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Abstract

In this work, we propose an application composition
system (ACS) that allows design-time exploration and au-
tomatic run-time optimizations so that we relieve applica-
tion programmers and compiler writers from the challeng-
ing task of optimizing the computation in order to achieve
high performance. Our new framework, called “Design
Optimizer for Scientific Applications” (DOSA), allows the
programmer or compiler writer to explore alternative de-
signs and optimize for speed (or power) at design-time and
use its run-time optimizer as an automatic ACS. The ACS
constructs an efficient application that dynamically adapts
to changes in the underlying execution environment based
on the kernel model, architecture, system features, avail-
able resources, and performance feedback. The run-time
system is a portable interface that enables dynamic appli-
cation optimization by interfacing with the output of DOSA.
It thus provides an application composition system that de-
termines suitable components and performs continuous per-
formance optimizations. We focus on utilizing advanced ar-
chitectural features and memory-centric optimizations that
reduce the I/O complexity, cache pollution, and processor-
memory traffic, in order to achieve high performance. The
design-time effort uses a computer-aided design space ex-
ploration that provides a user-friendly graphical modeling
environment, high-level performance estimation and profil-
ing, and the ability to integrate low-level simulators suitable
for HPC architectures.

1. Introduction

High-performance computing (HPC) systems are taking
a revolutionary step forward with complex architectural de-
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signs that require application programmers and compiler
writers to perform the challenging task of optimizing the
computation in order to achieve high performance. In
the past decade, caches and high-speed networks have be-
come ubiquitous features of HPC systems, canonically rep-
resented as clusters of multiprocessor workstations. To ef-
ficiently run application codes on these systems, the user
must carefully lay out data and partition work so as to re-
duce communication, maintain a load balance, and expose
locality for better cache performance. Realizing the gap
between processor and memory performance, several HPC
vendors, such as IBM and Cray, are incorporating into their
next-generation systems innovative architectural features
that alleviate this memory wall. These new architectural
features include hardware accelerators (e.g., reconfigurable
logic such as FPGAs, SIMD/vector processing units such
as in the IBM Cell Broadband Engine processor, and graph-
ics processing units (GPUs)), adaptable general-purpose
processors, run-time performance advisors, capabilities for
processing in the memory subsystem, and power optimiza-
tions. With these innovations, the multidimensional design
space for optimizing applications is huge. Software must be
sensitive to data layout, cache parameters, and data reuse, as
well as dynamically changing resources, for highest perfor-
mance.

Until recently, design-time analysis and optimizing com-
pilers were sufficient to achieve high-performance on many
HPC systems because they often appeared as static and ho-
mogeneous resources with a simple, well-understood model
of execution at each processor. Today, techniques for load-
balancing and job migration, readily-accessible grid com-
puting, complex reconfigurable architectures, and adaptive
processors, necessitate the requirement for run-time opti-
mizations that depend upon the dynamic nature of the com-
putation and resources. At run-time, an application may
have different node architectures available to its running
processes because it is executing in a distributed grid en-
vironment, and each component may require its own spe-



cific optimization to make use of the unique features avail-
able to it. HPC systems may have adaptable resources such
as processors, and the run-time system gains new respon-
sibility for requesting the appropriate configuration for the
workload. Also, in a large, complex computing system, the
available resources may change during iterations, and the
run-time system must monitor, select, and tune new compo-
nents to maintain or increase performance. Our goal is to
design a dynamic application composition system that pro-
vides both high-performance computing and increased pro-
ductivity. In this work, we discuss the Design Optimizer for
Scientific Applications (DOSA), a semi-automatic frame-
work for software optimization. DOSA will allow rapid,
high-level performance estimation and detailed low-level
simulation.

2. DOSA Framework

2.1. Framework Overview

In this paper we use the following naming conventions.
In the framework, applications will be represented in terms
of the kernels of which they are comprised. Kernels, in turn,
are made up of tasks and are represented as task flow graphs.
Tasks correspond to the components in the component li-
brary. For example, molecular dynamics (MD) simulation
is an application. One kernel of MD simulation is non-
bonded force calculation. One task of non-bonded force
calculation is the transmission of the molecule-position in-
formation to the appropriate processors. The component
library would provide various components for carrying out
this task, such as one component with which the transmis-
sion would be carried out through traditional message pass-
ing and another component with which the transmission
would be carried out through cache injection. Throughout
the paper, we use the term “performance models” to de-
scribe the models that are used within and produced by our
DOSA framework. When describing theoretical models,
such as the I/O complexity model, we use the term “model.”

The design framework (DOSA) allows various optimiza-
tions to be explored based on the architectural features of
the HPC platforms. In the DOSA framework, at design
time, the designer models the kernels and architectures of
her/his application. This modeling process includes perfor-
mance estimation, simulation, identification of bottlenecks,
and optimization. Through this modeling process, the de-
signer identifies sets of components in the component li-
brary that can be utilized for the tasks in the kernels of
her/his application. We will implement a high-level es-
timator that will estimate bandwidth utilization, memory
activity, I/O complexity, and performance. Our approach
is hierarchical: the framework will be used to perform a
coarse exploration to identify potential optimizations, fol-
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Figure 1. The run-time optimizer and run-time
system compose applications dynamically
based on system performance and available
resources.

lowed by detailed simulations to validate the performance
improvements of the optimizations. The detailed simula-
tions can also expose additional optimizations. This design-
time exploration is manual. Thus our framework uses a
semi-automatic design space exploration tool. The frame-
work outputs a representation of the kernel, the performance
models, and a run-time optimizer that can use these for ef-
ficient execution of the kernel (see Fig. 1).

The run-time system is a portable, high-level advisor that
interfaces between the underlying execution system (oper-
ating system and architecture) and the application. During
a kernel’s execution, the execution system supplies perfor-
mance information that is used by the run-time system to
determine if the run-time optimizer should be called and
to update the values of the parameters in the performance
models. The run-time optimizer uses the updated perfor-
mance models to select appropriate component(s) from the
set determined during design-time optimization for execut-
ing the current task. Together, the run-time system and run-
time optimizer make the run-time optimization decisions as
a dynamic application composition system.

2.2. Framework Implementation

The Design Optimizer for Scientific Applications
(DOSA) framework will provide a user-friendly graphi-
cal modeling environment for design-time optimization and
the identification of components for run-time optimizations.
To this end, the framework will enable high-level perfor-
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Figure 2. Design of the DOSA framework

mance estimation and profiling, integrate low-level simula-
tors, and facilitate semi-automatic design space exploration.
For each kernel, there are three outputs from the design pro-
cess: a representation of the kernel, the performance models
that describe the kernel’s performance given under various
conditions, and a run-time optimizer that handles the selec-
tion of components at run time.

We will use the Model Integrated Computing (MIC)
methodology to create the design framework [11, 14]. The
MIC approach advocates the extension of the scope and
usage of models such that they form the “backbone” of a
model-integrated system design process [7, 8]. In this de-
sign process, a model captures the information relevant to
the system to be developed, represents the designer’s un-
derstanding of the entire system, and specifies dependen-
cies and constraints among the different components of the
system.

The Generic Modeling Environment (GME) is a config-
urable graphical tool suite supporting MIC [5, 9]. GME
allows the designer to create domain-specific models [14].
A metamodel (modeling paradigm) is a formal description
of model construction semantics. Once the metamodel is
specified by the user, it can be used to configure GME itself
to present a modeling environment specific to the problem
domain. MIC enables design reuse through the models. For
example, several kernels can be optimized for the same ad-
vanced architecture, each using the same model of the sys-
tem. We will use the model database supported by GME to
save and reuse models.

Model interpreters are software components that trans-
late the information captured in the models to drive inte-
grated tools that estimate the performance (latency, energy,
throughput, etc.) of a system. Model interpreters can also
be configured to automatically translate the models into ex-
ecutable specifications. Feedback interpreters are software
modules that analyze the output generated by the integrated
tools and update the models. These interpreters are essen-

tially automation tools that, once written, can be used for
several system design problems. GME supports a set of
well-defined C++ APIs that provide bidirectional access to
the models [5]. Both model and feedback interpreters are
developed using these APIs.

2.3. Design Flow for Design-Time Opti-
mization

The design flow consists of two phases: configuration
and exploration. In the configuration phase, the framework
is configured based on the target kernel and the architecture.
The kernel developer (designer) initially defines a structural
model of the target architecture. The structural model cap-
tures the details of the architecture. The designer uses ap-
propriate micro-benchmarks and model and feedback inter-
preters to automatically perform cycle-accurate architecture
simulation using integrated simulators (such as Mambo or
SimpleScalar) to estimate the values of these parameters
and update the model. We also plan to create a library of ar-
chitecture models because it is likely that a designer would
optimize several kernels for the same target architecture. If
architecture models are available for the target architecture,
then the designer can choose to skip the configuration phase
and use the library instead. Along with the architecture,
the designer also models the kernel. Kernel modeling in-
volves describing the kernel as a task graph and specifying
the components that implement these tasks. We will create
a library of common components, such as matrix multipli-
cation, FFT, and graph operators [3, 4]. If the desired com-
ponent is not in the library, the designer can develop it from
within the framework. We will write model interpreters that
will generate executable specifications from a task graph.
Once a kernel is modeled, the designer uses the integrated
simulators to automatically generate a memory access trace
for each code segment and associate it with the model.

In the exploration phase, the performance models (ar-
chitecture and kernel models) defined in the configuration
phase are used to perform design space exploration. Ini-
tially, the designer uses the high-level performance estima-
tor to rapidly estimate the performance of the design and
generate a profile of memory access. Based on the estimate
and the profile, the designer identifies appropriate optimiza-
tions such as I/O complexity optimizations, data layout op-
timizations and data remapping optimizations, and modifies
the models to include components supporting these types of
optimizations. For example, in the case of in-memory pro-
cessing for data remapping, the kernel model will be modi-
fied to indicate that a component for this type of processing
is available and the estimator will account for concurrent
in-memory processing during performance estimation and
also suitably modify the memory access profile to reflect
the remapping. The designer also can perform automatic
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Figure 3. Design flow using the DOSA framework

low-level simulation to verify design decisions. Note that
the low-level simulation is optional. By using the high-
level models and the estimations, the design time can be
reduced significantly. However, low-level simulations can
provide additional insights with respect to optimizations to
be considered. The designer continues to perform estima-
tion, optimization, and low-level simulation until desired
performance is reached or optimal processor-memory traf-
fic is achieved. Similarly, for memory energy optimizations,
the designer can identify data placement schemes (blocking,
tiling, etc.) and memory/bank activation schedules and use
the performance estimator to evaluate reduction in energy
dissipation. Simplifying assumptions made to enable rapid
estimation may induce errors in the estimates. Therefore,
the DOSA framework will support specification of multi-
ple candidate designs with estimated performance close to
the desired performance. The framework will then output a
representation of the kernel, the performance models, and a
run-time optimizer that will use the representation and the
performance models for efficient execution of the kernel.

2.4. Run-Time System Implementation

The run-time system automates the component selection
process rather than requiring manual intervention from the
user and hence, increases the productivity for efficiently us-
ing available resources. The design-time effort produces a
set of components from the component library for the tasks
in each kernel. These components are targeted towards dif-
ferent optimization points and architectures. Together with
the run-time optimizer output from the DOSA framework,
the run-time system provides a dynamic application com-
position system that selects from these components using
the performance models. The run-time optimizer is hooked
into the computation when the kernel executes. The first

time the kernel executes, the run-time optimizer makes an
initial selection from the optimal designs using the design-
time analysis, performance models, execution-system in-
formation, and knowledge obtained from prior runs. For
each task in the kernel, the run-time optimizer selects the
component(s) from the component library, requests any sys-
tem configurations and adaptations required by the com-
ponent(s), and sets up its baseline for tracking the compo-
nent’s performance. At this point, the component selection
is made, and the run-time optimizer calls the component.
When the component returns, the run-time system logs its
resource usage. On the next call for this kernel, the run-
time system evaluates whether the system performed as the
performance models suggest (or within the power budget),
and takes corrective action, if needed. For instance, it may
tune cache parameters within the component, select a dif-
ferent component (perhaps from other leading components
for the task), and/or request a processor reconfiguration or
system adaptation. Once the performance is within toler-
ance, the run-time system may back-off from its manage-
rial role, only checking occasionally that the achieved ker-
nel performance is still within an acceptable range. When
an application finishes its execution, the run-time forensics
and learned configurations, performance, and behavior, are
incorporated as knowledge into the component library so
that future runs may benefit from these optimizations.

2.5 Performance Optimizations

We divide the optimizations facilitated by the DOSA
framework into two classes: design-time optimizations and
run-time optimizations.

Design-Time Optimizations

1. Optimizations for Latency.
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(a) I/O complexity optimizations. We will extend
the standard, theoretical I/O complexity model
to incorporate multi-level memory hierarchies of
the proposed HPC architectures. This will allow
us to derive communication complexity bounds
and exploit these bounds in software develop-
ment using the framework.

(b) Data layout optimizations. In many HPC ap-
plications, sophisticated data layouts in mem-
ory can significantly improve performance over
naı̈ve data layouts. For instance, techniques such
as blocking, tiling, and linked-list to array con-
version can be applied. Data locality and, conse-
quently, cache utilization are improved.

2. Optimizations for Memory Energy. The problem of
optimizing for memory energy dissipation reduces to
structuring the computations such that data accesses
are localized to individual memory banks and defining
an activation schedule to put unused memory banks in
a sleep state. We will study optimizations for the ker-
nels, making the assumption that they access a multi-
level memory hierarchy with an in-memory processor
that is capable of changing the data layout dynami-
cally.

Run-Time Optimizations These optimizations are per-
formed dynamically by the run-time system and the run-
time optimizer that is output from the framework, using the
performance models and the representation of the kernel.

1. Data Remapping Optimizations. Remapping be-
tween computation stages can significantly reduce
processor-memory traffic and lower the consumed
memory bandwidth—a critical resource limitation in
many important applications. Data stored in memory
can be efficiently remapped using in-memory process-
ing features of HPC systems. The DOSA will choose
components that perform the appropriate amount of
remapping for the system and its current performance.

2. Optimizations for System Throughput and Overall
Energy Dissipation. System throughput is a metric
by which to evaluate the overall system performance
in executing multiple instances of a kernel. We model
system throughput as a flow optimization problem with
costs associated with computation and communica-
tion, as well as memory accesses. In addition, we will
represent the energy dissipation as another variable.

3 Representative Applications to be Studied

Three representative applications will be used as exam-
ples in investigating various dynamic optimizations and use

on our framework demonstration. Our component library
will incorporate the design-time optimizations, and the run-
time optimizer will compose applications from these critical
design points.

A. Molecular dynamics (MD) is a technique for the
simulation of the interactions between the molecules in a
system over time. It is used in a wide variety of fields, in-
cluding nanotechnology and biology [10, 15]. In the largest
simulations, there are over a billion molecules. The sim-
ulations are extremely time-consuming: to simulate a mi-
crosecond of time can take a week of compute time. As
a result, there has been much work done toward develop-
ing scalable versions of MD to be executed on tightly cou-
pled parallel machines and on cluster machines [2, 6, 12].
Even so, the most time-consuming part of the simulation
is the non-bonded force calculation [1]. We, therefore,
propose two memory-centric optimizations for non-bonded
force calculation in MD simulations.

In MD simulations, the simulation space is broken into
cells which are distributed among the processors of a paral-
lel machine. Initially, molecules are randomly placed into
the cells. The mapping between cells and molecules is kept
in a linked list. During non-bonded force calculation, the
positions of some molecules on each processor must be
transmitted to other processors. We envision an optimiza-
tion in which the in-memory processor uses cache injection
to communicate these positions to the required processors,
thereby reducing the amount of communication that must
be carried out by each processor and ensuring that the data
needed by each receiving processor is already in the cache.

In non-bonded force calculation, the processor must tra-
verse the linked list to calculate the molecule interactions.
Since the placement of molecules in simulation space is ran-
dom, this linked list traversal leads to truly random mem-
ory access patterns. This randomness leads to poor cache
performance. Therefore, we propose data remapping as an
optimization for MD. An in-memory processor acts as a
data remapping engine, traversing the linked cell list and
reordering it such that during non-bonded force calculation,
the data is accessed in a sequential manner.

B. Dynamic programming is a general problem-solving
technique used widely in various fields such as control the-
ory, operations research, cryptanalysis and security, and bi-
ology.

We select the computational biology problem of opti-
mal local pairwise alignment using nucleotide and amino
acid sequences for our compact application of this kernel.
Pairwise alignment is used in similarity searching where
uncharacterized but sequenced “query” genes are scored
against vast databases of characterized sequences. Dynamic
programming approaches give optimal alignments for this
problem, such as the quadratic-time Smith-Waterman [13]
algorithm. In addition to the data layout optimization, an-
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other optimization we consider is performing the computa-
tion directly within the memory system. In this case, the
core processor could issue a work parcel to the in-memory
processors describing the recurrence in the dynamic pro-
gramming algorithm, and the in-memory processors would
easily handle the natural flow of computations with respect
to the data dependencies.

C. Graph theoretic. We focus on sparse, irregular graph
problems that are notoriously hard to solve efficiently in
part because of a lack of spatial and temporal locality. Sup-
pose a sparse graph G〈V, E〉 is given. V is the set of vertices
and E is the set of edges. Vertex v ∈ V has multiple char-
acteristics f1(v), ... fi(v). Edge (u, v) ∈ E has multiple
characteristics g1(u, v), ..., gj(u, v). Finding paths: Given
a pair of vertices x and y, find all paths such that the num-
ber of vertices in the path is less than a specified number
min nodes in path and the degree of all nodes in the path
is less than a specified degree min degree Characteristic-
based graph matching: Given a graph representation of
an interaction pattern P 〈Vp, Ep〉 where each vertex v ∈ Vp

and each edge (u, v) ∈ Ep has certain (possibly mul-
tiple) specific characteristics, find a sub-graph G′ in G
such that a certain similarity metric s(G′, P ) is maximized.
Characteristic-based graph partitioning: Find a partition
〈V1, V2, · · · , Vk〉 of V so that vertices within each subset Vi

is reasonably clustered and any two sets Vi and Vj are rea-
sonably separated.

4. Concluding Remarks

The goal of our research is to develop a framework that
supports design-time optimizations of applications in high-
performance computing and whose output can then be used
to perform further optimizations at run-time. For design-
time optimization, we will study HPC architectures and
define a hierarchical performance model for the memory
subsystem associated with these architectures. To support
this modeling, we will develop the DOSA framework. Do-
ing so includes creating a metamodel based on the mem-
ory performance model to configure GME [5] and devel-
oping a library of components for common tasks in high-
performance computing. Using the configured GME, we
will define detailed models of several HPC architectures.
We will define a semi-automatic design flow using the
framework to optimize kernels using HPC architectures. To
illustrate our ideas, we plan to use kernels from the domains
of molecular dynamics, gene sequence analysis, and graph
theory.
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[6] L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gur-
soy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan,
and K. Schulten. NAMD2: Greater scalability for paral-
lel molecular dynamics. Journal of Computational Physics,
151:283–312, 1999.

[7] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-
integrated development of embedded software. Proceedings
of the IEEE, 91(1):145–164, January 2003.

[8] A. Ledeczi, J. Davis, S. Neema, and A. Agrawal. Model-
ing methodology for integrated simulation of embedded sys-
tems. ACM Transactions on Modeling and Computer Simu-
lation, 13(1):82–103, January 2003.

[9] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett,
C. Thomason IV, G. Nordstrom, J. Sprinkle, and P. Volgyesi.
The generic modeling environment. In Proc. of Workshop on
Intelligent Signal Processing, 2001.

[10] Z. Mao, A. Garg, and S. B. Sinnott. Molecular dynam-
ics simulations of the filling and decorating of carbon nan-
otubules. Nanotechnology, 10(3):273–277, 1999.

[11] Model integrated computing. http://www.isis.
vanderbilt.edu/research/mic.html.

[12] A. Nakano, R. K. Kalia, P. Vashishta, T. J. Campbell,
S. Ogata, F. Shimojo, and S. Saini. Scalable atomistic sim-
ulation algorithms for materials research. In Proceedings of
the 2001 ACM/IEEE Conference on Supercomputing, New
York, November 2001. ACM Press.

[13] T. F. Smith and M. S. Waterman. Identification of common
molecular subsequences. J. Molecular Biology, 147:195–
197, 1981.

[14] J. Sztipanovits and G. Karsai. Model-integrated computing.
IEEE Computer Magazine, 30(4):110–111, April 1999.

[15] P. Tang and Y. Xu. Large-scale molecular dynamics sim-
ulations of general anesthetic effects on the ion channel in
the fully hydrated membrane: The implication of molecular
mechanisms of general anesthesia. Proceedings of the Na-
tional Academy of Sciences of the United States of America,
99(25):16035–16040, December 2002.

6


