
1 Introduction

Protein interactions play an important role in understand-
ing the functional and organizational principles of biologi-
cal processes. One of the key goals of functional genomics
is to identify the complete protein interaction network of an
organism, termed theinteractome. In recent years, high-
throughput experiments have been performed to determine
the interactomes of model eukaryotes such as yeast [31, 30],
worm [18] and ßy [10]. These protein-interaction datasets,
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mainly derived from the yeast two-hybrid (Y2H) assay, pro-
vide evidence that global topological structure and networks
features relate to known biological properties [14]. This has
motivated several research groups to work on a global map
of the human interaction network, in the hope that the inter-
actome would provide insight into development and disease
mechanisms at a systems level. There have been several re-
cent efforts on mapping the global human genome [25, 29]
using the Y2H assay. However, this system is prone to a
high rate of false-positives and the interactions need to be
validated with sophisticated techniques. Also, the identity
of essential interactions in PINs differ signiÞcantly, depend-
ing on the experimental methodology [3]. In addition to
these global maps, there are a large number of published in-
teractions on individual disease proteins in the last decade.
The high-conÞdence interactions are readily available from
online public domain databases (for example, BIND [1],
DIP [26] and HPRD [21]). Most of these databases are
literature-based and hand-curated with a sizable percentage
of overlapping interactions.

The interaction networks of model eukaryotes such
as yeast are analyzed extensively [32, 16] using graph-
theoretic and complex network analysis concepts. The yeast
PIN topology exhibits several interesting features that dis-
tinguish it from a random graph. For instance, the distri-
bution of the number of interactions of a protein can be
approximated by a power law, and so the PIN may be a
scale-free network. The PIN also contains a larger num-
ber of highly connected proteins than one would expect in
a random Erdýos-R«enyi network. It is also observed that in
the yeast network, the connectivity of a protein appears to
be positively correlated with its essentiality [14], i.e., highly
connected proteins tend to be more essential to the viability
of the organism.

Large-scale network analysis is currently an active area
of research in the social sciences [23, 27], and several con-
cepts from this Þeld are being applied to computational biol-
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Figure 1. A comparison of degree distributions of various protein-interaction networks
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Database Details

HPRD [21] Human Protein Reference Database. Experimentally veriÞed protein-protein in-
teractions obtained from manual curation of literature. 25209 proteins and 35262
interactions.

BIND Biomolecular Interaction Network Database. Collection of molecular interac-
tions including high-throughput data submissions and hand-curated information
from the scientiÞc literature.4644 human protein interactions.

MIPS Munich Information Center for Protein Sequences. 334 interactions.
MINT Molecular Interactions Database. 3544 interactions.
IntAct [13] Freely available, open source database system and analysis tools for protein in-

teraction data. European Bioinformatics Institute. 2420 interactions.
OPHID Online Predicted Human Interaction Database. Repository of already known

experimentally derived human protein interactions, as well as 23,889 additional
predicted interactions. This dataset is not included in our human PIN.

Table 1. Popular Online Human Pr otein Interact ion databases

(a) Distribution of shortest paths between pairs of proteins (b) Average Clustering CoefÞcient

Figure 2. Structural properties of HPIN

social and business networks. Many quantitative metrics for
this purpose have originated from the social network anal-
ysis community, commonly referred to ascentrality mea-
sures. We will use the Betweenness centrality metric (see
Section 2) to analyze the humaninteractome. Researchers
have paid particular attention to the relation between cen-
trality andessentialityor lethalityof a protein (for instance,
[14]). A protein is said to be essential if the organism can-
not survive without it. Essential proteins can only be deter-
mined experimentally, so alternate approaches topredicting
essentialityare of great interest and have potentially sig-
niÞcant applications such as drug target identiÞcation [15].
Previous studies on yeast have shown that proteins acting as
hubs (or high-degree vertices) are three times more likely to
be essential. So we wish to analyze the interplay between

degree and centrality scores for proteins in the human PIN
in this section.

Figure 3 plots the betweenness centrality scores of the
top 1% (about 100) proteins in two lists, one ordered by de-
gree, and the other by the betweenness centrality score. We
observe that there is a strong correlation between the degree
and betweenness centrality score: about 65% of the proteins
are common to both lists. The protein with the highest de-
gree in the graph also has the highest centrality score. This
protein (Solute carrier family 2 member 4, Gene Symbol
SLC2A4, HPRD ID 00688) belongs to the transport/cargo
protein molecular class, and its primary biological function
is transport. From Figure 3, it should also be noted that the
top 1% proteins by degree show a signiÞcant variation in
betweenness centrality scores. The scores vary by over four
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Figure 4. Normalized Betweenness Centrality scores as a function of the degree for HPIN (left) and a
synthetic scale-free graph instance (right)

Figure 3. The top 1% proteins in HPIN, sorted
by Betweenness Centrality (BC) scores and
the number of interactions

orders of magnitude, from10−1 to 10−4.
We next study the correlation of degree with between-

ness centrality. Unlike connectivity, which ranges from 1
to 822, the values of betweenness centrality range over sev-
eral orders of magnitude. The few highly connected vertices
have high betweenness values as there are many vertices di-
rectly and exclusively connected to these hubs. Thus most
of the shortest paths between these nodes go through these

hubs. However, the low-connectivity vertices show a signif-
icant variation in betweenness values, as evidenced in Fig-
ure 4(a). They exhibit a variation of betweenness values up
to four orders of magnitude. The high betweenness scores
may suggest that these proteins are globally important. In-
terestingly, these nodes are completely absent in syntheti-
cally generated graphs designed to explain scale-free behav-
ior (observe the variation of betweenness centrality scores
among low degree vertices in Figure 4(b)).

Our observations are further corroborated by two re-
cent results. As the yeast PIN has been comprehensively
mapped, lethal proteins in the network have been identiÞed.
Gandhi et al. [9] demonstrate from an independent analysis
that the relative frequency of a gene to occur as an essen-
tial one is higher in the yeast network than the human PIN.
They also observe that the lethality of a gene could not be
conÞdently predicted on the basis of the number of interac-
tion partners. Joy et al. [16] conÞrm that proteins with high
betweenness scores are more likely to be essential, and that
there are a signiÞcant number of high-betweenness, low-
interaction proteins in the yeast PIN.

Figure 5 is a graphical representation of the dominant
molecular class and biological function among high be-
tweenness, high connectivity proteins (the common proteins
in the top 1% lists). These proteins belong to a variety of
molecular classes (Figure 5(a)), with cell communication
and signal transduction being the most common biological
function (Figure 5(b)).
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(a) Molecular Class (b) Biological Function

Figure 5. The dominant molecular classes (left) and biological functions (right) among proteins that
are common to both the top 1% betweenness centrality and degree lists

3.3 Parallel Multicore Performance

The sequential complexity for computing betweenness
centrality and the graph diameter isO(mn). The parallel
algorithms for centrality described in Section 2 are well-
suited for implementation on multicore and multiprocessor
systems that have high memory bandwidth and a modest
number of processors.

We report performance results on the Sun Fire T2000
multicore server, with the Sun UltraSPARC T1 (Niagara)
processor. This system has eight cores running at 1.0 GHz,
each of which is four-way multithreaded. There are eight
integer units with a six-stage pipeline on chip, and four
threads running on a core share the pipeline. The cores also
share a 3 MB L2 cache, and the system has a main memory
of 16 GB. There is only one ßoating point unit (FPU) for
all cores. We compile our codes with the Sun C compiler
v5.8 and the ßags-xtarget=ultraT1 -xarch=v9b
-xopenmp. The code is portable to other multicore and
multiprocessor systems, and we make it freely available on-
line [20].

Figure 6 plots the execution time and relative speedup
achieved on the Sun Fire T2000 for computing the between-
ness centrality on HPIN. The performance scales nearly
linearly up to 16 threads, but plateaus between 16 and 32
threads. This can be attributedto insufÞcient memory band-
width on 32 threads, as well as the presence of only one
ßoating point unit on the entire chip. We use the ßoating
point unit for accumulating pair dependencies and central-
ity values.

The execution times for betweenness centrality and
graph diameter computation differ by a constant multiplica-
tive factor. Betweenness centrality computation is much

Figure 6. Betweenness Centrality Execution
time and Speedup on the Sun Fire T2000 sys-
tem

more involved, as it requires maintaining a BFS stack, a
queue and a predecessor list. Also, the BFS tree is traversed
twice in the algorithm.

4 Conclusions and Future Work

We demonstrate the use of multicore algorithmic tech-
niques for large-scale protein-interaction network analysis.
The source code of the various graph analysis programs is
freely available online from our web site. We also intend
to provide the sequential version of our centrality analysis
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