the LB problem, as detailed in [7]. Consider a distributed
system of n nodes, where all nodes can communicate with

each other. If QiðtÞ is the queue length of the ith node at
time t, then, after time �t, the queue length increases due to
the arrival of external tasks, Jiðt; tþ�tÞ, as well as the
arrival of tasks that have been allocated to node i by other
nodes as a result of LB. Moreover, in the interval ½t; tþ�t�,
the queue QiðtÞ decreases according to the number of tasks
serviced by it, which we denote by Ciðt; tþ�tÞ. In addition,
node i may send a number of tasks to the other nodes in the
system in the same time interval. With these dynamics, the
queue length of node i can be cast in differential form as

Qiðtþ�tÞ ¼ QiðtÞ � Ciðt; tþ�tÞ þ Jiðt; tþ�tÞ
�
X
j6¼i

X
l

LjiðtÞIfti
l
¼tg

þ
X
j6¼i

X
k

Lijðt� �ij;kÞIftj
k
¼t��ij;kg;

ð1Þ

where ftikg
1
k¼1 is a sequence of LB instants for the ith node,

Ciðt; tþ�tÞ is a Poisson process (with rate �di) describing
the random number of tasks completed in the interval
½t; tþ�tÞ, and �ij;k is the delay in transferring a random
load Lijðt� �ij;kÞ from node j to node i at the kth LB instant
of node j, and IA is an indicator function for the event A.

2.1 Methods for Allocating Loads in Load Balancing

At time t, a node (j, say) computes its excess load by
comparing its local load to the average overall load of the
system. More precisely, the excess load, Lexj ðtÞ, is random
and is given by

Lexj ðtÞ ¼
�
QjðtÞ �

�djPn
k¼1 �dk

Xn
l¼1

Qlðt� �jlÞ
�þ
; ð2Þ

where �jl is the communication delay from the lth to the

jth node (with the convention �ll ¼ 0), and ðxÞþ ¼4 maxðx; 0Þ:
Note that the second quantity inside the parentheses in (2) is

simply the fair share of node j from the totality of the loads in

the system. Also, we assume that Qlðt� �jlÞ ¼ 0 if t < �jl,

implying that node j assumes that node l has zero queue size

whenever the communication delay is bigger than t. This is a

more plausible way to calculate the excess load of a node in a

heterogeneous computing environment as compared to

earlier methods that did not consider the processing speed

of the nodes [7], [8], [9]. With the inclusion of the processing

speed of the nodes in (2), a slower node would have a larger

excess load than that of a faster node. Moreover, the excess

load has to be partitioned among then� 1 nodes by assigning

a larger portion to a node with smaller relative load. To this

end, we introduce two different approaches to calculate the

partitions, denoted by pij, which represent the fraction of the

excess load of node j to be sent to node i. Any such partition

should satisfy
Pn

l¼1 plj ¼ 1, where pjj ¼ 0 by definition.
The fractions pij for i 6¼ j, can be chosen as

pij ¼
1

n�2

�
1�

��1
di
Qiðt��jiÞP

l6¼j �
�1
dl
Qlðt��jlÞ

�
;
P

l6¼j Qlðt� �jlÞ > 0

�di=
P

k 6¼j �dk ; otherwise;

8<
: ð3Þ

where n � 3. Clearly, a node assigns a larger partition of its
excess load to a node with a small load relative to all other
candidate recipient nodes. Indeed, it is easy to check thatPn

l¼1 plj ¼ 1. For the special case when n ¼ 2, pij ¼ 1

486 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, APRIL 2007

whenever i 6¼ j. But observe that pij � 1
n�2 for any node i.

This means that the maximum size of the partition
decreases as the number of nodes in the system increases,
irrespective of the processing rates of the nodes. Therefore,
this partition may not be effective in a scenario where some
nodes may have very high processing rates as compared to
most of the nodes in the system. This observation prompted
us to consider a second partition, which is described below.

In the second approach, the sender node locally calculates

the excess load for each node in the system and calculates the

portions to be transferred accordingly. For convenience,

define miðjÞðtÞ ¼
4
Qiðt� �jiÞ and let LexiðjÞðtÞ be the excess load

at node i, as calculated by node j. Then, by using a rationale

similar to that used in (2), we obtain the locally computed

excess load

LexiðjÞðtÞ ¼
4
miðjÞðtÞ �

�diPn
k¼1 �dk

Xn
l¼1

mlðjÞðtÞ: ð4Þ

It is straightforward to verify that
Pn

i¼1 L
ex
iðjÞðtÞ ¼ 0 almost

surely. The idea here is that node j may transfer loads only

to those nodes that are below the average load of the

system. Therefore, the partition pij can be defined as

pij ¼
LexiðjÞðtÞ=

P
l2I j L

ex
lðjÞðtÞ; i 2 I j

0; otherwise;

�
ð5Þ

where

I j ¼4 fi : LexiðjÞðtÞ < 0g:

The above partition is most effective when delays are
negligible, miðjÞðtÞ are deterministic, and tasks are arbitra-
rily divisible. In this case, if LB is executed together by all
the nodes that do not belong to I j, each node finishes its
tasks together, thereby minimizing the overall completion
time. The proof of optimality of this partition is shown in
Appendix A.

When delays are present, the partitions defined by (3) or
(5) may not be effective in general, and the proportions pij
must be adjusted. To incorporate this adjustment, the
adjusted load to be transferred to node i must be defined as

LijðtÞ ¼ bKijpijL
ex
j ðtÞc; ð6Þ

where bxc is the greatest integer less than or equal to x,
and the parameters Kij 2 ½0; 1� constitute the user-specified
LB gains. To summarize, the jth node first compares its
load to the average overall load of the system, then
partitions its excess load among n� 1 available nodes
using the fractions Kijpij, and dispatches the integral parts
of the adjusted excess loads to other nodes.

3 THEORY AND OPTIMIZATION OF LOAD

BALANCING

In this section, we characterize the expected value of the
overall completion time for a given initial load under the
centralized one-shot LB policy for an arbitrary number of
nodes. The overall completion time is defined as the
maximum over completion times for all nodes. We use
the theory to optimize the selection of the LB instant and the
LB gain. A distributed and adaptive version of the one-shot

is also developed and used to propose a sender-initiated
DLB policy. Throughout the paper, a task is the smallest
(indivisible) unit of load and load is a collection of tasks.

3.1 Centralized One-Shot Load Balancing

The centralized one-shot LB policy is a special case of the
model described in (1) with only one LB instant
permitted (i.e., til ¼ 1, for any i and any l � 2) and no
task arrival is permitted beyond the initial load
ðJiðt; tþ�tÞ ¼ 0; t > 0Þ. The objective is to calculate the
optimal values for the LB instant tb and LB gains Kij to
minimize the average overall completion time (AOCT).
We assume that each node broadcasts its queue size at
time t ¼ 0 and, for the moment, we will assume that all
nodes execute LB together at time tb with a common gain
Kij ¼ K. This latter assumption is relaxed in Section 3.2
to a setting where nodes execute LB autonomously.

3.1.1 The Notion of Knowledge State

We begin with our formal definition of the knowledge state of
the distributed system. In a system of n nodes, each node
receives n� 1 communications, each of which carries
queue-size information of the respective nodes. Depending
upon the choice of the balancing instant tb and the
realizations of the random communication delays, any
node may or may not receive a communication by the time
LB takes place. For each node j, we assign a binary vector ij
of size n that describes the knowledge state of the node. A
“1” entry for the kth component ðk 6¼ jÞ of ij indicates that
node j has already received the communication from
node k. By definition, the jth component of ij is always
“1.” Clearly, at t ¼ 0, all the entries of ij are set to 0, with the
exception of the jth entry, which is “1.” The system
knowledge state is the concatenated vector I ¼ ði1; . . . ; inÞ.
For example, in a three-node distributed system ðn ¼ 3Þ,
state I ¼ ð100; 011; 111Þ corresponds to the configuration for
which node 1 has no knowledge of nodes 2 and 3 (i.e.,
i1 ¼ ð100Þ), while node 2 has knowledge of node 3
ði2 ¼ ð011ÞÞ, and node 3 has knowledge of both nodes 1
and 2 ði3 ¼ ð111ÞÞ. Clearly, a total of n� ðn� 1Þ binary bits
(n� 1 bits per node) are needed to describe all possible I.
An all-ones I (all-zeros I) refers to the so-called informed
knowledge state (null knowledge state). Any other I is said to be
hybrid. Intuitively, the LB resulting from an informed state
should perform best; this is verified in Section 5.

3.1.2 Regenerative Equations

The concept of regeneration1 has proved to be a powerful
tool in the analysis of complex stochastic systems [15], [16],
[17]. The idea of our approach is to define a certain special
random variable, called the regeneration time, � , defined as
the time to the first completion of a task by any node or the first
arrival of a communication, whichever comes first. The key
feature of the event f� ¼ sg is that its occurrence will
regenerate queues at time s that have similar statistical
properties and dynamics as their predecessors, but possibly
with different initial configurations, viz., different initial

DHAKAL ET AL.: DYNAMIC LOAD BALANCING IN DISTRIBUTED SYSTEMS IN THE PRESENCE OF DELAYS: A REGENERATION-THEORY... 487

1. Consider a game where a gambler starts with fortune x 2 f0; 1; 2; . . . ;
20g dollars and bids a dollar at every hand, either winning or losing a
dollar. The game is over if he hits 0 or 20 dollars. Given the outcome of first
bidding, the process of regeneration can be seen as follows: If the gambler
wins (loses), the game starts again with xþ 1 dollars (x� 1 dollars).
Therefore, at every bidding, the same game regenerates itself, but with a
different initial condition.

load distribution if the initial event is a task completion or a
different knowledge state if the initial event is an arrival of
communication. We use the notions described above to
derive integral equations describing the expected time of
load completion under a predefined LB policy of Section 2.

Consider an n-node distributed computing system and
suppose that the service time (execution time for one task)
of the ith node follows exponential distribution with
parameter (inverse of the mean) �di . Although somewhat
restrictive, this is a meaningful assumption in order to
obtain an analytically tractable result. The communication
delays between the nodes, say the ith node and the
jth node, are also assumed to follow an exponential
distribution with rates �ij. Let Wi and Xij be the random
variables representing the time of the first task completion
at the ith node and the time of arrival of communication
from node j to node i, respectively. Note that the
regeneration random variable can now be written as

� ¼ minðmin
i
ðWiÞ;min

j 6¼i
ðXijÞÞ:

From basic probability, � is also an exponential random
variable with rate � ¼

Pn
i¼1ð�di þ

P
j6¼i �ijÞ.

To see how the idea of regeneration works, consider the
example for which the initial event occurs at time s happens
to be the execution of a task at node 1. This corresponds to
the occurrence of the event f� ¼ s; � ¼W1g. In this case,
queue dynamics remains unchanged except that node 1 will
now have one task less from its initial load. Thus, upon the
occurrence of this particular realization of the initial event,
the queues will reemerge at time s with a different initial
load. A similar behavior is observed if the initial event is the
arrival of a communication from node 2 to node 1 or,
equivalently, when the event f� ¼ s; � ¼ X12g occurs. In this
case, the newly emerged queues will have a new knowledge
state, where the second component of i1 is set to “1.”

Let T I
m1;...;mn

ðtbÞ be the overall completion time given that
the balancing is executed at time tb, where the ith node has
mi � 0 tasks at time t ¼ 0 and the system knowledge state is
I at time t ¼ 0. Exploiting the properties of conditional
expectation, we can write the AOCT as

E½T I
m1;...;mn

ðtbÞ� ¼ E E T I
m1;...;mn

ðtbÞ j �
h ih i

¼
Z 1

0

E T I
m1;...;mn

ðtbÞ j � ¼ s
h i

f�ðsÞds;
ð7Þ

where f� ðtÞ is the probability density function (pdf) of � .
Splitting the above integral, we get

E T I
m1;...;mn

ðtbÞ
h i

¼
Z tb

0

E T I
m1;...;mn

ðtbÞ j � ¼ s
h i

f� ðsÞds

þ
Z 1
tb

E T I
m1;...;mn

ðtbÞ j � ¼ s
h i

f�ðsÞds:
ð8Þ

For s > tb, the occurrence of the event f� ¼ sg implies that
no change occurred in initial configuration of the queues
until tb. So, conditional on the occurrence of f� ¼ sg with
s > tb, we can imagine new queues emerging indepen-
dently at tb, which are identically distributed to the queues
that originally emerged at time 0. Therefore,

E T I
m1;...;mn

ðtbÞ j � ¼ s
h i

¼ tb þ E T I
m1;...;mn

ð0Þ
h i

as long as s > tb.

On the other hand, for s � tb, we have

E T I
m1;...;mn

ðtbÞ j � ¼ s
h i

¼
Xn
i¼1

X
j6¼i

E T I
m1;...;mn

ðtbÞ j � ¼ s; � ¼ Xij

h i
P
n
� ¼ Xij j � ¼ s

o

þ
Xn
i¼1

E T I
m1;...;mn

ðtbÞ j � ¼ s; � ¼Wi

h i
P
n
� ¼Wi j � ¼ s

o
:

Suppose that, for s � tb, the event f� ¼ s; � ¼Wig occurs. In
this case, we can think of new queues emerging at time s,
independently of the original queues, which have the same
statistics as the original queues, had node i in the original
queue had mi � 1 tasks instead of mi tasks. Thus, the queue
has reemerged, or regenerated itself, with a different initial
load and, therefore,

E T I
m1;...;mn

ðtbÞ j � ¼ s; � ¼Wi

h i
¼

sþ E T I
m1;...;mi�1...;mn

ðtb � sÞ
h i

:

Similarly, if f� ¼ s; � ¼ Xijg occurs, we obtain

E T I
m1;...;mn

ðtbÞ j � ¼ s; � ¼ Xij

h i
¼ sþ E T Iij

m1;...;mn
ðtb � sÞ

h i
;

where Iij is identical to I with the exception that the
jth component of ii is 1.

Let �I
m1;...;mn

ðtbÞ :¼ E T I
m1;...;mn

ðtbÞ
h i

. In light of the regen-

eration-event decomposition and the conditional expecta-

tions described above, the quantities �I
m1;...;mn

ðtbÞ can be

characterized by the following set of 2nðn�1Þ (one for each

initial knowledge state I) integro-difference equations:

�I
m1;...;mn

ðtbÞ ¼
Z 1
tb

�I
m1;...;mn

ð0Þ þ tb
� �

f� ðsÞ ds

þ
Z tb

0

�Xn
i¼1

sþ �I
m1��1;i ;...;mn��n;iðtb � sÞ

� �
P
n
� ¼Wi j � ¼ s

o

þ
Xn
i¼1

X
j6¼i

sþ �Iij

m1;...;mn
ðtb � sÞ

� �
P
n
� ¼ Xijj� ¼ s

o�

� f�ðsÞ ds:
ð9Þ

Here, �j;i ¼ 1 is the Kronecker delta. By direct differentia-
tion of (9), we obtain

d�I
m1;...;mn

ðtbÞ
dtb

¼
Xn
i¼1

�di�
I
m1��1;i ;...;mn��n;iðtbÞ

þ
Xn
i¼1

X
j6¼i

�ij�
Iij

m1;...;mn
ðtbÞ � ��I

m1;...;mn
ðtbÞ þ 1:

ð10Þ

Each of these equations involves a recursion in the

variable appearing in the subscripts and superscripts of

�I
m1;...;mn

ðtbÞ, which has been exploited to solve them by

writing an efficient code. We also point out that, while

solving each of these equations, we need to solve for its

corresponding initial conditions, namely, �I
m1;...;mn

ð0Þ. For

simplicity, we will provide explicit solution of (10) to

compute the optimal LB gains and the optimal LB instant

488 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, APRIL 2007

for n ¼ 2. Nonetheless, this will demonstrate the funda-

mental technique to calculate the initial condition for a

multinode system.

3.1.3 Special Case: n ¼ 2

In this case, (10) yields four equations involving �ð1k1;k21Þ
m1;m2

ðtbÞ
for ki 2 f0; 1g: In [9], a brute-force method (based on
conditional probabilities) was used to calculate �ð1k1;k21Þ

m1;m2
ð0Þ.

Now, we solve this more efficiently using the concept of
regeneration. Without loss of generality, suppose m1 > m2.
Using (2) and (6), and with p21 ¼ 1,

L21ð0Þ ¼
Kð�d2

m1��d1
m2Þ

�d1
þ�d2

j k
if ðk1; k2Þ 2 fð1; 0Þ; ð1; 1Þg

K�d2
m1

�d1
þ�d2

j k
; otherwise:

8<
:

ð11Þ

L12ð0Þ can be calculated similarly. For convenience, we
define L21 :¼ L21ð0Þ and L12 :¼ L12ð0Þ. The delay in trans-
ferring load Lij is termed as load-transfer delay from the jth
to the ith node. The load-transfer delay is assumed to follow
an exponential pdf with rate �tij , which is a function of Lij
(see Section 5.1). Suppose T1 is the waiting time at node 1
before all the tasks (including that sent from node 2) are
served. Let the cumulative distribution function (cdf) of T1

be denoted as FT1
ðr1;L12; tÞ, where r1 is the number of tasks

at node 1 just after LB is performed at time t ¼ 0, i.e.,
r1 ¼ m1 � L21, and L12 is the number of tasks in transit.
Applying the regeneration principle (for details, refer to
Appendix B), we obtain

dFT1
ðr1;L12; tÞ
dt

¼

� ð�d1
þ �t12

ÞFT1
ðr1;L12; tÞ þ �d1

FT1
ðr1 � 1;L12; tÞ

þ �t12
FT1
ðr1 þ L12; 0; tÞ:

ð12Þ

The initial conditions FT1
ð0;L12; tÞ and FT1

ðr1 þ L12; tÞ can
be further decomposed into simpler recursive equations by
invoking the regeneration theory once again. For simplicity
of notation, let FT1

ðtÞ :¼ FT1
ðr1;L12; tÞ. We can also calculate

FT2
ðtÞ using similar recursive differential equations. Now,

the overall completion time is TC ¼ maxðT1; T2Þ and recall
that its average E½TC � is �ð1k1;k21Þ

m1;m2
ð0Þ. By exploiting the

independence of T1 and T2, we obtain the explicit solution

�ð1k1;k21Þ
m1;m2

ð0Þ ¼ E maxðT1; T2Þ½ �

¼
Z 1

0

t fT1
ðtÞFT2

ðtÞ þ FT1
ðtÞfT2

ðtÞ½ � dt; ð13Þ

where fT1
ðtÞ and fT2

ðtÞ are the pdfs of T1 and T2, respectively.

3.2 A Policy for Dynamic Load Balancing

In this section, we modify the centralized one-shot
LB strategy to a distributed, adaptive setting and use it to
develop a sender-initiated DLB policy. The distributed one-
shot LB policy is different from the centralized one-shot
LB policy described in Section 3.1 in two ways: 1) It adapts
to varying system parameters such as load variability,
randomness in the channel delay, and variable runtime
processing speed of the nodes, and 2) the LB is performed
in an autonomous fashion, that is, each node selects its own
optimal LB instant and gain. (Recall that, according to the
centralized one-shot LB policy described in Section 3.1, after

the initial load assignment to nodes, all the nodes execute
LB synchronously using a common LB instant and gain.)
Each time an external load arrives at a node, the node
seeks an optimal one-shot LB action that minimizes the
load-completion time of the entire system, based on its
present load, its knowledge of the loads of other nodes, and
its knowledge of the system parameters at that time. For
clarity, we use the term external load to represent the loads
submitted to the system from some external source and not
the loads transferred from other nodes due to LB. We will
assume external load arrivals of random sizes. Each time an
external load is assumed to arrive randomly at any of the
nodes, independently of the arrivals of other external loads
to it and other nodes.

Consider a system of n distributed nodes with a given
initial load and assume that external loads arrive randomly
thereafter. We assume that nodes communicate with each
other at so-called “sync instants” on a regular basis. Upon
the arrival of each batch of external loads, the receiving
node and only the receiving node prompts itself to execute
an optimal distributed one-shot LB. Namely, it finds the
optimal LB instant and gain and executes an LB action
accordingly. Since load balancing is performed locally at the
external-load-receiving node, say, node j, the policy
depends only on its knowledge state vector ij, rather than
the system knowledge state I. Consequently, the number of
possible knowledge states become 2ðn�1Þ. Further, consider-
ing the periodic sync-exchanges between nodes, each node
in the system is continually assumed to be informed of the
states of other nodes. Hence, the only possible choice for the
knowledge state vector of each node j is ij ¼ ð1 � � � 1Þ � 1,
leading to a simpler optimization problem than the one
detailed earlier.

Suppose that an external arrival occurs at node j at time

t ¼ ta. We need to compute the optimal LB gain and optimal

LB instant for node j based on knowledge-state vector 1.

Clearly, according to the knowledge of node j at time ta, the

effective queue length of node k is mkðjÞðtaÞ. To recall,

mkðjÞðtaÞ ¼ Qkðta � �jk	 Þ, where �jk	 refers to the delay in the

most recent communication received by node j from node k.

The goal is to minimize �1
m1ðjÞ;...;mnðjÞ

ðta þ tbÞ, where tb is the

LB instant of node j measured from the time of arrival ta. By

setting ta ¼ 0, the system of queues, in the context of node j,

at time ta becomes statistically equivalent to the system of

queues at time 0 with initial load distribution mkðjÞ for all

k 2 f1; . . . ; ng. Therefore, we utilize the regeneration theory

to obtain the following difference-differential equation that

can be solved to calculate the optimal LB instant and the

optimal LB gain.

d�1
m1ðjÞ;...;mnðjÞ

ðtbÞ
dtb

¼
Xn
k¼1

�dk�
1
m1ðjÞ��1;k;...;mnðjÞ��n;kðtbÞ

� ��1
m1ðjÞ;...;mnðjÞ

ðtbÞ þ 1;

ð14Þ

where � ¼
Pn

k¼1 �dk . In addition, the optimization over tb
becomes unnecessary since node j is already in the

informed knowledge state 1. This claim will be verified in

Section 5.1, where the theoretical and experimental results

show that a node should perform LB immediately after it

gets informed. It simplifies our analysis as we can now set

DHAKAL ET AL.: DYNAMIC LOAD BALANCING IN DISTRIBUTED SYSTEMS IN THE PRESENCE OF DELAYS: A REGENERATION-THEORY... 489

tb ¼ 0 and the LB gains that minimize �1
m1ðjÞ;...;mnðjÞ

ð0Þ can be

computed using difference equations. Therefore, in practice,

the optimal LB gains are calculated online by the receiver

node j and LB is performed instantly at time ta.

The initial condition �1
m1ðjÞ;...;mnðjÞ

ð0Þ can also be solved

based on similar techniques that were used to obtain (13). But

one notable difference here is that the local LB action taken by

node j at time 0 (measured from ta) does not consider future

load arrivals at node jdue to past or future LB actions at other

nodes. In general,Lkjð0Þ, for all k 6¼ j, are calculated based on

(2), (5), and (6), while settingLjkð0Þ ¼ 0 for allk. Therefore, we

would expect to obtain a different solution for locally optimal

K than the one provided by (10).
The system parameter, namely, the average processing

time per task ��1
di

, is updated locally by each node i. At
every sync instant, the node broadcasts its current proces-
sing rate and the current queue size. The added overhead in
transferring and processing the knowledge state informa-
tion grows in proportion to the arrival rates since the sync
periods are adjusted according to the arrival rates. The
second adaptive parameter is the mean transfer delay per
task �ji, which is updated by

�
ðkÞ
ji ¼ �

�ji;k
Lji;k

� �
þ ð1� �Þ�ðk�1Þ

ji ; ð15Þ

where �ji;k is the actual delay incurred in sending Lji;k tasks

to node j at the kth successful transmission of node i and

� 2 ½0; 1� is the so-called “forgetting factor” of the previous

estimation [18]. Also, �
ð0Þ
ji is calculated empirically from

many experimental realizations of delays in transferring

tasks from node i to node j. The forgetting factor can be

adjusted dynamically in order to accommodate drastic

changes in transfer delay per task. Steps for the DLB policy

are described in Appendix C.

4 DISTRIBUTED COMPUTING SYSTEM

ARCHITECTURE

The LB policy has been implemented on a distributed
computing system to experimentally determine its perfor-
mance. The system consists of CEs that are processing jobs
in a cooperative environment. The software architecture of
the distributed system is divided in three layers: applica-
tion, load-balancing, and communication. The application
used to illustrate the LB process is matrix multiplication,
where the processing of one task is defined as the
multiplication of one row by a static matrix duplicated on
all nodes. To achieve variability in the processing speed of
the nodes, the randomness is introduced in the size of each
task (row) by independently choosing its arithmetic preci-
sion with an exponential distribution. In addition, the
application layer needs to update the queue size informa-
tion of each node. The LB policy is implemented at the load-
balancing layer with a software using a multithreaded
process, where the POSIX-threads programming standard
is used. One of the threads schedules and triggers the
LB instants at predefined or calculated amount of times. In
our implementation, when an external load arrives at a

node that is transferring load, the required LB action is
delayed until the node completes the transfer. The commu-
nication layer of each node handles the transfer of data from
(to) that node to (from) the other nodes within the system.
Each node uses the UDP transport protocol to transfer its
current state information to the other nodes, while the TCP
transport protocol is used to transfer the application data
(tasks) between the CEs.

5 RESULTS

We present the theoretical, MC simulation, and experi-
mental results on the LB policies applied to the matrix
multiplication performed on a distributed system compris-
ing two nodes that are connected over 1) the Internet and
2) the UNM EECE infrastructure-based IEEE 802.11b
WLAN. Over the Internet, we employed a 650 MHz Intel
Pentium III processor-based computer (node 1) and a
2.66 GHz Intel P4 processor-based computer (node 2). For
the WLAN setup, node 1 was replaced with a 1 GHz
Transmeta Crusoe processor-based computer.

At first, experiments were performed to estimate the
system parameters, namely, the processing speed of the
nodes ð�diÞ, the communication rate ð�ijÞ, and the load-
transfer rate per task ð�tijÞ. In Fig. 1, we show the empirical
pdfs for the communication delay over the Internet as well
as the WLAN, each of which can be approximated with an
exponential pdf. In the experiments, each information
packet had a fixed size of 30 Bytes. In Fig. 2a, we see that
the average transfer delay grows linearly with the increase
in number of tasks. Further, in Fig. 2b, the transfer delay per
task can also be approximated as an exponential random
variable. These empirical results are in agreement with the
assumptions made in Section 3.

5.1 Centralized One-Shot LB Policy

In the experiments conducted over the Internet, node 1 and
node 2 were initially assigned 100 and 60 tasks, respectively,
where each task had a mean size of 120 Bytes. In this context,
the processing rates per task of node 1 and node 2 were found
to be 0.69 and 1.85, respectively. First, fixing the LB gain at
K ¼ 1, we optimized the AOCT by triggering the LB action at
different instants. The analytical and experimental results of
this optimization are shown in Fig. 3a. The experimental
results are plotted by taking the AOCTs obtained from
20 experiments for each tb. It can be seen that the AOCT
becomes small after tb ¼ 1s. This behavior is attributed to the
communication delay imposed by the channel. The empiri-
cally calculated average communication delay from node 1 to
node 2 was 0.7 s, and from node 2 to node 1 was 0.9 s.
Therefore, any LB action performed before 0.7 s is blind in the
sense that there is no knowledge of the initial load of the other
node; both nodes exchange tasks in this case. This behavior is
evident from the experimental results shown in Fig. 3b,
which depicts the mean number of tasks transferred as a
function of tb. Further, when LB action is taken between 0.7s
and 0.9s, then node 1 will most likely have knowledge of
node 2, while node 2 would not have knowledge of node 1.
Consequently, according to (6), node 1 sends a smaller
portion of its load to node 2 while node 2 still sends the same
amount of load to node 1. This means that the slower node
(node 1) would eventually execute more tasks than the faster
node (node 2); hence, a larger AOCT is expected. On the other
hand, any LB action taken after 1 s is not advantageous

490 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, APRIL 2007

because there would be a low probability for information to
arrive. If tb is delayed for too long, the slower node ends up
computing more tasks, resulting in a larger AOCT (not
shown in the figure).

Our next goal is to minimize the AOCT over K while
keeping tb fixed. The experiments were performed with the
same initial configurations and the LB was triggered at 1 s
using different gains. The results obtained over the Internet
and WLAN are shown in Fig. 4. It is seen that the
theoretical, MC-simulation, and experimental results are
in good agreement and the optimal K is approximately 1.
This is almost equivalent to the hypothetical case when
transfer delay is absent, in which case, perfect LB is

achieved when K ¼ 1 (or when, on average, 55 tasks are
transferred from node 1 to node 2, as given by (6)). For
experiments over the Internet, the empirically calculated
average transfer delay per task was found to be 0.17 s and
the average delay to transfer 55 tasks from node 1 to node 2
is therefore approximately 9 s. On the other hand, node 2
does not finish its initial load until 32 s, which means that
there are no idle times at node 2 before the arrival of the
transfer. Therefore, any transfer incurring a delay less than
32 s is effectively equivalent, as far as node 2 is concerned,
to an instantaneous transfer. For experiments over WLAN,
the initial load at node 1 and node 2 were set to 100 and
60 tasks, respectively, while the processing rates per task

DHAKAL ET AL.: DYNAMIC LOAD BALANCING IN DISTRIBUTED SYSTEMS IN THE PRESENCE OF DELAYS: A REGENERATION-THEORY... 491

Fig. 1. Empirical pdfs of the communication delay from node 1 to node 2 obtained (a) on the Internet and (b) on the EECE WLAN.

Fig. 2. (a) Mean delay as a function of the number of tasks transferred between nodes. The stars are the actual realizations from the experiments.
(b) Empirical pdf of the transfer delay per task on the Internet under a normal work-day operation.

Fig. 3. (a) The AOCT as a function of LB instants for the experiments over the Internet. The LB gain was fixed at 1. (b) The amount of load

transferred between nodes at different LB instants.

were estimated to be 1.07 and 1.85, respectively. The
average delay to transfer 55 tasks was 5.5 s and the optimal
performance was obtained for K ¼ 1, as expected.

These results motivate us to look further into the effect of
K on the AOCT. Specifically, we consider the types of
applications that impose a mean transfer delay greater than
the mean processing time of the initial load at the receiver
node, thereby resulting in an idle time for the receiving
node. This kind of situation can arise in real applications,
like processing of satellite images, where the images are
large in size and, thus, the time to transfer them is greater
than their processing time [19]. We simulated this type of
behavior by means of our matrix-multiplication setup by
increasing the mean size (in Bytes) of each row and
simultaneously reducing the number of columns to be
multiplied in the static matrix. Clearly, a larger row size
increases the mean transfer delay per row (task) as well as
the mean processing time per task. However, by reducing
the number of columns in the static matrix, the mean
processing time per task can be reduced. By using this
approach, we were able to achieve a mean delay per task of
0.72 s while keeping the processing rates at 1.06 and
3.78 tasks per second for node 1 and node 2, respectively.
The initial loads were still 100 and 60 tasks at nodes 1 and 2,
respectively. Now, according to (6), with K ¼ 1, the load to
be transferred from node 1 is 64 tasks, producing a delay of
46 s. On the other hand, node 2, on average, finishes its
initial load around 16 s, and it would therefore have long

idle time while it is awaiting the arrival of load. This
discussion is also supported by our theoretical and
experimental results shown in Fig. 5a, where the AOCT is
at minimum when K ¼ 0:7, which holds for both experi-
mental and theoretical curves. The error between the
theoretical and experimental minima is approximately
12 percent. Finally, Fig. 5b shows the analytical optimal
gain as a function of the mean transfer delay per task.

5.2 Proposed DLB Policy

In this section, we present the results on DLB policy for the
experiments conducted over the Internet, whereby external
loads of random sizes arrive randomly in time at any node
in the distributed system. To recall, each instant an external
load arrives to a node, the receiving node (and only the
receiving node) takes a local, optimal one-shot LB action to
minimize the AOCT of the total load in the system at that
instant. As external tasks arrive with a certain rate, the total
load and the overall completion time of the total load in the
system change with time. The performance of DLB policy is
now evaluated in terms of the average completion time per
task (ACTT) corresponding to all tasks that are executed
within a specified time-window, where the completion time
of each task is defined as the sum of the processing time, the
queuing time, and the transfer time of the task.

For all the experiments, the tasks are generated inde-
pendently according to a compound (or generalized)

492 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, APRIL 2007

Fig. 4. The AOCT under different LB gains for (a) the Internet and (b) the WLAN. The LB instant was fixed at 1 s.

Fig. 5. (a) The AOCT as a function of the LB gain in presence of large transfer delay. The LB instant was fixed at 2 s. (b) The theoretical result on the

optimal LB gain for mean transfer delays per task.

Poisson process with Poisson-distributed marks [20]. More
precisely, the external loads arrive according to a Poisson
process, and the numbers of tasks at the load-arrival
instants constitute a sequence of independent and identi-
cally distributed Poisson random variables. (Recall that the
task size, in terms of Bytes per task, is also random,
according to a geometric distribution.) Note that, since the
proposed DLB policy is triggered by the arrival of tasks and
it is based on the actual realization of the task number in
each arrival, it is independent of the statistics of the number
of tasks per arrival as well as the statistics of the underlying
task-arrival process.

The experiments were conducted for three different

cases: Experiment 1: Node 1 receives, on average, 55 external

tasks at each arrival and the average interarrival time is set

to be 40 s, while no external tasks are generated at node 2.

Experiment 2: Node 2 receives, on average, 22 external tasks

at each arrival and the average interarrival time is 9 s, while

no external tasks are generated at node 1. Experiment 3:

Nodes 1 and 2 independently receive, on average, 16 and

40 external tasks, respectively, at each arrival and the

average interarrival times are 20 s and 18 s for nodes 1

and 2, respectively. The empirical estimates of the proces-

sing rates of nodes 1 and 2 were found to be 1.06 and

3.78 tasks per second, respectively. The estimate of the

average transfer delay per task, �
ðkÞ
ji , is updated after every

transfer of tasks according to (15), with �
ð0Þ
ji ¼ :85 s and

� ¼ :05.
Each experiment was conducted for a period (time-

window) of 1 hour and the ACTT corresponding to each
case is listed in Table 1. We also show the ACTT obtained
using static policies that perform LB with fixed gains of
K ¼ 0:1 and K ¼ 1 at all arrival instants. It is clear from
Table 1 that the ACTT is the minimum for the DLB policy
for all three experiments. Considering Experiment 1, note
that the average rate of arrival at node 1 is 1.37 tasks per
second since the interarrival times are independent of
arrival sizes. Therefore, the average arrival rate of node 1 is
greater than its processing rate (1.06 tasks per second), but it
is smaller than the combined processing rates of the nodes.
With LB, some portion of the arriving tasks is diverted to
node 2, which reduces the effective arrival rate at node 1
and thus avoids load accumulation. In the static LB policy
with K ¼ 0:1, node 1 keeps 90 percent of its excess load and,
hence, the effective arrival rate at node 1 remains larger
than its processing rate. Therefore, the queue-length
accumulates with every arrival, which results in a greater
queuing delay, and thus, excess ACTT. In contrast, in the

static policy with K ¼ 1, node 1 sends all of its excess load
to node 2 at every LB instant. However, each batch of
transferred load undergoes a large delay, resulting in an
increase in ACTT.

In the case of Experiment 2, the average rate of arrival at
node 2 is 2.44 tasks per second, which is smaller than the
processing speed of node 2. As a result, the static LB with
K ¼ 1 gives a reduced ACTT compared to K ¼ 0:1, mean-
ing that the increase in ACTT due to queuing delay at
node 2 for K ¼ 0:1 is greater than the increase in ACTT
caused by the transfer delay when K ¼ 1. However, the
DLB outperforms the static case of K ¼ 1 due to excessive
delay in load transfer associated to this static LB case. For
Experiment 3, the ACTTs are evidently similar under both
K ¼ 0:1 and K ¼ 1 static LB policies. This is because ACTT
is dominated by queuing delay in the K ¼ 0:1 (at the slower
node 1) case while it is dominated by transfer delay in the
K ¼ 1 case. On the other hand, the DLB policy effectively
uses the system resources, viz., the nodes and the channel,
to avoid excessive queuing delay as well as the transfer
delay.

We now look at the effect of LB policies on the system
processing rate (SPR), which is calculated as the total number
of tasks executed by the system in a certain time-window
divided by the active time of the system. The active time of
the system within a time-window is defined as the
aggregate of all times for which there is at least one task
in the system that is either being processed or being
transferred. The SPR achieved under different LB policies
are listed in Table 1. It is interesting to note that, in the case
of Experiment 1, better SPR is achieved with K ¼ 0:1 than
with K ¼ 1, despite the fact that the latter performs better in
terms of ACTT. To explain this behavior, we first need to
look at one extreme case when no LB is performed. In this
case, the SPR is always equal to �d1

independently of the
size of time window. However, as we increase the time
window, the ACTT diverges to infinity since the average
rate of arrival is bigger than the average processing rate of
node 1. The performance for the case of a weak LB action
with K ¼ 0:1 is found to be similar to the extreme case of no
LB. In the second case, when LB is performed with K ¼ 1,
the active time of the system gets dominated by times when
there are tasks in transfer while both nodes are idle.
Consequently, the number of tasks processed by the system
is less while the active time of the system may increase,
resulting in a reduced SPR. However, the LB action taken
by node 1 reduces the effective arrival rate at node 1 below
its processing rate. As a result, the ACTT of the system is
bounded.

DHAKAL ET AL.: DYNAMIC LOAD BALANCING IN DISTRIBUTED SYSTEMS IN THE PRESENCE OF DELAYS: A REGENERATION-THEORY... 493

TABLE 1
Experimental Results

In the case of DLB policy, LB gains are chosen small
enough to avoid large transfer delays but large enough to
lower the effective arrival rate at node 1. Therefore, for
Experiment 1, the DLB policy achieves the maximum SPR
and the minimum ACTT. The fact that nodes have large idle
times while there are tasks in transfer for the case of K ¼ 1
is depicted in Fig. 6. Observe that, when there is an arrival
of 70 tasks at node 1 around 2,250 s, 55 tasks are transferred
to node 2. On the other hand, node 2 has an empty queue at
the arrival instant of node 1 and, due to the transfer delay, it
must wait another 50 s to receive the tasks. Further, node 1
finishes the remaining 15 tasks and becomes idle by the
time node 2 gets the transferred load. This behavior is
repeated at all arrival instants, which are marked by arrows
in Fig. 6a. In contrast, from Fig. 6b, it can be seen that the
transfer delay mostly overlaps with the working times of
the sender node, which results in smaller idle times on both
nodes. Similar results are observed for Experiment 2.

In the case of Experiment 3, node 1 and node 2 receive
external loads at a rate of 0.8 and 2.2 tasks per second,
respectively. This means that, even if no LB is performed,
both nodes process their own tasks without being idle for a
long time. Therefore, the SPR is expected to be close to the
sum of the processing rates of the nodes. However, when
LB is performed, nodes may become idle due to the transfer
delay, resulting in smaller SPR. This is evident from our
results of Experiment 3 where the static LB policy with
K ¼ 0:1 achieves maximum SPR. On the other hand, the
DLB policy transfers the right amount of tasks at every
LB instant, so that the transfer delays plus the queuing
delays at the receiving node are smaller than the queuing
delays for those tasks at the sender node. This reduces the
ACTT but may or may not increase SPR depending on the
resulting active time.

5.3 Comparison to Other DLB Policies

Next, we will compare the performance of our DLB policy
to versions of two existing LB policies for heterogeneous
and dynamic computing, namely, the shortest-expected-
delay (SED) policy [21] and the never-queue (NQ) policy
[22], which we have adapted to our distributed-computing
setting. Suppose that external arrival of x tasks occurs at
node i at time t. Let mjðiÞðtÞ be the queue lengths of node j
as per the knowledge of node i at time t. Let ljðiÞðtÞ be the
ACTT for the batch of x external tasks if all the external
tasks join the queue of node j. The average completion time
per task (per batch of x arriving tasks) can be expressed as

ljðiÞðtÞ ¼
1

x

Xx
r¼1

mjðiÞðtÞ þ r
�dj

þ �ðkÞji x
� �

¼
mjðiÞðtÞ
�dj

þ xþ 1

2�dj
þ �ðkÞji x; ð16Þ

where �
ðkÞ
ji is the kth update of average transfer delay per

task sent from node i to node j (with �
ðkÞ
ii ¼ 0). In the SED

policy, the batch of x tasks is assigned to the node that
achieves the minimum ACTT. Therefore, the receiver node
is identified as argminjðljðiÞðtÞÞ. On the other hand, in the
NQ policy, all external loads are assigned to a node that has
an empty queue. If more than one node have an empty
queue, the SED policy is invoked among the nodes with the
empty queues to choose a receiver node. Similarly, if none
of the queues is empty, the SED policy is invoked again to
choose the receiver node among all the nodes.

We implemented the SED and the NQ policies to
perform the distributed computing experiments on our
testbed. The experiments were conducted between two
nodes connected over the Internet (keeping the same
processing speeds per task). We performed three types of
experiments for each policy: 1) node 1 receiving, on
average, 20 tasks at each arrival and the average interarrival
time set to 12 s while no external tasks were generated at
node 2, 2) node 2 receiving, on average, 25 tasks at each
arrival and the average interarrival time set to 8 s, and
3) node 1 and node 2 independently receiving, on average,
10 and 15 external tasks at each arrival and the average
interarrival times set to 8 s and 7 s, respectively. Each
experiment was conducted for a two-hour period. The
results, shown in Table 2, suggest that the ACTT achieved

494 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, APRIL 2007

Fig. 6. One realization of the queues under a static LB policy using (a) a fixed gain K ¼ 1 and (b) DLB policy.

TABLE 2
Experimental Results of ACTT

from the DLB policy is approximately half the ACTT
achieved from either the SED or NQ policies.

It should be noted that the complexity of solving (14)

grows with the number of nodes and the added computa-

tional overhead needs to be considered as well. Specifically,

when the delays imposed by the channel differ according to

paths between nodes, the LB gains Kij, for all i, can no

longer be parameterized by one value K. In such cases, it is

not computationally efficient to perform the online optimi-

zation required by the DLB policy. While this analysis is not

within the scope of this paper, we would like to suggest a

suboptimal solution for the LB gains that can easily be

obtained based on the solution for a two-node system.

Suppose that, in an n-node distributed system, node j

receives external load at time ta and an LB action needs to

be triggered instantly. Based on the knowledge of node j

about the queue lengths of all other nodes, the excess load

of node j as well as the partitions pij can easily be calculated

using the equations given in Section 2. In order to calculate

the optimal LB gain Kij, for each i 6¼ j, fix a node pair ði; jÞ
and assume that Kkj ¼ 1 for all k 6¼ i; j, meaning node j

could send full partition pkj of the excess load to all other

nodes except node i. Now, the problem reduces to finding

the optimal gain Kij for a two-node system ði; jÞ, where,

after the execution of LB, nodes i and j have loads miðjÞðtaÞ
and mjðjÞðtaÞ �

P
k6¼i;jbpkjLexj ðtaÞc � bKijpijL

ex
j ðtaÞc, respec-

tively, while bKijpijL
ex
j ðtaÞc tasks are in transit to node i.

Regeneration theory can now be utilized to obtain differ-

ence equations that can be solved easily to compute the

optimal Kij. In summary, we would need to solve at most

n� 1 independent two-dimensional difference equations,

one equation for each i 6¼ j, as compared to solving one

n-dimensional difference equation given by (14). Therefore,

in this suboptimal approach, an efficient automated code

can be used to compute the optimal gains online.

6 CONCLUSION

A continuous-time stochastic model has been formulated
for the queues’ dynamics of a distributed computing
system in the context of load balancing. The model takes
into account the randomness in delay and allows random
arrivals of external loads. At first, the model was
simplified by relaxing external arrivals of loads and an
optimization problem was formulated for minimizing the
average overall completion time. Based on the theory of
regeneration, we showed that a one-shot load balancing
policy can be optimized over the balancing gain and the
balancing instant that together minimize the average
overall completion time for a certain initial load. We also
looked at the interplay between the balancing gain and the
size of the random delay in the channel. The theoretical
predictions, MC simulations, and the experimental results
all showed that, when the average transfer delay per task is
large compared to the average processing time per task,
reduced load-balancing strength (or gain) minimizes the
average overall completion time.

The optimal one-shot load-balancing approach was then
adapted to develop a distributed anddynamic load-balancing
policy in which, at every external load arrival, the receiver

node executes load balancing autonomously. Further, the
optimal gains are calculated on-the-fly, based on the system
parameters that are adaptively updated. Thus, the dynamic-
load-balancing policy can adapt to the changing traffic
conditions in the channel as well as the change in task
processing rates induced from the type of applications. We
have shown experimentally that the proposed dynamic-load-
balancing policy minimizes the average completion time per
task while improving the system processing rate. The inter-
play between the queuing delays and the transfer delays as
well as their effects on the average completion time per task
and system processing rate were investigated. In particular,
the average completion time per task achieved under the
proposed dynamic-load-balancing policy is significantly less
than those achieved by the commonly used SED and
NQ policies. This is attributable to the fact that the dynamic-
load-balancing policy achieves a higher success, in compar-
ison to the SED and NQ policies, in reducing the likelihood of
nodes being idle while there are tasks in the system,
comprising tasks in the queues as well as those in transit.

Our future work considers the implementation and
evaluation of the proposed suboptimal solution on a
multinode system. To this end, we will consider a wireless
sensor network where the nodes are constrained in
computing power as well as power consumption.

APPENDIX A

OPTIMALITY OF PARTITIONS IN THE IDEAL CASE

By ideal case, we mean that there are no delays, the queues
are deterministic, and the tasks are arbitrarily divisible. This
effectively means that each node in the system has the exact
queue size of other nodes. Consequently, it follows that
miðjÞðtÞ ¼ QiðtÞ, I j ¼ I , and pij � pi, independently of j.
Assume further that LB actions are executed together at
time t at all the nodes that do not belong to I . Let Qf

i ðtÞ be
the total load at node i 2 I after the execution of LB. Then,

Qf
i ðtÞ ¼ QiðtÞ þ pi

X
j2I c

Lexj ðtÞ

¼ QiðtÞ þ
Lexi ðtÞP
j2I L

ex
j ðtÞ

X
j2I c

Lexj ðtÞ:
ð17Þ

Since
Pn

j¼1 L
ex
j ðtÞ ¼ 0, we have
X

j2I L
ex
j ðtÞ ¼ �

X
j2I c L

ex
j ðtÞ:

Therefore,

Qf
i ðtÞ ¼ QiðtÞ � Lexi ðtÞ ¼ �di

Pn
l¼1 QlðtÞPn
l¼1 �dl

: ð18Þ

Clearly, the overall completion time is

Pn

l¼1
QlðtÞPn

l¼1
�dl

for all the
nodes.

APPENDIX B

DERIVATION OF RENEWAL EQUATIONS

Consider the integro-difference equation given in (9). By

exploiting the fact that the minimum of independent

exponential random variables is also an exponential

random variable, we obtain f� ðtÞ ¼ �e��tuðtÞ, where � ¼Pn
i¼1ð�di þ

P
j6¼i �ijÞ: Further, Pf� ¼Wi j � ¼ sg ¼

�di
� and

Pf� ¼ Xij j � ¼ sg ¼ �ij
� . Therefore, (9) can be written as

DHAKAL ET AL.: DYNAMIC LOAD BALANCING IN DISTRIBUTED SYSTEMS IN THE PRESENCE OF DELAYS: A REGENERATION-THEORY... 495

�I
m1;...;mn

ðtbÞ ¼ �I
m1;...;mn

ð0Þ þ tb
� �Z 1

tb

�e��s ds

þ
Z tb

0

se��sds

Z tb

0

�Xn
i¼1

�di�
I
m1��1;i ;...;mn��n;iðtb � sÞ

þ
Xn
i¼1

X
j6¼i

�ij�
Iij

m1;...;mn
ðtb � sÞ

�
e��sds:

ð19Þ

Using the Leibnitz integral rule and change of variables, it is
easy to show that

d

dtb

Z tb

0

�di�
I
m1��1;i ;...;mn��n;iðtb � sÞe

��sds ¼

� �
Z tb

0

�di�
I
m1��1;i ;...;mn��n;iðtb � sÞe

��sds

þ �di�I
m1��1;i ;...;mn��n;iðtbÞ:

ð20Þ

Differentiating (19) with tb, using identities similar to (20)
and arranging the terms, we get (10).

Next, we present the integro-difference equations to
characterize FT1

ðr1;L12; tÞ, which will lead to (12) after
differentiation with respect to t. Let T1ðr1;L12Þ � T1 be the
total completion time of node 1, and we are interested in
calculating FT1

ðr1;L12; tÞ ¼ PfT1ðr1;L12Þ � tg. With LB at
time t ¼ 0, the regeneration event at node 1 can either be the
arrival of L12 load sent by node 2 or the execution of a task
by node 1 (if r1 > 0). If the regeneration event at time s 2
½0; t� is the arrival of L12 load, using the memoryless
property of exponential r.v., we obtain a new queue at
node 1 having r1 þ L12 load with exponential service time
for each task, while there is no load in transit. Therefore, we
need to calculate PfT1ðr1 þ L12; 0Þ � t� sg. Instead, if the
regeneration event is the task execution at node 1, we need
to look at PfT1ðr1 � 1;L12Þ � t� sg. Therefore,

P T1ðr1;L12Þ � tf g ¼
Z t

0

f�ðsÞ
�
P T1ðr1 � 1;L12Þ � t� sf g�d1

�

þ P T1ðr1 þ L12; 0Þ � t� sf g�t21

�

�
ds;

where � ¼ �d1
þ �t21

. We can solve for PfT2ðr2;L21Þ � tg
similarly.

APPENDIX C

DETAILED ALGORITHM FOR DYNAMIC LOAD

BALANCING

For an n-node distributed system, we specify the “sync”
periods for each node by �j, j ¼ 1; . . . ; n. These are the
periods, for each node, at which each node broadcasts its
queue length and processing speed to other nodes. (In our
experiments, we used a common sync period of 1 s.)

Algorithm:

8t � 0, at every node j, the DLB algorithm is:

if modðt; �jÞ ¼ 0 then

Broadcast current queue size and current processing rate

end if

if “sync” is received then

Update queue size and processing rate of the sender node

end if

if external-load is received, say at time t ¼ ta then

Calculate local excess load from (2), partitions from (3) or

(5), and optimal Kij from (14)

Perform LB only by node j in accordance to (6)

Update �kij using (15) after each load transmission

numbered by k

end if

ACKNOWLEDGMENTS

This work was supported by the US National Science

Foundation (NSF) under Award ANI-0312611 and in part

by the US Air Force Research Laboratory, NSF Grants

CAREER CCF-0611589, ACI-00-93039, NSF DBI-0420513,

ITR ACI-00-81404, ITR EIA-01-21377, Biocomplexity DEB-

01-20709, ITR EF/BIO 03-31654, and Defense Advanced

Research Projects Agency Contract NBCH30390004.

REFERENCES

[1] http://www.planetlab.org, 2004.
[2] Z. Lan, V.E. Taylor, and G. Bryan, “Dynamic Load Balancing for

Adaptive Mesh Refinement Application,” Proc. Int’l Conf. Parallel
Processing (ICPP), 2001.

[3] T.L. Casavant and J.G. Kuhl, “A Taxonomy of Scheduling in
General-Purpose Distributed Computing Systems,” IEEE Trans.
Software Eng., vol. 14, pp. 141-154, Feb. 1988.

[4] G. Cybenko, “Dynamic Load Balancing for Distributed Memory
Multiprocessors,” J. Parallel and Distributed Computing, vol. 7,
pp. 279-301, Oct. 1989.

[5] C. Hui and S.T. Chanson, “Hydrodynamic Load Balancing,” IEEE
Trans. Parallel and Distributed Systems, vol. 10, no. 11, pp. 1118-
1137, Nov. 1999.

[6] B.W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for
Partitioning Graphs,” The Bell System Technical J., vol. 49, pp. 291-
307, Feb. 1970.

[7] M.M. Hayat, S. Dhakal, C.T. Abdallah, J.D. Birdwell, and J.
Chiasson, “Dynamic Time Delay Models for Load Balancing.
Part II: Stochastic Analysis of the Effect of Delay Uncertainty,”
Advances in Time Delay Systems, vol. 38, pp. 355-368, Springer-
Verlag, 2004.

[8] S. Dhakal, B.S. Paskaleva, M.M. Hayat, E. Schamiloglu, and C.T.
Abdallah, “Dynamical Discrete-Time Load Balancing in Distrib-
uted Systems in the Presence of Time Delays,” Proc. IEEE Conf.
Decision and Controls (CDC ’03), pp. 5128-5134, Dec. 2003.

[9] S. Dhakal, M.M. Hayat, M. Elyas, J. Ghanem, and C.T. Abdallah,
“Load Balancing in Distributed Computing over Wireless LAN:
Effects of Network Delay,” Proc. IEEE Wireless Comm. and
Networking Conf. (WCNC ’05), Mar. 2005.

[10] D.L. Eager, E.D. Lazowska, and J. Zahorjan, “Adaptive Load
Sharing in Homogeneous Distributed Systems,” IEEE Trans.
Software Eng., vol. 12, no. 5, pp. 662-675, May 1986.

[11] J. Liu and V.A. Saletore, “Self-Scheduling on Distributed-Memory
Machines,” Proc. ACM Int’l Conf. Supercomputing, pp. 814-823, Nov.
1993.

[12] J.M. Bahi,C.Vivier,and R.Couturier,“DynamicLoadBalancingand
Efficient Load Estimators for Asynchronous Iterative Algorithms,”
IEEE Trans. Parallel and Distributed Systems, vol. 16, no. 4, Apr. 2005.

[13] A. Cortes, A. Ripoll, M. Senar, and E. Luque, “Performance
Comparison of Dynamic Load-Balancing Strategies for Distribu-
ted Computing,” Proc. 32nd Hawaii Conf. System Sciences, vol. 8,
p. 8041, 1999.

[14] M. Trehel, C. Balayer, and A. Alloui, “Modeling Load Balancing
Inside Groups Using Queuing Theory,” Proc. 10th Int’l Conf.
Parallel and Distributed Computing System, Oct. 1997.

[15] C. Knessly and C. Tiery, “Two Tandem Queues with General
Renewal Input I: Diffusion Approximation and Integral Repre-
sentation,” SIAM J. Applied Math., vol. 59, pp. 1917-1959, 1999.

[16] F. Bacelli and P. Bremaud, Elements of Queuing Theory: Palm-
Martingale Calculus and Stochastic Recurrence. Springer-Verlag,
1994.

496 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, APRIL 2007

[17] D.J. Daley and D. Vere-Jones, An Introduction to the Theory of Point
Processes. Springer-Verlag, 1988.

[18] V. Jacobson, “Congestion Avoidance and Control,” Proc. ACM
SIGCOMM, Aug. 1988.

[19] G. Petrie, G. Fann, E. Jurrus, B. Moon, K. Perrine, C. Dippold, and
D. Jones, “A Distributed Computing Approach for Remote
Sensing Data,” Proc. 34th Symp. Interface, pp. 477-489, 2002.

[20] D.L. Snyder and M.I. Miller, Random Point Processes in Time and
Space. 1991.

[21] S. Shenker and A. Weinrib, “The Optimal Control of Hetero-
geneous Queuing Systems: A Paradigm for Load Sharing and
Routing,” IEEE Trans. Computers, vol. 38, no. 12, pp. 1724-1735,
Dec. 1989.

[22] K. Kabalan, W. Smari, and J. Hakimian, “Adaptive Load Sharing
in Heterogeneous Systems: Policies, Modifications, and Simula-
tion,” Int’l J. Simulation Systems Science and Technology, vol. 3,
nos. 1-2, pp. 89-100, June 2002.

Sagar Dhakal received the bachelor of engineer-
ing degree in electrical and electronics engineer-
ing in May 2001 from Birla Institute of Technology,
India. He received the MS and PhD degrees in
electrical engineering, respectively, in December
2003 and December 2006, from the University of
New Mexico. From August 2001 to July 2002, he
served as an instructor in the Electrical and
Electronics Engineering Department at Kathman-
du University, Nepal. He is currently working at

NORTEL Networks, Richardson, Texas. His research interests include
queuing theoretic modeling and stochastic optimization of distributed
systems and wireless communication systems.

Majeed M. Hayat (S’89-M’92-SM’00) received
the BS degree (summa cum laude) in 1985 in
electrical engineering from the University of the
Pacific, Stockton, California. He received the MS
and PhD degrees in electrical and computer
engineering, respectively, in 1988 and 1992,
from the University of Wisconsin-Madison. From
1993 to 1996, he worked at the University of
Wisconsin-Madison as a research associate and
co-principal investigator of a project on statistical

minefield modeling and detection, which was funded by the US Office of
Naval Research. In 1996, he joined the faculty of the Electro-Optics
Graduate Program and the Department of Electrical and Computer
Engineering at the University of Dayton. He is currently an associate
professor in the Department of Electrical and Computer Engineering at
the University of New Mexico. His research contributions cover a broad
range of topics in statistical communication theory, and signal/image
processing, as well as applied probability theory and stochastic
processes. Some of his research areas include queuing theory for
networks, noise in avalanche photodiodes, equalization in optical
receivers, spatial-noise-reduction strategies for focal-pane arrays, and
spectral imaging. He is a recipient of a 1998 US National Science
Foundation Early Faculty Career Award. He is a senior member of the
IEEE and a member of SPIE and OSA. Dr. Hayat is an associate editor
of Optics Express and an associate editor member of the conference
editiorial board of the IEEE Control Systems Society.

Jorge E. Pezoa received the bachelor of
engineering degree in electronics and the MSc
degree in electrical engineering with honors in
1999 and 2003, respectively, from the University
of Concepción, Chile. From 2003-2004, he
served as an instructor in the Electrical En-
gineering Department at the University of Con-
cepción. Currently, he is working toward the
PhD degree in the areas of communications and
signal processing.

Cundong Yang is a graduate student in the
Electrical and Computer Engineering Depart-
ment at the University of New Mexico, and works
as a software engineer at Teledex LLC, San
Jose, California. His areas of interest are
wireless networks, VoIP, and optimization of
parallel algorithms. From 2002-2004, Cundong
worked as a software engineer in Huawei
Technologies, Shenzhen, China on the R&D of
radio resource management algorithms for

WCDMA communication system.

David A. Bader received the PhD degree in
1996 from the University of Maryland and was
awarded a US National Science Foundation
(NSF) Postdoctoral Research Associateship in
Experimental Computer Science. From 1998-
2005, He served on the faculty at the University
of New Mexico. He is an associate professor in
computational science and engineering, a divi-
sion within the College of Computing, at the
Georgia Institute of Technology. He is an NSF

CAREER Award recipient, an investigator on several NSF awards, a
distinguished speaker in the IEEE Computer Society Distinguished
Visitors Program, and a member of the IBM PERCS team for the
DARPA High Productivity Computing Systems program. Dr. Bader
serves on the steering committees of the IPDPS and HiPC conferences
and was the general cochair for IPDPS (2004-2005) and vice general
chair for HiPC (2002-2004). He has chaired several major conference
program committees: program chair for HiPC 2005, program vice-chair
for IPDPS 2006, and program vice-chair for ICPP 2006. He has served
on numerous conference program committees related to parallel
processing and computational science and engineering and is an
associate editor for several high-impact publications, including the IEEE
Transactions on Parallel and Distributed Systems (TPDS), the ACM
Journal of Experimental Algorithmics (JEA), IEEE DS Online, and
Parallel Computing. He is a senior member of the IEEE and the
IEEE Computer Society and a member of the ACM. Dr. Bader has been
a pioneer in the field of high-performance computing for problems in
bioinformatics and computational genomics. He has cochaired a series
of meetings, the IEEE International Workshop on High-Performance
Computational Biology (HiCOMB), written several book chapters, and
coedited special issues of the Journal of Parallel and Distributed
Computing (JPDC) and IEEE TPDS on high-performance computational
biology. He has coauthored more than 75 articles in peer-reviewed
journals and conferences, and his main areas of research are in parallel
algorithms, combinatorial optimization, and computational biology and
genomics.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

DHAKAL ET AL.: DYNAMIC LOAD BALANCING IN DISTRIBUTED SYSTEMS IN THE PRESENCE OF DELAYS: A REGENERATION-THEORY... 497

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

