
DIMACS
Series in Discrete Mathematics

and Theoretical Computer Science

Volume 74

The Shortest Path
Problem

Ninth DIMACS Implementation
Challenge

Camil Demetrescu
Andrew V. Goldberg
David S. Johnson

Editors

American Mathematical Society

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

The Shortest Path
Problem

Ninth DIMACS Implementation
Challenge

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

DIMACS
Series in Discrete Mathematics

and Theoretical Computer Science

Volume 74

American Mathematical Society
Providence, Rhode Island

Center for Discrete Mathematics
and Theoretical Computer Science

A consortium of Rutgers University, Princeton University,
AT&T Labs–Research, Alcatel-Lucent Bell Laboratories,
NEC Laboratories America, and Telcordia Technologies

(with partners at Avaya Labs, HP Labs, IBM Research, Microsoft
Research, Georgia Institute of Technology, Rensselaer Polytechnic

Institute, and Stevens Institute of Technology)

The Shortest Path
Problem

Ninth DIMACS Implementation
Challenge

Camil Demetrescu
Andrew V. Goldberg
David S. Johnson

Editors

https://doi.org/10.1090/dimacs/074

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

This DIMACS volume presents the proceedings from the Ninth DIMACS Implementa-
tion Challenge held at Rutgers University, Piscataway, NJ, on November 13–14, 2006.

2000 Mathematics Subject Classification. Primary 05C90, 05C12, 05C38, 05C85, 68–06,
68W05, 68W40, 90B20, 90B18.

“Engineering Label-Constrained Shortest-Path Algorithms”, by Chris Barrett, Keith
Bisset, Martin Holzer, Goran Konjevod, Madhav Marathe, and Dorothea Wagner, is

reprinted here courtesy of Springer-Verlag

Library of Congress Cataloging-in-Publication Data

The shortest path problem : ninth DIMACS implementation challenge / Camil Demetrescu,
Andrew V. Goldberg, David S. Johnson, editors.

p. cm. — (DIMACS series in discrete mathematics and theoretical computer science ; v. 74)
Includes bibliographical references.
ISBN 978-0-8218-4383-3 (alk. paper)
1. Combinatorial optimization—Congresses. 2. Graph theory—Mathematics—Congresses.

3. Algorithms—Congresses. I. Demetrescu, Camil. II. Goldberg, Andrew V. III. Johnson,
David S., 1945–

QA402.5.S5425 2009
519.6′4—dc22 2009012805

Copying and reprinting. Material in this book may be reproduced by any means for edu-
cational and scientific purposes without fee or permission with the exception of reproduction by
services that collect fees for delivery of documents and provided that the customary acknowledg-
ment of the source is given. This consent does not extend to other kinds of copying for general
distribution, for advertising or promotional purposes, or for resale. Requests for permission for
commercial use of material should be addressed to the Acquisitions Department, American Math-
ematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can
also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In
such cases, requests for permission to use or reprint should be addressed directly to the author(s).
(Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of
each article.)

c⃝ 2009 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights

except those granted to the United States Government.
Copyright of individual articles may revert to the public domain 28 years

after publication. Contact the AMS for copyright status of individual articles.
Printed in the United States of America.

⃝∞ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.

Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 14 13 12 11 10 09

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Contents

Foreword vii

Introduction ix

Real-World Applications of Shortest Path Algorithms
Jose L. Santos 1

An Experimental Evaluation of Point-To-Point Shortest Path Calculation on
Road Networks with Precalculated Edge-Flags

Ulrich Lauther 19

Fast Point-to-Point Shortest Path Computations with Arc-Flags
Moritz Hilger, Ekkehard Köhler, Rolf H. Möhring, and
Heiko Schilling 41

High-Performance Multi-Level Routing
Daniel Delling, Martin Holzer, Kirill Müller, Frank Schulz,
and Dorothea Wagner 73

Reach for A∗: Shortest Path Algorithms with Preprocessing
Andrew V. Goldberg, Haim Kaplan, and Renato F. Werneck 93

Highway Hierarchies Star
Daniel Delling, Peter Sanders, Dominik Schultes,
and Dorothea Wagner 141

Ultrafast Shortest-Path Queries via Transit Nodes
Holger Bast, Stefan Funke, and Domagoj Matijevic 175

Robust, Almost Constant Time Shortest-Path Queries in Road Networks
Peter Sanders and Dominik Schultes 193

Single-Source Shortest Paths with the Parallel Boost Graph Library
Nick Edmonds, Alex Breuer, Douglas Gregor, and Andrew
Lumsdaine 219

Parallel Shortest Path Algorithms for Solving Large-Scale Instances
Kamesh Madduri, David A. Bader, Jonathan W. Berry,
and Joseph R. Crobak 249

Breadth First Search on Massive Graphs
Deepak Ajwani, Ulrich Meyer, and Vitaly Osipov 291

v

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

vi CONTENTS

Engineering Label-Constrained Shortest-Path Algorithms
Chris Barrett, Keith Bisset, Martin Holzer, Goran Konjevod,
Madhav Marathe, and Dorothea Wagner 309

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Foreword

The Ninth DIMACS Implementation Challenge is the most recent of a series of
highly successful events aimed at narrowing the gap between theory and practice in
an area of current research interest. The DIMACS challenges identify an important
research area and challenge researchers to find new algorithms appropriate to a
challenge problem. The first Challenge event was held in 1991, and this volume
represents the fifth volume dedicated to reporting the outcome of such events. The
Challenge workshop was held at DIMACS November 13-14, 2006, and was devoted
to shortest path problems. Shortest path problems have applications in a wide
variety of areas including transportation, robotics, and network optimization, and
there has been a huge literature devoted to them. This challenge was intended to
revisit the problem in all of its generality and its many variations, with the goal
of identifying new algorithmic approaches and finding real-world applications for
which good solutions to corresponding shortest path problems are not yet known.
A highlight of the activity leading to this volume was a competition involving the
point to point shortest path problem, comparing performance and robustness of
different approaches.

We would like to express our appreciation to Camil Demetrescu, Andrew V.
Goldberg, and David S. Johnson for their efforts to organize and plan this successful
event. We especially thank Camil Demetrescu for his efforts in maintaining a web-
site dedicated to the Challenge. We also thank Paolo Dell’Olmo, Irina Dumitrescu,
Mikkel Thorup, and Dorothea Wagner for serving as an Advisory Committee for
this Challenge.

DIMACS gratefully acknowledges the generous support that makes these pro-
grams possible. Special thanks go to the National Science Foundation and Microsoft
Research, as well as to DIMACS partners at Rutgers, Princeton, AT&T Labs - Re-
search, Alcatel-Lucent Bell Labs, NEC Laboratories America, and Telcordia Tech-
nologies, and affiliate partners Avaya Labs, Georgia Institute of Technology, HP
Labs, IBM Research, Microsoft Research, Rensselaer Polytechnic Institute, and
Stevens Institute of Technology.

Fred S. Roberts,
Director

Robert Tarjan,
Co-Director for Princeton

vii

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Introduction

This volume contains papers arising from the 9th DIMACS Implementation Chal-
lenge (http://www.dis.uniroma1.it/~challenge9), which was devoted to short-
est path algorithms.

DIMACS implementation Challenges are aimed at narrowing the gap between
theory and practice for algorithms in specific problem areas. This is achieved by
developing a common infrastructure for experimental algorithm evaluation and en-
couraging researchers to develop and compare state of the art algorithm imple-
mentations. The first Challenge was held in 1990-1991 and was devoted to Net-
work Flows and Matching. Other addressed problems included: Maximum Clique,
Graph Coloring, and Satisfiability (1992-1993), Parallel Algorithms for Combinato-
rial Problems (1993-1994), Fragment Assembly and Genome Rearrangements (1994-
1995), Priority Queues, Dictionaries, and Multi-Dimensional Point Sets (1995-
1996), Near Neighbor Searches (1998-1999), Semidefinite and Related Optimization
Problems (1999-2000), and The Traveling Salesman Problem (2000-2001).

Selection of the problem area is the key to a Challenge’s success. A good
area is one with active theoretical algorithmic research and a lack of the common
infrastructure. In 2004, when the call for the Ninth Challenge was issued, this was
the case for the area of shortest path algorithms.

Shortest path problems are among the most fundamental combinatorial opti-
mization problems with many applications, both direct and as subroutines. They
arise naturally in a remarkable number of real-world settings. A limited list in-
cludes transportation planning, network optimization, packet routing, image seg-
mentation, speech recognition, document formatting, robotics, compilers, traffic
information systems, and dataflow analysis. Shortest path algorithms have been
studied since the 1950’s and still remain an active area of research.

The goal of the Ninth DIMACS Implementation Challenge was to stimulate
research on shortest path algorithms by creating a reproducible picture of the state
of the art. The main results of the Challenge included:

• Definition of common file formats for several variants of the shortest path
problem, both static and dynamic. These comprised extensions of the
famous DIMACS graph file format used by several algorithmic software
libraries.

• Definition of a common set of core input instances for evaluating shortest
path algorithms.

• Definition of benchmark codes for shortest path problems.
• Design of new shortest path algorithms.
• Experimental evaluation of state of the art implementations of shortest

path codes on the core input families.

ix

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

x INTRODUCTION

• A discussion of directions for further research in the area of shortest paths,
identifying problems critical in real-world applications for which efficient
solutions still remain unknown.

The Challenge call for participation was broad, inviting work on most poly-
nomially-solvable variants of shortest paths. The organizers provided input-output
file formats and benchmark problem solvers for the most basic problems and indi-
cated that more formats will be developed if needed.

Participants at sites in the U.S. and Europe undertook projects during the
period from October 2005 to November 2006, studying several variants of the
shortest paths problem. For its relevance in modern applications such as GPS
navigation systems, the point-to-point shortest paths problem, which consists of
answering multiple online queries about the shortest paths between pairs of ver-
tices, was the most popular problem during the Challenge, attracting about half
of the contributions. Other variants under investigation included k-shortest paths
and language-constrained shortest paths. Parallel and external memory implemen-
tations of shortest paths algorithms were also studied.

In the first stage of the Challenge, the organizers and the participants obtained
or developed real-life problems and problem generators, from which benchmark
problem families were selected. The participants were encouraged to use these
problems whenever practical during the second part of the Challenge, during which
algorithm implementations were developed and evaluated. In addition, the partici-
pants were free to use any other problems that they found useful in evaluating their
algorithm performance.

The Challenge culminated in a workshop held at the DIMACS Center at Rut-
gers University, Piscataway, New Jersey on November 13–14, 2006. Following the
workshop, participants were encouraged to share test instances whenever possible,
to rework their implementations and experiments in light of the feedback at the
workshop, and to submit a final report for this book. After a careful reviewing pro-
cess, comparable to that of refereeing for a high-quality journal, twelve full articles
were selected for this volume. In view of the practical importance of the prob-
lems studied in this Challenge, this volume also contains a survey of applications
of shortest path problems.

More than 40 researchers attended the workshop; there were thirteen project
presentations, one invited talk, and a panel discussion. The specific application
problems presented at the workshop included point-to-point shortest paths, k-
shortest paths, parallel shortest paths, external-memory BFS, and language-con-
strained shortest paths. The invited presentation was given by David A. Bader
(Georgia Institute of Technology). The lecture focused on solving massive graph
problems on large-scale parallel machines and presented several graph theoretic
kernels for connectivity and centrality. The lecture discussed how the underlying
parallel architectures affects algorithm development, ease of programming, perfor-
mance, and scalability.

In addition, many participants took part in a special competition held during
the workshop and devoted to the point-to-point shortest path problem. The aim
was to compare the performance and the robustness of the different implementations
discussed at the workshop. The rules of the competition were announced on the first
day of the workshop and the results were due on the second day. The competition
consisted of preprocessing a version of the full road network of continental U.S.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

INTRODUCTION xi

preprocessing query
code

Time Space Node Time Benchmark
(minutes) (Mbytes) scans (ms) ratio ×106

HH-based transit [5] 104 3664 n.a. 0.019 4.78
TRANSIT [1] 720 n.a. n.a. 0.052 10.77
HH Star [2] 32 2662 1082 1.140 287.32
REAL(16, 1) [4] 107 2435 823 1.420 296.30
HH with DistTab [2] 29 2101 1671 1.610 405.77
RE [4] 88 861 3065 2.780 580.08

Table 1. Results of the Challenge competition on the USA graph
(23.9 million nodes and 58.3 million arcs) with unit arc lengths.
The benchmark ratio is the average query time divided by the time
required to answer a query using the benchmark Dijkstra code on
the same platform. Query times and node scans are average values
per query over 1000 random queries.

with unit edge lengths and answering a sequence of 1,000 random distance queries.
Each participating team used their own machine and computational environment.
Note that the U.S. graph with lengths corresponding to travel distances and transit
times was a part of the benchmark data set, and the unit length function was a
natural “new” length function to consider. Some of the participants’ codes were
unable to deal with the size of the full U.S. graph, or incurred runtime errors.
However, six point-to-point implementations successfully preprocessed the graph
and answered the queries. These included two codes, RE and REAL(16, 1), which
were not eligible for the official competition because one of the co-authors on the
paper was also an organizer. These two codes were run on the problem prior to the
competition to ensure that the problem could be solved in 24 hours.

Because results were obtained on different platforms, each participant ran a Di-
jkstra benchmark code [3] on the USA graph to allow machine calibration. The final
ranking was made by considering each query time divided by the time required by
the benchmark code on the same platform (benchmark ratio). Other performance
measures taken into account were space usage and the average number of nodes
scanned by query operations.

The results of the competition are reported in Table 1. All six codes that
successfully handed the graph had substantially faster query times than the bench-
mark Dijkstra code, which did no preprocessing. As one can see from the table, the
fastest query time was achieved by the HH-based transit code of Peter Sanders and
Dominik Schultes. (The times reported in the table are for the different platforms
used by the participants and are not normalized. They are reasonably comparable,
however. Based on the benchmark runs, no pair of platforms differed in speed by
more than 22%.)

Work done by the participants during the Challenge improved the state of the
art in shortest path algorithms. In addition, the infrastructure developed during
the Challenge should facilitate further research in the area, leading to substantial
follow-up work as well as to better and more uniform experimental standards.

The expert assistance of the DIMACS staff in hosting and arranging the work-
shop is gratefully acknowledged. We would like to thank Microsoft Research for

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

xii INTRODUCTION

providing partial funding for the workshop. We also would like to thank all the
Challenge participants, whose hard work and enthusiasm was the key to the suc-
cess of the Challenge.

Camil Demetrescu
Andrew V. Goldberg

David S. Johnson
March 2009

Bibliography

[1] H. Bast, S. Funke, and D. Matijevic, Transit: Ultrafast shortest-path queries with linear-
time preprocessing, in 9th DIMACS Implementation Challenge Workshop: Shortest Paths, DI-
MACS Center, Piscataway, NJ, November 13–14, 2006.

[2] D. Delling, P. Sanders, D. Schultes, and D. Wagner, Highway hierarchies star, in 9th
DIMACS Implementation Challenge Workshop: Shortest Paths, DIMACS Center, Piscataway,
NJ, November 13–14, 2006.

[3] E. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, 1
(1959), pp. 269–271.

[4] A. Goldberg, H. Kaplan, and R. Werneck, Better landmarks within reach, in 9th DI-
MACS Implementation Challenge Workshop: Shortest Paths, DIMACS Center, Piscataway, NJ,
November 13–14, 2006.

[5] P. Sanders and D. Schultes, Robust, almost constant time shortest-path queries in road net-
works, in 9th DIMACS Implementation Challenge Workshop: Shortest Paths, DIMACS Center,
Piscataway, NJ, November 13–14, 2006.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Real-World Applications of Shortest Path Algorithms

J.L. Santos

Abstract. The shortest path problem (SPP) is one of the most-studied com-
binatorial optimization problems in the literature. It has a wide range of ap-
plications, both direct and as a subproblem of other problems. Many of these
applications require solving very large instances in real time, and recently new
algorithmic techniques have been introduced to deal with such instances. This
paper presents an overview of the state of the art in shortest path applications
and the algorithms used for them.

1. Introduction

The word ”network” appears frequently in our vocabulary, associated with
many daily situations. In fact, it would be hard to imagine how we would live
today without the Internet (World Wide Web), highway systems, train services, air
travel, telecommunications, or water and electricity distribution, all of which have
underlying networks. In these examples, the network structure is obvious, but there
are other applications where a network structure is only implicit, as for example in
social relationships, protein-protein interactions, genetics, and linguistics.

In network related problems, we frequently have to determine shortest paths
(SPs). In particular, given a graph G = (V, E), we may need to find (1) the
shortest path between two specified vertices s and t (the point-to-point shortest path
(P2PSP) problem), (2) the shortest paths between a given source vertex s and all
other vertices (the single source shortest path (SSSP) problem), or (3) the shortest
paths between all pairs of vertices (the all pairs shortest path (APSP) problem).
These SP problems have a wide range of (direct and indirect) applications. More
than one million results appear if one performs a Google search on the term ”shortest
path”. Hundred of thousands matches are returned when using the Google Scholar
and Scirus webpages. Thousands of results can also be found with more specific
search engines, namely, Scopus, ScienceDirect and Citeseer. Since Scopus clusters
the results by date, we can also recognize a significant increase in published papers
on SP problems during recent years (about five hundred articles per year in the last
four years). Finally, more than 1500 registered patents related to shortest paths
bear witness to the practical importance of SP problems.

1991 Mathematics Subject Classification. Primary 90B10, 90C27, 90C35.
Key words and phrases. shortest path problem, combinatorial optimization, large real world

size network.

1

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

1

https://doi.org/10.1090/dimacs/074/01

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

2 J.L. SANTOS

Research related to SP problems began in earnest in the 1950s. Dantzig
[Dan51] developed the network simplex algorithm for the uncapacitated trans-
portation problem and, next, Bellman [Bel52, Bel53] established the preliminaries
of dynamic programming. In 1956, Ford [For56] outlined the first label-correcting
algorithm for SP problems. A labeling algorithm assigns to each vertex j an upper
bound πj on the shortest distance from a source vertex s to j, with all values ini-
tially infinite except for πs, which is initialized to 0. The main idea is to update πj

each time one encounters a vertex i such that πi + ci,j < πj , where (i, j) is an arc
from i to j and ci,j is the associated distance. When updates are no longer possi-
ble, one will have determined the lengths of the shortest paths from s to all other
vertices, thus solving the SSSP problem. Moore [Moo57] and Ford and Fulkerson
[FF62] studied the general properties of labeling algorithms. In 1958, Bellman
applied dynamic programming to SP problems and designed the first-in, first-out
(FIFO) implementation of the label-correcting algorithm [Bel58].

Some of the above algorithms apply to SP problems where negative edge costs
(lengths) are allowed. Assuming we want a path with no repeated vertices, this
problem is NP-complete [GJ79]. This is essentially because of the possibility of
negative-cost cycles. If negative-cost edges are not allowed (the situation in many
key shortest path applications), the problem becomes polynomial-time solvable, and
it is this special case of the problem on which we concentrate in this article. We note,
however, that for the general case there are polynomial-time algorithms that either
detect a negative-cost cycle or return a guaranteed shortest path [AMO93]. De-
tecting negative-cost cycles has interesting applications in its own right, for example
in determining whether a system of difference constraints with unitary coefficients
has a feasible solution [AMO93]. However, the algorithmic techniques used in the
negative edge cost case can be quite different from those relevant to the case of
non-negative costs, and we will not elaborate on them here.

The algorithm for graphs with non-negative arc lengths that is today commonly
known as “Dijkstra’s algorithm” was proposed independently by Dijkstra [Dij59],
Dantzig [Dan60], and Whiting and Hillier [WH60]. It runs in O(n2) time, where
n is the number of vertices, and solves the SSSP problem. This algorithm is a
variant of the labeling method that selects to process next a previously unprocessed
vertex i with the smallest distance estimate πi, and then updates πj for all its
unprocessed neighbors. An early observation was that the running time for a graph
with n vertices and m edges, given in adjacency list format, could be improved to
O(m log n) using a priority queue implementation.

In 1962, Floyd [Flo62] designed an algorithm to solve the APSP problem based
on Warshall’s work that determined the transitive closure of graphs [War62]. Also
in the 1960’s, Hart et al. [HNR68, HNR72] introduced the A* Search algorithm
(a.k.a. Heuristic or Goal-Directed Search) for the P2PSP problem. This algorithm
uses estimates on the distance to the destination to direct – and speed up – the
search from the source vertex. Under certain conditions, the method finds the
optimal (shortest) path, although in general the optimality is not guaranteed.

In the 1970s and 1980s, several new labeling algorithms for the SSSP problem
were proposed. Incremental graph algorithms [GP88] solve the problem on a sub-
graph, then add a vertex to the subgraph, and reoptimize starting from the previous
solution. In particular, Pape’s algorithm [Pap74] processes labeled vertices of the

2

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REAL-WORLD APPLICATIONS OF SHORTEST PATH ALGORITHMS 3

current subgraph in stack (LIFO) order, and Pallottino’s algorithm [Pal84] pro-
cesses them in FIFO order. Glover et al. [GGK84] proposed a hybrid algorithm
that that processes vertices with small distance labels in FIFO order, combining
the ideas of the Dijkstra and Bellman-Ford methods.

In addition, many researchers worked at improving efficiency of the priority
queue implementation of Dijkstra’s algorithm. For instance, Dial developed the
concept of buckets [Dia69], Johnson [Joh77] used a d-heap, Denardo and Fox
[DF79] designed a multi-level bucket data structure, and Fredman and Tarjan
proposed the utilization of Fibonacci heaps [FT87]. Ahuja et al. [AMOT90] show
that the multi-level buckets in combination with augmented Fibonacci heaps give a
better time bound. A later paper shows that the improved bound can be obtained
using original Fibonacci heaps [CGS99] alone. A variation of the algorithm with
linear expected time has been given in [Gol01].

In the 1980s, the conventional wisdom was that algorithms with bad worst-case
time, such as Pape’s and Pallotino’s, work best in practice, although there was dis-
agreement about which one was the best. However, in 1996, a comprehensive study
[CGR96] showed that these algorithms perform poorly on some natural examples,
and validated the practical efficiency of the multi-level bucket data structures, with
the algorithms that use them currently considered the fastest for the SSSP problem.

As for the P2PSP problem, the practical state of the art has advanced sub-
stantially in recent years, as will be evident from some of the other papers in this
volume. For the non-negative cost case, the combination of the best current al-
gorithms and data structures with the processing power and storage capacity of
modern computers has led to impressive results. With appropriate preprocessing,
it is now often possible to solve large-scale instances in real time. This is the
case, for example, when we compute driving directions on web mapping sites or on
satellite navigation systems using GPS/GIS technology. These systems work with
networks having several millions of road segments and provide answers in seconds
or less.

For readers interested in reading more about algorithms for SP problems, a
good survey of papers published until the middle of the 1980s is presented by
Deo and Pang [DP84]. This work was later updated by Ahuja et al. [AMO89,
AMO91]. Finally, the most recent improvements on the labeling algorithm for the
SSSP problem are reported in [GH05, GKW07, GW05, SS05, SS07, WW05].
Developments on the APSP problem can be found in [AGM97, GM97, Joh77,
KKP93, Pet04, Sei95, SZ99, Tak92, Zwi98, Zwi02]. There has also been
considerable study of SP problems restricted to the special case where only integral
edge costs are allowed. See [AMOT90, CGS99, DF79, Dia69, DGKK79,
Gol01, GT89, Hag00, Joh82, Mey01, Ram96, Tho04, vEBKZ76, Wag76].

Many variants of the above SP problems have also been studied. For example,
in the minimum non-decreasing path problem, proposed by Minty [Min58], we wish
to find a path whose consecutive arc weights are non-decreasing and such that the
last arc weight is minimized. The problem of ranking the k shortest paths between
two given vertices was introduced by Hoffman and Pavley [HP59]. Other variants
include the stochastic SP problem [EZ62], the restricted SPP [Jok66], the multi-
criteria SPP [Vin74], and the robust SP problem [MG04]. Of particular note
are dynamic SP problems, in which our goal is to maintain a representation of

3

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

4 J.L. SANTOS

the current shortest paths while a sequence of edge length updates is performed
[RR96, BRT08].

In the remainder of this paper we shall survey some of the many applications
that involve SP problems, both directly and indirectly, also covering the types and
sizes of the networks involved and the SP algorithms used. In Section 2, we describe
the three most widely occurring real-world applications, route-finding services, rail-
road itinerary generation, and Internet routing. Sections 3 and 4 then briefly cover
a selection of additional applications for SP algorithms, as an illustration of the
wide variety of such applications that exist. Section 3 covers applications dealing
explicitly with shortest paths and shortest path lengths. Section 4 illustrates the
general optimization technique known as dynamic programming, which implicitly
involves the computation of shortest paths. We conclude in Section 5 with a brief
wrap-up of the discussion.

2. Real-world problems where shortest-path codes are in constant use

2.1. Point-to-point route finding services on the Web. In recent years,
a variety of free web-based services have sprung up to help people looking for travel
directions. These services include the following:

Web page URL address
GoogleMaps http://maps.google.com/

LiveMaps http://www.maps.live.com/
Map24 http://www.map24.com/

Maporama http://world.maporama.com/
MapQuest http://www.mapquest.com/
MultiMap http://www.multimap.com/

ViaMichelin http://www.viamichelin.com/
YahooMaps http://maps.yahoo.com/

Typically one visits the webpage of such a service and enters a starting address
and a destination address. The website will then return driving directions, together
with maps of the route. It is usually possible to choose between computing the
quickest (expected driving time) or the shortest (distance) path. Some services
consider additional factors in their routing. For instance, the ViaMichelin webpage
allows users to specify preference for most economic or most scenic route among
other options. In addition, some services cover more countries than others. For
instance, MapQuest accepts locations from Canada, USA and only 12 countries in
Europe, while ViaMichelin includes 60 countries.

Tables 1–2 report the results obtained for quickest and shortest routes under two
different queries: one in the United States between California City, California, and
New York City, New York, and another one in Europe between Lisbon (Portugal)
and Wien (Austria). GoogleMaps and YahooMaps do not allow a choice between
time and distance metrics, but may be using a linear combination of these two
criteria as an objective function. In the tables we put results for these two services
by default into the “Quickest path” column.

Note that there is considerable variability between services. This is not sur-
prising. Different services obtain data from different vendors. They estimate travel
time in different ways, taking into account several parameters like speed limits,
traffic conditions, etc. Furthermore, the applications may use inexact heuristics

4

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REAL-WORLD APPLICATIONS OF SHORTEST PATH ALGORITHMS 5

Quickest path Shortest path
Web page Time Km Time Km

GoogleMaps 45:00h 4,784 — —
LiveMaps 42:26h 4,750 48:15h 4,595

Map24 44:42h 4,410 53:03h 4,351
Maporama 58:58h 5,744 45:55h 5,364
MapQuest 40:35h 4,398 41:59h 4,375
MultiMap 47:05h 4,392 47:39h 4,407

ViaMichelin 42:12h 4,424 51:09h 4,345
YahooMaps 44:42h 4,402 — —

Table 1. Results obtained for the quickest and the shortest path
from California City, California, to New York, New York (USA).

Quickest path Shortest path
Web page Time Km Time Km

GoogleMaps 27:00h 2,965 — —
LiveMaps 26:25h 2,920 29:08h 2,735

Map24 31:30h 2,915 34:20h 2,755
Maporama 24:59h 2,972 28:53h 2,713
MapQuest 26:00h* 2,979* 31:43h* 2,746*
MultiMap 31:35h 2,929 33:19h 2,838

ViaMichelin 30:19h 2,903 36:52h 2,749
YahooMaps 25:08h 2,982 — —

Table 2. Results obtained for the quickest and the shortest path
from Lisbon (Portugal) to Wien (Austria). *MapQuest only con-
siders driving connection among 12 countries in Europe. Conse-
quently, the results presented in this table include the distance/time
from Lisbon to Salamanca and then the MapQuest results from
Salamanca to Wien (Spain is included in the countries supported
by MapQuest but this is not the case of Portugal).

for computing shortest paths. Maporama’s results for the California City to New
York City route are particularly anomalous, with the shortest path actually being
quicker than the reported quickest path, which is much longer and slower than the
results for any of the other services. As might be expected, given the lack of a stan-
dard definition of “quickest,” there appears to be more variability in the duration
of quickest paths than in the lengths of shortest paths. For instance, in the results
presented in Tables 1–2, the variation coefficient (that is, the ratio between the
standard deviation and the mean) for travel time is around 8%, whereas the varia-
tion coefficient for shortest path length approaches 2% (this computation excludes
the anomalous results obtained by Maporama).

In addition to performing queries using the various services, we also attempted
to learn more about the SP algorithms they used, and were able to obtain partial
information for three of the services, GoogleMaps, MapQuest, and LiveMaps:

5

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

6 J.L. SANTOS

GoogleMaps: Barry Brumitt, Google Software Engineer, has published some
notes [Bru07a, Bru07b, Bru07c] about features of the GoogleMaps software,
such as the use of the mapReduce framework [DG04] to process large geographic
datasets across thousands of machines simultaneously. The following quote, ob-
tained directly from Brumitt, provides hints as to how the software works: I’m
afraid the technology and algorithms we use are not public, and therefore I can’t
disclose very much about our process, nor do we have any papers or public docu-
ments. We start with a raw graph data structure with on order of 100M vertices.
We use a series of mapReduce (MR) passes to transform the data into a (special)
graph structure suitable for processing in MR, and then we do a bunch of additional
MR work to build a data structure which can support efficient online queries. We
didn’t use MR when processing the actual live queries. This entire process is exact,
in that we do find actual minimum-cost shortest paths.

MapQuest: Sara Robinson interviewed Marc Smith, MapQuest’s chief tech-
nical developer, in SIAM News in 2004 [Rob04]. He did not provide detailed infor-
mation about how their algorithm worked, but revealed a little about it. Here are
some excerpts from the interview: ... MapQuest uses a ”double Dijkstra” algorithm
for its driving directions, ... Smith also conceded that the algorithm uses heuristic
tricks to minimize the size of the graph that must be searched. For edge weights,
Smith said, the algorithm uses estimated driving times, rather than distances, based
on classifications of the different types of roads. The MapQuest software also takes
into account such factors as left-turns and long-term construction, .. “Over time,
we have done such radical things to the algorithm that it totally disresembles the
original algorithm” Smith said. MapQuest gets all its road data from about 30 dif-
ferent vendors ... Smith would not describe how the data was stored, since that
was “what makes MapQuest Mapquest.”

From this interview, it appears that MapQuest uses a bi-directional Dijkstra
algorithm, possibly combined with A* search (the ”heuristic tricks”). In the in-
terview, Marc Smith also said that the software “runs on about three dozen Sun
servers...” but did not reveal whether the software uses a parallel SP algorithm or
simply has different machines assigned to different geographical areas.

LiveMaps: At the time of the Challenge, LiveMaps combined A* search and
heuristics based on road categories [Gol08].

Note that there are very efficient algorithms that exactly solve the sort of point-
to-point SP problems considered by these services, where the underlying network
may have tens of millions of vertices. These algorithms exploit various ideas, such as
landmark-based lower bounds [GH05, GW05], reach pruning techniques [Gut04],
highway hierarchies [SS05, SS07, BFSS07], parallel programming [MBBC07],
geometric containers [SWW00], partition-based hierarchical techniques [HSW06],
etc. Additional references can be found in [Sch], as well as in some of the other
papers in this volume. These techniques are all based on performing a preprocessing
step that then allows individual queries to be processed very quickly, something we
presume the web-based services do as well, even if they only compute approximate
solutions.

2.2. Constructing public transportation itineraries. For those who would
prefer to take public transportation, there are also many online services that will
help you plan your route. Now however, the problem is a bit more complicated,
since routes must be feasible as well as short – for instance, your next train cannot

6

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REAL-WORLD APPLICATIONS OF SHORTEST PATH ALGORITHMS 7

depart from a station before your current one arrives. There also can be multiple op-
timization criteria. It may be just as important to have as few train/plane changes
as to minimize your total travel time. Price as well may be a consideration. In the
airline industry, sites like Orbitz.com or Expedia.com deal with this problem by pro-
viding the user with long lists of feasible routes, many of them quite roundabout,
from which one can choose. It is not clear that any sophisticated algorithms are
used in generating these. For train travel in Europe, however, more sophisticated
travel planning sites exist, such a the HAFAS system at plannerint.b-rail.be.

A key observation that travel planning systems can exploit is that finding a
feasible route with minimum travel time can be reduced to an ordinary shortest
path problem. One constructs a “time expanded” version of the underlying railroad
network and timetable, in which there is a vertex for each potential event, where
an event is the arrival or departure of a particular train from a particular station.
For each leg of a scheduled train’s itinerary, there is an arc joining the departure
event to the next arrival event for that train, whose length is the time that leg is
scheduled to take. For each station and train arrival, there are arcs to all depar-
ture events for that station that occur afterward (sufficiently long afterward if a
train change is required), whose lengths are the times between the arrival and the
corresponding departures. If one appropriately augments such a graph with special
nodes corresponding to the origin and destination of the planned trip, a shortest
path from the former to the latter will correspond to the feasible itinerary with
minimum total travel time.

One problem with this approach is that the time-expanded network can be
quite large. An alternative approach is the “time-dependent” model where there
is only one node per station and the length of an arc depends on the time it is
traversed – see [MHSWZ07] for the details and additional references. A modified
version of Dijkstra’s algorithm is still able to compute SSSPs by exploiting the
assumption that if two trains travel the same non-stop route between two stations,
the first to depart is also the first to arrive. The time-dependent approach was
used for instance by Nachtigal [Nac95], who computed P2P shortest paths by
combining the modified Dijkstra algorithm with A* search techniques and reported
computational results for German railways consisting of 26 lines and 37 stations.

Pyrga et al. [PSWZ04] evaluated both the time-expanded and the time-de-
pendent approaches in studying a bi-criteria version of the problem in which one is
interested in minimizing both the travel time and the number of transfers, and so
must examine the tradeoffs between the two criteria. They obtained computational
results for German timetables from the winter period 2000/01 for both long distance
Berlin/Brandenburg and Rhein/Main region traffic. Their biggest instance yielded
networks with more than 30,000 vertices and 90,000 arcs for the time-dependent
approach and more then 2,250,000 vertices and 4,500,000 arcs for the time-expanded
model.

The on-line system used by the Portuguese Railway since 1998 also exploits a
time-dependent model and was partially designed by Martins, Pascoal and Santos
of the Department of Mathematic of the University of Coimbra, Portugal,

2.3. Routing using the OSPF/IS-IS protocols. Internet routing is an-
other domain in which large numbers of shortest path computations are performed
every day. In particular, many Internet Service Providers (ISPs) route packets
within their networks along shortest paths, where the edge lengths (link weights)

7

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

8 J.L. SANTOS

are parameters that can be set by traffic engineers with the goal of minimizing
congestion. The two most-common intra-domain routing protocols are Open Short-
est Path First (OPSF) [Moy98] and Intermediate System to Intermediate System
(IS-IS) [Cal90]. Under both of these protocols, routers use versions of Dijkstra’s
algorithm to solve a local SSSP problem every time they learn of a failed link, a
new link, or a change in a link weight within the ISP’s network [Cis, Con]. (OSPF
is a bit more complicated because of its use of “Areas,” for each of which separate
SSSP computations must be performed, and by the special role of Area 0 in routing
– interested readers can find more details in [Moy98].) The protocols then update
their routing tables, which implicitly contain, for each potential destination router
within the network, the first link to be followed on a shortest path from the current
router to the destination.

Link weights must be integers in the range from 1 to 216 − 1 = 65, 535. They
can be set by suggested rules of thumb, such as all equal, proportional to distance,
or inversely proportional to link capacity [Cis97]. Better results can be obtained
in practice, however, if one has a good estimate of the point-to-point traffic in the
network. Fortz and Thorup [FT00] suggest that weight settings that yield near-
optimal congestion can be obtained using metaheuristic search techniques. (It is
NP-hard to find the best possible weight settings for minimizing congestion.) The
Fortz-Thorup algorithms for determining weights involve repeatedly solving sets of
SSSP problems under slight changes in the weight settings, a task which would be
hopelessly impractical if one had to perform a full Dijkstra computation at each
step. Instead, they make use of dynamic shortest path algorithms, which save
extra information so that shortest path information can be updated quickly when
a link weight is changed (see for example [BRT08]). Note that the updating of
OSPF/ISIS routing tables is also a dynamic SSSP problem, but here the updates are
sufficiently infrequent that the extra speed of the dynamic approach is not needed,
especially given that the networks involved are not large – typically hundreds of
vertices or less, compared to the millions of vertices we saw in the trip-routing
application of Section 2.1.

3. Other Routing Applications and Variants

3.1. Shortest paths with turn prohibitions. In urban traffic, the move-
ment of vehicles at intersections is often restricted by no-left-turn, no-right-turn,
or no U-turn signs – see Figure 1(a) and (b). This give rise to variants on the
standard SP problems in which no path is allowed to violate a turn restriction. We
can reduce such a problem to a standard SP problem by transforming the network
into a directed network that models the turn restrictions using additional vertices
and arcs. Such transformations can also allow one to model turn penalties (e.g.,
the fact that one has to slow down before making a turn).

One way of modeling turn restrictions [SJK03] starts by adding, for each arc
A = (u, v), two new arc-specific vertices Au and Av and a new arc (Au, Av) with
the same length as A. Then, for every triple (u, v, w) of original vertices such that
in the original network there are arcs A = (u, v) and B = (v, w), where B can be
traversed immediately after A without violating a turn restriction, we add a zero-
length arc (Av, Bv). Finally, we delete all the original vertices and arcs. See Figure

in the derived network.

8

1(d). Now the turn-restricted problem can be solved by a standard SP algorithm

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REAL-WORLD APPLICATIONS OF SHORTEST PATH ALGORITHMS 9

A second, more compact way of modeling turn restrictions is to construct a
graph whose vertices correspond to the arcs in the original network [Cal61]. Sup-
pose (u, v) and (v, w) are arcs in the original network and X and Y are the cor-
responding vertices of the derived graph. There is an arc (X, Y) in the derived
graph if and only if the turn restrictions allow us to traverse (v, w) immediately
after (u, v) (see Figure 1(c)). Things are a bit more complicated here, since now it
is the vertices that have length. However, Gutirrez and Medaglia [GM08] propose
an extension of Dijkstra’s algorithm that implicitly handles turn restrictions using
this approach. In their paper, they present computational results for instances as
large as Bogota’s road network, which has 69,431 vertices and 213,144 arcs, and for
which the network representation has 213,144 vertices and 667,574 arcs.

3.2. Shortest paths in dynamic networks. Huang et al. [HWZ07] pro-
posed an algorithm for determining the least cost path between a moving object
and its destination by continually adapting the dynamic traffic conditions, while
making use of the previous search results. This algorithm is based on a variation
of the A* algorithm [KLF04] with an additional technique that prunes the un-
necessary vertices to speed up the dynamic search process. They examined the
suitability and performance of the proposed algorithm on the road networks of
Calgary (with approximately 8000 vertices and 12500 arcs) and Singapore (with
around 7000 vertices and 11800 links).

3.3. K shortest paths and transportation scheduling problems. In
many applications, simply computing the shortest path may not be enough. For

Figure 1. Example of turn prohibitions in urban traffic.

9

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

10 J.L. SANTOS

example, it can happen that, when we want to use the path, some of its arcs are
temporarily unavailable (for example, when driving we might hear on the radio
that there is a car accident at some point on our chosen route). In such cases, it
might help to have already computed an alternative path. The need for alternative
paths can also arise when there are constraints on legal paths that, unlike the turn
restrictions mentioned above, are too difficult to include in a simple graph model.
In such cases, we may want enumerate the shortest paths in order, and choose
the first one that satisfies all the constraints. Similarly, if we confront a problem
with multiple objective functions, having a list of the shortest paths with respect
to each criterion may enable us to find one that is simultaneously good for all,
or more generally to identify all the Pareto optimal solutions, where a solution is
Pareto optimal if no other solution is better than it under all the objective functions
[CM82, San03, PS08].

The K Shortest Path Problem (K-SPP) was devised to address such situations.
Formally, in the K-SPP we are looking for an ordered set of K paths {p1, . . . , pK}
from an initial vertex s to a terminal vertex t, where the cost (length) of pi is not
greater than the cost of pi+1 (i ∈ {1, . . . , K − 1}) and no other path from s to t
have cost less than the cost of pK . Currently the theoretically fastest algorithm
for the K-SPP is that of Eppstein [Epp98], who has also prepared a useful online
bibliography on the problem [Epp01].

Computing the K shortest paths may also be useful when we want to estimate
the relevance of various arcs to the problem of going from s to t, where we can
use the number of the K shortest paths that contain a given arc as a measure of
its importance. Such information could for instance be used in setting priorities
for road maintenance. Another use would be in sensitivity analysis. Knowledge of
the K shortest paths lets us determine whether the shortest path is substantially
better than its successors, or differs substantially from them in the arcs it contains.

As a final, and more specific, type of application for the K-SPP, consider the
problem of column generation for crew scheduling problems. Column generation is a
technique that is used to solve implicitly formulated linear or integer programs that
potentially contain an exponential number of variables (columns). For such LPs,
one typically starts by solving a version restricted to a relatively small collection
of variables, thus obtaining an upper bound on the optimal solution (assuming
we are minimizing). We then look for promising variables to add in hopes of
finding a better solution. For crew scheduling applications, where the variables
correspond to the possible routes that a pilot, driver, or other crew member may
follow throughout a day or week, the column generation process often reduces to
finding shortest paths in a reduced-cost graph, and it can be much more efficient
to add multiple variables at a time, as can be done using K-SPP algorithms. Here
are two real-world examples of this approach from the literature.

Airline crew scheduling: Medard and Sawhney [MS07] considered the problem
of scheduling crews for airlines, and provided algorithms to the Swedish company
Carmen Systems (subsequently acquired by the Jeppesen navigation services sub-
sidiary of Boeing). Their approach was based on an integer programming model
where the integer variables corresponded to crew itineraries selected to cover all the
flights’ needs. In their column generation scheme, they needed to find attractive
paths that respected additional restrictions, and they used a K-SPP routine based
on the work [MS00] as a tool. There test instances, derived from a Swedish airline

10

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REAL-WORLD APPLICATIONS OF SHORTEST PATH ALGORITHMS 11

database, required applying the K-SPP algorithm to a network with around 4,000
vertices and 60,000 arcs. In the first stage, the procedure needed to rank almost
one thousand paths, but then, as the column generation proceeded, this number
fell to a few hundred, and finally ended with less than 10.

Bus driver scheduling: Pais and Paixão [Pa06] use a K-SPP routine for column
generation in a bus driver scheduling problem. The problem is formulated as a
set covering model, where columns correspond to driver itineraries and rows to
continuous driving periods. They adopted a branch-and-price approach based on a
proposed branching rule and a combination of state space relaxation with column
generation. The columns of the set covering problem correspond to paths in an
associated network and are generated as needed by solving shortest path problems
with resource constraints using a k-shortest paths routine, [Mar84]. Pais and
Paixão present computational results for real instances concerning several mass
transit companies operating in Portugal. The biggest set covering model has 96
rows and 2015 columns.

3.4. Distances in social networks. In a social network, the vertices typ-
ically represent people, telephone numbers, companies, computers, or similar ob-
jects, with edges joining vertices that communicate or are associated with each
other, and the length of an edge reflecting the intensity of the association (shorter
edges representing stronger associations). In this section we discuss two examples
of social networks where shortest path length is of key concern.

Six degrees of separation: (This discussion is adapted from the Wikepedia arti-
cle on the topic [Wik].) The classic example of a social network is the one in which
the vertices are people and there is an edge between two people if they know each
other (all edges of length 1). This network has become a part of popular culture as
a result of the famous ”Six Degrees of Separation” conjecture, apparently originally
stated by Frigyes Karinthy. This Hungarian author published a volume of short
stories in 1929 including one titled “Chain-Links” where he essentially asserted that
the maximum distance between any two people in the world-wide social network
was 6.

In recent years, this conjecture and its variants have caught the attention of
the public. John Guare, an American playwright, wrote the play Six Degrees of
Separation in 1990, which was turned into a movie starring Will Smith in 1993.
Soon thereafter, the game “Six Degrees of Kevin Bacon” was devised for the social
network whose vertices are movie actors, with an edge between two actors if they
have appeared in a movie together. The challenge here is to find a path of length 6
or less from any other given actor to Kevin Bacon. The related concept of the Bacon
Number of an actor is simply the length of the shortest path in this graph from
the actor to Kevin Bacon. This is an adaptation of the earlier concept, devised
by mathematicians, of the Erdös Number of a researcher. Here the underlying
social network consists of authors of research papers, with an edge between two
researchers if they are co-authors of some paper. A researcher’s Erdös Number is
simply the length of the shortest path in this graph from the researcher to Erdös,
with low numbers highly prized.

Given complete lists of the vertices and edges of a social network (which unfor-
tunately have not yet been compiled for the above examples), it would be a simple
algorithmic task to verify the 6 Degrees hypothesis, and if 6 is not the correct
number, to determine what that correct number should be. Simply run an APSP

11

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

12 J.L. SANTOS

algorithm on the graph and report the longest shortest path length found, i.e., the
diameter of the graph. Such a computation has been made for a large related social
network. In 2007, Jure Leskovec and Eric Horvitz [LH07], examined a data set
of 30 billion messages and constructed a communication graph with 180 million
vertices (Microsoft Messenger users) and 1.3 billion undirected edges. They found
the average path length among Microsoft Messenger users to be 6.6, close to the
original conjecture. Note, however, that this is the average, not the maximum. The
maximum was 29.

Fighting organized crime: Xu and Chen [XC04] considered a social network
built by extracting noun phrases from crime reports. The vertices of the network
are records of entities (persons, organizations, vehicles, properties, and locations)
stored in crime databases. There is an edge between a pair of entities if they appear
together in the same criminal incident report. The more frequently they appear
together, the stronger the association weight (shorter the edge length). The network
is undirected and usually has high vertex-degrees. Given a subset N of vertices,
Xu and Chen wished to identify criminal associations by determining the shortest
paths between all pairs of vertices in N . This could be accomplished for instance
by a straightforward “one-directional” approach in which, for each vertex i in N ,
one runs Dijkstra’s algorithm until it had determined the shortest path from i to
each other vertex in N .

Computational results were obtained for two networks based on real data taken
from kidnapping and narcotics reports. In the first case, the network had 280 ver-
tices and 25,862 arcs (average vertex-degree: 92.4) and in the second one there
was 4,257 vertices and 733,572 arcs (average vertex-degree: 172.3). The abovemen-
tioned one-directional approach worked best for the narcotics network, but for the
kidnapping network was outperformed by a bi-directional approach.

4. Dynamic Programming

Dynamic programming is a method for efficiently solving optimization prob-
lems that can be broken down into a partially ordered set of sub-problems, where
the optimal solution for one subproblem is determined by the optimal solutions for
its predecessors. The name “dynamic programming” was introduced by Richard
Bellman [Bel52, Bel53] who first systematized the approach. Most dynamic pro-
gramming problems can be reformulated as shortest path problems on directed
acyclic graphs. As an illustration, consider Knuth’s paragraph formatting problem.

In this problem we wish to determine the break points for separating a string of
words into lines to obtain a formatted paragraph. When formatted text is required
to be aligned with both the left and right margins, the choice of break points greatly
affects the quality of the formatted document. The document processing program
TEX uses a dynamic programming algorithm [KP81] to do its line breaking. Such
a program might work as follows:

Suppose we have a paragraph formed by n words w1, . . . , wn, where the word wk

has length |wk| and L is the maximum length allowed for lines in the paragraph,
with |wk| ≤ L for all k. For 1 ≤ i ≤ j ≤ n, let W (i, j) denote the line that
starts with word wi and ends with word wj . If we assume equal-length characters,
including spaces, then the length of line W (i, j) is L(i, j) = (j − i) +

∑j
k=i |wk|.

Suppose that we have a demerit function that assigns a penalty value c(i, j) for

12

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REAL-WORLD APPLICATIONS OF SHORTEST PATH ALGORITHMS 13

each such line. As an example, one could use

c(i, j) =
{

∞ if L(i, j) > L(
L − L(i, j)

)2 otherwise

To find the collection of linebreaks that minimizes the total penalty for the para-
graph (assuming there is no penalty for the last line if it has length L or less, since
it need not be right justified), all we need do is find a shortest path in the following
graph.

There are n + 1 vertices, v0, v1, . . . vn, where vertex vi represents the text
through word wi. We then have an arc for each possible line. Specifically, for
each pair i, j with 1 ≤ i ≤ j ≤ n, there is an arc (vi−1, vj) representing W (i, j).
The length of this arc is c(i, j) unless j = n and L(i, j) ≤ L, in which case it is 0.
It is not difficult to confirm that if v0 = vi0 , vi1 , vi2 , . . . , vik = vn is a shortest path
from v0 to vn in this graph, then there is a minimum-cost version of the paragraph
consisting of the lines W (ih + 1, ih+1), 0 ≤ h < k.

There are thousands of applications of dynamic programming that can be solved
by shortest path algorithms, as here, from multiple sequence alignment in DNA
reconstruction [LR00] to parsing continuous speech [Ney91] to database query
optimization [Cha98]. The interested reader can find further examples for in
[AMO93], for instance. Note that because the graphs that arise are typically
directed and acyclic, one can dispense with the priority queue in implementing Di-
jkstra’s algorithm and simply treat the vertices in breadth first order, yielding a
running time that is linear in the number of edges.

5. Conclusion

This paper has surveyed algorithms and applications for the standard shortest
path problems (P2PSP, SSSP, APSP, K-SPP) and some of their variants. Of neces-
sity, we have been highly selective, particularly in the area of dynamic programming
applications. However, there can be no doubt of the importance of shortest path
computations, and the interested reader is encouraged to read the other papers in
this volume and follow the pointers in our bibliography to learn more.

Acknowledgments

The author would like to express his sincere thanks to the referees for their
valuable suggestions which helped him in modifying and improving the contents of
the manuscript, and to David Johnson who helped in organizing and clarifying the
presentation.

References

[AGM97] N. Alon, Z. Galil, and O. Margalit, On the exponent of the all pairs shortest path
problem, Journal of Computer and System Sciences 54 (1997), no. 2, 255–262.

[AMO89] R. K. Ahuja, T. L. Magnanti, and J. Orlin, Handbooks in operations research and
management science. vol i: optimization, ch. Network Flows, pp. 211–369, North-
Holland, Amsterdam, 1989.

[AMO91] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Some recent advances in network
flows, SIAM Rev. 33 (1991), no. 2, 175–219.

[AMO93] , Network flows – theory, algorithms, and applications, Prentice-Hall, Inc.,
New Jersey, 1993.

[AMOT90] R. K. Ahuja, K. Mehlhorn, J. Orlin, and R. E. Tarjan, Faster algorithms for the
shortest path problem, J. ACM 37 (1990), no. 2, 213–223.

13

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

14 J.L. SANTOS

[Bel52] R. E. Bellman, On the theory of dynamic programming, Proceedings of the National
Academy of Sciences, vol. 38, 1952, pp. 716–719.

[Bel53] , Dynamic programming and a new formalism in the calculus of variations,
Proceedings of the National Academy of Sciences, vol. 39, 1953, pp. 1077–1082.

[Bel58] , On a routing problem, Quarterly Applied Mathematics 16 (1958), 87–90.
[BFSS07] H. Bast, S. Funke, P. Sanders, and D. Schultes, Fast routing in road networks with

transit nodes, Science 316 (2007), no. 5824, 566.
[BRT08] L. S. Buriol, M. G. C. Resende, and M. Thorup, Speeding up dynamic shortest-path

algorithms, INFORMS J. Comput. 20 (2008), no. 2, 191–204.
[Bru07a] B. Brumitt, http://igniteseattle.com/index.php?s=brumitt, February 2007.
[Bru07b] , http://googleblog.blogspot.com/2007/11/road-to-better-path-finding.html,

September 2007.
[Bru07c] , The road to better path finding, http://googleblog.blogspot.com/2007/11/road-

to-better-path-finding.html, June 2007.
[Cal61] T. Caldwell, On finding minimal routes in a network with turn penalties, Com.

ACM 4 (1961), no. 2, 107–108.
[Cal90] R. W. Callon, Use of osi is-is for routing in tcp/ip and dual environments, 1990.
[CGR96] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, Shortest paths algorithms: Theory

and experimental evaluation, Mathematical Programming 73 (1996), no. 2, 129–174.
[CGS99] B. V. Cherkassky, A. V. Goldberg, and C. Silverstein, Buckets, heaps, lists, and

monotone priority queues, SIAM Journal on Computing 28 (1999), no. 4, 1326–
1346.

[Cha98] S. Chaudhuri, An overview of query optimization in relational databases, Proc. ACM
Symp. on Principles of Database Systems, 1998, pp. 34–43.

[Cis] Cisco, OSPF design guide, http://www.cisco.com/warp/public/104/2.html.
[Cis97] , Configuring OSPF, 1997, 1997.
[CM82] J. N. Cĺımaco and E. Q. Martins, A bicriterion shortest path algorithm, European

Journal of Operational Research 11 (1982), 399–404.
[Con] Data Connection, Is-is protocol: Intermediate system - intermediate system,

http://www.dataconnection.com/iprouting/isisprotocol.htm.
[Dan51] G. B. Dantzig, Activity analysis of production and allocation, ch. Application of the

simplex method to a transportation problem, pp. 359–373, NY, John Wiley & Sons,
1951.

[Dan60] , On the shortest route through a network, Management Science 6 (1960),
187–190.

[DF79] E. V. Denardo and B. L. Fox, Shortest route methods: reaching, pruning and buckets,
Operations Research 27 (1979), 161–186.

[DG04] J. Dean and S. Ghemawat, Mapreduce: Simplified data processing on large clusters,
Proceedings of the Sixth Symposium on Operating System Design and Implementa-
tion (OSDI) 2004, 2004, San Francisco, CA, 2004.

[DGKK79] R. Dial, F. Glover, D. Karney, and D. Klingman, A computational analysis of alter-
native algorithms and labeling techniques for finding shortest path trees, Networks
9 (1979), no. 3, 215–248.

[Dia69] R. Dial, Algorithm 360. shortest path forest with topological ordering, Communica-
tions of ACM 12 (1969), 632–633.

[Dij59] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische
Mathematik 1 (1959), 269–271.

[DP84] N. Deo and C. Pang, Shortest path algorithms: taxonomy and annotation, Networks
14 (2) (1984), 275–323.

[Epp98] D. Eppstein, Finding the k shortest paths, SIAM J. Computing 28 (1998), no. 2,
652–673.

[Epp01] , K shortest paths and other ”k best” problems, 2001,
http://www.ics.uci.edu/∼eppstein/bibs/.

[EZ62] J. H. Eaton and L. A. Zadeh, Optimal pursuit strategies in discrete-state probabilistic
systems, Trans. ASME Ser. D, J. Basic Eng 84 (1962), 23–29.

[FF62] L. R. Ford and D. R. Fulkerson, Flows in networks, Princeton University Press,
Princeton, NJ, 1962.

[Flo62] R. W. Floyd, Algorithm 97: Shortest path, Commun. ACM 5 (1962), no. 6, 345.

14

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REAL-WORLD APPLICATIONS OF SHORTEST PATH ALGORITHMS 15

[For56] L. R. Ford, Network flow theory, Tech. Report Paper P-923, The Rand Corporation,
Santa Monica, 1956.

[FT87] M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network
optimization algorithms, J. ACM 34 (1987), no. 3, 596–615.

[FT00] B. Fortz and M. Thorup, Internet traffic engineering by optimizing ospf weights, in
Proc. IEEE INFOCOM, 2000, pp. 519–528.

[GGK84] F. Glover, R. Glover, and D. Klingman, Computational study of an improved shortest
path algorithm, Networks 14 (1984), no. 1, 25–36.

[GH05] A. V. Goldberg and C. Harrelson, Computing the shortest path: A* search meets
graph theory, SODA ’05: Proceedings of the sixteenth annual ACM-SIAM sympo-
sium on Discrete algorithms (Philadelphia, PA, USA), Society for Industrial and
Applied Mathematics, 2005, pp. 156–165.

[GJ79] M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the theory
of NP-completeness, W. H. Freeman, San Francisco, 1979.

[GKW07] A. V. Goldberg, H. K., and R. F. Werneck, Better landmarks within reach., WEA
(Camil Demetrescu, ed.), Lecture Notes in Computer Science, vol. 4525, Springer,
2007, pp. 38–51.

[GM97] Z. Galil and O. Margalit, All pairs shortest paths for graphs with small integer length
edges, Journal of Computer and System Sciences 54 (1997), no. 2, 243–254.

[GM08] E. Gutirrez and A. L. Medaglia, Labeling algorithm for the shortest path problem
with turn prohibitions with application to large-scale road networks, Ann Oper Res
157 (2008), 169–182.

[Gol01] A. V. Goldberg, A simple shortest path algorithm with linear average time, Pro-
ceedings of the 4th. Annual European Symposium Algorithms, vol. 230–241, 2001.

[Gol08] , 2008, Personal communication.
[GP88] G. Gallo and S. Pallottino, Shortest Paths Algorithms, Annals of Oper. Res. 13

(1988), 3–79.
[GT89] H. N. Gabow and R. E. Tarjan, Faster scaling algorithms for network problems,

SIAM Journal on Computing 18 (1989), no. 5, 1013–1036.
[Gut04] R. J. Gutman, Reach-based routing: A new approach to shortest path algorithms

optimized for road networks, ALENEX/ANALC, 2004, pp. 100–111.
[GW05] A. V. Goldberg and R. F. Werneck, Computing point-to-point shortest paths from

external memory., ALENEX/ANALCO (Camil Demetrescu, Robert Sedgewick, and
Roberto Tamassia, eds.), SIAM, 2005, pp. 26–40.

[Hag00] T. Hagerup, Improved Shortest Paths in the Word RAM, 27th Int. Colloq. on Au-
tomata, Languages and Programming, Geneva, Switzerland, 2000, pp. 61–72.

[HNR68] P. E. Hart, N. J. Nilsson, and B. Raphael, A formal basis for the heuristic de-
termination of minimum cost paths, IEEE Transactions on Systems Science and
Cybernetics 4 (1968), no. 2, 100–107.

[HNR72] , Correction to ”a formal basis for the heuristic determination of minimum
cost paths”, SIGART Bull. (1972), no. 37, 28–29.

[HP59] W. Hoffman and R. Pavley, A method for the solution of the th best path problem,
J. ACM 6 (1959), no. 4, 506–514.

[HSW06] M. Holzer, F. Schulz, and D. Wagner, Engineering multi-level overlay graphs for
shortest-path queries, Proceedings of the Eighth Workshop on Algorithm Engineer-
ing and Experiments (ALENEX), SIAM, 2006, pp. 156–170.

[HWZ07] B. Huang, Q. Wu, and F. B. Zhan, A shortest path algorithm with novel heuristics for
dynamic transportation networks, International Journal of Geographical Information
Science 21 (2007), no. 6, 625–644.

[Joh77] D. B. Johnson, Efficient algorithms for shortest paths in sparse networks, Journal
of the ACM 24 (1977), no. 1, 1–13.

[Joh82] , A priority queue in which initialization and queue operations take o(log log
d) time, Mathematical Systems Theory 15 (1982), no. 4, 295–309.

[Jok66] H. Joksch, The shortest route problem with constraints, Journal of Mathematical
Analysis and Applications 14 (1966), 191–197.

[KKP93] D. R. Karger, D. Koller, and S. J. Phillips, Finding the hidden path: Time bounds for
all-pairs shortest paths, SIAM Journal on Computing 22 (1993), no. 6, 1199–1217.

15

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

16 J.L. SANTOS

[KLF04] S. Koenig, M. Likhachev, and D. Furcy, Lifelong planning a*, Artif. Intell. 155
(2004), no. 1–2, 93–146.

[KP81] D. E. Knuth and M. F. Plass, Breaking paragraphs into lines, Software: Practice
and Experience 11 (1981), no. 11, 1119–1184.

[LH07] J. Leskovec and E. Horvitz, Planetary-scale views on an instant-messaging network,
Technical Report MSR-TR-2006-186, Microsoft Research, June 2007, Also available
at http://arxiv.org/abs/0803.0939v1. A shorter version appeared at WWW 2008.

[LR00] M. Lermen and K. Reinert, The practical use of the a* algorithm for exact multiple
sequence alignment, Journal of Computational Biology (2000), 655–671.

[Mar84] E. Q. Martins, An algorithm for ranking paths that may contain cycles, European
Journal of Operational Research 18 (1984), 123–130.

[MBBC07] K. Madduri, D. A. Bader, J. W. Berry, and J. R. Crobak, An experimental study
of a parallel shortest path algorithm for solving large-scale graph instances, 2007
Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments
(ALENEX), New Orleans, Louisiana, January 2007.

[Mey01] U. Meyer, Single-Source Shortest Paths on Arbitrary Directed Graphs in Linear
Average Time, 12th Symp. on Discr. Alg., 2001, pp. 797–806.

[MG04] R. Montemanni and L. M. Gambardella, An exact algorithm for the robust shortest
path problem with interval data, Computers and Oper. Res. 31 (2004), no. 10, 1667–
1680.

[MHSWZ07] M. Müller-Hannemann, F. Schulz, D. Wagner, and C. Zaroliagis, Algorithmic
methods for railway optimization, Lecture Notes in Computer Science, vol. 4359,
ch. Timetable Information: Models and Algorithms, pp. 67–90, Springer Berlin /
Heidelberg, September 2007.

[Min58] G. J. Minty, A variant on the shortest-route problem, Operations Research 6 (1958),
no. 6, 882–883.

[Moo57] E. F. Moore, The shortest path through a maze, Proceeding of the International
Symposium on the Theory of Switching (Part II), vol. 30, Harvard University Press,
1957, pp. 285–292.

[Moy98] J. T. Moy, OSPF: Anatomy of an internet routing protocol, Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1998.

[MS00] E. Q. Martins and J. L. Santos, A new shortest paths ranking algorithm, Investigação
Operacional 20 (1) (2000), 47–62.

[MS07] C. P. Medarda and N. Sawhneyb, Airline crew scheduling from planning to opera-
tions, European Journal of Operational Research 183 (2007), no. 3, 1013–1027.

[Nac95] K. Nachtigal, Time depending shortest-path problems with applications to railway
networks, European Journal of Operations Research 83 (1995), 154–166.

[Ney91] H. Ney, Dynamic programming parsing for context-free grammars in continuous
speech recognition, IEEE Trans. Signal Processing 39 (1991), no. 2, 336–340.

[Pa06] A. Pais and J. M. Paix ao, A branch-and-price approach for the bus driver scheduling
problem, Working Paper 3, Centro de Investigação Operacional da Faculdade de
Ciências da Universidade de Lisboa, 2006.

[Pal84] S. Pallottino, Shortest-path methods: Complexity, interrelations and new proposi-
tions, Networks 14 (1984), no. 2, 257–267.

[Pap74] U. Pape, Implementation and efficiency of moore-algorithms for the shortest route
problem, Mathematical Programming 7 (1974), 212–222.

[Pet04] S. Pettie, A new approach to all-pairs shortest paths on real-weighted graphs, The-
oretical Computer Science 312 (2004), no. 1, 47–74.

[PS08] J. M. Paixão and J. L. Santos, A new ranking path algorithm for the multi-objective
shortest path problem, Tech. Report 08-27, Department of Mathematics of the Uni-
versity of Coimbra, 2008, Submitted for publication (revision phase).

[PSWZ04] E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis, Experimental comparison of
shortest path approaches for timetable information, Proceedings of the Sixth Work-
shop on Algorithm Engineering and Experiments (ALENEX), SIAM, 2004, pp. 88–
99.

[Ram96] R. Raman, Priority Queues: Small, Monotone and Trans-Dichotomous, 4th Europ.
Symp. on Algo., Springer-Verlag, Lect. Notes in CS 1136, 1996, pp. 121–137.

[Rob04] S. Robinson, Mapping magic, SIAM news (2004).

16

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REAL-WORLD APPLICATIONS OF SHORTEST PATH ALGORITHMS 17

[RR96] G. Ramalingam and T. Reps, An incremental algorithm for a generalization of the
shortest path problem, J. Algorithms 21 (1996), no. 2, 267–305.

[San03] J. L. Santos, Optimização vectorial em redes, Ph.D. thesis, Departamento de
Matemática, Universidade de Coimbra, 2003.

[Sch] F. Schulz, Shortest path algorithms: Some references, http://i11www.iti.uni-
karlsruhe.de/ fschulz/shortest-paths/.

[Sei95] R. Seidel, On the all-pairs-shortest-path problem in unweighted undirected graphs,
Journal of Computer and System Sciences 51 (1995), no. 3, 400–403.

[SJK03] L. Speicys, C. S. Jensen, and A. Klygis, Computing data modeling for network-
constrained moving objects, Proc. 11th ACM Int. Symp. on Adv. in Geo. Info. Sys.,
ACM Press, 2003, pp. 118–125.

[SS05] P. Sanders and D. Schultes, Highway hierarchies hasten exact shortest path queries.,
ESA (Gerth Stlting Brodal and Stefano Leonardi, eds.), Lecture Notes in Computer
Science, vol. 3669, Springer, 2005, pp. 568–579.

[SS07] , Engineering fast route planning algorithms., WEA (Camil Demetrescu, ed.),
Lecture Notes in Computer Science, vol. 4525, Springer, 2007, pp. 23–36.

[SWW00] F. Schulz, D. Wagner, and K. Weihe, Dijkstra’s algorithm on-line: an empirical case
study from public railroad transport, J. Exp. Algorithmics 5 (2000), 12.

[SZ99] A. Shoshan and U. Zwick, All pairs shortest paths in undirected graphs with integer
weights, FOCS ’99: Proceedings of the 40th Annual Symposium on Foundations of
Computer Science (Washington, DC, USA), IEEE Computer Society, 1999, pp. 605–
614.

[Tak92] T. Takaoka, A new upper bound on the complexity of the all pairs shortest path
problem, Information Processing Letters 43 (1992), no. 4, 195–199.

[Tho04] M. Thorup, Integer priority queues with decrease key in constant time and the single
source shortest paths problem, J. Comput. Syst. Sci. 69 (2004), no. 3, 330–353.

[vEBKZ76] P. van Emde Boas, R. Kaas, and E. Zijlstra, Design and implementation of an
efficient priority queue, Theory of Computing Systems 10 (1976), no. 1, 99–127.

[Vin74] P. Vincke, Problèmes multicritères, Cahiers du Centre d’Études de Recherche
Opérationelle 16 (1974), 425–439.

[Wag76] R. A. Wagner, A shortest path algorithm for edge-sparse graphs, J. ACM 23 (1976),
no. 1, 50–57.

[War62] S. Warshall, A theorem on boolean matrices, J. ACM 9 (1962), no. 1, 11–12.
[WH60] P. D. Whiting and J. A. Hillier, A method for finding the shortest route through a

road network, Operations Research Quarterly 11 (1960), 37–40.
[Wik] Wikipedia, Six degrees of separation, http://en.wikipedia.org/wiki/Six degrees of separation.
[WW05] D. Wagner and T. Willhalm, Drawing graphs to speed up shortest-path computa-

tions., ALENEX/ANALCO (Camil Demetrescu, Robert Sedgewick, and Roberto
Tamassia, eds.), SIAM, 2005, pp. 17–25.

[XC04] J. J. Xu and H. Chen, Fighting organized crimes: using shortest-path algorithms to
identify associations in criminal networks, Decis. Support Syst. 38 (2004), no. 3,
473–487.

[Zwi98] U. Zwick, All pairs shortest paths in weighted directed graphs - exact and almost
exact algorithms, FOCS ’98: Proceedings of the 39th Annual Symposium on Foun-
dations of Computer Science (Washington, DC, USA), IEEE Computer Society,
1998, Los Alamitos, CA, November 8-11, 1998, pp. 310–319.

[Zwi02] , All pairs shortest paths using bridging sets and rectangular matrix multi-
plication, Journal of the ACM 49 (2002), no. 3, 289–317.

Department of Mathematics, University of Coimbra, Portugal
Current address: Department of Mathematics, Largo D. Dinis, Apartado 3008, 3001 454

Coimbra, Portugal. Fax number: 00 351 239793069
E-mail address: zeluis@mat.uc.pt

17

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science

An Experimental Evaluation of Point-To-Point Shortest
Path Calculation on Road Networks with Precalculated

Edge-Flags

Ulrich Lauther

Abstract. An efficient algorithm for fast and exact calculation of shortest
paths in graphs with geometrical information in nodes (coordinates), e.g., road
networks, is presented. The method is based on preprocessing and therefore
best suited for static graphs, i.e., graphs with fixed topology and edge weights.

In the preprocessing phase, the network is divided into regions and edge
flags are calculated that indicate whether an edge belongs to a shortest path
into a given region.

In the target application (say, a navigation system) where we want to
calculate shortest paths, only those edges that carry the appropriate flag need
to be investigated.

We compared this method to a classical Dijkstra implementation using
USA road networks with three different edge weight metrics (travel times,
distance, and unit edge weights) and report on speedup, preprocessing time,
and memory needed to store edge flags.

1. Introduction

A huge amount of research work has been done concerning fast shortest path
algorithms, but - if we disregard preprocessing methods for a moment - still efficient
exact algorithms are based on Dijkstra’s algorithm [Dij59], combined with efficient
data structures for implementing the priority queue [Dial79, Tar83, AhMaOr93],
which is a central part of an efficient implementation.

Given a directed or undirected graph G = (V, E) with n nodes V and m
edges E, edges e = (v, w), positive edge weights w(e), and two special nodes s
(source) and t (sink), calculating a shortest path (i.e., a path with minimum total
edge weight) between s and t can be solved efficiently using Dijkstra’s algorithm.
Depending on data structures used and additional assumptions on the density of the
graph and the distribution of edge weights, the worst case complexity lies between
O(m + n log n) (for general graphs) and O(m) (for a sparse graph with limited,
integral edge weights [Dial79]).

1991 Mathematics Subject Classification. Primary 54C40, 14E20; Secondary 46E25, 20C20.
Key words and phrases. shortest path, preprocessing, navigation system.

c⃝0000 (copyright holder)

1

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

19

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

21

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

19

https://doi.org/10.1090/dimacs/074/02

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

2 ULRICH LAUTHER

In a typical geographical application, e.g., finding a shortest path in a road
map, the expected running time of a careful implementation will be O(d2 log d) if
d is the number of edges in the shortest path; as we observe a circular expansion
of the algorithm around the source node, O(d2) nodes will be touched and each
one will be inserted into and retrieved from a priority queue with size O(d2) once.
(Updates of the priority queue are of the same order, as the node degree in road
networks is limited and small). ”Careful implementation” implies for instance that
- other than usually seen in textbooks - an initialization phase processing all nodes
in the network is avoided.

Often these running times are prohibitive, e.g., in autonomous automotive nav-
igation systems with limited resources (memory and CPU power). Note that the
CPU speeds of current car navigation systems are - due to cost limitations - 10 to
20 times lower then that of today’s typical personal computers that have been used
for the experiments reported in this paper [Sch08]. Also, the memory access times
of these systems (CD-ROM or flash memories) impose a serious bottleneck.

In practice, some speed-up is often achieved by compromising accuracy: heuris-
tics are employed that limit the search space and hopefully find reasonable solu-
tions. However, the latter is not guaranteed and not always achieved in practice.
Typical examples of such heuristics are the layer concept found in autonomous
car navigation systems [Fli04] and heuristic variants of the A∗-algorithm [Do67,
HaNiRa86, Po71, AhMaOr93].

Much less effort has been spent on solutions which use preprocessing, i.e., trade
off-line preprocessing time for running time in the target application. Of course,
preprocessing is not trivial: we cannot afford to calculate (and store!) all shortest
paths that might be requested in the application.

This paper describes a very successful preprocessing strategy and its efficient
implementation. Here, successful means a big speed-up in the target application
and acceptable memory needs, efficient implies acceptable preprocessing running
time. Moreover, the resulting algorithms are exact, i.e., the shortest (cheapest)
path is guaranteed to be found.

At least in our implementation, the suggested method needs not just an abstract
graph, but also some geometrical information: coordinates of nodes. In addition,
we assume positive length (or weight) of edges. No further assumptions (e.g.,
planarity) are made. (As will be seen, we use coordinates for partitioning a road
network into regions; other ways of partitioning are possible, but not discussed in
this paper.)

2. Previous Work

The work reported here was done in the late nineties already, but published at
that time only in the form of patent applications [LrEn03, LrEn98]. A scientific
publication was made available in 2004 [Lr04], but contained quite limited exper-
imental results. More experimental results have been given by Köhler, Möhring,
and Schilling [KoMoSc05].

Other preprocessing approaches include Ertl’s work [Er98] using edge radii,
the work by Goldberg and Harrelson [Go05], who use so called land marks that
give upper bounds for the travel time to the target node and can be used in A∗

search, Wagner et. al.’s [Wa05] work on using geometric containers enclosing sub-
trees of shortest paths trees to reduce the search space, and finally hierarchical

202220

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

EXPERIMENTAL EVALUATION OF EDGE-FLAGS BASED SHORTEST PATH COMPUTATION3

methods [Fli04, SaSc05] that are similar to the heuristics currently used in pro-
duction navigation systems, but - unlike these heuristics - guarantee optimum path
calculations.

To the best of our knowledge, most of these approaches are - in comparison to
the method described here - inferior in terms of speed-up achieved and/or memory
needed to store results of preprocessing. One competitive method seems to be
the hierarchical approach presented by Sanders and Schultes [SaSc05], but this
method needs major modifications of the shortest path implementation in the target
application that has to deal with the hierarchy imposed on the network.

3. Basic Idea: Edge Flags

When we drive through a road network in real life, we usually do not calculate
shortest paths at all; we follow signposts. These do not need to be very specific:
driving from Munich to Hamburg we do not (initially) care whether we are heading
for the Binnenalster or the Reeperbahn, we just follow the signs to Hamburg.

This principle can be transferred to a software solution.
Let the road map be represented by a graph G = (V, E) with n nodes and m

edges. Edges carry two weights (e.g., length or estimated travel time), one for the
forward direction, one for the backward direction. (A one-way street would have
an infinite weight in one direction).

We first partition the whole network into r regions i. These regions should be
geometrically connected, but the only hard requirement is that each node v of the
network belongs to exactly one region, and that (in the application) we have fast
access to a node’s region (for instance by way of a region-id per node). We then
define two edge flags for each edge e = (v, w) and region i, vflage,i and wflage,i.
Let us (for now) assume that node v does not belong to region i. Then edge flag
vflage,i is set iff there is a shortest path from node v over edge e into region i.
wflage,i is defined in a similar way. Thus we have m ∗ r ∗ 2 different flags, and we
need 1 bit to store each of these flags. These flags are our road signs; how they can
be calculated will be discussed later

4. How to Use Edge Flags

Utilization of edge flags can be added to any existing shortest path algorithm;
in Fig. 1 we show the Dijkstra algorithm with edge flag enhancements printed in
bold face. We use pseudo-code, which is very near to the actual implementation
based on our C++ class library TURBO [Lr00]. To utilize edge flags we need just
two additional lines, one to retrieve the region index of the target node, the other
one for skipping edges which cannot be on the shortest path to the target. This
simple trick gives an enormous reduction of nodes that need to be scanned, and
thus a corresponding speed-up for the shortest path calculation.

(Note that in a real application the initialization of all nodes would be done
outside the Dijkstra-procedure only once; inside the procedure, we would keep track
of touched nodes and re-initialize only these before the procedure returns. Or we
may use an even faster method described in Section 10.1.)

5. The Problem of Cones

Coming back to our previous example, as we approach Hamburg we need to
make up our mind, whether to head for Binnenalster or Reeperbahn. The signs

EVALUATION OF POINT-TO-POINT SHORTEST PATH CALCULATION 212321

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

4 ULRICH LAUTHER

int dijkstra(Graph& g, Node* source, Node* target) {

int target_region = target->region();

// initialize all nodes:
Node* v;
forall_nodes(v,g) v->dist = ∞;

// initialize priority queue:
priority_queue q;
source->dist = 0;
q.insert(source);

while ((v = q.del_min())) { // while q not empty
if (v == target) return v->dist;
Node* w;
Edge* e;
forall_adj_edges(w,v,e,g) { // scan node v

if (! flagged(v,e,target_region)) continue;
if (w->dist > v->dist + e->length) {

w->dist = v->dist + e->length;
if (q.member(w)) q.update(w);
else q.insert(w);

}
}

}
return ∞;

} // dijkstra

Figure 1. Edge-flags-enhanced Dijkstra code.

pointing to Hamburg are not very helpful anymore. When we use edge flags as
described above and animate the implementation, we observe that in the initial
part of the route very few nodes are touched that do not belong to the final shortest
path. This is so because usually only one edge out of a node v has its flag on for a
particular region which is far away from v’s region. However, when we are near the
target region, the situation changes. As edge flags describe shortest routes to all
nodes within the region, now many edges out of a node will have its flag set and we
observe a broad cone of touched nodes in front of the target region. Fig. 2 shows
an example of such a cone.

This cone can easily be avoided: if we had started the shortest path calculation
at the target (now looking for the shortest path to the source node), we would not
have had a cone there, but one in front of the source region. We can combine the two
approaches (and their benefits) by using a bidirectional shortest path algorithm,
expanding from source and target simultaneously. The two expansions will meet
somewhere in the middle between source and target and hopefully before the cones
start to develop. This is at least true when source and target are far from each

222422

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

EXPERIMENTAL EVALUATION OF EDGE-FLAGS BASED SHORTEST PATH COMPUTATION5

Figure 2. Cone in Front of the Target Region

other; if they are near to each other, we do not have a problem with computation
time in the first place.

There is a small problem with this approach: when we expand from the target,
we have to account for the fact that we are driving (one-way) roads in the wrong
direction. To compensate for this, we have to use the ”wrong” weight value for each
edge traversed. However, the edge flags as defined above have not been calculated
for this situation. As a consequence, we need four flags per bidirectional edge and
region, two for the nominal driving direction and two for the wrong one.

We also have to make sure that the two paths developing from source and
target meet in a common node. One way to guarantee this, is to make sure that
all edges (v, w) on a shortest path from v into region i are flagged, not just one out
of v (which would be sufficient in a unidirectional implementation). Another way
would be to define canonical shortest paths in a way that the shortest path from
node v to node w uses the same edges as the shortest path from node w to node v
(calculated using the ”wrong” edge weights), but we did not find an efficient way
to achieve this.

A further complication arises, when we are inside the target region. For a
thorough discussion of this special case see Section 9.

6. How to Calculate Edge Flags

The key question is, of course, how to calculate the edge flags in an efficient
way. This is where the problem gets interesting (or where the fun begins). In this
paper, we will only give a rough idea, without going into all details.

EVALUATION OF POINT-TO-POINT SHORTEST PATH CALCULATION 232523

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

6 ULRICH LAUTHER

6.1. A Simple but dead slow method. The simplest method is as follows:
for each node v in a region i we calculate a tree of shortest paths, with node v as
its root. We can use Dijkstra’s algorithm for this purpose. When a tree has been
calculated, each node carries a distance label, which gives the node’s distance to
the root. Then we look at all edges e = (v, w): if the difference between the two
distances distance(v) and distance(w) corresponds to the length (or weight) of e,
this edge is in some shortest path out of region i and we can set the corresponding
edge flag. Flags from different trees within the same region are or-ed together.
(Actually we are interested in shortest paths into region i, not out of it; we fix this
by using the ”wrong” edge weights).

Note that - as discussed in Section 5 not only edges which form the shortest-
path tree are flagged, but all edges without ”slack”; thus we have to inspect all
edges after each tree calculation.

If we have done all these tree calculations (two for each node, as we need four
flags, see above) and edge inspections (about 20 weeks later for a road map of
Germany containing 1.2 million edges and using an older CPU, see below) we can
write the collected flags to disk and are done.

6.2. A somewhat faster method. We can classify the edges into two types:
internal edges and interface edges. Internal edges are those that connect two nodes
which belong to the same region. Interface edges connect nodes that belong to
different (usually geometrically adjacent) regions. Based on the classification of
edges we can classify nodes into interior nodes and exported nodes. Exported nodes
are nodes which are incident to at least one interface edge. All others are interior
nodes. Obviously, when we try to reach a target node in some region i (the target
region) from the outside, we have to traverse some interface edge and thus cross an
exported node of that region. Therefore, it is sufficient to apply the tree calculation
process just discussed to exported nodes. After nodes have been assigned to regions
(see Section 8 for details), it is easy to identify exported nodes and to store them in
a list for each region. We just look at all nodes of a region and check outgoing edges;
if the edge connects into another region, both nodes can be marked as exported
nodes and put into the respective list. If we now apply our flag calculation method
to exported nodes only, we can cut down the running time for the mentioned data
set from 20 weeks (estimated) to about 35 hours. (Running times in this paragraph
have been measured on a somewhat outdated 1 GHz Pentium III).

6.3. A fast but wrong method. One might be tempted to suggest the
following clever way to achieve an even faster solution: Instead of expanding from
one exported node of a region at a time, expand from all exported nodes of a
region simultaneously. This is easy to implement: we initialize the priority queue
of Dijkstra’s algorithm with all the exported nodes, after setting their distance to
zero. Then we keep expanding nodes until the queue is empty. This is equivalent
to expanding from some virtual inner node of the region.

This method is fast, but unfortunately wrong. Resulting flags do not reflect
shortest paths to any interior node of a region (or equivalently to any exported node
of the region), but to the nearest exported node. Thus, in the target application,
we would generate paths that pass trough the exported node of the target region
that is nearest to the source node and from there run along a shortest path to the
target node. This is not necessarily a shortest path between source and target.

242624

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

EXPERIMENTAL EVALUATION OF EDGE-FLAGS BASED SHORTEST PATH COMPUTATION7

6.4. The Fast Way. An other obvious attempt to achieve faster tree calcu-
lations uses the observation that trees rooted at neighboring exported nodes will
usually show much similarity. A method that exploits this fact has been developed
and gives indeed another big speed-up. (For the example and hardware mentioned,
we achieve a preprocessing time of about 3.75 h).

Preprocessing times for the DIMACS-provided USA road networks using mod-
ern hardware are reported in the result section.

Unfortunately, the algorithms actually used (exploiting similarity of trees) are
proprietary and thus cannot be discussed in this paper. However, a similar approach
to this problem has been discussed in [HiKoMo06].

7. Saving Space

As described, we would need 4r bits per edge when we use r regions. Some of
these flags are redundant (in case of one way streets). For some edges all flags are
zero and need not be stored individually. And different edges may share the same
set of flags. Using these observations we can greatly reduce the space needed for
edge flags: In a first step we calculate four bit strings per edge, each containing r
bits. Then we eliminate duplicates by inserting for each edge its four bit strings
into a dictionary (only if it is not yet in the dictionary) and let the edge point to its
bit strings. (One could also use sorting to eliminate duplicates.) For the road maps
considered in the next section, this technique reduces the number of bit strings to
be stored to between 0.2 % to 5.9 % (average 1.4 %) of the initially calculated
strings. This implies that preprocessing needs considerably (here up to 500 times)
more memory than is finally needed to store as result and to be used by the target
application.

8. How to Define Regions

So far we have not considered how regions are defined. This may be applica-
tion specific. Many applications use - due to main memory shortage - anyhow a
parcelized data structure; these parcels or groups of parcels could be used to define
regions.

In our program, two different methods have been implemented for region def-
inition, a very simple rectangular grid method and a slightly more sophisticated
square covering method. Both methods take an approximate number of regions, r,
as input parameter.

8.1. Grid based region definition. We first calculate the bounding box of
the whole network; this takes one pass over all nodes. From the area of the bounding
box and the number r of regions to be generated we calculate the area and the
width w of one square region. Relating w to width and heights of the bounding box
gives us two numbers nx and ny, which are then rounded up. Now the bounding
box is cut into nx columns and ny rows, resulting in nearly square regions, whose
addresses are stored in a two-dimensional array. In a second pass nodes are assigned
to regions; horizontal and vertical region indices can be calculated from a node’s
coordinates and the final grid width and height derived from nx and ny. Finally,
empty regions are weeded out. Usually, the number of regions created will be
smaller than the initially requested number, due to some empty regions.

EVALUATION OF POINT-TO-POINT SHORTEST PATH CALCULATION 252725

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

8 ULRICH LAUTHER

8.2. Square covering. Here again we start by finding the bounding box and
the width of a square region. Based on this width, we imagine the whole area to be
partitioned into horizontal stripes and create one empty list of nodes for each stripe.
Now each node is inserted into the appropriate list based on its y-coordinate. List
are then sorted by x-coordinates. Scanning the sorted lists we can assign nodes to
regions; whenever the next node does not fit into the current region, a new region
is started. Other than in the grid-based method, gaps develop between horizontally
consecutive regions and regions are in general not vertically aligned. The number
of regions (of limited size) needed to cover the whole set of nodes is smaller than
in the grid based method.

We can reduce this number further by extending a region vertically as soon as
its lower and upper x-coordinate is known by ”stealing” nodes from the next stripe
that fit into this x-interval. This will lead to geometrically overlapping rectangular
regions, but of course each node belongs to exactly one region.

A similar algorithm [Go91] is well known for covering a set of points with
circular disks of a specified maximum size.

This method is slightly slower than the simple grid based method. No detailed
investigation on its impact on preprocessing results has been carried out.

8.3. Further methods for region definition. Regions could also be formed
by clustering algorithm, e.g., by using a combination of a minimum spanning tree
algorithm and tree cutting [KuMi77] as described in [Lr03]. In this case, we could
form regions without needing node coordinates. However, we did not investigate
this method.

9. How to Use Edge Flags, A Closer Look

When discussing the flag-enhanced shortest path algorithms it was assumed
that the node v being scanned is outside the target region. Here we discuss the
general case. In the following, the term ”target region” is used relative to the mode
of expansion in the bidirectional Dijkstra algorithm, i.e., if we are expanding from
the target node, the source node’s region is the relative target region. There are
two main cases to consider:

1: Source and target nodes belong to different regions.
1.1: node v is outside the target region i. We follow edges out of v only

if the v-flag for region i has been set.
1.2: node v is inside the target region i. When investigating edge e =

(v, w), there must be a shortest path from some exported node of
region i trough v over edge e to node w; otherwise, this edge needs
not to be considered. We can check this by inspecting the edge flag
of e for node w. As we are now driving in the opposite direction
relative to the exported node passed earlier, we need to use flags for
another direction than outside the target region.

2: Source and target nodes belong to the same region.
2.1: node v is outside the target region i. This is a totally legal sit-

uation; a shortest path between two nodes of one region may run
trough one or more other regions. However, we know that we need
to get eventually back to the target region and we must do this along
a shortest path. So case 1.1 applies. Thus, even when source and

262826

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

EXPERIMENTAL EVALUATION OF EDGE-FLAGS BASED SHORTEST PATH COMPUTATION9

target are within the same region we achieve some speed-up, as we
limit the investigation of nodes which are outside this region.

2.2: node v is inside the target region i. Here we cannot use any flags.
Let us reconsider case 1.1: a shortest path from node v over edge e to the target
node must exist; the respective flag is checked. But, there must also be a shortest
path from node w over edge e back to the source region (driving in the wrong
direction); otherwise w would be reached along a shortest path over another edge.
We can use this observation to construct an unidirectional algorithm that avoids the
cones problem discussed in Section 5; however, the bidirectional version is slightly
faster.

For the bidirectional method to work, it is essential to flag all tight edges, not
just those in the shortest path tree, as was pointed out in Section 5; this is the case
in our implementation.

10. Experimental Results

Experiments have been made with road networks provided by the 9th DIMACS
challenge. We report on running times for preprocessing, speed-up, and efficiency
(see definition below) for point-to-point queries, and memory needs for storing edge
flags. For comparison we use our own Dijkstra implementation, described in the
next subsection.

As preprocessing needs considerable intermediate memory (much more than
needed to store the results), the CTR-instance with about 14 million nodes was the
largest that we could run in 32-bit mode. (Under Linux, we can address 4 GBytes
in 32-bit mode).

10.1. How to Make the Dijkstra-Algorithm Run Fast. There are two
issues with implementing Dijkstra’s algorithm efficiently: Firstly, we need an effi-
cient priority queue implementation. Secondly, we should avoid re-initialization of
all nodes prior to each path calculation.

For the first issue, we experimented with leftist trees, splay trees, the radix-
queue [AhMaOr93], and the bounded priority queue from Dial’s [Dial79] imple-
mentation. For the USA road-maps, we found the latter to be best suited; it is also
the simplest one.

Avoiding re-initialization of the whole network is crucial when source and target
nodes are close to each other; re-initialization of the whole network (i.e., resetting
the distance labels of nodes) when only a small part of it was touched would be
a waste of time and dominate the running time. One obvious way to avoid this
is to keep track of touched nodes in a list and to use this list for re-initialization.
But there is a better way: for each node we have a field ”mark”, initially set to
zero, and we have a global variable ”visited”, initially set to 1. Both, ”mark” and
”visited” are integers. A node is considered unvisited, when its mark is unequal
to visited. When a node is reached during the path calculation and it is unvisited,
its distance label is considered invalid and will be set according to the current path
length; its mark is set to visited. If it is visited, its distance label is considered valid
and will be updated if appropriate. When the search for a path terminates, the
value of visited is incremented by one. This will make all nodes unvisited in O(1)
time. Using this technique, we need one additional simple operation (the marking
step) for each visited node; the check for being visited comes for free, as we need

EVALUATION OF POINT-TO-POINT SHORTEST PATH CALCULATION 272927

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

10 ULRICH LAUTHER

Table 1. Comparison of conventional Point-to-Point implemen-
tations, using networks with travel times

nodes edges running time own/D touched own/D
DIMACS own DIMACS own

NY 264346 733846 37.7 44.7 1.18 132871.7 132872.7 1.0
BAY 321270 800172 43.9 55.3 1.26 160053.1 160054.1 1.0
COL 435666 1057066 63.4 85.7 1.35 210653.1 210654.1 1.0
FLA 1070376 2712798 178.3 194.2 1.09 511662.6 511663.6 1.0
NW 1207945 2840208 188.6 255.1 1.35 600689.7 600690.7 1.0
NE 1524453 3897636 270.6 319.6 1.18 745720.3 745721.2 1.0
CAL 1890815 4657742 336.4 396.1 1.18 924878.7 924879.7 1.0
LKS 2758119 6885658 533.9 654.5 1.23 1399986.8 1399987.8 1.0
E 3598623 8778114 749.9 933.1 1.24 1807251.0 1807252.0 1.0
W 6262104 15248146 1444.7 1688.4 1.17 3168381.6 3168382.6 1.0
CTR 14081816 34292496 5157.8 5274.3 1.02 7189658.1 7189659.1 1.0

to distinguish first time visited nodes and revisited nodes anyhow, in order to do
the appropriate priority queue operation (insert or update). With the list based
method, on the other hand, we need one insert- and one remove-operation per
visited node which leads to the same time complexity but is considerably slower,
as was also verified by experiments. (One referee pointed out that the technique
discussed above is well known under the name of time − stamping.)

In Table 1 we compare the running times and number of touched nodes of our
own and the DIMACS-provided implementation for road networks with travel times
and random point-to-point pairs as generated by the provided software. Running
times are given in milliseconds/path and were measured - as all other results re-
ported in this section - on an AMD Opteron Processor 252 with 2.6 GHz running
in 32-bit mode under Linux. We used the GNU-compiler gcc version 4.0.2 with
optimization flag -O4.

We see that our Dijkstra-implementation is between 2 % and 35 % slower than
the DIMACS-provided software - possibly due to our list based data structure used
for storing and traversing the graphs. As the implementation using edge flags uses
the same graph data structure, we will use our own Dijkstra-implementation for
comparisons in what follows.

10.2. Preprocessing. Table 2 shows preprocessing time and memory needs
for different edge weights, namely travel times, distance, and unit edge weights.

Running times are given in CPU-seconds, memory is the space needed per
edge in Bytes which includes a 4-Byte pointer to a bit string and the average size
of the bit string itself. This is the additional memory needed in the application,
resulting from preprocessing; memory needs during preprocessing are much higher,
cf. Section 7.

The number of regions was set to 200 for all runs and the simple grid based
scheme described in Section 8.1 used to define regions. (The actual number of
non-empty regions may be smaller, e.g., if a region covers the sea or a large lake.)

We see that running times and memory needs are lower for the travel time met-
ric than for the distance metric, probably because there are more similar shortest

283028

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

EXPERIMENTAL EVALUATION OF EDGE-FLAGS BASED SHORTEST PATH COMPUTATION11

Table 2. Running times and memory needs for preprocessing and
for different edge weight metrics

travel time distance unit weights
Instance nodes run time memory run time memory run time memory
NY 264346 123.0 7.5 124.9 9.5 97.4 9.1
BAY 321270 127.0 6.1 160.4 7.2 103.6 7.3
COL 435666 179.4 6.3 195.8 7.5 125.3 7.7
FLA 1070376 289.7 4.9 462.9 5.7 222.5 5.5
NW 1207945 666.4 5.9 800.9 6.9 452.5 6.6
NE 1524453 937.7 5.7 954.9 6.9 611.4 6.5
CAL 1890815 1091.6 5.4 1291.5 6.4 712.0 6.1
LKS 2758119 1475.7 5.5 2372.3 6.5 1077.8 6.1
E 3598623 2095.8 5.2 2108.5 6.1 1309.3 5.8
W 6262104 6126.6 5.3 7200.9 6.3 4860.6 6.0
CTR 14081816 25808.1 5.4 25975.6 6.6 16488.5 6.2

0 2 ×106 4 ×106 6 ×106 8 ×106 1.0 ×1071.2 ×1071.4 ×1071.6 ×107
0

5 ×103

1.0 ×104

1.5 ×104

2.0 ×104

2.5 ×104

3.0 ×104

Figure 3. Running times [seconds] for preprocessing as a function
of the number of nodes (solid: travel time metric, dotted: distance
metric, dot-dashed: unit edge weights)

paths that can be handled together and produce similar edge flags. The memory
need for unit edge weights is similar to that of the distance metric (for the same
reason), but running times are lower, due to faster priority queue operations.

The graph in Fig. 3 shows how the running time increases with the number of
nodes.

EVALUATION OF POINT-TO-POINT SHORTEST PATH CALCULATION 293129

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

12 ULRICH LAUTHER

Table 3. Preprocessing time [sec] and average path calculation
times [msec] with (fast) / without (slow) preprocessing for road-
maps with travel times.

Instance nodes pre slow fast slow/fast pre/slow eff
NY 264346 123.0 44.7 0.3 141.5 2750.4 66.9
BAY 321270 127.0 55.3 0.4 146.2 2298.7 70.1
COL 435666 179.4 85.7 0.8 109.1 2092.8 54.3
FLA 1070376 289.7 194.2 1.2 161.9 1491.6 41.2
NW 1207945 666.4 255.1 1.4 182.4 2612.0 60.9
NE 1524453 937.7 319.6 1.3 249.1 2934.3 51.9
CAL 1890815 1091.6 396.1 2.1 190.6 2755.9 41.1
LKS 2758119 1475.7 654.5 2.4 272.6 2254.6 57.1
E 3598623 2095.8 933.1 3.5 269.8 2246.2 39.9
W 6262104 6126.6 1688.4 4.4 385.5 3628.5 57.3
CTR 14081816 25808.1 5274.3 7.5 701.0 4893.2 43.1

10.3. Random Point Pairs. In this paragraph we show results (for differ-
ent edge weight metrics) for the 1000 random point pairs per network that were
provided with the DIMACS benchmark data.

For the evaluation of preprocessing methods, not only the speed-up achieved
is interesting, but also the total cost (in terms of running time) for preprocessing
plus path calculations. Preprocessing pays off when the sum of preprocessing time
tpre and production time n tfast for calculating n shortest paths is lower than that
of just using the slow algorithm n tslow. The break even point is achieved for

n =
tpre

tslow − tfast
or

n ≈ tpre

tslow
for tfast ≪ tslow

(This assumes that preprocessing and shortest path calculations are done on
the same host. If the target host is slower, break even is reached earlier).

Another interesting measure is the efficiency as defined in [Go05], the number
of nodes on the shortest path divided by the number of nodes scanned, given in
percent. This number would ideally be 100, and actually we achieve this value for
long paths.

The following tables show - for the three different edge weight metrics - run-
ning times measured for our own plain vanilla Dijkstra-implementation and those
achieved using edge flags, the speed-up resulting from preprocessing, the break-even
path number, and the efficiency in percent.

Table 3 contains the results using the travel time metric. Preprocessing time
is given in seconds, path calculation times in milliseconds per path.

Table 4 shows the results when a distance metric is used instead of travel times.
And finally, Table 5 shows results for unit edge weights.

For the travel time metric, we see a speed up factor between about 110 and
700, increasing with the size of the network. The break even is around 2500 paths
for the smaller networks and goes up to about 4900 for the largest one, due to the
high preprocessing time.

303230

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

EXPERIMENTAL EVALUATION OF EDGE-FLAGS BASED SHORTEST PATH COMPUTATION13

With the distance metric, results are not so good; speed up is lower and break
even is higher. This result was to be expected: when faster roads are not preferred,
shortest routes use more different roads instead of concentrating on the fast ones.
Consequently, edges will carry more on-flags and more edges need to be investigated
during the average path calculation.

With unit edge weights, results are difficult to interpret. Due to the faster
priority queue operations, both slow and fast path calculation are faster than for
the distance metric, but speed up is still higher than for the distance metric.

In the following we will concentrate our considerations mostly on the travel
time metric, which is most relevant in real life (at least for road networks).

The plot of Fig. 4 shows how path calculation time and path length are related.
Path lengths are measured as Dijkstra rank of the target node, which is equal to
the number of scanned nodes when the target node is about to be scanned in a
plain vanilla Dijkstra implementation.

We see that most times are below 10 msec (the average is 3.7 msec) and that
higher times are needed for path lengths in the middle range. Short paths are
trivially fast and long paths gain most from preprocessing.

10.4. Local Point Pairs. Next we show results in Table 6 for more local
point-to-point path calculations. Here we give also the number of touched nodes
(per path) for the two versions.

The locality shown in the table is the logarithm to the basis 2 of the Dijkstra
rank.

As to be expected, the speed-up factor grows with the length of paths calcu-
lated, with the exception of the most local paths where the edge flags help to keep
the path calculations local to a region (see Section 9 for explanation). Accordingly,
the efficiency is low for local paths and grows up to 80.8% as paths get longer.

We see a similar dependency between path length and number of touched nodes.
For long paths, the reduction in the number of processed nodes is higher than

the reduction in running time. This is so because we have to spend more time on
each visited node in the fast version: looking up and processing of edge flags.

Again, results for distance metric and unit edge weights are inferior; neverthe-
less we achieve considerable speedup.

For the travel time version, we show a plot of running time versus path length
in Fig. 5. The same data are shown as a box-and-whiskers plot in Fig. 6. We see
again how running times increase towards medium path lengths and decrease as
long paths are calculated. Then finally there is again a slight increase for very long
paths, as their running time must be proportional to the number of nodes along
the path.

11. Application Scenarios

There are two main applications for our algorithm in the context of route
planning:

Firstly, in autonomous car navigation systems, the preprocessing can be done
once and results are stored on the system’s CD-ROM or flash memory. This way we
can immensely speed up route calculations (including slow seeks on the CD-ROM
or slow access to flash memory). However, when we want to be able to react to
changing traffic situations, say traffic jams or blocked roads, we have to fall back to
slow, exact algorithms doing the calculations from scratch or to fast heuristics. (At

EVALUATION OF POINT-TO-POINT SHORTEST PATH CALCULATION 313331

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

14 ULRICH LAUTHER

103 104 105 106 107 108
0.1

1

10

100

1000

Dijkstra Rank

ru
n

tim
e

[m
se

c]

Figure 4. Path calculation times vs. Dijkstra rank for instance
CTR with travel-time metric; results for 1000 random point-to-
point pairs.

least at the time when the methods discussed in this paper were developed, CPU’s
used in cars were much slower than those used for the experiments presented in this
paper. Also memory was a scarce resource forcing developers to store the network
on a CD-ROM and load only small parcels of data into main memory when the
data were needed during calculation of a path. Today, there is still a big gap in
efficiency between cheap navigation systems and current personal computers.)

Secondly, in a navigation system with client server architecture (a central route
planning server with the cars as clients), we can do the preprocessing at the server
in a cyclic fashion (say, every 15 minutes) based on the current traffic situation.
The server would then have to answer a large number of routing requests within a
short time span.

323432

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

EXPERIMENTAL EVALUATION OF EDGE-FLAGS BASED SHORTEST PATH COMPUTATION15

102 103 104 105 106 107
0.1

1

10

100

Dijkstra Rank

ru
n

tim
e

[m
se

c]

Figure 5. Path calculation times vs. Dijkstra rank for 100 ran-
dom node pairs per locality range in the LKS road-map with travel
time metric

12. Availability

The concept of edge flags and associated algorithms are patent protected. Thus
commercial use of this concept is not possible without first acquiring a license.
Source code licenses are available.

13. Conclusions

Our preprocessing algorithm using edge flags has been evaluated using road
networks from the 9th DIMACS challenge. We achieve high speed-ups with a
memory overhead of about 6 Bytes per edge and a break-even point for amortization
of preprocessing around 2000 path calculations.

In comparison to other methods, the modification needed in the target applica-
tion is very small and the additional operation is just one bit-lookup per edge to be
traversed, whereas container based algorithms need to answer a containment query

EVALUATION OF POINT-TO-POINT SHORTEST PATH CALCULATION 333533

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

16 ULRICH LAUTHER

Figure 6. Box and whiskers plot of path calculation times vs.
Dijkstra rank for 100 random node pairs per locality range in the
LKS road-map with travel times, showing 10%, 25%, 75%, and
90% quantiles, median, and average running time (dot).

343634

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

EXPERIMENTAL EVALUATION OF EDGE-FLAGS BASED SHORTEST PATH COMPUTATION17

between a geometric container and a node’s coordinates and hierarchical methods
need to use the hierarchy in the target application.

Though the basic methods discussed here date ten years back, they are still
competitive. Subsequent work that builds on this approach has been done since
then, improving for instance the partitioning step in way that reduces preprocessing
time [HiKoMo06].

There are faster methods (e.g. [Sa06], when just the length of the shortest path
is to be found. But if we need to report the whole path, Ω(l) with l the number of
edges in the path is a lower bound that cannot be broken and is - for long paths
- achieved by our method, i.e. just the edges that belong to the shortest path are
investigated during the shortest path calculation.

References

[AhMaOr93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms,
and Applications, Prentice Hall, 1993.

[Dial79] R. Dial, F. Glover, D. Karney and D. Klingman, A computational analysis of alternative
algorithms for finding shortest path trees, 1979, Networks, vol. 9, pp. 215–248.

[Dij59] E. W. Dijkstra, A note on two problems in connexion with graphs, 1959, Numerische
Mathematik, vol. 1, pp. 269–271.

[Do67] J. Doran, An Approach to Automatic Problem-Solving, Machine Intelligence, vol. 1, pp.
105–127, 1967.

[Er98] G. Ertl, Shortest Path Calculation in Large Road Networks, OR Spectrum, vol. 20, 1998,
pp. 15–20.

[Fli04] I. C. M. Flinsenberg, Route planning algorithms for car navigation, PhD Thesis, Technis-
che Universiteit Eindhoven, 2004.

[Go05] A. V. Goldberg and C. Harrelson, Computing the shortest path: A∗ search meets graph
theory, SODA, 2005, pp. 156–165.

[Go91] T. F. Gonzales, Covering a Set of Points in Multidimensional Space, Inf. Proc. Letters 40
(1991), pp. 181–188

[HaNiRa86] P. E. Hart, N. J. Nilsson, and B. Raphael, A Formal Basis for the Heuristic Determi-
nation of Minimum Cost Paths, IEEE Transactions on System Science and Cybernetics,SSC-
4(2), 1986.

[HiKoMo06] M. Hilger, E. Köhler, R. H. Möhring, and H. Schilling, Fast Point-to-Point Shortest
Path Computations with Arc-Flags, 9th DIMACS Implementation Challenge - Shortest Paths,
Rutgers University, Nov. 2006.

[KoMoSc05] E. Khler, R. H. Mhring, H. Schilling, Acceleration of Shortest Path and Constrained
Shortest Path Computation, WEA 2005: 126-138

[KuMi77] S. Kundu and J. Misra, A linear tree partitioning algorithm, SIAM Journal on Com-
puting, 6(1977), pp. 151–154

[Lr00] U. Lauther, The C++ Class Library TURBO - A Toolbox for Discrete Optimization.,
Software@Siemens, 2000, pp. 34–36.

[Lr04] U. Lauther, An Extremely Fast, Exact Algorithm for Finding Shortest Paths in Static
Networks with Geographical Background, Geoinformation und Mobilität - von der Forschung
zur praktischen Anwendung, Editors M. Raubal, A. Sliwinski, and W. Kuhn, vol 22, 2004,
ISBN 3-936616-22-1, pp. 219–230.

[LrEn03] U. Lauther, and R. Enders, United States Patent No. US 6,636,800 B1: Method and
Device For Computer Assisted Graph Preprocessing, 2003.

[LrEn98] U. Lauther, and R. Enders, Europäische Patentschrift EP 1 027 578 B1: Verfahren
und Anordnung zur Rechnergestützten Bearbeitung eines Graphen 1998.

[Lr03] U. Lauther, T. Winter, and M. Ziegelmann, Proximity Graph based Clustering Algorithms
for Optimized Planning of UMTS Access Network Topologies, 10th International Conference
on Telecommunications ICT 2003, Vol. 2, pp. 1329–1334.

[Po71] I. Pohl, Bi-directional search, In Machine Intelligence, vol. 6, pp. 124–140, Edinburgh Univ.
Press, Edinburgh, 1971.

EVALUATION OF POINT-TO-POINT SHORTEST PATH CALCULATION 353735

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

18 ULRICH LAUTHER

[Sa06] P. Sanders and D. Schultes, Robust, Almost Constant Shortest-Path Queries in Road Net-
works, 9th DIMACS Implementation Challenge - Shortest Paths, Rutgers University, Nov.
2006.

[SaSc05] P. Sanders and D. Schultes, Highway Hierarchies Hasten Exact Shortest Path Queries,
ESA, 2005, 568–579.

[Sch08] H. Schilling, personal communication.
[Tar83] R. E. Tarjan, Data Structures and Network Algorithms, 1983, Society for Industrial and

Applied Mathematics.
[Wa05] D. Wagner, T. Willhalm, and C. D. Zaroliagis, Geometric containers for efficient shortest-

path computation, ACM Journal of Experimental Algorithms, vol. 10, 2005.

Siemens AG, CT PP 7, D-81730 München, Germany
E-mail address: ulrich.lauther@t-online.de

363836

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

EXPERIMENTAL EVALUATION OF EDGE-FLAGS BASED SHORTEST PATH COMPUTATION19

Table 4. Preprocessing time [sec] and average path calculation
times [msec] with (fast) / without (slow) preprocessing for road-
maps with distance metric.

Instance nodes pre slow fast slow/fast pre/slow eff
NY 264346 124.9 39.0 0.8 48.5 3199.6 33.3
BAY 321270 160.4 48.7 0.8 58.9 3292.5 35.0
COL 435666 195.8 79.7 1.6 51.1 2455.8 27.1
FLA 1070376 462.9 165.6 2.6 64.2 2796.1 24.9
NW 1207945 800.9 216.4 2.1 104.8 3701.4 33.0
NE 1524453 954.9 275.3 3.6 75.5 3468.7 21.1
CAL 1890815 1291.5 325.7 4.8 67.4 3965.0 16.1
LKS 2758119 2372.3 545.8 6.7 82.0 4346.5 26.4
E 3598623 2108.5 737.1 12.8 57.7 2860.7 11.8
W 6262104 7200.9 1337.3 11.3 118.3 5384.7 17.9
CTR 14081816 25975.6 4071.5 28.0 145.5 6379.9 10.7

Table 5. Preprocessing time [sec] and average path calculation
times [msec] with (fast) / without (slow) preprocessing for road-
maps with unit edge weights.

Instance nodes pre slow fast slow/fast pre/slow eff
NY 264346 97.4 36.2 0.4 101.8 2689.2 34.8
BAY 321270 103.6 40.0 0.3 116.1 2587.3 38.2
COL 435666 125.3 69.8 0.7 104.8 1795.5 29.0
FLA 1070376 222.5 199.2 0.6 341.7 1117.2 38.8
NW 1207945 452.5 195.5 1.1 177.9 2314.3 29.1
NE 1524453 611.4 275.7 1.1 242.4 2217.8 30.3
CAL 1890815 712.0 310.1 1.4 220.7 2295.9 23.8
LKS 2758119 1077.8 452.4 1.8 248.4 2382.5 35.0
E 3598623 1309.3 620.2 3.1 198.5 2111.0 17.9
W 6262104 4860.6 1214.0 3.3 364.8 4003.8 23.5
CTR 14081816 16488.5 3570.0 12.3 290.6 4618.6 12.0

EVALUATION OF POINT-TO-POINT SHORTEST PATH CALCULATION 373937

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

20 ULRICH LAUTHER

Table 6. Average path calculation times [msec] and number of
touched nodes with (fast) / without (slow) preprocessing for the
LKS road-map with travel time metric tabulated by locality.

running time touched nodes
locality slow fast slow/fast slow fast slow/fast eff
9 5.879 1.270 4.6 765.7 494.3 1.5 7.9
10 6.179 1.320 4.7 1551.1 867.9 1.8 6.1
11 6.909 1.750 3.9 3014.2 1698.9 1.8 4.4
12 8.069 2.180 3.7 6211.2 2507.5 2.5 4.0
13 11.258 3.300 3.4 12564.1 4535.6 2.8 3.0
14 15.078 5.259 2.9 24821.6 8142.8 3.0 2.5
15 23.836 5.999 4.0 49038.4 9205.4 5.3 3.0
16 41.384 6.079 6.8 97731.6 8991.4 10.9 4.2
17 78.218 3.379 23.1 196369.9 4078.1 48.2 13.8
18 158.706 2.370 67.0 399665.6 2351.4 170.0 34.1
19 311.983 2.670 116.8 773964.6 2685.4 288.2 46.6
20 706.273 2.630 268.5 1541386.1 2613.4 589.8 80.8

Table 7. Average path calculation times [msec] and number of
touched nodes with (fast) / without (slow) preprocessing for the
LKS road-map with distance metric tabulated by locality.

running time touched nodes
locality slow fast slow/fast slow fast slow/fast eff
9 2.920 1.280 2.3 765.7 463.5 1.7 7.8
10 3.319 1.310 2.5 1551.1 888.7 1.7 5.5
11 3.809 1.760 2.2 3014.2 1741.4 1.7 3.9
12 5.409 2.300 2.4 6211.1 2791.9 2.2 3.3
13 6.939 3.270 2.1 12564.2 4783.6 2.6 2.6
14 10.988 4.879 2.3 24821.6 7518.8 3.3 2.4
15 18.847 7.279 2.6 49038.4 11830.9 4.1 2.2
16 34.465 6.759 5.1 97731.5 10315.3 9.5 3.6
17 66.710 8.099 8.2 196369.9 12051.6 16.3 4.4
18 134.530 7.929 17.0 399665.6 11214.1 35.6 7.7
19 262.090 7.629 34.4 773964.5 10553.2 73.3 13.1
20 557.165 7.499 74.3 1541386.0 9950.6 154.9 24.6

384038

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

EXPERIMENTAL EVALUATION OF EDGE-FLAGS BASED SHORTEST PATH COMPUTATION21

Table 8. Average path calculation times [msec] and number of
touched nodes with (fast) / without (slow) preprocessing for the
LKS road-map with unit edge weights tabulated by locality.

running time touched nodes
locality slow fast slow/fast slow fast slow/fast eff
9 1.510 1.190 1.3 1013.0 430.6 2.4 7.6
10 1.770 1.090 1.6 2051.8 758.5 2.7 5.6
11 2.210 1.280 1.7 3896.3 1486.3 2.6 3.7
12 3.020 1.510 2.0 7323.6 2265.8 3.2 3.2
13 4.579 2.020 2.3 14015.4 4035.7 3.5 2.3
14 8.529 2.670 3.2 29805.7 6029.2 4.9 2.2
15 15.168 3.569 4.2 55455.5 8830.9 6.3 1.9
16 28.676 3.160 9.1 106137.3 6740.7 15.7 3.6
17 58.821 3.100 19.0 208332.9 5968.7 34.9 5.8
18 127.181 2.630 48.4 421416.4 4246.3 99.2 11.9
19 249.752 2.260 110.5 771541.3 3109.0 248.2 25.1
20 489.996 2.610 187.7 1520322.5 3673.6 413.8 35.7

EVALUATION OF POINT-TO-POINT SHORTEST PATH CALCULATION 394139

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science

Fast Point-to-Point Shortest Path Computations with Arc-Flags

Moritz Hilger, Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling

ABSTRACT. In this paper, we conduct a detailed study of the arc-flag approach intro-
duced in [Lau97, Lau04]. Arc-flags are a modification of Dijkstra’s algorithm to accelerate
point-to-point (p2p) shortest path computations. The usage of arc-flags avoids exploring
unnecessary paths during shortest path query computations. We present two improvements
of the original arc-flag method that reduce the pre-calculation times significantly, tweak the
efficiency of queries, and cut down the space requirements. First, we improve the prepro-
cessing of the arc-flags by introducing a centralized shortest path algorithm and thereby
we overcome the main drawback of the arc-flag method: for the first time it is now possi-
ble to apply the pure arc-flag method to large networks such as continental road networks
(US network: 24M nodes, 58M edges). Second, we improve the partitioning used in our
revised arc-flag method by using multi-way arc separators. Thereby we almost doubled
the efficiency of queries on some instances compared to [Lau06] and further reduced the
space requirements. This achievement stresses the vital importance of the right choice of
partitioning for the performance of the arc-flag method. On the US network, our revised
arc-flag method requires only between 4.1 and 15.5 bytes of additional preprocessed data
per arc and p2p queries can be answered within 3 to 9 milliseconds (depending on the met-
ric and the underlying partitioning). These results make our revised arc-flags method the
currently best-performing purely goal-directed approach. Without having to use combi-
nations with other advanced acceleration techniques or any network compression method
we have kept the modification of Dijkstra’s original algorithm minimal—literally only one
additional line of code in the route search algorithm needs to be implemented. Its simplic-
ity suggests its usage in existing code bases of route finding applications—whether that be
website routers, mobile phones, or personal navigation devices.

1. Introduction

In the present work we investigate the point-to-point (p2p) shortest path problem
where one has to find a shortest path between two specified nodes in an input graph. Di-
jkstra’s algorithm is the standard for this problem [Dij59]; it runs in O(m + n log n) time
[FT87]. For a long time the main focus in developing shortest path algorithms has been on
finding algorithms with good theoretical time-bounds; overviews are given, for instance,
in [Sch08, Sch06, Wil05, GH05]. Although fast in theory, the corresponding algorithms
are often not fast enough for applications in large networks, e.g. continental road networks.

In our study we assume that the shortest path problem has to be solved repeatedly for
different node pairs of a fixed underlying network (static case) and therefore, preprocessing

Heiko Schilling was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Research
Cluster “Algorithms on Large and Complex Networks” (1126).

c⃝XXXX American Mathematical Society

1

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

41

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

43

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

41

https://doi.org/10.1090/dimacs/074/03

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

2 MORITZ HILGER, EKKEHARD KÖHLER, ROLF H. MÖHRING, AND HEIKO SCHILLING

of the network data is possible. We work on large but sparse directed graphs with given arc
weights and a given 2D layout arising from road networks. Nevertheless, the presented ac-
celeration of shortest path computations works equally fast on higher dimensional layouts
(time-expanded traffic networks) and even on graphs with no layout at all [BDW07a].

More precisely, we consider a generalization of a partition-based arc labelling ap-
proach that we refer to as the arc-flag approach. The basic idea of the arc-flag approach
using a simple rectangular geographic partition was suggested in [Lau97, Lau04] and
patented by [EL99]. The arc-flag approach divides the graph G = (V, A) into regions and
gathers information for each arc a ∈ A and for each region r′ ∈ R (V =

⋃|R|
i=1 ri ∈ R)

on whether the arc a is on at least one shortest path leading into region r′. For each arc
a ∈ A this information is stored in a flag (bit) vector fa. The vector fa contains a flag
(true or false) for each region r′ ∈ R indicating whether the arc a can contribute
to answering shortest path queries for nodes in region r′ or not. Thus, the size of each
flag vector is determined by the number |R| of regions and the number of flag vectors is
bounded by the number |A| of arcs. Since the actual number of unique flag vectors can be
much smaller than the number of arcs, storing the flag vectors at one point and adding an
index (or pointer) to each arc can reduce the extra amount of memory below the obvious
|A||R| bits. The number of regions depends on the input graph size, but can be kept to a
moderate size: 200 regions already lead to considerable speedups on instances with 24M
nodes and 58M edges.

We use arc-flags in a slightly modified Dijkstra computation to avoid exploring unnec-
essary paths. This means that we check the flag entry of the corresponding target region
(the region where the target node t belongs to) each time before the Dijkstra algorithm
tries to traverse an arc. Thus, implementing the arc-flags is one of the simplest accel-
eration modifications of the standard Dijkstra algorithm and therefore suggests itself for
straightforward usage in existing code bases.

We evaluate the quality of our method by measuring speedup factors. A speedup
factor is the ratio between the cost of Dijkstra’s algorithm and the cost of the accelerated
algorithm. The cost is either measured by overall running time or by the size of the search
space. The search space is the set of nodes that are scanned during a run of Dijkstra’s
algorithm.

The choice of the underlying partition is crucial for the speedup of the arc-flag accel-
eration of Dijkstra’s algorithm. In [KMS05] we suggested a multi-way arc separator as an
appropriate partition for the arc-flags. This improvement achieved much better speedups
compared to the original arc-flag version in [Lau04]. For instance, we were able to reach
acceleration factors 10 times higher than with Lauther’s version of the arc-flags (on net-
works with up to 0.3M nodes, 0.5M arcs and 278 bits of additional information per arc).
Together with Birk Schütz, Dorothea Wagner and Thomas Willhalm a computational study
to find out which partitions achieve the best speedups for the arc-flag method [MSS+06]
was conducted. Both partitions from computational geometry and a multi-way arc sepa-
rator partition were studied. The multi-way arc separator partition suggested in [KMS05]
proved to be the best choices for the arc-flags. This is the partition method we concentrate
on in the present paper.

When combining the arc-flags with a multi-way arc separator partition and a bi-
directed search, the overall performance of the method is competitive to those of other
acceleration techniques like the highway hierarchy method [SS06]. An extensive study
of the success of the different acceleration methods on a variety of graphs can be found
in [BDW07a]. In comparison to the arc-flag method, preprocessing the highway hierarchy

424442

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

FAST POINT-TO-POINT SHORTEST PATH COMPUTATIONS WITH ARC-FLAGS 3

can be done faster. Yet, in [BDW07a] it is shown that the arc-flag method outperforms
other methods on most graph classes in terms of speed-up. Thus, the arc-flag method is
a very robust acceleration technique for shortest path computations. Note that the prepro-
cessing times reported in [BDW07a] do not take advantage of the new approach presented
in this paper.

The additional memory necessary for storing precomputed information is comparably
small for the arc-flag method. However, its space requirements can even be reduced by
using two or more level partitions: a coarse one for far-away nodes and a finer one for close-
by nodes; the idea has been suggested in [KMS05] and further studied in [MSS+06]. The
multi-level approach is the basis for SHARC ([BD08]) which combines arc-flags with the
iterative shrinking and shortcut ideas of the highway hierarchies. What makes the multi-
level arc-flags remarkable is that this idea leads to the currently fastest uni-directional
acceleration approach [BD08]. [BD08] report on query times which are comparable to the
currently fastest bi-directional approaches [BDS+08]. Furthermore, a fast uni-directional
shortest path algorithm can, for instance, be applied to networks with historical speed
profiles per arc (i.e. time-dependent arc weights) or to time-expanded networks as they
are used for timetable information system. Introducing a time parameter to static networks
makes bi-directional searches prohibitive since the exact start time for the backward search
is not known.

For shortest path applications on devices with limited processing power or limited
battery charge such as PNDs or mobile phones, it is of utmost importance that the shortest
path algorithm does not rely on complicated and expensive data structures or subroutines.
To keep the implementation of the arc-flag query as simple as possible we do not use any
kind of reduction or contraction of the original input graph (e.g. attached trees or short-
cuts as used in [SS06, GKW06]). Thus, the results we present reflect running times and
speedups relative to the input graph sizes rather than to the reduced sizes. Even without us-
ing any kind of reduction, the arc-flag method yields speedups comparable to the speedups
of [SS06] and [GKW06].

Our contribution. We conduct a detailed study of the pure arc-flag approach intro-
duced by Lauther [Lau97, Lau04]. We were able to reduce the pre-calculation times
significantly, to improve the efficiency of queries and to cut down the space requirements
compared to previous versions of the arc-flags [Lau97, Lau04, KMS05, MSS+06]. Our
revised arc-flag approach is currently the best performing purely goal-directed acceler-
ation technique [BDS+08]. Our improvements were achieved without having to com-
bine the arc-flags with more advanced acceleration techniques such as hierarchical ap-
proaches [SS06, BFM+07, SS07] and without performing queries on reduced networks,
e.g. by cutting off attached trees or introducing shortcuts [SS06]. By keeping our revised
arc-flag approach plain and simple it is one of the easiest modifications of Dijkstra’s algo-
rithm: in fact, only one line of code needs to be added in the search algorithm.

For the preprocessing of the arc-flags we present two new approaches. On continental
road networks like the US network (24M nodes, 54M edges) our method only needs a few
hours to complete the pre-calculation. Our approach is the first to apply the arc-flag accel-
erated shortest path method to networks of this size. This is achieved by a new centralized
shortest path algorithm which computes distances simultaneously from a set of starting
vertices instead of one starting vertex. Another improvement on the preprocessing time is
achieved by removing small attached structures for which the arc-flags can be calculated
in a much easier way. Note that this reduction is only performed during preprocessing,
queries are calculated on the unmodified graph using the pre-calculated information.

434543

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

4 MORITZ HILGER, EKKEHARD KÖHLER, ROLF H. MÖHRING, AND HEIKO SCHILLING

We use improved multi-way arc-separator partitionings of our test networks which re-
duce both the query times and the pre-calculation times. Our partitionings make excessive
use of the graph-theoretic structure of the network and furthermore do not depend on any
embedding of the network in the plane. Choosing the right partition is vital for the per-
formance of the arc-flag method. The efficiency (see Section 5.3) of our queries are much
higher than the ones for the grid partitionings, i.e. we achieve an efficiency two times better
on the E instance compared to results presented in [Lau06].

As for combinations with other advanced acceleration techniques we suggest a way
to combine arc-flags naturally with hierarchical approaches, see also [KMS05]. [BD08]
excessively tested this idea and further improved it by using shortcuts [SS06].

Outline. After a brief review of recent related results in the field (Section 1), Section 2
starts with basic definitions and a precise description of the p2p problem. Furthermore,
Section 2 explains the pruning of the search space of Dijkstra’s algorithm with arc-flags.
The preprocessing is described in Section 3. In Section 4 we present the selection of
partition algorithms that we used for our analysis. We discuss the two-level variant of the
arc-flags in Section 4. Section 5 describes our experiments and computational results and
we discuss the results and ongoing work in Section 6.

Previous Work

Transit nodes. Bast et al. [BFM06] show that a very natural idea leads to extremely
fast computations for vertices that are not too close to each other. The basic idea of their
algorithm TRANSIT is as follows. They use a geometric subdivision of the given map
into basic quadratic grid cells of length a. Then they precompute for every vertex v in
cell C a set of transit nodes T (C), which are nodes at distance approximately d := 2a
from C such that every shortest path from v ∈ C to a vertex w at distance more than
2d from C passes through one of C’s transit nodes (and, by symmetry, also through one
of the transit nodes of the cell containing w). In addition, they precompute for every
vertex v ∈ C the distances dist(v, tv) from v to every transit nodes tC ∈ T (C) and all
distances dist(tC , tD) between any two transit nodes of different cells C, D at a distance
of at least 2d apart. A shortest path length computation between vertices v ∈ C and
w ∈ D (whose cells are at least 2d apart) then reduces to finding the minimum over all
sums dist(v, tC) + dist(tC , tD) + dist(w, tD) with tC ∈ T (C) and tD ∈ T (D), which
can be done by simple table look-ups. This approach works because transit nodes can be
computed very efficiently by sweep line techniques on the geometric subdivision, and the
number of transit nodes per vertex turns out to be small (between 17 and 8 on average for
a 64× 64 and 1024× 1024 subdivision of the US road network, respectively). A recursive
application of this idea is used to keep the total number of transit nodes small. TRANSIT
achieves an average query time of 12 microseconds for all long (i.e. > 4d) queries which
is 99% of all queries. The shortest path itself can also be obtained through such queries
by successively adding the best edge to the already computed initial path segment. Bast et
al. [BFM+07] combine transit nodes with highway hierarchies [SS05, SS06] and deal also
with short queries. They obtain query times between 5 microseconds for long queries and
20 microseconds for short queries.

Highway hierarchies. Sanders and Schultes [SS05, SS06] introduced the notion of a
highway hierarchy. The highway hierarchy method is based on the idea that only a high-
way network needs to be searched outside a fixed size neighborhood around source and

444644

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

FAST POINT-TO-POINT SHORTEST PATH COMPUTATIONS WITH ARC-FLAGS 5

target. This approach can be iterated to generate a hierarchy of highway networks. A hi-
erarchy preserving all shortest routes can be constructed very efficiently: preprocessing
the European road network (24M nodes, 58M arcs) takes 15 minutes. Because of the fast
preprocessing step, highway hierarchies can be computed on very large networks and on
such large networks the method achieves large speedup factors. Furthermore, the highway
hierarchies can be adapted to speed up the computation of shortest path distances between
all pairs of nodes from given sets of sources and targets, see [KSS+06]. In comparison,
preprocessing highway hierarchies can be done faster than preprocessing arc-flags, but the
arc-flags deliver higher query speedups with the same amount of additional information;
see [BDW07a] for corresponding computational results. Also [BDW07a] demonstrated
for different graph classes that arc-flags are more robust than highway hierarchies in terms
of achieved query times. Recently the highway hierarchies approach was extended to high-
way node routing [SS07] an idea similar to tranist nodes. Highway nodes further reduce
memory needs and are suitable for a dynamic setup.

Landmarks. Goldberg and Harrelson [GH05] (see also [GW05a]) have shown that
the performance of A∗ search can be significantly improved if landmark-based lower
bounds are used instead of Euclidean bounds. This leads to the ALT (A∗ search, land-
marks, and triangle inequality) algorithm for the problem. In [GH05], it was noted that the
ALT method could be combined with reach pruning (see next paragraph) in a natural way.
Not only would the improved lower bounds direct the search better, but they would also
make reach pruning more effective.

Reach. Gutman [Gut04] defines the notion of vertex reach. Informally, the reach of
a vertex is a number that is big if the vertex is in the middle of a long shortest path and
small otherwise. Gutman shows how to prune an s – t search based on vertex reaches
(upper bounds) and vertex distances (lower bounds) from s and to t. He uses Euclidean
distances for lower bounds, and observes that the idea of reach can be combined with
Euclidean-based A∗ search to improve efficiency. Goldberg et al. [GKW06] improved the
reach-based approach of [Gut04] in two ways: they introduced a bi-directional version
of the algorithm that uses implicit lower bounds and they added shortcut arcs to reduce
vertex reaches. These modifications improve both preprocessing and query times. The
resulting algorithm is as fast as the highway hierarchies introduced in [SS05]. However,
the combination of landmarks with reach is a simpler modification of Dijkstra’s algorithm
than the highway hierarchies.

Geometric containers. Schulz et al. [SWW00] used the concept of enriching the
graph with arc labels that mark for each arc a ∈ A geometric regions of the given layout.
The geometric regions contain all possible target nodes of a shortest path that start with
the arc a. This labelling approach was done for the special case of a timetable information
system. In their work, arc labels are angular sectors in the given layout of a train network.
Wagner and Willhalm [WW03] studied this approach for general weighted graphs. Instead
of the angular sectors, different types of convex geometric objects are implemented and
compared with them. The arc-flags also use such a labelling approach, but there are three
crucial differences between arc-flags and the geometric containers. Using arc-flags results
in a much smaller search space than using geometric containers. The reason for this is that
the partition used by arc-flags approximates in a geometrical sense much better for each arc
a the set of nodes for which a is useful in a shortest path computation (see Figure 3). Even
more important is that the arc-flags allow a considerably faster preprocessing, that can be
done without the computation of all-pairs shortest paths. With the geometric containers one

454745

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

6 MORITZ HILGER, EKKEHARD KÖHLER, ROLF H. MÖHRING, AND HEIKO SCHILLING

geometric object per arc needs to be computed by a shortest path tree computation. Since
the geometric objects are different for different arcs, the shortest path tree computation has
to be done for each arc. This is not the case with the arc-flags, since the same partition
can be used for all flag vectors. See Sections 3 for details of the arc-flag preprocessing.
Finally, the geometric containers rely on a given layout of the graph. Such a layout is not
necessary for the arc-flags. Therefore, arc-flags provide a more general approach than the
geometric containers.

2. Problem Description and Dijkstra’s Algorithm with Arc-Flags

Graphs. A directed simple graph G is a pair (V, A), where V is a finite set of nodes
and A ⊆ V × V are the arcs of the graph G. Throughout this paper, the number |V |
of nodes is denoted by n and the number |A| of arcs is denoted by m. A path in G is a
sequence of nodes u1, . . . , uk such that (ui, ui+1) ∈ A for all 1 ≤ i < k. A path with
u1 = uk is called a cycle. A graph (without multiple arcs) can have up to n2 arcs. We call
a graph sparse, if m ∈ O(n). If we are given a layout L : V → R2 of the graph in the
Euclidean plane, then we will identify a node v ∈ V with its location L(v) ∈ R2 in the
plane. Furthermore, we introduce arc weights by a function ℓ : A → R. We interpret the
weights as arc lengths in the sense that the length of a path is the sum of the weights of its
arcs. The reverse graph Grev of a directed graph G = (V, A, ℓ) with arc weights ℓ is defined
as Grev = (V, Arev, ℓrev) with Arev = {(u, v) | (v, u) ∈ A} and ℓrev(u, v) = ℓ(v, u). Hence,
the reverse graph is the graph G with all arcs reversed. It is easy to see that s, . . . , t is a
shortest path from s to t in G, iff t, . . . , s is a shortest path in Grev with the same arcs
reversed.

The P2P Shortest Path Problem. Let G = (V, A, ℓ) be a directed graph whose arcs
are weighted by ℓ : A → R. The goal of the point-to-point (p2p) shortest path problem
is to find a path of minimum length from a given source s ∈ V to a given target t ∈ V .
The problem is only well defined for all s – t pairs, iff G does not contain negative cycles.
If there are negative arc weights but no negative cycles, it is possible, by using Johnson’s
algorithm [Joh77], to convert in O(nm + n2 log n) time the original arc weights ℓ to non-
negative arc weights ℓ′ : A → R+ that result in the same shortest paths. Hence, throughout
the paper, we assume that arc weights are non-negative.

Dijkstra’s Algorithm with Arc-Flags. The classical algorithm for computing short-
est paths in a directed graph with non-negative arc weights is the one developed by Dijk-
stra [Dij59] with O(m + n log n) worst-case running time [FT87]. However, in practice,
speedup techniques can reduce the running time and often result in a sub-linear running
time. They crucially depend on the fact that Dijkstra’s algorithm is label-setting and that it
can be terminated when the destination node is settled. Therefore, the algorithm does not
necessarily search the whole graph.

If we allow for a preprocessing step, the running time can be further reduced with the
following insight: consider, for each arc a, the set Sa of nodes that can be reached by a
shortest path starting with a. It is easy to verify that Dijkstra’s algorithm can be restricted
to the subgraph with those arcs a for which the tail node t is in Sa. However, storing all
sets Sa requires O(n2) space which is prohibitive for large graphs. We will therefore use
a partition of the set of nodes V into p (:= |R|) regions for an approximation of the set Sa.
Formally, we will use a function r : V → {1, . . . , p} that assigns to each node the number
of its region. We now use a flag vector fa : {1, . . . , p} → {true,false} with entries,
each of which corresponds to a region. For each arc a, we set the entry fa(i) to true, iff

464846

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

FAST POINT-TO-POINT SHORTEST PATH COMPUTATIONS WITH ARC-FLAGS 7

FIGURE 1. The arc-flag method together with a separator partition. The
labelled (gray) arc only leads to nodes in region A and E. A search with
targets in regions B, C or D can ignore this arc.

a is the beginning of any shortest path to at least one node in region i ∈ {1, . . . , p} (see
Figure 1). Additionally, for each arc (v, w) with v, w ∈ V we set the flag entry f(v,w)(rw)
to true.

For a specific shortest path query from s to t, Dijkstra’s algorithm can be restricted to
the subgraph induced by those arcs where the flag entry corresponding to the target region
(the region where t belongs to) is true (see Lemma 2.2); we will call this subgraph Gt in
the following.

DEFINITION 2.1 (Consistent target set). Let G = (V, A) be a weighted graph with
length function ℓ : E → R+. We call a set of nodes V ′

(u,v) ⊆ V a consistent target set
for an arc (u, v), if for all shortest paths from u to some t that start with the arc (u, v), the
target node t is in V ′

(u,v). A minimum consistent target set is the one with minimum size
among all such sets.

In the following, we always mean minimum consistent target sets and therefore omit
the word ’minimum’.

LEMMA 2.2 (Dijkstra’s algorithms with arc-flags). Let G = (V, A), ℓ : A → R+ be
a weighted graph and for each arc a ∈ A let V ′

a be a consistent target set. Then Dijkstra’s
algorithm with arc-flags finds a shortest path from s to t, s, t ∈ V , if one exists.

PROOF. Consider the shortest path P from s to t that is found by Dijkstra’s algorithm.
If for all arcs a ∈ P the target node t is in V ′

a, then the path P will also be found by
Dijkstra’s algorithm with arc-flags. This is because the arc-flags for each a ∈ A describe
by construction a superset of the consistent target set V ′

a. Therefore, no necessary arc will
be missed when Dijkstra’s algorithm traverses the graph, (’necessary’ means useful for the
shortest path P). Furthermore, the arc-flags do not change the order in which the arcs are
processed. Since a subpath of a shortest path is again a shortest path, it follows by the
definition of the consistent target sets that t ∈ V ′

(u,v) for all arcs (u, v) ∈ P . !

474947

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

8 MORITZ HILGER, EKKEHARD KÖHLER, ROLF H. MÖHRING, AND HEIKO SCHILLING

FIGURE 2. The search space of an arc-flag-accelerated Dijkstra search:
the search started in s and the region containing the target node t is high-
lighted.

Bi-directed Search. In bi-directed search, two Dijkstra runs start simultaneously
from s and from t and compute shortest path distances dists(u) from s in the common (for-
ward) graph and distt(u) from t in the reverse graph, the graph with every arc reversed.
The bi-directed search algorithm alternates between running the forward and reverse search
version of Dijkstra’s algorithm and stops with an appropriate stopping criterion when the
two searches meet. Note that any alternation strategy will correctly determine a short-
est path. More precisely, the bi-directed search stops if one direction is about to scan a
node v from the priority queue that is already labelled by the other direction: then the
shortest path between s and t is already found. The node v is not necessarily on that
shortest path. In order to avoid searching for the connector-node v of the two searches,
we determine the shortest path “on the fly”: every time we consider a node which is la-
belled in both directions, we update the minimal sum of the shortest paths to source and
target. The bi-directed search leads to speedup factors of up to two in the unaccelerated
case. In principle, this speedup method can be combined with almost any other one. It
improves the arc-flag based search by tackling one major problem of uni-directional arc-
flag search, labelled the “problem of cones” in [Lau04]. It stems from the fact that the
arc-flags only point into the direction of the target region. As soon as this region is reached
by the search, no further information is provided and therefore the search space spreads
(see Figure 2). With bi-directional search the two searches are likely to meet before their
search spaces spread. However, application of an arc-flag accelerated bi-directional search
requires some care to be taken during preprocessing, as will be explained in the following
section. In [KMS05, MSS+06] we suggested two and more level partitionings as another
way to cope with the spreading and in order to improve the arc-flag method even further.
This is discussed in more detail in Section 4.

The subgraph Gt (see page 7 for the definition) can be computed “on the fly” during
a run of Dijkstra’s algorithm. In a shortest path search from s to t, while scanning a node
u, the modified algorithm takes all those outgoing arcs of u into account for which the flag
entry corresponding to the target region is true. All other outgoing arcs will be ignored.

The space requirement of the preprocessed data is O(pm) for p regions because we
have to store one flag for each region and arc. However, one can observe that many arcs
share a common flag vector. Using this fact allows for a significant reduction of space
requirement, depending on the partition used: Instead of storing for each arc its flag vector

485048

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

FAST POINT-TO-POINT SHORTEST PATH COMPUTATIONS WITH ARC-FLAGS 9

separately, one simply stores each occurring flag vector once and just points each arc to its
corresponding flag vector (see Tables 3, 4 and 5 for examples of resulting space require-
ments).

There is a clear trade-off between achieved speedup factors and space requirements.
Depending on the chosen partition, one can regard the arc-flag acceleration of shortest path
computation as an interpolation between no precomputed information at all (p = 1) and
full pre-computation by determining all possible shortest paths of the graph (p = n). Thus,
in theory, we can get as close as possible to the ideal shortest path search by increasing
the number of regions in the partition (’ideal’ means that the shortest path algorithm visits
only arcs that belong to the shortest path itself). Obviously, an increase in the number of
regions also entails an increase in preprocessing time and space consumption. However,
in practice, even for p ≪ n we achieve an average search space that is three orders of
magnitude smaller than the one of plain Dijkstra. In fact, the number of regions can be
kept of moderate size while one still achieves good speedups: already about 200 regions
on continental road maps deliver enormous speedup factors with little extra space.

It is common practice in many applications to cache the shortest paths to the most
important nodes in the given graph. Note that it is possible within the framework of the
arc-flag speedup technique to do this by simply using a single region for each of the most
important nodes. Storing all shortest paths to important nodes can therefore be realized
without any additional implementation effort.

3. The Preprocessing

During the preprocessing phase calculations have to be performed to supply all arcs
with the necessary arc-flags, i.e. for any pair of vertices s and t the arcs on a shortest path
connecting the two have to be supplied with the correct flags for the region containing t.
Note that for uni-directional search only one shortest path needs to be flagged. For bi-
directional search however this does not suffice. Bi-directional search requires two sets
of arc-flags, one for forward and one for backward search. In fact, forward and backward
search can be accelerated independently, even the underlying partition can differ for the
two directions. So every arc has to carry two flag-vectors, one indicating the flags needed
for forward search, one for backward. In order to guarantee that the two searches meet,
both need to explore all shortest paths connecting any pair of vertices. Therefore, the
preprocessing has to supply the arcs on all shortest paths with the corresponding flags.
Then the preprocessing for the bi-directional search in directed graphs simply consists of
two independent runs of the preprocessing for the uni-directional search. Therefore we will
only refer to the uni-directional case in the following. For undirected graphs preprocessing
has to be performed only once, since the corresponding directed graph is equivalent to its
reverse. Therefore the backward search can utilize the same set of arc-flags as the forward
search.

All preprocessing methods require vast amounts of calculations of shortest path trees.
The running time of these calculations highly depends on the number of vertices that need
to be processed. Therefore a reduction of the input graph can improve running times
substantially. For road networks it has been observed that the majority of instances consist
of one large bi-connected component, called the “core”, and small attached structures.
It suffices to calculate the set of arc-flags on the core due to the following observation:
All attached structures Gi are connected to the core Gc by exactly one root vertex vri .
Therefore all shortest paths to vertices in Gi as well as all shortest paths from vertices in
Gi have to pass through vri . So if all vertices in Gi are assigned to the same region as vri

495149

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

10 MORITZ HILGER, EKKEHARD KÖHLER, ROLF H. MÖHRING, AND HEIKO SCHILLING

calculating the flags for arcs in Gi is straightforward. All arcs on a shortest path tree in
Gi rooted at vri need the flag for the region of vri , since only vertices of that region can
be reached. All arcs on a reverse shortest path tree, i.e. considering in-edges instead of
out-edges, in Gi edges rooted at vri need the flag for all regions, since those form the first
part of shortest paths to any vertex in the graph.

3.1. The Preprocessing with All-Pairs Shortest Path. We have to calculate the arc-
flag vectors for all arcs. This can be done by computing two shortest path trees for every
arc a ∈ A: a one-to-all shortest path computation both from the head and from the tail
node of arc a. The computation is done by a standard Dijkstra algorithm which stops when
all nodes in the graph are permanently marked. For each node v ∈ V , we compute the
difference between dh(v) and dt(v), the two distance labels in the shortest path trees of
the head and the tail node of a. If the difference |dh(v) − dt(v)| for node v is equal to
the length ℓa of arc a, then we set the flag entry fa(rv) to true. The running time of the
preprocessing is dominated by the time it takes to compute 2m times a shortest path tree,
which can be done in O(m + n log n) time each. For sparse graphs (m = O(n)), such as
typical road networks, we get an overall worst-case time complexity of O(n2 log n).

The preprocessing of the geometric containers [SWW00, WW03] is done in a sim-
ilar way by computing two shortest path trees per arc in the graph. Preprocessing our
graphs (with up to 24M nodes and 58M arcs) by computing 2m times a shortest path tree
would take years, but fortunately the arc-flags allow a much faster preprocessing, which is
described in the following sections.

3.2. The Preprocessing without All-Pairs Shortest Path. It is not necessary to
compute all-pairs shortest paths to set the flags correctly. We can use the following in-
sight: every shortest path from any node s to a region rt ∈ R has to enter the region rt at
some arc. If s does not belong to rt, then there must be an arc (u, v) with ru ̸= rt = rv;
a so-called boundary arc. We will see in Lemma 3.1, that in the preprocessing step it is
sufficient to take into account only shortest paths to such nodes v which are tail nodes of
boundary arcs. Such nodes will be called boundary nodes.

LEMMA 3.1 (Boundary nodes). Consider a graph G = (V, A) and a partition of V in
p regions by r : V → {1, . . . , p}. If the flag vectors fa for a ∈ A are computed by shortest
paths to boundary nodes only, then these flag vectors are a superset of any consistent target
set V ′

a (see Definition 2.1).

PROOF. Let s and t be arbitrary but fixed nodes which are connected by a shortest
path s = v1, . . . , vk = t. Furthermore, let s and t belong to different regions, i.e. rs ̸= rt.
By induction one can easily see that there exists an arc a = (vi, vi+1), 1 ≤ i < k, in
this shortest path with rvi ̸= rvi+1 = rt. The preprocessing which only considers shortest
paths to boundary nodes would have considered the path from s to node vi+1 and hence it
would have set the flag entry of region rt on all arcs of the shortest subpath s, . . . , vi+1.
The flag entry of region rt of the arcs between vi+1 and t are set by definition, because
the tail nodes of these arcs belong to the region rt. Since all flag entries corresponding to
the target region rt are being set for all arcs on the shortest path s = v1, . . . , vk = t, the
modified Dijkstra algorithm finds this shortest path from s to t. !

We can now exploit this property: for a specified region r′ ∈ R and a boundary node
b of r′ we calculate the set Tb of arcs a ∈ A with fa(r′) = true and where a is on a
shortest path via b to any node in r′. In fact, the reversed arcs corresponding to arcs in
the set Tb form a shortest path tree in the reverse graph Grev. A shortest path tree can be

505250

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

FAST POINT-TO-POINT SHORTEST PATH COMPUTATIONS WITH ARC-FLAGS 11

computed in time O(n log n) on sparse graphs. Therefore, we can compute the flag entries
fa(r′) for region r′ for all nodes a ∈ A at once, if we compute a shortest path tree for each
boundary node of r′. This can be done in time O(kn log n) with k = |Br′ |, where Br′ is
the boundary node set of r′: Br′ = {v ∈ r′ | ∃(u, v) ∈ A such that ru ̸= rv = r′}. The
number k of boundary nodes depends on the partition of the nodes. When we search for an
appropriate partition for the arc-flags, the following observation helps: the set of boundary
arcs of all partitions r ∈ R represents a multi-way arc separator. Thus, if we want to
minimize the number k of boundary nodes (and by this, minimize the preprocessing time),
we need to find a minimum multi-way arc separator of the graph. Experiments showed that
a minimum multi-way arc separator partition is among the partitions on which the arc-flags
achieve the best speedup results, see [MSS+05] for details. However, as Section 4 shows,
minimizing the number k of boundary arcs (i.e. separator arcs) is not the only objective
when searching for a good partition for the arc-flags.

3.3. Preprocessing with Bit-Recycling. A straightforward implementation of the
preprocessing phase of our method as it is presented in Section 3.1 leaves much room for
improvements. In the previous Section 3.2, we have presented an improved version, where
for each single boundary arc a backward Dijkstra search (i.e. a standard Dijkstra search
in the reverse graph) has to be conducted to determine the flag vectors of all arcs in our
graph. It is a simple observation that a contraction of all nodes of a region to a single super
node and then performing one Dijkstra search from this super node does not yield correct
arc-flags. Yet, when performing a backward Dijkstra search from two different separator
arcs of a common region, the resulting shortest path trees show a strong similarity. More
precisely, a large number of arcs that are contained in the first shortest path tree are as well
contained in the second one. We call two separator arcs similar if they are in a geometrical
sense ’closely together’ and point in a geometrically similar direction. 1 Especially in the
more distant parts of the trees there are only a few differences between the two trees. One
can take advantage of the similarity of the shortest path trees of similar arcs for speeding
up the preprocessing version in Section 3.2.

Suppose the boundary edges of the region under consideration are given as an ordered
list where the ordering is implied by the sequence in which they occur when one walks
along the boundary of the region e.g. in clockwise order. If we compute a backward shortest
path tree Ti from some edge ei in this ordering, then the backwards shortest path tree Ti+1

for the next edge ei+1 in the ordered list will in most cases be very similar to the one of
ei, or in other words, ei and ei+1 are similar separator arcs. One can make use of this
observation for the computation of Ti+1 by favouring the propagation of labels along the
arcs of Ti.

One way to implement this preprocessing method is to use a customary label-
correcting shortest path algorithm with two different label fronts. When computing the
shortest path tree for edge ei+1, then in every step the algorithm computes good upper
bounds by hastily propagating the currently smallest label of the first label front all the
way through the shortest path tree of arc ei. The second label front unhurriedly moves
behind the first one, makes use of the upper bounds to dominate its labels, and guarantees
the optimality of the constructed backwards shortest path tree.

Our tests showed that we indeed can save a large portion of the decrease-key opera-
tions for the Dijkstra algorithm. Yet, for our road-network instances this technique did not

1Lauther [Lau97] suggests to use similarities of neighboring nodes for speeding up the preprocessing, but
he gives no details on how to make use of this observation.

515351

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

12 MORITZ HILGER, EKKEHARD KÖHLER, ROLF H. MÖHRING, AND HEIKO SCHILLING

result in a considerable speedup. The reason is that we are working on sparse, almost pla-
nar graphs. In those graphs only a comparably small number of decrease-key operations
is necessary during a Dijkstra computation (only for approximately 10% of the labels).
However, we expect this bit-recycling method to show its real value not for sparse graphs
but rather for dense graphs where many decrease-key operations are performed. Here we
would like to point out that our implementation of the arc-flag method does not rely on an
embedding of the graph but instead is suitable also for arbitrary (possibly dense) graphs.

3.4. The Preprocessing with Centralized Shortest Path Search. The preprocessing
approaches described above required a single Dijkstra run for each of the boundary nodes
of every region. As already pointed out in the last subsection, large parts of the computed
shortest path trees are almost identical. Hence, it seems to be very promising to “bundle
together” the different Dijkstra runs for a given region. Yet, as mentioned before, it is
not sufficient to just contract all boundary vertices to a single vertex and run a common
Dijkstra from there, since the anticipated graph is now not a tree anymore but rather a
more complex graph.

We suggest a different approach, the centralized shortest path algorithm. The basic
idea is as follows: Instead of starting from just one of the boundary nodes we start the
search from all boundary nodes of a region R at once. Let B = b1, . . . , b|B| be the set of
boundary vertices. Instead of a single distance entry, very vertex v of the graph is assigned
a label Lv : B → R+ with Lv (bi) being the length of the currently shortest path from
boundary vertex bi to vertex v. Furthermore, a heap is utilized containing those vertices
that have been visited by the shortest path search and that wait to propagate their labels
to their neighbors. Each vertex v in the heap also carries a key k(v) which is used for
sorting. Every time a vertex is extracted from the heap, it propagates the complete label.
That means that for all arcs a = (v, w) all entries of Lv are checked whether they improve
on the corresponding entries of Lw. In accordance to the notation of standard shortest-path
search algorithms we will refer to this as relaxation of the arc a.

The success of this methods depends on two factors; the initialization of the labels
prior to execution and the organization of the elements in the heap. An obvious initializa-
tion assigns infinity to all label entries except for those representing distances of boundary
nodes to themselves, which are assigned the value zero. This is the same initialization
as used for Dijkstra’s algorithm. Another possible initialization is the following: for all
boundary vertices a restricted run of Dijkstra’s algorithm is performed. We experimented
with two forms of restrictions: one limiting the Dijkstra search space, the other aborting
Dijkstra’s algorithm at some point. The first method, which will be referred to as limited
initialization, works by limiting the Dijkstra search to the vertices inside the current region.
This assigns upper bounds to the label entries of all boundary vertices, if the region is con-
nected. Note that these entries can not be guaranteed to be correct shortest path distances,
as a shortest path connecting two boundary vertices might use arcs outside the region. The
second method, named aborted initialization aborts the Dijkstra run of a boundary vertex
when all other boundary vertices have been scanned. This guarantees correct entries for
all labels of boundary vertices prior to execution. Additionally, some entries of labels be-
longing to vertices outside the region are assigned upper bounds on distance entries. Note
that those entries can be re-used by the centralized shortest path algorithm. The aborted
initialization outperformed the limited initialization in our experiments. Some care has to
be taken on the set of vertices inserted into the heap prior to execution of the centralized
shortest path algorithm, depending on the initialization. In general, all vertices with labels
that can not be guaranteed to contain only correct entries need to be inserted. Actually,

525452

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

FAST POINT-TO-POINT SHORTEST PATH COMPUTATIONS WITH ARC-FLAGS 13

the set of vertices that is sufficient for correct termination of the algorithm might be much
smaller. Further details can be found in [Hil07].

Besides the initialization, the centralized shortest path algorithm highly depends on
the organization of the heap. Two different methods of choosing the key value will be
presented. The first guarantees a running time bounded by that of |B| runs of Dijkstra’s
algorithm. The second has a worse theoretical time bound but performs better in practice.

Minimal tentative key. Consider the relaxation of an arc a = (u, v). Let K be the
set of values of entries of Lv that have been altered. Now we update the key value of v to
min (K ∪ {k (v)}) (where k (v) is the old key value of v) if v is already contained in the
heap and set it to min (K) if it has to be inserted. We call this method of choosing the key
value minimal tentative key.

LEMMA 3.2 (Minimal tentative key.). Utilizing the minimal tentative key for organiz-
ing the heap guarantees that

(1) the key values of the scanned vertices are non-decreasing
(2) every vertex gets scanned at most |B| times

during a run of the centralized shortest path algorithm.

PROOF. The way the minimal tentative key is chosen guarantees that the key value of
a vertex u ∈ V is always the smallest among those entries that have been recently altered.
Therefore, the value of k (u) is the smallest entry responsible for a possible violation of
the shortest path optimality criterion on an incident arc a = (u, v) ∈ A. As the priority
queue guarantees the key value of a scanned vertex to be minimal over all key values it is
an easy insight that the key values are non-decreasing.

Now consider the sequence of scan operations performed on a single vertex v ∈ V
during a whole run of the centralized shortest path algorithm. Obviously, the key values
of v when being removed from the queue are non-decreasing. Let Lv (b) = k (v), b ∈ B
be an entry with the same value as the key. For all entries Lu (b) of vertices u ∈ V being
scanned at a later point that violate the shortest path optimality criterion, Lu (b) ≤ Lv (b)
will hold. Therefore, the entry Lv (b) will not be updated again. So every time a vertex is
scanned at least one entry is designated to be permanent. This implies that the number of
times a vertex can be scanned is bounded by the number of entries in the label, which is
|B|. !

Minimum Total Key. Another choice for the key value is to select the minimum over
all entries in the distance label. This can help to update labels with entries not reflecting
shortest path distances quickly because of the following observations. Let db(v) denote the
shortest path distance from a boundary vertex b to some vertex v. Consider some vertex u
with label Lu having an entry Lu (b) = x > db (u) and key value k (u) = Lu (b′) ≤ Lu (b)
with b, b′ ∈ B. If u is scanned, the false entry Lu (b) will be propagated to all adjacent
vertices which will propagate it to their neighbors etc. At some point the entry Lu (b) will
get corrected to a value y ≥ db (u). If the aforementioned minimal tentative key is utilized
this results in u being added to the queue with key value k (u) = y. With the minimal
tentative key value y is guaranteed to be greater than or equal to the current minimum in
the queue and therefore u might rest in the queue. However, at every iteration where u is
not scanned, labels based on the false distances estimate x might spread further into the
graph. All of them have to be corrected at a later point in the algorithm.

Now consider the minimum total key choosing the minimum of all entries regard-
less of the subset of entries updated by a relax operation. For relax operations on

535553

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

14 MORITZ HILGER, EKKEHARD KÖHLER, ROLF H. MÖHRING, AND HEIKO SCHILLING

arcs a = (u, v) ∈ A where u was never scanned before the minimum total key is equiva-
lent to the minimal tentative key. However, for vertices that have been scanned already, the
minimum total key will be the “old” key value. This causes the vertex to be inserted ahead
of all vertices that have not been scanned until now. Therefore the number of follow-up
labels based on a wrong estimate of an entry in u can be assumed to stay small. Note that
this ruins the bound on the number of scans performed on a single vertex presented for the
minimal tentative key. In fact, vertices might get scanned over and over again resulting in a
total count of scanned vertices exceeding |B|·n. During our experiments this occurred only
for exactly one instance while processing a region of one particular partitioning. However,
the overall speed-up of the preprocessing of other regions did compensate for the extra
work.

Our experiments show that the minimum total key outperforms the minimal tentative
key despite the used initialization. All preprocessing numbers presented in Section 5 have
been calculated with the initialization based on abort and the minimum total key. For a
detailed discussion see [Hil07].

4. Choosing the right partition

The arc-flag acceleration method uses a partition of the graph to precompute infor-
mation on whether an arc is useful for a shortest path search. Any possible partition can
be used for the technique and, as Lemma 2.2 proves, the accelerated Dijkstra algorithm
will always return a correct shortest path. However, different partitions do lead to different
speedups of the Dijkstra algorithm. The question is, which partitions lead to the best query
speedups while minimizing preprocessing effort.

There is a number of objectives which a good partition should fulfill: first, the number
of separator arcs should be small, because the preprocessing time directly depends on
this number. Second, the size of partitions should be balanced. With almost equally sized
regions the ’load’ per entry in a flag vector is balanced, i.e. each flag is ’responsible’ for the
same amount of possible target nodes. Third, the number of almost full flag vectors should
be small. For instance, for the partitions that we presented almost one third of the flag
vectors have more than 90 true entries, see Figure 8. However, a full flag vector means
that we almost never can exclude the corresponding arc during an accelerated Dijkstra
search. Fourth, the partition should approximate in a geometric sense the consistent target
set for each arc as closely as possible, see Figure 3.

Together with Birk Schütz, Dorothea Wagner and Thomas Willhalm different
partitions in combination with the arc-flag approach have been studied extensively,
see [MSS+06]. Therefore, in this section, we will only present a summary of these re-
sults. Most of these algorithms need a 2D layout of the graph, except for the multi-way arc
separator algorithm. The partition algorithms based on a 2D layout can easily be adapted
to higher dimensional layouts (time-expanded traffic networks). For the arc-flag approach
itself no layout of the graph is necessary as long as a partitioning can be provided for the
input graph.

Rectangular partition (grid). Probably the easiest way to partition a graph with a 2D
layout is to define the regions using a x × y grid of the bounding-box. More precisely, we
denote with (ℓ, t) the top-left coordinate of the bounding-box of the 2D layout of the graph
and with (r, b) the bottom-right one. Furthermore, we define w = r − ℓ as the width and
h = t−b as the height of the layout. The grid cell or region Gi,j with 0 ≤ i < x, 0 ≤ j < y
is now defined as the rectangle

[
ℓ+i·w

x ; ℓ+(i+1)·w
x

]
×

[
b+j · h

y ; b+(j+1)· h
y

]
. Nodes on

a grid line are assigned to one of the neighboring grid cells. Figure 4(a) shows an example

545654

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

FAST POINT-TO-POINT SHORTEST PATH COMPUTATIONS WITH ARC-FLAGS 15

FIGURE 3. The arc-flag method together with a rectangular partitioning.
At each arc a, a flag vector fa is stored such that fa(i) indicates if a is
on a shortest path into region i. The set of regions for which fa(i) =
true (grey regions in the figure) approximates in a geometrical sense
the consistent target set of arc a, i.e. the set of nodes to which a shortest
path starting with a exists.

of a 7 × 5 grid. The rectangular or grid partition method uses only the bounding-box of
the graph. All other properties like the structure of the graph or the density of nodes are
ignored and hence it is not surprising that this method is not among the best partitions for
our application. In fact, the grid partition always had the worst results in our experiments.
Since earlier work on the arc-flag method [Lau04] used only grid partitions, we take it as
a baseline and compare all other partition algorithms with it.

Quad-trees. A quad-tree is a data structure for storing points in the plane. Quad-trees
are typically used in algorithmic geometry for range queries since they support fast access
to nearest neighbor points. Further applications are in computer graphics, image analysis,
and geographic information systems. Quad-trees can be generalized to higher dimensions
– for 3D they are called oct-trees. Let P be a set of n points in the plane, r0 its quadratic
bounding-box, then the data structure quad-tree is recursively defined as follows:

• Root v0 corresponds to the bounding region r0.
• Region r0 and all other regions ri are recursively divided into four quadrants,

while they contain more than one point of P . The four quadratic sub-regions of
ri are sub-nodes of vi in the quad-tree.

The leaves of a quad-tree form a subdivision of the bounding-box r0. Even more, the leaves
of every sub-tree contain the root from such a subdivision. Since, for our application, we do
not want to create a separate region for each node, we use a sub-tree of the quad-tree. More
precisely, we define an upper bound b ∈ N of points in a region and stop the division if a
region contains fewer points than the bound b. The result is a partition of our graph where
each region contains at most b nodes. Figure 4(b) shows such a partition with 32 regions.
In contrast to the grid partition, this partition reflects the geometry of the graph in a better

555755

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

16 MORITZ HILGER, EKKEHARD KÖHLER, ROLF H. MÖHRING, AND HEIKO SCHILLING

(a) Rectangular partition (35 regions) (b) Quad-tree (34 regions)

(c) kd-Tree (32 regions) (d) MULTI-WAY ARC SEPARATOR (32 re-
gions).

FIGURE 4. Germany with four different partitions.

way: dense parts will be divided into more regions than sparse parts. The regions generated
by this partition have almost balanced size, but the arc separator set can be large.

kd-Trees. In the construction of a quad-tree, a region is divided into four equally
sized sub-regions. However, equally sized sub-regions do not take the distribution of the
points into account. This quad-tree division can therefore be extended to more general
subdivision schemes, the so-called kd-trees. In the construction of a kd-tree, the plane
is recursively divided in a similar way as for a quad-tree. In contrast to a quad-tree, the
underlying rectangle is decomposed into two halves by a straight line parallel to an axis.
The axes alternate in the order x, y, x, y, The positions of the dividing line can depend

565856

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

FAST POINT-TO-POINT SHORTEST PATH COMPUTATIONS WITH ARC-FLAGS 17

ArcSepGrid Kd Bi−ArcSepBi−Grid Bi−Kd

0
50

00
10

00
0

15
00

0

FIGURE 5. Average search spaces of different partitionings on networks
of sizes from 362,000 to 1,046,000 nodes.

on the data. Frequently used positions are given by the center of the rectangle (standard
kd-tree), the average, or the median of the points inside. If the median of points in general
position is used, the number of partitions is always a power of two, and the region sizes
are balanced. Figure 4(c) shows a result for the median and 32 regions. In applications
with higher dimensions, usually the partition axes are not cycled but the dimension with
the largest variance is used. Experiments showed that the kd-tree with median outperforms
the other kd-tree alternatives.

Multi-way arc separator. Instead of using geometric information of the graph em-
bedding one can make use of the general graph-theoretic structure of the network itself.
In contrast, a geometric subdivision of the graph is very dependant on choosing the right
embedding and, especially for the mentioned rectangular partition techniques, one has to
choose the partition very carefully to obtain a satisfying speedup of the resulting algorithm.
A completely different approach is to ignore all geometric information on the network and
simply create a partition of the underlying graph in an appropriate way.

A multi-way arc separator is a partitioning of a graph into k (almost equally sized)
regions with a small (almost minimal) arc separator, for instance, see [KK98]. Ef-
ficient implementations of multi-way arc separator algorithms can be obtained free of
charge from [MET95] or [PAR06]. The algorithms implemented in METIS and PARTY
are based on multilevel recursive-bisection, multilevel k-way, multi-constraint partition
schemes, and other techniques. These partition methods have several advantages for our
application: they do not need a layout of the graph and are therefore the most general
partition methods among those presented in the present article. The number of arcs in the
separator is noticeably smaller than in the other partition methods. The size of the regions
is balanced and the number of full flag vectors is among the smallest of all the partitionings
we studied (Figure 4(d) shows a partition of a graph generated by METIS).

Figure 4 gives some computational results for queries on the different partition
schemes that we described in the previous paragraphs (see [MSS+06] for further details on
these computational results). The size of the preprocessed data per arc is nearly the same
for all algorithms; note that exactly the same size could not be realized since, for instance,
the number of kd-tree partitions is always a power of two. kd-trees and separator parti-
tioning show equal performance. However, the latter does not require an embedding of the
network and produces less separator arcs. Because of these advantages we concentrated
our study in the following to arc separator partitionings.

575957

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

18 MORITZ HILGER, EKKEHARD KÖHLER, ROLF H. MÖHRING, AND HEIKO SCHILLING

TABLE 1. An overview over different partitionings on the USA instance.
For each partitioning the minimal and maximal number of connected
components per region as well as the mean are depicted. “PARTY con-
nected” refers to calling PARTY with the “connected” parameter. “Re-
cursive” shows the results of the proposed recursive calls to PARTY.

#regions method min max mean |B|
100 grid 0 305 72.7 49219

METIS 1 11 1.57 29924
PARTY 1 1 1 20499
PARTY connected 1 1 1 32116
recursive 1 2 1.02 16755

1000 grid 0 141 24.463 157469
METIS 1 14 1.344 99132
PARTY 13 59 32.192 522178
PARTY connected 0 277 19.511 396261
recursive 1 2 1.006 76741

For selecting the partitioning algorithm (PARTY vs. METIS) we ran extensive tests
and finally decided to use PARTY and not METIS in our recent experiments. The newest
version of PARTY has several advantages over METIS. First of all METIS is not main-
tained any more (last update from ’95) and we observed instabilities with the provided im-
plementation. Besides this rather technical detail, the partitions obtained by PARTY are
more appropriate for our purpose: the number of separator arcs is smaller which reduces
the computational effort for pre-computing the arc-flags. More importantly, PARTY al-
lows for retries if non-connected regions are obtained which results in partitionings mainly
consisting of connected regions. However, for large numbers of regions, PARTY’s perfor-
mance decreases. Simply applying PARTY recursively, i.e. partitioning the whole graph
into a small number of regions and re-partitioning those, clears out these problems (see
Table 1).

Hierarchical methods. We would like to finish this section with an outlook on how
the presented arc-flag method, together with the multi-way arc separator approach can be
further brought forward by employing a hierarchical approach. Let us have a closer look
at the search space generated by the arc-flag accelerated Dijkstra search to get an idea of
how to compress the arc-flags: as illustrated in Figure 6(a), the accelerated Dijkstra search
reduces the search space at the beginning of the search, but once the target region has been
reached, almost all nodes and arcs are visited. This is not very surprising, if we consider
that usually all arcs of a region were assigned the region-flag of their own region. We could
deal with this problem by using a finer partition of the graph but this would lead to larger
flag vectors at each arc (requiring more memory and a longer preprocessing). Take the
following example: if we use a fine 15 × 15 grid instead of a coarse 5 × 5 grid (i.e. each
coarse region would be split into 9 additional finer regions), then the preprocessed data
will increase from 25 flags (in the coarse case) to 225 flags (in the fine case) per arc. Note
that the additional information of the fine grid is mainly needed for arcs close to the target
node, e.g. arcs in the target region of the coarse grid. This leads to the idea of splitting
each region of the coarse partition into a set of smaller regions (see Figure 6(b)). For each

586058

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

FAST POINT-TO-POINT SHORTEST PATH COMPUTATIONS WITH ARC-FLAGS 19

(a) Without two-level arc-flags a search visits
almost all arcs in the target region (lower left
gray point).

(b) For each arc a, a flag vector is stored for the coarse 5× 5 grid and a flag vector for a fine
3 × 3 grid in the same coarse region as the arc a.

FIGURE 6. Two-level partition.

such set of smaller regions (i.e. for each fine partition of a region from the coarse partition)
we compute and store additional flag vectors only for those arcs inside the same coarse
region. More precisely, we partition the graph induced by the nodes in the (coarse) regions
and perform (for each induced graph) another preprocessing where we calculated another
flag vector for each arc in the induced graphs. The entries of this additional flag vector per
arc are associated with the fine regions of the same coarse region. Hence, each arc gets
two flag vectors assigned: one for the coarse partition and one for the fine partition of the

596159

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

20 MORITZ HILGER, EKKEHARD KÖHLER, ROLF H. MÖHRING, AND HEIKO SCHILLING

coarse region to which the arc belongs. This approach can be iterated to more than 2 levels
of finer partitionings.

The advantage of this two-level partition approach is that the preprocessed data is
much smaller than for a fine one-level partition. This is because the second flag vector
of an arc a is relevant (i.e. computed, stored, and evaluated) only for the coarse region to
which the arc a belongs. In the example above, the two-level approach would need only
34 flags per arc (instead of 225). The difference between the search spaces of the arc-flag
accelerated Dijkstra search with the one- and with the two-level partition is small. This
is the case, because for the one-level partition the entries in flag vectors corresponding
to faraway neighboring regions are similar to each other. Therefore, we are not loosing
too much information from the one-level flag entries with the two-level partitions. The
two-level approach can be viewed as a (lossy) compression of the one-level flag vectors:
we accumulate the flag entries for faraway regions. For the two-level partition approach
only a slight modification of the search algorithm is required: until the target region is
reached, everything remains unaffected, unnecessary arcs are ignored by using the flag
vectors of level one. When the algorithm has entered the target region, the second-level
flag vector provides further information on whether an arc can be ignored for the search of
a shortest path to the target node. Preprocessing the arc-flags for the two-level approach
takes slightly longer than for the one-level approach. However, almost the same speedups
can be achieved with two-level partitions with only a fraction of the space consumption of
the one-level partitions.

5. Experimental Setup and Computational Results

Implementation. Our experiments were implemented in C++ using the GNU g++
compiler version 4.2 with optimization option -O3 on a Linux 2.6 system. Our code is
based on the latest Boost Graph Library [BGL07] and heavily utilizes the GNU Standard
C++ Library. All calculations were performed on a 64 Bit Dual-Core AMD Opteron(tm)
Processor 2218 with 2593.6 MHz and 1024 KB of cache as well as 32 GB of main memory.

Table 2 shows our implementation of Dijkstra’s Algorithm (strictly speaking a modi-
fication of Dijkstra’s algorithm). We would like to point out that the acceleration factor of
the computational time that we report in this section depends very much on the heap data
structure which is used. In previous papers we applied a d-heap implementation (d = 2)
both for our accelerated and for the standard Dijkstra algorithm implementation. How-
ever, in the present implementation we are using a smart queue implementation [Gol01]
from the Boost Graph Library [BGL07] wherever we are in need of a standard shortest
path algorithm. In particular, this is used in our reference implementation of Dijkstra’s
Algorithm and for the initialization of labels prior to the execution of the centralized short-
est path algorithm. This modification of Dijkstra’s algorithm utilizes a multi-level bucket
heap in combination with the caliber heuristic for faster determination of permanent labels
(see [Gol01]). It is considerably faster than the d-heap implementation that we used in
previous publications. Therefore the performance gap in computational time between the
accelerated and the standard Dijkstra algorithm has been reduced for graphs of comparable
size.

Note however that the centralized shortest path algorithm as well as the bidirectional
query used throughout the experiments still utilize a simple binary-heap. Utilizing more
sophisticated heap-structures might improve on the running times of both significantly.
However, for the centralized shortest path algorithm with minimum total key the key values

606260

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

FAST POINT-TO-POINT SHORTEST PATH COMPUTATIONS WITH ARC-FLAGS 21

TABLE 2. DIMACS benchmark software versus our plain Dijkstra im-
plementation using the Boost Graph Library (BGL).

instance time [ms] search space

name #nodes #edges metric dimacs own × dimacs own ×

NY 264346 733846 travel time 29.2 28.9 1.0 133540.0 133525.6 1.0
distance 24.8 27.2 1.1 133955.9 133958.0 1.0
unit length 17.8 21.8 1.2 134023.6 134022.0 1.0

BAY 321270 800172 travel time 31.3 38.1 1.2 160744.0 160728.3 1.0
distance 28.7 36.0 1.3 159490.4 159486.1 1.0
unit length 21.8 26.2 1.2 156606.8 156613.4 1.0

COL 435666 1057066 travel time 46.1 50.1 1.1 219906.9 219908.5 1.0
distance 39.5 44.6 1.1 208073.6 208062.3 1.0
unit length 30.9 35.8 1.2 209462.9 209465.0 1.0

FLA 1070376 2712798 travel time 136.6 130.7 1.0 535082.2 535067.6 1.0
distance 102.4 115.0 1.1 522623.5 522613.5 1.0
unit length 99.3 118.8 1.2 522690.5 522733.5 1.0

NW 1207945 2840208 travel time 154.2 187.6 1.2 604655.7 604628.0 1.0
distance 129.1 162.9 1.3 612029.8 612036.4 1.0
unit length 107.6 146.2 1.4 591167.8 591161.5 1.0

NE 1524453 3897636 travel time 192.7 282.2 1.5 767389.6 767390.5 1.0
distance 167.6 211.4 1.3 758473.9 758461.3 1.0
unit length 150.4 194.4 1.3 756489.6 756471.1 1.0

CAL 1890815 4657742 travel time 241.6 285.7 1.2 896852.8 896873.1 1.0
distance 220.0 260.0 1.2 955789.7 955774.0 1.0
unit length 256.1 278.0 1.1 959488.2 959467.9 1.0

LKS 2758119 6885658 travel time 500.4 474.8 0.9 1362438.2 1362443.9 1.0
distance 338.4 406.3 1.2 1384591.0 1384580.3 1.0
unit length 325.4 525.6 1.6 1387296.2 1387322.0 1.0

E 3598623 8778114 travel time 821.9 840.2 1.0 1814147.8 1814142.9 1.0
distance 601.5 639.7 1.1 1833678.1 1833662.9 1.0
unit length 445.6 608.2 1.4 1791469.0 1791389.7 1.0

W 6262104 15248146 travel time 1110.7 1584.3 1.4 3116286.8 3116280.5 1.0
distance 951.2 1329.6 1.4 3207533.5 3207549.5 1.0
unit length 857.0 1458.5 1.7 3225232.8 3225273.9 1.0

CTR 14081816 34292496 travel time 5959.5 6050.8 1.0 7260717.0 7260654.0 1.0
distance 4229.4 5965.2 1.4 6943986.5 6944001.7 1.0
unit length 2778.5 5311.4 1.9 6946160.5 6946243.7 1.0

USA 23947347 58333344 travel time 5542.0 7882.3 1.4 12130117.0 12130223.9 1.0
distance 4392.9 6455.4 1.5 12069795.0 12069747.9 1.0
unit length 3611.2 5101.1 1.4 12145470.0 12145475.4 1.0

can not be guaranteed to be non-decreasing, thereby excluding many of the faster heap-
structures. For the bi-directional search, utilizing the caliber lemma increases the search
space compared to standard heap-structures.

It should be noted that the Boost Graph Library (BGL) uses a generic program-
ming framework which makes extensive use of C++ templates. The BGL implementation
achieved running times close to the DIMACS reference implementation, see Table 2. The
latter is the implementation provided for benchmarking on the challenge homepage2. It
is remarkable that a flexible and highly reusable generic software architecture approach
has no problem to catch up with fine-tuned “handcrafted” implementations. The differ-
ences in search space reported in Table 2 are due to the BGL implementation using the
caliber heuristic. The running times of our Dijkstra implementation and the competitive

2http://www.dis.uniroma1.it/˜challenge9/

616361

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

22 MORITZ HILGER, EKKEHARD KÖHLER, ROLF H. MÖHRING, AND HEIKO SCHILLING

TABLE 3. Summary of time and space requirements for preprocessing
with 200 regions. For each metric the time needed for preprocessing and
the number of unique flag vectors calculated as well as the resulting extra
space is reported.

instance travel time distance unit length

name #vertices #arcs secs #vectors Bytes/arc secs #vectors Bytes/arc secs #vectors Bytes/arc

NY 264346 730100 95.04 46527 5.59 85.27 98435 7.37 79.64 85740 6.94
BAY 321270 794830 82.04 19792 4.62 80.54 49811 5.57 63.37 66829 6.10
COL 435666 1042400 107.68 33849 4.81 98.54 72517 5.74 89.07 100504 6.41
FLA 1070376 2687902 301.2 47471 4.44 298.79 85157 4.79 290.45 50826 4.47
NW 1207945 2820774 347.86 50221 4.45 318.54 118884 5.05 292.78 111530 4.99
NE 1524453 3868020 774.82 91939 4.59 646.42 227458 5.47 641.37 149496 4.97

CAL 1890815 4630444 898.15 59616 4.32 861.6 145434 4.79 732.35 121880 4.66
LKS 2758119 6794808 1903.82 81216 4.30 2006.38 195768 4.72 1597.26 149103 4.55

E 3598623 8708058 2118.18 119175 4.34 1821.48 327547 4.94 1725.62 197961 4.57
W 6262104 15119284 4100.92 133292 4.22 3887.43 312904 4.52 3258.25 221905 4.37

CTR 14081816 33866826 21788.1 291562 4.22 20633.7 826359 4.61 17521.9 575129 4.42
USA 23947347 57708624 36635.8 295660 4.13 35361.2 848633 4.37 28084.9 548603 4.24

TABLE 4. Summary of time and space requirements for preprocessing
with 600 regions.

instance travel time distance unit length

name #vertices #arcs secs #vectors Bytes/arc secs #vectors Bytes/arc secs #vectors Bytes/arc

NY 264346 730100 191.19 148479 19.25 173.74 237638 28.41 162.57 217128 26.30
BAY 321270 794830 160.66 75464 11.12 159.9 140127 17.22 137.9 177479 20.75
COL 435666 1042400 209.26 99235 11.14 198.25 173677 16.50 189.88 221005 19.90
FLA 1070376 2687902 629.88 141681 7.95 602.25 255629 11.13 634.06 189961 9.30
NW 1207945 2820774 705.35 163013 8.33 652.37 324411 12.63 655.07 343521 13.13
NE 1524453 3868020 1535.38 308976 9.99 1336.42 669324 16.98 1366.04 508062 13.85

CAL 1890815 4630444 1688.4 196049 7.18 1590.04 453742 11.35 1571.31 428433 10.94
LKS 2758119 6794808 3554.2 350087 7.86 3355.34 785160 12.67 3196.82 622242 10.87

E 3598623 8708058 4088.22 429586 7.70 3612.54 1029551 12.87 3600.47 746840 10.43
W 6262104 15119284 8186.41 450797 6.24 7531.96 1020546 9.06 6952.99 876384 8.35

CTR 14081816 33866826 36901.9 1121594 6.48 34269.9 2903758 10.43 31009.9 2370374 9.25
USA 23947347 57708624 62616.9 1267948 5.65 58851.3 3382666 8.40 51376.2 2405552 7.13

query times achieved by our arc-flag implementation prove the efficiency of generic tem-
plate code as well as the good performance of the arc-flag method. More details on the
implementation can be found in [Hil07].

5.1. Instances. We performed computations on the USA road networks from the DI-
MACS Challenge homepage [DIM06] using different length functions on the arcs. In
particular we considered distance metric, travel time metric and unit length.

5.2. Results — Preprocessing. Tables 3, 4 and 5 as well as Figure 7 give an overview
of the preprocessing. The tables show the total running time of our preprocessing algorithm
using the centralized shortest path with minimum total key described in Section 3.4. Fur-
thermore, the number of unique flag-vectors is reported as well as the additional space
required per arc. This extra memory results from storing each of the unique flag-vectors
once as a bit-set and an index of 4 bytes for each arc to point to its flag-vector.

During the preprocessing we store each flag vector separately for each arc and there-
fore the space requirements during the preprocessing are much higher, e.g., 200 bits per arc
for the instances in Table 3. Additionally, the centralized shortest path algorithm needs to

626462

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

FAST POINT-TO-POINT SHORTEST PATH COMPUTATIONS WITH ARC-FLAGS 23

TABLE 5. Summary of time and space requirements for preprocessing
with 1000 regions.

instance travel time distance unit length

name #vertices #arcs secs #vectors Bytes/arc secs #vectors Bytes/arc secs #vectors Bytes/arc

NY 264346 730100 278.22 216396 41.05 255.82 304102 56.07 241.99 282955 52.44
BAY 321270 794830 230.66 117356 22.46 222.9 191698 34.15 214.98 230009 40.17
COL 435666 1042400 296.21 140785 20.88 279.62 225707 31.07 275.34 273818 36.84
FLA 1070376 2687902 910.98 215809 14.04 853.8 376528 21.51 925.99 301501 18.02
NW 1207945 2820774 998.55 250665 15.11 915.44 460623 24.41 932.71 499607 26.14
NE 1524453 3868020 2112.71 466339 19.07 1876.58 937715 34.30 1915.79 756825 28.46

CAL 1890815 4630444 2374.46 310106 12.37 2190.03 671973 22.14 2280.03 666737 22.00
LKS 2758119 6794808 4844.56 577741 14.63 4542.44 1217384 26.40 4482.78 1003382 22.46

E 3598623 8708058 5728.15 676346 13.71 5071.58 1489411 25.38 5104.8 1153177 20.55
W 6262104 15119284 11026.7 714271 9.91 10349.8 1552521 16.84 9869.15 1414805 15.70

CTR 14081816 33866826 56186.1 1830463 10.76 52432.3 4412360 20.29 47186.5 3770229 17.92
USA 23947347 57708624 85170.2 2133396 8.62 78689 5307382 15.50 71134.9 4119036 12.92

travel time
distance
unit length

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#vertices [million]

tim
e

[h
]

0
5

10
15

20
25

FIGURE 7. Preprocessing times for 1000 regions in hours relative to
millions of nodes.

store a large distance matrix, resulting in high memory needs for the preprocessing phase.
The smaller number of edges in Tables 3 to 5 result from the removal of parallel edges
from the original data presented in Table 2.

An analysis of the calculated flag vectors shows that (depending on the partition) on
average more than 40% of the flag vectors have less than 10% true entries, see Fig-
ure 8. The high amount of almost empty flag vectors justifies the idea for a compression
of the vectors. It is important that the decompression algorithm is very fast—otherwise the
speedup of the running time will be lost. The two and more level technique described in
Section 4 is a suitable lossy compression method for the flag vector entries.

5.3. Results — Queries. Tables 6, 7 and 8 give an overview for random query results
for different partitions. For each instance the size of the shortest path, i.e. the number of
vertices contained, as well as query times and search space for Dijkstra’s algorithm (dijk)
and the arc-flag bi-directional query (flag) are reported. Additionally, the resulting speed-
up factors for time and search space and the efficiency is given. The efficiency of a shortest
path query is the ratio of search space (the number of scanned vertices) and the actual
number of vertices in the path; i.e. an optimal query has an efficiency of 100%. The
reported numbers are averaged over 1000 queries on each instance and metric. It can be

636563

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

24 MORITZ HILGER, EKKEHARD KÖHLER, ROLF H. MÖHRING, AND HEIKO SCHILLING

0−10 10−20 20−30 30−40 40−50 50−60 60−70 70−80 80−90 90−100

travel time
distance
unit length

fill rate of arc−flag vector [%]

nu
m

be
r

of
 a

rc
s

[%
]

0
20

40
60

80
10

0

FIGURE 8. Statistics of the fill rate of the flag vectors on instance W
with 200 partitions. The y-axis shows the percentage of arcs for which
the corresponding flag vector has a certain fill rate, while the x-axis
shows the percentages of different fill rates. For instance, an arc a has
a flag vector with fill rate 10% if 20 out of 200 flags in the vector have
been set to true.

observed that the efficiency of queries on the travel time metric is much higher than for
the other metrics. For the partitioning into 1000 regions queries on all instances can be
calculated with an efficiency of more than 80%, for smaller instances even more than 90%
(Table 8).

Random queries are more likely to prioritize pairs of far-away vertices. Therefore
experiments focusing on locality have been performed. In Figures 9 and 11 we present
box plots3 for query time and efficiency of local queries, i.e. the query pairs are chosen
for different Dijkstra ranks. We define the Dijkstra rank as follows: Suppose we start a
run of Dijkstra’s algorithm at some vertex v and u is the k-th vertex scanned. Then the
Dijkstra rank of u is ⌊log2 (k)⌋. We used the generator supplied with the benchmark suite4

to generate pairs of local queries. Note that the efficiency improves with the distance of
the query pairs. For far-away queries the efficiency is nearly optimal (Figure 9) for both
distance and travel time. Figures 12, 13 and 14 present the effect of different partitionings
on the local efficiency for the LKS instance. Each point represents the median of the
efficiency of 1000 local queries. Larger numbers of regions improve on the efficiency
for all metrics, although to different extends. Optimal efficiency for unit length seems
hardest to achieve whereas the efficiency for the distance metric is optimal for far away
queries. Note the steep increase for the distance metric between, e.g. rank 19 and 20 for
100 partitions. Travel time metric shows the best efficiency and highest improvements
even for small numbers of partitions.

In Figure 10 the speed-up factors for query times resulting from partitioning the in-
stances into 600 regions are presented. Again, the arc-flag method performs best on travel
time metric, but also achieves considerable speed-ups for the other metrics.

3Also known as box and whisker plots. The median as well as the quartiles are denoted as small line and
box, respectively. The range depicted by the whiskers covers 95% of the data. For ease of readability we omit
outliers.

4http://www.dis.uniroma1.it/˜challenge9/

646664

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

FAST POINT-TO-POINT SHORTEST PATH COMPUTATIONS WITH ARC-FLAGS 25

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

travel time
distance
unit length

Dijkstra rank

ef
fic

ie
nc

y
in

 [%
]

0
20

40
60

80
10

0

FIGURE 9. Efficiency of Local query results for Dijkstra rank from 10
to 24 on USA instance with 1000 regions.

0
50

0
10

00
15

00
20

00
25

00

NY BAY COL FLA NW NE CAL LKS E W CTR USA

travel time
distance
unit length

sp
ee

du
p

fa
ct

or
0

50
0

10
00

15
00

20
00

25
00

FIGURE 10. Speed up factors for query times using 600 regions.

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

travel time
distance
unit length

Dijkstra rank

tim
e

[m
s]

0
5

10
15

20
25

30
35

FIGURE 11. Query times in [ms] of Local query results for Dijkstra rank
from 10 to 24 on USA instance with 1000 regions.

656765

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

26 MORITZ HILGER, EKKEHARD KÖHLER, ROLF H. MÖHRING, AND HEIKO SCHILLING

TABLE 6. Summary of random query results on instances of the USA-
road family using 200 regions. For each instance and metric the average
size of a shortest path is given, i.e. the number of vertices contained.
The search space and the time needed for calculating using our reference
Dijkstra as well as the bi-directional accelerated arc-flag query and the
resulting factors are depicted. Finally, the resulting efficiency, i.e. the
ratio of search space and path size is presented.

instance query time [ms] search space efficiency

name metric size dijk flag × dijk flag × [%]

NY travel time 346 28.9 0.4 72 133526 442 302 78
distance 407 27.2 0.7 39 133958 870 154 47
unit length 267 21.8 0.5 44 134022 593 226 45

BAY travel time 478 38.1 0.3 127 160728 556 289 86
distance 467 36.0 0.7 51 159486 769 207 61
unit length 297 26.2 0.5 52 156613 493 318 60

COL travel time 743 50.1 0.6 84 219909 918 240 81
distance 661 44.6 0.8 56 208062 1366 152 48
unit length 449 35.8 0.5 72 209465 842 249 53

FLA travel time 831 130.7 0.6 218 535068 1073 499 77
distance 1019 115.0 1.2 96 522614 1855 282 55
unit length 555 118.8 0.6 198 522733 776 674 72

NW travel time 1243 187.6 1.0 188 604628 1506 401 83
distance 1077 162.9 1.4 116 612036 2234 274 48
unit length 712 146.2 0.8 183 591162 1355 436 53

NE travel time 992 282.2 1.0 282 767391 1378 557 72
distance 1143 211.4 2.6 81 758461 3164 240 36
unit length 723 194.4 1.3 150 756471 1518 498 48

CAL travel time 1284 285.7 1.2 238 896873 1709 525 75
distance 1280 260.0 1.8 144 955774 3000 319 43
unit length 772 278.0 0.9 309 959468 1507 637 51

LKS travel time 1985 474.8 1.7 279 1362444 2409 566 82
distance 2432 406.3 4.0 102 1384580 4663 297 52
unit length 1300 525.6 1.5 350 1387322 2437 569 53

E travel time 1784 840.2 2.1 400 1814143 2486 730 72
distance 2154 639.7 4.8 133 1833663 7107 258 30
unit length 1279 608.2 1.7 358 1791390 2683 668 48

W travel time 2916 1584.3 2.6 609 3116281 4197 743 69
distance 2578 1329.6 6.2 214 3207550 8756 366 29
unit length 1628 1458.5 2.4 608 3225274 3961 814 41

CTR travel time 3127 6050.8 5.7 1062 7260654 5667 1281 55
distance 3471 5965.2 24.5 243 6944002 25400 273 14
unit length 2039 5311.4 10.8 492 6946244 9361 742 22

USA travel time 4545 7882.3 4.4 1791 12130224 8171 1485 56
distance 5181 6455.4 14.2 455 12069748 24545 492 21
unit length 3000 5101.1 8.5 600 12145475 13958 870 21

6. Discussion and Outlook

We presented two essential improvements of the basic variant of the arc-flag accel-
eration [Lau97, Lau04] for speeding up the p2p shortest path search queries on static
road networks. The arc-flag acceleration method is a modification of the standard Dijk-
stra algorithm and can be used to avoid exploring unnecessary paths during shortest path
computations.

Our results show that the arc-flag method together with a multi-way arc separator
partitioning yields computational query times between 3.0 and 14.2 milliseconds on the
USA instance (24M nodes, 58M arcs), depending on the metric and partitioning. These

666866

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

FAST POINT-TO-POINT SHORTEST PATH COMPUTATIONS WITH ARC-FLAGS 27

TABLE 7. Summary of random query results on instances of the USA-
road family using 600 regions.

instance query time [ms] search space efficiency

name metric size dijk flag × dijk flag × [%]

NY travel time 346 28.9 0.3 96 133526 393 340 88
distance 407 27.2 0.5 54 133958 582 230 70
unit length 267 21.8 0.4 55 134022 458 293 58

BAY travel time 478 38.1 0.3 127 160728 513 313 93
distance 467 36.0 0.5 72 159486 570 280 82
unit length 297 26.2 0.3 87 156613 408 384 73

COL travel time 743 50.1 0.6 84 219909 825 267 90
distance 661 44.6 0.5 89 208062 900 231 73
unit length 449 35.8 0.4 89 209465 651 322 69

FLA travel time 831 130.7 0.6 218 535068 941 569 88
distance 1019 115.0 1.2 96 522614 1334 392 76
unit length 555 118.8 0.5 238 522733 681 768 81

NW travel time 1243 187.6 0.8 234 604628 1354 447 92
distance 1077 162.9 1.4 116 612036 1503 407 72
unit length 712 146.2 0.7 209 591162 1020 580 70

NE travel time 992 282.2 0.9 314 767391 1150 667 86
distance 1143 211.4 1.9 111 758461 1899 399 60
unit length 723 194.4 0.8 243 756471 1089 695 66

CAL travel time 1284 285.7 1.2 238 896873 1456 616 88
distance 1280 260.0 1.3 200 955774 1869 511 68
unit length 772 278.0 0.8 348 959468 1157 829 67

LKS travel time 1985 474.8 1.3 365 1362444 2142 636 93
distance 2432 406.3 2.8 145 1384580 3289 421 74
unit length 1300 525.6 2.0 263 1387322 2022 686 64

E travel time 1784 840.2 1.7 494 1814143 2062 880 87
distance 2154 639.7 3.0 213 1833663 3919 468 55
unit length 1279 608.2 1.9 320 1791390 1981 904 65

W travel time 2916 1584.3 2.1 754 3116281 3472 898 84
distance 2578 1329.6 3.5 380 3207550 4643 691 56
unit length 1628 1458.5 1.8 810 3225274 2714 1188 60

CTR travel time 3127 6050.8 3.9 1551 7260654 4113 1765 76
distance 3471 5965.2 13.4 445 6944002 11643 596 30
unit length 2039 5311.4 5.7 932 6946244 4832 1438 42

USA travel time 4545 7882.3 3.2 2463 12130224 5960 2035 76
distance 5181 6455.4 10.7 603 12069748 16981 711 31
unit length 3000 5101.1 5.0 1020 12145475 7711 1575 39

computational query times can be achieved by using only between 4.13 and 15.5 bytes
of additional space per arc. The additional space is used for storing the flag vectors and
a pointer from each arc to its flag vector. The performance of our method depends on
the metric which is used: on the travel time metric the smallest space is required and the
fastest query response times can be achieved. The preprocessing of the additional data can
be executed within reasonable time, e.g. preprocessing the USA instance takes between 10
and 24 hours. Note that in the static setting assumed by us the preprocessing time should
not be an issue since it needs to be done only once.

With regard to routing application such as large web servers (e.g.,
maps.google.com) or small PNDs, the query times of our improved arc-flag
method are sufficiently fast: rendering the calculated route in a digital map for its
presentation within a graphical user interface takes already much longer than calculating
the shortest path itself using our method.

676967

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

28 MORITZ HILGER, EKKEHARD KÖHLER, ROLF H. MÖHRING, AND HEIKO SCHILLING

TABLE 8. Summary of random query results on instances of the USA-
road family using 1000 regions.

instance query time [ms] search space efficiency

name metric size dijk flag × dijk flag × [%]

NY travel time 346 28.9 0.2 144 133526 380 351 91
distance 407 27.2 0.5 54 133958 502 267 81
unit length 267 21.8 0.3 73 134022 417 321 64

BAY travel time 478 38.1 0.3 127 160728 507 317 94
distance 467 36.0 0.5 72 159486 540 295 86
unit length 297 26.2 0.3 87 156613 390 402 76

COL travel time 743 50.1 0.4 125 219909 818 269 91
distance 661 44.6 0.6 74 208062 877 237 75
unit length 449 35.8 0.4 89 209465 623 336 72

FLA travel time 831 130.7 0.5 261 535068 906 591 92
distance 1019 115.0 0.8 144 522614 1218 429 84
unit length 555 118.8 0.4 297 522733 660 792 84

NW travel time 1243 187.6 0.7 268 604628 1322 457 94
distance 1077 162.9 1.0 163 612036 1339 457 80
unit length 712 146.2 0.6 244 591162 981 603 73

NE travel time 992 282.2 0.7 403 767391 1107 693 90
distance 1143 211.4 1.1 192 758461 1638 463 70
unit length 723 194.4 0.7 278 756471 999 757 72

CAL travel time 1284 285.7 0.8 357 896873 1399 641 92
distance 1280 260.0 1.0 260 955774 1643 582 78
unit length 772 278.0 0.7 397 959468 1074 893 72

LKS travel time 1985 474.8 1.2 396 1362444 2108 646 94
distance 2432 406.3 2.2 185 1384580 2998 462 81
unit length 1300 525.6 1.3 404 1387322 1893 733 69

E travel time 1784 840.2 1.2 700 1814143 1977 918 90
distance 2154 639.7 2.5 256 1833663 3181 576 68
unit length 1279 608.2 1.5 405 1791390 1784 1004 72

W travel time 2916 1584.3 1.7 932 3116281 3280 950 89
distance 2578 1329.6 2.3 578 3207550 3830 837 67
unit length 1628 1458.5 1.6 912 3225274 2468 1307 66

CTR travel time 3127 6050.8 3.0 2017 7260654 3787 1917 83
distance 3471 5965.2 8.1 736 6944002 7903 879 44
unit length 2039 5311.4 4.2 1265 6946244 3887 1787 52

USA travel time 4545 7882.3 3.0 2627 12130224 5416 2240 84
distance 5181 6455.4 8.9 725 12069748 12954 932 40
unit length 3000 5101.1 4.0 1275 12145475 5904 2057 51

For applications on embedded or mobile devices, e.g. PNDs, typically one has to tackle
two bottlenecks: the I/O latency and the limited instruction cache of such devices. On the
ARM chip family [ARM08], a commonly used hardware platform in the embedded or
mobile industry, the latter is an even bigger bottleneck. Already implementing a binary
heap generates a significant overhead in terms of instruction on an ARM chip. Therefore
it is of utmost importance to keep the data structures and procedures on such devices as
simple as possible. Although also more complex acceleration methods can be implemented
on mobiles devices [SSV08, GW05a] it can be expected that a simple method such as
arc-flags performs even better on a mobile device. However, it remains a task for future
research to confirm this assumption.

The plots showing the results for queries of different Dijkstra ranks demonstrate that
there is not much difference in computational effort between near by and far away query
pairs. On the travel time metric the average computational effort is nearly constant for all
different ranks. This observation can also be made when comparing the average size of

687068

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

FAST POINT-TO-POINT SHORTEST PATH COMPUTATIONS WITH ARC-FLAGS 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

100
200
400
600
800
1000

Dijkstra rank

ef
fic

ie
nc

y
[%

]
0

20
40

60
80

10
0

FIGURE 12. Comparison of efficiency of partitionings for local queries
on LKS with distance metric. For 1000 queries per Dijkstra rank the
median of the efficiency is visualized.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

100
200
400
600
800
1000

Dijkstra rank

ef
fic

ie
nc

y
[%

]
0

20
40

60
80

10
0

FIGURE 13. Comparison of efficiency of partitionings for local queries
on LKS with travel time metric. For 1000 queries per Dijkstra rank the
median of the efficiency is visualized.

the search space to the average number of nodes in a path: factors of less than two are
achieved on the travel time metric. In all cases, the search space of our arc-flag method is
never larger than ten times the actual number of nodes on the shortest paths.

We extended the arc-flag method to general graphs; this is not only relevant for (al-
most) planar road networks: many of today’s problems in traffic optimization do not just
consider a usually (almost) planar road network but rather a (time) expanded version of the
original network. Typical examples of such applications are time-table graphs for public
transport and time expanded graphs for dynamic flows or dynamic routing, see for in-
stance [GKMS04, Lie06, Sch06]. There is no reasonable embedding in the plane for such
complicated graph structures. Yet, for our acceleration methods we do not need any such
embedding.

Furthermore, the arc-flag method provides a (fine-tunable) trade-off between speedup
factors and space usage. Depending on the given partitioning, one can regard the arc-flag

697169

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

30 MORITZ HILGER, EKKEHARD KÖHLER, ROLF H. MÖHRING, AND HEIKO SCHILLING

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

100
200
400
600
800
1000

Dijkstra rank

ef
fic

ie
nc

y
[%

]
0

20
40

60
80

10
0

FIGURE 14. Comparison of efficiency of partitionings for local queries
on LKS with unit length. For 1000 queries per Dijkstra rank the median
of the efficiency is visualized.

acceleration as an interpolation between no precomputed information at all (plain Dijk-
stra) and full pre-computation (determining all possible shortest paths of the input graph).
Whereas the former is achieved by choosing a partitioning of the graph into just one re-
gion, the latter means a partitioning of the graph where each node lies in its own region,
i.e. it has as many regions as nodes. Thus in theory we can get as close as possible to the
ideal shortest path search by increasing the number of regions in the partitioning (’ideal’
means that the shortest path algorithm visits only arcs which actually belong to the short-
est path itself). Obviously, an increase in the number of regions also entails an increase in
preprocessing time and memory consumption.

Again, with regard to possible applications, the scalability and conceptional simplicity
of the arc-flag methods makes it very flexible: on large servers with no space restriction one
would use arc-flags together with a fine (high resolution) partitioning using many regions
while on a PND with hard space and performance restrictions a coarse partitioning already
suffices to deliver good speedups with the arc-flags.

References

[ARM08] ARM, Advanced Risc Machines ltd, http://www.arm.com, February 2008.
[BD08] Reinhard Bauer and Daniel Delling, SHARC: Fast and Robust Unidirectional Routing, Proceedings of

the 10th Workshop on Algorithm Engineering and Experiments (ALENEX’08), SIAM, 2008, pp. 13–
26.

[BDS+08] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik Schultes, and
Dorothea Wagner, Combining hierarchical and goal-directed speed-up techniques for dijkstra’s al-
gorithm, 2008, Submitted.

[BDW07a] Reinhard Bauer, Daniel Delling, and Dorothea Wagner, Experimental Study on Speed-Up Techniques
for Timetable Information Systems, Proceedings of the 7th Workshop on Algorithmic Approaches for
Transportation Modeling, Optimization, and Systems (ATMOS’07), Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

[BFM06] Holger Bast, Stefan Funke, and Domagoj Matijevic, TRANSIT: Ultrafast shortest-path queries with
linear-time preprocessing, DIMACS Implementation Challenge Shortest Paths, 2006.

[BFM+07] Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik Schultes, In transit to
constant time shortest-path queries in road networks, Proceedings of the 9th Workshop on Algorithm
Engineering and Experiments (ALENEX’07), 2007, pp. 46–59.

[BGL07] BGL, The Boost Graph Library, http://www.boost.org/libs/graph/, March 2007.

707270

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

FAST POINT-TO-POINT SHORTEST PATH COMPUTATIONS WITH ARC-FLAGS 31

[Dij59] Edsger Wybe Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik,
vol. 1, Mathematisch Centrum, Amsterdam, The Netherlands, 1959, pp. 269–271.

[DIM06] DIMACS, 9th Implementation Challenge — Shortest Paths, http://www.dis.uniroma1.it/
˜challenge9, 2006.

[EL99] Reinhard Enders and Ulrich Lauther, Method and device for computer assisted graph processing,
http://gauss.ffii.org/PatentView/EP1027578, May 1999, Siemens AG.

[FT87] Michael L. Fredman and Robert Endre Tarjan, Fibonacci heaps and their uses in improved network
optimization algorithms, Journal of the Association for Computing Machinery 34 (1987), no. 3, 596–
615.

[GH05] Andrew V. Goldberg and Chris Harrelson, Computing the shortest path: A∗ search meets graph
theory, Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
Vancouver, BC (Philadelphia, PA, USA) (Adam Buchsbaum, ed.), SIAM, 2005, pp. 156–165.

[GKMS04] Ewgenij Gawrilow, Ekkehard Köhler, Rolf H. Möhring, and Björn Stenzel, Conflict-free real-time
agv routing, In Proceedings of Operations Research (OR) 2004, 2004.

[GKW06] Andrew V. Goldberg, Haim Kaplan, and Renato Fonseca Werneck, Reach for A∗: Efficient point-
to-point shortest path algorithms, Proceedings of the 8th Workshop on Algorithm Engineering and
Experiments (ALENEX), SIAM, 2006.

[Gol01] Andrew V. Goldberg, A simple shortest path algorithm with linear expected time, SIAM J. on Com-
puting 37 (2001), no. 5, 1637–1655.

[Gut04] Ronald J. Gutman, Reach-based routing: A new approach to shortest path algorithms optimized
for road networks, Proceedings of the 6th Workshop on Algorithm Engineering and Experiments
(ALENEX) and the First Workshop on Analytic Algorithmics and Combinatorics (ANALCO), New
Orleans, LA, USA (Philadelphia, PA, USA) (Lars Arge, Giuseppe F. Italiano, and Robert Sedgewick,
eds.), SIAM, 2004, pp. 100–111.

[GW05a] Andrew V. Goldberg and Renato F. Werneck, Computing point-to-point shortest paths from external
memory, Proceedings of the 7th Workshop on Algorithm Engineering and Experiments (ALENEX),
SIAM, 2005, pp. 26–40.

[Hil07] Moritz Hilger, Accelerating point-to-point shortest path computations in large scale networks., Mas-
ter’s thesis, Technische Universität Berlin, 2007.

[Joh77] Donald B. Johnson, Efficient algorithms for shortest paths in sparse networks, Journal of the Associ-
ation for Computing Machinery 24 (1977), no. 1, 1–13.

[KK98] George Karypis and Vipin Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, SIAM Journal on Scientific Computing 20 (1998), no. 1, 359–392.

[KMS05] Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling, Acceleration of shortest path and con-
strained shortest path computation, In Proceedings of the 4th International Workshop on Experimental
and Efficient Algorithms (WEA) (Heidelberg, Germany) (Sotiris E. Nikoletseas, ed.), Lecture Notes
in Computer Science, vol. 3503, Springer, 2005, pp. 126–138.

[KSS+06] Sebastian Knopp, Peter Sanders, Dominik Schultes, Frank Schulz, and Dorothea Wagner, Fast com-
putation of distance tables using highway hierarchies, Tech. report, Faculty of Informatics, University
of Karlsruhe, 2006.

[Lau97] Ulrich Lauther, Slow preprocessing of graphs for extremely fast shortest path calculations, 1997,
Lecture at the Workshop on Computational Integer Programming at ZIB (no documentation available).

[Lau04] , An extremely fast, exact algorithm for finding shortest paths in static networks with geo-
graphical background, Geoinformation und Mobilität - von der Forschung zur praktischen Anwen-
dung (Münster, Germany) (Martin Raubal, Adam Sliwinski, and Werner Kuhn, eds.), IfGI prints,
vol. 22, Institut für Geoinformatik, Westfälische Wilhelms-Universität, 2004, pp. 219–230.

[Lau06] , An experimental evaluation of point-to-point shortest path calculation on roadnetworks with
precalculated edge-flags, DIMACS Implementation Challenge Shortest Paths, 2006.

[Lie06] Christian Liebchen, Periodic timetable optimization in public transport, Ph.D. thesis, Institute of
Mathematics, TU Berlin, 2006.

[MET95] METIS, A family of multilevel partitioning algorithms, http://www-users.cs.umn.edu/
˜karypis/metis/, 1995.

[MSS+05] Rolf H. Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, and Thomas Willhalm, Parti-
tioning graphs to speed up Dijkstra’s algorithm, Proceedings of the 4th International Workshop on
Experimental and Efficient Algorithms (WEA) (Heidelberg, Germany) (Sotiris E. Nikoletseas, ed.),
Lecture Notes in Computer Science, vol. 3503, Springer, 2005, pp. 189–202.

[MSS+06] , Partitioning graphs to speed up Dijkstra’s algorithm, ACM Journal of Experimental Algo-
rithms (JEA) 11 (2006), Article No. 2.8.

717371

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

32 MORITZ HILGER, EKKEHARD KÖHLER, ROLF H. MÖHRING, AND HEIKO SCHILLING

[PAR06] PARTY, A Partitioning Library, http://wwwcs.uni-paderborn.de/cs/ag-monien/
RESEARCH/PART/party.html, 2006.

[Sch06] Heiko Schilling, Route assignment problems in large networks, Ph.D. thesis, Institute of Mathematics,
TU Berlin, 2006.

[Sch08] Dominik Schultes, Route planning in road networks, Ph.D. thesis, Institute for Theoretical Computer
Science, TH Karlsruhe, 2008.

[SS05] Peter Sanders and Dominik Schultes, Highway hierarchies hasten exact shortest path queries.,
Proceedings of the 13th Annual European Symposium (ESA) (Gerth Stølting Brodal and Stefano
Leonardi, eds.), Lecture Notes in Computer Science, vol. 3669, Springer, 2005, pp. 568–579.

[SS06] , Engineering highway hierarchies, Proceedings of the 14th Annual European Symposium
(ESA) (Yossi Azar and Thomas Erlebach, eds.), vol. Lecture Notes in Computer Science 4168,
Springer, September 2006, pp. 804–816.

[SS07] Dominik Schultes and Peter Sanders, Dynamic highway-node routing, Proceedings of the 6th Interna-
tional Workshop on Experimental Algorithms (WEA), Lecture Notes in Computer Science, vol. 4525,
Springer, 2007, pp. 66–79.

[SSV08] Peter Sanders, Dominik Schultes, and Christian Vetter, Mobile route planning, 2008, Submitted.
[SWW00] Frank Schulz, Dorothea Wagner, and Karsten Weihe, Dijkstra’s algorithm on-line: An empirical case

study from public railroad transport, ACM Journal of Experimental Algorithms 5 (2000), 12.
[Wil05] Thomas Willhalm, Engineering shortest paths and layout algorithms for large graphs, Ph.D. thesis,

Faculty of Informatics, University of Karlsruhe, 2005.
[WW03] Dorothea Wagner and Thomas Willhalm, Geometric speed-up techniques for finding shortest paths in

large sparse graphs, Algorithms - ESA 2003, 11th Annual European Symposium, Budapest, Hungary
(Heidelberg, Germany) (Giuseppe Di Battista and Uri Zwick, eds.), Springer-Verlag, Lecture Notes in
Computer Science, vol. 2832, 2003, pp. 776–787.

MORITZ HILGER, INSTITUTE OF MATHEMATICS, TU BERLIN, STRASSE DES 17. JUNI 136, D-10623
BERLIN, GERMANY

E-mail address: Moritz.Hilger@TU-Berlin.DE

EKKEHARD KÖHLER, MATHEMATICAL INSTITUTE, BTU COTTBUS, POSTFACH 101344, D-03013
COTTBUS, GERMANY

E-mail address: Ekkehard.Koehler@Math.TU-Cottbus.DE

ROLF H. MÖHRING, INSTITUTE OF MATHEMATICS, TU BERLIN, STRASSE DES 17. JUNI 136, D-
10623 BERLIN, GERMANY

E-mail address: Rolf.Moehring@TU-Berlin.DE

HEIKO SCHILLING, INSTITUTE OF MATHEMATICS, TU BERLIN, STRASSE DES 17. JUNI 136, D-10623
BERLIN, GERMANY

E-mail address: Heiko.Schilling@TU-Berlin.DE

727472

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science

High-Performance Multi-Level Routing

Daniel Delling, Martin Holzer, Kirill Müller, Frank Schulz,
and Dorothea Wagner

Abstract. Shortest-path computation is a frequent task in practice. Owing
to ever-growing real-world graphs, there is a constant need for faster algo-
rithms. In the course of time, a large number of techniques to heuristically
speed up Dijkstra’s shortest-path algorithm have been devised. This work re-
views the multi-level technique to answer shortest-path queries exactly [24, 9],
which makes use of a hierarchical decomposition of the input graph and pre-
computation of supplementary information. We develop this preprocessing to
the maximum and introduce several ideas to enhance this approach consider-
ably, by reorganizing the precomputed data in partial graphs and optimizing
them individually.

To answer a given query, certain partial graphs are combined to a search
graph, which can be explored by a simple and fast procedure. The concept
behind the construction of the search graph is such that query times depend
mainly on the number of partial graphs included. This is confirmed by ex-
periments with different road graphs, each containing several million vertices,
and time, distance, and unit metrics. Our query algorithm computes the dis-
tance between any pair of vertices in no more than 40 µs, however, a lengthy
preprocessing is required to achieve this query performance.

1. Introduction

Computation of shortest paths is a central requirement for many applications,
such as route planning or network search. Facing real-world data, the need for speed
remains unabated: collection of geographic information is enhanced constantly, re-
sulting in increasingly comprehensive road graphs; public-transportation networks
often comprise datasets from different means of transportation, such as train, tram,
ferry, and even airplane schedules; and the graph representing the WWW is grow-
ing faster than ever. There are two basic approaches to tackle this task: relying on
approximate algorithms, or devising faster exact ones. We opt for the latter.

2000 Mathematics Subject Classification. Primary 68R10; Secondary 90B20.
Key words and phrases. Shortest paths, graph, speed-up technique, decomposition, hierarchy,

levels, preprocessing, supersedement, graph compression.
This work was partially supported by the Future and Emerging Technologies Unit of EC

(IST priority – 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

c⃝2008 American Mathematical Society

1

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

75

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

73

https://doi.org/10.1090/dimacs/074/04

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

2 D. DELLING, M. HOLZER, K. MÜLLER, F. SCHULZ, AND D. WAGNER

Since its publication in 1959, Dijkstra’s famous algorithm for calculation of
shortest paths in a directed graph with nonnegative edge weights [4] has been sub-
ject to many improvements. Due to enormous space requirement (quadratic in the
number of vertices), we cannot afford precomputing shortest paths between all pairs
of vertices. However, graphs can be preprocessed at an off-line step so that subse-
quent on-line queries take only a fraction of the time used by Dijkstra’s algorithm.
One recent speed-up technique [1, 22], which also relies on a preprocessing, yields
for the European road network that we also use for our experiments a considerable
average query time of 4 µs when travel times as edges weights are used, but of
comparatively high 38 µs for travel distances.

In this work, we present a further enhancement of the multi-level technique
given in [24], which is based on a hierarchical decomposition of the input graph
and computation of an auxiliary graph containing additional information. The use
of this precomputed data allows, at the on-line stage, for reduction in search space
and, consequently, query time. We develop the preprocessing to the maximum: our
new variant outsources almost all of the effort needed to compute a shortest path
to the preprocessing stage. It therefore fits best into an environment where query
time is invaluable but long preprocessing times (and a fair amount of precomputed
data) can be afforded, such as car navigation systems or web-based route planners.
While in [24, 9] the multi-level approach was shown to be effective for graphs of
up to 100 000 vertices, we are now able to handle much bigger graphs still within
reasonable time.

The main differences to the former multi-level technique concern the following
issues. During the preprocessing stage, instead of one single multi-level graph we
compute a large number of small partial graphs. We show that for each possible
query, there is a search graph combined of several partial graphs which preserves
the distance between the dedicated vertices. This graph is acyclic, and we give a
simple linear-time procedure to search it. The advantage of dealing with multiple
graphs is that each of them can be optimized individually, which is achieved by
two measures: first, omission of edges whose relaxation will never create a shorter
path; and second, transformation of the partial graphs into equivalent graphs that
preserve all shortest paths but have fewer edges. What is more, we make use of the
fact that the preprocessing is parallelizable.

The trade-off between preprocessing effort and query time is adjustable. For
fixed parameters, we can provide a guarantee for both the number of edges consid-
ered by the search algorithm and the query time. With our implementation, keep-
ing the preprocessed data in secondary storage, we can answer a query through
few random accesses to that storage. If the preprocessed data fits entirely into
main memory, our query performance is competitive to that of other recent ap-
proaches: we obtain query times of less than 40 µs (except for very few outliers)
for graphs with up to 24 million vertices, representing the Western European and
US road networks. Moreover, our approach yields equal performance for all metrics
investigated (travel times, travel distances, and unit edge lengths).

In the remainder of this section, we classify our approach in the context of other
shortest-path speed-up techniques. The next section briefly reviews the multi-level
technique as presented in [24], and shows the various refinements made. An exper-
imental study is presented in Section 3, and we conclude in Section 4 addressing
some aspects to be explored in the future.

7674

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGH-PERFORMANCE MULTI-LEVEL ROUTING 3

1.1. Related Work. This paper is strongly based on [18], which is the mas-
ter’s thesis by one of the authors. It can be seen as a further development in
that, e.g., preprocessing time could be improved through refinement of our code.
Other pieces of information, however, such as details on some proofs or algorithmic
aspects, can, in this work, not be displayed in full length, so we may refer the
interested reader to [18].

There are a large number of other techniques to speed up single-pair shortest-
path algorithms, most of which rely on Dijkstra’s algorithm [4]. In the following
survey, we focus on methods that in a preprocessing step compute some addi-
tional information, which is used at the on-line step for answering a shortest-path
query. We differentiate between techniques that attach the precomputed data to
the graph’s vertices or edges, permitting the on-line algorithm to quickly decide
which parts of the graph can be pruned [23, 26, 27, 7, 15, 17, 14, 5], and such
that precompute a hierarchical auxiliary graph, a slender part of which suffices to
answer a given shortest-path query [24, 9, 12, 11, 20, 21]. We want to briefly
review the latter works and point out their relationship to ours.

As mentioned above, the method presented in this work uses the same basic
concepts as the one described in [24, 9] (which will occasionally be referred to
as the classic multi-level technique), where the following enhancements are made.
The auxiliary data is distributed to many partial graphs, which can afterwards be
thinned out and optimized individually. Given start and destination vertices, we
combine several partial graphs to obtain an acyclic search graph, which can be
explored by the on-line stage in linear time.

The HiTi model by Jung and Pramanik [12] is similar to the classic multi-
level technique, except that it uses edge separators rather than vertex separators.
Also with hierarchical encoded path views, presented by Jing, Huang, and Runden-
steiner [11], various partial graphs are computed, which are combined appropriately
to form a search graph for a given query. No graph optimization is used, but a com-
pression technique to also keep track of the course of shortest paths is given.

Finally, the highway hierarchies technique, introduced by Sanders and Schul-
tes [20, 21], computes a hierarchy of coarsenings of the input graph, where the
search algorithm proceeds in a bidirectional fashion and needs to consider vertices
of only one level of hierarchy at a time. In a further development [2], highway
hierarchies have been extended to transit node routing, which also takes advantage
of precomputed all-pair distances of a selection of vertices; the difference to our
approach is that these distances are not represented by graphs but matrices, which
do not seem to induce as simple means for optimization. The given description of
highway node routing is generic enough so that it also covers the basic concept be-
hind our approach. One further difference concerns the way of determining selected
vertices; second, transit node routing is designed to yield better speed-ups with the
travel time instead of distance metric, which is not true for our technique.

2. Multi-Level Graphs

The formal description of our high-performance multi-level technique (HPML)
is divided into two parts. The first one reviews the classic multi-level technique [24]
and points out the major modifications and enhancements made to it. In the second
part, we present the core ingredient to achieve massive reduction in search space
and query time, optimization of the partial search graph.

7775

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

4 D. DELLING, M. HOLZER, K. MÜLLER, F. SCHULZ, AND D. WAGNER

2.1. Enhancing Multi-Level Graphs. A multi-level graph M extends a
weighted digraph G = (V, E) through multiple levels of edges, depending on a
sequence of vertex subsets. For a pair of vertices s, t ∈ V , a subgraph Mst of M,
called search graph, with the same s-t distance as in G can be determined efficiently.
As the search graph is substantially smaller than G, it allows for answering the given
query much faster.

The description of our model is organized as follows. We first fix some notation
needed to define multi-level graphs, show how to construct these, and briefly address
the issue of parallelizing the preprocessing step. To extract from the whole search
graph a search graph Mst sufficent to answer a given query (s, t), we have to
define an auxiliary datastructure called component tree, and give a formal proof
that shortest s-t paths in G and Mst are of equal length. The search graph Mst

can be transformed into an acyclic graph, which property yields a simple and fast
search algorithm compared to Dijkstra’s algorithm. Finally, due to construction of
our model, short-distance queries have to be treated differently.

2.1.1. Notation. To create a multi-level graph, we use a sequence of vertex
subsets, denoted by S = ⟨Si⟩ with 1 ≤ i ≤ l. Each Si is called a separator set.
The separator sets are decreasing with respect to set inclusion: V ⊃ S1 ⊃ S2 ⊃
. . . ⊃ Sl. Best performance can be achieved when the graph G− Si falls apart into
‘many’ components of similar size, while |Si| is ‘small’ compared to |V |. For the
decomposed graph G − Si, we shall use the following definitions.

• By Ci, we denote the set of maximal connected components at level i. A
connected component C ∈ Ci itself is a weighted graph, whose vertices
are referred to by V (C).

• For a vertex v ∈ V \ Si, let Cv
i ∈ Ci be the component with v ∈ Cv

i .
We call Cv

i the home component of v at level i. To simplify notation, we
define Cv

i := {v} for i ∈ {0, . . . , l} and v ∈ Si, and let S0 = V .
• We call a vertex v ∈ Si adjacent to a component C ∈ Ci if there is an edge

between v and a vertex in C in either direction. The set of all vertices
adjacent to C is denoted by Adj(C). For v ∈ Si (i.e., Cv

i = {v}), we define
Adj(Cv

i) := {v}.
• A component Cv

i together with its adjacent vertices is called the wrapped
component Gv

i = G ∩ (V (Cv
i) ∪ Adj(Cv

i)).

Figure 1 shows two components (darker shades) and their belonging wrapped
components (lighter shades) at levels 1 (smaller components) and 2 (larger compo-
nents), respectively, as an example for the above definitions. The adjacent vertex
sets are {v1, v2, v4} and {v3, v4}. Note that vertex v4 is adjacent to both compo-
nents, as it is a separator vertex at both levels 1 and 2.

The above definition requires the components Cv
i to be connected; however,

we do not rely on this property. If two components Cv
i and Cw

i share the same
parent component, we can merge these two components into one new component
Cvw

i = Cv
i ∪ Cw

i . The adjacent vertices of the merged component are the verti-
ces that are adjacent to at least one original component. If Adj(Cw

i) ⊆ Adj(Cv
i),

merging reduces the total number of components without increasing the number
of adjacent vertices for any component. It is advisable to do so, as reducing the
total number of components also reduces preprocessing time. For our test instance,
merging components leads to a reduction of the total number of components by up
to two orders of magnitude.

7876

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGH-PERFORMANCE MULTI-LEVEL ROUTING 5

v1 v2

v3

v4

v5

Figure 1. Hierarchy due to graph decomposition: components
(darker shades) with belonging wrapped components (lighter
shades) at levels 1 (smaller components) and 2 (larger compo-
nents).

2.1.2. Multi-Level Graph. Each level of the multi-level graph M is determined
by a set of edges. For each i ∈ {1, . . . , l}, we construct three sets of edges from the
following candidate sets :

Level edges: Ei ⊆ Si × Si.
Upward edges: Ui ⊆ Si−1 × Si.
Downward edges: Di ⊆ Si × Si−1.

For a level i ∈ {1, . . . , l}, a candidate edge (v, w) ∈ Ui, Di is elected to be an
upward or downward edge only if there is a v-w path in G that does not contain
any vertices in Si besides v or w (in other words, both endpoints must be contained
in the same wrapped component Gi). The weight of an upward or downward edge
is set to the length of a shortest such paths. Note that this equals the v-w distance
in the wrapped component Gi; there may exist shorter paths in G that leave Gi.

A level edge at level i ∈ {1, . . . , l − 1} exists if both of its endpoints are con-
tained in the same wrapped component Gi+1 at level i + 1. For level l, we simply
use all candidate edges: El := Sl × Sl. The weight of a level edge matches the dis-
tance in G. This constitutes an essential difference to [24], where level edges were
defined similarly to upward and downward edges. The purpose of this modification
is query runtime, allowing to look up distances between vertices in Si instantly
instead of plowing through all level edges, however, at the expense of an increased
number of level edges.

Constructing the level edge set näıvely would be too expensive in terms of
preprocessing time because determining distances in G may in general require con-
sideration of the whole input graph. We suggest an efficient two-pass construction
method. In the first, bottom-up, pass, the upward and downward edge sets are com-
puted: computation of Ui and Di is performed iteratively using the corresponding
edge sets at level i − 1. The second pass is carried out top-down: to construct Ei,
the set of level edges at level i help restrict this computation to a bounded local
search; the set El is computed directly using Ul.

2.1.3. Parallelization. Due to the different levels of hierarchy induced by the
vertex subsets S , this construction process does not need to consider the whole
input graph G at once. On the contrary, the preprocessing can be split up into
tasks so that each one operates on exactly one wrapped component (potentially,

7977

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

6 D. DELLING, M. HOLZER, K. MÜLLER, F. SCHULZ, AND D. WAGNER

s

t

v1 v2

v3

v4

v5

Figure 2. The search graph Mst: edges from L , Ui, and Di are
shown as thick lines with solid, dotted, and dashed styles, respec-
tively.

each task could be assigned to a distinct processor, provided that the data flow
dependencies between the tasks are obeyed, which would yield speed-up almost
linear in the number of processors).

2.1.4. Component Tree. The nesting of the separator sets is reflected by the
component sets Ci: each component Ci ∈ Ci is fully contained in exactly one
parent component of Ci+1, i.e., Ci ⊆ C ′

i+1 for some C ′
i+1 ∈ Ci+1. In addition,

we define the root or universe component Cl+1 := G that serves as parent for all
components in Cl, and a leaf component Cv

0 := {v} for every vertex v ∈ V . For the
leaf components, we use Cv

1 as parent. The parent relationship naturally induces a
tree of components.

2.1.5. Search Graph. When for a given pair of vertices s, t ∈ V simultaneously
walking up the component tree from Cs

0 and Ct
0 towards the root, the paths even-

tually meet at some component Cs
L = Ct

L, the lowest common ancestor of Cs
0 and

Ct
0. With our notation, the path between Cs

0 and Ct
0 in the component tree is

(Cs
0 , Cs

1 , . . . , Cs
L = Ct

L, . . . , Ct
1, C

t
0). In fact, any s-t path must visit these compo-

nents in this order.
Now we construct the search graph Mst, a subgraph of M with the same s-t

distance as in G. The edge set of Mst is the union of the following sets:

L := EL−1 ∩
(
Adj(Cs

L−1) × Adj(Ct
L−1)

)
,

Ui := Ui ∩
(
Adj(Cs

i−1) × Adj(Cs
i)

)
, and

Di := Di ∩
(
Adj(Ct

i) × Adj(Ct
i−1)

)
,

where i ∈ {1, . . . , L − 1}.
Figure 2 shows an example, where edges from the sets L , Ui, and Di are

shown as thick lines with solid, dotted, and dashed styles, respectively. Owing to
the altered definition of the level edge set compared to [24], we can afford including
only a subset of EL−1 in the edge set of Mst. Note that L (and therefore also Mst)
is defined only for L > 1. These modifications require a new proof of correctness.

2.1.6. Correctness. In the following, we shall prove that Mst can be used for
answering the s-t shortest-path query in G. First notice that by definition every
edge in Mst has a weight at least as large as the distance between the corresponding
vertices in G. Hence, any distance in Mst cannot be smaller than the corresponding

8078

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGH-PERFORMANCE MULTI-LEVEL ROUTING 7

s

t

v1 u

v

v4

v5

s

t

v1 v2

w

z

v5

Figure 3. Illustration for Lemma 1 (left) and Theorem 2 (right):
A shortest path in G (highlighted thin lines) has a corresponding
path, of the same length, in Mst (thick lines).

distance in G. It remains to prove that for a shortest s-t path in G there is a path
in Mst of equal length.

Lemma 1. For i ∈ {0, . . . , L − 1}, the distance from s to any vertex v ∈
Adj(Cs

i) in Mst matches that in Gs
i , the wrapped component around s at level i.

Conversely, the distance from any vertex v ∈ Adj(Ct
i) to t in Mst matches that

in Gt
i.

Proof. (By induction.) We shall prove only the first part, as the second
follows immediately by symmetry. For i = 0, the claim is obvious. For i > 0, any
s-v path in G must contain a vertex in Adj(Cs

i−1), let u be the first such vertex.
We can split a shortest s-v path at u into two (possibly empty) subpaths. The s-u
subpath contains only vertices from Gs

i−1 and therefore has an equivalent path in
Mst by the induction hypothesis. On the other hand, the edge (u, v) is contained
in Ui and its weight corresponds to the length of the u-v subpath. !

Theorem 2. If L > 1, the s-t distance is equal in the graphs G and Mst.

Proof. The value L is the level of the lowest common ancestor of Cs
0 and Ct

0

in the component tree. Therefore, the vertices s and t reside in different home
components at level L − 1, and any s-t path must contain a vertex in SL−1. Let ver-
tex w ∈ Adj(Cs

L−1) and z ∈ Adj(Ct
L−1) be the first or last such vertex, respectively.

Again, we split a shortest s-t path at w and z. The s-w and z-t subpaths contain
only vertices from Gs

L−1 and Gt
L−1, respectively. According to Lemma 1, these

subpaths have equivalent paths in Mst. The edge (w, z) is part of L , its weight
equals the w-z distance in G. !

2.1.7. Query. The search graph Mst can be transformed into an equivalent
DAG by creating at most L copies of each vertex. Recall that the edges of Mst are
the union of the edge sets L , Ui and Di. We call the graph induced by such an
edge set a partial graph, and distinguish between level, upward, and downward parts,
accordingly. A partial graph is a directed bipartite graph, apart from some twofold
vertices that have both incoming and outgoing edges. We can unfold any partial
graph into an equivalent directed bipartite graph by creating a copy of each twofold
vertex, directing the edges with a twofold vertex as target to the corresponding
copies, and adding a zero-cost edge from each original twofold vertex to its copy.
In the example in Figure 2, vertex v4 of the upward part U2 is twofold, because it

8179

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

8 D. DELLING, M. HOLZER, K. MÜLLER, F. SCHULZ, AND D. WAGNER

has an incoming edge (v1, v4) and an outgoing edge (v4, v3). Unfolding this partial
graph generates a copy v4

′ of v4 with new edges (v1, v4
′), (v3, v4

′) and (v4, v4
′), the

latter having a length of zero.
After that, each vertex of the unfolded partial graph has either only outgoing

or only incoming edges; we distinguish between source and drain vertices. An
unfolded version of the search graph can be created by joining the unfolded partial
graphs. The drain vertices of one partial graph match the source vertices of another
partial graph. As such, the join can be interpreted as a stacking of partial graphs.
All paths traverse this stack in the same direction, thus no cycles exist. Refer to
[18] for a formal proof.

For a DAG, an s-t shortest-path query can be performed in O(V + E) time.
Since the topological structure of our DAG is known in advance, the query algorithm
can be reduced to initialization of the vertex distance labels and update of the
distance label of each edge’s target vertex in the order imposed by the topological
structure.

2.1.8. Nearby Vertices. Path lookup in Mst works only for L > 1, i.e., for
source and target vertices from different home components at level 1. For vertices
from the same home component C = Cs

1 = Ct
1, we fall back to Dijkstra’s algorithm.

However, we avoid leaving the home component in our search. Instead, we use the
appropriate edges in E1 ∩ (Adj(C) × Adj(C)) as shortcut for paths that leave C.
By keeping the components small, we can state a runtime guarantee for the case of
nearby vertices, too.

2.2. Optimizing Partial Graphs. In contrast to the classic variant, where
a multi-level graph is stored as a whole, we spread it over a large number of partial
graphs (as seen before, any search graph can be constructed through the union of
a number of appropriate partial graphs). The foremost advantage is that each of
them can be optimized individually using two different techniques: pruning of edges
that cannot contribute to a shortest path and conversion of a partial graph into an
equivalent one with more vertices but fewer edges.

2.2.1. Pruning Superseded Edges. Consider an upward part Ui at level i >
1. This partial graph connects the adjacent vertices of two related components
Ci−1 and Ci at neighboring levels; let Gi−1 and Gi be the corresponding wrapped
components, and consider a fixed edge (w, v) ∈ Ui. Now, if a shortest w-v path
in Gi passes another vertex z ∈ Adj(Ci−1) and the w-z subpath does not leave
Gi−1, then for any s-v path via w there is a path via z that is no longer. This also
holds for any search graph that uses Ui: for any s-v path via edge (w, v) there is
a path via edge (z, v) that is no longer. That is, we can safely remove the edge
(w, v) from the upward part Ui; this edge is called superseded by the edge (z, v).
An example is shown in Figure 4.

To determine if an edge (w, v) ∈ Ui is superseded by another edge, we only
need to check local distances between adjacent vertices of Ci−1, together with edge
weights of the upward part Ui. Edge (w, v) is superseded by edge (z, v) ∈ Ui, if
c(w, v) = d(w, z) + c(z, v) and d(w, z) > 0.1

The pruning algorithm simply checks each pair of edges in Ui sharing the
same target vertex for supersedement, and removes the superseded ones on the fly.
Because supersedement is a strict partial order, the algorithm finds and removes all

1Here, c denotes the edge weight function in Ui, and d refers to the local distance in Gi−1.

8280

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGH-PERFORMANCE MULTI-LEVEL ROUTING 9

w z

v

v4

v5

Figure 4. Superseded edges. Edge (w, v) (double-dotted line) is
superseded by (z, v) (dotted line), because there is a shortest w-v
path via z in the input graph (highlighted thin lines).

desired edges (cf. [18] for a formal proof). Analogously, we can eliminate superseded
edges in downward and level parts. All partial graphs are optimized separately: an
edge superseded in one may or may not be superseded in another partial graph.

The pruning algorithm can be further refined by determining superseded verti-
ces in a first pass. For upward parts, a vertex w is superseded by another vertex z
iff all edges starting at w are superseded by the corresponding edge starting at z.
Superseded vertices can be omitted completely in the further processing, because
all edges connected to this vertex are superseded. To remove superseded verti-
ces, we iterate over the pairs of source vertices (those with outgoing edges) and
check for supersedement by iterating over all outgoing edges. Downward and level
parts are handled likewise. For the partial graphs obtained in our experimental
evaluation, this first pass takes only a fraction of the time needed for removing all
superseded edges, and usually removes many candidate edges, significantly reducing
the execution time for the main pruning algorithm.

2.2.2. Constructing Equivalent Graphs. A further optimization technique is
based on the following idea. The number of edges of a partial graph can be re-
duced by introducing auxiliary vertices and replacing many original edges with few
edges through the new vertices such that distances are preserved. An example is
given in Figure 5. Edges highlighted in the left graph are contained in at least
one shortest σ-δ path. The edges in the corresponding partial graph are made up
from the lengths of these shortest paths. Without optimization this would lead
to a complete bipartite graph with 16 edges, while an optimized equivalent graph
needs only eleven edges, as shown at the right: the twelve edges from {σ1, . . . , σ4}
to {δ1, . . . , δ3} may be replaced with a star-like graph of seven edges, since the cor-
responding shortest paths between the vertices in question contain a shared central
vertex. In the best case, all underlying shortest paths contain at least one common
vertex, and the optimization results in a star-like graph.

We have implemented a simple heuristic that adds a single, so-called central,
vertex, decides in a greedy manner which of the original vertices to connect to the
central vertex, and balances the weight function for the new edges. The goal of
the balancing is to remove a maximal number of original edges: if a path via the
central vertex is of equal length as the corresponding original edge, the latter can

8381

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

10 D. DELLING, M. HOLZER, K. MÜLLER, F. SCHULZ, AND D. WAGNER

δ1

δ2

δ3

δ4

σ1

σ2

σ3

σ4

δ1

δ2

δ3

δ4

σ1

σ2

σ3

σ4

Figure 5. Constructing equivalent graphs. Left: sample graph;
highlighted edges are contained in a shortest σ-δ path. Right:
belonging search graph with edge compression applied; dotted and
dashed edges are contained in the graph.

be removed. The balancing must be distance preserving; in particular, no newly
introduced path may be shorter than the corresponding original edge.

3. Experiments

As input data to our experimental evaluation, we use road networks of Western
Europe, provided by PTV AG for scientific use, and the USA, taken from the
TIGER/Line Files [25], with around 18 million vertices and 42.6 million edges and
23.9 million vertices and 58.3 million edges, respectively. For both graphs, both
distances and travel times are available for each edge; in order to compare our
approach to similar ones, we test our graphs also with the unit edge metric.

For the test runs, we used a machine with two AMD Opteron 2218 processors,
32 GB of shared RAM, and 2 × 1 MB of L2 cache, where each processor features
two cores clocked at 2.6 GHz; the time measurements given refer to execution on
a single core. The program was compiled with the GCC 3.4, using optimization

Table 1. DIMACS Challenge benchmarks: query times in ms for
subgraphs of the US network and different metrics.

metric
graph time dist
NY 25.4 23.0
BAY 29.9 29.0
COL 43.2 38.8
FLA 119.3 112.0
NW 143.6 143.0
NE 193.2 195.4
CAL 254.5 248.8
LKS 396.6 377.5
E 607.1 558.5
W 1343.9 1 115.4
CTR 5892.9 4 778.0
USA 7 741.4 5 908.5

8482

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGH-PERFORMANCE MULTI-LEVEL ROUTING 11

level 3 and the LEDA library (version 5.01). Results on the DIMACS Challenge
benchmarks can be found in Table 1.

The subsequent presentation of our results is structured along the two ways of
obtaining a hierarchical decomposition of the input graphs, planar separators and
METIS, the latter being a freely available tool for graph partitioning.

Decomposition. To determine for a given graph sets of selected vertices, the
graph is first decomposed in a hierarchical fashion. This process is governed by
two parameters, the number of levels and granularity, the latter being fixed either
through the maximum component size allowed or a maximum number of adjacent
vertices per component for each level. Both options have their advantages: limit-
ing the component size generates a balanced decomposition in the sense that each
higher-level component contains roughly the same number of lower-level compo-
nents, while limiting the number of adjacent vertices yields a smaller variance in
the search graph sizes and thus allows for predicting the maximum search graph
size even before starting the preprocessing. Given an input graph, a hierarchical
decomposition is obtained by declaring, iteratively for each level to be generated,
vertices selected so long until the granularity criterion for that level is reached. For
the next-lower level, repeat this process applied to the decomposition found so far
with the specific granularity.

3.1. Planar-Separator Theorem. Decomposing our graphs by means of the
planar-separator theorem (PST) [16, 8] requires some preparatory step: due to
their nature, road graphs are but almost planar since they account for bridges,
highway ramps, etc., incurring crossings in those very places. We therefore planarize
the input graph first by adding vertices at edge crossings, and eventually have to
appropriately retranslate the separation found for the planarized graph into one
satisfying the original graph. The planarized input graph is recursively split into
two parts so long until the granularity condition holds. Our experiments involve
a three-level decomposition with a granularity of 80-40-20 adjacent vertices per
component. Note that such a granularity naturally induces an upper bound of
802 + 2 · 40 · 80 + 2 · 20 · 40 + 2 · 20 = 14 440 edges in the search graph, which can
be stated even before running our preprocessing.

3.1.1. Preprocessing. Decomposition with PST takes about a week for the Eu-
rope graph (distance metric),2 but our implementation caches the course of the
computation, and this cache can be reused to create decompositions with any given
granularity with just little computational effort. Preprocessing requires about 24
hours on one core and about 8 hours on four cores, resulting in 543 million edges,
288 million of which belong to upward and downward graphs at level 1.

Each edge in a partial graph can be encoded using six bytes (four for the length
assigned to it and one each for source and target vertices). Hence, the space needed
to store the whole preprocessed data amounts to an overhead of 181 additional bytes
per vertex (543 million edges · 6 bytes per edge / 18 million vertices) of the input
graph. If we skipped the optimization of the partial graphs, the preprocessing
would contain 3 210 million edges; in other words, the optimization step reduces
the preprocessing size to 17 %.

For each kind of partial graphs, optimization has a different impact. For all
higher-level partial graphs, roughly half of the edges are removed by supersedement.

2We used METIS to create an initial decomposition into components of about 500 000 vertices
each, as our PST implementation is unable to process the input graph as a whole.

8583

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

12 D. DELLING, M. HOLZER, K. MÜLLER, F. SCHULZ, AND D. WAGNER

However, superseded vertices only exist in level graphs. For most level graphs much
smaller equivalent graphs can be found, reducing the total size of the level graphs
to 7.5 % in combination with supersedement when the distance metric is used.
Note that with time or unit metric, this figure drops to 4.9 % and 5 %, respectively.
Our heuristics for computing equivalent graphs has almost no effect for upward and
downward graphs. Summarizing, our edge reduction heuristics work very well for
level graphs, but yield only moderate results for upward and downward graphs.

Recall that the granularity of the preprocessing naturally induces an upper
bound of 14 440 edges in the search graph. However, an analysis of the preprocessed
data reveals that due to optimization, the largest search graph contains only 5 262
edges.

3.1.2. Query Performance. Unless otherwise stated, we use the road network of
Europe, applying the distance metric. We evaluate 10 000 queries picked at random
according to an exponential distribution, with a Dijkstra rank3 of between 100 and
|V | (we chose an exponential over a uniform distribution as the former captures
the intuition that with real-world information systems, short-distance occur more
frequently than long-distance queries). Note that only those queries are reported
that can be handled by our approach, i.e., s-t queries with s and t in different
home components. However, the entry and exit graphs of our technique propose
distances from and to all boundary vertices within one component, which could be
used as landmark data for low-range queries, i.e., queries within one component.
As observed in [6, 3], landmark-based routing performs very well for those types
of queries (below 1 ms, except for outliers).

We measured the time needed to initialize an array of distance labels and to
relax all edges of all partial graphs the search graph consists of. Prior to this, the
query algorithm loads the partial graphs from external memory and flushes the L2
cache by performing copy operations on two memory buffers, each as large as the
cache. This setup accurately simulates a client-server system that answers random
source-target queries and holds all partial graphs in RAM: in general, a partial
graph needed for a query is not present in the L2 cache and must be fetched from
RAM. (Note that to reduce the impact of outliers, we repeated three times the
execution of each query and used the median of the three measurements.)

Figure 6(a) shows the search space size, plotted against the Dijkstra rank, where
each dot represents a query. Because our technique is dominated by relaxed edges,
search space is measured in these terms rather than by settled vertices (experiments
show that the dependency between rank and relaxed edges is indeed linear for
Dijkstra’s algorithm).

There are three horizontal clouds discernible, at approximately 100, 500, and
2 000 of relaxed edges. They correlate with the number of upward and downward
graphs in the search graphs of between 1 and 3, resulting in search graphs con-
structed from three, five, or seven partial graphs. This observation is supported
by Figure 6(b), which depicts the number of partial graphs depending on Dijkstra
rank. As expected, with increasing rank the search graphs tend to comprise more
partial graphs. Altogether, is seems as if the number of relaxed edges depends more
on the number of partial graphs from which the search graph is constructed than
on the pure rank of a query.

3For an s-t query, the Dijkstra rank of vertex v is the number of vertices settled before v is
settled.

8684

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGH-PERFORMANCE MULTI-LEVEL ROUTING 13

10

100

1k

10k

100 1k 10k 100k 1M 10M

Si

ze
 o

f s
ea

rc
h

gr
ap

h
(e

dg
es

)

Dijkstra rank

(a) Search space in terms of relaxed edges.
Each dot depicts for one query the number of
relaxed edges in relation to its Dijkstra rank.

● ● ●
●

●

●

●

●

●
●

●
● ● ● ● ● ● ●

Dijkstra Rank

P
er

ce
nt

ag
e

of
 N

um
be

r
of

 P
ar

tia
l G

ra
ph

s
[%

]

x x
x x x

x
x x

x
x

x
x x x x x x x

+
+

+ +
+ +

+

+

+

+

+
+

+ + + + + +

27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

0
10

20
30

40
50

60
70

80
90

10
0

●

x
+

3 Partial Graphs
5 Partial Graphs
7 Partial Graphs

(b) Distribution of number of partial graphs
(the search graph is constructed from) in rela-
tion to Dijkstra rank.

100m

1

10

100

1k

10k

100k

1M

100 1k 10k 100k 1M 10M

Sp
ee

d−
up

 o
f m

ul
ti−

le
ve

l q
ue

ry
 a

lg
or

ith
m

vs
. D

ijk
st

ra
’s

 a
lg

or
ith

m

Dijkstra rank

(c) Speed-up of our approach over Dijktra’s al-
gorithm in terms of relaxed edges.

0

5

10

15

20

25

30

35

40

 0 1000 2000 3000 4000

Q
ue

ry
 ti

m
e

(µ
s)

Size of search graph (edges)

(d) Query time in relation to the search graph
size.

Figure 6. Results for our approach using the road network of
Europe as input. As metric, distances are applied.

In terms of search space, we achieve speed-ups of up to 100 000 for higher
Dijkstra ranks (cf. Figure 6(c)). However, a couple of small-rank queries lead to
factors of less than 1: such a slow-down occurs when source and target vertices are
close to each other in the input graph, but belong to different home components
at level 2 or even 3 so that relatively big five- or seven-level search graphs have to
explored.

Figure 6(d) depicts search graph size depending on query time: we observe an
almost linear relationship. In general, all queries are executed in less than 40 µs.
Moreover, for search graphs with 2 000 edges or more, we can state a query runtime
of roughly 12 ns per edge.

3.1.3. Robustness. Up to now, we have shown that our approach performs very
well with the distance metric. In order to prove robustness to the metric applied, we
ran a larger series of experiments with both the Europe and the US networks and
travel times, distances, and unit lengths. To facilitate comparison of our approach
to similar ones, we now employ queries distributed uniformly at random. Table 2
reports average running times as well as the percentages of queries executed.

8785

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

14 D. DELLING, M. HOLZER, K. MÜLLER, F. SCHULZ, AND D. WAGNER

Table 2. Preprocessing and (uniform) random queries perfor-
mance for different metrics on the European and US network. The
size of the preprocessing is given in number of edges in all gener-
ated partial graphs. The search space is given in number of relaxed
edges within search graph. Note that only those queries are re-
ported which can be performed by our approach. The percentage
of executed queries is given in column 6.

Prepro Query
size search space time executed

graph metric [# edges] [# relaxed edges] [µs] [%]
time 469 M 1494 18.8 99.90

Europe dist 543 M 1617 20.3 99.96
unit 470 M 1485 19.3 99.93
time 782 M 1462 19.3 99.94

USA dist 848 M 1547 20.0 99.94
unit 774 M 1441 19.2 99.97

We observe that the metric chosen has almost no impact on query times or
preprocessing. Regarding partial-graph optimization, there are no significant dif-
ferences in the number of additional edges between the various metrics, either. Of
all queries, more than 99.9 % were executed; assuming an average time of about

●●●●●●●●●
●●●
●●

●●●●●

●●●●

●●

●

●●●●●●●

●●●●●

●●●

●●

●●
●●●

●●

●●●

●●●

●●●●●●●●●

●●

●●

●
●●●●●●●●

●●

●●

●●●

●●

●
●●●●●●●

●●●

●●●●

●●●

●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●

●●●●●●

●●

●●●●●

●●●●

●●●●●

●●

●●●

●
●●

●●

●●●

●●

●

●

●
●
●

●●

●

●

●
●●●●

●

●

●

●

●●●

●●

●●

●●●●

●

●

●
●

●●

●

●●●●●●
●●

●●●●

●●●

●
●
●●●●●

●

●
●●

●●

●●●●

●

●●

●●●●●

●●

●

●●

●●●

●
●●●

●

●●●●
●●
●

●●●●●●●●●●
●

●

●●●●●●

●

●●●
●●

●●●●

●●

●

●

●●

●●
●

●
●

●●●

●●●●●

●

●

●●●

●●●

●

●

●●

●

●●●●●
●●

●
●●●●●●●●

●●●

●

●
●●

●●

●

●

●●●●●

●

●●

●
●
●

●●

●

●

●●●●●●●●
●

●●●

●
●
●●
●●

●●●

●●

●●
●

●

●●●
●

●
●●●

●●●

●

●●●●

●●
●●

●

●

●●

●
●

●●

●

●

●●

●

●●
●
●

●

●

●

●●

●

●

●
●
●●●

●

●●●

●
●●
●●

●●●●

●

●
●

●●●
●

●
●
●

●●

●●●

●
●

●●●●●

●●●

●●

●
●

●

●●●

●●

●

●●●●

●●●

●●
●●●●

●●

●

●●●

●
●●●
●

●
●
●●
●

●

●

●

●
●

●●●●

●
●●

●●

●

●

●

●●●●
●●
●●●●

●

●●●
●

●

●
●

●
●

●

●●
●

●

●
●●
●●
●

●

●

●
●

●
●
●
●● ●

●

●●●

●

●

●
●●●●

●

●
●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

● ●

●
●
●
●
●
●●

●

●
●
●
●

●
●●
●
●●●●

●

●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●
●●●●

●●●●

●●●●●●

●

●

●●●●●

●

●

●

●

●

●

●●●●●●●●

●●●●●●●

●●●●

●
●
●●●●●

●●

●●●●●
●●●●●

●●●●●

●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●

●

●●

●●

●●●●

●

●

●

●

●●

●

●

●

●●●●●●

●

●

●●●●

●●●

●●●

●●●●●

●

●

●●●

●●

●●●●●●

●●●●

●●●

●●●●

●●●●

●

●●●●

●●●●

●●

●

●

●●●●●

●●●●

●●●●●

●●●

●

●●●

●

●

●
●●

●●●

●

●

●●●

●

●

●

●

●●

●●

●

●●

●●

●

●●●

●

●
●●

●●●

●●●

●●

●

●●●●

●●

●●

●●

●

●

●●●

●

●●

●●

●●●

●

●●

●●●●●●●●

●

●●

●
●●
●●●●●●
●
●

●

●

●

●●

●
●●●●●●●

●

●●●

●

●●

●

●

●

●

●

●●●

●

●
●●●●

●

●

●

●

●●
●●

●●
●

●●

●

●

●

●

●
●●

●

●●
●

●●

●●

●

●
●
●

●

●●●●

●
●●●

●

●

●●

●

●

●

●

●
●
●●

●●

●
●
●

●●

●●

●

●

●

●

●
●●

●●
●

●●●
●●●●

●●

●

●

●
●●●●

●●●

●
●●

●

●

●●●

●

●

●

●●

●

●●●

●

●●●

●●

●

●

●●●

●●

●

●
●

●

●

●●

●

●

●●
●

●

●●

●

●
●
●
●
●●
●●●●
●
●
●
●
●
●
●
●
●●●
●
●
●●
●●●

●

●

●●

●

●
●●●●●
●●●
●
●
●●
●

●

●
●●
●
●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●
●
●
●●
●

●

●●
●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●●●
●
●
●
●
●

●
●

●●●●

●

●●●●●●●●●●●●
●●●●●●●

●●●
●●●●●●

●●●●●●

●●●●●●●●

●

●

●●●●●●●●●

●●●
●●●●●
●
●●

●●

●●

●●●●●●

●●

●●●

●●

●●●●●

●●●●●●●

●●●●

●

●
●●●●●●
●●●●●●●●●

●

●
●●

●

●
●

●
●

●●●●●

●

●

●

●●●

●

●●

●

●●

●●●●
●●●●

●●

●●●●●

●●●●●●●●●●

●●●●●

●●

●
●

●●

●

●

●

●●●●

●●●●

●

●●●

●

●

●●●●

●

●●
●●●●

●●
●●●●

●●●●●

●●●●●●●●

●●●

●●

●

●

●

●●
●●

●

●●

●●

●●

●

●

●●

●●●●●

●●
●●

●●●

●

●●

●

●

●●●

●●●

●●●●●

●●●●

●●

●

●●

●●

●
●●

●
●●

●

●●●●●●●●

●●●●●

●

●●

●●●

●

●●

●

●
●

●

●

●

●
●

●●●●●●●

●●

●

●●●●●

●●

●

●●●●●
●●●
●
●

●

●●

●

●●

●●●
●●●●

●

●●●

●
●

●●

●

●
●

●●

●

●

●●●●

●●

●

●●

●
●

●●●●
●

●

●

●

●●

●

●

●

●
●

●
●●●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●●

●●

●●

●●●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●●●
●●●

●

●

●

●

●

●●

●
●

●
●
●
●
●●●

●●

●

●

●●

●
●
●

●●

●●●●●

●

●

●
●

●

●

●

●

●●

●●●●

●●
●
●●

●●●

●

●●

●●

●●

●

●
●●

●
●●●●

●●

●

●● ●

●●

●

●●●●●

●
●

●●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●
●

●

●

●
●
●●●●

●

●

●●

●●
●
●

●

●

●

●●

●
●●

●

●

●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●
●

28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

0
10

20
30

40
50

travel times
distance
unit weights

Dijkstra Rank

Q
ue

ry
 T

im
e

[µµ
s]

Figure 7. Comparison of the query times for different metrics
(travel times, distances and unit lengths) using the Dijkstra rank
methodology [20] on the road network of Europe. The results
are represented as box-and-whisker plot [19]: each box spreads
from the lower to the upper quartile and contains the median, the
whiskers extend to the minimum and maximum value omitting out-
liers, which are plotted individually. Note that only those queries
are reported that can be performed by our approach.

8886

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGH-PERFORMANCE MULTI-LEVEL ROUTING 15

Table 3. Preprocessing and (uniform) random queries perfor-
mance for subgraphs of the US networks, taken from the DIMACS
homepage. As metric, we apply travel times. Our current imple-
mentation cannot handle small graphs. Thus, no results for NY,
BAY, and COL are given. The search space is given in number of
edges within the partial graphs. In addition to the columns given
in Table 2 we also report the ratio of additional edges per node in
the original graph (column 4). Note that only those queries are
reported which can be performed by HPML. The percentage of
executed queries is given in column 7.

Preprocessing Query
time size #edges search time executed

graph [min] [# edges] /|V | space [µs] [%]
FLA 8 19 M 17.8 331 8.6 90.00
NW 7 22 M 18.2 243 8.9 71.40
NE 444 141 M 92.8 291 8.4 98.60
CAL 324 136 M 72.0 596 11.2 98.40
LKS 320 130 M 47.1 1 071 14.8 99.30
E 39 71 M 19.7 1 824 21.0 99.60
W 89 133 M 21.3 1 440 18.6 99.80
CTR 260 354 M 25.1 1 847 21.6 99.97

1 ms for the remaining 0.1 % of (low-range) queries, the average query times as of
Table 2 would increase by 1 µs. Hence, we wind up with an overall average time
of less than 22 µs for all inputs.

In order to check whether this robustness with respect to metrics holds for all
types of queries (low-, mid-, and long-range), Figure 7 shows the performance of our
approach using the Dijkstra rank methodology [20]. As input we use the European
instance. Strikingly, the performance of our approach is (almost) independent of
the applied metric for all types of queries.

All of the above-said is confirmed by experiments with different subgraphs of
the US network and distance metric, the results being summarized in Table 3.
However, on smaller graphs the number of executed queries drops to values of
71.4%. Preprocessing times differ greatly from that for the whole graph as now
only two instead of three levels are used.

3.1.4. Comparison. Table 4 contrast the results of our approach to the most
prominent speed-up techniques presented at the DIMACS workshop applied to all
graphs and metrics, with queries distributed uniformly at random.

The results show clearly that in terms of preprocessing time, HPML cannot
compete with any other technique. Comparing query times with the time metric,
our approach as well as the TNR-variants all yield values of less than 20 µs, where
the latter techniques still outperform ours. The very strength of our approach
unfolds when the distance metric is used: HPML query times do not change signif-
icantly, while with transit node routing they increase by factors of up to 26. Using
the unit metric, all of these approaches yield similar performance. To sum up, our
findings corroborate the robustness of our approach regarding edge metric, which
does not hold for transit node routing.

8987

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

16 D. DELLING, M. HOLZER, K. MÜLLER, F. SCHULZ, AND D. WAGNER

Table 4. Performance of the most prominent speed-up techniques
in comparison to our high-performance multi-level (HPML) ap-
proach. More precisely, we report preprocessing and query times
for highway hierarchies star (HH∗) [3], REAL [6], grid-based tran-
sit node routing (grid-TNR) [1], and transit node routing based on
highway hierarchies (HH-TNR) [22].

Europe USA
Prepro Query Prepro Query

metric technique [h:mm] [µs] [h:mm] [µs]
HH* 0:22 550.0 0:28 600.0
REAL 2:20 1110.0 2:01 1050.0

time HH-TNR 1:15 4.3 1:25 3.3
Grid-TNR 58:00 13.0 7:00 17.8
HPML ≈ 24:00 18.8 ≈ 36:00 19.3
HH* 0:49 1950.0 0:59 1740.0
REAL 1:30 1160.0 2:18 1800.0

dist HH-TNR 2:42 37.6 3:37 86.1
Grid-TNR 29:00 56.0 9:00 69.4
HPML ≈ 24:00 20.3 ≈ 36:00 20.0
HH* 0:27 990.0 0:32 890.0
REAL 3:49 1140.0 2:27 1160.0

unit HH-TNR 0:53 13.1 3:59 19.8
Grid-TNR 17:00 12.0 9:00 30.3
HPML ≈ 24:00 19.3 ≈ 36:00 19.2

3.2. METIS. As an alternative to compute graph decompositions we also
use the METIS collection [13]. These tools allow to divide graphs into a given
number of partitions of roughly equal size, where the edge cut, i.e., the number of
edges with source and target vertex located in different partitions, is minimized.
Since our preprocessing technique requires a selection of vertices instead of edges,
we subsequently compute a greedy vertex cover on the edge cut obtained from
METIS. This procedure can be carried out recursively to obtain a hierarchical
decomposition.

METIS runs amazingly fast for our test instances: decomposition into any
number of components requires less than one minute compared to one week for
PST; thus, a hierarchical decomposition can be obtained in about ten minutes.
As a further advantage, the input graph does not have to be planar. On the
other hand, METIS produces separators that are about 20 % larger than those
generated by PST; similar results were reported in [8]. While a decomposition
with limited component sizes can be obtained quite naturally using METIS, we
cannot easily create a decomposition with limited maximum number of adjacent
vertices per component; to achieve the latter, we have to perform recursive two-way
partitioning, as described for PST.

For our evaluation, we settled for a decomposition into three levels, as prelim-
inary experiments showed that two levels would consume too much space, while
employing a fourth level would not pay off. Further tests suggested granularities
of 120 000-4 000-360 of adjacent vertices for the Europe and 120 000-3 300-300 for

9088

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGH-PERFORMANCE MULTI-LEVEL ROUTING 17

the US network. To compare METIS with PST, we used the very same granularity
also for PST: compared to the granularity used in Section 3.1, the preprocessing
time for the Europe graph and distance metric is slightly smaller, whereas search
graph size doubles on average.

Unfortunately, the overall results were not as promising as with adjacent-vertex
granularities. When METIS is used, the size of preprocessed data grows by 50 %
and the average search graph size doubles. For all preprocessings, the maximal
search graph was more than ten times larger than the average; this is unfavorable
if a tight guarantee for query times is required. Summing up, the quality of the
decomposition is of utmost importance for the efficiency of our speed-up technique.

4. Conclusion

We have shown how to enhance the classic multi-level approach [24] in such
a way that an even greater deal of the effort to compute a shortest path can be
shifted to the preprocessing stage. The main developments concern distribution of
the multi-level graph to many partial graphs. These permit to be sparsified fairly
easily, which leads to massive reduction of the total amount of precomputed data
and hence of query times.

In an experimental study with road graphs, where an extensive preprocessing
as well as larger amounts of additional data could be afforded, our approach proved
highly effective: speed-ups achieved over Dijkstra’s algorithm reach factors of up to
around 3 000. Furthermore, our approach has shown to be robust to different edge
metrics with respect to both preprocessing and query performance: except for very
few outliers, query time does not exceed 40 µs.

For future work, we see the following points of improvement: concerning our
implementation, use of custom-tailored data structures as well as of locality, as
exploited in [6, 3]; at an algorithmic level, development of alternative heuristics
to construct equivalent graphs, and combination with other speed-up techniques
(in [10, 5], certain combinations were shown to perform better than the individual
techniques). Another interesting question would be that of dynamization: due
to the hierarchical nature of our approach, we believe that only small parts of
the preprocessed data need to be updated upon an edge change in the input graph.
Finally, storage and retrieval of the course of a shortest path is a major requirement
for practical applications, which could be solved through similar concepts as in [11].

References

1. Holger Bast, Stefan Funke, and Domagoj Matijevic, TRANSIT: Ultrafast Shortest-Path
Queries with Linear-Time Preprocessing, 9th DIMACS Challenge on Shortest Paths, No-
vember 2006, An updated version of the paper appears in this book.

2. Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik Schultes, In
transit to constant time shortest-path queries in road networks, 9th Workshop on Algorithm
Engineering and Experiments (ALENEX), 2007, pp. 46–59.

3. Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner, Highway Hierarchies
Star, 9th DIMACS Challenge on Shortest Paths, November 2006, An updated version of the
paper appears in this book.

4. Edsger W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathe-
matik 1 (1959), 269–271.

5. Andrew Goldberg, Haim Kaplan, and Renato Werneck, Reach for A*: Efficient point-to-
point shortest path algorithms, Proc. Algorithm Engineering and Experiments, SIAM, 2006,
pp. 129–143.

9189

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

18 D. DELLING, M. HOLZER, K. MÜLLER, F. SCHULZ, AND D. WAGNER

6. Andrew V. Goldberg, Haim Kaplan, and Renato F. Werneck, Better Landmarks within Reach,
9th DIMACS Challenge on Shortest Paths, November 2006, An updated version of the paper
appears in this book.

7. Ronald J. Gutman, Reach-based routing: A new approach to shortest path algorithms op-
timized for road networks., Proc. Algorithm Engineering and Experiments, SIAM, 2004,
pp. 100–111.

8. Martin Holzer, Grigorios Prasinos, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis,
Engineering planar separator algorithms, Proc. European Symposium on Algorithms, LNCS,
vol. 3669, Springer, 2005, pp. 628–639.

9. Martin Holzer, Frank Schulz, and Dorothea Wagner, Engineering multi-level overlay graphs
for shortest-path queries, Proc. Algorithm Engineering and Experiments, SIAM, 2006,
pp. 156–170.

10. Martin Holzer, Frank Schulz, and Thomas Willhalm, Combining speed-up techniques for
shortest-path computations, Proc. Workshop on Experimental and Efficient Algorithms,
LNCS, vol. 3059, Springer, 2004, pp. 269–284.

11. Ning Jing, Yun-Wu Huang, and Elke A. Rundensteiner, Hierarchical encoded path views for
path query processing: An optimal model and its performance evaluation, IEEE Trans. Knowl-
edge and Data Engineering 10 (1998), no. 3, 409–432.

12. Sungwon Jung and Sakti Pramanik, HiTi graph model of topographical roadmaps in navigation
systems, Proc. Data Engineering, IEEE Computer Society, 1996, pp. 76–84.

13. George Karypis, METIS, 1998, http://www-users.cs.umn.edu/∼karypis/metis.
14. Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling, Acceleration of shortest path and

constrained shortest path computation., Proc. Workshop on Experimental and Efficient Algo-
rithms, Springer, 2005, pp. 126–138.

15. Ulrich Lauther, An extremely fast, exact algorithm for finding shortest paths in static net-
works with geographical background, Geoinformation und Mobilität — von der Forschung
zur praktischen Anwendung, vol. 22, IfGI prints, Institut für Geoinformatik, Münster, 2004,
pp. 219–230.

16. Richard J. Lipton and Robert Endre Tarjan, A separator theorem for planar graphs, SIAM
Journal on Applied Mathematics 36 (1979), no. 2, 177–189.

17. Rolf H. Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, and Thomas Willhalm,
Partitioning graphs to speed up Dijkstra’s algorithm., Proc. Workshop on Experimental and
Efficient Algorithms, LNCS, vol. 3503, Springer, 2005, pp. 189–202.

18. Kirill Müller, Design and implementation of an efficient hierarchical speed-up tech-
nique for computation of exact shortest paths in graphs, Master’s thesis, Depart-
ment of Informatics, University of Karlsruhe, Germany, June 2006, online available at
http://i11www.iti.uka.de/teaching/theses/files/da-kmueller-06.pdf.

19. R Development Core Team, R: A Language and Environment for Statistical Computing,
http://www.r-project.org, 2004.

20. Peter Sanders and Dominik Schultes, Highway hierarchies hasten exact shortest path queries,
Proc. European Symposium on Algorithms, LNCS, vol. 3669, Springer, 2005, pp. 568–579.

21. , Engineering highway hierarchies, Proc. 14th European Symposium on Algorithms,
LNCS, vol. 4168, Springer, 2006, pp. 804–816.

22. , Robust, Almost Constant Time Shortest-Path Queries on Road Networks, 9th DI-
MACS Challenge on Shortest Paths, November 2006, An updated version of the paper appears
in this book.

23. Frank Schulz, Dorothea Wagner, and Karsten Weihe, Dijkstra’s algorithm on-line: An em-
pirical case study from public railroad transport, Proc. Workshop on Algorithm Engineer-
ing, Springer, 1999, Also published in: ACM Journal of Experimental Algorithms 5 (2000),
pp. 110–123.

24. Frank Schulz, Dorothea Wagner, and Christos Zaroliagis, Using multi-level graphs for
timetable information in railway systems, Proc. Algorithm Engineering and Experiments,
LNCS, vol. 2409, Springer, 2002, pp. 43–59.

25. U.S. Census Bureau, Washington, DC, UA Census 2000 TIGER/Line Files, http://www.

census.gov/geo/www/tiger/tigerua/ua tgr2k.html, 2002.
26. Dorothea Wagner and Thomas Willhalm, Geometric speed-up techniques for finding shortest

paths in large sparse graphs, Proc. European Symposium on Algorithms, LNCS, vol. 2832,
Springer, 2003, pp. 776–787.

9290

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGH-PERFORMANCE MULTI-LEVEL ROUTING 19

27. Dorothea Wagner, Thomas Willhalm, and Christos Zaroliagis, Geometric containers for effi-
cient shortest-path computation, ACM Journal of Experimental Algorithmics 10 (2005), 1–30.

Daniel Delling, Universität Karlsruhe (TH), Fakultät für Informatik, Postfach
69 80, 76128 Karlsruhe, Germany

E-mail address: delling@ira.uka.de

Martin Holzer, Universität Karlsruhe (TH), Fakultät für Informatik, Postfach
69 80, 76128 Karlsruhe, Germany

E-mail address: mholzer@ira.uka.de

Kirill Müller, Universität Karlsruhe (TH), Fakultät für Informatik, Postfach
69 80, 76128 Karlsruhe, Germany

E-mail address: mail@kirill-mueller.de

Frank Schulz, PTV Planung Transport Verkehr AG, Stumpfstraße 1, 76131 Karl-
sruhe, Germany

E-mail address: frank.schulz@ptv.de

Dorothea Wagner, Universität Karlsruhe (TH), Fakultät für Informatik, Post-
fach 69 80, 76128 Karlsruhe, Germany

E-mail address: wagner@ira.uka.de

9391

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science

Reach for A∗: Shortest Path Algorithms with Preprocessing

Andrew V. Goldberg, Haim Kaplan, and Renato F. Werneck

Abstract. We study the point-to-point shortest path problem with prepro-
cessing. Given an input graph, we preprocess it so as to be able to answer
a series of source-to-destination queries efficiently. Our work is motivated by
an algorithm of Gutman [ALENEX’04], based on the notion of reach, which
measures how important each vertex is with respect to shortest paths. We
present a simplified version of his algorithm that does not require explicit
lower bounds during queries. We also show how the addition of shortcuts to
the graph greatly improves the performance of both preprocessing and queries.
Finally, we combine a reach-based algorithm with landmark-based A∗ search
to obtain a wide range of space-time trade-offs. For our motivating appli-
cation, driving directions for road networks, the resulting algorithm is very
efficient and practical. The road networks of the USA and Western Europe
have roughly 20 million vertices, but on average our algorithm must visit fewer
than a thousand to find the distance between two points. Our algorithm also
works reasonably well on 2-dimensional grid graphs with random arc weights.

1. Introduction

We study the point-to-point shortest path problem (P2P): given a directed graph
G = (V, A) with nonnegative arc lengths and two vertices, the source s and the
destination t, find a shortest path from s to t. Although there is a single input
graph, typically there are many source/destination queries. We therefore allow
preprocessing of the input graph, but limit the size of the precomputed data to a
(moderate) constant times the graph size. Preprocessing time is limited by practical
considerations. For example, in our motivating application, driving directions on
large road networks, quadratic-time algorithms are impractical. We are interested
in exact shortest paths only.

Finding shortest paths is a fundamental problem. The single-source problem
with nonnegative arc lengths has been studied most extensively [3, 5, 10, 11, 15,
16, 17, 18, 22, 27, 36, 47, 51]. Near-optimal algorithms are known both in
theory, with near-linear time bounds, and in practice, with running times within a
small constant factor of the breadth-first search time.

The P2P problem with no preprocessing has been addressed, for example, in
[26, 39, 45, 52]. While no nontrivial theoretical results are known for the general
P2P problem, there has been work on the special case of undirected planar graphs
with slightly super-linear preprocessing space. The best bound in this context is

c⃝0000 (copyright holder)

1

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

93

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

95

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

93

https://doi.org/10.1090/dimacs/074/05

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

2 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

due to Fakcharoenphol and Rao [14]. Algorithms for approximate shortest paths
that use preprocessing have also been studied; see e.g., [4, 28, 48].

Previous work on exact P2P algorithms with preprocessing includes, e.g., [19,
23, 24, 30, 33, 37, 40, 43, 44, 50]. We focus our discussion here on the most
relevant recent developments in preprocessing-based algorithms for road networks.
Such methods have two components: a preprocessing algorithm, which computes
auxiliary data, and a query algorithm, which computes an answer for a given s-t
pair.

Gutman [24] introduced the notion of vertex reach. Informally, the reach of a
vertex v is large if v is close to the middle of some long shortest path and small
otherwise. Gutman proposes a simple modification of Dijkstra’s algorithm that
can prune an s-t search based on (upper bounds on) vertex reaches and (lower
bounds on) vertex distances from s and to t. He uses Euclidean distances as lower
bounds, and observes that the efficiency can be improved if reaches are combined
with Euclidean-based A∗ search [25, 38], which uses lower bounds on the distance
to the destination to direct the search towards it.

Goldberg and Harrelson [19] (see also [23]) have shown that the performance
of A∗ search (without reaches) can be significantly improved if Euclidean lower
bounds are replaced by landmark-based lower bounds. These bounds are obtained
by storing (in the preprocessing step) the distances between every vertex and a
small set of special vertices, the landmarks. During queries, one can use this in-
formation, together with the triangle inequality, to obtain lower bounds on the
distance between any two vertices in the graph. This leads to the alt (A∗ search,
landmarks, and triangle inequality) method for the point-to-point problem.

Sanders and Schultes [40, 41] use the notion of highway hierarchies to design
efficient algorithms for road networks. The preprocessing algorithm builds a hierar-
chy of increasingly sparse highway networks ; queries start at the original graph and
gradually move to upper levels of the hierarchy, greatly reducing the search space.
To magnify the natural hierarchy of road networks, the algorithm adds shortcuts
to the graph: additional edges with the same lengths as the original shortest paths
between their endpoints.

In this paper, our first major contribution is to show that reaches can be used
to prune the search even when explicit lower bounds (such as those obtained by Eu-
clidean bounds or landmarks) are not available. By making the search bidirectional,
we can use the bounds implicit in the search itself to prune it.

The second major contribution of our paper is to explain how shortcuts can
be used in the context of reach-based algorithms. This significantly improves both
preprocessing and query efficiency. The resulting algorithm is called re. Although
the preprocessing algorithm needs to be modified in order to generate shortcuts,
the query algorithm remains the same regardless of whether shortcuts are present
or not.

Our third major contribution is to show that the alt method can be combined
with reach-based pruning in a natural way, leading to an algorithm we call real.
We also show that by maintaining landmark data only for high-reach vertices, one
can greatly reduce the memory requirements of real. Furthermore, if we use some
of the saved space for more landmarks, we can win in both space and time.

In addition, we introduce several improvements to preprocessing and query
algorithms for landmark- and reach-based methods.

949694

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 3

We evaluate the efficiency of our algorithms through experiments, mostly on
road networks with three length functions (travel times, travel distances, and unit
lengths). Our experiments show practical results for all three metrics. The road
networks of Western Europe or the United States, each with roughly 20 million
vertices, can be preprocessed in an hour or less. The average query with our fastest
algorithm takes roughly one millisecond on a standard workstation and scans fewer
than 1000 vertices.

We have also obtained good results for 2-dimensional grids with random arc
lengths. Although not as good as for road networks, the results prove that our tech-
niques have more general applicability. To show the limitations of these techniques,
we also experimented with grids of higher dimension and with random graphs. On
these inputs, our heuristics do not achieve significant performance gains.

This paper is organized as follows. Section 2 reviews Dijkstra’s algorithm and
some variants, and establishes the notation used throughout the paper. Section 3
formalizes the definition of reach and explains how it can be used to prune a point-
to-point shortest path search. Section 4 deals with reach computation: how reaches
(or upper bounds on reaches) can be computed in reasonable time during the pre-
processing stage of our algorithm. Section 5 reviews the alt algorithm and shows
how it can be combined with reach-based pruning. Section 6 presents our experi-
mental results. Final remarks are made in Section 7, including a brief comparison
with recent work presented at the 9th DIMACS Implementation Challenge [8].

2. Preliminaries

The input to the preprocessing stage of a P2P shortest path algorithm is a
directed graph G = (V, A) with n vertices and m arcs, and nonnegative lengths
ℓ(a) for every arc a. Besides the source s and the sink t, the query stage takes as
input the data produced by the preprocessing stage, which includes the graph itself
(potentially modified) and auxiliary information. The goal is to find a shortest path
from s to t. We denote by dist(v, w) the shortest-path distance from vertex v to
vertex w with respect to ℓ. In general, dist(v, w) ̸= dist(w, v).

The labeling method for the shortest path problem [31, 32] finds shortest paths
from the source to all vertices in the graph. It works as follows (see e.g., [46]).
It maintains for every vertex v its distance label d(v), parent p(v), and status
S(v) ∈ {unreached, labeled, scanned}. Initially d(v) = ∞, p(v) = nil, and S(v) =
unreached for every vertex v. The method starts by setting d(s) = 0 and S(s) =
labeled. While there are labeled vertices, it picks a labeled vertex v and scans it
by relaxing all arcs out of v and setting S(v) = scanned. To relax an arc (v, w),
one checks if d(w) > d(v)+ℓ(v, w) and, if true, sets d(w) = d(v)+ℓ(v, w), p(w) = v,
and S(w) = labeled.

If the length function is nonnegative, the labeling method terminates with
correct shortest path distances and a shortest path tree. Its efficiency depends on
the rule to choose a vertex to scan next. We say that d(v) is exact if it is equal to
the distance from s to v. If one always selects a vertex v such that, at selection
time, d(v) is exact, then each vertex is scanned at most once. Dijkstra [11] (and
independently Dantzig [5]) observed that if ℓ is nonnegative and v is a labeled
vertex with the smallest distance label, then d(v) is exact. The labeling method
with the minimum label selection rule is known as Dijkstra’s algorithm.

959795

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

4 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

For the P2P case, note that when the algorithm is about to scan the sink t,
we know that d(t) is exact and the s-t path defined by the parent pointers is a
shortest path. We can terminate the algorithm at this point. Intuitively, Dijkstra’s
algorithm searches a ball with s in the center and t on the boundary.

One can also run Dijkstra’s algorithm on the reverse graph (the graph with
every arc reversed) from the sink. The reverse of the t-s path found is a shortest
s-t path in the original graph.

The bidirectional algorithm [5, 13, 38] alternates between running the forward
and reverse versions of Dijkstra’s algorithm, each maintaining its own set of distance
labels. We denote by df (v) the distance label of a vertex v maintained by the
forward version, and by dr(v) the distance label of a vertex v maintained by the
reverse version. (We will still use d(v) when the direction would not matter or is
clear from the context.) During initialization, the forward search scans s and the
reverse search scans t. The algorithm also maintains the length of the shortest path
seen so far, µ, and the corresponding path. Initially, µ = ∞. When an arc (v, w) is
relaxed by the forward search and w has already been scanned by the reverse search,
we know the shortest s-v and w-t paths have lengths df (v) and dr(w), respectively.
If µ > df (v)+ ℓ(v, w)+dr(w), we have found a path that is shorter than those seen
before, so we update µ and its path accordingly. We perform similar updates during
the reverse search. Note that, to maintain the current best path, it is enough to
remember the arc (v, w) whose relaxation gave the current value of µ, as the forward
search maintains the s-v path of length df (v) and the reverse search maintains the
w-t path of length dr(w). We can alternate between the searches in any order.
In our experiments, we strictly alternate between the searches, balancing the work
between them.

Intuitively, the bidirectional algorithm searches two touching balls centered at
s and t: we can stop when the search in one direction selects a vertex already
scanned in the other. A slightly tighter criterion is to terminate the search when
topf+topr ≥ µ, where topf and topr denote the top keys (values) in the forward and
reverse priority queues, respectively (i.e., the smallest labels of unscanned vertices
in each direction). To see why this is a valid criterion, suppose there exists an s-t
path P whose length is less than µ. Then there must exist an arc (v, w) on this
path such that dist(s, v) < topf and dist(w, t) < topr, which means that v and w
must have been scanned already. Suppose, without loss of generality, that v was
scanned first; then, when scanning w, path P would have been detected. Since it
was not, P cannot exist and µ must indeed be the length of the shortest s-t path.

3. Reach-Based Pruning

Given a path P from s to t and a vertex v on P , the reach of v with respect to
P is the minimum of the length of the prefix of P (the subpath from s to v) and
the length of the suffix of P (the subpath from v to t). See Figure 1. The reach
of v, r(v), is the maximum, over all shortest paths P through v, of the reach of
v with respect to P . Throughout this paper, we assume that shortest paths are
unique. If the input has ties, these can be broken in several ways; we describe our
tie-breaking procedure in Section 4.6.

The intuition behind the notion of reach is simple. A vertex has high reach
only if it is close to the middle of some very long shortest path. On road networks,

969896

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 5

! ! !
s v t

prefix(P, v) suffix(P, v)

Figure 1. The reach of v with respect to the shortest path P
between s and t is the minimum between the lengths of its prefix
and its suffix (with respect to v).

high-reach vertices roughly correspond to highways, whereas low-reach vertices cor-
respond to local intersections. Take a vertex v representing an intersection between
two local roads in a small town. There are shortest paths containing v that start
close to v and end somewhere far away, and shortest paths containing v that start
far away and end close to v. Usually, however, it is not the case that there is a
shortest path that starts far away from v, passes through v, and ends far away from
v.

The knowledge that a particular vertex v has low reach can be used to prune
it during searches. Once we are far away from the source s and the target t, there
is no point in visiting v: we know it cannot be on the shortest path from s to t.
The remainder of this section will make these observations more formal.

For large graphs, computing exact reaches is impractical with current algo-
rithms. Instead, we efficiently compute upper bounds on the reach of every vertex,
which is enough for our purposes. Section 4 will explain in detail how this can
be done. For now, assume that we have valid reach upper bounds; how they were
obtained is immaterial.

We denote an upper bound on r(v) by r(v). Let dist(v, w) denote a lower bound
on the distance from v to w. The following fact allows us to use reaches for pruning
an s-t Dijkstra’s search:

Suppose r(v) < dist(s, v) and r(v) < dist(v, t). Then v is not on
a shortest path from s to t, and therefore Dijkstra’s algorithm
does not need to label or scan v.

This holds for the bidirectional algorithm as well.
Note that upper bounds on reaches are not enough: we still need lower bounds

on distances from s (which the search itself can provide) and to t. Gutman [24]
proposed using Euclidean lower bounds to find lower bounds on distances to t.
Unfortunately, this only works when vertex coordinates are available, which is not
always the case. Even when they are available, as in the case of road networks,
the lower bounds are not particularly tight, especially when length functions other
than travel distances are used.

We propose a simpler (and more effective) strategy: make the search bidirec-
tional, and extract implicit lower bounds from the bidirectional search itself. During
an execution of a bidirectional version of Dijkstra’s algorithm, consider the search
in the forward direction, and let γ be the smallest distance label of a labeled vertex
in the reverse direction (i.e., the topmost key in the reverse heap). If a vertex v has
not been scanned in the reverse direction, then γ is a lower bound on the distance
from v to the target t. The same idea applies to the reverse search: we use the

979997

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

6 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

topmost key in the forward heap as a lower bound on the distance from the source
to any vertex not yet scanned in the forward direction.

When we are about to scan v, we know that df (v) is the distance from the
source to v. So we can prune the search at v if v has not been scanned in the
reverse direction, r̄(v) < df (v), and r̄(v) < γ. When using these bounds, the
stopping condition is the same as for the standard bidirectional algorithm (without
pruning). As in the original case, we can alternate between the searches in any way.
We call the resulting procedure the bidirectional bound algorithm. See Figure 2.

!✘✘✘✘✘✘✘✘✘✘✘!
v

df (s) = dist(s, v)

s

!
t

❍❍❍❍❍❍❍❍ γ = dist(v, t)

Figure 2. Pruning using implicit bounds. Assume v is about to be
scanned in the forward direction, has not yet been scanned in the reverse
direction, and that the smallest distance label of a vertex not yet scanned
in the reverse direction is γ. Then v can be pruned if r̄(v) < df (v) and
r̄(v) < γ.

A variant of this method is the self-bounding algorithm, which can prune a
vertex based on its own distance label, regardless of the other direction. Assume
we are about to scan a vertex v in the forward direction (the procedure in the
reverse direction is similar). If r(v) < df (v), we prune the vertex. Note that if
the distance from v to t is at most r(v), the vertex will still be scanned in the
reverse direction, given the appropriate stopping condition. It is easy to see that
the following stopping condition works.

Stop the search in a given direction when either there are no labeled
vertices or the minimum distance label of labeled vertices for the
corresponding search is at least half the length of the shortest path
seen so far.

The self-bounding algorithm can safely ignore the lower bound to the destination
because it leaves to the other search to visit vertices that are closer to it. Note,
however, that when scanning an arc (v, w), even if we end up pruning w, the self-
bounding algorithm must check if w has been scanned in the opposite direction; if
so, it must check if the candidate path using (v, w) is the shortest path seen so far.

The natural distance-balanced algorithm falls into both of the above categories.
It balances the radii of the forward search and the reverse search by scanning in
each iteration the labeled vertex with minimum distance label, considering both
directions. The distance label of this vertex is also a lower bound on the distance
to the target, as the search in the opposite direction has not selected the vertex
yet. This algorithm, which we call re, is the one we tested in our experiments,
given its simplicity and the fact that it can be naturally combined with A∗ search,

9810098

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 7

as Section 5.2 will show. Although it could be implemented with only one priority
queue, we use two for consistency with the other algorithms we implemented.

3.1. Early Pruning. Our implementation checks whether a vertex w can be
pruned not only when scanning it, but also when considering whether to insert it
into the heap or not. We call this early pruning. When processing an arc (v, w)
in the forward search, we are actually evaluating a path from s to t that passes
through v and w. The distance from s to w on this path is df (v) + ℓ(v, w); a lower
bound on the distance from w to t is γ (the topmost value in the reverse heap),
assuming that w has not been scanned yet. If r̄(w) < min{df (v) + ℓ(v, w), γ}, we
can prune the search at w. The same procedure applies to the reverse search.

Besides avoiding heap insertions, early pruning can actually reduce the number
of arcs we have to scan. Suppose that the arcs in the adjacency list of v are sorted
in decreasing order of upper bounds on reaches. In other words, if (v, w) and (v, x)
are such that r̄(w) < r̄(x), then (v, x) appears before (v, w) in the adjacency list
of v. If, when scanning (v, w), we determine that r̄(w) < γ and r̄(w) < df (v),
then we can not only prune (v, w), but implicitly prune all remaining arcs in the
adjacency list of v. Note that there will be cases where r̄(w) will be greater than
df (v) but smaller than df (v) + ℓ(v, w); we can still prune w, but we must continue
traversing the adjacency list of v. To make this optimization possible, we can sort
the adjacency lists when reading the graph for queries (as we did in our experiments)
or during the preprocessing step.

To ensure that implicit pruning is indeed correct, there is still a special case we
must address. As described, the routine assumes, when processing (v, w), that γ is a
valid lower bound on the distance to t from every neighbor z of v that appears after
(v, w) in the adjacency list. This may not be true if z has already been scanned:
the algorithm will miss the arc (v, z) when scanning v, and it can conceivably be
part of the shortest path. Fortunately, this arc will have already been scanned from
z during the reverse search. At that point, however, v had not yet been scanned
in the forward direction, and therefore the algorithm will not have checked if (v, z)
belongs to the shortest path. This can remedied by performing an additional check
when scanning v itself: if v is labeled in the other direction, the algorithm checks
whether df (v) + dr(v) ≤ µ and updates the shortest path seen so far accordingly.

3.2. Improving Locality. When reaches are available, a typical point-to-
point query spends most of its time scanning high-reach vertices. Except at the very
beginning of the search, low-reach vertices are pruned. During repeated searches,
most vertices visited have high reach. This suggests an obvious optimization: during
preprocessing, reorder the vertices such that high-reach vertices are close together
in memory to improve cache locality.

The simplest way to achieve this would be to sort vertices in non-increasing
order of reach. This, however, will destroy the locality of the input: in many
applications (including road networks), the original vertex order has high locality.

Instead, we adopt the following approach to order the vertices. We partition
the vertices into two equal-sized sets: the first contains the n/2 vertices with highest
reach, and the other contains the remaining vertices. We keep the original relative
ordering in each part, then recursively process the first part. Besides improving
locality, this reordering also facilitates other optimizations, such as reach-aware
landmarks (described in Section 5.4).

9910199

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

8 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

4. Reach Computation

Having seen how reach upper bounds are used to prune the search, we now turn
to the problem of computing these bounds. The standard algorithm for computing
exact reaches builds shortest path trees from each vertex in the graph. The shortest
path tree rooted at vertex r compactly represents all shortest paths that start at r.1
The reach of a vertex v restricted to these paths is given by the minimum between
its depth (the distance from r) and its height (the distance to its farthest descendent
in the tree). The reach of v with respect to the entire graph is the maximum reach
of v with respect to all shortest path trees.

Building n shortest path trees is too expensive for large road networks. For-
tunately, as already mentioned, it is enough to compute upper bounds on reaches.
Gutman [24] suggested an algorithm for this purpose that works in rounds. Each
round tries to find upper bounds for reaches that are smaller than a threshold ϵ
by growing partial shortest path trees of depth greater than 2ϵ. Intuitively, a high-
reach vertex (i.e., a vertex with reach at least ϵ) must be close to the middle of
some shortest s-t path of length slightly bigger than 2ϵ. This path will be among
those considered when a partial shortest path tree is grown from s. At the end of
a round, vertices with bounded reach are removed from the graph, the threshold
ϵ is increased (by a multiplicative factor), and the procedure is repeated in the
resulting subgraph, now with a larger threshold. This process continues until all
reaches have been bounded.

Since the threshold increases substantially as the algorithm progresses, so does
the depth of the shortest path trees obtained. Therefore, the efficiency of the
algorithm depends crucially on how fast the graph shrinks due to the elimination of
low-reach vertices. Intuitively, one would like the number of vertices in the partial
trees to remain approximately constant from one round to the next. Unfortunately,
when Gutman’s algorithm is applied to road networks, the trees increase in size,
rendering the algorithm impractical for large graphs.

4.1. Our Approach. Our algorithm is based on the same basic approach
(growing partial trees) as Gutman’s, but we suggest several improvements that
lead to significant speedups.

Our most important improvement is adding shortcut arcs (or simply shortcuts)
to the graph during the preprocessing procedure. A shortcut (v, w) is a new arc
with length equal to that of an existing path between v and w. If we break ties
appropriately (giving preference to shortcuts), we may decrease the reach of internal
vertices on the original v-w path. This speeds up both preprocessing (because more
vertices are eliminated after each round) and queries (because vertices with lower
reach are more likely to be pruned). The resulting algorithm becomes practical for
large road networks, such as those of the USA and Western Europe.

Our method for generating shortcuts is based on the one suggested by Sanders
and Schultes [40, 41] in the context of highway hierarchies. The idea is to bypass
a low-degree vertex v by adding for each pair of arcs [(u, v), (v, w)] an arc (u, w)
of length ℓ(u, v) + ℓ(v, w) and deleting v and all arcs adjacent to it. To avoid
introducing too many arcs, we prefer to bypass vertices of low degree. Although
this shortcut strategy is local, its repeated application may introduce shortcuts

1Note that r can represent either a reach value (as a function) or a tree root. We rely on
context to resolve the ambiguity.

100102100

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 9

representing very long paths. This happens on road networks, where these paths
often correspond to portions of highways between two important exits.

A second important novelty of our preprocessing algorithm is that it computes
upper bounds on the reaches of arcs, not vertices. Let P be the shortest path from
s to t, and assume it contains an arc (v, w). The reach of (v, w) with respect to P
is the minimum between the distance from s to w and the distance from v to t.
The reach of (v, w) (with respect to the entire graph), denoted by r(v, w), is the
maximum, over all shortest paths P containing (v, w), of the reach of (v, w) with
respect to P . The main advantage of computing arc reaches is that it allows for
more efficient shortcutting: a high-reach vertex can be bypassed as soon as enough
low-reach arcs incident to it are eliminated.

We now outline the preprocessing algorithm in more detail. Like Gutman’s
algorithm, it works in rounds (or levels). At level i, it tries to bound all arc
reaches below some threshold ϵi, which grows exponentially with i. Level i starts
by removing from the graph every arc whose reach was bounded in the previous
level. It then eliminates (bypasses) some low-degree vertices by adding shortcuts
between its original neighbors. Finally, it grows partial shortest path trees from
all remaining vertices, and uses these trees to find upper bounds on the reaches of
arcs whose reaches are less then ϵi. The algorithm proceeds until all arcs have been
eliminated, i.e., until all reaches have been bounded.2

At this point, arc reaches are converted to vertex reaches, which are used during
queries. We could employ arc reaches during queries, but vertex reaches require
less space and are easier to use.

Although the partial shortest path trees grown in a given level contain only
vertices and arcs that have not been eliminated from the graph, our goal is to find
reach upper bounds that are valid for the original graph. We must therefore take
into consideration the arcs that have already been deleted, either in previous itera-
tions or when introducing shortcuts in the current iteration. We do that implicitly,
by associating penalties with each vertex v in the current graph, as Section 4.2 will
explain in detail. Intuitively, penalties are used to artificially extend the lengths of
all shortest paths that start or end at v in the original graph, implicitly accounting
for the fact that these paths could be extended to vertices that have been previously
eliminated by the preprocessing routine.

Unfortunately, although they help find valid upper bounds, penalties often lead
to overly conservative reach estimates. We may end up with upper bounds that
are significantly above the actual reach values, which makes pruning less effective
during queries. This is especially true for high-reach vertices, the last to have their
reaches bounded. This is unfortunate, since they are arguably the most important
vertices in the graph: queries prune most low-reach vertices and spend most of their
time traversing high-reach ones.

To minimize this issue, the preprocessing algorithm also has a refinement phase.
After all reach upper bounds are obtained, we compute exact vertex reaches on the
subgraph induced by the δ vertices with highest reach upper bound, where δ is a
user-defined parameter (set to 2⌈

√
n⌉ in most of our experiments). The remaining

vertices are considered only implicitly, as penalties.

2We reiterate that these arcs are “eliminated” during preprocessing only; all original arcs
and shortcuts will be present in the final graph, on which queries will be performed.

101103101

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

10 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

The remainder of this section describes in detail each component of the pre-
processing algorithm: the partial-trees procedure (Section 4.2), shortcut generation
(Section 4.3), and the refinement step (Section 4.4). Other implementation details,
including parameter choices, are discussed in Section 4.5.

4.2. Approximate Reaches: Growing Partial Trees. We now describe
the main routine executed in each iteration of our preprocessing algorithm. Given
a graph G = (V, A) and the threshold ϵ, our goal is to find valid reach upper bounds
for arcs in A whose actual reaches are smaller than ϵ. (This discussion deals with a
single iteration, and therefore assumes that ϵ is fixed.) For the remaining arcs, the
upper bound is ∞. While the algorithm is allowed to report false negatives (i.e., it
may find an upper bound of ∞ for arcs whose actual reach is less than ϵ), it must
never report a false positive.

Fix an arc (v, w). To prove that r(v, w) < ϵ, we must consider all shortest paths
that contain (v, w). Fortunately, we do not have to evaluate all such paths explicitly:
it suffices to process only minimal paths. Let Pst = (s, s′, . . . , v, w, . . . , t′, t) be the
shortest path between s and t, and assume that (v, w) has reach at least ϵ with
respect to this path. Path Pst is ϵ-minimal with respect to (v, w) if and only if the
reaches of (v, w) with respect to Ps′t and Pst′ are both smaller than ϵ.

The algorithm works by growing a partial tree Tr from each vertex r ∈ V . It
runs Dijkstra’s algorithm from r, but stops as soon as it can prove that all minimal
paths starting at r are part of the tree. In order to determine when to stop growing
the tree, we need the notion of inner vertices. Let v be a vertex in this tree, and let
x be the first vertex (besides r) on the path from r to v. We say that v is an inner
vertex if either v = r or d(x, v) < ϵ, where d(x, v) denotes the distance (in the tree)
between x and v. Note that, when v is not an inner vertex, no path Prt starting at
r will be ϵ-minimal with respect to a tree arc (u, v): if the reach of (u, v) is greater
than ϵ with respect to Prt, it will also be greater than ϵ with respect to Pxt.

The tree arcs whose heads are inner vertices are those whose reaches we will
try to bound; we call them inner arcs. The partial tree Tr must be large enough
to include all of them, as well as enough descendants to bound their height accu-
rately. More precisely, we must make sure that every inner vertex v has one of two
properties: (1) v has no labeled (unscanned) descendent; or (2) v has at least one
scanned descendent whose distance from p(v) (the parent of v in Tr) is ϵ or greater.
When these conditions are satisfied, we do not need to grow the tree any further
because all ϵ-minimal paths starting at r are already taken into account. In prac-
tice, however, this condition often leads to very large partial trees. As Section 4.2.1
will explain, we use a relaxed version of the second condition that only guarantees
that the distance (in the partial tree) to every labeled vertex from its closest in-
ner ancestor is greater than ϵ. When processing the partial tree, we consider both
scanned and labeled vertices (which will be leaves) as belonging to it. This ensures
that there are no false positives, but may generate false negatives.

Once the tree is built, processing it is straightforward. For each vertex v, we
know its depth, i.e., the distance from the root to v. In O(|Tr|) time, one can also
compute the height of every inner vertex v, defined as the distance within the tree
from v to its farthest descendent (either scanned or labeled). The reach of a tree
arc (v, w) with respect to the partial tree is the minimum between the depth of w
and the height of v. The reach bound for (v, w) with respect to the entire graph is
the maximum over all such reaches, considering all partial trees that contain (v, w)

102104102

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 11

and have w as an inner vertex. If this maximum is at least ϵ, we declare the reach
bound to be ∞.

As already observed, the notion of running several rounds of partial-tree compu-
tation to find reach upper bounds is due to Gutman [24]. Our algorithm improves
on his in three important ways. First, we add shortcuts between two rounds of
partial-trees computation, which causes the graph to shrink much faster (on road
networks). Second, we compute arc reaches instead of vertex reaches, which de-
creases the degrees of high-reach vertices more quickly during preprocessing and
allows them to be bypassed (which reduces their reach). Finally, we only grow
partial shortest path trees from vertices that have not been eliminated yet (as the
next subsection will explain). Gutman’s algorithm, in contrast, also grows trees
from eliminated vertices with “live” neighbors, which is significantly slower. With-
out these modifications, the preprocessing algorithm would be impractical for very
large graphs, and query performance would be significantly worse.

4.2.1. Dealing with penalties. As described, the algorithm assumes that partial
trees are grown from every vertex in the graph. We would like, however, to run the
partial-trees routine even after some of the vertices have been eliminated (because
they were bypassed or their reach was bounded in a previous iteration), growing
partial trees from the remaining vertices only. Eliminated vertices must be taken
into account, however, since they may belong to the shortest paths that determine
the reaches of the remaining vertices.

We use the notion of penalties to account for the eliminated vertices. If v is a
vertex that remains in the graph, its in-penalty is the maximum over the reaches
of all arcs (u, v) that have already been eliminated. Similarly, the out-penalty of
v is the maximum reach of all arcs (v, w) that have already been eliminated. The
intuition behind penalties is simple. Suppose that the reach of an arc (x, y) (still in
the graph) is determined by the shortest path between s and t. Some arcs on this
path may have already been eliminated from the graph, because they have small
reach. But consider the largest subpath s′-t′ of s-t that remains in the graph and
contains (x, y): if we implicitly “extend” it on both ends (by adding in-penalty(s′)
to the prefix and out-penalty(t′) to the suffix), the reach of (x, y) with respect to
this subpath will be at least as large as the original reach.

To consider penalties when processing partial trees, it suffices to modify some
of the definitions used by the procedure. The (redefined) depth of a vertex v within
a tree Tr, denoted by depthr(v), is the distance from r to v plus the in-penalty of r.
Similarly, the height of a vertex is redefined to take out-penalties into account. We
implicitly attach a pseudo-leaf v′ to each vertex v in Tr and set the length of the
arc between v and v′ to be the out-penalty of v. Heights are computed not with
respect to Tr, but with respect to the pseudo-tree obtained when the pseudo-leaves
are taken into account. As before, the reach of a tree arc (v, w) with respect to Tr

is the minimum between the (modified) depth of w and the (modified) height of v.
Next we describe two simple modifications to the way partial trees are grown.

They use penalty information to reduce the number of inner vertices in each tree,
and with them the number of scanned vertices. This makes the algorithm faster
without changing the reach bounds it obtains.

First, when deciding whether v is an inner vertex with respect to a root r, we
compute depthr(v) taking in-penalties into account, i.e., as d(r, v) + in-penalty(r).
To be considered an inner vertex, v must satisfy one of the following conditions:

103105103

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

12 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

(1) v = r or (2) p(v) = r or (3) depthx(v) < ϵ (recall that x is the second vertex on
the path from r to v). There is one exception to condition (3): if depthr(p(v)) <
in-penalty(p(v)), v will not be considered an inner vertex (because its modified
depth will be even higher in the tree rooted at p(v)), and neither will its descendents.
Note that, together, these definitions imply that the parent of an inner vertex must
also be an inner vertex.

The second modification is in the stopping criterion. We grow the tree until
none of the labeled (unscanned) vertices is relevant. All inner vertices are relevant.
To decide whether an outer vertex is relevant, we keep track of the extension of
each vertex w, denoted by extr(w): if u is the last inner vertex on the path from r
to w, extr(w) is defined as d(p(u), w). An outer vertex v is relevant if its parent is
relevant and extr(p(v)) + out-penalty(p(v)) ≤ ϵ. This definition ensures that, when
v is not relevant, every inner ancestor of v will have height greater than ϵ even if
we stop growing the tree at p(v).

Our implementation introduces a third modification: we relax the notion of
relevance to allow the algorithm to stop sooner. To be relevant, in addition to the
conditions above, a vertex v must be such that extr(v) + out-penalty(v) ≤ ρϵ, with
ρ ≥ 1 (we used ρ = 1.1 in our experiments). Even if we end up not scanning v
because of this rule, the algorithm remains correct because, as a labeled vertex, v is
still guaranteed to appear in the final partial tree. Unlike the first two modifications,
this relaxed definition may lead to worse reach bounds, since the parent u of v in
the partial tree when it stops growing may not be v’s actual parent (which may
remain unscanned). As a result, the reaches of u and its ancestors may appear to
be artificially high; in particular, the iteration may end up assigning infinite bounds
to vertices whose actual reaches are less than ϵ. In practice, we observed that the
heuristic stopping criterion makes the algorithm significantly faster and has little
effect on the quality of the bounds.

4.2.2. Improvable arcs. When an iteration of the reach algorithm starts, we
assume that all the arcs that remain in the graph have reach estimate r̄(v, w) = 0.
We grow partial shortest path trees one at a time. For each inner arc (v, w) in a
tree, we check if its reach with respect to the tree is greater than r̄(v, w). If so, we
update r̄(v, w) to its reach value in the current tree (or to ∞, if the reach in the
current tree is greater than ϵ).

The fact that the reach estimate can only increase as the algorithm progresses
(within a single iteration) can be used to speed up the computation. Assume we
have already grown a few partial shortest path trees and the current reach estimate
of (v, w) is r̄(v, w). When growing a new partial shortest path tree Tr, suppose
(v, w) is again an inner arc. Without any further processing, we know that the
reach of (v, w) with respect to this tree will be no greater than depthr(w). If this
value is smaller than (or equal to) r̄(v, w), we can safely say that Tr is irrelevant
for computing the reach of (v, w). To formalize this notion, we say that a vertex v
is improvable with respect to Tr if depthr(v) > r̄(p(v), v).

We can now redefine the extension extr(w) of a vertex w as d(u, w), where u is
the last inner vertex on the path from r to w that is improvable. Compared with
the previous definition, the extension of a vertex can only be larger (or remain the
same). As a result, fewer vertices will be considered relevant, thus allowing the
search to stop sooner.

104106104

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 13

4.2.3. Dealing with long arcs. The partial-trees algorithm aims at analyzing
ϵ-minimal paths. Typically, these paths have length close to 2ϵ, which is the usual
depth of the trees examined. In fact, if all arc lengths are much smaller than ϵ, it
is not hard to see that all partial trees will have comparable depth.

Some road networks, however, contain arcs that are significantly longer than
average. An obvious example is an arc representing a ferry route. Partial shortest
path trees that include these arcs tend to be much deeper. Since for road networks
the total number of vertices in a tree is roughly quadratic in the depth, this can
significantly slow down the preprocessing procedure.

To speed up the algorithm, we used a hard bound on the total depth of the tree.
We set it to 4ϵ, which is large enough so that most trees are unaffected, but small
enough to prune exceptional cases significantly. Unfortunately, we cannot simply
stop growing the tree when it reaches this value and process the result. Because the
standard stopping criteria will not be observed, this might lead to false positives
(i.e., some reaches will be underestimated).

Consider what happens, for instance, when we grow a partial tree from a root
r, and let (r, v) be a very long arc (e.g., ℓ(r, v) > 4ϵ) incident to r. Suppose that the
shortest path from r to some vertex x consists of the arcs (r, v), (v, w), and (w, x),
with ℓ(v, w) < ϵ and ℓ(w, x) ≫ ϵ. Clearly, r(v, w) is greater than ϵ. An algorithm
that simply stops growing partial trees when their depth reaches 4ϵ will not detect
this path, however. When growing the tree from r, it would stop after its depth
reached 4ϵ. At this point, v will be labeled (with parent r), but not scanned, and
vertex w may not have been visited at all. When growing a tree from v, we would
only see the path (v, w, x), where the reach of (v, w) is smaller than ϵ.

To avoid this situation, we must use a modified notion of in-penalty when
growing partial trees. For every vertex v, we determine the length ℓ(u, v) of
its longest remaining incoming arc. If it is ϵ or larger, we set in-penalty ′(v) ←
max{in-penalty(v), ℓ(u, v)}. Intuitively, whenever there is a long arc incident to v,
we ensure that the in-penalty of v is large enough to “catch” all necessary ϵ-minimal
paths. In the example above, even though we would abort the search too soon when
growing a tree from r, we would still determine that (v, w) has high reach when
growing the tree from v itself.

Of course, the downside of this approach is that it may lead to more false
negatives, since in some cases arc (u, v) will not be on the shortest paths between u
and the inner vertices of the partial tree rooted at v. Very long arcs are relatively
rare, however, and the considerable speed-up allowed by this technique makes it
worthwhile in practice.

4.2.4. Converting arc reaches to vertex reaches. Before the refinement step, we
convert the upper bounds on arc reaches into upper bounds on vertex reaches.
Consider a vertex v, and let P be the shortest path that determines r(v). Assume
that r(v) > 0, i.e., that v is not an endpoint of P . Let (u, v) and (v, w) be the arcs
of P entering and leaving v. Clearly, the reaches of these arcs with respect to P
are at least r(v); conversely, r(v) ≤ min{r(u, v), r(v, w)}.

Unfortunately, we do not know which neighbors of v are the ones that determine
the reach (i.e., which ones are u and w). But it is easy to verify that r(v) ≤
min{maxx{r(x, v)}, maxy{r(v, y)}}. In other words, a valid upper bound for r(v)
is the minimum over the highest incoming arc reach and the highest outgoing arc
reach.

105107105

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

14 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

Often, however, both maxima are achieved at the same neighbor x = y. Al-
though the upper bound in this case is still valid, it may be much higher than
necessary, since we know that u ̸= w on the path that determines the highest
reach. We can exclude this case as follows:

(1) Find x′, the incoming neighbor of v that maximizes r(x′, v), then find y′,
the outgoing neighbor of v that is different from x′ and maximizes r(v, y′).
Let δ′ be the minimum of r(x′, v) and r(v, y′).

(2) Find the outgoing neighbor y′′ of v such that r(v, y′′) is maximized, and
the incoming neighbor x′′ of v that is different from y′′ and maximizes
r(x′′, v). Let δ′′ be the minimum of r(x′′, v) and r(v, y′′).

Note that δ′ and δ′′ may be different from each other in a directed graph. A
valid upper bound on r(v) is the maximum of δ′ and δ′′. As a special case, if v has
only one neighbor (even if it is both incoming and outgoing), the reach of v will be
zero.

4.3. Adding Shortcuts. To bypass a vertex v, we first examine all pairs
[(u, v), (v, w)] of incoming/outgoing arcs with u ̸= w. For each pair, if the arc (u, w)
is not in the graph, we add an arc (u, w) of length ℓ(u, v)+ℓ(v, w). Otherwise, we set
ℓ(u, w) ← min{ℓ(u, w), ℓ(u, v) + ℓ(v, w)}. Finally, we delete v and all arcs adjacent
to it.

In principle, any vertex in the graph could be subject to this procedure. By-
passing high-degree vertices, however, would significantly increase the number of
arcs in the graph. To avoid an excessive expansion, we consider the ratio cv between
the number of new arcs added and the number of arcs deleted by the procedure
above. A vertex is deemed bypassable if cv ≤ c, where c is a user-defined parameter
(we follow the notation proposed by Sanders and Schultes [41]). Higher values of
c will cause the graph to shrink faster during preprocessing, but may increase the
final number of arcs substantially. For road networks, we used 0.5 for the first level,
1.0 for the second, and 1.5 for the remaining levels. This prevents the algorithm
from adding too many shortcuts at the beginning of the preprocessing algorithm
(when the graph is larger but shrinks faster) and ensures that the graph will shrink
fast enough as the algorithm progresses. For grids, which do not have a natural
hierarchy, we used higher values of c from the beginning.

We impose some additional constraints on a vertex v to deem it bypassable
(besides having a low value of cv). First, we require both its in-degree and its
out-degree to be bounded by a constant (5 in our experiments). This guarantees
that the total number of arcs added by the algorithm will be linear in n. We
also consider two additional measures (besides cv) related to v: the length of the
longest shortcut arc introduced when v is bypassed, and the largest reach of an
arc adjacent to v (when v is about to be removed). The maximum between these
two values is the cost of v, and it must be bounded by ϵi/2 during iteration i for
the vertex to be considered bypassable (recall that ϵi is the threshold for bounding
reaches at iteration i). As explained in Section 4.2.3, long arcs and large penalties
can decrease the quality of the reach upper bounds provided by the preprocessing
algorithm. Imposing these additional bypassability criteria prevents such long arcs
and large penalties from appearing too soon.

On any given graph, many vertices may be bypassable. When a vertex is by-
passed, the fact that we remove existing arcs and add new ones may affect the

106108106

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 15

bypassability of its neighbors. Therefore, the order in which the vertices are pro-
cessed matters. Vertices with low expansion (cv) and low cost are preferred, since
they are the least likely to affect the bypassability of their neighbors. When decid-
ing which vertex v to bypass next, we take the vertex that minimizes the product of
these two measures (expansion and cost). When a vertex is bypassed, its neighbors
must have their priorities updated. We use a priority queue to efficiently determine
which vertex to bypass next.

4.3.1. Computing reaches of deleted arcs. As already mentioned, when a vertex
v is bypassed, it is deleted from the graph alongside all arcs currently incident to
it. At this moment, we must find a valid upper bound on the reaches of these
deleted arcs. Consider an incoming arc (u, v). We know that any shortest path P
containing this arc will not continue beyond v using one of the existing outgoing
arcs (since we break ties by preferring shortcuts, such path would contain one of
the newly inserted shortcuts instead). Therefore, P will either stop at v or proceed
through a previously deleted arc. In the latter case, out-penalty(v) bounds the
length of the suffix of P that starts from v. It follows that we can safely set the
upper bound r̄(u, v) on the reach of (u, v) to ℓ(u, v) + out-penalty(v). The same
argument applies to an outgoing arc (v, w): we set r̄(v, w) ← ℓ(v, w)+in-penalty(v).

The penalties associated with the neighbors of v must also be updated to take
the reaches of the newly eliminated arcs into account.

4.4. Exact Reaches: Refinement Step. The refinement step computes ex-
act vertex reaches on the subgraph induced by the δ vertices with highest reach,
where δ is a user-defined parameter. Vertices and arcs not in this induced subgraph
are considered implicitly, as penalties associated with every remaining vertex in the
graph. To simplify notation, in this section we denote by n the number of vertices
of the induced subgraph in which we compute exact reaches.

As already mentioned, exact reaches can be computed by growing shortest path
trees from each of the n vertices in the graph, then computing the depth and height
of each vertex within these trees. We developed an algorithm that has the same
worst-case complexity, but can be significantly faster in practice on road networks.
Even though it is still prohibitively expensive for large road networks, it is very
useful when applied in the refinement step on a much smaller subgraph.

Our method follows the same principle as the basic algorithm: build a shortest
path tree from each vertex in the graph and compute reaches within these trees.
Our improvement consists of building parts of these trees implicitly by reusing
previously found subtrees.

The algorithm works as follows. First, it partitions the vertices of the graph
into k subsets, for a given parameter k (usually around

√
n). The algorithm will

work with any such partition, but some are better than others, as we shall see. We
call each subset a region of the graph. The frontier of a region A, denoted by f(A),
is the set of vertices v ∈ A such that there exists at least one arc (v, w) with w ̸∈ A.
The remainder of the region consists of internal vertices.

Given any set S ⊆ V , we say that a vertex v is stable with respect to S if it
has the same parent in all shortest path trees rooted at vertices in S; otherwise, we
call it unstable. For any region A, the following holds:

Lemma 4.1. If v ∈ V \ A is stable with respect to f(A), then v is stable with
respect to A.

107109107

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

16 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

Proof. Let pr(v) denote the parent of v in Tr (the shortest path tree rooted
at some vertex r) and pf(A)(v) denote the common parent of v in all shortest path
trees rooted at f(A). Suppose the lemma is not true, i.e., that there exist a vertex
r ∈ A and a vertex v ∈ V \ A such that pr(v) ̸= pf(A)(v). Consider the path P
from r to v in Tr. Because r ∈ A and v ̸∈ A, at least one vertex in P must belong
to f(A). Let s be the last such vertex, i.e., the one closest to r. The subpath of
P from s to v is itself a shortest path, and therefore it must appear in the shortest
path tree rooted at s (we assume all shortest paths are unique). But recall that v
has pr(v) as its parent on this path, which contradicts our initial assumption that
the parent of v in all trees rooted at vertices of f(A) is pf(A)(v) ̸= pr(v). !

A vertex v ∈ V is considered tainted with respect to f(A) if at least one of
the following conditions holds: (1) v is unstable with respect to f(A); (2) v has an
unstable descendent in at least one of the |f(A)| trees; or (3) v ∈ A. If none of
these conditions holds, v is untainted. An untainted vertex v will be the root of the
exact same subtree in every shortest path tree rooted at f(A). The lemma above
also ensures that it would be the root of the same subtree if we grew a shortest
path tree from any internal vertex of A as well.

Our algorithm takes advantage of this. In its first stage, it grows full shortest
path trees from every vertex in f(A). For these trees, it computes the height
and the depth of every vertex, as usual. The second stage of the algorithm grows
truncated trees from every internal vertex of A (i.e., every vertex in A\f(A)). These
truncated trees contain only tainted vertices; no untainted vertex is ever visited.
Even so, it is still possible to compute the reach of the tainted vertices as if we had
grown the entire tree. The depth can be computed as before. For the height, we
need to consider vertices that were not visited.

This is done as follows. Consider a maximal untainted subtree rooted at a
vertex w. The height of this tree can be easily precomputed. Because w is untainted,
its parent p(w) will be the same (tainted) vertex in every shortest path tree rooted
at A. Therefore, w imposes an implicit penalty on p(w) equal to w’s own height
plus the length of the arc (p(w), w). The extended penalty of a tainted vertex is
defined as the maximum between its own out-penalty and the implicit penalties
associated with its untainted children. Note that the extended penalty needs to
be computed only once, after all trees rooted at the frontier are built. When trees
are built from internal vertices, the height of each vertex visited (which must be
tainted) is computed as usual, using extended penalties instead of out-penalties.

Our description so far allows us to correctly compute the reach of each tainted
vertex, but we also need to determine the reach of the untainted vertices. Although
the height of an untainted vertex v is the same across all trees, the depth varies,
and so does the reach. Fortunately, we do not need to know the reach of v within
each tree; it suffices to know the maximum reach. Since the height is constant, the
maximum is realized in the tree that maximizes the depth of v. If, when growing
full and truncated shortest path trees, we remember the maximum depth of each
tainted vertex, we can later compute (in linear time) the maximum depth of all
untainted vertices. Since their heights are known, their reaches (with respect to
the trees rooted at A) can be easily determined.

4.4.1. Regions. The algorithm above is correct regardless of how the regions are
chosen. In particular, if each region has exactly one vertex, we have the standard
algorithm. Of course, there are better choices of regions. There are two main

108110108

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 17

goals to achieve: (1) the size of the frontier should be small compared to the size
of the entire region and (2) the number of tainted vertices should be minimized.
On road networks, these two goals are conflicting. In general, a larger region will
have a smaller fraction of its vertices in the frontier. However, it also increases the
probability of an external vertex being tainted. A good compromise is to choose
regions with roughly

√
n vertices.

To create a partition with at least k sets, we pick k vertices at random to be
centers and determine their Voronoi regions (we use k = 2⌈

√
n⌉). Recall that the

Voronoi region associated with a center v is the set of vertices w that are closer
to v than to any other center (ties are broken arbitrarily). One can compute the
Voronoi diagram of a graph with a multiple-source version of Dijkstra’s algorithm.
If there are unreachable vertices, they are assigned to regions by themselves.

Although the Voronoi diagram is a simple way of defining the regions, it is cer-
tainly not the best conceivable partition. A topic for future research is to compute
regions quickly with relatively smaller frontiers.

4.5. Other Details. As already mentioned, the reach threshold grows expo-
nentially as the preprocessing algorithm progresses: we set ϵi+1 ← 3ϵi for each
round i. It remains to determine ϵ1, the threshold during the first round. Ideally,
our choice should be such that the first iteration takes roughly as much time as each
of the remaining iterations. A large value will make the first iteration comparatively
slow and will not give the algorithm the chance to add shortcuts when needed. In
contrast, a very small value will introduce penalties too early, which will decrease
the accuracy of the reach upper bounds computed in subsequent iterations.

The value of ϵ1 depends on an integer input parameter k1 (we used k1 = 1000 in
our experiments). We pick ⌊n/k1⌋ root vertices at random. For each root, we grow
a partial shortest path tree with exactly k1 vertices and take note of its radius (the
distance label of the last scanned vertex). We set ϵ1 to be half the minimum among
all such radii. This ensures that, during the first iteration of the preprocessing
algorithm, not many partial shortest path trees have more than k1 vertices. Our
choice of k1 is fairly robust for road networks: small changes do not have much
effect on the performance of either preprocessing or queries.

4.6. Correctness. We argued that the transformation of arc reaches into ver-
tex reaches and the refinement step are correct. For completeness, we now present a
(somewhat tedious but straightforward) proof that the main stage of our algorithm,
which grows partial trees and adds shortcuts to the graph, is correct: it finds valid
upper bounds on reaches. We focus on the basic version of the partial-trees algo-
rithm, which takes penalties into account when processing the tree but not when
growing it. The three improvements described in Section 4.2.1 are not taken into
account, and neither are the special stopping criteria introduced in Section 4.2.3
to handle very long arcs. We have already argued why these accelerations do not
affect correctness.

Before we proceed to the proof, we must explain in more detail an important
element of the partial-trees algorithm. Recall that we assume that ties are broken
so that a shortcut is always preferred to the arcs it replaces; furthermore, we assume
that all original shortest paths are unique. We deal with these issues by working
with canonical paths. A canonical path is a shortest path with additional properties,

109111109

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

18 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

including uniqueness. We require the following properties, which are sufficient and
easy to work with, but may not be necessary.

(1) A canonical path is a simple shortest path.
(2) For every pair (s, t), there is a unique canonical path between s and t.
(3) A subpath of a canonical path is a canonical path.
(4) There is an implementation of Dijkstra’s algorithm that always finds

canonical paths.
(5) (Non-shortcut property.) A path Q is not a canonical path if Q contains a

subpath P with more than one arc such that the graph contains a shortcut
arc for P .

Regarding Property 1, note that, if the graph has no cycles of zero-length arcs,
all shortest paths are simple. Property 5 ensures that adding shortcut arcs decreases
vertex reaches.

We implement canonical paths as follows. For each original arc a, we generate
a length perturbation ℓ′(a). When computing the length of a path, we separately
sum lengths and perturbations along the path, and use the perturbation to break
ties in path lengths.

First suppose there are no shortcut arcs. If the perturbations are chosen uni-
formly at random from a big enough range of integers, with high probability all
shortest paths (with respect to length and perturbations) are canonical paths. In
our implementation, perturbations were picked uniformly at random from the range
[1, 65535]. Shortcut arcs are added after the perturbations are introduced. The
length and the perturbation of a shortcut arc are equal to the sum of the corre-
sponding values for the arcs on the path that we shortcut. To break ties in a graph
with shortcuts, we use the number of hops of the paths (fewer hops are better) after
considering perturbations. Note that Dijkstra’s algorithm can easily maintain the
number of hops of candidate paths. It is not hard to see that the shortest paths
that win the tie breaking are canonical.

Our way of dealing with canonical paths is conceptually simple but has two dis-
advantages: the memory overhead for storing perturbations during queries (which
is minor) and a small probability of failure due to ties in sums of perturbations. Re-
garding the latter issue, we have never observed the algorithm working incorrectly
during our extensive experiments. In general, our method can use any tie breaking
rule that gives preference to paths with shortcuts and for which a (suitably mod-
ified) Dijkstra’s algorithm finds the corresponding canonical paths. It is possible
that other tie-breaking approaches, such as that of [9], will work. However, this is
not completely obvious.

Our preprocessing algorithm computes upper bounds on reaches with respect
to the set of canonical paths as defined above using tie-breaking by perturbations
and hops. During queries, however, we can completely ignore both tie-breaking
rules, and simply prune by reach. If we only prune a vertex v if r(v) < dist(s, v)
and r(v) < dist(v, t) (as our algorithms do), the canonical path will not be pruned.
The algorithm may not necessarily return the canonical path as its answer, but it
is guaranteed to find a path of the same length.

Once we have the notion of canonical shortest paths, we can prove that the
upper bounds on arc reaches computed during the first stage of the preprocessing
algorithm are indeed valid. The proof is by a straightforward induction with a
somewhat tedious case analysis.

110112110

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 19

Theorem 4.2. For every arc (v, w) we compute an upper bound r(v, w) on
the reach of (v, w) in the graph obtained from the original graph G by adding all
shortcuts.

Proof. We break the process into its elementary steps, where an elementary
step is either bypassing a vertex or a round of partial tree computations (after
which we delete every arc whose reach is finitely bounded). Let Gi be the original
graph with all shortcuts added up to the end of step i, and let G′

i be the graph that
the algorithm is left with after step i. We prove by induction on the steps that the
following invariants hold.

(1) For every arc (v, w) that we have deleted until (and including) step i (i.e.,
(v, w) ̸∈ G′

i), r(v, w) upper bounds the reach of (v, w) in Gi.
(2) For every vertex v ∈ G′

i, out-penalty(v) upper bounds the reach in Gi of
any arc (v, w) that we have already deleted.

(3) For every vertex v ∈ G′
i, in-penalty(v) upper bounds the reach in Gi of

any arc (u, v) that we have already deleted.
Note that Invariants (2) and (3) immediately follow from Invariant (1) because of
the way we update the penalties.

We outline a proof of the induction step. The basis is trivial. Assuming these
invariants are true at the end of step i − 1, we must prove that they also hold at
the end of step i.

Since adding shortcuts can only reduce reaches, Invariant (1) continues to hold
for all arcs deleted prior to step i. We will establish Invariant (1) for every arc that
we delete during step i.

Assume step i is bypassing a vertex v. Let (v, w) (or (w, v)) be an arc that
we delete when bypassing v. Then, from the correctness of the penalties after step
i − 1 and the discussion in Section 4.3, it follows that r(v, w) indeed bounds the
reach of (v, w) in the graph Gi, which includes also all shortcut arcs added when
we bypassed v.

Assume step i is a partial tree computation. Let ϵ be the threshold of the
current level, and let (v, w) be an arc whose reach we bound at this step (r(v, w) <
ϵ). Assume (to get a contradiction) that the reach of (v, w) in Gi is r(v, w) > r(v, w).
Note that the partial tree computation is done in the graph G′

i−1 and, since we do
not bypass vertices in this step, Gi = Gi−1.

Assume first that r(v, w) ≥ ϵ, and let P = (s, . . . , v, w, . . . , t) be an ϵ-minimal
path with respect to (v, w) in Gi. For a vertex x ∈ P , let p(x) be the vertex preced-
ing x on P and let f(x) be the vertex following x on P . Let P ′ = (z, . . . , v, w, . . . , y)
be the maximal subpath of P in G′

i−1 containing (v, w). Since if z ̸= s the reach
of the arc (p(z), z) in Gi−1 is at least min{dist(s, z), dist(p(z), t)}, it follows from
the correctness of the penalties after step i − 1 that in-penalty(z) + dist(z, w) ≥ ϵ.
Let z′ be the last vertex on the prefix of P ′ up to and including v such that
in-penalty(z′) + dist(z′, w) ≥ ϵ. In the partial tree rooted at z′, w is inner. (Note
that this is true also if z′ = v.)

If y ̸= t then the reach of (y, f(y)) is at least min{dist(y, t), dist(s, f(y))}. So
(regardless of whether y is t or not) by the correctness of the penalties after step
t−1 we get that dist(v, y)+out-penalty(y) ≥ ϵ. Let y′ be the last vertex after v on
P ′ such that dist(v, y′)+ out-penalty(y′) < ϵ (or v if there is no such vertex). Then
y′ must be scanned, and f(y′) must be a labeled child of y′, during the shortest
path computation from z′. Therefore, in the partial tree rooted at z′ the depth of

111113111

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

20 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

w and the height of v are both at least ϵ. So in this tree the arc (v, w) should have
gotten a bound of ∞ on its reach, which is a contradiction.

If r(v, w) < ϵ, let P = (s, . . . , v, w, . . . , t) be an r(v, w)-minimal path. A similar
argument shows that there is a partial tree in which the bound on the reach of (v, w)
is at least r(v, w), which gives a contradiction. !

4.7. Cardinality Reach and Highway Hierarchies. Having fully described
our reach-based algorithm (re), we now discuss its relationship to the hh algorithm
of Sanders and Schultes [40, 41]. We show similarities between the algorithms other
than those pointed out in [40, 41].

We introduce a variant of reach that we call c-reach (cardinality reach). Given a
vertex v on a shortest path P , grow equal-cardinality balls centered at the endpoints
of P until v belongs to one of the balls. Let cP (v) be the cardinality of each of the
balls at this point. The c-reach of v, c(v), is the maximum, over all shortest paths
P , of cP (v). Note that if we replace cardinality with radius, we get the definition
of reach. To use c-reach for pruning the search, we need the following values. For
a vertex v and a nonnegative integer i, let ρ(v, i) be the radius of the smallest
ball centered at v that contains i vertices. Consider a search for the shortest path
from s to t and a vertex v. We do not need to scan v if ρ(s, c(v)) < dist(s, v)
and ρ(t, c(v)) < dist(v, t). A direct implementation of this pruning method would
require maintaining n − 1 values of ρ for every vertex.

The main idea behind hh preprocessing is to use the partial-trees algorithm for
c-reaches instead of reaches. Given a threshold h, the algorithm identifies vertices
that have c-reach below h (local vertices). Consider a bidirectional search. During
the search from s, once the search radius advances past ρ(s, h), one can prune local
vertices in this search. One can do similar pruning for the reverse search. This idea
is applied recursively to the graph with low c-reach vertices deleted. This gives a
hierarchy of vertices, in which each vertex needs to store a ρ-value for each level of
the hierarchy it is present at. The preprocessing phase of hh also adds shortcuts
and uses other heuristics to reduce the graph size at each iteration.

An important property of the hh query algorithm, which makes it similar to
the self-bounding algorithm discussed in Section 3, is that the search in a given
direction never goes to a lower level of the hierarchy. Our self-bounding algorithm
can be seen as having a “continuous hierarchy” of reaches: once a search leaves a
reach level, it never comes back to it.

5. Reaches and A∗ Search

This section reviews A∗ search and the alt algorithm, and shows how the latter
can be combined with reach pruning in a natural way.

5.1. A∗ Search. Suppose we need to find shortest paths in a graph G with
distance function ℓ. A potential function maps vertices to reals. Given a potential
function π, the reduced cost of an arc is defined as ℓπ(v, w) = ℓ(v, w)−π(v)+π(w).
Suppose we replace ℓ by ℓπ. Then for any two vertices x and y, the length of every
x-y path (including the shortest) changes by the same amount, π(y) − π(x). Thus
the problem of finding shortest paths in G is equivalent to the problem of finding
shortest paths in the transformed graph.

Now suppose we are interested in finding the shortest path from s to t. Let πf

be a (perhaps domain-specific) potential function such that πf (v) gives an estimate

112114112

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 21

on the distance from v to t. In the context of this paper, A∗ search [12, 25] is an
algorithm that works like Dijkstra’s algorithm, except that at each step it selects
a labeled vertex v with the smallest key, defined as kf (v) = df (v) + πf (v), to scan
next. It is easy to see that A∗ search is equivalent to Dijkstra’s algorithm on the
graph with length function ℓπf . If πf is such that ℓπ is nonnegative for all arcs
(i.e., if πf is feasible), the algorithm will find correct shortest paths. We refer to
the class of A∗ search algorithms that use a feasible function πf with πf (t) = 0 as
lower-bounding algorithms, since πf (v) is guaranteed to be a lower bound on the
distance from any vertex v to t.

We combine A∗ search and bidirectional search as follows. Let πf be the po-
tential function used in the forward search and let πr be the one used in the reverse
search. Since the latter works in the reverse graph, each original arc (v, w) appears
as (w, v), and its reduced cost w.r.t. πr is ℓπr(w, v) = ℓ(v, w)−πr(w)+πr(v), where
ℓ(v, w) is the length in the original graph. We say that πf and πr are consistent if,
for all arcs (v, w), ℓπf (v, w) in the forward graph is equal to ℓπr(w, v) in the reverse
graph. This is equivalent to πf + πr = constant.

If πf and πr are not consistent, the forward and reverse searches use different
length functions. When the searches meet, we have no guarantee that the shortest
path has been found. Assume πf and πr are feasible (but not necessarily consistent)
and give lower bounds to the sink and from the source, respectively. Ikeda et al. [26]
suggest using an average function, defined as pf (v) = πf (v)−πr(v)

2 for the forward
computation and pr(v) = πr(v)−πf (v)

2 = −pf (v) for the reverse one. To make the
algorithm more intuitive, we add πr(t)/2 to the forward function (which ensures
that pf (t) = 0) and πf (s)/2 to the reverse function (making it zero at s). Because
the added terms are constant, the functions remain consistent. Although pf and
pr usually do not give lower bounds as good as the original ones, they are feasible
and consistent.

Recall that the standard bidirectional algorithm can stop as soon as topf +
topr ≥ µ, where topf is the top key in the forward heap, topr is the top key in the
reverse heap, and µ is the length of the shortest path found so far. For bidirectional
A∗ with consistent lower bounds, we can use a similar stopping criterion, but in
the transformed graph.

Let vf and vr be the top vertices in each heap (with keys topf and topr,
respectively). The standard stopping criterion states that we can stop as soon
as dist(s, vf) + dist(vr, t) ≥ [best path seen so far]. In the transformed graph, the
distance between s and vf corresponds to df (vf)+pf (vf)−pf (s) = kf (vf)−pf (s) =
topf − pf (s). Similarly, the distance between vr and t in the transformed graph is
dr(vr) + pr(vr) − pr(t) = kr(vr) − pr(t) = topr − pr(t). Finally, the length of the
shortest path seen so far is µ− pf (s)+ pf (t). The stopping criterion then becomes:

[topf − pf (s)] + [topr − pr(t)] ≥ µ − pf (s) + pf (t).

Since we fixed pf (t) = 0, this translates into

topf + topr ≥ µ + pr(t).

5.2. The alt Algorithm. The alt algorithm [19, 23] is an A∗-based method
that uses landmarks and triangle inequality to compute feasible lower bounds. We
select a small subset of vertices (a constant number) as landmarks and, for each
vertex in the graph, precompute distances to and from every landmark. Consider

113115113

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

22 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

a landmark L. If we are using distances to L, then, by the triangle inequality,
dist(v, L) − dist(w, L) ≤ dist(v, w); if we use distances from L, then dist(L, w) −
dist(L, v) ≤ dist(v, w). To get the tightest lower bound, one can take the maximum
of these bounds, over all active landmarks (i.e., those in use for the current search).
These bounds are feasible, and we use the average function to ensure consistency.
Intuitively, the best lower bounds on dist(v, w) are given by landmarks that appear
“before” v or “after” w. The version of alt algorithm that we use balances the
work of the forward search and the reverse search (see Section 2). This version had
better overall performance than other variants [21].

5.2.1. Active Landmarks. Each s-t query starts with just two active landmarks,
those that give the best lower bounds on the distance from s to t (one using distances
to the landmark, the other using distances from the landmark). Periodically, the
algorithm checks whether adding another landmark to the set of active ones would
be advantageous. We call this a checkpoint.

Of course, checkpoints are expensive, so we avoid running them too often.
We allow each search (forward and reverse) to have at most ten checkpoints. In
addition, we require that at least 8k vertices be scanned between checkpoints in
the same direction, where k is the total number landmarks available. For details,
see [23].

5.2.2. Landmark Generation. In our experiments, we use the avoid algorithm
to select landmarks. Among the landmark selection algorithms studied in [23],
avoid is the second best in terms of solution quality. It is only surpassed by max-
cover, which is essentially avoid followed by a simple local search and is about five
times slower. We have discovered a minor issue with our previous implementation
of avoid that caused it to obtain slightly worse landmarks than it should. The
fixed version of avoid provides slightly better landmarks, and is almost as good as
maxcover.

The avoid method works by adding one landmark at a time. In each iteration,
it tries to pick a landmark in a region that is still not well-covered by existing
landmarks. To do so, it first builds a complete shortest path tree Tr rooted at a
vertex r picked in a randomized fashion. More precisely, r is picked with probability
proportional to the square of its distance to the closest existing landmark (if there
is no landmark yet, r is picked uniformly at random). The algorithm then assigns
a weight to each vertex v, defined as the difference between the distance from r
to v and the lower bound on that distance given by the existing landmarks (if
there are no landmarks yet, the weight is constant). Therefore, vertices with weak
lower bounds will have larger weights. The algorithm determines the vertex p that,
among all vertices that have no landmark as a descendent, maximizes the sum of
the weights of its descendents in Tr (we call this sum the size of p). A leaf of the
subtree of Tr rooted at p is then selected as the new landmark. More precisely, we
follow a path from p to a leaf by picking in each step a child with maximum size.

Computing the lower bound on the distance from the root r to a particular
vertex takes time proportional to the number of landmarks already selected, which
makes avoid quadratic in the number k of landmarks. This is not a major issue
when only 16 landmarks are selected (as in most of our experiments), but the
algorithm does get measurably slower with 64 or more landmarks. We propose a
simple modification to the algorithm to make it linear in the number of landmarks.

114116114

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 23

When processing the shortest path tree rooted at r, we still define the weight
of v to be the difference between the distance from r to v and the current lower
bound on this distance, but only if v belongs to a set of n/k relevant vertices.
For all other vertices, we define the weight as zero. The set of relevant vertices
is picked uniformly at random (unless reaches are available, as Section 5.4 will
explain). For the range of values of k we tested (up to 64), the landmarks produced
by this method were not measurably worse than those obtained when n vertices are
considered relevant, as in [21].

As observed in [23], we create a separate file for each landmark. For each vertex
(in order), it contains the distances to and from the landmark stored contiguously.
To save space, we use a simple compression scheme that exploits the fact that, on
road networks, distances to and from the same landmark are usually very similar,
and that vertices with similar identifiers are usually close together in the graph.
Although each (uncompressed) distance could be stored as a 32-bit value, there are
long runs in which the first 16 bits in each distance are identical. These 16 bits
are represented only once, together with an 8-bit count on the number of times
it is repeated (runs with more than 255 elements are split); each distance in the
run is then represented by its 16 least significant bits. This approach, which is a
run-length encoding scheme,3 leads to compression ratios that are close to 50%. We
observe that compression is used only in disk. Once in main memory, landmark
distances are kept uncompressed as 32-bit integers. We still keep a separate array
for each landmark, with “from” and “to” distances stored contiguously.

5.3. Combining Reaches and Landmarks. Reach-based pruning can be
easily combined with A∗ search: the basic idea is to just run A∗ search and prune
vertices (or arcs) based on reach conditions. Specifically, when A∗ search is about
to scan a vertex v, we extract from the key of v the length of the shortest path
from the source to v. Furthermore, πf (v) is a lower bound on the distance from v
to the destination. If the reach of v is smaller than both df (v) and πf (v), we prune
the search at v.

Note that we must actually use landmark-based lower bounds for pruning.
Implicit bounds cannot be used with A∗ search because the search grows balls with
respect to reduced costs, which have little correlation with the original lengths.

The reason why reach-based pruning works is that, although A∗ search uses
transformed lengths, the shortest paths remain invariant. This applies to bidirec-
tional search as well. We use df (v) and πf (v) to prune in the forward direction,
and dr(v) and πr(v) to prune in the reverse direction. Pruning by reach does not
affect the stopping condition of the algorithm: the usual condition for A∗ search
can still be applied. We call our implementation of the bidirectional A∗ search
algorithm with landmarks and reach-based pruning real. As we did for alt, our
implementation of real balances the work of the forward and reverse searches.

Note that real has two preprocessing algorithms: the one used by re (which
computes shortcuts and reaches) and the one used by alt (which chooses landmarks
and computes distances between them and all vertices). These two procedures can
be independent from each other: since shortcuts do not change distances, landmarks
can be generated regardless of what shortcuts are added. Furthermore, queries are
still independent of the preprocessing algorithm: they only take as input the graph

3See e.g., http://www.data-compression.info/Algorithms/RLE/.

115117115

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

24 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

with shortcuts, the reach values, and the distances to and from landmarks. How
this data was obtained is immaterial. We will see in Section 5.4, however, that it
might be useful to take reaches into account when generating landmarks.

5.3.1. Optimizations. Our implementation of real actually uses early pruning,
as in re. When scanning arc (v, w) in the forward direction, we prune w if r(w) <
min{df (v) + ℓ(v, w), πf (w)}. (We restrict our discussion to the forward search; the
reverse one is similar.) Note that this computation requires knowledge of πf (w), a
lower bound on the distance from w to the target. Computing it requires retrieving
from memory the distances between w and all active landmarks, and computing the
triangle inequality in each case. Although this takes constant time, it is relatively
expensive in practice. Before actually computing it, we use πf (v) − ℓ(v, w) as a
lower bound on the distance from w to t; since v is the vertex being scanned, πf (v)
is readily available. If (1) r(w) < df (v) + ℓ(v, w) and (2) r(w) < πf (v) − ℓ(v, w),
we can prune w. Only if condition (2) fails and condition (1) succeeds do we need
to compute πf (w).

Also as in re, we can use arc sorting to prune some arcs implicitly. We sort
the arcs (v, w) in the adjacency list of v by r(w)+ ℓ(v, w) (in non-increasing order).
Suppose that, while scanning v, we find an arc (v, w) such that (1′) r(w)+ℓ(v, w) <
df (v) and (2′) r(w) + ℓ(v, w) < πf (v). This implies that conditions (1) and (2)
above are true for w and therefore (v, w)—and all arcs that succeed it—can be
pruned. Note that conditions (2) and (2′) are equivalent, but condition (1) may
succeed while (1′) fails. In this case we still prune the arc, but keep traversing the
adjacency list.

We also try to prune a vertex after we remove it from the heap (and before
we scan it). This is still useful because the lower bound on the distance to the
target may have improved since the vertex was inserted into the heap, due to the
activation of new landmarks.

5.4. Reach-Aware Landmarks. Although landmark generation and reach
computation can be completely independent, we can use landmarks more efficiently
when reaches are available. We can reduce the memory requirements of the algo-
rithm by storing landmark distances only for high-reach vertices. As we shall see,
however, this results in some degradation of query performance. If we add more
landmarks, we get a wide range of trade-offs between query performance and mem-
ory requirement. We call the resulting method, a variant of real, the partial
landmark algorithm.

Queries for the partial landmark algorithm work as follows. Let R be the reach
threshold: we store landmark distances for all vertices with high reach, i.e., with
reach at least R. We start a query by running the bidirectional Dijkstra algorithm
with reach pruning (but without A∗ search), until either the algorithm terminates
or both balls searched have radius R. In the latter case, we know that, from this
point on, we need to examine only vertices with reach R or more. We switch to A∗

search (still with pruning by reach) by removing all labeled vertices from the heaps
and reinserting them using new keys that incorporate lower bound values.

Recall that, for every vertex v it visits, A∗ search may need lower bounds on the
distance from v to t (in the forward search) or from s to v (in the reverse search).
They are computed with the triangle inequality, which requires distances between
these vertices (v, s, and t) and the landmarks. These are guaranteed to be available
for v, which has high reach, but not for s or t, which are arbitrary vertices. We

116118116

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 25

therefore need to specify how to compute a lower bound on the distance between a
low-reach vertex (s or t) and a high-reach one (v).

Suppose s has low reach (t is treated symmetrically). Let s′, the proxy for
s, be the high-reach vertex that is closest to s.4 One can compute proxies during
preprocessing and store them, or compute them during the initialization phase of
the query algorithm; we choose the latter approach. Two executions of a multiple-
source version of Dijkstra’s algorithm (one in the forward graph and one in the
reverse graph) suffice to compute both the proxies and the appropriate distances.

As already mentioned, when processing a high-reach vertex v, the A∗ search
needs lower bounds on dist(s, v) and dist(v, t). Given a landmark L, we can obtain
these bounds using either distances from L or distances to L. With the help of
proxies, these bounds can be easily computed.

A lower bound on dist(s, v) using distances to L is given by

(5.1) dist(s, v) ≥ dist(s′, L) − dist(v, L) − dist(s′, s).

Using distances from L, the lower bound can be computed as follows:

(5.2) dist(s, v) ≥ dist(L, v) − dist(L, s′) − dist(s′, s).

Lower bounds on distances from v to the target t can be computed similarly. Using
distances from landmarks, the following relation applies:

(5.3) dist(v, t) ≥ dist(L, t′) − dist(L, v) − dist(t, t′).

With distances to landmarks, the appropriate expression is

(5.4) dist(v, t) ≥ dist(v, L) − dist(t′, L) − dist(t, t′).

Note that distances between L and v, s′ and t′ are computed during the pre-
processing stage, since all three vertices have high reach. As already mentioned,
the distances between every vertex and its proxy (or, more precisely, proxies) are
computed in the initialization phase of the query algorithm.

The quality of the lower bounds obtained by the partial landmark algorithm
depends not only on the number of landmarks available, but also on the value of
R. In general, the higher the reach threshold, the farther the proxy s′ will be from
s (and t′ from t), thus decreasing the accuracy of the lower bounds. If all landmark
distances are available, R will be zero, and the algorithm will behave exactly as
the standard real method. By decreasing the number of distances per landmark
(representing distances only to higher-reach vertices), R will increase; a trade-off
between memory usage and query efficiency is thus established.

It turns out, however, that we can often improve both memory usage and query
times. Starting from the base algorithm, we can increase the number of landmarks
while decreasing the number of distances per landmark so that the total memory
usage is lower. On large road networks, we can find parameter values for which
both memory use and query times decrease.

We note that, in our experiments, we do not pick the reach threshold R ex-
plicitly. Instead, we actually pick how many vertex distances we want to store per
landmark; the value of R will be fully determined by this choice.

4Each vertex s actually has two proxies: the high-reach vertex s′ that minimizes dist(s′, s)
and the high-reach vertex s′′ that minimizes dist(s, s′′). We will assume they are the same to
simplify the discussion, but they need not be.

117119117

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

26 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

5.4.1. Landmark Generation. As observed in Section 5.2.2, we use a fast ver-
sion of the avoid method to generate landmarks. We also use it to generate partial
landmarks, with a small modification. Instead of picking the set of relevant vertices
uniformly at random, we pick the first n/k vertices in the vertex list. Because ver-
tices are approximately sorted in decreasing order of reach (as seen in Section 3.2),
only vertices with high reach are taken into account, which greatly simplifies the
implementation when only partial landmark data is stored. In terms of solution
quality, these two approaches are roughly equivalent.

6. Experimental Results

We implemented our algorithms in C++ and compiled them with Microsoft
Visual C++ 2005. All tests were performed on a dual-processor, 2.4 GHz AMD
Opteron machine running Microsoft Windows Server 2003 with 16 GB of RAM, 32
KB instruction and 32 KB data level 1 cache per processor, and 2 MB of level 2
cache. Our code is single-threaded and runs on a single processor at a time (but is
not pinned to a particular processor).

Our implementation uses two kinds of priority queues. We use 4-heaps when
the number of elements in a priority queue is small, such as during queries and
when building partial trees during preprocessing. For single-source shortest path
computations on the entire graph, we use multi-level buckets [17, 22]. Multi-
level buckes are faster in general, but 4-heaps are competitive when the number of
elements is small, and have a smaller memory overhead.

One of the main goals of our experimental analysis is to measure the perfor-
mance of our algorithm on the road networks of the USA and Europe, made avail-
able for the 9th DIMACS Implementation Challenge. The experiments, reported
in Section 6.1, include both random and local queries. We also investigated how
much various ingredients of our algorithms contribute to the overall performance.
In particular, we study the preprocessing/query and the time/space trade-offs.

Section 6.2 considers how our algorithms behave on other graph classes. In
particular, we present results on grid graphs in 2 and 3 dimensions with random
arc weights. We also conducted preliminary experiments on higher-dimensional
grids and random graphs. Since our algorithm performed poorly on these graphs,
we omit the detailed results.

We ran the alt (with 16 landmarks), re and real-(i, j) algorithms, where
real-(i, j) uses i landmarks and maintains landmark data for n/j highest-reach
vertices. We call the parameter j the sparsity of the landmarks. For instance,
real-(64,16) maintains 64 landmarks, but with distances only to n/16 vertices with
high reaches; real-(16,1) uses 16 landmarks, each with distances to all vertices
in the graph. All landmarks (for alt and all variants of real) were generated
with the avoid method. On grid graphs, we also ran our own implementation
of the bidirectional version of Dijkstra’s algorithm, denoted by bd. For machine
calibration purposes, we ran the DIMACS Challenge implementation of the P2P
version of Dijkstra’s algorithm, denoted by d, on the largest road networks.

For the graphs of the USA and Europe with travel times as arc lengths, addi-
tional data from previous works was available at the time of writing. In particular,
we report the results obtained by the highway hierarchy-based algorithm of Sanders
and Schultes, as reported in [41]. Their sequential code was run on a dual-core 2.0

118120118

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 27

GHz AMD Opteron machine, which is comparable to our machine. In fact, be-
cause of a different memory architecture, d runs about 2% faster on their machine.
Their algorithm has two versions [41]: hh-mem, entirely based on highway hierar-
chies, and hh, which replaces high levels of the hierarchy by a table with distances
between all pairs of vertices in the corresponding graph.

6.1. Road Networks. The graphs representing the USA (Tiger/Line) [49]
and (Western) Europe [35] road networks belong to the 9th Implementation DI-
MACS Challenge [8] data set. The USA is symmetric and has 23 947 347 vertices
(road intersections) and 58 333 444 arcs (directed road segments); Europe is di-
rected, with 18 010 173 vertices and 42 560 279 arcs. To evaluate the performance
on smaller graphs, we tested the subgraphs of USA described in Table 1. All graphs
are strongly connected. We used two natural metrics as length functions: travel
times and travel distances. In addition, to test the robustness of our algorithm,
we considered a third metric (uniform) in which all arcs have unit length. For all
metrics, lengths were represented as 32-bit integers.

Table 1. USA road networks from the TIGER/Line collection.

name description vertices arcs lat. (N) long. (W)
USA — 23 947 347 58 333 344 — —
CTR Central USA 14 081 816 34 292 496 [25.0; 50.0] [79.0; 100.0]
W Western USA 6 262 104 15 248 146 [27.0; 50.0] [100.0; 130.0]
E Eastern USA 3 598 623 8 778 114 [24.0; 50.0] [−∞; 79.0]
LKS Great Lakes 2 758 119 6 885 658 [41.0; 50.0] [74.0; 93.0]
CAL California and Nevada 1 890 815 4 657 742 [32.5; 42.0] [114.0; 125.0]
NE Northeast USA 1 524 453 3 897 636 [39.5, 43.0] [−∞; 76.0]
NW Northwest USA 1 207 945 2 840 208 [42.0; 50.0] [116.0; 126.0]
FLA Florida 1 070 376 2 712 798 [24.0; 31.0] [79; 87.5]
COL Colorado 435 666 1 057 066 [37.0; 41.0] [102.0; 109.0]
BAY Bay Area 321 270 800 172 [37.0; 39.0] [121; 123]
NY New York City 264 346 733 846 [40.3; 41.3] [73.5; 74.5]

6.1.1. Random queries. Our first experiment consists of running our algorithms
on 1000 random queries. In each case, the source and the target are picked inde-
pendently and uniformly at random from the set of all available vertices. Table 2
presents results for the USA graph, and Table 3 shows the corresponding results
for the European road network. In each case, all three metrics (length functions)
are considered.

For each algorithm, we report the average query time (in milliseconds), the
average number of scanned vertices and, when available, the maximum number of
scanned vertices (over the queries in the set). Also shown are the total prepro-
cessing time (in minutes) and the total disk space (in megabytes) required by the
preprocessed data. For d, this is the space required to store only the graph itself;
for alt, this includes the graph and landmark data; for re, it includes the graph
with shortcuts (which has roughly two-thirds more arcs) and an array of vertex
reaches; finally, the data for real includes the graph with shortcuts, the array
of reaches, and landmark data. All files are stored in binary format, with 32-bit
lengths, distances, and vertex identifiers.

119121119

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

28 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

Table 2. Random queries on the USA graph.

pr. time disk space query
metric method (min) (MB) avg sc. max sc. time (ms)
times alt 17.6 2563 187968 2183718 295.44

re 27.9 893 2405 4813 1.77
real-(16,1) 45.5 3032 592 2668 0.80
real-(64,16) 113.9 1579 538 2534 0.86
hh 18 1686 1076 — 0.88
hh-mem 65 919 2217 — 1.60
d — 536 11808864 — 5440.49

distances alt 15.2 2417 276195 2910133 410.73
re 46.4 918 7311 13886 5.78
real-(16,1) 61.5 2923 905 5510 1.41
real-(64,16) 120.5 1575 670 3499 1.22
d — 536 11782104 — 4576.02

uniform alt 14.0 1992 240801 3922923 312.97
re 28.8 865 3496 6830 2.58
real-(16,1) 42.7 2321 790 2968 1.09
real-(64,16) 96.6 1315 573 3067 0.95
d — 536 11724870 — 3636.92

Table 3. Random queries on Europe.

pr. time disk space query
metric method (min) (MB) avg sc. max sc. time (ms)
times alt 12.5 1597 82348 993015 120.09

re 45.1 648 4371 8486 3.06
real-(16,1) 57.7 1869 714 3387 0.89
real-(64,16) 102.6 1037 610 2998 0.91
hh 15 1570 884 — 0.8
hh-mem 55 692 1976 — 1.4
d — 393 8984289 — 4365.81

distances alt 9.6 1622 240750 3306755 321.11
re 31.5 681 7259 13059 5.20
real-(16,1) 41.1 1938 855 4867 1.20
real-(64,16) 76.0 1084 562 2596 0.91
d — 393 8991955 — 2934.24

uniform alt 10.6 1488 140291 2137518 188.84
re 37.5 625 4109 10574 2.84
real-(16,1) 48.1 1720 1048 5888 1.28
real-(64,16) 88.7 964 644 3631 0.94
d — 393 9054599 — 3000.50

Note that for alt, re and real, query performance is worst when lengths are
travel distances, but not drastically so. This can be explained by the fact that the
natural hierarchy of road networks, which is exploited by both alt and re, is more
pronounced with travel times (since highways usually have higher speed limits).
With travel distances, a local road running alongside a major freeway may seem
more attractive. Even with unit lengths the hierarchy is more pronounced than with

120122120

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 29

travel distances, as the number of vertices scanned by re shows. Preprocessing,
however, can be slower—probably because the partial trees become too dense with
our default choice of parameters. We made no attempt to tune the algorithm for
unit lengths.

Although the two graphs have similar sizes, the algorithms behave differently
when lengths are travel times. alt is relatively more efficient on Europe than on
USA, while re is faster on the USA graph. By combining alt and re, real is
more robust than either method, and has similar performance on both graphs. In
fact, even if we consider all six combinations of graphs and metrics, real-(64,16)
was remarkably consistent: the average number of scans ranged from 538 to 670.

For a fixed graph, real-(16,1) and real-(64,16) have almost identical query
performance, the latter being slightly better on most metrics. Given that real-
(64,16) requires about half as much disk space, it has the edge for these queries.
However, preprocessing for real-(64,16) takes roughly twice as long. As already
observed, re is less robust than real: the query times of re on USA, for exam-
ple, vary from 1.77 ms for travel times to 5.78 ms for travel distances, while the
corresponding numbers for real-(64,16) are 0.86 and 1.22 ms.

We can compare re and real to hh-mem and hh for the travel-time metric, for
which the data is available. re performs worse than hh-mem, but the difference is
small, particularly on the USA graph. For queries, the performance of real-(64,16)
is similar to that of hh, and real-(64,16) uses a little less space. Preprocessing for
hh, however, is faster, especially on Europe.

6.1.2. Graph size dependence. To test how the performance of our algorithms
depends on graph size, we ran 1000 random queries on subgraphs of the USA
road network. The results are reported in Tables 4 and 5. Although query times
tend to increase as the graph grows, they are not strictly monotone: the graph
structure affects the performance of the algorithm. It is clear, however, that reach-
based algorithms have better asymptotic performance than alt. As the graph size
increases by two orders of magnitude, so does the time for alt queries. Running
times of re and real change by a factor of six or less for travel times, and more for
travel distances. The speed advantage of real-(64,16) relative to real-(16,1) holds
only for large graphs: for smaller ones, the loss of precision due to proxies (defined
in Section 5.4) is relatively higher, since the average shortest path is shorter.

Regarding preprocessing time, with a fixed number of landmarks alt is roughly
linear in the graph size. For 16 landmarks, the preprocessing of alt is faster than
the preprocessing of re, and the ratio of the two does not change much as the
graph size increases. With 64 landmarks, the times for landmark selection and
reach computation are roughly the same: preprocessing takes about twice as long
for real-(64,16) as for re.

6.1.3. Local queries. Up to this point, we have reported data only on random
queries. A more realistic assumption for road networks is that most queries will
be more local. To define the notion of local queries formally, we use the concept
of Dijkstra rank. Suppose we run Dijkstra’s algorithm from s, and let v be the
k-th vertex it scans. Then the Dijkstra rank of v with respect to s is ⌊log2 k⌋. To
generate a local query with rank r, we pick s uniformly at random from V , and pick
t uniformly at random from positions [2r, 2r+1) in the scanning order. Note that
our definition of Dijkstra rank differs slightly from the one proposed by Sanders and
Schultes [40], but it has a similar purpose. For each of the large graphs (Europe and

121123121

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

30 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

Table 4. Data for subgraphs of USA with travel times.

prep. time disk space query
graph method (min) (MB) avg sc. max sc. time (ms)
NY alt 0.1 25 2735 23739 1.73

re 0.6 11 1104 2634 0.56
real-(16,1) 0.7 30 226 1601 0.22
real-(64,16) 1.1 17 383 1099 0.38

BAY alt 0.1 31 3251 31953 2.00
re 0.3 12 770 2114 0.42
real-(16,1) 0.4 37 183 921 0.20
real-(64,16) 0.9 20 238 939 0.25

COL alt 0.2 45 6533 70857 4.80
re 0.4 16 756 2503 0.39
real-(16,1) 0.5 53 172 780 0.19
real-(64,16) 1.2 28 240 1228 0.25

FLA alt 0.5 106 8195 126608 5.77
re 0.9 39 814 1751 0.47
real-(16,1) 1.4 125 197 1067 0.19
real-(64,16) 3.1 68 210 1131 0.22

NW alt 0.6 125 13106 166870 9.91
re 1.0 43 1091 3551 0.66
real-(16,1) 1.6 149 211 1115 0.27
real-(64,16) 3.8 78 230 1379 0.28

NE alt 0.7 152 12161 148647 10.91
re 1.8 58 1474 3466 0.86
real-(16,1) 2.6 182 298 1527 0.33
real-(64,16) 5.5 98 324 1234 0.42

CAL alt 1.0 198 22418 227812 23.28
re 1.9 70 1220 3700 0.73
real-(16,1) 2.9 234 296 1581 0.36
real-(64,16) 6.4 123 362 2123 0.44

LKS alt 1.5 292 21616 218084 22.78
re 3.2 105 1687 4015 1.12
real-(16,1) 4.8 347 331 1669 0.39
real-(64,16) 10.0 183 368 1800 0.45

E alt 2.1 375 26712 516585 29.62
re 3.9 132 1562 3410 1.03
real-(16,1) 5.9 444 322 1575 0.42
real-(64,16) 13.5 232 322 1749 0.41

W alt 4.1 683 75494 888950 97.61
re 6.4 233 1675 4223 1.03
real-(16,1) 10.4 802 405 2028 0.56
real-(64,16) 24.8 414 400 1782 0.58

CTR alt 13.4 1613 119303 1335378 234.89
re 25.3 522 2277 5237 2.14
real-(16,1) 38.7 1880 545 2559 1.00
real-(64,16) 86.9 937 453 2227 0.97

USA alt 17.6 2563 187968 2183718 295.44
re 27.9 893 2405 4813 1.77
real-(16,1) 45.5 3032 592 2668 0.80
real-(64,16) 113.9 1579 538 2534 0.86

122124122

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 31

Table 5. Data for subgraphs of USA with travel distances.

prep. time disk space query
graph method (min) (MB) avg sc. max sc. time (ms)
NY alt 0.1 24 3083 35210 2.08

re 0.7 11 1622 3346 0.92
real-(16,1) 0.8 29 222 1321 0.25
real-(64,16) 1.2 17 473 1498 0.44

BAY alt 0.1 29 4875 80310 3.47
re 0.3 12 968 2252 0.48
real-(16,1) 0.5 35 192 965 0.20
real-(64,16) 0.9 20 264 1268 0.25

COL alt 0.2 42 5774 78677 3.52
re 0.4 16 1087 3405 0.58
real-(16,1) 0.6 51 178 1181 0.19
real-(64,16) 1.2 28 267 1446 0.27

FLA alt 0.5 101 12394 153621 9.95
re 1.1 39 1196 2776 0.62
real-(16,1) 1.6 121 239 1162 0.28
real-(64,16) 3.2 66 246 1128 0.31

NW alt 0.5 117 13994 131191 10.89
re 1.1 43 1391 4015 0.83
real-(16,1) 1.6 142 219 1143 0.28
real-(64,16) 3.6 76 247 1439 0.31

NE alt 0.7 144 15533 214572 12.88
re 2.4 61 2873 6170 1.72
real-(16,1) 3.1 176 327 2099 0.45
real-(64,16) 5.7 99 395 2095 0.52

CAL alt 0.9 186 27524 315506 26.33
re 2.3 72 1881 5156 1.11
real-(16,1) 3.2 224 331 1794 0.42
real-(64,16) 6.2 122 378 1799 0.47

LKS alt 1.4 276 41832 622476 45.78
re 5.2 108 3959 8475 2.91
real-(16,1) 6.7 335 470 2542 0.67
real-(64,16) 11.4 183 431 2926 0.66

E alt 1.9 354 43539 674704 52.80
re 5.2 136 3486 7078 2.58
real-(16,1) 7.1 427 401 2066 0.62
real-(64,16) 13.9 231 382 1957 0.58

W alt 3.4 642 75682 669930 86.42
re 7.9 239 2849 6596 2.02
real-(16,1) 11.3 771 456 3501 0.66
real-(64,16) 24.1 413 415 2575 0.62

CTR alt 11.9 1540 154980 1859858 276.11
re 42.8 538 6827 12937 6.44
real-(16,1) 54.7 1845 756 4523 1.56
real-(64,16) 97.8 948 563 3054 1.44

USA alt 15.2 2417 276195 2910133 410.73
re 46.4 918 7311 13886 5.78
real-(16,1) 61.5 2923 905 5510 1.41
real-(64,16) 120.5 1575 670 3499 1.22

123125123

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

32 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

USA, with both travel times and travel distances as length functions), we generated
1000 random queries for each Dijkstra rank between 8 and 24. Figures 3 to 6 report
the average running times and average number of nodes scanned for each graph and
each length function.

Comparing the two plots in each figure to one another, we observe that the
curves showing running times and the curves showing scan counts are very similar,
but shifted by a constant that is related to the time per vertex scan of each method.

As random queries tend to involve pairs of vertices that are very far apart, our
previous discussion applies to local queries with high Dijkstra rank. In particular,
in this context alt is the slowest of the four algorithms, and the real variants are
the fastest (with very similar performance).

Now consider very local queries, with small Dijkstra rank. real-(16,1) scans
the fewest vertices, but due to the higher overhead of accessing landmark informa-
tion its running time can be slightly worse than that of re. real-(64,16) mostly
visits low-reach vertices and thus fails to take advantage of the landmark data. It
scans about the same number of vertices as re, but is slower due to the higher
overhead. alt clearly has the worst asymptotic performance as a function of the
Dijkstra rank, but for small ranks it scans only slightly more vertices than re.
As the rank grows, alt becomes worse than the other methods, and re becomes
consistently worse than real-(16,1). real-(64,16) improves, and catches up with
real-(16,1) for large ranks.

In terms of query times and scan counts, real-(16,1) and real-(64,16) are the
best options. real-(64,16) is somewhat worse for very local queries, but slightly
better for higher Dijkstra ranks. Its main advantage, however, is its lower space
requirement.

6.1.4. Reach-aware landmarks. We now study how landmark sparsity influ-
ences query times and space usage. For 16 and 64 landmarks, we vary the fraction
of vertices for which landmark data is maintained. Tables 6 and 7 show that, as the
sparsity increases, we get a substantial reduction in the memory overhead associated
with landmarks. The number of vertex scans increases steadily (but slowly).

Running times increase substantially when the sparsity increases from 1 to 2,
despite the fact that the number of scans barely changes. This is because sparsity 1
corresponds to the standard real algorithm: all distances to and from landmarks
are available, and therefore the algorithm does not need to deal with proxies, which
slow down the computation. With sparsity 2, proxies must be taken into account.
Although the lower bounds have similar quality (as the number of scans shows),
computing them is more expensive.

Curiously, when we further increase the sparsity the effect on the running time is
minor, despite the increase in the number of vertex scans. With increased sparsity,
a relatively greater portion of the vertices will be scanned at the beginning of the
search, before the algorithm starts using A∗ search. The algorithm will behave
essentially like re at the beginning, and we have seen that re has significantly
lower overhead per scan than real.

One can win in all measures of query performance. As already mentioned,
compared to real-(16,1), which is not landmark-aware, real-(64,16) uses less
space and often runs faster. Note that our current preprocessing algorithm runs
landmark generation on the full graph; for the landmark-aware case, one could
eliminate low-reach vertices to improve performance.

124126124

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 33

 1024

 256

 64

 16

 4

 1

1/4

1/16
8 10 12 14 16 18 20 22 24

qu
er

y
tim

e
(m

s)

Dijkstra rank

ALT
RE

REAL-(16,1)
REAL-(64,16)

 524288

 65536

 8192

 1024

 128

 16
8 10 12 14 16 18 20 22 24

no
de

s
sc

an
ne

d

Dijkstra rank

ALT
RE

REAL-(16,1)
REAL-(64,16)

Figure 3. Local queries on Europe with travel times: running
times and scan counts.

125127125

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

34 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

 1024

 256

 64

 16

 4

 1

1/4

1/16
8 10 12 14 16 18 20 22 24

qu
er

y
tim

e
(m

s)

Dijkstra rank

ALT
RE

REAL-(16,1)
REAL-(64,16)

 524288

 65536

 8192

 1024

 128

 16
8 10 12 14 16 18 20 22 24

no
de

s
sc

an
ne

d

Dijkstra rank

ALT
RE

REAL-(16,1)
REAL-(64,16)

Figure 4. Local queries on Europe with travel distances: run-
ning times and scan counts.

126128126

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 35

 1024

 256

 64

 16

 4

 1

1/4

1/16
8 10 12 14 16 18 20 22 24

qu
er

y
tim

e
(m

s)

Dijkstra rank

ALT
RE

REAL-(16,1)
REAL-(64,16)

 524288

 65536

 8192

 1024

 128

 16
8 10 12 14 16 18 20 22 24

no
de

s
sc

an
ne

d

Dijkstra rank

ALT
RE

REAL-(16,1)
REAL-(64,16)

Figure 5. Local queries on USA with travel times: running
times and scan counts.

127129127

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

36 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

 1024

 256

 64

 16

 4

 1

1/4

1/16
8 10 12 14 16 18 20 22 24

qu
er

y
tim

e
(m

s)

Dijkstra rank

ALT
RE

REAL-(16,1)
REAL-(64,16)

 524288

 65536

 8192

 1024

 128

 16
8 10 12 14 16 18 20 22 24

no
de

s
sc

an
ne

d

Dijkstra rank

ALT
RE

REAL-(16,1)
REAL-(64,16)

Figure 6. Local queries on USA with travel distances: running
times and scan counts.

128130128

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 37

Table 6. Data for real on USA for various landmark/sparsity combinations.

prep. disk query
time space avg max time

metric land. spar. (min) (MB) scans scans (ms)
distances 16 1 61.5 2923 905 5510 1.45

2 61.5 1960 915 5512 1.83
4 61.5 1472 921 5696 1.84
8 61.5 1216 933 5684 1.81

16 61.5 1082 970 5578 1.80
32 61.5 1014 1086 5443 1.81
64 61.5 978 1292 5356 1.89

64 4 120.5 3134 610 3526 1.20
8 120.5 2109 624 3523 1.20

16 120.5 1575 670 3499 1.16
32 120.5 1300 810 3459 1.27
64 120.5 1158 1049 3861 1.39

times 16 1 45.5 3032 592 2668 0.81
2 45.5 2001 600 2741 1.02
4 45.5 1477 607 2660 0.97
8 45.5 1206 618 2631 0.97

16 45.5 1065 645 2696 1.00
32 45.5 991 727 2843 1.03
64 45.5 954 795 2968 1.05

64 4 113.9 3229 497 2528 0.86
8 113.9 2145 507 2536 0.81

16 113.9 1579 538 2534 0.83
32 113.9 1287 636 2495 0.88
64 113.9 1137 713 2542 0.91

On a final note, observe that the number of landmark distances that must be
stored depends on the ratio between the number of landmarks and the sparsity.
In particular, when these ratios are the same, the number of distances stored will
also be the same; this is the case of real-(16,8) and real-(64,32), for example.
According to the tables, however, real-(64,32) actually requires slightly more space
to represent the information. To understand why, recall (from Section 5.2.2) that
landmark files are compressed. The compression ratio is better when vertices with
similar identifiers are close to each other in the graph, which is generally true in the
original graph. When vertices are partially reordered by reach, however, this is no
longer true, especially for very high reaches (i.e., very low vertex identifiers): the
compression ratio is much worse in the beginning of the file (high-reach vertices)
than towards the end (low-reach vertices). real-(16,8) stores 16 files, each with
n/8 pairs of distances (to and from the landmark); real-(64,32), on the other hand,
must store 64 files, each with only n/32 pairs of distances. The average reach in
the latter case is much higher, which explains the worse compression ratio.

6.1.5. Shortcut generation. We now examine how the performance of our algo-
rithm is affected by the choice of shortcuts. Recall that we only allow a vertex to be
bypassed if (among other criteria) the ratio of the number of new shortcuts created
to the number of arcs eliminated it at most some constant c. In our algorithm, we
set c to 0.5 in the first iteration, 1.0 in the second, and 1.5 for the remaining ones.

129131129

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

38 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

Table 7. Data for real on Europe for various landmark/sparsity combinations.

prep. disk query
time space avg max time

metric land. spar. (min) (MB) scans scans (ms)
distances 16 1 41.1 1938 855 4867 1.20

2 41.1 1326 865 4865 1.55
4 41.1 1019 872 4633 1.52
8 41.1 862 884 4659 1.44

16 41.1 782 909 4779 1.47
32 41.1 741 1007 4774 1.55
64 41.1 720 1353 4636 1.67

64 4 76.0 2026 515 2748 0.89
8 76.0 1402 527 2711 0.89

16 76.0 1084 562 2596 0.91
32 76.0 920 692 2858 1.03
64 76.0 837 1095 3214 1.22

times 16 1 57.7 1869 714 3387 0.84
2 57.7 1270 731 3386 1.12
4 57.7 973 745 3421 1.16
8 57.7 822 757 3440 1.12

16 57.7 745 810 3467 1.11
32 57.7 706 1038 3468 1.22
64 57.7 686 1400 4754 1.47

64 4 102.6 1944 534 3114 0.84
8 102.6 1343 547 3107 0.84

16 102.6 1037 610 2998 0.88
32 102.6 880 876 3097 1.06
64 102.6 800 1289 4754 1.31

We now consider what happens when the same (fixed) value of c is used in every
iteration. We considered values of c from 0.5 to 2.5 and tested our four main graphs
(USA and Europe with travel times and travel distances). For each case, Table 8
shows the preprocessing time, the number of shortcuts added (as a percentage of
the original number of arcs), and the corresponding query results (aggregated over
1000 random pairs of vertices).

As anticipated, larger values of c usually result in more shortcuts being added,
which speeds up both preprocessing (because the graph shrinks faster) and queries
(because shortcuts reduce the reaches of eliminated arcs). The differences are most
noticeable when c increases from 0.5 to 1.0; the results for c = 2.0 and c = 2.5,
in contrast, are almost indistinguishable, and very close to those obtained with
c = 1.5.

Recall that our original adaptive scheme uses c = 0.5 for the first iteration, 1.0
for the second, and 1.5 for the remaining ones. Comparing the results in Tables 2
and 3 with those in Table 8, we note that queries in the adaptive setting are
very similar with those using c = 1.5 throughout the algorithm, and preprocessing
is slightly slower. The main advantage of the adaptive scheme is that it adds
fewer shortcuts. For USA, it adds 65.4% with travel times and 72.9% with travel
distances; for Europe, the corresponding numbers are 62.2% and 74.9%. Note that

130132130

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 39

Table 8. Performance of re for different shortcutting schemes.
Only vertices with expansion at most c can be bypassed in each
iteration.

pr. time shortcuts query
graph metric c (min) added (%) avg sc. max sc. time (ms)
USA times 0.5 43.6 43.4 3893 7712 2.53

1.0 29.5 64.7 2562 5189 1.84
1.5 27.2 74.9 2427 4863 1.75
2.0 26.8 77.9 2377 4837 1.77
2.5 27.1 77.9 2375 4846 1.75

distances 0.5 201.2 47.1 22201 42304 15.14
1.0 71.1 72.9 10564 21812 7.73
1.5 44.1 86.0 7265 13781 5.75
2.0 39.4 90.2 6486 12252 5.33
2.5 39.5 90.2 6492 12255 5.42

Europe times 0.5 155.7 35.0 10725 22437 6.00
1.0 53.2 60.3 4924 9686 3.19
1.5 44.8 68.6 4374 8484 3.05
2.0 43.0 71.2 4253 8323 3.03
2.5 43.1 71.3 4250 8323 3.03

distances 0.5 256.5 41.5 31872 58167 18.77
1.0 44.6 72.5 9922 18247 6.84
1.5 30.8 82.8 7218 12983 5.26
2.0 28.1 86.4 6521 11748 4.91
2.5 27.6 86.5 6499 11682 4.94

these are close to the results obtained with c = 1.0 (fixed), but with better query
performance and preprocessing time.

6.1.6. Exact reaches and the refinement step. Recall that the refinement step of
the preprocessing algorithm recomputes δ highest reaches with an exact algorithm.
In the previous experiments, we set δ = 2⌈

√
n⌉. For the USA graph, in particular,

we set δ to 9788. Table 9 shows the trade-off between preprocessing and query
times as δ varies for the USA graph (with both travel times and travel distances
as length functions). We tested δ values ranging from 0 to 10⌈

√
n⌉; in each case,

100 000 random queries were run.
The table shows that increasing δ does improve queries, but significantly slows

down the preprocessing routine. Using δ = 10⌈
√

n⌉, queries are up to 20% faster
than when no refinement step is used, but preprocessing is more than twice as slow.
Recomputing all reaches would be ideal to speed up queries, but preprocessing
would be prohibitively expensive. Even on Bay Area, a subgraph of USA with
only 321 270 vertices, exact reach computation takes almost 2.5 hours with our
new exact algorithm (the standard one takes more than 10 hours). But queries do
become 40% faster with exact reaches. How much time, if any, to spend in the
refinement phase of the preprocessing algorithm depends on the requirements of
the application. We chose δ = 2⌈

√
n⌉ for most of our experiments because its effect

on the preprocessing time is negligible.
6.1.7. Retrieving the shortest path. The query times reported so far for re and

real consider only the task of finding the shortest path in the graph with shortcuts.
Although this path has the same length as the corresponding path in the original

131133131

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

40 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

Table 9. Performance of re on the USA graph as a function of
δ (the number of vertices whose reaches are recomputed).

pr. time query
metric δ (min) avg sc. max sc. time (ms)
times 0 25.1 2505 6176 1.84

4894 26.3 2480 6171 1.83
9788 27.7 2376 6048 1.77

14682 29.7 2337 6000 1.75
19576 32.5 2318 5978 1.72
24470 36.0 2305 5952 1.70
29364 39.8 2291 5941 1.71
34258 44.0 2274 5911 1.68
39152 49.4 2256 5880 1.70
44046 55.2 2231 5847 1.66
48940 60.3 2189 5767 1.63

distances 0 42.7 7394 15549 5.86
4894 44.0 7391 15549 5.85
9788 46.3 7260 15477 5.73

14682 49.5 7213 15456 5.69
19576 53.0 7166 15404 5.69
24470 58.9 7087 15342 5.63
29364 65.8 6945 15166 5.51
34258 71.1 6638 14613 5.27
39152 78.6 6501 14358 5.14
44046 87.5 6422 14175 5.07
48940 97.9 6376 14087 5.04

graph, it has much fewer arcs. On USA with travel times, for example, the shortest
path between a random pair of vertices has more than 4500 vertices in the original
graph, but fewer than 30 in the graph with shortcuts. With travel distances, these
values increase to about 5000 and 43, respectively.

Our algorithm can retrieve the original path from the path with shortcuts in
time proportional to the number of arcs on the original path. For this, it uses an
arc map, which maps each shortcut arc to the two arcs it replaces. The arc map is
built during the preprocessing step and has roughly the same size as the graph with
shortcuts, but it is not included in the “disk space” column of our tables, since not
all applications require it.

Since paths in the original graph have many more arcs than the paths found
by re or real, retrieving the original path can be relatively costly. To measure
this, we reran the re algorithm. After each query, we dumped the list of arc
identifiers to an array, and at the same time computed the sum of the costs of
these arcs. Even though we already know what the sum will be, this procedure
is a good approximation of what an actual application might do. Retrieving the
original list of arcs on the USA with travel times takes roughly one millisecond,
which is comparable to the time real takes to actually determine the shortest
path distance with travel times. With travel distances, real is comparatively
slower, but retrieving the original path still takes about one millisecond.

On the Europe graph, the overhead of retrieving the shortest path is somewhat
smaller, mainly because there are fewer arcs in the original paths: less than 1400

132134132

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 41

with travel times, and less than 3400 with travel distances. The paths with shortcuts
have roughly 25 and 36 arcs, respectively. Retrieving the shortest paths takes 0.6
milliseconds with travel distances, and less than 0.2 milliseconds with travel times.

6.2. Grid Graphs. Computing driving directions was the main motivation
for our work, and the experiments in the previous section show that we can solve
this problem efficiently. In this section, we verify whether our algorithm is effective
on other classes of graphs. It does run correctly on any input graph, since it does
not use any property that is specific to road networks (such as being almost planar
or having a known planar embedding). Its efficiency, however, may vary.

We tested our algorithm on grid graphs with arc lengths picked uniformly at
random. Unlike road networks, these graphs do not have an obvious highway hier-
archy. We used square 2-dimensional and cube-shaped 3-dimensional grids in our
experiments. The 2-dimensional grids were generated using the spgrid generator,
available at the 9th DIMACS Implementation Challenge download page. The 3-
dimensional grids were generated by our own generator. Both families are directed
(not symmetric), with a vertex connected to its neighbors in the grid by arcs of
length chosen uniformly at random from the range [1, n], where n is the number
of vertices. We generated five grids of each size, and report the average results
obtained; the only exception is the maximum number of vertices scanned, which is
taken over all five instances.

Table 10. Data for 2-dimensional grids.

pr. time disk space query
vertices method (min) (MB) avg sc. max sc. time (ms)

65536 alt 0.04 11.5 851 6563 1.19
re 1.36 3.4 2192 3666 1.59
real-(16,1) 1.40 12.7 222 1013 0.34
real-(64,16) 1.57 5.9 1987 3135 1.77
bd — 2.2 21358 51819 16.69
d — 2.2 33752 — 14.83

131044 alt 0.10 23.8 1404 11535 2.56
re 3.08 6.8 3058 5072 2.67
real-(16,1) 3.17 26.2 288 1632 0.52
real-(64,16) 3.49 12.1 2359 3457 2.59
bd — 4.5 41682 103770 40.48
d — 4.5 66865 — 30.72

262144 alt 0.21 48.3 2439 27936 4.36
re 6.82 13.8 4466 7210 4.09
real-(16,1) 7.03 53.1 366 1969 0.67
real-(64,16) 7.67 24.5 2666 3398 3.36
bd — 9.0 85587 205668 78.80
d — 9.0 134492 — 63.58

524176 alt 0.26 96.6 6057 65664 6.28
re 7.77 27.7 6458 10049 4.75
real-(16,1) 8.03 106.3 558 3189 0.89
real-(64,16) 9.14 49.2 2823 3711 2.67
bd — 18.0 174150 416925 160.14
d — 18.0 275589 — 112.80

133135133

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

42 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

Table 10 shows computational results for 2-dimensional grids. The table in-
cludes results for alt, re, two versions of real, d (the reference implementation
of Dijkstra’s algorithm made available by the 9th DIMACS Implementation Chal-
lenge) and bd (our own implementation of the bidirectional version of Dijkstra’s
algorithm). Note that bd scans fewer vertices than d, but has higher overhead
per scan, due to the fact that our implementation of bd is compatible with our
more elaborate algorithms, whereas d is more restricted. We did not attempt to
tune the algorithms for these graphs, except by setting the parameter c (defined in
Section 4.3) to 1.0 for all iterations of the reach computation algorithm (the use
of increasing values of c, starting at 0.5, is tuned for road networks). It is possible
that additional tuning may help, especially if it takes into account the structure of
these graphs.

Compared to bd, both re and real are significantly faster. Queries and pre-
processing times, however, are clearly not as good as those for road networks of
similar size. But the fact that there is an improvement at all is noteworthy, given
the absense of a clear hierarchy on grids with random edge weights.

For the graph sizes we consider, re and alt have comparable query times,
but re has better asymptotic performance. Preprocessing, however, is much more
expensive for re. real-(16,1) benefits from the performance improvements of both
re and alt and therefore has much better query times (although its preprocessing
times are also high, due to the reach computation).

Unlike on large road networks, real-(64,16) queries pay a significant perfor-
mance penalty compared to real-(16,1). This is probably because the graphs are
relatively small and well-structured, which makes increasing the number of land-
marks not as advantageous as for large road networks. The fact that the relative
performance gap between the two algorithms narrows as the graph size increases
supports this conjecture. For the smallest grid in our test, real-(64,16) is more
than five times slower than real-(16,1) and even slower than re. For the largest
grid, however, it is faster than re and only about three times as slow as real-(16,1).
real-(64,16) uses significantly less space than real-(16,1), however.

The experiments on 2-dimensional grids show that reaches help even when a
graph does not have an obvious highway hierarchy, and that the applicability of
real is not restricted to road networks. On the largest grid, it is over seven times
faster than alt, and two orders of magnitude faster than the bidirectional Dijkstra
algorithm.

Next we discuss the results of running our algorithms on 3-dimensional grids,
shown in Table 11. Since these graphs have higher average degree, we used c = 2.0
when generating shortcuts. The table shows that both reach-based and landmark-
based algorithms are less effective than on 2-dimensional grids. alt queries are
only modestly slower, however, and alt preprocessing time is not affected much.
In contrast, re preprocessing becomes asymptotically slower—the time roughly
triples when the graph size doubles. With this rate of growth, it would take about
two months to preprocess a grid comparable in size to the European road network.

Consider queries of re and alt. The average number of scans for re is about
seven times greater than for alt. The running time is about five times greater,
except for the largest problem, where it is greater by a factor of slightly over three.
The average number of scans suggests that real-(16,1) has a small asymptotic

134136134

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 43

Table 11. Data for 3-dimensional grids.

pr. time disk space query
vertices method (min) (MB) avg sc. max sc. time (ms)

32768 alt 0.02 4.5 472 3968 0.52
re 4.11 2.5 3141 7017 2.67
real-(16,1) 4.13 5.5 349 1866 0.62
real-(64,16) 4.20 3.4 3753 7729 3.42
bd — 1.6 5840 18588 4.10
d — 1.6 16747 — 6.90

64000 alt 0.04 10.1 707 7560 0.91
re 12.23 4.9 4965 11711 4.89
real-(16,1) 12.27 12.2 489 3380 0.95
real-(64,16) 12.42 7.0 5872 13081 6.30
bd — 3.1 11338 36732 8.63
d — 3.1 31759 — 13.54

132651 alt 0.09 23.5 1200 11282 1.84
re 38.18 10.3 8774 20467 10.05
real-(16,1) 38.27 27.6 730 4584 1.80
real-(64,16) 38.64 15.2 10159 21972 12.89
bd — 6.5 23738 79600 23.64
d — 6.5 66045 — 32.98

262144 alt 0.22 49.6 2216 18157 5.31
re 113.15 20.3 14849 31819 18.84
real-(16,1) 113.37 57.5 1159 6524 3.39
real-(64,16) 114.17 30.7 16576 33169 24.78
bd — 12.8 48699 161036 52.31
d — 12.8 133552 — 89.65

advantage over alt and re. It is slightly slower than alt on the smallest problem
and a little faster on the largest one.

real-(64,16) is the slowest code and on average scans more vertices than re.
This might be explained by the very low quality of the lower bounds provided by
sparse landmarks on graphs of small diameter.

These results show that reach-based methods are barely useful for 3-dimensional
grids. Preprocessing does make queries faster for large graphs, but it is very ex-
pensive. Whether this is a basic limitation of the method, or a limitation of our
preprocessing algorithm, is an interesting open question.

7. Concluding Remarks

The experimental analysis has shown that our algorithms are definitely prac-
tical for computing driving directions on large road networks. On the USA and
European road networks, the average shortest path can be found while scanning
less than 1000 vertices, which takes about one millisecond on a standard server.
By applying techniques similar to those reported by Goldberg and Werneck [23],
we can make our algorithm work from external memory, maintaining in RAM only
information about vertices actually visited during the search. Since there are so few
of those, a PocketPC implementation of re (with the preprocessed data stored on
a flash card) is practical enough for everyday use. Random queries take less than

135137135

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

44 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

10 seconds on a PocketPC with a 400 MHz ARM processor and 128 MB of RAM,
and local queries (which should be much more common) are significantly faster.

An interesting direction of future research is to make the algorithms effective
on a wider range of graphs. Although our methods work reasonably well on 2-
dimensional grids, we have shown that they have only limited applicability to 3-
dimensional grids, for instance.

Many other open problems remain. The performance of our best query algo-
rithms depend crucially on the quality of the reaches available. Faster algorithms
to compute exact reaches (or at least better upper bounds on reaches) would speed
up our queries. More importantly, the problem of finding good shortcuts deserves a
more detailed study. Our current algorithm uses a series of heuristics to determine
when to add shortcuts, but there is no reason to believe that they find the best
possible shortcuts. It is also desirable to get theoretical justification for the good
practical performance of our algorithms.

Finally, it would be interesting to find other applications for the concepts and
techniques we use. For example, reach information may also be useful for highway
design: high-reach local roads are natural candidates for becoming highways with
increased speed limits.

Recent work. A preliminary version of this paper [20] was presented at the
9th DIMACS Implementation Challenge [8]. Several other papers presented also
dealt with the point-to-point shortest path problem. Lauther [34] and Köhler
et al. [29] presented algorithms based on arc flags, but their running times (for
both preprocessing and queries) are dominated by real and hh. Delling, Sanders,
et al. [7] presented a variant of the partial landmarks algorithm in the context of
highway hierarchies, but with only modest speedups (for technical reasons A∗ search
cannot be combined naturally with hh). In a different paper, Delling, Holzer, et
al. [6] showed how multi-level graphs could be used to perform random queries in
less than 1 ms, but only after weeks of preprocessing time.

The fastest queries were achieved by algorithms based on transit node routing,
a concept introduced by Bast et al. [1] and combined with highway hierarchies by
Sanders and Schultes [42] (these papers were later merged [2]). The intuition is
simple: when following the shortest path from a fixed source s to any point “far
away,” the path leaves the source’s “local area” via one of a very limited number
of access nodes. The set of all access nodes, considering all possible sources, are
the transit nodes of the graph. On USA and Europe with travel times, there are
only a few thousand of those. Preprocessing computes the access nodes and the
distances between them, and most queries consist of a few table lookups. Both
graphs can be processed in about three hours, and random queries take in 6µs on
average (local queries are slightly slower, at 20 µs). If preprocessing time is limited
to about an hour, average query times are still only 11µs (0.3 ms for local queries).
The effectiveness of transit nodes depends strongly on the natural hierarchy of the
underlying road network. If travel times are replaced by travel distances, prepro-
cessing time increases to about eight hours, and average query times are close to
0.1 ms. Performance would probably be significantly worse on other graph classes,
such as grids.

Even for travel distances, queries with transit-node routing are significantly
faster than with real. Our method does appear to be more robust, however, to

136138136

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 45

changes in the length function. Moreover, these approaches are not mutually ex-
clusive. As Bast et al. observe in [2], a reach-based approach could be used instead
of highway hierarchies to compute a suitable set of transit nodes and the corre-
sponding distance tables. An actual implementation of the combined algorithm is
an interesting topic for future research. It should be noted, however, that speeding
up our algorithm would only make sense if a full description of the shortest path is
not required; traversing the shortest path already costs about as much as finding
its length.

Acknowledgements

We would like to thank Daniel Delling, Peter Sanders, and Dominik Schultes
for many useful discussions. We also thank an anonymous referee for comments
that helped improve the presentation of our paper.

References

[1] H. Bast, S. Funke, and D. Matijevic. TRANSIT: Ultrafast shortest-path queries with linear-
time preprocessing. Presented at the 9th DIMACS Implementation Challenge, available at
http://www.dis.uniroma1.it/∼challenge9/. A revised version appears in this book, 2006.

[2] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes. In transit to constant time
shortest-path queries in road networks. In Proc. 9th International Workshop on Algorithm
Engineering and Experiments, pages 46–59. SIAM, 2006. Available at http://www.mpi-
inf.mpg.de/ bast/tmp/transit.pdf.

[3] B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest Paths Algorithms: Theory and
Experimental Evaluation. Math. Prog., 73:129–174, 1996.

[4] L. J. Cowen and C. G. Wagner. Compact Roundtrip Routing in Directed Networks. In Proc.
Symp. on Principles of Distributed Computation, pages 51–59, 2000.

[5] G. B. Dantzig. Linear Programming and Extensions. Princeton Univ. Press, Princeton, NJ,
1962.

[6] D. Delling, M. Holzer, K. Müller, F. Schulz, and D. Wagner. High-performance multi-level
graphs. Presented at the 9th DIMACS Implementation Challenge, available at http://www.

dis.uniroma1.it/∼challenge9/. A revised version appears in this book, 2006.
[7] D. Delling, P. Sanders, D. Schultes, and D. Wagner. Highway hierarchies star. Presented

at the 9th DIMACS Implementation Challenge, available at http://www.dis.uniroma1.it/
∼challenge9/. A revised version appears in this book, 2006.

[8] C. Demetrescu, A. V. Goldberg, and D. S. Johnson. 9th DIMACS Implementation Challenge:
Shortest Paths. http://www.dis.uniroma1.it/∼challenge9/, 2006.

[9] C. Demetrescu and P. Italiano. A New Approach to Dynamic All Pairs Shortest Paths. J.
Assoc. Comput. Mach., 51:968–992, 2004.

[10] E. V. Denardo and B. L. Fox. Shortest-Route Methods: 1. Reaching, Pruning, and Buckets.
Oper. Res., 27:161–186, 1979.

[11] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numer. Math., 1:269–
271, 1959.

[12] J. Doran. An Approach to Automatic Problem-Solving. Machine Intelligence, 1:105–127,
1967.

[13] D. Dreyfus. An Appraisal of Some Shortest Path Algorithms. Technical Report RM-5433,
Rand Corporation, Santa Monica, CA, 1967.

[14] J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest paths, and near
linear time. In Proc. 42nd IEEE Annual Symposium on Foundations of Computer Science,
pages 232–241, 2001.

[15] M. L. Fredman and R. E. Tarjan. Fibonacci Heaps and Their Uses in Improved Network
Optimization Algorithms. J. Assoc. Comput. Mach., 34:596–615, 1987.

[16] G. Gallo and S. Pallottino. Shortest Paths Algorithms. Annals of Oper. Res., 13:3–79, 1988.
[17] A. V. Goldberg. A Simple Shortest Path Algorithm with Linear Average Time. In Proc. 9th

Annual European Symposium Algorithms, pages 230–241. Springer-Verlag, 2001.

137139137

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

46 ANDREW V. GOLDBERG, HAIM KAPLAN, AND RENATO F. WERNECK

[18] A. V. Goldberg. Shortest Path Algorithms: Engineering Aspects. In Proc. 12th International
Symposium on Algorithms and Computation, Lecture Notes in Computer Science, pages
502–513. Springer-Verlag, 2001.

[19] A. V. Goldberg and C. Harrelson. Computing the Shortest Path: A∗ Search Meets Graph
Theory. In Proc. 16th ACM-SIAM Symposium on Discrete Algorithms, pages 156–165, 2005.

[20] A. V. Goldberg, H. Kaplan, and R. F. Werneck. Better landmarks within reach. Presented
at the 9th DIMACS Implementation Challenge, available at http://www.dis.uniroma1.it/
∼challenge9/. A revised version appears in this book, 2006.

[21] A. V. Goldberg, H. Kaplan, and R. F. Werneck. Reach for A∗: Efficient Point-to-Point
Shortest Path Algorithms. In Proc. 8th International Workshop on Algorithm Engineering
and Experiments, pages 38–51. SIAM, 2006.

[22] A. V. Goldberg and C. Silverstein. Implementations of Dijkstra’s Algorithm Based on Multi-
Level Buckets. In P. M. Pardalos, D. W. Hearn, and W. W. Hages, editors, Lecture Notes in
Economics and Mathematical Systems 450 (Refereed Proceedings), pages 292–327. Springer
Verlag, 1997.

[23] A. V. Goldberg and R. F. Werneck. Computing Point-to-Point Shortest Paths from External
Memory. In Proc. 7th International Workshop on Algorithm Engineering and Experiments,
pages 26–40. SIAM, 2005.

[24] R. Gutman. Reach-based Routing: A New Approach to Shortest Path Algorithms Optimized
for Road Networks. In Proc. 6th International Workshop on Algorithm Engineering and
Experiments, pages 100–111, 2004.

[25] P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal Basis for the Heuristic Determination of
Minimum Cost Paths. IEEE Transactions on System Science and Cybernetics, SSC-4(2):100–
107, 1968.

[26] T. Ikeda, Min-Yao Hsu, H. Imai, S. Nishimura, H. Shimoura, T. Hashimoto, K. Tenmoku,
and K. Mitoh. A Fast Algorithm for Finding Better Routes by AI Search Techniques. In Proc.
Vehicle Navigation and Information Systems Conference, pages 2037–2044. IEEE, 1994.

[27] R. Jacob, M.V. Marathe, and K. Nagel. A Computational Study of Routing Algorithms for
Realistic Transportation Networks. Oper. Res., 10:476–499, 1962.

[28] P. Klein. Preprocessing an Undirected Planar Network to Enable Fast Approximate Distance
Queries. In Proc. 13th ACM-SIAM Symposium on Discrete Algorithms, pages 820–827, 2002.

[29] E. Köhler, R. H. Möhring, and H. Schilling. Fast point-to-point shortest path computations
with arc-flags. Presented at the 9th DIMACS Implementation Challenge, available at http:

//www.dis.uniroma1.it/∼challenge9/. A revised version appears in this book, 2006.
[30] E. Köhler, R.H. Möhring, and H. Schilling. Acceleration of shortest path and constrained

shortest path computation. In Proc. 4th International Workshop on Efficient and Experi-
mental Algorithms, pages 126–138, 2005.

[31] Jr. L. R. Ford. Network Flow Theory. Technical Report P-932, The Rand Corporation, 1956.
[32] Jr. L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton,

NJ, 1962.
[33] U. Lauther. An Extremely Fast, Exact Algorithm for Finding Shortest Paths in Static Net-

works with Geographical Background. In IfGIprints 22, Institut fuer Geoinformatik, Univer-
sitaet Muenster (ISBN 3-936616-22-1), pages 219–230, 2004.

[34] U. Lauther. An experimental evaluation of point-to-point shortest path calculation on road-
networks with precalculated edge-flags. Presented at the 9th DIMACS Implementation Chal-
lenge, available at http://www.dis.uniroma1.it/∼challenge9/. A revised version appears
in this book, 2006.

[35] PTV Traffic Mobility Logistic. Western europe road network. http://www.ptv.de/, 2006.
[36] U. Meyer. Single-Source Shortest Paths on Arbitrary Directed Graphs in Linear Average

Time. In Proc. 12th ACM-SIAM Symposium on Discrete Algorithms, pages 797–806, 2001.
[37] R.H. Möhring, H. Schilling, B. Schütz, D. Wagner, and T. Willhalm. Partitioning graphs to

speed up dijkstra’s algorithm. In Proc. 4th International Workshop on Efficient and Exper-
imental Algorithms, pages 189–202, 2005.

[38] T. A. J. Nicholson. Finding the Shortest Route Between Two Points in a Network. Computer
J., 9:275–280, 1966.

[39] I. Pohl. Bi-directional Search. In Machine Intelligence, volume 6, pages 124–140. Edinburgh
Univ. Press, Edinburgh, 1971.

138140138

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

REACH FOR A∗: SHORTEST PATH ALGORITHMS WITH PREPROCESSING 47

[40] P. Sanders and D. Schultes. Highway Hierarchies Hasten Exact Shortest Path Queries. In
Proc. 13th Annual European Symposium Algorithms, pages 568–579, 2005.

[41] P. Sanders and D. Schultes. Engineering Highway Hierarchies. In Proc. 14th Annual European
Symposium Algorithms, pages 804–816, 2006.

[42] P. Sanders and D. Schultes. Robust, almost constant time shortest-path queries on road
networks. Presented at the 9th DIMACS Implementation Challenge, available at http://

www.dis.uniroma1.it/∼challenge9/. A revised version appears in this book, 2006.
[43] D. Schultes. Fast and Exact Shortest Path Queries Using Highway Hierarchies. Master’s

thesis, Department of Computer Science, Universität des Saarlandes, Germany, 2005.
[44] F. Schulz, D. Wagner, and K. Weihe. Using Multi-Level Graphs for Timetable Information. In

Proc. 4th International Workshop on Algorithm Engineering and Experiments, pages 43–59.
LNCS, Springer, 2002.

[45] R. Sedgewick and J.S. Vitter. Shortest Paths in Euclidean Graphs. Algorithmica, 1:31–48,
1986.

[46] R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1983.

[47] M. Thorup. Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear
Time. J. Assoc. Comput. Mach., 46:362–394, 1999.

[48] M. Thorup. Compact Oracles for Reachability and Approximate Distances in Planar Di-
graphs. In Proc. 42nd IEEE Annual Symposium on Foundations of Computer Science, pages
242–251, 2001.

[49] DC US Census Bureau, Washington. UA Census 2000 TIGER/Line files. http://www.census.
gov/geo/www/tiger/tigerua/ua.tgr2k.html, 2002.

[50] D. Wagner and T. Willhalm. Geometric Speed-Up Techniques for Finding Shortest Paths in
Large Sparse Graphs. In Proc. 11th Annual European Symposium Algorithms, pages 776–787,
2003.

[51] F. B. Zhan and C. E. Noon. Shortest Path Algorithms: An Evaluation using Real Road
Networks. Transp. Sci., 32:65–73, 1998.

[52] F. B. Zhan and C. E. Noon. A Comparison Between Label-Setting and Label-Correcting
Algorithms for Computing One-to-One Shortest Paths. Journal of Geographic Information
and Decision Analysis, 4:1–11, 2000.

Microsoft Research Silicon Valley, 1065 La Avenida, Mountain View, CA 94043,
USA.

E-mail address: goldberg@microsoft.com

School of Mathematical Sciences, Tel Aviv University, Israel. Part of this work
was done while the author was visiting Microsoft Research Silicon Valley.

E-mail address: haimk@post.tau.ac.il

Microsoft Research Silicon Valley, 1065 La Avenida, Mountain View, CA 94043,
USA.

E-mail address: renatow@microsoft.com

139141139

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science

Highway Hierarchies Star

Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner

Abstract. We study two speedup techniques for route planning in road net-
works: highway hierarchies (HH) and goal directed search using landmarks
(ALT). It turns out that there are several interesting synergies. Highway hi-
erarchies yield a way to implement landmark selection more efficiently and
to store landmark information more space efficiently than before. ALT gives
queries in highway hierarchies an excellent sense of direction and allows some
pruning of the search space. For computing shortest distances and approxi-
mately shortest travel times, this combination yields significant speedups (be-
tween a factor of 2.5 and 5) over HH alone, while for exact queries using the
travel time metric only minor improvements are achieved. We also explain
how to compute actual shortest paths very efficiently.

1. Introduction

Computing fastest routes in a road networks G = (V, E) from a source s to
a target t is one of the showpieces of real-world applications of algorithmics. In
principle, we could use Dijkstra’s algorithm [4]. But for large road networks
this would be far too slow. Therefore, there is considerable interest in speedup
techniques for route planning.

A classical technique that gives a speedup of around two for road networks is
bidirectional search which simultaneously searches forward from s and backwards
from t until the search frontiers meet. Most speedup techniques use bidirectional
search as an (optional) ingredient.

Another classical approach is goal direction via A∗ search [10]: lower bounds
define a vertex potential that directs the search towards the target. This approach
was recently shown to be very effective if lower bounds are computed using pre-
computed shortest path distances to a carefully selected set of about 20 Landmark
nodes [6, 8] using the Triangle inequality (ALT). Speedups up to a factor 30 over
bidirectional Dijkstra can be observed.

A property of road networks worth exploiting is their inherent hierarchy. Com-
mercial systems use information on road categories to speed up search. ‘Sufficiently

2000 Mathematics Subject Classification. Primary 68R10; Secondary 90B20.
Key words and phrases. Shortest paths, graph, speed-up technique, hierarchy, goal-direction,

preprocessing, routing, road network.
Partially supported by DFG grant SA 933/1-3. and by the Future and Emerging Technologies

Unit of EC (IST priority – 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

c⃝2008 American Mathematical Society

1

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

141

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

143

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

141

https://doi.org/10.1090/dimacs/074/06

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

2 D. DELLING, P. SANDERS, D. SCHULTES, AND D. WAGNER

far away’ from source and target, only ‘important’ roads are used. This requires
manual tuning of the data and a delicate tradeoff between computation speed and
suboptimality of the computed routes. In a previous paper [16] we introduced
the idea to automatically compute highway hierarchies that yield optimal routes
uncompromisingly quickly. This was the first speedup technique that was able
to preprocess the road network of a continent in realistic time and obtain large
speedups (several thousands) over Dijkstra’s algorithm. In [17] the basic method
was considerably accelerated using many small measures and using distance tables :
shortest path distances in the highest level of the hierarchy are precomputed. This
way, it suffices to search locally around source and target node until the shortest
path distance can be found by accessing the distance table.

A different hierarchy-based method—reach-based routing [9]—profits consid-
erably from a combination with ALT [5]. The present state of affairs is that the
combined method from [5] shows performance somewhat inferior to highway hier-
archies with distance tables but without goal direction. Both methods turn out to
be closely related. In particular, [5] uses methods originally developed for highway
hierarchies to achieve fast preprocessing. Here, we explore the natural question
how highway hierarchies can be combined with goal directed search in general and
with ALT in particular.

1.1. Overview and Contributions. In the following sections we first review
highway hierarchies in Section 2 (Algorithm HH) [17]. A new result presented there
is a very fast algorithm for explicitly computing the shortest paths by precomputing
unpacked versions of shortcut edges. Section 3 reviews Algorithm ALT [6, 8] and
introduces refined algorithms for selecting landmarks. The main innovation there
is restricting landmark selection to nodes on higher levels of the highway hierarchy.

The actual integration of highway hierarchies with ALT (Algorithm HH∗) is in-
troduced in Section 4. This is nontrivial in several respects. For example, we need
incremental access to the distance tables for finding upper bounds and a different
way to control the progress of forward and backward search. We also have to over-
come the problem that search cannot be stopped when search frontiers meet. On
the other hand, there are several simplifications compared to ALT. Abandoning the
reliance on a stopping criterion allows us to use simpler, faster, and stronger lower
bounds. Using distance tables obviates the need for dynamic landmark selection.
Another interesting approach is to stop the search when a certain guaranteed solu-
tion quality has been obtained. There are several interesting further optimisations.
In particular, we can be more space efficient than ALT by storing no landmark
information on the lowest level of the hierarchy. We describe how the missing infor-
mation can be reconstructed efficiently at query time. As a side effect, we introduce
a way to limit the length of shortcuts. This measure turns out to be of independent
interest since it also improves the basic HH algorithm. Note that Goldberg et al.
[7] use similar techniques as we do in order to reduce the memory consumption
of landmarks when combined with reach-based routing. They have already briefly
mentioned this idea in [5].

Section 5 reports extensive experiments performed using road networks of West-
ern Europe and the USA. Section 6 summarises the results and outlines possible
future work.

142144142

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGHWAY HIERARCHIES STAR 3

1.2. More Related Work. There are several other approaches to goal di-
rected search. Our first candidate for combination with highway hierarchies were
Precomputed Cluster Distances [13]. PCDs allow the computation of upper and
lower bounds based on precomputed distances between partitions of the road net-
works. These lower bounds cannot be used for A∗ search since they can produce
negative reduced edge weights so that Dijkstra’s algorithm is no longer applica-
ble. The search space can still be pruned by discontinuing search at node v if the
lower bound from v to t indicates that the best upper bound seen so far cannot
possibly be improved when passing through v. An advantage of PCDs over land-
marks is that they need less space. We did not implement this however since PCDs
are rather ineffective for search in the lower levels of the hierarchy and since our
distance table optimisation from [17] is already very effective for pruning search at
the higher levels of the hierarchy. In contrast, landmarks can be used together with
A∗ search and thus can direct the search towards the target already in the lower
levels of the hierarchy.

An important family of speedup techniques [20, 14, 12] associates information
with each edge e. This information specifies a superset of the nodes reached via
e on some shortest path. Geometric containers [20] require node coordinates and
store a simple geometrical object containing all the nodes reached via a shortest
path. Edge flags partition the graph into regions. For each edge e and each region
R one bit specifies whether there is a shortest path via e into region R [14, 12].
Both techniques alone already contain both direction information and hierarchy
information so that very big speedups, comparable to highway hierarchies, can be
achieved. However, so far these methods would have forbiddingly large prepro-
cessing times for the largest available road networks. Therefore these approaches
looked not so interesting for a first attempt to combine goal directed search with
highway hierarchies.

2. Highway Hierarchies

The basic idea of the highway hierarchies approach is that outside some local
areas around the source and the target node, only a subset of ‘important’ edges
has to be considered in order to be able to find the shortest path. The concept of
a local area is formalised by the definition of a neighbourhood node set1 N(v) for
each node v. Then, the definition of a highway network of a graph G = (V, E) that
has the property that all shortest paths are preserved is straightforward: an edge
(u, v) ∈ E belongs to the highway network iff there are nodes s, t ∈ V such that
the edge (u, v) appears in the canonical shortest path2 ⟨s, . . . , u, v, . . . , t⟩ from s to
t in G with the property that v ̸∈ N(s) and u ̸∈ N(t).

The size of a highway network (in terms of the number of nodes) can be consid-
erably reduced by a contraction procedure: for each node v, we check a bypassability
criterion that decides whether v should be bypassed—a operation that removes the
node and creates shortcut edges (u, w) representing paths of the form ⟨u, v, w⟩. The

1In [17], we give more details on the definition of neighbourhoods. In particular, we distin-
guish between a forward and a backward neighbourhood. However, in this context, we would like
to slightly simplify the notation and concentrate on the concepts that are important to understand
the subsequent sections. The implementation, however, is based on [17] and not simplified.

2For each connected node pair (s, t), we select a unique canonical shortest path in such a way
that each subpath of a canonical shortest path is canonical as well. For details, we refer to [16].

143145143

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

4 D. DELLING, P. SANDERS, D. SCHULTES, AND D. WAGNER

graph that is induced by the remaining nodes and enriched by the shortcut edges
forms the core of the highway network. The bypassability criterion takes into ac-
count the degree of the node v and the number of shortcuts that would be created if
v was bypassed: the net increase of the number of edges due to a bypass operation
should be small. For details, we refer to [17].

A highway hierarchy of a graph G consists of several levels G0, G1, G2, . . . , GL.
Level 0 corresponds to the original graph G. Level 1 is obtained by computing the
highway network of level 0, level 2 by computing the highway network of the core
of level 1 and so on.

2.1. Highway Query. In [16], we show how the highway hierarchy of a given
road network can be constructed efficiently. After that, we can use the highway
query algorithm [17] to perform s-t queries. It is an adaptation of the bidirectional
version of Dijkstra’s algorithm. The search starts at s and t in level 0. When
the neighbourhood of s or t is left, we switch to level 1 and continue the search.
Similarly, we switch to the next level if the neighbourhood of the entrance point to
the current level is left (Figure 1). When the core of some level has been entered,
we never leave it again: in particular, we do not follow edges that lead to a bypassed
node; instead, we use the shortcuts that have been created during the construction.

N→
1 (u)

level 1

level 0 N→
0 (s)

entrance point to level 1
u

entrance point to level 2

entrance point to level 0

s

Figure 1. A schematic diagram of a highway query. Only the
forward search started from the source node s is depicted.

At this point, we can observe two interesting properties of the highway query
algorithm. First, it is not goal-directed. In fact, the forward search ‘knows’ nothing
about the target and the backward search ‘knows’ nothing about the source, so that
both search processes work completely independently and spread into all directions.
Second, when both search scopes meet at some point, we cannot easily abort the
search—in contrast to the bidirectional version of Dijkstra’s algorithm, where
we can abort immediately after a common node has been settled from both sides.
The reason for this is illustrated in Figure 2. In the upper part of the figure, the
bidirectional query from a node s to a node t along a path P is represented by
a profile that shows the level transitions within the highway hierarchy. To get a
sequential algorithm, at each iteration we have to decide whether a node from the
forward or the backward queue is settled. We assume that a strategy is used that
favours the smaller element. Thus, both search processes meet in the middle, at

144146144

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGHWAY HIERARCHIES STAR 5

s

P

a

t

c

b

s

Q

Level 2

Level 1

Level 0

Level 2

Level 1

Level 0
t

Figure 2. Schematic profile of a bidirectional highway query.

node a. When this happens, a path from s to t has been found. However, we
have no guarantee that it is the shortest one. In fact, the lower part of the figure
contains the profile of a shorter path Q from s to t, which is less symmetric than the
profile of P . Note that the very flexible definition of the neighbourhoods allows such
asymmetric profiles. When a on P is settled from both sides, b has been reached
on Q by the backwards search, but not by the forward search since a search process
never goes downwards in the hierarchy: therefore, at node c, the forward search is
not continued on the path Q. We find the shorter path Q not until the backward
search has reached c—which happens after P has been found. Hence, it would be
wrong to abort the search when a has been settled.

In [16], we introduced some rather complicated abort criteria, which we dropped
in [17] since they did reduce the search space, but the evaluation of the criteria
was too expensive. Instead, we use a very simple criterion: the forward (backward)
search is not continued if the key of the minimum element of the forward (back-
ward) queue is larger then the current upper bound (i.e., the length of the tentative
shortest path).

2.2. Using a Distance Table. The construction of fewer levels of the high-
way hierarchy and the usage of a complete distance table for the core of the top-
most level can considerably accelerate the query: whenever the forward (backward)
search enters the core of the topmost level at some node u, u is added to a node
set

−→
I (

←−
I) and the search is not continued from u. Since all distances between

the nodes in the sets
−→
I and

←−
I have been precomputed and stored in a table,

we can easily determine the shortest path length by considering all node pairs
(u, v), u ∈ −→

I , v ∈ ←−
I , and summing up d(s, u) + d(u, v) + d(v, t). For details, we

refer to [17].
Using the distance table can be seen as extreme case of goal-directed search:

from the nodes in the set
−→
I , we directly ‘jump’ to the nodes in the set

←−
I , which

are close to the target. Thus, we can say that the highway query with the distance
table optimisation works in two phases: a strictly non-goal-directed phase till the
sets

−→
I and

←−
I have been determined, followed by a ‘goal-directed jump’ using the

distance table.

2.3. Complete Description of the Shortest Path. So far, we have dealt
only with the computation of shortest path distances. In order to determine a
complete description of the shortest path, we have to a) bridge the gap between

145147145

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

6 D. DELLING, P. SANDERS, D. SCHULTES, AND D. WAGNER

the forward and backward topmost-core entrance points and b) expand the used
shortcuts to obtain the corresponding subpaths in the original graph.

Problem a) can be solved using a simple algorithm: We start with the forward
core entrance point u. As long as the backward entrance point v has not been
reached, we consider all outgoing edges (u, w) in the topmost core and check whether
d(u, w) + d(w, v) = d(u, v); we pick an edge (u, w) that fulfils the equation, and we
set u := w. The check can be performed using the distance table. It allows us to
greedily determine the next hop that leads to the the backward entrance point.

Problem b) can be solved without using any extra data (Variant 1): for each
shortcut (u, v), we perform a search from u to v in order to determine the path in
the original graph; this search can be accelerated by using the knowledge that the
first edge of the path enters a component C of bypassed nodes, the last edge leads
to v, and all other edges are situated within the component C.

However, if a fast output routine is required, it is necessary to spend some
additional space to accelerate the unpacking process. We use a rather sophisticated
data structure to represent unpacking information for the shortcuts in a space-
efficient way (Variant 2). In particular, we do not store a sequence of node IDs that
describe a path that corresponds to a shortcut, but we store only hop indices : for
each edge (u, v) on the path that should be represented, we store its rank within
the ordered group of edges that leave u. Since in most cases the degree of a node
is very small, these hop indices can be stored using only a few bits (in a fixed-
length encoding). The unpacked shortcuts are stored in a recursive way, e.g., the
description of a level-2 shortcut may contain several level-1 shortcuts. Accordingly,
the unpacking procedure works recursively.

To obtain a further speed-up, we have a variant of the unpacking data struc-
tures (Variant 3) that caches the complete descriptions—without recursions—of all
shortcuts that belong to the topmost level, i.e., for these important shortcuts that
are frequently used, we do not have to use a recursive unpacking procedure, but we
can just append the corresponding subpath to the resulting path.

3. A∗ Search Using Landmarks

In this section we explain the known technique of A∗ search [10] in combina-
tion with landmarks. We follow the implementation presented in [8]. In Section 3.2
we introduce a new landmark selection technique called advancedAvoid. Further-
more, we present how the selection of landmarks can be accelerated using highway
hierarchies.

The search space of Dijkstra’s algorithm can be visualised as a circle around
the source. The idea of goal-directed or A∗ search is to push the search towards
the target. By adding a potential π : V → R to the priority of each node, the order
in which nodes are removed from the priority queue is altered. A ‘good’ potential
lowers the priority of nodes that lie on a shortest path to the target. It is easy to
see that A∗ is equivalent to Dijkstra’s algorithm on a graph with reduced costs,
formally wπ(u, v) = w(u, v)− π(u) + π(v). Since Dijkstra’s algorithm works only
on nonnegative edge costs, not all potentials are allowed. We call a potential π
feasible if wπ(u, v) ≥ 0 for all (u, v) ∈ E. The distance from each node v of G to
the target t is the distance from v to t in the graph with reduced edge costs minus
the potential of t plus the potential of v. So, if the potential π(t) of the target t is
zero, π(v) provides a lower bound for the distance from v to the target t.

146148146

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGHWAY HIERARCHIES STAR 7

Bidirectional A∗. At first glance, combining A∗ and bidirectional search seems
easy. Simply use a feasible potential πf for the forward and a feasible potential πr

for the backward search. However, such an approach does not work due to the fact
that the searches might work on different reduced costs, so that the shortest path
might not have been found when both searches meet. This can only be guaranteed if
πf and πr are consistent, meaning wπf (u, v) in G is equal to wπr(v, u) in the reverse
graph. We use the variant of an average potential function [11] defined as pf (v) =
(πf (v) − πr(v))/2 for the forward and pr(v) = (πr(v) − πf (v))/2 = −pf (v) for the
backward search. By adding πr(t)/2 to the forward and πf (s)/2 to the backward
search, pf and pr provide lower bounds to the target and source, respectively. Note
that these potentials are feasible and consistent but provide worse lower bounds
than the original ones.

ALT.. There exist several techniques [18, 21] to obtain feasible potentials
using the layout of a graph. The ALT algorithm uses a small number of nodes—so
called landmarks—and the triangle inequality to compute feasible potentials. Given
a set S ⊆ V of landmarks and distances d(L, v), d(v, L) for all nodes v ∈ V and
landmarks L ∈ S, the following triangle inequalities hold:

d(u, v) + d(v, L) ≥ d(u, L) and d(L, u) + d(u, v) ≥ d(L, v)

Therefore, d(u, v) := maxL∈S max{d(u, L) − d(v, L), d(L, v) − d(L, u)} provides a
feasible lower bound for the distance d(u, v). The quality of the lower bounds highly
depends on the quality of the selected landmarks.

Our implementation uses the tuning techniques of active landmarks, pruning
and the enhanced stopping criterion. We stop the search if the sum of minimum
keys in the forward and the backward queue exceed µ + pf (s), where µ represents
the tentative shortest path length and is therefore an upper bound for the shortest
path length from s to t. For each s-t query only two landmarks—one ‘before’ the
source and one ‘behind’ the target—are initially used. At certain checkpoints we
decide whether to add an additional landmark to the active set, with a maximal
amount of six landmarks. Pruning means that before relaxing an arc (u, v) during
the forward search we also check whether d(s, u) + w(u, v) + πf (v) < µ holds. This
technique may be applied to the backward search easily. Note that for pruning, the
potential function need not be consistent.

3.1. Landmark Selection. A crucial point in the success of a high speedup
when using ALT is the quality of landmarks. Since finding good landmarks is hard,
several heuristics [6, 8] exist. We focus on the best known techniques; avoid and
maxCover.

Avoid. This heuristic tries to identify regions of the graph that are not well
covered by the current landmark set S. Therefore, a shortest-path tree Tr is grown
from a random node r. The weight of each node v is the difference between d(v, r)
and the lower bound d(v, r) obtained by the given landmarks. The size of a node v
is defined by the sum of its weight and the size of its children in Tr. If the subtree
of Tr rooted at v contains a landmark, the size of v is set to zero. Starting from
the node with maximum size, Tr is traversed following the child with highest size.
The leaf obtained by this traversal is added to S. In this strategy, the first root
is picked uniformly at random. The following roots are picked with a probability
proportional to the square of the distance to its nearest landmark.

147149147

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

8 D. DELLING, P. SANDERS, D. SCHULTES, AND D. WAGNER

MaxCover [8]. The main disadvantage of avoid is the starting phase of the
heuristic. The first root is picked at random and the following landmarks are
highly dependent on the starting landmark. MaxCover improves on this by first
choosing a candidate set of landmarks (using avoid) that is about four times larger
than needed. The landmarks actually used are selected from the candidates using
several attempts with a local search routine. Each attempt starts with a random
initial selection.

3.2. New Selection Techniques. In the following we introduce a new heuris-
tic called advancedAvoid to select landmarks. Furthermore, we use the highway
hierarchies to speed up the selection of landmarks.

AdvancedAvoid. Another approach to remedy for the disadvantages of avoid is
to exchange the first landmarks generated by the avoid heuristic. More precisely,
we generate k avoid landmarks, then take the first k′ landmarks from the set S and
generate k′ new landmarks using avoid again. The advantage of advancedAvoid
compared to maxCover is the computation time. While maxCover takes about five
times longer than avoid, the selection of 16 advancedAvoid (k′ = 6) landmarks on
the road network of Western Europe takes about 45% more time than pure avoid.

Core Landmarks. The computation of landmarks is expensive. Calculating
maxCover landmarks on the European network takes about 75 minutes, while con-
structing the whole highway hierarchy can be done in about 15 minutes. A promis-
ing approach is to use the highway hierarchy to reduce the number of possible
landmarks: The level-1 core of the European road network has six times fewer

Figure 3. 16 advancedAvoid core 1 landmarks on the Western
European road network

148150148

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGHWAY HIERARCHIES STAR 9

nodes than the original network and its construction takes only about three min-
utes. Using this level-1 core as possible positions for landmarks, the computation
time for calculating landmarks (all heuristics) can be decreased. Note that using
the nodes of higher level cores reduces the time for selecting landmarks even more.
However, the core of a highway hierarchy shrinks towards the centre of the map
and in [6], it has already been observed that good landmarks lie on the edge of a
map (see Figure 3 for an example). Hence, using cores of a too high level would
probably yield worse landmarks.

4. Combining Highway Hierarchies and A∗ Search

Previously (see Section 2), we strictly separated the search phase to the topmost
core from the access to the distance table: first, the sets of entrance points

−→
I and←−

I into the core of the topmost level were determined, and afterwards the table
look-ups were performed. Now we interweave both phases: whenever a forward
topmost-core entrance point u is discovered, it is added to

−→
I and we immediately

consider all pairs (u, v), v ∈ ←−
I , in order to check whether the tentative shortest path

length µ can be improved. (An analogous procedure applies to the discovery of a
backward core entrance point.) This new approach is advantageous since we can use
the tentative shortest path length µ as an upper bound on the actual shortest path
length. In [16, 17], the highway query algorithm used a strategy that compares the
minimum elements of both priority queues and prefers the smaller one in order to
serialise forward and backward search. If we want to obtain good upper bounds very
fast, this might not be the best choice. For example, if the source node belongs to
a densely populated area and the target to a sparsely populated area, the distances
from the source and target to the entrance points into the core of the topmost level
will be very different. Therefore, we now choose a strategy that balances |−→I | and
|←−I |, preferring the direction that has encountered fewer entrance points. In case
of equality (in particular, in the beginning when |−→I | = |←−I | = 0), we use a simple
alternating strategy.

We enhance the highway query algorithm with goal-directed capabilities—
obtaining an algorithm that we call HH∗ search—by replacing edge weights by
reduced costs using potential functions πf and πr for forward and backward search.
By this means, the search is directed towards the respective target, i.e., we are
likely to find some s-t path very soon. However, just using the reduced costs only
changes the order in which the nodes are settled, it does not reduce the search
space. The ideal way to benefit from the early encounter of the forward and back-
ward search would be to abort the search as soon as an s-t path has been found.
And, as a matter of fact, in the case of the ALT algorithm [6]—even in combi-
nation with reach-based routing [5]—it can be shown that an immediate abort is
possible without losing correctness if consistent potential functions are used (see
Section 3). In contrast, this does not apply to the highway query algorithm since
even in the non-goal-directed variant of the algorithm, we cannot abort when both
search scopes have met (see Section 2).

Fortunately, there is another aspect of goal-directed search that can be ex-
ploited, namely pruning : finding any s-t path also means finding an upper bound µ
on the length of the shortest s-t path. Comparing the lower bounds with the upper
bound can be used to prune the search. In Section 3, the pruning of edges has

149151149

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

10 D. DELLING, P. SANDERS, D. SCHULTES, AND D. WAGNER

already been mentioned. Alternatively, we can prune nodes : if the key of a settled
node u is greater than the upper bound, we do not have to relax u’s edges. Note
that, using reduced costs, the key of u is the distance from the corresponding source
to u plus the lower bound on the distance from u to the corresponding target.

Since we do not abort when both search scopes have met and because we have
the distance table, a very simple implementation of the ALT algorithm is possible.
First, we do not have to use consistent potential functions. Instead, we directly use
the lower bound to the target as potential for the forward search and, analogously,
the lower bound from the source as potential for the backward search. These
potential functions make the searches approach their respective target faster than
using consistent potential functions so that we get good upper bounds very early.
In addition, the node pruning gets very effective: if one node is pruned, we can
conclude that all nodes left in the same priority queue will be pruned as well since
we use the same lower bound for pruning and for the potential that is part of the
key in the priority queue. Hence, in this case, we can immediately stop the search
in the corresponding direction.

Second, it is sufficient to select at the beginning of the query for each search
direction only one landmark that yields the best lower bound. Since the search
space is limited to a relatively small local area around source and target (due
to the distance table optimisation), we do not have to pick more landmarks, in
particular, we do not have to add additional landmarks in the course of the query,
which would require flushing and rebuilding the priority queues. Thus, adding A∗

search to the highway query algorithm (including the distance table optimisation)
causes only little overhead per node.

However, there is a considerable drawback. While the goal-directed search
(which gives good upper bounds) works very well, the pruning is not very successful
when we want to compute fastest paths, i.e., when we use a travel time metric,
because then the lower bounds are usually too weak. Figure 4 gives an example
for this observation, which occurs quite frequently in practice. The first part of the
shortest path from s to t is equal to the first part of the shortest path from s to the
landmark u. Thus, the reduced costs of these edges are zero so that the forward
search starts with traversing this common subpath. The backward search behaves in
a similar way. Hence, we obtain a perfect upper bound very early; see Figure 4 (a).
Still, the lower bound on d(s, t) is quite bad: we have d(s, u) − d(t, u) ≤ d(s, t).
Since staying on the motorway and going directly from s to u is much faster than
leaving the motorway, driving through the countryside to t and continuing to u,
the distance d(s, t) is clearly underestimated.3 The same applies to lower bounds
on d(v, t) for nodes v close to s. Hence, pruning the forward search does not work
properly so that the search space still spreads into all directions before the process
terminates; see Figure 4 (b). In contrast, the node s lies on the shortest path (in
the reverse graph) from t to the landmark that is used by the backward search.
(Since this landmark is very far away to the south, it has not been included in the
figure.) Therefore, the lower bound is perfect so that the backward search stops
immediately. However, this is a fortunate case that occurs rather rarely.

4.1. Approximate Queries. We pointed out above that in most cases we
find a (near) shortest path very quickly, but it takes much longer until we know

3This negative effect is considerably weakened when a distance metric is used since the speed
difference between the motorway and slower roads is not taken into account.

150152150

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGHWAY HIERARCHIES STAR 11

(a) (b)

Figure 4. Two snapshots of the search space of an HH∗ search
using a travel time metric. The landmark u of the forward search
from s to t is explicitly marked. The landmark used by the back-
ward search is somewhere below s and not included in the chosen
clipping area. The search space is black, parts of the shortest path
are represented by thick lines. In addition, motorways are repre-
sented by thick lines (dark grey). It is important to note that the
shortest path from x to t is not a motorway, but a comparatively
slow road.

that the shortest path has been found. We can adapt to this situation by defining
an abort condition that leads to an approximate query algorithm: when a node u is
removed from the forward priority queue and we have (1+ε) · (d(s, u)+d(u, t)) > µ
(where ε ≥ 0 is a given parameter), then the search is not continued in the forward
direction. In this case, we may miss some s-t-paths whose length is ≥ d(s, u)+d(u, t)
since the key of any remaining element v in the priority queue is ≥ d(s, u) + d(u, t)
and it is a lower bound on the length of the shortest path from s via v to t. Thus, if
the shortest path is among these paths, we have d(s, t) ≥ d(s, u)+d(u, t) > µ/(1+ε),
i.e., we have the guarantee that the best path that we have already found (whose
length corresponds to the upper bound µ) is at most (1 + ε) times as long as the
shortest path. An analogous stopping rule applies to the backward search.

4.2. Optimisations.
Better Upper Bounds. We can use the distance table to get good upper bounds

even earlier. So far, the distance table has only been applied to entrance points
into the core V ′

L of the topmost level. However, in many cases we encounter nodes
that belong to V ′

L earlier during the search process. Even the source and the target

151153151

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

12 D. DELLING, P. SANDERS, D. SCHULTES, AND D. WAGNER

node could belong to the core of the topmost level. Still, we have to be careful since
the distance table only contains the shortest path lengths within the topmost core
and a path between two nodes in V ′

L might be longer if it is restricted to the core of
the topmost level than using all edges of the original graph. This is the reason why
we have not used such a premature jump to the highest level before. But now, in
order to just determine upper bounds, we could use these additional table look-ups.
The effect is limited though because finding good upper bounds works very well
anyway—the lower bounds are the crucial part. Therefore, the exact algorithm does
without the additional look-ups. The approximate algorithm applies this technique
to the nodes that remain in the priority queues after the search has been terminated
since this might improve the result4. For example, we would get an improvement
if the goal-directed search led us to the wrong motorway entrance ramp, but the
right entrance ramp has at least been inserted into the priority queue.

Reducing Space Consumption. We can save preprocessing time and memory
space if we compute and store only the distances between the landmarks and the
nodes in the core of some fixed level k. Obviously, this has the drawback that we
cannot begin with the goal-directed search immediately since we might start with
nodes that do not belong to the level-k core so that the distances to and from
the landmarks are not known. Therefore, we introduce an additional initial query
phase, which works as a normal highway query and is stopped when all entrance
points into the core of level k have been encountered. Then, we can determine the
distances from s to all landmarks since the distances from s via the level-k core
entrance points to the landmarks are known. Analogously, the distances from the
landmarks to t can be computed. The same process is repeated for interchanged
source and target nodes—i.e., we search forward from t and backward from s—in
order to determine the distances from t to the landmarks and from the landmarks
to s. Note that this second subphase can be skipped when the first subphase has
encountered only bidirected edges.

The priority queues of the main query phase are filled with the entrance points
that have been found during (the first subphase of) the initial query phase. We use
the distances from the source or target node plus the lower bound to the target or
source as keys for these initial elements. Since we never leave the level-k core during
the main query phase, all required distances to and from the landmarks are known
and the goal-directed search works as usual. The final result of the algorithm is the
shortest path that has been found during the initial or the main query phase.

Limiting Component Sizes. Since the search processes from the source and
target to the level-k core entrance points are often executed twice (once for each
direction), it is important to bound this overhead. Therefore, we implemented a
limit on the number of hops a shortcut may represent. By this means, the sizes of
the components of bypassed nodes are reduced—in particular, the first contraction
step tended to create quite large components of bypassed nodes so that it took a
long time to leave such a component when the search was started from within it.
Interestingly, this measure has also a very positive effect on the worst case analysis
in [17]: it turned out that the worst case was caused by very large components
of bypassed nodes in some sparsely populated areas, whose sizes now have been
considerably reduced by the shortcut hops limit.

4In a preliminary experiment, the total error observed in a random sample was reduced from
0.096% to 0.053%.

152154152

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGHWAY HIERARCHIES STAR 13

Rearranging Nodes. Similar to [7], after the construction has been completed,
we rearrange the nodes by core level, which improves locality for the search in higher
levels and, thus, reduces the number of cache misses. By this means, speedups of
up to 20% can be obtained.

5. Experiments

5.1. Environment, Instances, and Parameters. The experiments were
done on one core of a single AMD Opteron Processor 270 clocked at 2.0 GHz with
4 GB main memory and 2 × 1 MB L2 cache, running SuSE Linux 10.0 (kernel
2.6.13). The program was compiled by the GNU C++ compiler 4.0.2 using opti-
misation level 3. We use 32 bit integers to store edge weights and path lengths.
Results for the DIMACS Challenge benchmark can be found in Table 1.

Table 1. DIMACS Challenge [1] benchmarks for US (sub)graphs
(query time [ms]).

metric
graph time dist

NY 29.6 28.5
BAY 34.7 33.3
COL 51.5 49.0
FLA 134.8 120.5
NW 161.1 146.1
NE 225.4 197.2

CAL 291.1 235.4
LKS 461.3 366.1
E 681.8 536.4
W 1 211.2 988.2

CTR 4 485.7 3 708.1
USA 5 355.6 4 509.1

We deal with the road network of Western Europe5, which has been made
available for scientific use by the company PTV AG. Only the largest strongly
connected component is considered. The original graph contains for each edge a
length and a road category, e.g., motorway, national road, regional road, urban
street. We assign average speeds to the road categories, compute for each edge the
average travel time, and use it as weight. In addition to this travel time metric, we
perform experiments on variants of the European graph with a distance metric and
the unit metric. We also perform experiments on the US road network (without
Alaska and Hawaii), which has been obtained from the TIGER/Line Files [19].
Again, we consider only the largest strongly connected component. In contrast
to the PTV data, the TIGER graph is undirected, planarised and distinguishes

514 countries: Austria, Belgium, Denmark, France, Germany, Italy, Luxembourg, the Nether-
lands, Norway, Portugal, Spain, Sweden, Switzerland, and the UK

153155153

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

14 D. DELLING, P. SANDERS, D. SCHULTES, AND D. WAGNER

Table 2. Properties of the used road networks.

Europe USA (Tiger)
#nodes 18 010 173 23 947 347
#directed edges 42 560 279 58 333 344
#road categories 13 4
average speeds [km/h] 10–130 40–100
neighbourhood size H (time) 60 70
neighbourhood size H (dist) 100, 200, 300, . . .
neighbourhood size H (unit) 80, 100, 120, . . .

only between four road categories. All graphs6 have been taken from the DIMACS
Challenge website [1]. Table 2 summarises the properties of the used networks.

At first, we report only the times needed to compute the shortest path distance
between two nodes without outputting the actual route. These times are averages
based on 10 000 randomly chosen (s, t)-pairs. In addition to providing average
values, we use the methodology from [16] in order to plot query times (and error
rates) against the ‘distance’ of the target from the source. In this context, the
Dijkstra rank is used as a measure of distance: for a fixed source s, the Dijkstra
rank of a node t is the rank w.r.t. the order which Dijkstra’s algorithm settles
the nodes in. Such plots are based on 1 000 random source nodes. In the last
paragraph of Section 5.3, we also give the times needed to traverse the computed
shortest paths.

Since it has turned out that a better performance is obtained when the prepro-
cessing starts with a contraction phase, we practically skip the first construction
step (by choosing neighbourhood sets that contain only the node itself) so that the
first highway network virtually corresponds to the original graph. Then, the first
real step is the contraction of level 1 to get its core. Note that in this case, distances
within the core of level 1 are equal to the distances between level-1 core nodes in
the original graph.

The shortcut hops limit (introduced in Section 4) is set to 10. The neighbour-
hood size H (i.e., the number of nearby nodes that belong to the neighbourhood of
a node; introduced in [16, 17]) for the travel time metrics is set to 60 and 70 for
the European and the US network, respectively. For the distance metric versions
of both graphs, preliminary experiments indicate that using the linearly increasing
sequence 100, 200, 300, . . . as neighbourhood sizes to compute levels 2, 3, 4, . . . of
the hierarchy is a good choice. For the unit metric, we use H = 80, 100, 120, . . .

5.2. Landmarks. We begin our experimental evaluation by analysing the
quality of landmarks. Therefore, we evaluate the performance of pure ALT (with-
out highway hierarchies) for different sets of landmarks. The evaluation of HH∗ is
located in Section 5.3.

Preprocessing. First, we analyse the preprocessing of the ALT algorithm with
different selection strategies on different cores of the highway hierarchy. We use 16
avoid, advancedAvoid and maxCover landmarks selected from the whole graph and

6Note that the experiments on the full TIGER graphs had been performed before the fi-
nal versions of the DIMACS Challenge test instances, which use a finer edge costs resolution,
were available. We did not repeat the experiments since we expect hardly any change in our
measurement results.

154156154

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGHWAY HIERARCHIES STAR 15

Table 3. Overview of the preprocessing time for different selection
strategies on the European and US network. All figures are given
in minutes of computation time. For core-landmarks (indicated by
cx where x depicts the level of the hierarchy used for selection),
we report the time to construct the necessary highway informa-
tion (hh), the time for selecting the landmarks (sel), and the time
for computing the distances between all landmarks and all nodes
(dist). Generating 16 maxCover landmarks on the whole graph
requires more than 4 GB RAM. Therefore, these landmarks were
generated on an AMD Opteron Processor 252 clocked at 2.6 GHz
with 16 GB main memory.

travel times distances
input strategy hh sel dist total hh sel dist total

EUR

avoid – 15.8 – 15.8 – 13.5 – 13.5
adv.av. – 23.2 – 23.2 – 19.2 – 19.2
maxCov – 88.3 – 88.3 – 75.3 – 75.3
avoid-c1 2.7 2.5 6.3 11.5 2.7 2.1 4.2 9.0
adv.av.-c1 2.7 3.6 6.3 12.6 2.7 3.0 4.2 9.9
maxCov-c1 2.7 21.2 6.3 30.2 2.7 19.5 4.2 26.4
avoid-c2 11.5 0.4 6.3 18.2 13.6 0.4 4.2 18.2
adv.av.-c2 11.5 0.5 6.3 18.3 13.6 0.5 4.2 18.3
maxCov-c2 11.5 3.3 6.3 21.1 13.6 2.4 4.2 20.2
avoid-c3 13.7 0.1 6.3 20.1 20.1 0.1 4.2 24.4
adv.av.-c3 13.7 0.1 6.3 20.1 20.1 0.1 4.2 24.4
maxCov-c3 13.7 0.8 6.3 20.8 20.1 1.2 4.2 25.5

USA

avoid – 20.5 – 20.5 – 18.3 – 18.3
adv.av. – 30.5 – 30.5 – 26.4 – 26.4
maxCov – 105.2 – 105.2 – 97.2 – 97.2
avoid-c1 3.4 3.1 7.1 13.6 3.1 2.9 5.8 11.8
adv.av.-c1 3.4 4.5 7.1 15.0 3.1 4.2 5.8 13.1
maxCov-c1 3.4 28.4 7.1 38.9 3.1 28.2 5.8 37.1
avoid-c2 14.9 0.5 7.1 22.5 17.4 0.6 5.8 23.8
adv.av.-c2 14.9 0.7 7.1 22.7 17.4 0.9 5.8 24.1
maxCov-c2 14.9 5.6 7.1 27.6 17.4 5.8 5.8 29.0
avoid-c3 18.5 0.1 7.1 25.7 26.3 0.2 5.8 32.3
adv.av.-c3 18.5 0.2 7.1 25.8 26.3 0.2 5.8 32.3
maxCov-c3 18.5 1.2 7.1 26.8 26.3 1.5 5.8 33.6

from the core of levels 1–3. For advancedAvoid, we set k′ = 6 (see Section 3.2). Ta-
ble 3 gives an overview of the preprocessing of the ALT algorithm on the European
and US network.

We observe that the time spent for selecting landmarks decreases significantly
when switching to higher cores. Unfortunately, we have to compute the distances
from and to all nodes in the original graph if we use core landmarks for the ALT al-
gorithm (on the full graph these distances are computed during selection). In addi-
tion, we have to compute the highway information. Nevertheless, the computation
of core 1 only takes about three minutes yielding a decrease of total preprocessing

155157155

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

16 D. DELLING, P. SANDERS, D. SCHULTES, AND D. WAGNER

with regard to all selection techniques. With regard to preprocessing time, using
avoid and advancedAvoid on the cores of level 2 or 3 does not seem reasonable
while maxCover benefits from switching to higher cores.

Another advantage when switching to higher cores is memory consumption.
While about 2.3 GB of RAM are needed for the distances from and to all nodes
when selecting 16 avoid landmarks on the full graph, 384 MB are sufficient when
using the core of level 1. Using the core-2 (core-3) even further reduces the memory
consumption to 64 (17) MB. Note, that we use 32 bit integers for keeping the
distances in the main memory.

Quality of Landmarks. Figure 5 gives an overview of the quality of landmarks.
Therefor, we generate 10 different sets of 16 landmarks for each selection strategy,
generated on the full graph, and on the cores up to a level of 3. In order to evaluate
the quality of the generated landmarks, we logged the average search space for 1 000
random s-t ALT-queries on the road network of Western Europe and the US. The
results are presented as box-and-whisker plot [15].

We see that for distances the quality of landmarks is almost independent of the
chosen level of the hierarchy. Only when switching from level 2 to 3 we observe a
mild increase of the search space when using advancedAvoid landmarks. However,
for travel times on the European network an interesting phenomenon is that avoid
gets better when switching from the whole graph to core 1 but gets worse and
worse with higher levels on which landmarks are selected. On the US network, the
search space reduces when switching to core 2 in combination with avoid landmarks.
MaxCover is nearly independent of the chosen level on the European network while
on the US network a slight loss of quality can be observed with higher levels.

There seem to be two counteracting effects here: On higher levels of the hier-
archy, we lose information. For example, peripheral nodes that are candidates for
good landmarks are dropped. On the other hand, concentrating on higher level
edges in landmark selection heuristics could be beneficial since these are edges
needed by many shortest paths.

In general, maxCover outperforms avoid and advancedAvoid regarding the av-
erage quality of the obtained landmarks. Nevertheless, in most cases the minimum
average search space is nearly the same for all selection strategies within a core,
while some sets of avoid and advancedAvoid landmarks lead to search spaces 25%
higher than the worst maxCover landmarks. So, the maxCover routine seems to be
more robust than avoid or advancedAvoid. Comparing avoid and advancedAvoid
we observe just a mild improvement in quality. Thus, the additional computation
time of advancedAvoid is not worth the effort.

Combining the results from Table 3 and Figure 5, another strategy seems
promising: maxCover landmarks from the core of level 2 or 3 outperform avoid
landmarks from the full graph and their computation, including the highway in-
formation, needs only additional 5 minutes compared to avoid landmarks from the
full graph. For this reason, we use such landmarks for our further experiments.

Efficiency and Approximation. Table 4 indicates the efficiency of our imple-
mentation by reporting query times in comparison to the bidirectional variant of
Dijkstra’s algorithm. For comparison with approximate HH queries we also pro-
vide the results for an approximate ALT algorithm: Stop the query if the sum of
the minimum keys in the forward and the backward queue exceed µ/(1+ ε)+pf (s)
with ε = 0.1. This stopping criterion keeps the error rate below 10%.

156158156

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGHWAY HIERARCHIES STAR 17

full graph core 1 core 2 core 3

70
00

0
80

00
0

90
00

0
11

00
00

avoid
adv.av
maxCov

Europe (travel time metric)

landmarks selected from

nu
m

be
r

of
 s

et
tle

d
no

de
s

(a) Europe, travel times

●

●

●

full graph core 1 core 2 core 3

20
00

00
25

00
00

30
00

00
35

00
00

40
00

00

avoid
adv.av
maxCov

Europe (distances)

landmarks selected from

nu
m

be
r

of
 s

et
tle

d
no

de
s

(b) Europe, distance

●

●

●

full graph core 1 core 2 core 3

16
00

00
20

00
00

24
00

00
28

00
00

avoid
adv.av
maxCov

USA (travel times)

landmarks selected from

nu
m

be
r

of
 s

et
tle

d
no

de
s

(c) USA, travel times

●

●

●

full graph core 1 core 2 core 3

16
00

00
20

00
00

24
00

00
28

00
00

avoid
adv.av
maxCov

USA (travel times)

landmarks selected from

nu
m

be
r

of
 s

et
tle

d
no

de
s

(d) USA, distance

Figure 5. Overview of the quality of landmarks. For each type of
selection strategy, 10 different sets are generated. The quality of a
landmark set is evaluated by the average number of nodes settled
by the ALT algorithm for 1 000 random queries on the road net-
works of Western Europe and the US. The results are represented
as box-and-whisker plot [15]: each box spreads from the lower to
the upper quartile and contains the median, the whiskers extend
to the minimum and maximum value omitting outliers, which are
plotted individually.

Analysing the speedups compared to the bidirectional variant of Dijkstra’s
algorithm, we observe a search space reduction for Europe (travel times) by a factor
of about 63.6. This reduction leads to a speedup factor of 49.0 concerning query
times. For the USA (travel times), speedup concerning search space and query
times is smaller than for Europe. We observe a factor of 38.5 for search space and
29.5 for query times. The reason for this discrepancy is the overhead for computing
the potential and is also reported in [6, 8, 5].

157159157

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

18 D. DELLING, P. SANDERS, D. SCHULTES, AND D. WAGNER

Table 4. Comparison of the bidirectional variant of Dijkstra’s
algorithm, the ALT algorithm, and the approximate ALT algo-
rithm concerning search space, query times and error rate. The
landmarks are 16 maxCover core-3 landmarks. The figures are
based on 1 000 random queries.

input metric bi.Dij. ALT approx.ALT

EUR

#settled nodes 4.68 · 106 73 563 61 939
time query time [ms] 2 707 55.2 45.8

inaccurate queries – – 12.1%
#settled nodes 5.27 · 106 241 476 219 124

dist query time [ms] 2 013 169.2 150.9
inaccurate queries – – 33.7%

USA

#settled nodes 7.42 · 106 192 938 182 426
time query time [ms] 3 808 129.2 116.9

inaccurate queries – – 8.9%
#settled nodes 8.11 · 106 281 335 263 375

dist query time [ms] 3 437 177.1 163.5
inaccurate queries – – 24.8%

For the distance metric on the European network we observe a reduction in
search space of factor 21.8, leading to a speedup factor of 11.8. The corresponding
figures for the US are 28.8 and 19.4. Thus, the situation is opposite to travel times.
Here, speedups are better on the US network than on the European network. The
higher speedups for travel times are due to the fact that for distances the advantage
of taking fast highways instead of slow streets is smaller than for travel times. Since
the difference between the slowest and fastest road category (see Table 2) is bigger
for Europe, the ALT algorithm performs better on this network than on the US
network when using travel times.

Comparing our results with the ones from [5] we have about 10% higher search
spaces on the US network (travel times). This derives from the fact that on the
US network with travel times the quality of maxCover landmarks slightly decreases
when switching to higher cores (see Figure 5). Nevertheless, our average query
times in this instance are 2.49 (129 ms to 322 ms) times faster, although we are
using a slower computer. A reason for this is a different overhead factor, i.e., the
time spent per settled node. While our implementation has an overhead of factor
1.3, the figures from [5] suggest an overhead of 2.

For the travel time metric, approximate queries perform only 20% better on
Europe and 10% better on the US than exact ones. The percentage of inaccurate
queries is 12% and 8%, respectively. For the distance metric, the speedup for
approximate queries is even less and the percentage of inaccurate queries is much
higher, namely 33.7% and 24.8% for the European and US network, respectively.
These high numbers of wrong queries are due to the fact that for the distance metric
there are more possibilities of short paths with similar lengths since the difference
between taking fast highways and driving on slow streets fades. So, approximation
for ALT adds only a small speedup not justifying the loss of correctness. For a
detailed analysis of the approximation error see Table 10 and Figures 12–15 in
Appendix A.

158160158

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGHWAY HIERARCHIES STAR 19

●
●
●

●●●
●
●●●
●

●

●

●
●

●●●
●
●●●●●●
●●●●●●●
●
●

●

●

●

●

●

●

●●

●
●
●
●
●
●●●●●●●●●
●
●
●●
●
●●●●●●●●●●
●

●●●
●●●●●●●

●●●
●
●

●

●●●●●●●

●

●●●●
●
●●●●●●●●

●●

●

●

●
●
●
●●●
●●

●●
●
●
●
●●●
●

●●

●
●
●●●●●
●
●●●●●●
●
●●●
●

●

●●●●●

●●

●●●
●●●

●
●●●

●
●●●●
●
●●
●
●●
●●●
●
●

●

●●
●
●

●
●●●

●

●●
●

●
●
●●●●●●●
●

●
●

●
●●●
●

●
●
●
●
●
●

●

●
●●●●●

●
●●
●●
●
●

●

●

●
●●

●●
●
●●●

●
●
●●
●

●
●

●●
●
●

●

●
●

●
●
●
●
●
●

●●

●

●
●
●●

●

●●

●

●

●
●
●

●

●●●●●●

●

●●
●
●●

●

●●
●●●
●●

●
●

●●●●
●●

●
●
●
●

●

●

●●

●

●
●

●
●●●
●

●

●

●

●●

●

●●
●●
●
●
●●

●●

●
●

●
●

●
●
●●
●●●
●●

●

●

●

●●
●
●

●

●

●

●●●●

●

●

●●

●
●
●●

●●

●

●

●

●

● ●
●
●●

●
●
●

●

●●

●

●
●●
●
●
●
●

●
●

●
●●●●
●●●●●
●●●●●

●

●●●
●
●
●●

●
●●●●

●

●
●
●●●●

●

●
●●●
●●
●
●●

●

●

●●
●●

●●●

●
●●●
●

●
●●
●● ●

●

●

●
●●●
●

●

●●●
●
●

●

●
●
●

●

●

●●
●
●

●●●
●

●
●

●●
●●●
●

●
●●●●

●

●
●●
●

●

●
●●

●

●
●

●

●

●●

●

●

●●
●

●
●

●●●
●
●
●
●

●

●

●

●
●
●
●
●●
●

●

●
●●
●

●

● ●

●●
●●
●●●●●
●

●

●

●

●

●●●●●●●

●

●●●●
●

●

●

●●
●

●
●●●

●
●
●●
●●

●●

●

●
●
●●
●
●●
●●
●●
●●●●

●

●●●

●

●
●
●●

●●●
●
●
●

●

●●

●

●
●

●

●
●

●

●

●
●

●●

●

●
●

●
●●

●●

●

●

●

●
●
●●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●
●
●●

●

●

●

●
●

●●
●
●●●
●●

●
●

●
●
●

●

●●●●
●
●

●●●●
●
●●

●

●
●
●●

●

●
●
●
●
●

●

●●●
●

●

●

●

●●
●

●

●●
●
●●
●●
●

●

●

●
●
●
●●

●

●●
●

●

●

●
●

●

●
●
●

●●

●
●
●
●

●
●●●

●
●●●
●
●●

●

●
●

●

●

●
●

●

●●
●
●

●
●
●●
●

●

●
●

●

●●●

●
●

●

●

●

●
●

●

●
●
●●
●
●
●●●
●
●

●

●

●

●

●●

●
●

●

●●●●●

●

●●
●●●
●
●

●
●●●
●●●
●
●●
●
●
●
●

●

●●●

●
●
●●●
●●●

●●
●

●●
●

●

●

●

●●●●●

●
●●
●

●

●

●
●●●●

●

●●
●

●
●

●

●●●●
●
●●

●

●
●
●

●
●

●

●

●
●
●

●●●
●
●

●

●●

●
●●
●

●

●●

●●●●
●●
●●
●
●

●

●

●
●
●●

●

●●●

●

●●●●●
●●●
●
●●●●

●

●
●●
●●
●

●
●

●
●

●

●
●

●

●●●

●

●
●

●

●

●

●

●
●●●●
●
●●
●
●
●●●
●●●●
●●●●●

●

●

●
●
●●
●●●

●
●
●●●●
●●●●●●●

●●●●
●●
●
●
●●
●●●●●●
●●●●●●
●
●
●
●

●

●●●●●●●●

●●●●

●
●
●●
●
●●●
●
●●●

●

●●
●●
●●●●●●●●

●

●
●
●
●●

●

●

●

●
●

●●●
●●●●●●
●
●

●●
●●
●
●●●●●●
●●
●●●
●
●
●●●
●
●

●●
●
●●●
●
●●
●●●

●

●●
●
●

●
●●

●

●
●
●●
●
●●●
●●
●
●●

●

●

●
●
●
●
●

●
●
●●
●●●●

●●
●
●
●

●
●
●
●●●●
●
●
●●
●
●

●
●●●
●
●
●●
●●
●

●●

●

●●●
●
●
●●●●●
●●
●
●
●
●

●

●●
●●●●●
●

●
●

●●
●
●
●
●
●●●

●
●
●●●●●
●
●●
●●●●●

●
●●●●●
●●●●●●●●●

●

●●
●
●●
●
●●●●●●
●

●

●
●

●

●

●●●

●●

●

●
●
●
●
●●●
●●●●

●
●●●

●

●

●

●
●

●
●

●●●●
●●●●

●

●●
●
●
●
●
●

●

●●
●
●●
●●
●
●
●
●●

●
●

●

●
●●●●

●

●
●

●

●
●●
●
●

●
●●
●

●●●●
●
●●
●
●

●

●
●

●
●
●

●

●
●●●

●

●
●
●

●

●

●
●●

●●

●●

●

●
●

●●●
●

●
●

●●

●

●
●
●●
●●●

●
●●
●●
●●●●●

●

●●●

●

●●

●
●
●
●●

●

●
●●●
●
●

●●
●
●●●
●

●●
●
●●
●
●●●●
●
●●
●
●●●●
●

●

●●
●
●

●

●

●●●

●
●●

●●
●●
●
●
●●
●●●●●
●●
●●●●
●
●
●●
●
●
●●

●

●
●●
●●

●●
●●
●
●●
●

●

●●●
●
●
●●
●

●
●
●●
●●●

●●
●●●●●●●
●
●●●●
●●
●●

●

●

●
●
●●●
●
●●
●
●
●

●

●●●

●

●

●
●●

●
●●

●
●
●●●
●
●

●

●●
●

●●
●
●
●●●
●●
●●

●

●●

●●
●

●●
●●●
●
●
●●

●

●
●●
●
●

●●●
●

●

●
●
●
●●●●
●
●
●●●
●●●
●
●
●
●

●
●●●●●
●●
●●●

●
●
●
●●●●●

●

●

●

●●
●
●●●
●
●●
●●●

●
● ●●●

●

●
●
●●

●

●
●
●
●
●●
●●●●●
●
●
●

●

●
●
●●●●●●●●●●●●
●

●●
●●
●●
●●
●●●

●●●

●●●
●●●
●
●
●

●

●●

●●●●
●●

211 212 213 214 215 216 217 218 219 220 221 222 223 224

0.
1

1
10

10
0

10
00

0.
1

1
10

10
0

10
00

Europe
USA

Local Queries ALT (travel time metric)

Dijkstra Rank

Q
ue

ry
 T

im
e

[m
s]

Figure 6. Comparison of the query times using the Dijkstra rank
methodology on the road networks of Europe and the US. The
landmarks are chosen from the level-3 core using maxCover. The
results are represented as box-and-whisker plot [15]: each box
spreads from the lower to the upper quartile and contains the me-
dian, the whiskers extend to the minimum and maximum value
omitting outliers, which are plotted individually.

Local Queries. Figure 6 gives an overview of the query times in relation to
the Dijkstra rank. The results for the distance metric are located in Appendix A
(Figure 9).

The fluctuations in query time both between different Dijkstra ranks and with
fixed Dijkstra rank are so big that we had to use a logarithmic scale. Even typical
query times vary by an order of magnitude for large Dijkstra ranks. The slowest
queries for most Dijkstra ranks are two orders of magnitude slower than the median
query times.

An interesting observation is also that for small ranks ALT is faster on the
network of the US whereas for ranks higher than 221, queries are faster on the
European network. A plausible explanation seems to be the different geometry of
the two continents. Queries within the (pen)insulae of Iberia, Britain, Italy, or
Scandinavia lack landmarks in many directions. For example, a user in Scotland
might have the queer experience, that queries in north-south direction are consis-
tently faster than queries in east-west direction (see Figure 3). In contrast, long
distance routes often have to go through bottlenecks which simplify search, as those
bottlenecks are part of many long distance routes. In the US, such effects are rare.

5.3. Highway Hierarchies and A∗ Search.
Default Settings. Unless otherwise stated, we use the following default settings.

After the level-5 core has been determined, the construction of the hierarchy is
stopped. A complete distance table is computed on the level-5 core. For the distance
metric, we stop at the level-6 core instead. We use 16 maxCover landmarks that
have been computed in the level-3 core. Landmark distances are stored only in the

159161159

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

20 D. DELLING, P. SANDERS, D. SCHULTES, AND D. WAGNER

level-1 core. The approximate query algorithm uses a maximum error rate of 10%,
i.e., ε = 0.1.

Using a Distance Table and/or Landmarks. As described in Section 2, using a
distance table can be seen as adding a very strong sense of goal direction after the
core of the topmost level has been reached. If the highway query algorithm (without
distance table) is enhanced by the ALT algorithm, the goal direction comes into
effect much earlier. Still, the most considerable pruning effect occurs in the middle
of rather long paths: close to the source and the target, the lower bounds are too
weak to prune the search. Thus, both optimisations, distance tables and ALT, have
a quite similar effect on the search space: using either of both techniques, in the
case of the European network with the travel time metric, the search space size is
reduced from 1 662 to 916 (see Table 5). (Note that it is a coincidence that exactly
the same number of settled nodes is achieved. Furthermore, we note that a slightly
more effective reduction of the search space is obtained when all landmarks are used

Table 5. Comparison of all variants of the highway query al-
gorithm using no optimisation (∅), a distance table (DT), ALT,
or both techniques. Values in parentheses refer to approximate
queries. Note that the disk space includes the memory that is
needed to store the original graph.

∅ DT ALT both
metric Europe

time

preproc. time [min] 17 19 20 22
total disk space [MB] 886 1 273 1 326 1 714
#settled nodes 1 662 916 916 686 (176)
query time [ms] 1.16 0.65 0.80 0.55 (0.18)

dist

preproc. time [min] 47 47 50 49
total disk space [MB] 894 1 506 1 337 1 948
#settled nodes 10 284 5 067 3 347 2 138 (177)
query time [ms] 8.21 4.89 3.16 1.95 (0.25)

unit

preproc. time [min] 24 27
total disk space [MB] 925 1 368
#settled nodes 1 714 1 249 (709)
query time [ms] 1.18 0.99 (0.60)

USA

time

preproc. time [min] 23 26 27 28
total disk space [MB] 1 129 1 574 1 743 2 188
#settled nodes 1 966 1 098 1 027 787 (162)
query time [ms] 1.18 0.73 0.80 0.60 (0.17)

dist

preproc. time [min] 55 57 59 59
total disk space [MB] 1 140 1 721 1 754 2 335
#settled nodes 9 706 5 477 2 784 2 021 (169)
query time [ms] 7.10 4.95 2.52 1.74 (0.27)

unit

preproc. time [min] 29 32
total disk space [MB] 1 981 2 542
#settled nodes 1 665 1 072 (187)
query time [ms] 1.29 0.89 (0.22)

160162160

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGHWAY HIERARCHIES STAR 21

to compute lower bounds instead of selecting only one landmark for each direction,
namely to 903 instead of 916.) When we consider other aspects like preprocessing
time, memory usage, and query time, we can conclude that the distance table is
somewhat superior to the landmarks optimisation. Since both techniques have a
similar point of application, a combination of the highway query algorithm with
both optimisations gives only a comparatively small improvement compared to
using only one optimisation. In contrast to the exact algorithm, the approximate
variant reduces the search space size and the query time considerably—e.g., to 19%
and 27% in case of Europe (relative to using only the distance table optimisation)—
, while guaranteeing a maximum error of 10% and achieving a total error of 0.056%
in our random sample of 1 000 000 (s, t)-pairs (refer to Table 7). Some results for
US subgraphs can be found in Table 9 in Appendix A.

Using a distance metric, ALT gets more effective and beats the distance table
optimisation since much better lower bounds are produced: the negative effect de-
scribed in Figure 4 is weakened. Furthermore, in this case, a combination with both
optimisations is worthwhile: the query time is reduced to 40% in case of Europe
(relative to using only the distance table optimisation). While the highway query
algorithm enhanced with a distance table has 7.5 times slower query times when
applied to the European graph with the distance metric instead of using the travel
time metric, the combination with both optimisations reduces this performance
difference to a factor of 3.5—or even 1.4 when the approximate variant is used.

The performance for the unit metric ranks somewhere in between. Although
computing shortest paths in road networks based on the unit metric seems kind of
artificial, we observe a hierarchy in this scenario as well, which explains the sur-
prisingly good preprocessing and query times: when we drive on urban streets, we
encounter much more junctions than driving on a national road or even a motor-
way; thus, the number of road segments on a path is somewhat correlated to the
road type.

Different Landmark Sets. In Table 6, we compare different sets of landmarks.
Obviously, an increase of the number of landmarks improves the query performance.
However, the rate of improvement is rather moderate so that using only 16 land-
marks and thus, saving some memory and preprocessing time seems to be a good

Table 6. Comparison of the search spaces (in terms of number of
settled nodes) of the highway query algorithm using different land-
mark sets. For each road network (with the travel time metric),
the first column contains the search space size if the A∗ search is
not used. Values in parentheses refer to the search space sizes of
approximate queries.

#landmarks 0 16 24 32
Europe

core-1 avoid 916 687 (179) 665 (161) 651 (147)
core-3 maxCover 686 (176) 697 (177) 649 (140)

USA
core-1 avoid 1 098 808 (189) 762 (144) 736 (127)
core-3 maxCover 787 (162) 758 (134) 736 (121)

161163161

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

22 D. DELLING, P. SANDERS, D. SCHULTES, AND D. WAGNER

option. The quality of the selected landmarks is very similar for the two land-
mark selection methods that we have considered. Since the preprocessing times
are similar as well, we prefer using the maxCover landmarks since they are slightly
better.

Local Queries. In Figure 7, we compare the exact and the approximate HH∗

search in case of the European network with the travel time metric. (For the US
network the results are similar. We refer to Figure 16 in Appendix A.) In the
exact case, we observe a continuous increase of the query times: since the distance
between source and target grows, it takes longer till both search scopes meet. For
large Dijkstra ranks, the slope decreases. This can be explained by the distance
table that bridges the gap between the forward and backward search for long-
distance queries very efficiently, no matter whether we deal with a long or a very
long path.

Local Queries HH* (Europe, travel time metric)

Dijkstra Rank

Q
ue

ry
 T

im
e

[m
s]

211 212 213 214 215 216 217 218 219 220 221 222 223 224

0.
2

0.
6

1.
0

0.
2

0.
6

1.
0exact

approx

Figure 7. Comparison of the query times of the exact and the
approximate HH∗ search using the Dijkstra rank methodology.

Up to a Dijkstra rank of 218, the approximate variant shows a very similar
behaviour—even though at a somewhat lower level. Then, the query times decrease,
reaching very small values for very long paths (Dijkstra ranks 222–224). This is due
to the fact that the relative inaccuracy of the lower bounds, which is crucial for the
stop condition of the approximate algorithm, is less distinct for very long paths:
hence, most of the time, the lower bounds are sufficiently strong to stop very early.
However, the large number and high amplitude of outliers indicates that sometimes
goal direction does not work well even for approximate queries.

Approximation Error. Figure 8 shows the actual distribution of the approxi-
mation error for a random sample in the European network with the travel time
metric, grouped by Dijkstra rank. (For the European network with the distance
metric and the US network with both metrics, see Figures 17–19 in Appendix A.)
For paths up to a moderate length (Dijkstra rank 216), at least 99% of all queries
in the random sample returned an accurate result. Only very few queries approach
the guaranteed maximum error rate of 10%. For longer paths, still more than 94%

162164162

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGHWAY HIERARCHIES STAR 23

of the queries give the correct result, and almost 99% of the queries find paths that
are at most 2% longer than the shortest path. The fact that we get more errors
for longer paths corresponds to the running times depicted in Figure 7: in the case
of large Dijkstra ranks, we usually stop the search quite early, which increases the
likelihood of an inaccuracy.

Approximation Error HH* (Europe, travel time metric)

Dijkstra Rank

P
er

ce
nt

ag
e

211 212 213 214 215 216 217 218 219 220 221 222 223 224

94
95

96
97

98
99

94
95

96
97

98
99

up to 10% longer
up to 8% longer
up to 6% longer
up to 4% longer
up to 2% longer
accurate

Figure 8. Actual distribution of the approximation error for a
random sample, grouped by Dijkstra rank. Note that, in order to
increase readability, the y-axis starts at 94%, i.e., at least 94% of
all queries returned an accurate result.

While the approximate variant of the ALT algorithm gives only a small speedup
(compare Figure 6 with Figure 10 in Appendix A) and produces a considerable
amount of inaccurate results (in particular for short paths, see Figures 12 and 14),
the approximate HH∗ algorithm is much faster than the exact version (in particular
for long paths) and produces a comparatively small amount of inaccurate results.
This difference is mainly due to the distance table, which allows a fast determination
of upper bounds—and thus, in many cases early aborts—and provides accurate
long-distance subpaths, i.e., the only thing that can go wrong is that the search
processes in the local area around source and target do not find the right core
entrance points.

In Table 7, we compared the effect of different maximum error rates ε. We
obtained the expected result that a larger maximum error rate reduces the search
space size considerably. Furthermore, we had a look at the actual error that occurs
in our random sample: we divided the sum of all path lengths that were obtained by
the approximate algorithm by the sum of the shortest path lengths. We find that the
resulting total error is very small, e.g., only 0.056% in case of the European network
with the travel time metric when we allow a maximum error rate of 10%. Similar
to the results in Section 5.2, we observe that the total error and the percentage of
inaccurate queries (see Figures 17 and 19) are much higher when using the distance
metric instead of the travel time metric.

163165163

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

24 D. DELLING, P. SANDERS, D. SCHULTES, AND D. WAGNER

Table 7. Comparison of different maximum error rates ε. By the
total error, we give the sum of the path lengths obtained by the
approximate algorithm divided by the sum of the shortest path
lengths. Note that these values are given in percent. This table is
based on 1 000 000 random (s, t)-pairs (instead of the usual 10 000
pairs).

ε [%] 0 1 2 5 10 20
metric Europe

time #settled nodes 685 612 523 319 177 103
total error [%] 0 0.0002 0.0015 0.018 0.056 0.112

dist #settled nodes 2131 1302 843 333 184 143
total error [%] 0 0.0112 0.0383 0.172 0.329 0.526

USA

time #settled nodes 784 632 516 307 162 86
total error [%] 0 0.0013 0.0073 0.034 0.082 0.144

dist #settled nodes 2021 1101 672 277 169 134
total error [%] 0 0.0108 0.0441 0.132 0.193 0.240

Complete Description of the Shortest Path. So far, we have reported only the
times needed to compute the shortest path distance between two nodes. Now, we
determine a complete description of the shortest path using the three algorithmic
variants presented in Section 2.3. In Table 8 we give the additional preprocessing
time and the additional disk space for the unpacking data structures. Furthermore,
we report the additional time that is needed to determine a complete description

Table 8. Additional preprocessing time, additional disk space and
query time that is needed to determine a complete description of
the shortest path and to traverse it summing up the weights of
all edges—assuming that the query to determine its lengths has
already been performed. Moreover, the average number of hops—
i.e., the average path length in terms of number of nodes—is given.
These figures refer to experiments on the graphs with the travel
time metric. Note that the experiments for Variant 1 have been
performed without using a distance table for the topmost level.

preproc. space query #hops
[s] [MB] [ms] (avg.)

Europe
Variant 1 0 0 16.70 1 370
Variant 2 71 112 0.45 1 370
Variant 3 75 180 0.17 1 370

USA
Variant 1 0 0 40.64 4 537
Variant 2 71 134 1.32 4 537
Variant 3 75 200 0.27 4 537

164166164

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGHWAY HIERARCHIES STAR 25

of the shortest path and to traverse7 it summing up the weights of all edges as a
sanity check—assuming that the distance query has already been performed. That
means that the total average time to determine a shortest path is the time given in
Table 8 plus the query time given in previous tables. We can conclude that even
Variant 3 uses comparatively little preprocessing time and space. With Variant 3,
the time for outputting the path remains considerably smaller than the query time
itself and a factor 3–5 smaller than using Variant 2. The USA graph profits more
than the European graph since it has paths with considerably larger hop counts,
perhaps due to a larger number of degree-two nodes in the input. Note that due
to cache effects, the time for outputting the path using preprocessed shortcuts is
likely to be considerably smaller than the time for traversing the shortest path in
the original graph.

6. Discussion

We have learned a few things about landmark A∗ (ALT) that are interesting
independently of highway hierarchies. We have explained why the lower bounds
provided by ALT are often quite weak and why there are very high fluctuations in
query performance. There are also considerable differences between Western Europe
and the US. In Europe, we have larger execution times for local queries than in
the US whereas for long range (average case) queries, times are smaller. Executing
landmark selection on a graph where sparse subgraphs have been contracted is
profitable in terms of preprocessing time even if we do not want highway hierarchies.
Similarly, storing distances to landmarks only on this contracted graph considerably
reduces the space overhead of ALT.

For highway hierarchies we have learned that they can also handle the case of
travel distances. Compared to the case of travel times, space consumption is roughly
the same whereas preprocessing time and query time increase by a factor of about
2–3.5 (when the combination with A∗ search is applied). It is to be expected that
any other cost metric that represents some compromise of travel time, distance,
fuel consumption and tolls will have performance somewhere within this range.
Highway hierarchies can be augmented to output shortest paths in a time below
the time needed for computing the distances.

There is a complex interplay between highway hierarchies and the optimisations
of distance tables and ALT. For exact queries using the travel time metric, distance
tables are a better investment into preprocessing time and space than ALT. One
incompatibility between highway hierarchies and ALT is that the search cannot be
stopped when search frontiers meet. For approximate queries or for the distance
metric, all three techniques work together very well yielding a speedup around
four over highway hierarchies alone: Highway hierarchies save space and time for
landmark preprocessing; distance tables obviate search in higher levels and allow
simpler and faster ALT search with very effective goal direction. ALT provides
good pruning opportunities for the distance metric and an excellent sense of goal
direction for approximate queries yielding high quality routes most of the time while
never computing very bad routes.

7Note that we do not traverse the path in the original graph, but we directly scan the
assembled description of the path.

165167165

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

26 D. DELLING, P. SANDERS, D. SCHULTES, AND D. WAGNER

An interesting route of future research is to consider a combination of highway
hierarchies with geometric containers or edge flags [20, 14, 12]. Highway hierar-
chies might harmonise better with these methods than with ALT because similar
to highway hierarchies they are based on truncating search at certain edges. There
is also hope that their high preprocessing costs might be reduced by exploiting the
highway hierarchy.

Very recently, transit node routing (TNR) and related approaches [3, 2] have
accelerated shortest path queries by another two orders of magnitude. Roughly,
TNR precomputes shortest path distances to access points in a transit node set
T (e.g., the nodes at the highest level of the highway hierarchy). During a query
between “sufficiently distant” nodes, a distance table for T can be used to bridge
the gap between the access points of source and target. However, TNR needs
considerably more preprocessing time than the approach described in this paper.
Furthermore, the currently best implementation of TNR uses highway hierarchies
for preprocessing and local queries. It is likely that also landmarks might turn out
to be useful in future versions of TNR. On the one hand, landmarks yield lower
bounds that can be used for locality filters needed in TNR. On the other hand, the
precomputed distances to access points could be used as landmark information for
speeding up local search.

Acknowledgements. We would like to thank Timo Bingmann for work on
visualisation tools. Two anonymous reviewers provided valuable suggestions.

References

1. 9th DIMACS Implementation Challenge, Shortest Paths, http://www.dis.uniroma1.it/
∼challenge9/, 2006.

2. H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes, In transit to constant time
shortest-path queries in road networks, Workshop on Algorithm Engineering and Experiments,
2007.

3. D. Delling, M. Holzer, K. Müeller, F. Schulz, and D. Wagner, High-performance multi-level
graphs, 9th DIMACS Implementation Challenge [1], 2006, An updated version of the paper
appears in this book.

4. E. W. Dijkstra, A note on two problems in connexion with graphs., Numerische Mathematik
1 (1959), 269–271.

5. A. Goldberg, H. Kaplan, and R. Werneck, Reach for A∗: Efficient point-to-point shortest path
algorithms, Workshop on Algorithm Engineering & Experiments (Miami), 2006, pp. 129–143.

6. A. V. Goldberg and C. Harrelson, Computing the shortest path: A∗ meets graph theory, 16th
ACM-SIAM Symposium on Discrete Algorithms, 2005, pp. 156–165.

7. A. V. Goldberg, H. Kaplan, and R. F. Werneck, Better landmarks within reach, 9th DIMACS
Implementation Challenge [1], 2006, An updated version of the paper appears in this book.

8. A. V. Goldberg and R. F. Werneck, Computing point-to-point shortest paths from external
memory, Workshop on Algorithm Engineering and Experimentation, 2005, pp. 26–40.

9. R. Gutman, Reach-based routing: A new approach to shortest path algorithms optimized for
road networks, 6th Workshop on Algorithm Engineering and Experiments, 2004, pp. 100–111.

10. P. E. Hart, N. J. Nilsson, and B. Raphael, A formal basis for the heuristic determination of
minimum cost paths, IEEE Transactions on System Science and Cybernetics 4 (1968), no. 2,
100–107.

11. T. Ikeda, M.Y. Hsu, H. Imai, S. Nishimura, H. Shimoura, T. Hashimoto, K. Tenmoku, and
K. Mitoh, A fast algorithm for finding better routes by AI search techniques, Vehicle Naviga-
tion and Information Systems Conference. IEEE, 1994.

12. U. Lauther, An extremely fast, exact algorithm for finding shortest paths in static networks
with geographical background, Geoinformation und Mobilität – von der Forschung zur praktis-
chen Anwendung, vol. 22, IfGI prints, Institut für Geoinformatik, Münster, 2004, pp. 219–230.

166168166

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGHWAY HIERARCHIES STAR 27

13. J. Maue, P. Sanders, and D. Matijevic, Goal directed shortest path queries using
Precomputed Cluster Distances, 5th Workshop on Experimental Algorithms (WEA), LNCS,
no. 4007, Springer, 2006, pp. 316–328.

14. R. H. Möhring, H. Schilling, B. Schütz, D. Wagner, and T. Willhalm, Partitioning graphs
to speed up Dijkstra’s algorithm, 4th International Workshop on Efficient and Experimental
Algorithms, 2005, pp. 189–202.

15. R Development Core Team, R: A Language and Environment for Statistical Computing,
http://www.r-project.org, 2004.

16. P. Sanders and D. Schultes, Highway hierarchies hasten exact shortest path queries, 13th
European Symposium on Algorithms, LNCS, vol. 3669, Springer, 2005, pp. 568–579.

17. P. Sanders and D. Schultes, Engineering highway hierarchies, 14th European Symposium on
Algorithms, LNCS, vol. 4168, Springer, 2006, pp. 804–816.

18. R. Sedgewick and J. S. Vitter, Shortest paths in Euclidean space, Algorithmica 1 (1986),
31–48.

19. U.S. Census Bureau, Washington, DC, UA Census 2000 TIGER/Line Files, http://www.

census.gov/geo/www/tiger/tigerua/ua tgr2k.html, 2002.
20. D. Wagner and T. Willhalm, Geometric speed-up techniques for finding shortest paths in large

sparse graphs, 11th European Symposium on Algorithms, LNCS, vol. 2832, Springer, 2003,
pp. 776–787.

21. T. Willhalm, Engineering shortest path and layout algorithms for large graphs, Ph.D. thesis,
Universität Karlsruhe (TH), Fakultät für Informatik, 2005.

Appendix A. Further Experiments

Table 9. Performance of HH∗ (using a distance table and land-
marks) for US subgraphs with travel time metric. For small graphs,
we deviate from the default settings: the landmark selection takes
place in the core of the level given in column 2, the construction
of the highway hierarchy is stopped at the core of the level given
in column 3.

landm. sel. dist. table preproc. total disk #settled query
graph core level core level time [min] space [MB] nodes time [ms]
NY 2 3 0:55 140 334 0.22
BAY 2 3 0:24 40 329 0.20
COL 2 3 0:29 49 327 0.19
FLA 3 3 1:08 115 354 0.22
NW 3 4 1:06 87 509 0.33
NE 3 4 2:14 169 526 0.36
CAL 3 4 2:23 176 519 0.35
LKS 3 4 4:25 398 543 0.39
E 3 5 4:07 255 650 0.46
W 3 5 7:22 453 695 0.50

CTR 3 5 23:12 1 132 762 0.73

167169167

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

28 D. DELLING, P. SANDERS, D. SCHULTES, AND D. WAGNER

●●●

●
●
●●
●●
●
●
●

●

●●●
●

●

●
●●●

●

●

●
●●
●●
●
●●●●●●
●
●
●
●

●●●
●●●●●
●●

●●●●
●●●

●●
●●●

●

●●●

●

●●

●

●●

●

●
●
●

●

●

●
●
●●●
●
●

●
●●●●
●
●
●
●

●
●

●

●
●●

●●●
●●●●●●
●●
●
●

●

●●●●

●●

●
●
●

●

●●●
●
●

●

●●●●
●●
●●

●

●

●
●●●●
●●● ●

●
●
●●
●

●●
●●

●

●
●●●

●●
●
●
●
●●
●●
●
●●
●●
●
●●
●
●

●
●●●●●

●

●

●
●

●●●
●●
●
●
●

●
●●●●
●●
●●

●

●

●

●●
●●
●
●

●●●

●

●●
●
●●

●

●●

●●

●●
●●

●
●

●
●

●
●
●●

●●
●●●●

●
●
●
●
●●●
●

●
●
●
●

●
●
●●●

●

●●

●
●

●

●
●
●

●

●●
●
●●●
●●●●
●

●

●

●●●●
●

●
●
●●
●●

●
●

●●
●
●●●
●●
●

●

●
●

●
●

● ●●
●
●
●

●
●
●●
●
●●

●

●

●
●
●
●
●
●

●
●●●●
●

●

●●●
●

●●

●●
●●●
●
●●
●●
●
●

●

●
●

●

●
●●
●

●

●

●

●

●

●●●●●●
●
●●
●

●
●●
●

●

●

●

●

●
●

●

●
●
●

●

●
●
●
●●
●
●●
●
●
●

●

●

●●●●●

●

●
●
●●

●

●●●
●

●

●

●

●
●
●●●●
●

●

●●●
●●
●

●
●
●

●
●
●

●

●

●
●●
●
●

●

●
●
●
●

●
●●

●

●
●●

●

●●

●
●●●
●
●●
●●
●
●

●●●
●
●●

●

●
●

●

●

●●
●●●
●
●

●
●
●
●

●●●
●●

●●
●
●

●
●

●

●
●●

●

●

●

●

●
●
●●●

●

●

●

●
●

●●

●

●●
●
●
●
●

●

●
●
●●
●
●

●

●

●
●

●
●●●

●

●
●

●
●

●

●

●●
●

●
●
●
●
●

●●

●●●
●
●

●

●
●●

●●
●●

●

●
●●
●
●
●●●
●

●

●

●

●●
●●
●

●

●

●

●●●

●

●●
●●
●●●

●
●
●

●
●
●
●●
●
●

●

●●

●●
●

●

●

●
●

●●●●
●

●
●
●

●
●
●●●
●
●
●

●

●●

●

●●

●●

●

●

●

●●

●●●

●

●

●

●●

●
●●

●
●●●

●●●●●

●●
●●

●●●

●
●

●

●
●

●

●●
●

●●

●

●

●●
●

●

●

●●●

●

●●
●●
●

●
●●●

●

●

●

●

●
●

●

●

●

●
●
●

●●●●●

●●
●
●●

●●●

●
●●
●
●●●

●

●

●
●

●

●

●

●

●

●

●
●
●
●

●
●

●●

●

●●
●
●

●

●
●
●

●

●●

●

●
●
●
●

●●
●
●
●

●●●

●
●

●
●
●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●
●●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●●

●

●●
●●●●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●●

●

●

●●

●●

●

●
●
●
●●
●

●●
●

●

●

●●

●

●

●
●
●
●
●

●

●

●
●

●
●
●
●

●
●
●

●

●

●

●
●

●●

●

●

●

●●●

●
●

●●●

●●

●
●

●

●

●
●●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●
●

●●

●
●
●
●●
●
●

●

●

●

●

●

●

●●●●●

●

●●

●

●
●

●●

●

●

●
●

●
●

●● ●●●
●
●●
●●
●
●

●
●
●
●

●
●

●

●●●
●
●

●

●
●
●

●

●

●
●
●●●
●●
●
●●

●●

●

●

●
●
●●●●●
●●●
●

●

●
●

●

●

●
●●
●●●●
●
●●●
●●●●
●
●
●
●
●
●

●●
●

●

●

●●●
●

●

●

●

●

●

●
●

●

●●●

●

●

●

●
●●

●
●

●●●●

●

●●●●●●
●●●●

●
●

●
●●●●●
●
●●●

●

●
●
●●
●
●
●●●●●

●
●●●●●●●●●

●
●●●
●
●●●●●●●
●●●●●●
●●●
●
●●●
●
●●
●●
●●●●
●
●●●

●

●

●
●
●●
●●●●●●●●●
●
●●●
●●
●

●●

●

●●
●●●●
●
●
●
●
●●
●●●
●●

●

●●●
●
●
●●

●●
●●●
●●●
●
●●●●
●
●

●

●
●
●●●●●
●
●

●●
●
●
●
●●●

●
●

●●●●

●

●●
●●●

●

●●

●

●

●

●

●

●●

●
●
●●●

●

●

●

●●
●●●●●●

●

●●●●

●

●
●

●

●

●●
●

●
●
●●
●
●

●

●●

●

●●
●●●
●
●

●

●●●
●
●

●

●●●
●●
●
●●●

●

●●
●
●●●
●●●

●
●

●

● ●●

●
●
●

●
●●●

●●●
●●
●●●●●●

●
●
●
●
●
●●

●
●
●

●
●●●●
●●
●

●

●
●

●
●●
●

●●●
●
●●●●●●
●
●●
●●●
●

●●
●
●●●

● ●●
●

●
●
●
●●

●

●
●
●●●●

●●

●
●●
●

●●
●●
●
●
●

●●●●

●
●
●
●●

●
●

●●●●
●●

●●●●●

●
●
●

●

●

●
●
●●
●
●
●●●●
●
●●
●
●
●●

●●

●
●●

●
●
●

●

●
●

●

●●
●

●●
●
●
●●

●

●

●●●●
●

●

●
●●
●

●

●
●

●
●●
●
●
●

●

●
●●●●

●

●

●

●●●
●
●●

●

●
●●

●●●●●
●●
●●
●

●●●●

●●●●

●

●
●

●
●●●
●

●●

●
●
●●●

●

●●
●
●●●●

●●●
●●
●

●
●

●

●
●●

●●

●
●●
●

●●●
●
●
●
●●●
●

●●●

●●
●●●

●

●
●
●●●

●

●●●●

●

●●●●●

●

●

●●
●

●
●●●

●
●
●

●●●●●

●●

●●●●●

●●

●●●●●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●●●

●

●●
●●
●●

●

●
●
●

●●

●

●●
●●●●

●●

●
●●
●
●

●●●
●

●●

●

●

●

●●
●
●
●
●
●
●
●

●

●

●

●

●

●●

●

●
●
●●
●

●
●

●●

●

●
●
●
●●●

●

●●●●●
●

●
●●

●●

●

●●
●●●●●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●●●

●

●
●
●●
●

●

●

●
●

●

●

●

●●
●

●●

●

●
●
●
●●●
●
●
●
●

●●

●●
●
●●
●●●

●

●
●
●●●●●
●

●

●●
●
●

●

●

●

●●
●

●
●
●
●
●

●
●●

●
●

●

●
●●●●●●

● ●

●

●
●●●●
●
●

●●

●
●
●

●

●

●

●
●●●●

●

●●
●●●
●

●

●●●●●●●●
●●●●●●●●●

●

●
●
●

●
●●●
●
●●
●●●
●
●

●●
●
●

●
●●
●

●●

●
●
●●
●
●

●●
●●●●
●
●●

●

●●●
●

●

●

●

●
●
●
●
●
●

●●●
●
●●
●●
●
●

●
●
●●

●●

●●
●●●
●
●
●
●●●

●

●●●●

●●

●

●

●●
●
●

●

●

●

●●

●●
●●
●

●
●
●

●●●
●
●
●
●●

●

●●●●●●
●
●●●
●●
●
●
●●●●
●
●
●
●
●
●

●

●●
●●
●●●●●

●●

●●

●

●

●
●●
●

●

●●

●

●

●●
●
●●●●
●●
●
●●
●

●
●●
●
●

●
●●

●
●●●
●

●●●●
●●●●
●●●

●
●●
●

●
●●●

●

211 212 213 214 215 216 217 218 219 220 221 222 223 224

0.
1

1
10

10
0

10
00

0.
1

1
10

10
0

10
00

Europe
USA

Local Queries ALT (distance metric)

Dijkstra Rank

Q
ue

ry
 T

im
e

[m
s]

Figure 9. Comparison of the query times on the road network
of Western Europe and the USA using the ALT algorithm. The
landmarks are chosen from the core-3 using maxCover.

Table 10. Comparison of the exact and approximate ALT algo-
rithm. The landmarks are taken from the full graph. The figures
are based on 1 000 random queries on 10 different sets of 16 land-
marks.

#settled nodes inaccurate queries
input metric landmarks exact approx. min – max

EUR

avoid 93 520 81 582 9.8% – 11.9%
time adv.av. 86 340 74 706 9.3% – 12.6%

maxCover 75 220 63 112 10.7% – 11.7%
avoid 253 552 225 618 31.5% – 38.4%

dist adv.av. 256 511 227 779 30.9% – 38.0%
maxCover 230 110 203 564 31.3% – 34.9%

USA

avoid 220 333 206 165 7.4% – 10.1%
time adv.av. 210 703 194 920 7.6% – 9.6%

maxCover 175 359 161 230 7.6% – 9.6%
avoid 308 823 289 701 24.8% – 29.9%

dist adv.av. 302 521 282 410 24.3% – 29.3%
maxCover 282 162 265 091 27.3% – 22.3%

168170168

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGHWAY HIERARCHIES STAR 29

●
●●

●

●●●●●
●
●●●

●

●

●

●
●●●●●●
●●●●
●●●●●
●
●
●
●

●

●●●

●

●

●

●●

●

●●

●

●
●
●●●●●●●●●
●
●●●●
●
●
●

●●
●●●●●
●●●
●

●●
●●
●●●●
●

●

●

●
●
●●●

●

●●●●●●●●

●

●
●
●●●
●●●●●
●
●●●●●●●●●

●●

●

●

●●●
●●
●●

●●●●●
●
●
●
●●

●

●

●
●

●

●●

●
●●●●
●●●●●
●●
●●●●
●
●
●
●
●

●

●●●●

●●

●●●●
●
●●

●
●●●

●●●●
●
●
●●

●●●
●
●

●

●●
●

●●●●●

●

●●
●

●
●

●●●●●●●

●
●
●
●●
●
●●
●
●
●
●
●

●●
●●●●

●
●
●●●●●

●

●

●

●

●

●

●●
●
●●●

●

●
●
●
●
●●

●●●
●
●●

●
●

●●
●
●

●
●
●

●

●●

●

●
●●
●
●

●

●

●●

●

●

●
●
●●●●●

●

●●
●
●●
●

●●
●
●
●
●
●
●

●●●

●●●●

●

●

●
●

●

●●●

●

●

●

●
●●

●●●
●●

●

●●

●

●●

●

●●
●●
●
●
●●

●●

●
●

●
●

●●
●●●●●●
●●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●●

●
●

●●
●●

●

●● ●●
●
●●

●

●
●
●●
●

●

●
●●
●
●
●
●

●
●

●
●●●
●
●
●●
●
●
●●●●●

●

●●●
●
●
●
●

●
●●
●
●

●

●●
●
●●●

●
●
●●
●●
●
●
●●

●

●
●●●

●●●

●
●●
●

●
●●
●● ●●●

●
●

●

●
●
●●
●

●

●●●
●
●
●

●●
●●

●

●

●●
●
●●

●

●

●
●
●

●

●

●●
●●
●
●

●
●●●
●

●

●
●

●
●

●
●

●
●
●

●
●

●

●

●●

●

●

●●
●

●
●

●●●
●
●●

●

●

●
●

●

●

●
●●●

●
●

●

●
●●
●

●

● ●

●●

●
●
●●●
●
●

●

●

●

●

●
●
●●●●●●

●

●
●●
●
●
●

●

●

●
●
●

●
●

●

●●

●●

●●●
●
●
●

●

●

●

●

●●

●
●
●

●

●
●
●●
●
●

●●●●

●

●●
●

●

●
●
●

●
●●
●
●
●

●

●●

●

●

●
●

●

●
●

●

●
●
●
●
●
●

●
●
●●
●

●●

●
●

●

●

●●

●
●
●●
●●
●●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●
●

●●●
●●
●
●

●

●

●

●
●
●

●

●
●
●
●

●
●

●
●●●
●●

●

●
●
●

●

●
●
●

●
●●

●

●●●
●
●

●

●

●

●●
●

●

●

●

●
●●
●
●
●

●
●

●
●
●
●
●

●

●
●
●
●

●

●

●

●

●
●●
●●
●
●

●
●
●
●
●

●

●
●
●
●

●

●

●●●
●
●
●

●

●●

●

●

●

●

●

●

●

●●
●
●●
●

●●
●

●

●

●

●

●

●
●
●
●

●
●

●●

●

●

●

●
●

●

●
●
●●

●

●●●●
●

●

●

●

●
●
●

●●

●

●●
●
●
●●●
●

●●●
●
●
●
●●

●
●●
●●●
●●
●

●
●
●

●

●

●

●

●

●

●
●●

●●●●

●
●

●●
●
●

●

●

●

●
●●●
●

●
●●

●

●

●●●

●

●●

●

●
●

●
●
●●
●
●●
●

●

●

●

●

●

●
●
●

●
●●●●
●
●
●

●

●
●
●

●

●

●●
●●●●●●
●
●●

●

●

●●●
●●●●●

●

●●●●

●

●●●
●
●●●
●●
●
●
●●●●

●

●●●
●

●
●

●
●

●
●

●

●
●

●

●
●●

●

●
●
●
●
●

●

●
●●●
●●●
●
●●
●
●●●
●●●●●
●
●●●
●●
●●
●●●
●

●

●
●●●●●●●
●●
●
●●●
●

●●●●●
●●
●●
●
●●
●●●
●●
●●●
●●●●
●●●
●●●●●
●
●
●

●

●●●
●●●●●●●

●●
●●

●
●
●●●
●
●●
●
●●
●
●●
●
●●

●

●●●
●●●●●●●●
●
●
●●●

●

●●
●
●●

●

●

●
●

●

●●●●
●●●
●●●
●●

●●
●●●●
●●●●●
●●
●●●●
●
●●●
●●
●
●

●●●●
●●
●
●
●●●●●

●

●●
●

●
●●

●

●
●
●
●
●●●
●●
●●●●

●

●

●
●
●

●

●

●
●
●●●●
●●

●●
●
●
●

●
●
●
●●●●

●
●
●●
●
●●

●
●●●
●
●
●
●
●

●●

●

●●
●
●
●●●●●
●●
●
●●
●

●

●●
●●●●●
●

●
●

●●
●
●
●●●●

●
●
●●●●●
●●
●●
●●
●

●
●●●●●●
●●●●●●●●

●

●●
●
●●
●
●●
●●●●●
●

●

●●

●

●

●●●●

●●

●

●
●
●●
●
●

●
●
●●
●●●●

●
●●

●

●

●

●
●

●
●
●

●

●●
●
●●
●●●
●
●●
●
●
●
●
●

●

●●
●
●
●
●●
●
●
●
●●

●
●

●

●
●●●

●

●
●

●

●
●

●
●

●

●

●
●●
●

●
●●●●
●
●●
●

●

●
●

●
●
●●

●

●●
●
●

●

●
●
●

●

●

●
●●
●

●

●●

●

●
●

●●
●

●
●

●●

●

●
●
●
●●●●

●
●●
●●
●●●●●

●

●●

●

●

●
●
●
●●

●

●
●●●
●
●

●●
●
●●●
●

●●
●
●
●
●
●
●●
●
●●
●
●●
●

●
●●●●●

●

●●
●
●●●

●●●

●
●●●

●●
●●
●●
●
●

●

●
●●●●●

●●
●●●●●●
●
●
●●
●
●
●●

●●

●

●
●●
●
●

●●

●
●●
●
●●
●

●

●●●
●●
●●
●

●

●
●
●●
●●●

●●●●●●●
●●
●
●●●●
●
●●●

●●

●●●●
●●
●
●

●

●●●

●
●
●●

●
●
●

●
●
●
●●●
●

●

●●
●

●●●●

●
●
●●●
●●
●●

●

●●

●

●

●
●

●●
●●●●●
●

●

●
●●

●

●
●●
●
●

●●●
●

●

●

●
●
●
●●●●
●
●
●●●
●●●
●
●
●●
●

●

●
●
●
●●●
●●
●●●

●

●

●
●
●●●●●

●
●

●●
●
●●
●
●●●
●●●

●
●

●

●●●
●
●

●
●
●●

●

●
●
●
●
●●

●●●
●
●●●●

●●
●

●

●●

●
●●●
●

●
●●●●
●●●●
●
●

●●

●

●

●
●●
●●
●●●

●●●

●●●
●

●
●
●
●
●

●●

●●

●●●
●

211 212 213 214 215 216 217 218 219 220 221 222 223 224

0.
1

1
10

10
0

10
00

0.
1

1
10

10
0

10
00

Europe
USA

Local Queries approximate ALT (travel times metric)

Dijkstra Rank

Q
ue

ry
 T

im
e

[m
s]

Figure 10. Comparison of the query times on the road network
of Western Europe and the USA using the approximate ALT al-
gorithm. The landmarks are chosen from the core-3 using max-
Cover.

●●●

●
●
●●
●●
●
●
●

●

●●●
●

●

●
●●●

●

●

●
●●
●●
●
●●●●●●
●
●
●
●

●●●
●●●●●
●●

●●●●
●●●

●●
●●●

●

●●●

●

●●

●

●●

●

●
●
●

●

●

●
●
●●●
●
●

●
●●●●
●
●
●
●

●
●

●

●
●●

●●●
●●●●●●
●●
●
●

●

●●●●

●●

●
●
●

●

●●●
●
●

●

●●●●
●●
●●

●

●

●
●●●●
●●● ●

●
●
●●
●

●●
●●

●

●
●●●

●●
●
●
●
●●
●●
●
●●
●●
●
●●
●
●

●
●●●●●

●

●

●
●

●●●
●●
●
●
●

●
●●●●
●●
●●

●

●

●

●●
●●
●
●

●●●

●

●●
●
●●

●

●●

●●

●●
●●

●
●

●
●

●
●
●●

●●
●●●●

●
●
●
●
●●●
●

●
●
●
●

●
●
●●●

●

●●

●
●

●

●
●
●

●

●●
●
●●●
●●●●
●

●

●

●●●●
●

●
●
●●
●●

●
●

●●
●
●●●
●●
●

●

●
●

●
●

● ●●
●
●
●

●
●
●●
●
●●

●

●

●
●
●
●
●
●

●
●●●●
●

●

●●●
●

●●

●●
●●●
●
●●
●●
●
●

●

●
●

●

●
●●
●

●

●

●

●

●

●●●●●●
●
●●
●

●
●●
●

●

●

●

●

●
●

●

●
●
●

●

●
●
●
●●
●
●●
●
●
●

●

●

●●●●●

●

●
●
●●

●

●●●
●

●

●

●

●
●
●●●●
●

●

●●●
●●
●

●
●
●

●
●
●

●

●

●
●●
●
●

●

●
●
●
●

●
●●

●

●
●●

●

●●

●
●●●
●
●●
●●
●
●

●●●
●
●●

●

●
●

●

●

●●
●●●
●
●

●
●
●
●

●●●
●●

●●
●
●

●
●

●

●
●●

●

●

●

●

●
●
●●●

●

●

●

●
●

●●

●

●●
●
●
●
●

●

●
●
●●
●
●

●

●

●
●

●
●●●

●

●
●

●
●

●

●

●●
●

●
●
●
●
●

●●

●●●
●
●

●

●
●●

●●
●●

●

●
●●
●
●
●●●
●

●

●

●

●●
●●
●

●

●

●

●●●

●

●●
●●
●●●

●
●
●

●
●
●
●●
●
●

●

●●

●●
●

●

●

●
●

●●●●
●

●
●
●

●
●
●●●
●
●
●

●

●●

●

●●

●●

●

●

●

●●

●●●

●

●

●

●●

●
●●

●
●●●

●●●●●

●●
●●

●●●

●
●

●

●
●

●

●●
●

●●

●

●

●●
●

●

●

●●●

●

●●
●●
●

●
●●●

●

●

●

●

●
●

●

●

●

●
●
●

●●●●●

●●
●
●●

●●●

●
●●
●
●●●

●

●

●
●

●

●

●

●

●

●

●
●
●
●

●
●

●●

●

●●
●
●

●

●
●
●

●

●●

●

●
●
●
●

●●
●
●
●

●●●

●
●

●
●
●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●
●●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●●

●

●●
●●●●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●●

●

●

●●

●●

●

●
●
●
●●
●

●●
●

●

●

●●

●

●

●
●
●
●
●

●

●

●
●

●
●
●
●

●
●
●

●

●

●

●
●

●●

●

●

●

●●●

●
●

●●●

●●

●
●

●

●

●
●●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●
●

●●

●
●
●
●●
●
●

●

●

●

●

●

●

●●●●●

●

●●

●

●
●

●●

●

●

●
●

●
●

●● ●●●
●
●●
●●
●
●

●
●
●
●

●
●

●

●●●
●
●

●

●
●
●

●

●

●
●
●●●
●●
●
●●

●●

●

●

●
●
●●●●●
●●●
●

●

●
●

●

●

●
●●
●●●●
●
●●●
●●●●
●
●
●
●
●
●

●●
●

●

●

●●●
●

●

●

●

●

●

●
●

●

●●●

●

●

●

●
●●

●
●

●●●●

●

●●●●●●
●●●●

●
●

●
●●●●●
●
●●●

●

●
●
●●
●
●
●●●●●

●
●●●●●●●●●

●
●●●
●
●●●●●●●
●●●●●●
●●●
●
●●●
●
●●
●●
●●●●
●
●●●

●

●

●

●
●●
●●●●
●●●●●●●
●●
●●●●
●
●●

●●●

●

●●●●●●

●
●
●

●

●●
●
●●●
●
●●
●●

●

●●
●
●
●
●●

●●
●
●

●●

●●
●
●
●●●●●
●
●

●●

●
●
●●●●●
●
●

●
●

●
●
●

●

●
●
●●
●

●●

●

●
●
●●●●
●

●
●
●●
●●
●
●
●

●●

●

●●●

●
●
●●●

●

●

●

●
●

●●●
●
●

●
●
●
●

●

●●●●

●

●●

●

●

●●

●

●
●●●●

●

●●

●

●●●●
●
●
●

●

●●
●

●
●

●

●
●
●
●
●
●
●●

●

●
●
●
●●●●
●
●●

●
●

●

●
●●

●
●
●

●●●

●●
●
●
●●●●●●

●

●

●

●

●●●

●
●
●
●
●●

●
●
●

●
●
●

●
●

●

●●
●●●
●●●●
●

●
●●●●●
●
●
●

●
●●●●
●

●
●●●●●

● ●●

●
●
●
●●●

●

●●
●

●

●
●●●

●

●●

●●●
●
●
●●●
●

●

●●●
●●●

●●
●
●
●
●

●
●

●●
●
●
●
●

●●●●●

●
●
●

●

●

●
●
●
●
●●●
●●●●●●
●

●
●
●
●
●

●●

●
●

●
●●

●
●
●

●

●
●

●

●●
●

●
●
●
●
●●

●●

●

●●
●

●

●●
●
●

●

●
●
●
●●
●
●
●●

●

●●●●●

●

●

●

●●●

●
●●

●

●
●●

●●●●●
●
●
●●
●

●●

●
●●
●●
●
●

●●

●
●
●
●

●
●
●

●●

●●●●●●

●
●●●●●●●●

●●

●

●●●●

●
●

●

●
●●
●

●●

●
●

●●

●

●

●●●
●

●
●
●
●
●●●
●

●●

●●

●

●●
●●
●
●

●

●
●
●●
●
●●●
●

●
●●
●

●

●●●●●

●

●

●●
●

●
●●●

●

●
●

●●
●
●

●●

●●●●

●●

●

●●

●●

●

●●●

●

●

●

●

●

●
●

●

●
●
●
●
●

●

●
●

●

●●●●●

●

●●●●
●●
●●

●

●
●
●●

●

●

●

●●

●

●●
●●●●
●

●

●

●●

●
●
●

●●●
●

●●

●

●

●

●

●

●

●
●
●
●
●
●
●

●

●

●

●

●

●●

●

●
●
●●
●

●
●

●●

●

●
●
●
●●●●

●

●●●
●
●
●

●
●
●

●●

●

●●

●
●●●●

●

●

●●
●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●●●

●

●

●
●●
●

●

●●●
●

●

●

●

●

●●
●

●●

●

●●
●
●●●
●
●
●
●●●

●

●

●
●

●
●●
●●●

●

●●
●●
●●
●●
●

●

●
●

●

●

●

●

●
●●
●●

●
●
●
●
●

●

●●
●●●
●
●●
●●●●●

● ●

●

●
●
●●●

●
●

●●
●

●

●

●

●●●

●

●●
●

●●●
●

●

●●●
●●●●●
●●●●●●●●●

●

●
●
●
●●●
●
●●
●●●●
●

●●

●
●

●
●●
●

●

●
●●●
●

●
●●●

●
●

●

●●●●●

●
●
●

●●

●●●
●●

●

●

●●●
●
●●●
●

●
●
●
●●

●

●●

●
●
●
●
●●●
●
●
●●

●

●●●●

●

●

●

●●
●

●●

●

●

●

●●

●●●

●●

●
●

●
●

●
●●
●●●
●●
●
●
●●

●

●●
●●
●●●●
●
●●●
●
●
●●
●
●

●
●●●●●

●
●●●●
●
●

●

●●
●
●●
●
●●
●●

●

●

●

●●

●●

●
●

●

●
●
●
●

●●●●

●
●
●●
●
●●●
●●
●
●
●●●
●

●●
●
●
●●●●
●
●

●
●●●
●
●
●
●●
●
●
●●●
●
●●●
●
●●●●●
●
●●●●●
●

●

●
●●●

●

211 212 213 214 215 216 217 218 219 220 221 222 223 224

0.
1

1
10

10
0

10
00

0.
1

1
10

10
0

10
00

Europe
USA

Local Queries approximate ALT (distance metric)

Dijkstra Rank

Q
ue

ry
 T

im
e

[m
s]

Figure 11. Comparison of the query times on the road network
of Western Europe and the USA using the approximate ALT al-
gorithm. The landmarks are chosen from the core-3 using max-
Cover.

169171169

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

30 D. DELLING, P. SANDERS, D. SCHULTES, AND D. WAGNER

Approximation Error ALT (Europe, travel time metric)

Dijkstra Rank

P
er

ce
nt

ag
e

211 212 213 214 215 216 217 218 219 220 221 222 223 224

85
90

95
10

0

85
90

95
10

0

up to 10% longer
up to 8% longer
up to 6% longer
up to 4% longer
up to 2% longer
accurate

Figure 12. Actual distribution of the approximation error for a
random sample, grouped by Dijkstra rank. Note that, in order to
increase readability, the y-axis starts at 85%, i.e., at least 50% of
all queries returned an accurate result.

Approximation Error ALT (Europe, distance metric)

Dijkstra Rank

P
er

ce
nt

ag
e

211 212 213 214 215 216 217 218 219 220 221 222 223 224

50
60

70
80

90
10

0

50
60

70
80

90
10

0

up to 10% longer
up to 8% longer
up to 6% longer
up to 4% longer
up to 2% longer
accurate

Figure 13. Actual distribution of the approximation error for a
random sample, grouped by Dijkstra rank. Note that, in order to
increase readability, the y-axis starts at 50%, i.e., at least 50% of
all queries returned an accurate result.

170172170

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGHWAY HIERARCHIES STAR 31

Approximation Error ALT (USA, travel time metric)

Dijkstra Rank

P
er

ce
nt

ag
e

211 212 213 214 215 216 217 218 219 220 221 222 223 224

80
85

90
95

10
0

80
85

90
95

10
0

up to 10% longer
up to 8% longer
up to 6% longer
up to 4% longer
up to 2% longer
accurate

Figure 14. Actual distribution of the approximation error for a
random sample, grouped by Dijkstra rank. Note that, in order to
increase readability, the y-axis starts at 80%, i.e., at least 80% of
all queries returned an accurate result.

Approximation Error ALT (USA, distance metric)

Dijkstra Rank

P
er

ce
nt

ag
e

211 212 213 214 215 216 217 218 219 220 221 222 223 224

60
70

80
90

10
0

60
70

80
90

10
0

up to 10% longer
up to 8% longer
up to 6% longer
up to 4% longer
up to 2% longer
accurate

Figure 15. Actual distribution of the approximation error for a
random sample, grouped by Dijkstra rank. Note that, in order to
increase readability, the y-axis starts at 60%, i.e., at least 60% of
all queries returned an accurate result.

171173171

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

32 D. DELLING, P. SANDERS, D. SCHULTES, AND D. WAGNER

Local Queries HH* (USA, travel time metric)

Dijkstra Rank

Q
ue

ry
 T

im
e

[m
s]

211 212 213 214 215 216 217 218 219 220 221 222 223 224

0.
2

0.
6

1.
0

0.
2

0.
6

1.
0exact

approx

Figure 16. Comparison of the query times of the exact and the
approximate HH∗ search.

Approximation Error HH* (Europe, distance metric)

Dijkstra Rank

P
er

ce
nt

ag
e

211 212 213 214 215 216 217 218 219 220 221 222 223 224

70
75

80
85

90
95

70
75

80
85

90
95

up to 10% longer
up to 8% longer
up to 6% longer
up to 4% longer
up to 2% longer
accurate

Figure 17. Actual distribution of the approximation error for a
random sample, grouped by Dijkstra rank. Note that, in order to
increase readability, the y-axis starts at 70%, i.e., at least 70% of
all queries returned an accurate result.

172174172

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

HIGHWAY HIERARCHIES STAR 33

Approximation Error HH* (USA, travel time metric)

Dijkstra Rank

P
er

ce
nt

ag
e

211 212 213 214 215 216 217 218 219 220 221 222 223 224

88
90

92
94

96
98

88
90

92
94

96
98

up to 10% longer
up to 8% longer
up to 6% longer
up to 4% longer
up to 2% longer
accurate

Figure 18. Actual distribution of the approximation error for a
random sample, grouped by Dijkstra rank. Note that, in order to
increase readability, the y-axis starts at 88%, i.e., at least 88% of
all queries returned an accurate result.

Approximation Error HH* (USA, distance metric)

Dijkstra Rank

P
er

ce
nt

ag
e

211 212 213 214 215 216 217 218 219 220 221 222 223 224

75
80

85
90

95
10

0

75
80

85
90

95
10

0
up to 10% longer
up to 8% longer
up to 6% longer
up to 4% longer
up to 2% longer
accurate

Figure 19. Actual distribution of the approximation error for a
random sample, grouped by Dijkstra rank. Note that, in order to
increase readability, the y-axis starts at 75%, i.e., at least 75% of
all queries returned an accurate result.

173175173

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

34 D. DELLING, P. SANDERS, D. SCHULTES, AND D. WAGNER

Daniel Delling, Universität Karlsruhe (TH), Fakultät für Informatik, Postfach
69 80, 76128 Karlsruhe, Germany

E-mail address: delling@ira.uka.de

Peter Sanders, Universität Karlsruhe (TH), Fakultät für Informatik, Postfach
69 80, 76128 Karlsruhe, Germany

E-mail address: sanders@ira.uka.de

Dominik Schultes, Universität Karlsruhe (TH), Fakultät für Informatik, Postfach
69 80, 76128 Karlsruhe, Germany

E-mail address: schultes@ira.uka.de

Dorothea Wagner, Universität Karlsruhe (TH), Fakultät für Informatik, Post-
fach 69 80, 76128 Karlsruhe, Germany

E-mail address: wagner@ira.uka.de

174176174

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science

Ultrafast Shortest-Path Queries via Transit Nodes

Holger Bast, Stefan Funke, and Domagoj Matijevic

Abstract. We introduce the concept of transit nodes as a means for prepro-
cessing a road network such that point-to-point shortest-path queries can be
answered extremely fast. We assume the road network to be given as a graph,
with coordinates for each node and a travel time for each edge.

The transit nodes are a set of nodes, as small as possible, with the property
that every non-local shortest path passes through at least one of these nodes. A
path is called non-local if its source and target are at least a certain minimal
euclidean distance apart. We precompute the lengths of the shortest paths
between each pair of transit nodes, and between each node in the graph and its
few, closest transit nodes. Then every non-local shortest path query becomes
a simple matter of combining information from a few table lookups.

For the US road network, with about 24 million nodes and 29 million
undirected edges, we achieve a worst-case query processing time of about 10
microseconds (not milliseconds) for 99% of all queries, namely the non-local
ones. This improves over the best previously reported times by two orders of
magnitude.

1. Introduction

The classical way to compute the shortest path between two given nodes in a
graph with given edge lengths is Dijkstra’s algorithm [5]. The asymptotic running
time of Dijkstra’s algorithm is O(m + n log m), where n is the number of nodes,
and m is the number of edges [6]. For graphs with constant degree, like the road
networks we consider in this paper, this is O(n log n). While it is still an open
question, whether Dijkstra’s algorithm is optimal for single-source single-target
queries in general graphs, there is an obvious Ω(n + m) lower bound, because
every node and every edge has to be looked at in the worst case. Sublinear query
time hence requires some form of preprocessing of the graph. For general graphs,
constant query time can only be achieved with superlinear space requirement; this is
due to a recent result by Thorup and Zwick [18]. Like previous works, we therefore
exploit special properties of road networks, in particular, that the nodes have low
degree and that there is a certain hierarchy of more and more important roads,
such that further away from source and target only the more important roads tend
to be used on shortest paths.

This work is partially supported by the EU 6th Framework Programme under contract 001907
(DELIS).

c⃝0000 (copyright holder)

1

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

175

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

177

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

175

https://doi.org/10.1090/dimacs/074/07

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

2 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC

Figure 1. Transit nodes (red/bold dots) for a part of a city (cen-
ter, dark) when travelling far (outside the light-gray area).

Our benchmark for most of this paper will be an undirected version of the US
road network, which has about 24 million nodes and 29 million edges. On this
network, a good implementation of Dijkstra’s algorithm on a single state-of-the-art
PC takes on the order of seconds, on average, for a random query. Note that for a
random query, source and target are likely to be far away from each other, in which
case Dijkstra’s algorithm will settle a large portion of all nodes in the network
before eventually reaching the target. For most of this paper, edge lengths will be
travel times, so that shortest paths are actually paths with minimum travel time.
We will continue to speak of shortest, however, because that is more familiar and to
stress the wider applicability of our transit node idea. At the end of the paper we
will also present results for unit edge lengths and when the length of an edge is the
distance along the corresponding road segment, and results for the road network of
Western Europe.

2. Our results

We present a new algorithm, named TRANSIT, which can answer non-local
shortest path queries extremely fast, by combining information from a small number
of lookups in a table. On the US road network, we achieve an average query
processing time of around 10 microseconds (not milliseconds) for 99 % of all queries,
when only the length (travel time) of the shortest path is required. The remaining
1 % of the queries are local in the sense that source and target are geometrically
very close to each other. We also provide a simple algorithm for dealing with the
few local queries efficiently. However, the focus of this work is on the non-local
queries. In fact, we prefer to view our transit node approach as a filter : the vast
majority of all queries can be processed extremely fast, leaving only a small fraction

176178176

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 3

of local queries, which can be processed by any other method. Note that already
Dijktra’s algorithm can process the local queries by orders of magnitudes faster
than arbitrary random queries.

Our processing times for the non-local queries beat the best previously reported
figure of about 1 millisecond, due to Sanders and Schultes [15], by two orders of
magnitude. When the full path, with all its edges, is to be output, we achieve an
average query processing time of about 5 milliseconds on the US road network. We
remark that all of the previous, more sophisticated algorithms use some form of
path compression, which does not easily allow them to output the edges along the
shortest path without using extra memory.

The basic idea of TRANSIT is as follows. For a given road network, compute a
small set of transit nodes with the property that every shortest path that covers a
certain not too small euclidean distance passes through at least one of these transit
nodes. For every node in the given graph, then compute a set of closest transit
nodes, with the property that every shortest path starting from that node and
passing through a transit node at all (which it will if it goes sufficiently far), will
pass through one of these closest transit nodes. These sets of closest transit nodes
turn out to be very small: about 10 on average for our choice of transit nodes on
the US road network. This allows us to precompute, for each node, the distances
to each of its closest transit nodes. Also, the overall number of transit nodes turns
out to be small enough so that we can easily precompute and store the distances
between all pairs of transit nodes.

A non-local shortest path query can then easily be answered as follows. For
a given source node src and target node trg , fetch the precomputed sets of closest
transit nodes Tsrc and Ttrg , respectively. For each pair of transit nodes tsrc ∈ Tsrc

and ttrg ∈ Ttrg compute the length of the shortest path passing through these nodes,
which is d(src, tsrc) + d(tsrc , ttrg) + d(ttrg , trg). Note that all three distances in this
sum have been precomputed. The minimum of these |Tsrc | · |Ttrg | lengths is the
length of the shortest path.

Given an algorithm for length-only shortest path queries, one can easily com-
pute the edges along the shortest path using a few length-only shortest path queries
per edge on the shortest path. To see this, assume we have already found a portion
of the shortest path from the source to a node u. To find the next edge on the path,
we simply launch a length-only shortest path query for each of the adjancent nodes
of u. Given the length of the portion of the shortest path we already know, its total
length, and the length of the edges adjacent to u, it is then easy to tell which of
these edges is next on the shortest path. For details and possible improvements,
see Section 4.5.

We want to stress that there are natural applications, where length-only short-
est path queries are good enough, and not all the edges along the path are required.
For example, most car navigation systems merely have a local view of the road net-
work (if any). In that case it suffices to know the next few edges on the shortest
path, and these can be computed by just a few length-only shortest-path queries,
as described above.

We decribe TRANSIT in more detail in Section 4.

177179177

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

4 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC

3. Related Work

We give a quick survey of work directly relevant to the problem of preprocessing
road networks for subsequent fast shortest-path querying.

Gutman in [9] proposes a general concept of edge levels (he called it reach,
though). Consider an edge e that appears “in the middle” of a shortest path, –
shortest with respect to travel time – between two nodes that are a certain distance
d apart – distance with respect to some arbitrary other metric, e.g., euclidean
distance. Then the level of e is the higher, the larger d is. Gutman defines levels
with respect to euclidean distance, but he notes that any metric can be used for
the discrimination of the “in the middle” property. He presents simple algorithms
which compute upper bounds for the edge levels and instruments those to obtain
more efficient exact shortest path queries on moderate-size road networks. Due to
the use of the euclidean metric as classifying metric, his approach allows for several
variants of Dijkstra, in particular a natural goal-directed (unidirectional) version as
well as efficient one-to-many shortest path queries. The – compared to later work
like [14] or [8] – less competitive running times, both for the preprocessing phase
as well as the queries are mainly due to the lack of an efficient compression scheme.
The latter is very important for obtaining fast running times since in particular
the networks induced by higher level edges contain very long chains of degree-two
nodes following which is quite expensive. They can be easily skipped by suitable
shortcut/path compression edges, though.

Later Sanders and Schultes have adopted a different classifying metric for their
so-called Highway-Hierarchies [14]. In an ordinary Dijkstra computation from a
source src, say that the rth node settled has Dijkstra rank r with respect to src.
Sanders and Schultes say that the level of an edge (u, v) is high if it is on a shortest
path between some src and trg such that v has high Dijkstra rank with respect
to src and u has high Dijkstra rank with respect to trg . They achieve a drastic
improvement both in preprocessing time as well as in query times, mainly because
of the use of the Dijkstra rank as classifying metric as well as a highly efficient
compression and pruning scheme in the higher levels of the network. The output of
the algorithm is a path containing compressed edges, though, and uncompressing
those edges does require some additional time and space. Their variant is also
inherently bidirectional, so both goal-direction as well as one-to-many queries are
not easily added, though later work has tried to address these issues.

Goldberg et al. in [8] combine edge levels with a compression scheme and they
use lower bounds, based on precomputed distances to a few landmarks vertices, to
allow for a more goal-directed search. They report running times comparable to
those of [14]. Their space consumption is somewhat higher though, because every
node in the network has to store distances to all landmarks. A non-goal-directed
version of their algorithm exhibits considerably less storage requirements at the
cost of only slightly higher query time.

More recently, Sanders and Schultes [15] have presented the so far best combi-
nation of preprocessing and query time. They show how to preprocess the US road
network in 15 minutes, for subsequent query times of, on the average, 1 millisecond.
While we could not yet come close to their extremely fast preprocessing time, our
length-only scheme beats their query time by two orders of magnitude.

Möhring et al. [12, 10], based on previous work by Lauther [11], explored arc
flags as means to achieve very fast query times. Intuitively, an arc flag is a sign that

178180178

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 5

says whether the respective edge is on a shortest path to a particular region of the
graph. In an extreme case, an edge could have a sign to every node on the shortest
path to which it lies. A shortest path query could then be answered by simply
following the signs to the target without any detour. However, to precompute
these perfect signs requires an all-pairs shortest-path computation, which takes
quadratic time and would be infeasible already for a small portion of the whole US
road network, say the network of California. It is shown in [12, 10] and [11] how to
cut down on this preprocessing somewhat, by putting up signs to sufficiently large
regions of the graph. The largest network considered in these works has about one
million nodes [12]. In the initial stages of our work, we experimented with the arc
flag approach too, and were not able to achieve query processing times competitive
with those of [15] with a reasonable amount of preprocessing time and extra space.

Most recently, following the first appearance of our paper, Sanders and Schultes
have combined the transit node idea with highway hierarchies [16]. They report to
have worked independently on similar ideas, but with a five times larger number of
closest transit nodes (called access nodes in their work) per node. Note that the
average query time of any scheme based on the transit node idea grows quadratically
in the average number of closest transit nodes per node. The idea of precomputing
all-to-all distances between a small subset of all nodes was already used in [15], to
terminate local searches when they ascended far enough in the hierarchy. Prompted
by our formulation of the transit node idea and the observation that an average of
about 10 closest transit nodes per node suffice for a road network like that of the
US, Sanders and Schultes were able to develop their ideas further to achieve very
fast processing times comparable to those we report in this paper. They achieve
these processing times for both non-local and local queries. (We would get a similar
result by using the original highway hierarchies as a fallback for the local queries,
but their implementation is more integrated as it uses highway hierarchies both for
the local queries and for the computation of transit nodes.) Their preprocessing
is an order of magnitude faster than what we report in this paper. The price is a
more complex algorithm and implementation, and an increased space consumption.
More details on the comparison between both approaches, our simple geometric one
and the one based on highway hierarchies, are given in a joint follow-up paper [2].

In retrospect, the work of [13] (which later became [3]) can be taken as another
alternative to computing transit nodes. In a nutshell, they use a hierarchy of
separators to partition a given road network (making use of its almost-planarity).
Their separator nodes could be taken as transit nodes, in which case local queries
would be those with both endpoints in the same component. However, just like for
the early attempts of Sanders and Schultes, this approach gives rise to an inherently
much larger number of closest transit nodes (access nodes), which implies one to
two orders of magnitude larger preprocessing time, space consumption and query
processing times.

4. The TRANSIT algorithm

4.1. Intuition. The basic intuition behind our approach is very simple: imag-
ine you live in a big city and intend to travel long-distance by car. What you will
observe is that irrespectively of where your final destination is (as long it is rea-
sonably far away) and where exactly you live in the city, there will be few roads
via which you will actually leave the urban area when travelling on a shortest path

179181179

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

6 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC

Figure 2. Transit neighborhood of a cell in a 64× 64 subdivision
of the US.

Figure 3. Transit neighborhood of a cell in a 1024× 1024 subdi-
vision of the US.

to your destination. In Figure 1 we have depicted these roads for the center part
of a city. No matter where you start your journey inside the central region (in
dark) – if your final destination lies outside the light-grey area and you travel on a
shortest path, you will pass through one of the 14 marked roads (red/bold dots).
This property, that long-distance trips (where the length is to be seen relative to
the ”starting region”) pass through few transit nodes, is in fact to some degree
invariable to scale. The example in Figure 1 shows the transit nodes for a cell in a
256× 256 subdivision of the road network of the US; there are 14 of them. Figures
2 and 3 show transit nodes (or more precisely transit neighborhoods by which we
compute transit nodes) for cells of a 64× 64 and 1024× 1024 subdivision of the US
respectively. They exhibit 17 and 8 transit nodes respectively.

In essence our approach is then to construct a (geometric, in our case) subdi-
vision of the network into cells and determine their transit nodes, such that the
total number of transit nodes is small enough to allow us to precompute and store
all pairwise distances between transit nodes in O(n) space, i.e., in about the same
amount of space as used for the original graph itself. Furthermore each node stores
distances to the transit nodes of its resident cell. At query time a simple lookup
yields the exact distance between any source-target pair provided they are not too
close to each other.

4.2. Computing the Set of Transit Nodes. Consider the smallest enclos-
ing square of the set of nodes (coming with x and y coordinate each), and the

180182180

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 7

C

outer

inner

0

+1

+2

−1

−2

CA

CD

CC

CE

CB

C5

C4

C3

C2

C1

Figure 4. Definition and computation of transit nodes in the grid-
based construction.

natural subdivision of this square into a grid of g × g equal-sized square cells, for
some integer g. We define a set of transit nodes for each cell C as follows. Let
Sinner and Souter be the squares consisting of 5 × 5 and 9 × 9 cells, respectively,
each with C at their center. Let EC be the set of edges which have one endpoint
inside C, and one outside, and define the set VC of what we call crossing nodes by
picking for each edge from EC the node with the smaller id. Define Vouter and Vinner

accordingly1. See the left side of Figure 4 for an illustration. The set of closest
transit nodes for the cell C is now a set of nodes TC ⊆ Vinner with the property that
for any pair of nodes p, q — one in VC , one in Vouter — there exists a shortest path
from p to q which passes through some node v ∈ TC . Note that we also could have
demanded that all shortest paths from p, q pass through some node in TC , but this
would have potentially increased the number of transit nodes with the only benefit
of a slightly easier routine for reporting all shortest paths between a pair of nodes
later on.

The overall set of transit nodes is just the union of these sets over all cells. It is
easy to see that if two nodes are at least four grid cells apart in either horizontal or
vertical direction, then the shortest path between the two nodes must pass through
one of these transit nodes. By “four grid cells apart” we mean that between the
grid cell containing the one node and the grid cell containing the other node there
are at least four other grid cells. Also note that if a node is a transit node for some
cell, it is likely to be a transit node for many other cells, each of them two cells
away, too.

A naive way to compute these sets of transit nodes would be as follows. For
each cell, compute all shortest paths between nodes in VC and Vouter, and mark all
nodes in Vinner that appear on at least one of these shortest paths. Figure 4 will
again help to understand this. Such a naive computation is too time-consuming,
though, for example for a 128×128 grid it required several days on the US network.

1That is, we consider the set of edges that have one endpoint inside Sinner/Soutside, the other
outside. Note that those edges might not necessarily have endpoints in the cells directly adjacent
to the crossing point with Sinner/Soutside.

181183181

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

8 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC

As a first improvement, consider the following simple sweep-line algorithm,
which runs Dijkstra computations within a radius of only three grid cells, instead
of five, as in the naive approach. Consider one vertical line of the grid after the
other, and for each such line do the following. Let v be one of the endpoints of
an edge intersecting the line. We run a local Dijkstra computation for each such
v as follows: let Cleft be the set of cells two grid units left of v and which have
vertical distance of at most 2 grid units to the cell containing v. Define Cright

accordingly. See Figure 4, right; there we have Cleft = {CA, CB, CC, CD, CE}
and Cright = {C1, C2, C3, C4, C5}. We start the local Dijkstra at v until all nodes
on the boundary of the cells in Cleft and Cright respectively are settled; we remember
for all settled nodes the distance to v. This Dijkstra run settles nodes at a distance
of roughly 3 grid cells. After having performed such a Dijkstra computation for all
nodes v on the sweep line, we consider all pairs of boundary nodes (vL, vR), where
vL is on the boundary of a cell on the left and vR is on the boundary of a cell on the
right and the vertical distance between those cells is at most 4. We iterate over all
potential transit nodes v on the sweep line and determine the set of transit nodes
for which d(vL, v)+d(v, vR) is minimal. With this set of transit nodes we associate
the cells corresponding to vL and vR, respectively.

It is not hard to see that two such sweeps, one vertical and one horizontal,
will compute exactly the set of transit nodes defined above (the union of all sets
of closest transit nodes). The computation is space-efficient, because at any point
in the sweep, we only need to keep track of distances within a small strip of the
network. The consideration of all pairs (vL, vR) is negligible in terms of running
time. As a further improvement, we first do the above computation for some
refinement of the grid for which we actually want to compute transit nodes – let’s
say 128 × 128 is the grid we are finally aiming for. For some finer grid – say
256×256, we consider every second grid line (those also belonging to the 128×128
grid) and employ the computation described above to decide whether the respective
boundary nodes are transit nodes in the finer grid. This computation is cheaper
than in the coarser grid since the Dijkstra computations have to reach only half as
far. Then, when computing the transit nodes for the coarser 128 × 128 grid, we
can restrict ourselves to nodes from the sets of transit nodes computed for the finer
grid and hence save Dijkstra computations. This easily generalizes to a sequence
of refinements of 512 × 512, 1024 × 1024, . . . grids where the finer grid essentially
provides a ”preselection” of the nodes that have to be considered for being a transit
node in the coarser grid.

4.3. Computing the Distance Tables. For each node v, the distances to
the closest transit nodes of its cell can be easily computed and memorized from the
Dijkstra computations which had these transit nodes as source. In particular, each
transit node thus knows the distance to all its (few) closest transit nodes. From this
we can construct a graph with only the transit nodes as nodes, and an edge from
each transit node to its closest transit nodes weighted by the respective distance.
A standard all-pairs shortest-path computation on this auxiliary graph gives us the
distances between each pair of transit nodes. Since the number of transit nodes
is small (less than 8 000 for the US road network, using a 128 × 128 grid), this
takes negligible time. The space consumption of these distance tables is discussed
in Sections 4.7 and 4.8 below.

182184182

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 9

4.4. Shortest-path queries (length only). We next describe how to com-
pute the length of the shortest path between a given source node src and a given
target node trg , based on the preprocessing described in the previous two subsec-
tions. We here give a description for the scenario where we have precomputed only a
single level of transit nodes. The extension to a hierachy of grids is straightforward,
and will be explained in Section 4.7.

0. If src and trg are less than four grid cells (with respect to the grid used in
the precomputation) apart, compute the distance from src to trg via an
algorithm suitable for local shortest-path queries; a number of possibilities
are described in Section 4.6. Otherwise, perform the following steps:

1. Fetch the lists Tsrc and Ttrg of the closest transit nodes for the grid cells
containing src and trg , respectively. Also fetch the lists of precomputed
distances d(src, tsrc), tsrc ∈ Tsrc and d(trg , ttrg), ttrg ∈ Ttrg .

2. For each pair of tsrc ∈ Tsrc and ttrg ∈ Ttrg compute the sum of the lengths
of the shortest path from src to tsrc , from tsrc to ttrg , and from ttrg to
trg , which is d(src, tsrc)+d(tsrc , ttrg)+d(ttrg , trg). Note that we may have
tsrc = ttrg , in which case d(tsrc , ttrg) = 0.

3. Compute the length of the shortest path from src to trg as the minimum
of the |Tsrc | · |Ttrg | distances computed in step 2.

The algorithm is easily seen to be correct. Steps 1-3 will only be executed if source
and target are more than four grid cells apart. Then, by the definition of the transit
nodes in Section 4.2, the shortest path between source and target must pass through
at least one transit node. But then, by the definition of closest transit nodes, the
shortest path from src to trg will pass through one of the closest transit nodes of
src as well as through one of the closest transit nodes of trg . The shortest path will
therefore be among those tried in step 2, and we pick the shortest of these.

Since we have precomputed the distances from each node to its closest transit
nodes and the distances between each pair of transit nodes, steps 1-3 take time
O(|Tsrc | · |Ttrg |). The average number of closest transit nodes of a node is a small
constant — about 10 for the US road network.

4.5. Shortest-path queries (with edges). In this subsection, we describe
how we can enhance the procedure given in the previous subsection to also output
the edges along the shortest path from a given source node src to a given target
node trg .

Assume that we have executed the procedure from the previous subsection, that
is, we already know the length of the shortest path from src to trg . Assume that
we have already found the part of the shortest path from src to some u (initially,
u = src). Let d(u, trg), which we can compute as d(src, trg) − d(src, u), be the
length of the part of the path which we have not found yet. Then the next node on
the shortest path is that node v adjacent to u with the property that d(u, trg) =
c(u, v)+d(v, trg), where c(u, v) is the length of the edge from u to v. This node can
therefore be easily identified from the nodes adjacent to u, if only we can compute
the distances d(v, trg). But these are just instances of the problem we solved in
the previous subsection: given two nodes, compute the length of the shortest path
between them.

As described so far, the computation of d(v, trg) would resort to the special
algorithm for local shortest-path queries when v and trg are less than four grid cells

183185183

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

10 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC

apart. We can avoid this, if we compute the shortest path from src only until four
grid cells away from trg , and, symmetrically, compute the shortest path from trg
until four grid cells away from src. This will give us the full path if src and trg are
at least eight grid cells apart, and parts of the path if they are more than four grid
cells apart. For the remaining parts, or when src and trg are no more then four
grid cells apart, we need to run the local algorithm.

This simple scheme can be improved in several ways. For example, we could
store for each node, for each of its closest transit nodes, the index of the edge to
that closest transit node. We would then obtain the next edge along the shortest
path by a simple table lookup. The price would be a factor of two in the space
consumption of the precomputed information.

Another idea would be to store for each transit node, the full path to each of its
closest transit nodes. Using compression (edge ids along a shortest path typically
do not differ much from one edge to the next, so some kind of gap encoding could
be used), this could be achieved with relatively little extra space.

In our experiments, we restricted ourselves to length-only shortest-path queries.

4.6. Dealing with the Local Queries. If source and target are very close to
each other (less than four grid cells apart in both horizontal and vertical direction
for length-only shortest-path queries; less than eight grid cells apart in that way
when computing the edges along the path), we cannot compute the shortest path
via the transit nodes. This makes sense intuitively: there is hardly any hierarchy
of roads in an area like, for example, downtown Manhattan, and a shortest path
between two locations within the same such area will mostly consist of (small) roads
of the same kind. In such a situation, no small set of transit nodes exist.

The good news is that most shortest-path algorithms are much faster when
source and target are close to each other. In particular, Dijkstra’s algorithm is
about a thousand times faster for local queries, where source and target are at
most four grid cells apart, for an 128 × 128 grid laid over the US road network,
than for arbitrary random queries (most of which are long-distance). However, the
non-local queries are roughly a million times faster and the fraction of local queries
is about 1 %, so the average running time over all queries would be spoiled by the
local Dijkstra queries.

Instead, we can use any of the recent sophisticated algorithms to process the
local queries. Highway hierarchies, for example, achieve running times of a fraction
of a millisecond for local queries, which would then only slightly affect the average
processing time over all queries. The drawback is that we would need the full
implementation of another method, and that this method requires additional space
and precomputation time.

For our experiments in Section 5, we used a simple extension of Dijkstra’s
algorithm using geometric edge levels and shortcuts, as outlined in Section 3. This
extension uses only six additional bytes per node. An edge e = (p, q) has level l if
lies on a shortest path from s to t, and both p and q are at least f(l) far away from
both s and t in euclidean distance along that path. Here f(l) is a monotonically
increasing function. For each node u, we insert at most two shortcuts as follows:
consider the unique level, if any, where u lies on a chain of degree-2 nodes (degree
with respect to edges of that level) for the first time; on that level insert a shortcut
from u to the two endpoints of this chain. In each step of the Dijkstra computation
for a local query, then consider only edges above a particular level (depending on the

184186184

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 11

current euclidean distance from source and target), and make use of any available
shortcuts suitable for that level. This algorithm requires an additional 5 bytes per
node.

4.7. Multi-Level Grid. In our implementation as described so far, there is
an obvious tradeoff between the size of the grid and the percentage of local queries
which cannot be processed via precomputed distances to transit nodes. For a very
coarse grid, say 64×64, the number of transit nodes, and hence the table storing the
distances between all pairs of transit nodes, would be very small, but the percentage
of local queries would be as large as 10 %. For a very fine grid, say 1024 × 1024,
the percentage of local queries is only 0.1 %, but now the number of transit nodes
is so large, that we can no longer store, let alone compute, the distances between
all pairs of transit nodes. Table 1 gives the exact tradeoffs, also with regard to
preprocessing time, for the US road network. The average query processing time
for the non-local queries is around 10 microseconds, independent of the grid size.2

|T | |T |× |T |/node avg. |A| non-local preproc.

64 × 64 2 042 0.1 11.4 91.7% 498 min
128 × 128 7 426 1.1 11.4 97.4% 525 min
256 × 256 24 899 12.8 10.6 99.2% 638 min
512 × 512 89 382 164.6 9.7 99.8% 859 min
1 024 × 1 024 351 484 2 545.5 9.1 99.9% 964 min

Table 1. Number |T | of transit nodes, space consumption of the
distance table, average number |A| of closest transit nodes per
cell, percentage of non-local queries (averaged over 100 000 random
queries), and preprocessing time to determine the set of transit
nodes for the US road network (excluding the computation of all-
pair distances between transit nodes), TIGER version (see Section
5.2 for the differences to the DIMACS version).

To achieve a small fraction of local queries and a small number of transit nodes
at the same time, we employ a hierarchy of grids. We briefly describe the two-level
grid, which we used for our implementation. The generalization to an arbitrary
number of levels would be straightforward.

The first level is an 128 × 128 grid, which we precompute as described so far.
The second level is an 256 × 256 grid. For this finer grid, we compute the set of
all transit nodes as described, but we compute and store distances only between
those pairs which are local with respect to the 128× 128 grid. This is a fraction of
about 1/200th of all the distances, and can be computed and stored in negligible
time and space via standard hashing. Note that in this simple approach, the space
requirement for the individual levels simply add up. A more sophisticated approach
to multi-level transit node routing is described in [2].

2According to our experiments, the bulk of the processing time for the non-local queries is
spent in step 2 (trying out all combinations) of the procedure described in Section 4.4 and not in
step 1 (fetching the relevant information for source and target node), that is, caching effects do
not seem to play a dominant role here.

185187185

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

12 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC

Query processing with such a hierarchy of grids is straightforward. In a first
step, determine the coarsest grid with respect to which source and target are at
least four grid cells apart in either horizontal or vertical direction. Then compute
the shortest path using the transit nodes and distances computed for that grid, just
as described in Sections 4.4 and 4.5. If source and target are at most four grid cells
apart with respect to even the finest grid, we have to resort to the special algorithm
for local queries.

4.8. Reducing the Space Further. As described so far, for each level in
our grid hierarchy, we have to store the distances from each node in the graph to
each of its closest transit nodes. For the US road network, the average number of
closest transit nodes per node is about 10, independent of the grid size, and most
distances can be stored in two bytes. For a two-level grid, this gives about 40 bytes
per node.

To reduce this, we implemented the following additional heuristic. We observed
that it is not necessary to store the distances to the closest transit nodes for every
node in the network. Consider a simplification of the road network where chains of
degree 2 nodes are contracted to a single edge. In the remaining graph we greedily
compute a vertex cover, that is, we select a set of nodes such that for every edge
at least one of its endpoints is a selected node. Using this strategy we determine
about a third of all nodes in the network to store distances to their respective
closest transit nodes. Then, for the source/target node v of a given query we first
check whether the node is contained in the vertex cover, if so we can proceed as
before. If the node is not contained in the vertex cover, a simple local search along
chains of degree 2 nodes yields the desired distances to the closest transit nodes.
The average number of distances stored at a node reduces from 11.4 to 3.2 for the
128×128 grid of the US, without significantly affecting the query times3. The total
space consumption of our grid data structure then decreases to 16 bytes per node.

5. Implementation and Experiments

5.1. Experimental results. We tested all our schemes on the US road net-
work, publically available via http://www.census.gov/geo/www/tiger. This is
an undirected graph with 24, 266, 702 nodes and 29, 049, 043 edges, and an average
degree of 2.4. Edge lengths are travel times. We implemented our algorithms in
C++ (compiled with gcc 3.3.5 -O3) and ran all our experiments on a Dual Opteron
Machine with two 2.4 GHz processors, 8 GB of main memory, running Linux 2.6.14
(64 bit); only one processor was used. Table 2 gives a summary of our experimen-
tal results. Experiments on the DIMACS benchmark collections and for other edge
lengths than travel time are provided in Section 5.2

TRANSIT achieves an average query time of 12 microseconds for 99% of all
queries. Together with our simple algorithm for the local queries, described in
Section 4.6, we get an average of 63 microseconds over all queries. This overall
average time could be easily improved by employing a more sophisticated algorithm,
e.g. the one from [15], for the local queries, however at the price of a larger space

3Observe that we do not have to perform twice or four times the number of lookups in the
distance table since the number of transit nodes for either s or t typically does not change at all
(the transit nodes of nearby nodes are most of the time exactly the same). Following the degree-2
chains and obtaining the distances to the transit nodes costs no time compared to the few hundred
table lookups.

186188186

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 13

non-local (99%) local (1%) all preproc. space/node

12 µs 5112 µs 63 µs 15 h 21 bytes

Table 2. Average query time (in microseconds), preprocessing
time (in hours), and space consumption (in bytes per node in ad-
dition to the original graph representation) for our new algorithm
TRANSIT, for the US road network, TIGER version (see Section
5.2 for the differences to the DIMACS version).

requirement and a more complex implementation. The space consumption of our
algorithm is 21 bytes per node, which comes from 16 bytes per node for the distance
tables of the two grids (Section 4.7) plus 5 bytes per node for the edge levels and
shortcuts for the local queries (Section 4.6).

If we also output the edges along the shortest path, our average query processing
becomes about 5 milliseconds (which happens to be the average processing time for
the local queries, too). This is still competitive with the processing times reported
in [15] and its closest competitors [14] [7] [8]. All of these schemes do not output
edges along the shortest path, though outputting actual paths for these schemes
would incur mostly a slight penalty in terms of space.

Many previous works provided a figure that showed the dependency of the
processing time of a query on the Dijkstra rank of that query, which is the number of
nodes Dijkstra’s algorithm would have to settle for that query. The Dijkstra rank is
a fairly natural measure of the difficulty of a query. For TRANSIT, query processing
times are essentially constant for the non-local queries, because the number of
table lookups required varies little and is completely independent from the distance
between source and target. Table 3 therefore gives details on which percentage of
the queries with a given Dijkstra rank are local. Note that for both the 128× 128
grid and the 256× 256 grid, all queries with a Dijkstra rank of 29 = 512 or less are
local, while all queries with Dijkstra rank above 221 ≈ 2, 000, 000 are non-local.

grid size ≤ 29 210 211 212 213 214

128 × 128 100% 100% 100% 99% 99% 99%

256 × 256 100% 99% 99% 99% 97% 94%

grid size 215 216 217 218 219 220 ≥ 221

128 × 128 98% 94% 85% 64% 29% 5% 0%

256 × 256 84% 65% 36% 12% 1% 0% 0%

Table 3. Estimated fraction of queries which are local with re-
spect to the given grid, for various ranges of Dijkstra ranks. The
estimate for the column labeled 2r is the average over 1000 random
queries with Dijkstra rank in the interval [2r, 2r+1).

187189187

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

14 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC

5.2. Results for the DIMACS benchmark data. We also conducted ex-
periments with additional benchmark data as provided by the DIMACS shortest
path challenge website [1]. We used the same kind of machine as specified at the
beginning of the previous section. For the sake of comparability with the results of
other authors, Table 4 gives the results of the DIMACS core benchmark on such a
machine.

Clearly, the efficacy of our grid-based approach does not depend on the metric
used for computing the shortest paths; that is, for a given road network and res-
olution of the grid – say 128 × 128 the fraction of all queries that are considered
”long range” does not change when varying the edge weights. What does change,
though, is the number of transit nodes necessary to provide correct answers to
these long range queries. In particular, when the cost measure is changed from
travel time along an edge to distance along an edge or unit distance, the property
of road networks to canalize traffic is weakened, hence the number of transit nodes
necessary for a certain grid size increases. Likewise the average number of closest
transit nodes per node increases and hence the query times; the increase is more
pronounced for the distance weights than for the unit weights. In our benchmarks
for the additional datasets we restricted to one level of transit nodes and only re-
port the results for the non-local queries, which, for all the experiments in Table 5
and 6, were 97% of all queries.

Table 5 shows our results for different metrics and (sub)networks of the road
network of the US. The astute reader will notice a difference in the number of
transit nodes as well as in the preprocessing and average query time between the
figures of Table 1 (TIGER data) and Table 5 (DIMACS data). This difference is
due to the fact that the conversion from road types to speeds (and hence travel
times) which we used for the TIGER data is different from the conversion used for
the DIMACS data. In our conversion the difference in speed between slow and fast
roads is more pronounced, and hence the canalizing property of the network with
our travel times is stronger (fast roads are even more attractive). For the CTR
network with the distance metric, the number of transit nodes for the 128 × 128
grid was too large, so we provided the results for a 64 × 64 grid instead.

Table 6 shows our results for the road network of Western Europe (n =
18, 010, 173, m = 42, 560, 279)4. A particularity of this network is a number of
very slow ferry connections. Without special treatment of the corresponding edges
(we tried a few heuristics but then decided to leave the data as is), the prepro-
cessing time goes up significantly. This is so, because whenever one of the local
Dijkstra computations in our transit node precomputation (Section 4) has to settle
a node that can only be reached via a very long (slow) path, then almost all nodes
in the network will be settled in that computation. Like this, the ferry connections
give rise to a significant number of very time-consuming global Dijkstra computa-
tions in our precomputation. Note that the straightforward heuristic of splitting up
very long edges into many short edges does not solve this problem: there will still
be nodes which are geometrically close but with a very long shortest path between
them. In Table 6, note that the problem indeed does not occur for unit edge lengths
(in which case a ferry connection costs just as much as any other edge), and that

4We have considered an undirected variant of this network where the edge weights of reverse
edges are equalized by taking the maximum of both since our current implementation does not
allow for directed edges.

188190188

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 15

metric
graph #nodes #edges time distance
NY 264346 733846 59.47 62.09
BAY 321270 800172 66.08 72.17
COL 435666 1057066 96.44 100.48
FLA 1070376 2712798 238.27 257.97
NW 1207945 2840208 282.40 328.19
NE 1524453 3897636 407.42 457.07

CAL 1890815 4657742 469.54 544.74
LKS 2758119 6885658 731.10 836.44
E 3598623 8778114 1042.63 1241.10
W 6262104 15248146 1988.49 2401.79

CTR 14081816 34292496 8934.93 9906.62

Table 4. Query times (ms) for the DIMACS core experiment
(Opteron 240, 2.4 GHz, Linux 2.6.14, gcc 3.3.5, 64bit)

it is worst for the travel time metric (relative to other edges, travel time along a
ferry connection is worse than distance).

In general, the space-efficiency of our approach improves with growing network
size, the reason for that being that there is only little correlation between the num-
ber of transit nodes necessary for a 128×128 grid and the size of the respective road
network. In fact the number of transit nodes can be even larger for subnetworks if
they exhibit a worse canalizing property or the respective subnetwork covers more
area of the square grid area (as observed for some subnetworks of the US). For
amortizing the cost of storing the all-pairs distance table over the transit nodes,
a large network size is beneficial. In particular, if the complete road network of
the whole world was available, the per-node space requirement to store a transit
node data structure of the same granularity would be considerably lower than for
the US road network and still the same fraction of queries could be processed via a
few table lookups. In that case one could probably even afford to create and store
transit nodes based on a 512× 512 grid which would resolve 99.8% of all queries by
fast table-lookups.

5.3. Graphical User Interface. We have gone to quite some pain to im-
plement a relatively comfortable graphical user interface (GUI) for displaying our
road networks plus a number of additional elements. The GUI is implemented in
C++ using the gtkmm library, which gives instant response times for dragging and
zooming also for large road networks like that of the US. The GUI runs in its own
thread, so that user and redraw events can be interleaved with computation and
other code.

The GUI supports seamless dragging and zooming with the mouse (wheel), as
in tools like Google Maps. This is very convenient for navigating in a large network
quickly, but that was also the part that cost us the most work. The graph has to be
divided into relatively small chunks, and only those chunks must be drawn which
are actually visible from the current perspective and position. Also, there have to
be priorities between edges, because always drawing all edges tends to clutter up
the display and is an efficiency problem, too. The GUI also supports the drawing

189191189

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

16 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC

graph metric grid #tr.nodes closest query time preproc.

USA time 128x128 10 084 14 17.8 µs 7 h
USA dist 128x128 31 536 36 69.4 µs 9 h
USA unit 128x128 17 699 22 30.3 µs 9 h
BAY time 128x128 10 077 8 9.1 µs 20 min
BAY dist 128x128 13 269 13 11.6 µs 20 min
BAY unit 128x128 10 314 9 9.2 µs 20 min
CAL time 128x128 15 087 9 8.9 µs 30 min
CAL dist 128x128 21 230 16 16.0 µs 30 min
CAL unit 128x128 15 747 11 10.6 µs 30 min
E time 128x128 10 477 12 12.2 µs 1h
E dist 128x128 23 842 26 46.0 µs 2h
E unit 128x128 13 915 15 19.0 µs 1h
FLA time 128x128 6 248 9 7.8 µs 10 min
FLA dist 128x128 9 937 14 12.3 µs 10 min
FLA unit 128x128 6 404 9 7.7 µs 10 min
LKS time 128x128 7 447 12 12.2 µs 30 min
LKS dist 128x128 20 222 30 46.1 µs 1h
LKS unit 128x128 10 257 16 17.5 µs 1h
NE time 128x128 11 542 11 11.1 µs 20 min
NE dist 128x128 22 937 23 28.0 µs 40 min
NE unit 128x128 13 675 13 13.1 µs 25 min
NW time 128x128 19 429 10 10.2 µs 30 min
NW dist 128x128 23 963 15 14.8 µs 35 min
NW unit 128x128 19 096 11 11.3 µs 25 min
NY time 128x128 19 133 12 10.1 µs 10 min
NY dist 128x128 24 435 15 14.3 µs 15 min
NY unit 128x128 18 598 12 10.3 µs 10 min
W time 128x128 19 107 10 10.6 µs 2h
W dist 128x128 36 214 19 22.8 µs 2h
W unit 128x128 25 554 14 15.2 µs 1h
CTR time 128x128 24 540 14 17.5 µs 6h
CTR dist 64x64 24 359 39 88.2 µs 12 h
CTR unit 128x128 40 282 20 32.0 µs 7.5h
COL time 128x128 10 502 9 7.0 µs 5 min
COL dist 128x128 13 199 14 11.5 µs 10 min
COL unit 128x128 10 686 10 7.9 µs 5 min

Table 5. Results for (sub)networks of the US road network with
three kinds of edge lengths: travel time, distance along the corre-
sponding road segment, and unit length.

of custom objects, like cross hairs (to visualize important locations), arrows along
roads (to visualize something like edge signs), etc.

6. Conclusions

Transit nodes are a simple, yet powerful idea: they reduce the shortest-path
computation for all but a small fraction of local queries to a few table lookups. In
this paper we have focused on presenting this idea and giving a simple geometric
algorithm realizing it.

190192190

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

ULTRAFAST SHORTEST-PATH QUERIES VIA TRANSIT NODES 17

graph metric grid #tr.nodes closest query time preproc.

Europe time 128x128 10 394 14 13 µs 58h
Europe dist 128x128 20 126 38 56 µs 29h
Europe unit 128x128 7 708 14 12 µs 17h

Table 6. Results for the road network of Western Europe (undi-
rected, including ferry connections).

Figure 5. Screenshot of our interactive graphical user interface.

The algorithms in this paper work for undirected graphs. A generalization to
directed graphs is not trivial but feasible. During the construction of the transit
nodes one would have to distinguish between ”incoming transit nodes”, i.e., transit
nodes that are visited by long paths ending in some node, and ”outgoing transit
nodes”, i.e., transit nodes that are visited by long paths starting in some node. This
can be taken care of by considering the reverse network during the construction
step of the transit nodes. Of course, then the distance table is also not symmetric
anymore and nodes would have to store ”incoming” and ”outgoing distances” to
their closest transit nodes. The highway hierarchies from Sanders and Schultes, in
particular their combination with the transit node idea [16], also work for directed
graphs.

A more difficult open problem is how to design a data structure that yields
similarly fast query times as our data structure but at the same time allows dynamic
changes in the graph, like an increase of a few edge lengths due to a traffic jam.

191193191

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

18 HOLGER BAST, STEFAN FUNKE, AND DOMAGOJ MATIJEVIC

Two solutions have recently been proposed in [4] and [17]; however, these do not
achieve the ultrafast processing times reported in this paper.

Acknowledgements

We are grateful to the anonymous referees, especially one of them, for an ex-
tremely careful proof reading job and many constructive comments, which helped
a lot in making the paper more precise and more readable.

References
[1] The 9th DIMACS Implementation Challenge: Shortest Paths;

http://www.dis.uniroma1.it/∼challenge9/.
[2] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes. In transit to constant time

shortest-path queries in road networks. In 9th Workshop on Algorithm Engineering and
Experiments (ALENEX’07), 2007.

[3] D. Delling, M. Holzer, K. Müller, F. Schulz, and D. Wagner. High-performance multi-level
graphs. In DIMACS Implementation Challenge Shortest Paths, 2006. An updated version of
the paper appears in this book.

[4] D. Delling and D. Wagner. Landmark-based routing in dynamic graphs. In 6th Workshop on
Experimental Algorithms (WEA’07), pages 52–65, 2007.

[5] E. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

[6] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network opti-
mization algorithms. Journal of the ACM, 34(3):596–615, 1987.

[7] A. Goldberg and C. Harrelson. Computing the shortest path: A∗ search meets graph theory.
In 16th Symposium on Discrete Algorithms (SODA’05), pages 156–165, 2005.

[8] A. Goldberg, H. Kaplan, and R. Werneck. Reach for A∗: Efficient point-to-point shortest path
algorithms. In 8th Workshop on Algorithm Engineering and Experiments (ALENEX’06),
2006.

[9] R. Gutman. Reach-based routing: A new approach to shortest path algorithms optimized for
road networks. In 6th Workshop on Algorithm Engineering and Experiments (ALENEX’04),
2004.

[10] E. Köhler, R. H. Möhring, and H. Schilling. Acceleration of shortest path and constrained
shortest path computation. In 4th Workshop on Experimental and Efficient Algorithm
(WEA’05), pages 126–138, 2005.

[11] U. Lauther. An extremely fast, exact algorithm for finding shortest paths in static networks
with geographical background. In Münster GI-Tage, 2004.

[12] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner, and T. Willhalm. Partitioning graphs
to speed up dijkstra’s algorithm. In 4th Workshop on Experimental and Efficient Algorithm
(WEA’05), pages 189–202, 2005.

[13] K. Müller. Design and implementation of an efficient hierarchical speed-up technique for
computation of exact shortest paths in graphs. Master’s thesis, University of Karlsruhe, 2006.

[14] P. Sanders and D. Schultes. Highway hierarchies hasten exact shortest path queries. In 13th
European Symposium on Algorithms (ESA’05), pages 568–579, 2005.

[15] P. Sanders and D. Schultes. Engineering highway hierarchies. In 14th European Symposium
on Algorithms (ESA’06), pages 804–816, 2006.

[16] P. Sanders and D. Schultes. Robust, almost constant time shortest-path queries on road
networks. In DIMACS Implementation Challenge Shortest Paths, 2006. An updated version
of the paper appears in this book.

[17] D. Schultes and P. Sanders. Dynamic highway-node routing. In 6th Workshop on Experimen-
tal Algorithms (WEA’07), pages 66–79, 2007.

[18] M. Thorup and U. Zwick. Approximate distance oracles. Journal of the ACM, 51(1):1–24,
2005.

Max-Planck-Institute for Informatics, Saarbrücken, Germany
E-mail address: bast@mpi-inf.mpg.de

Max-Planck-Institute for Informatics, Saarbrücken, Germany
E-mail address: funke@mpi-inf.mpg.de

Max-Planck-Institute for Informatics, Saarbrücken, Germany
E-mail address: dmatijev@mpi-inf.mpg.de

192194192

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science

Robust, Almost Constant Time Shortest-Path Queries in
Road Networks

Peter Sanders and Dominik Schultes

Abstract. When you drive to somewhere ‘far away’, you will leave your cur-
rent location via one of only a few ‘important’ traffic junctions. Recently, other
research groups and we have largely independently developed this informal
observation into transit-node routing, a technique for reducing quickest-path
queries in road networks to a small number of table lookups. The contribution
of our paper is twofold. First, we present a generic framework for transit-node
routing that allows almost constant time routing for both global and local
queries. Second, we develop a highly tuned implementation using highway hi-
erarchies and highway-node routing. For the road maps of Western Europe
and the United States, we obtain query times that are more than one million
times faster than the best known algorithm for general networks. We also
explain how to compute complete descriptions of shortest paths (and not just
their lengths) very efficiently.

1. Introduction

Computing an optimal route in a road network between specified source and
target nodes (i.e., places/intersections) is one of the showpieces of real-world ap-
plications of algorithmics. Besides the omnipresent application of car navigation
systems and internet route planners, even faster route planning is needed for massive
traffic simulations and optimisations in logistics systems. Beyond mere computa-
tional efficiency, the methods presented here also give quantitative insight into the
structure of road networks and justify the way humans do route planning.

The classical algorithm for route planning—Dijkstra’s algorithm [8]—iteratively
visits all nodes that are closer to the source node than the target node before reach-
ing the target. On road networks for a subcontinent like Western Europe or the
USA, this takes about five seconds on a state-of-the-art workstation. Since this is
too slow for many applications, commercial systems use heuristics that do not guar-
antee optimal routes. Therefore, there has been considerable interest in speedup
techniques for computing optimal routes. In this paper, we present transit-node

2000 Mathematics Subject Classification. Primary 68R10; Secondary 90B20.
Key words and phrases. Shortest paths, routing, graph, road network, speed-up technique,

hierarchy, preprocessing.
Partially supported by DFG grant SA 933/1-3.

c⃝2008 American Mathematical Society

1

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

193

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

195

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

193

https://doi.org/10.1090/dimacs/074/08

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

2 P. SANDERS AND D. SCHULTES

routing, an approach that provides almost constant query times for road networks
of any size.

1.1. Central Ideas. Transit-node routing is based on a simple observation
intuitively used by humans: When you start from a source node s and drive to
somewhere ‘far away’, you will leave your current location via one of only a few
‘important’ traffic junctions, called (forward) access nodes

−→
A (s). An analogous

argument applies to the target t, i.e., the target is reached from one of only a few
backward access nodes

←−
A (t). Moreover, the union of all forward and backward

access nodes of all nodes, called transit-node set T , is rather small. This implies
that for each node the distances to/from its forward/backward access nodes and
for each transit-node pair (u, v) the distance between u and v can be stored. For
given source and target nodes s and t, the length of the shortest path that passes
at least one transit node is given by

dT (s, t) = min{d(s, u) + d(u, v) + d(v, t) | u ∈ −→
A (s), v ∈ ←−

A (t)}.
Note that all involved distances d(s, u), d(u, v), and d(v, t) can be directly looked
up in the precomputed data structures. As a final ingredient, a locality filter L :
V × V → {true, false} is needed that decides whether given nodes s and t are
too close to travel via a transit node. L has to fulfil the property that ¬L(s, t)
implies d(s, t) = dT (s, t). Note that in general the converse need not hold since this
might hinder an efficient realisation of the locality filter. Thus, false positives, i.e.,
“L(s, t) ∧ d(s, t) = dT (s, t)”, may occur.

The following algorithm can be used to compute d(s, t):
1 if ¬L(s, t) then compute and return dT (s, t);
2 else use any other routing algorithm.

Figure 1 gives a schematic representation of transit-node routing, while Figure 2
(first published in [4]) gives a real-world example.

Knowing the length of the shortest path, a complete description of it can be
efficiently derived using iterative table lookups and precomputed representations of
paths between transit nodes. Provided that the above observation holds and that
the percentage of false positives is low, the above algorithm is very efficient since
a large fraction of all queries can be handled in Line 1, dT (s, t) can be computed
using only a few table lookups, and source and target of the remaining queries in
Line 2 are quite close. In fact, the remaining queries can be further accelerated by
introducing additional levels of transit-node routing.

1.2. Related Work.
1.2.1. Bidirectional Search. A classical technique is bidirectional search which

simultaneously searches forwards from s and backwards from t until the search
frontiers meet. Many more advanced speedup techniques (including ours) use bidi-
rectional search as an ingredient.

1.2.2. Highway Hierarchies. Commercial systems use information on road cat-
egories to speed up search. ‘Sufficiently far away’ from source and target, only
‘important’ roads are used. This requires manual tuning of the data and a delicate
tradeoff between computation speed and suboptimality of the computed routes. In
previous papers [21, 22] we introduced the idea to automatically compute highway
hierarchies that yield optimal routes uncompromisingly quickly. The basic idea is
to define a neighbourhood for each node to consist of its H closest neighbours. Now

194196194

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

ALMOST CONSTANT TIME SHORTEST-PATH QUERIES IN ROAD NETWORKS 3

s t

access node

access nodedistances between
transit nodes

Figure 1. Schematic representation of transit-node routing.

Figure 2. Finding the optimal travel time between two points
(flags) somewhere between Saarbrücken and Karlsruhe amounts to
retrieving the two times four access nodes (diamonds), performing
16 table lookups between all pairs of access nodes, and checking
that the two disks defining the locality filter do not overlap. Transit
nodes that do not belong to the access-node sets of the selected
source and target nodes are drawn as small squares.

an edge (u, v) is a highway edge if there is some shortest path ⟨s, . . . , u, v, . . . t⟩ such
that neither u is in the neighbourhood of t nor v is in the neighbourhood of s. This
defines the first level of the highway hierarchy. After contracting the network to
remove low degree nodes (which yields the so-called core of the highway network),
the same procedure (identifying the highway network at the next level followed by
contraction) is applied recursively. We obtain a hierarchy. The query algorithm
is bidirectional Dijkstra with restrictions on relaxing certain edges. Roughly, far
away from source or target, only high-level edges need to be considered. Highway
hierarchies are successful (several thousand times faster than Dijkstra) because
of the property of real-world road networks that for constant neighbourhood size
H, the levels of the hierarchy shrink geometrically. One can view this as a self-
similarity—each level of the hierarchy looks similar to the original network, just
a constant factor smaller. Under certain (somewhat optimistic) assumptions, this

195197195

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

4 P. SANDERS AND D. SCHULTES

self-similarity yields logarithmic query time in contrast to the superlinear query
time of Dijkstra’s algorithm.

1.2.3. Reach-Based Routing. Comparable effects can be achieved with the closely
related technique of reach-based routing. Let R(v) := maxs,t∈V Rst(v) denote the
reach of node v, where Rst(v) := min(d(s, v), d(v, t)). Gutman [13] observed that
a shortest-path search can be pruned at nodes with a reach too small to get to
source or target from there. The basic approach was considerably strengthened by
Goldberg et al. [10].

1.2.4. Using Distance Tables. In [22] transit-node routing is almost antici-
pated. Precomputed all-to-all distances on some sufficiently high level—say K—
of the highway hierarchy are used to terminate the local searches when they as-
cended far enough in the hierarchy. The main differences to transit-node routing
is that access nodes are computed online and that only distances within level K of
the highway hierarchy (rather than distances in the underlying graph) are precom-
puted. The latter leads to considerably larger sets of access nodes (≈ 55 instead
of 10) that made precomputing them appear much less attractive as it actually is.
It was also not addressed, how to decide when the distance given by the distance
table is the actual shortest-path distance.

1.2.5. Separators. Perhaps the most well known property of road networks is
that they are almost planar, i.e, techniques developed for planar graphs will often
also work for road networks. Queries accurate within a factor (1+ϵ) can be answered
in near constant time using O((n log n)/ϵ) space and preprocessing time [27]. Using
O(n log2 n) space and preprocessing time, query time O(

√
n log2 n) can be achieved

[9, 15] for directed planar graphs without negative cycles. A previous practical
approach is the separator-based multi-level method [26]. The idea is to partition
the graph into small components by removing a (hopefully small) set of separator
nodes. These separator nodes together with edges representing precomputed paths
between them constitute the next level of the graph.

1.2.6. Highway-Node Routing. [25, 24] is a generalisation of the separator-
based multi-level method. It computes for a given sequence of node sets V =:
V0 ⊇ V1 ⊇ . . . ⊇ VL (which do not have to form separators) a hierarchy of overlay
graphs : the level-ℓ overlay graph consists of the node set Vℓ and an edge set Eℓ

that ensures the property that all distances between nodes in Vℓ are equal to the
corresponding distances in the underlying graph Gℓ−1. A bidirectional query algo-
rithm takes advantage of the multi-level overlay graph by never moving downwards
in the hierarchy—by that means, the search space size is greatly reduced.

1.2.7. Separator-Based Transit-Node Routing. Using more space and prepro-
cessing time, separators can be used for transit-node routing. The separator nodes
become transit nodes and the access nodes are the border nodes of the component
of v. Local queries are those within a single component. Another layer of transit
nodes can be added by recursively finding separators of each component. Inde-
pendently from our work, Müller et al. have essentially developed this approach,
using different terminology1. Note that their first results [19] were published before
any other implementation of transit-node routing. However, it took some time till

1We chose to interpret their work using the transit-node terminology in order to point out
similarities to our work.

196198196

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

ALMOST CONSTANT TIME SHORTEST-PATH QUERIES IN ROAD NETWORKS 5

reliable measurement data were available2 [6]. An interesting difference to generic
transit-node routing is that the required information for routing between any pair
of components is arranged together. This takes additional space but has the ad-
vantage that the information can be accessed more cache efficiently (it also allows
subsequent space optimisations).

Although separators of road networks have much better properties than the
worst case bounds for planar graphs would suggest, separator-based transit-node
routing needs about 4–8 times as many access nodes as our scheme (depending on
the used metric) leading to much higher preprocessing times. The main reason
for the difference in number of access nodes is that the separator approach does
not take the ‘sufficiently far away’ criterion into account that is so important for
reducing the number of access nodes in our approach, in particular in case of the
travel time metric.

1.2.8. Grid-Based Transit-Node Routing. Bast, Funke and Matijevic proposed
the transit-node routing approach based on a geometric grid [2]: The network is
subdivided into uniform cells. Border nodes of these cells that are needed for ‘long-
distance’ travel are used as access nodes. The union of all access nodes forms the
transit-node set. As a locality filter it is sufficient to check whether source and
target lie a certain number of cells apart.

They were the first to explicitly formulate the central observations and con-
cepts of transit-node routing3. Our work was completed a few weeks later and
has been accomplished largely independently from theirs except for the fact that
their observation that about ten access nodes per node were sufficient motivated
us to rethink our access node definition leading to a considerable reduction from
around 55 to about ten, which made an implementation for large graphs much
more practicable, accelerated our development process significantly and yielded
very good query times. While most algorithms described in [2] cater to the specific
grid-based approach, we prefer a more generic notion of transit-node routing and
regard our implementation only as one possible (and very successful) instantiation
of transit-node routing.

In a joint paper [3], both implementations are contrasted. One noticeable dif-
ference is that we deal with all types of queries in a highly efficient way, while the
grid-based variant only answers non-local queries very quickly (which, admittedly,
constitute a very large fraction of all queries if source and target are picked uni-
formly at random). The grid-based variant is designed for comparatively modest
memory requirements, while our implementation has significantly smaller prepro-
cessing and average query times. Note that our implementation would need con-
siderably less memory if we concentrated only on undirected graphs and non-local
queries as it is done in the grid-based implementation.

1.2.9. Computing Distance Tables. For given source and target node sets, a ta-
ble containing the distances between all source-target node pairs can be computed

2In their implementation, the preprocessed data is stored on a hard disk. Using a more
compact representation, the data would fit into main memory. Therefore, when measuring query
times, it is justifiable to assume that the required data was in main memory. This situation makes
performing experiments more difficult.

3In particular, they introduced the term ‘transit node’. In a joint paper [3], we adopted some
formulations and terms from [2] to describe the generic approach. For the sake of simplicity, we
decided to keep these phrases in this paper.

197199197

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

6 P. SANDERS AND D. SCHULTES

very efficiently using a many-to-many shortest path algorithm [16, 24]. The devel-
opment of this algorithm was another step on the way from the highway hierarchies
enhanced by a distance table to transit-node routing since it allowed to compute
distances in the original graph between all level-K nodes of the highway hierarchy.

1.2.10. Geometry. A tempting property of road networks is that nodes have a
geographic position. Even if this information is not available, equally useful coor-
dinates can be synthesised [30]. Interestingly, so far, successful geometric speedup
techniques have always been beaten by related non-geometric techniques (e.g. [14]
by [11, 12] or [29] by [17, 18]). We initially thought that our approach out-
performing the grid-based approach to transit-node routing would turn out to be
another instance of this phenomenon. However, currently it looks like we need a
geometric locality filter for good performance. Arriving at this observation was our
final step to a fully functional version of transit-node routing.

1.2.11. Highway-Hierarchy-Based Transit-Node Routing. Our first implemen-
tation of transit-node routing [23, 4, 3] was based on highway hierarchies. It is
very similar to the implementation presented in Section 4 of this paper. The main
difference is the fact that we now use highway-node routing instead of highway
hierarchies, which leads to considerably smaller preprocessing times.

1.2.12. Goal Direction. Another interesting property of road networks is that
they allow effective goal-directed search using A∗ search [14]: lower bounds define
a vertex potential that directs search towards the target. This approach was re-
cently shown to be very effective if lower bounds are computed using precomputed
shortest-path distances to a carefully selected set of about 20 Landmark nodes
[11, 12] using the Triangle inequality (ALT). In combination with reach-based
routing, this is one of the fastest known speedup techniques [10]. An interesting
observation is that in transit-node routing, the access nodes could be used as land-
marks (with aid of the distance tables). The resulting lower bound could be used
for distinguishing local and global queries or for guiding local search.

1.3. Our Contributions. We have developed transit-node routing largely in-
dependently of the related work described in Sections 1.2.7 and 1.2.8—except for
the influences already mentioned in the respective sections. One unique contribu-
tion of our work is that we introduce transit-node routing as a generic framework,
which covers all existing implementations.

Furthermore, our framework extends transit-node routing to a hierarchical ap-
proach that consists of several levels: each level can have its own access nodes, an
(only partly filled) distance table, and a locality filter. This way, all types of queries
can be answered very efficiently. Finally, our concrete implementation outperforms
the other implementations in most respects.

1.4. Outline. In Section 2, we present the key concepts of transit-node rout-
ing in a generic way. In Section 3, we instantiate the algorithm from the previous
section by giving concrete access mappings, while a concrete choice of the transit-
node sets is still not specified. Note that other instantiations of the generic algo-
rithm that deviate from this section are possible (see Section 6.1). In Section 4, we
give a concrete specialisation of the abstract instantiation of the previous section,
determining transit-node sets using highway hierarchies (Section 1.2.2), perform-
ing the preprocessing using highway-node routing (Section 1.2.6) and the many-
to-many algorithm based on highway-node routing (Section 1.2.9), and applying

198200198

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

ALMOST CONSTANT TIME SHORTEST-PATH QUERIES IN ROAD NETWORKS 7

geometric circles to define the locality filters. Note that many other reasonable
concrete instantiations are conceivable, which is the reason why we decided to
specialise the generic algorithm from Section 2 in two steps instead of merging
Sections 3 and 4. Experiments reported in Section 5 give average query times of
about 4 µs and query times around 20 µs for slowest category of queries. Our main
focus is on computing quickest-path4 lengths. However, we also give some results
on outputting a complete description of the quickest path and on computing travel
distances.

2. A Generic Algorithm

For a given graph G = (V, E), we consider L + 1 sets

V =: T0 ⊇ T1 ⊇ . . . ⊇ TL

of transit nodes.5 Moreover, for any level ℓ, 0 ≤ ℓ ≤ L, we consider

• a forward and a backward access mapping
−→
A ℓ : V → 2Tℓ and

←−
A ℓ : V →

2Tℓ , which map a node to its forward and backward access nodes, respec-
tively,

• a locality filter Lℓ : V × V → {true, false}, which decides whether the
distance between two nodes can be determined using only levels ≥ ℓ of
transit-node routing,

• a distance table Dℓ : Tℓ × Tℓ → R+
0 ∪ {∞}, which contains the correct

distances between all node pairs from Tℓ×Tℓ except for the distances that
can be computed using higher levels of transit-node routing,

• the distance dℓ : V × V → R+
0 ∪ {∞} that is obtained using level ℓ of

transit-node routing, i.e., considering all access nodes to level ℓ and the
distances between all pairs of these access nodes, and

• the minimal distance d≥ℓ : V ×V → R+
0 ∪{∞} that can be obtained using

all levels ≥ ℓ.
To avoid some case distinctions, we introduce the following definitions:

• TL+1 := ∅,
• −→

A 0(u) :=
←−
A 0(u) := {u},

• d≥L+1(s, t) := ∞,
• min ∅ := ∞.

Now, for any level ℓ, 0 ≤ ℓ ≤ L, we give a precise definition of the three distance
functions Dℓ, dℓ, and d≥ℓ:

(1) Dℓ(s, t) :=
{

d(s, t) if d(s, t) < d≥ℓ+1(s, t)
∞ otherwise

(2) dℓ(s, t) :=min{d(s, u)+Dℓ(u, v)+d(v, t) | u ∈ −→
A ℓ(s), v ∈ ←−

A ℓ(t)}

(3) d≥ℓ(s, t) := min
k≥ℓ

dk(s, t)

4Note that we often use the term ‘shortest path’ as a synonym for ‘quickest path’.
5Note that in earlier publications [23, 3, 4], the order of the levels (which we called ‘layers’

at that time) was reversed: the topmost transit-node set was denoted by T1, now it is denoted by
TL. We have changed the order to blend well with other hierarchical approaches.

199201199

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

8 P. SANDERS AND D. SCHULTES

Note that the following equation is equivalent to (3):

(4) d≥ℓ(s, t) = min(dℓ(s, t), min
k≥ℓ+1

dk(s, t))

Obviously, all these distances are upper bounds on the actual shortest-path length,
as stated in the following proposition:

Proposition 1. Dℓ(s, t) ≥ d(s, t), dℓ(s, t) ≥ d(s, t), d≥ℓ(s, t) ≥ d(s, t).

We assume that all distances to/from forward/backward access nodes and all
distances Dℓ(s, t) have been precomputed. We can show that we always obtain the
correct shortest-path length when we use all levels of transit-node routing:

Lemma 1. d≥0(s, t) = d(s, t).

Proof. Due to (2), we have d0(s, t) = d(s, s)+D0(s, t)+d(t, t) since
−→
A 0(s) =

{s} and
←−
A 0(t) = {t}. If d(s, t) < d≥1(s, t), we have d0(s, t) = D0(s, t) = d(s, t)

(due to (1)) and thus, d≥0(s, t) = min(d0(s, t), d≥1(s, t)) = d(s, t) by (4) and Propo-
sition 1. Otherwise (d(s, t) = d≥1(s, t)), we have d0(s, t) = D0(s, t) = ∞ (due to
(1)) and, again, d≥0(s, t) = min(d0(s, t), d≥1(s, t)) = d(s, t). !

Of course, using all levels is comparatively expensive. Therefore, we want to
avoid accessing levels that are not needed to get the correct result. For the decision
making we want to employ the already introduced locality filters. We require that

(5) ¬Lℓ(s, t) →
(
d(s, t) = d≥ℓ(s, t)

)
.

Then, we can use the transit-node routing algorithm as specified in Figure 3 to
efficiently compute the length of a shortest path from a given source node s to a
given target node t.

input : source node s and target node t
output : distance d(s, t)

1 d′ := ∞;
2 for ℓ := L downto 0 do
3 d′ := min(d′, dℓ(s, t));
4 assert d′ = d≥ℓ(s, t);
5 if ¬Lℓ(s, t) then break;
6 return d′;

Figure 3. The transit-node routing algorithm.

Theorem 1. Transit-node routing is correct.

Proof. If the condition in Line 5 is fulfilled at some point, we return d′ =
d≥ℓ(s, t) = d(s, t) due to (5). Otherwise, we return d′ = d≥0(s, t) = d(s, t) according
to Lemma 1. !

Practical Remarks. In the distance tables Dℓ, it is sufficient to store only the
non-infinity entries explicitly. For this purpose, we can use a space-efficient static
hash table. Furthermore, as an alternative to precomputing the entries in D0, we
can use any other shortest-path algorithm to compute the distances D0 on-the-fly
when they are required.

200202200

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

ALMOST CONSTANT TIME SHORTEST-PATH QUERIES IN ROAD NETWORKS 9

3. An Abstract Instantiation

Covering-Paths Set. We consider a graph G = (V, E), a node subset V ′ ⊆ V ,
a node s ∈ V , and a set C ⊆ {⟨s, . . . , u⟩ | u ∈ V ′} of paths in G.

Definition 1. The set C is a covering-paths set of s w.r.t. V ′ if for any node
t ∈ V ′ that can be reached from s, there is a node u ∈ V ′ on some shortest s-t-path
P such that P |s→u ∈ C, i.e.,

P = ⟨s, . . . ,
∈V ′

︷︸︸︷
u︸ ︷︷ ︸

∈C

, . . . ,

∈V ′

︷︸︸︷
t ⟩.

Access Mapping. For a node s and a level ℓ, consider a set C of covering paths
of s w.r.t. Tℓ in G. (To obtain a very efficient algorithm, we might want to choose
a minimal covering-paths set.) Let

−→
A ℓ(s) := {v | P = ⟨s, . . . , v⟩ ∈ C}.

The backward access mapping is defined analogously, considering the reverse graph←−
G instead of G.

Locality Filter. An explicit representation of a level-ℓ locality filter (storing
n2 bits) would need too much space for large graphs. Therefore, we look for a
more space-efficient alternative. We want to identify node pairs (s, t) such that the
distance d(s, t) cannot be computed using transit-node routing in level ℓ or higher.
For each of these pairs, we pick one witness, a particular node p on a shortest s-
t-path. We make sure that both s and t memorise this witness p. Then, when we
want to evaluate Lℓ(s, t), we just have to check whether s and t share a common
witness. Note that this approach can lead to false positives, i.e., two nodes might
share a common witness although their distance actually can be computed using
transit-node routing in level ℓ or higher.

Beside paying attention to the memory requirements, we are also interested in
fast preprocessing times. Therefore, we introduce the concept of handing computed
data down from higher to lower levels: Let us consider some path

⟨s0, . . . , s1, . . . , p, . . . , t1, . . . , t0⟩

with s0, t0 ∈ T0 and s1, t1 ∈ T1. Moreover, let us assume that we already know that
d(s1, t1) cannot be computed using level 2 or higher. Thus, we have some witness p
and both s1 and t1 memorise this witness. Now, this witness is handed down from
s1 to s0 and from t1 to t0. An equivalent formulation is to say that s0 inherits the
witness p from s1. Now, if we want to decide whether d(s0, t0) can be determined
using level 2 or higher, the answer is ‘no’ since s0 and t0 share the common witness
p. Note that by this means, the number of false positives may increase.

In the following, we work out the formal details of these ideas. The level ℓ(u)
of a node u ∈ V is max{ℓ | u ∈ Tℓ}. Let us assume that we have some fixed
strategy that picks for any two connected nodes s and t one particular node p(s, t)
on one particular shortest s-t-path. We define forward and backward node sets−→
K ℓ : V → 2V and

←−
K ℓ : V → 2V in the following way: for any node s and any level

ℓ < ℓ(s) + 1,
−→
K ℓ(s) := ∅, for level ℓ = ℓ(s) + 1,

(6)
−→
K ℓ(s) := {p(s, t) | t ∈ V ∧ ℓ(s) = ℓ(t) ∧ d(s, t) < d≥ℓ(s, t)}

201203201

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

10 P. SANDERS AND D. SCHULTES

and for any level ℓ > ℓ(s) + 1,

(7)
−→
K ℓ(s) :=

⋃

u∈−→
A ℓ−1(s)

−→
K ℓ(u),

and analogously, for any node t and any level ℓ < ℓ(t) + 1,
←−
K ℓ(t) := ∅, for level

ℓ = ℓ(t) + 1,

(8)
←−
K ℓ(t) := {p(s, t) | s ∈ V ∧ ℓ(s) = ℓ(t) ∧ d(s, t) < d≥ℓ(s, t)}

and for any level ℓ > ℓ(t) + 1,

(9)
←−
K ℓ(t) :=

⋃

u∈←−
A ℓ−1(t)

←−
K ℓ(u).

Note that Equations 6 and 8 reflect the ‘witness’ idea, while Equations 7 and 9
reflect the ‘handing down’ idea.

Finally, we define the locality filter

(10) Lℓ(s, t) :=
∨

k≤ℓ

(−→
Kk(s) ∩←−

Kk(t) ̸= ∅
)

.

Lemma 2. Consider two nodes s and t with d(s, t) ̸= ∞. If and only if there
is some node u ∈ Tℓ on some shortest s-t-path P , then d≥ℓ(s, t) = d(s, t).

Proof. ⇐) We have d≥ℓ(s, t) = d(s, t). This implies, by (3) and (2), that
there is a level k ≥ ℓ, a node u ∈ −→

Ak(s), and a node v ∈ ←−
Ak(t) such that d(s, u) +

Dk(u, v) + d(v, t) = d(s, t). Due to Proposition 1, we have Dk(u, v) ≥ d(u, v). We
can conclude that u and v are nodes on a shortest s-t-path. Furthermore, we know
that u ∈ −→

Ak(s) ⊆ Tk ⊆ Tℓ.
⇒) We pick the maximum level k ≥ ℓ with the property that there is some node

from Tk on some shortest s-t-path P . Let u and v denote the first and the last node
from Tk on P , respectively. The case u = v is possible. According to the definitions
of the covering paths and the access mappings, there is a node u′ ∈ −→

A k(s) ⊆ Tk

on a shortest s-u-path
−→
P and a node v′ ∈ ←−

A k(t) ⊆ Tk on a shortest v-t-path
←−
P .

Consider the path

P ′ := ⟨

−→
P︷ ︸︸ ︷

s, . . . , u′, . . . , u, . . . ,

←−
P︷ ︸︸ ︷

v, . . . , v′, . . . , t⟩︸ ︷︷ ︸
P |u→v

,

which is a shortest s-t-path as well. According to (2), we have dk(s, t) ≤ d(s, u′) +
Dk(u′, v′)+d(v′, t). Due to our choice of k, we know that there is no node x ∈ Tk+1

on any shortest u′-v′-path Q—otherwise, the same node x would be on the shortest
s-t-path P ′|s→u′ ◦ Q ◦ P ′|v′→t. From the part of this lemma that has already
been proven, it follows that d(u′, v′) < d≥k+1(u′, v′). Thus, by (1), Dk(u′, v′) =
d(u′, v′) and, consequently, dk(s, t) ≤ d(s, u′) + Dk(u′, v′) + d(v′, t) = d(s, t). From
d≥ℓ(s, t) ≤ dk(s, t) ≤ d(s, t), it follows that d≥ℓ(s, t) = d(s, t) due to Proposition 1.

!

Lemma 3. The locality filter specified in Equation 10 fulfils Equation 5.

202204202

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

ALMOST CONSTANT TIME SHORTEST-PATH QUERIES IN ROAD NETWORKS 11

Proof. Trivial for d(s, t) = ∞ (due to Proposition 1). For d(s, t) ̸= ∞, we
want to show the contraposition of Equation 5 and therefore assume that d(s, t) ̸=
d≥ℓ(s, t). Let k be the maximum level such that d≥k−1(s, t) = d(s, t). Such a k must
exist due to Lemma 1. The choice of k implies k − 1 < ℓ, d≥k(s, t) ̸= d(s, t), and
dk−1(s, t) = d(s, t). Hence, there is some shortest s-t-path with nodes u′ ∈ −→

Ak−1(s)
and v′ ∈ ←−

Ak−1(t) on it. If s ∈ Tk−1, we set u := s; otherwise, u := u′. Analogously,
if t ∈ Tk−1, we set v := t; otherwise, v := v′. In any case, we have u, v ∈ Tk−1.

Lemma 2 and d≥k(s, t) ̸= d(s, t) imply that there is no shortest s-t-path that
contains a node from Tk. In particular, u, v ̸∈ Tk and d(u, v) < d≥k(u, v)—
otherwise, there would be a shortest u-v-path containing a node x ∈ Tk and thus,
also a shortest s-t-path containing x. Since u, v ∈ Tk−1 \ Tk, we have ℓ(u) = ℓ(v) =
k− 1. We can conclude that p(u, v) ∈ −→

Kk(u)∩←−
Kk(v) due to Equations 6 and 8. If

s ̸∈ Tk−1, we have ℓ(s) < k−1, which implies p(u, v) ∈ −→
Kk(s) due to Equation 7: s

inherits p(u, v) from u = u′. Otherwise, we have s = u so that p(u, v) ∈ −→
Kk(s) holds

as well. An analogous argument applies to
←−
Kk(t). Thus, p(u, v) ∈ −→

Kk(s) ∩←−
Kk(t).

Since k ≤ ℓ, Lℓ(s, t) = true according to (10). !

3.1. Computing Access Nodes. Here, we describe how to determine the
forward access nodes to the topmost level L. Analogous methods can be applied
to compute forward and backward access nodes to different levels. From each node
u ∈ V , we perform a Dijkstra search in G in order to determine the covering-paths
set w.r.t. TL. We take each endpoint of a covering path as access node of u. In
other words, we perform a Dijkstra search that can be stopped as soon as each path
in the current partial shortest-path tree from the root u to a node v in the priority
queue contains at least one settled node from TL; then, we can take on each branch
the node v ∈ TL closest to u—these nodes are the endpoints of a covering-paths
set and, thus, they form the access-node set of u. Applied naively, this approach is
rather inefficient. However, we can use two tricks to make it efficient.

First, we can prune the search at nodes from TL. However, in general, this
variant does not yield a minimal access-node set, which would be preferable. For-
tunately, the resulting set can be easily reduced if the distances between all transit
nodes are already known: if an access node y can be reached from u via another
access node w on a shortest path, we can discard y. Figure 4 gives an example.

Second, we can only determine the access node sets
−→
AL(v) for all nodes v ∈

TL−1 and the sets
−→
AL−1(u) for all nodes u ∈ V . Then, for each node u ∈ V , we

can compute
−→
AL(u) :=

⋃

v∈−→
AL−1(u)

−→
AL(v).

Again, we can use the reduction technique to remove unnecessary elements from
the set union. The idea to hand access nodes down can be extended to work across
more than one level:

(11)
−→
AL(u0) :=

⋃

u1∈
−→
A1(u0)

⋃

u2∈
−→
A2(u1)

· · ·
⋃

uL−1∈
−→
AL−1(uL−2)

−→
AL(uL−1).

Lemma 4. Handing down access nodes is correct, i.e., the resulting access-node
set complies with the specification at the beginning of Section 3.

203205203

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

12 P. SANDERS AND D. SCHULTES

u
w

y

x

v

Figure 4. Example for the computation of access nodes including
the first, but not the second ‘trick’. Edge weights correspond to
the lengths of the drawn line segments. The nodes v, w, x, and y
belong to TL. The search is started from u. All thick edges belong
to the search tree. All depicted nodes from TL are endpoints of
covering paths. However, y can be removed from this set since the
path from u via w to y turns out to be shorter than the path that
has been found. Thus, u has only three access nodes.

Proof. We say that an access-node set
−→
A ℓ(u) is proper (i.e., it complies with

the specification at the beginning of Section 3) iff there is a covering-paths set Cℓ(u)
of u w.r.t. Tℓ such that

−→
A ℓ(u) = {v | P = ⟨u, . . . , v⟩ ∈ Cℓ(u)}.

Assume that for some node u and some level ℓ > 0, we have a proper access-
node set

−→
A ℓ−1(u) (and thus, a corresponding covering-paths set Cℓ−1(u)) and that

for each node v ∈ −→
A ℓ−1(u), we have a proper access-node set

−→
A ℓ(v) (and thus, a

corresponding covering-paths set Cℓ(v)). Let
−→
A ℓ(u) :=

⋃

v∈−→
A ℓ−1(u)

−→
A ℓ(v)

and
Cℓ(u) := {P = ⟨u, . . . , v⟩ | P ∈ U(G) ∧ v ∈ −→

A ℓ(u)},
where U(G) denotes some fixed set of canonical shortest paths that contains for
each connected pair (s, t) ∈ V × V exactly one unique shortest path from s to t
such that P = ⟨s, . . . , s′, . . . , t′, . . . , t⟩ ∈ U(G) implies that P |s′→t′ ∈ U(G). We
have to prove that

−→
A ℓ(u) is a proper access-node set. For that, it is sufficient to

show that Cℓ(u) is a covering-paths set of u w.r.t. Tℓ.
Consider any node t ∈ Tℓ that can be reached from u. We have to show that

there is a node x ∈ Tℓ on some shortest u-t-path P such that P |u→x ∈ Cℓ(u).
Since t ∈ Tℓ ⊆ Tℓ−1, there is a node y on some shortest u-t-path P ′ such that

P ′|u→y ∈ Cℓ−1(u) and thus, y ∈ −→
A ℓ−1(u). Similarly, since t ∈ Tℓ, there is a node x

on some shortest y-t-path P ′′ such that P ′′|y→x ∈ Cℓ(y) and thus, x ∈ −→
A ℓ(y) ⊆ Tℓ.

Let P c ∈ U(G) denote the canonical shortest u-x-path. Set P := P c◦P ′′|x→t. Note
that P is a shortest u-t-path. The definition of

−→
A ℓ(u) implies that x ∈ −→

A ℓ(u).
Hence, P |u→x ∈ Cℓ(u).

By induction, this proof can be extended to multiple levels. !

204206204

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

ALMOST CONSTANT TIME SHORTEST-PATH QUERIES IN ROAD NETWORKS 13

3.2. Computing Distance Tables. To compute an all-pairs distance table,
we can use the many-to-many algorithm mentioned in Section 1.2.9. Roughly, this
algorithm first performs independent backward searches from all transit nodes and
stores the gathered distance information in buckets associated with each node in
the search space. Then, a forward search from each transit node scans all buckets
it encounters and uses the resulting path length information to update a table of
tentative distances.

For the topmost table DL (where we always have DL(s, t) = d(s, t)), this
procedure can be applied directly. For all other tables Dℓ, ℓ < L, we have to
respect that an explicit entry Dℓ(s, t) is only required if d(s, t) < d≥ℓ+1(s, t)—all
other entries are ∞ and do not have to be explicitly stored. In order to be able
to check this condition, the preprocessing of transit-node routing is done in a top-
down fashion, i.e., we first compute the access nodes and the distance table for the
topmost level before constructing level L − 1, and so on. Thus, when we compute
the table Dℓ, we can already access d≥ℓ+1(s, t).

A naive application of the many-to-many algorithm is prohibitive for lower
levels (probably even for level L − 1). Fortunately, there is one simple trick based
on Lemma 2: when performing backward and forward searches in order to compute
table Dℓ, ℓ < L, we do not have to relax edges out of nodes u ∈ Tℓ+1. By this
measure, we only might miss shortest s-t-paths with a node from Tℓ+1 on them.
However, due to Lemma 2, we already know that in these cases d≥ℓ+1(s, t) = d(s, t)
so that Dℓ(s, t) = ∞. Note that the computation of the distance table Dℓ consists
of the same local forward and backward searches as the computation of the access-
node sets

−→
A ℓ+1 and

←−
A ℓ+1. Thus, it is sufficient to perform the respective search

processes only once and extracting both the access nodes and the data required for
the distance table computation.

3.3. Computing Locality Filters. As already mentioned, the preprocessing
of transit-node routing is done in a top-down fashion. We compute the forward and
backward node sets

−→
K ℓ and

←−
K ℓ first for all nodes in TL, then for the nodes in TL−1,

and so on. For any u ∈ TL and any level ℓ, we just have
−→
K ℓ(u) =

←−
K ℓ(u) = ∅. For a

level k < L and any node u ∈ Tk \ Tk+1, we ‘inherit’ the level-ℓ sets from the level-
(ℓ − 1) access nodes for ℓ > k + 1 according to Equations 7 and 9; for ℓ = k + 1,
we apply Equations 6 and 8. In order to deal with the latter case, we have to
determine all node pairs (s, t) such that ℓ(s) = ℓ(t) = k and d(s, t) < d≥k+1(s, t).
This is exactly what we do when we compute the level-k distance table Dk. Hence,
the computation of the sets

−→
Kk+1 and

←−
Kk+1 can be viewed as a byproduct of the

computation of Dk.
After all sets

−→
K ℓ and

←−
K ℓ have been determined, the locality filters are defined

according to Equation 10.
Faster Computation of Supersets. In spite of the trick mentioned in Section 3.2,

the computation of a distance table can get expensive so that we might want to do
without distance tables in the lower levels and use some shortest-path algorithm
instead that computes the required distances on demand. In this case, the locality
filters can no longer be obtained as a byproduct of the distance table computation
so that we have to find a different way to compute them efficiently. Let us consider
some level k < L and two nodes s and t such that ℓ(s) = ℓ(t) = k. Consider a local
forward search from s that determines covering paths of s w.r.t. Tk+1 yielding a

205207205

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

14 P. SANDERS AND D. SCHULTES

search tree
−→
B and, analogously, a local backward search from t yielding a search

tree
←−
B . We set−→

K ′
k+1(s) :=

−→
B \ Tk+1 and

←−
K ′

k+1(t) :=
←−
B \ Tk+1.

Lemma 5.
−→
K ′

k+1(s) ⊇
−→
Kk+1(s) and

←−
K ′

k+1(t) ⊇
←−
Kk+1(t).

Proof. Consider a node u from
−→
Kk+1(s). According to Equation 6, there is a

node t such that u is a node on some shortest s-t-path P and d(s, t) < d≥k+1(s, t).
Due to Lemma 2, we can conclude that there is no shortest s-t-path with a node
from Tk+1 on it; in particular, u ̸∈ Tk+1. Hence, the forward search is not pruned
at any node on P |s→u so that u ∈ −→

B \ Tk+1, which implies
−→
K ′

k+1(s) ⊇ −→
Kk+1(s).

An analogous proof exists for
←−
K ′

k+1(t) ⊇
←−
Kk+1(t). !

Obviously, locality filters that are based on these supersets are still correct in the
sense that they fulfil Equation 5. However, the number of false positives increases.
Note that the computation of the supersets

−→
K ′

k+1(s) and
←−
K ′

k+1(t) requires the same
local searches as the computation of the access-node sets

−→
Ak+1(s) and

←−
A k+1(t).

Therefore, when dealing with supersets, the computation of the locality filters can
be viewed as a byproduct of the computation of the access-node sets.

3.4. Trade-Offs. Instead of precomputing all access-node sets, distance ta-
bles, and locality filters, we can decide to compute only a part of the data required
for transit-node routing and determine the remaining data on demand during the
query. In case of the access nodes, we can postpone the local searches for the
covering-paths set to query time. Moreover, it is sufficient to store for a node
u ∈ Tℓ only the access nodes to level ℓ + 1; then, during a query, access nodes to
higher levels can be retrieved using Equation 11.

In case of the distance tables, we can—as already mentioned—omit the distance
tables in the lowest levels and perform an explicit shortest-path search instead.

In case of the locality filters, we can postpone the application of Equations 7
and 9 until query time as well so that a node u ∈ Tℓ stores only

−→
K ℓ+1(u) and

←−
K ℓ+1(u).

Of course, postponing parts of the preprocessing reduces preprocessing time
and memory consumption, but increases query time.

3.5. Outputting Complete Path Descriptions. Generally, in a graph with
bounded degree (e.g., a road network) using a (near) constant time distance oracle,
we can output a shortest path from s to t in (near) constant time per edge: Look
for an edge (s, s′) such that d(s, s′) + d(s′, t) = d(s, t), output (s, s′). Continue by
looking for a shortest path from s′ to t. Repeat until t is reached.

In the special case of transit-node routing, we can speed up this process by
two measures. Suppose the shortest path uses the access nodes u ∈ −→

AL(s) and
v ∈ ←−

AL(t). First, while reconstructing the path from s to u, we can determine the
next hop by considering all adjacent nodes s′ of s and checking whether d(s, s′) +
d(s′, u) = d(s, u). Usually6, the distance d(s′, u) is directly available since u is also
an access node of s′. Analogously, the path from v to t can be determined.

6In a few cases—when u is not an access node of s′ (which can only happen if the shortest
paths in the graph are not unique)—, we have to consider all access nodes u′ of s′ and check
whether d(s, s′)+d(s′, u′)+d(u′, u) = d(s, u). Note that d(u′, u) can be looked up in the topmost
distance table.

206208206

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

ALMOST CONSTANT TIME SHORTEST-PATH QUERIES IN ROAD NETWORKS 15

Second, reconstructing the path from u to v can work on the overlay graph GL

of G with node set TL rather than on the original graph G. Employing the same
methods that are used to expand shortcuts in case of highway hierarchies [7, 24],
we can precompute information that allows us to output the paths associated with
each edge in GL in time linear in the number of edges of G that it contains. Note
that long distance paths will mostly consist of these precomputed paths so that
the time per edge can be made very small. These techniques can be generalised to
multiple levels.

4. A Concrete Instantiation

4.1. Specifying Transit Nodes. Nodes on high levels of a highway hierarchy
(see Section 1.2.2) have the property that they are used on shortest paths far away
from source and target. Hence, it is natural to use (the core of) some level K of
the highway hierarchy for the transit-node set TL. Note that we have quite good
(though indirect) control over the resulting size of TL by choosing the appropriate
neighbourhood sizes and the appropriate value for K. For further transit-node
levels, we use (the cores of) lower levels of the highway hierarchy.

4.2. Computing Access Nodes. Access-node sets are computed exactly as
described in Section 3.1 except for the fact that we use highway-node routing (see
Section 1.2.6) to perform local searches in order to determine the covering-paths
sets more efficiently.

This implies that before the actual preprocessing of transit-node routing is
started, we have to construct a multi-level overlay graph using the transit-node
sets as highway-node sets.

4.3. Computing Distance Tables. The topmost table is determined by
a standard all-pairs shortest-path computation (using |TL|-times Dijkstra’s algo-
rithm) in the topmost overlay graph GL. Note that for the topmost level, an ap-
plication of the many-to-many algorithm using the same multi-level overlay graph
would be virtually equivalent to executing just |TL|-times Dijkstra’s algorithm.

All other distance tables, however, are computed as described in Section 3.2,
i.e., using the many-to-many algorithm. At this, it is reasonable to employ an in-
stantiation of the many-to-many algorithm that is based on the already constructed
multi-level overlay graph.

4.4. Computing Locality Filters. An explicit and exact storage of the for-
ward and backward node sets

−→
K ℓ and

←−
K ℓ would be very expensive w.r.t. memory

consumption. Furthermore, we have to keep in mind that we need a very efficient
operation that determines whether the intersection of two node sets is empty. For
these reasons, we use geometric circles to represent supersets of the sets

−→
K ℓ and←−

K ℓ. We have already noted in Section 3.3 that using supersets of
−→
K ℓ and

←−
K ℓ still

yields correct locality filters, only the number of false positives may increase.
We assume that a layout of the graph G is available, i.e., for each node in V we

know its coordinates in the plane.7 For each node u, we store forward and backward

7Even if this information is not available in the input, equally useful coordinates can be
synthesised [30].

207209207

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

16 P. SANDERS AND D. SCHULTES

radii −→ϱ ℓ(u) and ←−ϱ ℓ(u) such that
−→
K ′

ℓ := {v ∈ V : ||v − u||2 ≤ −→ϱ ℓ(u)} ⊇ −→
K ℓ

and, analogously,
←−
K ′

ℓ := {v ∈ V : ||v − u||2 ≤ ←−ϱ ℓ(u)} ⊇ ←−
K ℓ,

where ||v − u||2 denotes the Euclidean distance between u and v. An intersection
test can be implemented very efficiently by comparing the distance between the two
involved nodes with the sum of the radii of the relevant circles:8

(12)
−→
K ′

ℓ(s) ∩
←−
K ′

ℓ(t) ̸= ∅ ↔ ||s − t||2 ≤ −→ϱ ℓ(s) + ←−ϱ ℓ(t).

Note that the application of Equations 7 and 9 to ‘inherit’ node sets is quite simple
using geometric circles: we use

−→ϱ ℓ(s) := max{||s − u||2 + −→ϱ ℓ(u) | u ∈ −→
A ℓ−1(s)}

and an analogous assignment for ←−ϱ ℓ(t). Figure 5 gives an example.

−→ϱ ℓ(s)

−→ϱ ℓ(u)

s u

Figure 5. Example for the ‘inheritance’ of a geometric locality
filter. The grey nodes constitute the set

−→
A ℓ−1(s).

Faster Evaluation. Combining Equations 10 and 12, we have

Lℓ(s, t) :=
∨

k≤ℓ

(
||s − t||2 ≤ −→ϱ k(s) + ←−ϱ k(t)

)
.

Thus, in order to evaluate Lℓ(s, t), we have to perform up to ℓ comparisons. We
can easily do with only one comparison by precomputing

−→ϱ ′
ℓ(s) := max

k≤ℓ

−→ϱ k(s) and ←−ϱ ′
ℓ(t) := max

k≤ℓ

←−ϱ k(t)

and using
Lℓ(s, t) :=

(
||s − t||2 ≤ −→ϱ ′

ℓ(s) + ←−ϱ ′
ℓ(t)

)
.

Note that the number of false positives may increase.

8To avoid the expensive square root computation that is required to determine the Euclidean
distance, we can alternatively square both sides of the inequality.

208210208

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

ALMOST CONSTANT TIME SHORTEST-PATH QUERIES IN ROAD NETWORKS 17

4.5. Hasty Inheritance. In order to accelerate the preprocessing, we have
already made extensive use of the idea of handing down obtained data (access
nodes, locality filters) to lower levels. Basically, for a node u in a level ℓ, we look
for covering paths w.r.t. Tℓ+1 and inherit the data stored at the endpoints of the
covering paths.

We can think of a hastier approach: When we search for the covering paths of
u and encounter a node v that has already been processed, i.e., that has already
adopted the data from level ℓ + 1, we do not have to continue the search from v.
Instead, we can directly inherit the data from v.

In our implementation, we use this technique when we hand data down from
level 1 to level 0.

4.6. An Economical and a Generous Variant. In our experiments, we
consider two different variants as illustrated in Figure 6.

Variant ‘Economical’ aims at a good compromise between space consumption,
preprocessing time and query time. It uses three levels on top of the original graph
(i.e., L = 3). We make extensively use of the options presented in Section 3.4. At
each node u ∈ T2, we store the access nodes to level 3, and at each node u ∈ V ,
we store the access nodes to level 2. This means that the level-3 access nodes for
nodes u ̸∈ T2 have to be reconstructed during query using Equation 11. Level 1 is
only used to accelerate the preprocessing (since it is faster to compute access nodes
and locality filters only for a subset T1 ⊆ V , handing the data down to all nodes).
We do not use level-1 access nodes or a level-1 distance table. Instead, we just set
L1(s, t) := true for all node pairs (s, t) so that if the query reaches level 1, it is
automatically forwarded to level 0.

We explicitly store the level-2 and level-3 distance tables. In level 0, instead
of keeping a distance table, we perform a shortest-path query using highway-node
routing.

The locality filters are dealt with analogously to the access nodes: at each node
u ∈ T2, we store −→ϱ 3(u) and ←−ϱ 3(u), and at each node u ∈ V , we store −→ϱ ′

2(u)
and ←−ϱ ′

2(u). The level-2 locality filter is determined with the fast but less precise
method described at the end of Section 3.3.

Variant ‘Generous’ is tuned for very fast query times. As the economical
variant, it uses three levels on top of the original graph (but in this case, level 1

1

0

1

0
1

0
1
0

TNR HNR TNReconomical generousHNR
level level level level

23
2 2

6 3
4 3

L2 L2

L3

L3

A3

A2 A2

A3

Figure 6. Two variants of transit-node routing (TNR) based on
highway-node routing (HNR).

209211209

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

18 P. SANDERS AND D. SCHULTES

is not only used to accelerate the preprocessing). At each node u, we store the
access nodes and the locality filters9 required for the query in level 2 and 3. This
allows direct access to these levels. For level 1, we store neither access nodes nor
a locality filter. Instead, if required, we perform local searches to determine the
access nodes and we use the trivial locality filter L1(s, t) := true for all node pairs
(s, t). We explicitly store the level-1–3 distance tables, while we perform a shortest-
path query in level 0 (if required). Note that having a level-1 distance table is a
significant difference from the economical variant. Interestingly, the search for the
level-1 access nodes already involves the search in level 0 so that no extra work is
imposed by the level-0 search. This also explains why it is reasonable to just set
L1(s, t) := true.

4.7. Queries. Queries are performed in a top-down fashion. For a given query
pair (s, t), first

−→
A 3(s) and

←−
A 3(t) are either looked up or computed depending on

the used variant. Then table lookups in the top-level distance table yield a first
guess for d(s, t). Now, if ¬L3(s, t), we are done. Otherwise, the same procedure is
repeated for level 2. If even L2(s, t) is true, we perform a bidirectional shortest-path
search using highway-node routing that can stop if both the forward and backward
search radius (i.e., the key of the minimum element in the respective priority queue)
exceed the upper bound computed in levels 2 and 3. Furthermore, the search need
not expand from any node u ∈ T2 since paths going over these nodes are covered by
the search in levels 2 and 3. In the generous variant, the search is already stopped
at the level-1 access nodes, and additional lookups in the level-1 distance table are
performed.

4.8. Outputting Complete Path Descriptions. The general methods from
Section 3.5 can be applied rather directly to our concrete instantiation in order to
determine a complete description of the shortest path.

5. Experiments

5.1. Environment, Instances, and Parameters. The experiments were
done on one core of a single AMD Opteron Processor 270 clocked at 2.0 GHz with
8 GB main memory and 2 × 1 MB L2 cache, running SuSE Linux 10.0 (kernel
2.6.13). The program was compiled by the GNU C++ compiler 4.0.2 using opti-
misation level 3. Results for the DIMACS Challenge benchmarks can be found in
Table 1.

We deal with two road networks. The network of Western Europe10 has been
made available for scientific use by the company PTV AG. Only the largest strongly
connected component is considered. The original graph contains for each edge a
length and a road category, e.g., motorway, national road, regional road, urban
street. We assign average speeds to the road categories, compute for each edge the
average travel time, and use it as weight. In addition to this travel time metric,
we perform experiments on variants of the European graph with a distance metric
and the unit metric. The network of the USA (without Alaska and Hawaii) has
been obtained from the TIGER/Line Files [28]. Again, we consider only the largest
strongly connected component. In contrast to the PTV data, the TIGER graph

9i.e., the radii −→ϱ ′
2(u), ←−ϱ ′

2(u), −→ϱ ′
3(u), and ←−ϱ ′

3(u)
1014 countries: Austria, Belgium, Denmark, France, Germany, Italy, Luxembourg, the

Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the UK

210212210

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

ALMOST CONSTANT TIME SHORTEST-PATH QUERIES IN ROAD NETWORKS 19

Table 1. DIMACS Challenge [1] benchmarks for US (sub)graphs
(query time [ms]).

metric
graph time dist

NY 29.6 28.5
BAY 34.7 33.3
COL 51.5 49.0
FLA 134.8 120.5
NW 161.1 146.1
NE 225.4 197.2

metric
graph time dist
CAL 291.1 235.4
LKS 461.3 366.1
E 681.8 536.4
W 1 211.2 988.2

CTR 4 485.7 3 708.1
USA 5 355.6 4 509.1

Table 2. Properties of the used road networks.

Europe USA (Tiger)
#nodes 18 010 173 23 947 347
#directed edges 42 560 279 58 333 344
#road categories 13 4
average speeds [km/h] 10–130 40–100

Table 3. Used neighbourhood sizes. For the travel time metric,
we use a fixed neighbourhood size for the construction of all levels.
For the other two metrics, we use linearly increasing sequences as
neighbourhood sizes of the different levels.

metric Europe USA (Tiger)
time 30 40
dist 60, 120, 180, . . . 60, 120, 180, . . .
unit 40, 50, 60, . . . 60, 120, 180, . . .

is undirected, planarised and distinguishes only between four road categories. All
graphs have been taken from the DIMACS Challenge website [1]. Table 2 sum-
marises the properties of the used networks.

In Section 5.2 we report only the times needed to compute the shortest path dis-
tance between two nodes without outputting the actual route, while in Section 5.3,
we also give the times needed to get a complete description of the shortest paths.

We apply the economical variant to the travel time, the distance, and the unit
metric. In each case, in order to determine the highway-node sets (and consequently
the transit-node sets) we construct a highway hierarchy according to the description
in [22, 24]. The used neighbourhood sizes are represented in Table 3. Note that
the construction of the highway hierarchy starts with an initial contraction step.
We use the maverick factor f = 2(i − 1) for the i-th iteration of the construction
procedure, the contraction rate c = 2, and the shortcut hops limit 10.

In addition, we apply the generous variant to the travel time metric using the
neighbourhood size H = 90.

5.2. Main Results.
5.2.1. Preprocessing. Table 4 gives the preprocessing times for all considered

road networks, metrics, and variants. In addition, some key facts on the results

211213211

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

20 P. SANDERS AND D. SCHULTES

Table 4. Preprocessing statistics. The size |D2| of the level-2
distance table is given relative to the size of a complete |T2|× |T2|
table. |Aℓ| denotes |−→A ℓ ∪

←−
A ℓ|, i.e., the size of the union of forward

and backward access nodes.

level 3 level 2 overhead time
metric variant |T3| |A3| |T2| |D2| |A2| [B/node] [h]

Europe

time
eco 9 355 11.4 151 450 0.15% 5.3 99 0:25
gen 9 458 11.3 293 209 0.14% 4.4 226 1:15

dist eco 14 001 22.3 179 972 1.03% 8.8 301 2:42
unit eco 10 923 12.7 212 014 0.28% 6.4 138 0:53

USA (Tiger)

time
eco 6 449 6.8 218 153 0.20% 5.2 121 0:38
gen 10 261 6.1 449 945 0.08% 4.5 257 1:25

dist eco 16 296 19.1 261 759 0.53% 7.5 280 3:37
unit eco 10 901 12.5 239 029 1.00% 6.2 219 3:59

of the preprocessing, e.g., the sizes of the transit node sets, are presented. It is
interesting to observe that for the travel time metric in level 2 the actual distance
table size is at most 0.2% of the size a naive |T2|× |T2| table would have.

As expected, the distance metric yields more access nodes than the travel time
metric (a factor 2–3) since not only junctions on very fast roads (which are rare)
qualify as access nodes. The fact that we have to increase the neighbourhood size
from level to level in order to achieve an effective shrinking of the highway networks
leads to comparatively high preprocessing times for the distance metric.

5.2.2. Random Queries Using the Travel Time Metric. Table 5 summarises the
average case performance of transit-node routing. For the travel time metric, the
generous variant achieves average query times more than two orders of magnitude
lower than those of highway-node routing or highway hierarchies (even when com-
bined with goal-directed search [7]). Compared to Dijkstra’s algorithm, we obtain
a speedup of a factor 1.4 and 1.9 million in case of Europe and the USA, respec-
tively. At the cost of about a factor three in query time, the economical variant
saves around a factor of two in space and a factor of 2–3 in preprocessing time.

Finding a good locality filter is one of the biggest challenges of our instantiation
of transit-node routing. The values in Table 5 indicate that our filter is suboptimal:
for instance, only 0.0051% of the queries performed by the economical variant in the
European network would require a local search to answer them correctly. However,
the locality filter L2 forces us to perform local searches in 0.1364% of all cases. The
high-quality level-2 filter employed by the generous variant is considerably more
effective, still the percentage of false positives exceeds 90%.

5.2.3. Random Queries Using the Distance or Unit Metric. For the distance
and unit metric, the situation is worse. A considerably larger fraction of the queries
continues to level 2 and below. It is important to note that we have concentrated
on the travel time metric—since we consider the travel time metric more important
for practical applications—, and we spent comparatively little time to tune our
approach for the distance and unit metric. Nevertheless, the current version shows
feasibility and still achieves an improvement of a factor of at least 15 or 80 for the

212214212

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

ALMOST CONSTANT TIME SHORTEST-PATH QUERIES IN ROAD NETWORKS 21

Table 5. Query statistics w.r.t. 10 000 000 randomly chosen (s, t)-
pairs. Each query is performed in a top-down fashion. For each
level ℓ, we report the percentage of the queries that are not an-
swered correctly in some level ≥ ℓ and the percentage of the queries
that are not stopped after level ℓ (i.e., Lℓ(s, t) is true). Note that
only the generous variant can perform a query in level 1 (but, as
the economical variant, it always continues to level 0).

level 2 [%]
level 3 [%]

(level 1 [%])
metric variant wrong cont’d wrong cont’d query time

Europe

time
eco 0.57 3.36 0.0051 0.1364 11.0 µs

gen 0.25 1.55
0.0016 0.0180

4.3µs
(0.00019) (0.0180)

dist eco 3.89 13.21 0.0121 0.4897 37.6 µs
unit eco 1.06 5.23 0.0070 0.1731 13.1 µs

USA (Tiger)

time
eco 0.37 2.44 0.0045 0.1130 9.5 µs

gen 0.10 0.87
0.0010 0.0124

3.3µs
(0.00009) (0.0124)

dist eco 1.04 5.35 0.0067 0.1587 86.1 µs
unit eco 1.67 8.66 0.0099 0.2729 19.8 µs

distance or unit metric, respectively, compared to highway hierarchies combined
with goal-directed search.

5.2.4. Local Queries Using the Travel Time Metric. Since the overwhelming
majority of all cases is handled in the top level (more than 99% in case of the US
network using the generous variant), the average case performance says little about
the performance for more local queries which might be very important in some
applications. Therefore, we use the methodology introduced in [21] to get more
detailed information about the query time distributions for queries ranging from
very local to global, see Figure 7: We choose 1 000 random sample points s and for
each power of two r = 2k, we determine the node t with Dijkstra rank rks(t) = r,
where (for a fixed source s) the Dijkstra rank of a node t is the rank w.r.t. the order
which Dijkstra’s algorithm settles the nodes in. We then use our algorithm to make
an s-t-query. By plotting the resulting statistics for each value r = 2k, we can see
how the performance scales with a natural measure of difficulty of the query. We
represent the distributions as box-and-whisker plots [20]: each box spreads from
the lower to the upper quartile and contains the median, the whiskers extend to the
minimum and maximum value omitting outliers, which are plotted individually.

Note that even the median query times for the largest Dijkstra rank (which is
the best case) are higher than the average query times given in Table 5. This is due
to the fact that logging the statistics required to create the depicted plot causes a
certain overhead.

For the generous approach, we can easily recognise the three levels of transit-
node routing with small transition zones in between: For ranks 218–224 we usually
have ¬L3(s, t) and thus only require cheap distance table accesses in level 3. For
ranks 212–216, we need additional lookups in the table of level 2 so that the queries

213215213

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

22 P. SANDERS AND D. SCHULTES

Dijkstra Rank

Q
ue

ry
 T

im
e

[µ
s]

25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

10
10

0
5

50

10
10

0
5

50

economical
generous

Figure 7. Local queries on the European network with the travel
time metric using the economical and the generous variant.

get somewhat more expensive. In this range, outliers can be considerably more
costly, indicating that occasional local searches are needed. For small ranks we
usually need local searches and additional lookups in the level-1 table. Still, the
combination of a local search in a very small area and table lookups in all three
levels usually results in query times of less than 30 µs.

In case of the economical approach, we observe a high variance in query times
for ranks 213–214. In this range, all types of queries occur and the difference between
the level-3 queries and the local queries is rather big since the economical variant
does not make use of level 1. For small Dijkstra ranks, we see a growth of the query
times that is typical for highway-node routing (or highway hierarchies).

5.2.5. Distance Table Accesses. Figure 8 represents a histogram of the number
of topmost distance table accesses during an s-t-query. For Europe, we observe an
average number of table accesses of 75 and a maximum of 37 · 40 = 1 480.

5.3. Outputting Complete Path Descriptions. So far, we have reported
only the times needed to compute the shortest-path length between two nodes.
Now, we determine a complete description of the shortest path. In Table 6 we give
the additional preprocessing time and the additional disk space for the unpacking
data structures. Furthermore, we report the additional time that is needed to de-
termine a complete description of the shortest path and to traverse it11 summing
up the weights of all edges as a sanity check—assuming that the query to deter-
mine the shortest-path length has already been performed. We restrict ourselves to
the travel time metric and the generous variant. Currently, we provide an efficient
implementation only for the case that the path goes through the top level. In all
other cases, we just perform a normal highway-node query and use the path un-
packing routines of highway-node routing. The effect on the average query times
is very small since most queries are correctly answered using only the top search.
In order to unpack edges of the overlay graphs, we use two different variants that

11Note that we do not traverse the path in the original graph, but we directly scan the
assembled description of the path.

214216214

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

ALMOST CONSTANT TIME SHORTEST-PATH QUERIES IN ROAD NETWORKS 23

100
104
106
108

1010
1012
1014
1016

 0 200 400 600 800 1000 1200 1400

s-

t-
pa

irs

Accessed Entries

Europe
USA (Tiger)

Figure 8. Histogram of the number of entries in the topmost
distance table that have to be accessed during an s-t-query.

Table 6. Additional preprocessing (pp) time, additional disk
space and query time that is needed to determine a complete de-
scription of the shortest path and to traverse it summing up the
weights of all edges—assuming that the query to determine its
lengths has already been performed. Moreover, the average num-
ber of hops—i.e., the average path length in terms of number of
nodes—is given.

Europe USA (Tiger)
pp space query # hops pp space query #hops
[s] [MB] [µs] (avg.) [s] [MB] [µs] (avg.)

Variant 2 18 91 314 1 370 29 124 869 4 551
Variant 3 505 227 153 1 370 277 221 264 4 551

are introduced as ‘Variant 2’ and ‘Variant 3’ in [7]. Variant 2 consists of a purely
recursive data structure where the description of a shortcut edge may contain short-
cuts of a lower level, while Variant 3 also stores non-recursive (i.e., fully unpacked)
representations of the most important edges.

Note that the figures for Variant 3 have been obtained using an older imple-
mentation of transit-node routing based on highway hierarchies and a different set
of parameters since the current implementation of highway-node routing does not
support this variant.

5.4. Further Experiments. In Table 7, we also give some results for sub-
graphs of the US road network, which support our claim that we achieve almost
constant query times irrespective of the size of the road network: while the sizes
range between 264 346 and 23 947 347 nodes, the query times vary only from 3.7
to 5.0µs for the generous variant. Note that these results have been obtained us-
ing an older implementation of transit-node routing based on highway hierarchies
[23, 4, 3].

215217215

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

24 P. SANDERS AND D. SCHULTES

Table 7. Results for US subgraphs with travel time metric using
the generous variant.

preproc. total disk query
graph #nodes time [min] space [MB] time [µs]
NY 264 346 4 147 4.6
BAY 321 270 2 105 4.2
COL 435 666 3 156 4.7
FLA 1 070 376 7 418 3.8
NW 1 207 945 7 325 3.7
NE 1 524 453 16 578 4.1

CAL 1 890 815 15 554 3.8
LKS 2 758 119 26 890 4.2
E 3 598 623 30 1 159 4.4
W 6 262 104 47 1 801 4.2

CTR 14 081 816 148 4 169 5.0
USA 23 947 347 205 6 108 4.9

6. Discussion

Transit-node routing provides the fastest available query times for large static
real-world road networks. Speedups compared to Dijkstra’s algorithm exceed factor
one million. The extremely good query performance does not imply prohibitive
preprocessing times or memory consumption. In fact, the preprocessing is still
clearly faster than many other route planning techniques that achieve considerably
smaller speedups. Moreover, transit-node routing is not only optimised for long-
range queries, but also answers local queries very efficiently.

6.1. Alternative Instantiations. There seem to be two basic approaches to
transit-node routing. One that starts with a locality filter L and then has to find a
good set of transit nodes T for which L works (e.g., the grid-based implementation
[2]). The other approach starts with T and then has to find a locality filter that can
be efficiently evaluated and detects as accurately as possible whether local search
is needed (e.g., our abstract and concrete instantiations, Sections 3–4). Both basic
approaches fit in the generic framework introduced in Section 2. In [3, 23], we
describe a few additional general preprocessing techniques that might be useful for
instantiations that differ from the one specified in Section 3.

6.2. Future Work. Although conceptually simple, an efficient implementa-
tion of transit-node routing has so many ingredients that there are many further
optimisation opportunities and a large spectrum of trade-offs between query time,
preprocessing time, and space usage. For example, in order to reduce the latter,
we could store the access-node information only at level 1; this would reduce the
size of the access-node data by a factor of six. For reducing the average query
time, we could try to precompute information analogous to edge flags or geometric
containers [17, 18, 29] that tells us which access nodes lead to which regions of
the graph [5].

There are many interesting ways to choose transit nodes. For example nodes
with high node reach [13, 10] could be a good starting point. Here, we can directly
influence |T |, and the resulting reach bound might help defining a simple locality

216218216

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

ALMOST CONSTANT TIME SHORTEST-PATH QUERIES IN ROAD NETWORKS 25

filter. However, it seems that geometric reach or travel time reach do not reflect the
inhomogeneous density of real-world road networks. Hence, it would be interesting
if we could efficiently approximate reach based on the Dijkstra rank.

Another interesting approach might be to start with some locality filter that
guarantees uniformly small local searches and then to view it as an optimisation
problem to choose a small set of transit nodes that cover all the local search spaces.

Parallel processing can easily be used to accelerate preprocessing, or to execute
many queries in parallel. With very fine grained multi-core parallelism it might
even be possible to accelerate an individual query. Forward local search, backward
local search, and each table lookup are largely independent of each other.

Acknowledgements. We would like to thank Holger Bast, Stefan Funke, Kir-
ill Müller, and Dorothea Wagner for interesting discussions on transit-node routing
and Timo Bingmann for work on visualisation tools. Two anonymous reviewers
provided valuable suggestions.

References

1. 9th DIMACS Implementation Challenge, Shortest Paths, http://www.dis.uniroma1.it/
∼challenge9/, 2006.

2. H. Bast, S. Funke, and D. Matijevic, TRANSIT—ultrafast shortest-path queries with linear-
time preprocessing, 9th DIMACS Implementation Challenge [1], 2006, an updated version of
the paper appears in this book.

3. H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes, In transit to constant time
shortest-path queries in road networks, Workshop on Algorithm Engineering and Experiments
(ALENEX), 2007, pp. 46–59.

4. H. Bast, S. Funke, P. Sanders, and D. Schultes, Fast routing in road networks with transit
nodes, Science 316 (2007), no. 5824, 566.

5. R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and D. Wagner, Combining
hierarchical and goal-directed speed-up techniques for Dijkstra’s algorithm, 7th Workshop on
Experimental Algorithms (WEA), LNCS, vol. 5038, Springer, 2008, to appear.

6. D. Delling, M. Holzer, K. Müller, F. Schulz, and D. Wagner, High-performance multi-level
graphs, 9th DIMACS Implementation Challenge [1], 2006, an updated version of the paper
appears in this book.

7. D. Delling, P. Sanders, D. Schultes, and D. Wagner, Highway hierarchies star, 9th DIMACS
Implementation Challenge [1], 2006, an updated version of the paper appears in this book.

8. E. W. Dijkstra, A note on two problems in connexion with graphs., Numerische Mathematik
1 (1959), 269–271.

9. J. Fakcharoenphol and S. Rao, Planar graphs, negative weight edges, shortest paths, and near
linear time, 42nd IEEE Symposium on Foundations of Computer Science, 2001, pp. 232–241.

10. A. Goldberg, H. Kaplan, and R. F. Werneck, Reach for A∗: Efficient point-to-point shortest
path algorithms, Workshop on Algorithm Engineering and Experiments (ALENEX) (Miami),
2006, pp. 129–143.

11. A. V. Goldberg and C. Harrelson, Computing the shortest path: A∗ meets graph theory, 16th
ACM-SIAM Symposium on Discrete Algorithms, 2005, pp. 156–165.

12. A. V. Goldberg and R. F. Werneck, Computing point-to-point shortest paths from external
memory, Workshop on Algorithm Engineering and Experiments (ALENEX), 2005, pp. 26–40.

13. R. Gutman, Reach-based routing: A new approach to shortest path algorithms optimized
for road networks, Workshop on Algorithm Engineering and Experiments (ALENEX), 2004,
pp. 100–111.

14. P. E. Hart, N. J. Nilsson, and B. Raphael, A formal basis for the heuristic determination of
minimum cost paths, IEEE Transactions on System Science and Cybernetics 4 (1968), no. 2,
100–107.

15. P. N. Klein, Multiple-source shortest paths in planar graphs, 16th ACM-SIAM Symposium on
Discrete Algorithms, SIAM, 2005, pp. 146–155.

217219217

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

26 P. SANDERS AND D. SCHULTES

16. S. Knopp, P. Sanders, D. Schultes, F. Schulz, and D. Wagner, Computing many-to-many
shortest paths using highway hierarchies, Workshop on Algorithm Engineering and Experi-
ments (ALENEX), 2007.

17. U. Lauther, An extremely fast, exact algorithm for finding shortest paths in static networks
with geographical background, Geoinformation und Mobilität – von der Forschung zur praktis-
chen Anwendung, vol. 22, IfGI prints, Institut für Geoinformatik, Münster, 2004, pp. 219–230.

18. R. Möhring, H. Schilling, B. Schütz, D. Wagner, and T. Willhalm, Partitioning graphs to
speed up Dijkstra’s algorithm, 4th International Workshop on Efficient and Experimental
Algorithms (WEA), 2005, pp. 189–202.

19. K. Müller, Design and implementation of an efficient hierarchical speed-up technique for
computation of exact shortest paths in graphs, Diploma Thesis, Universität Karlsruhe (TH),
2006.

20. R Development Core Team, R: A Language and Environment for Statistical Computing,
http://www.r-project.org, 2004.

21. P. Sanders and D. Schultes, Highway hierarchies hasten exact shortest path queries, 13th
European Symposium on Algorithms (ESA), LNCS, vol. 3669, Springer, 2005, pp. 568–579.

22. P. Sanders and D. Schultes, Engineering highway hierarchies, 14th European Symposium on
Algorithms (ESA), LNCS, vol. 4168, Springer, 2006, pp. 804–816.

23. , Robust, almost constant time shortest-path queries in road networks, 9th DIMACS
Implementation Challenge [1], 2006, workshop version.

24. D. Schultes, Route planning in road networks, Ph.D. thesis, Universität Karlsruhe (TH), 2008.
25. D. Schultes and P. Sanders, Dynamic highway-node routing, 6th Workshop on Experimental

Algorithms (WEA), LNCS, vol. 4525, Springer, 2007, pp. 66–79.
26. F. Schulz, D. Wagner, and C. D. Zaroliagis, Using multi-level graphs for timetable information,

Workshop on Algorithm Engineering and Experiments (ALENEX), LNCS, vol. 2409, Springer,
2002, pp. 43–59.

27. M. Thorup, Compact oracles for reachability and approximate distances in planar digraphs,
42nd IEEE Symposium on Foundations of Computer Science, 2001, pp. 242–251.

28. U.S. Census Bureau, Washington, DC, UA Census 2000 TIGER/Line Files, http://www.

census.gov/geo/www/tiger/tigerua/ua tgr2k.html, 2002.
29. D. Wagner and T. Willhalm, Geometric speed-up techniques for finding shortest paths in large

sparse graphs, 11th European Symposium on Algorithms (ESA), LNCS, vol. 2832, Springer,
2003, pp. 776–787.

30. , Drawing graphs to speed up shortest-path computations, Workshop on Algorithm
Engineering and Experiments (ALENEX), 2005.

Peter Sanders, Universität Karlsruhe (TH), Fakultät für Informatik, Postfach
69 80, 76128 Karlsruhe, Germany

E-mail address: sanders@ira.uka.de

Dominik Schultes, Universität Karlsruhe (TH), Fakultät für Informatik, Postfach
69 80, 76128 Karlsruhe, Germany

E-mail address: schultes@ira.uka.de

218220218

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science

Single-Source Shortest Paths with the Parallel Boost Graph
Library

Nick Edmonds, Alex Breuer, Douglas Gregor, and Andrew Lumsdaine

Abstract. The Parallel Boost Graph Library (Parallel BGL) is a library of
graph algorithms and data structures for distributed-memory computation on
large graphs. Developed with the Generic Programming paradigm, the Parallel
BGL is highly customizable, supporting various graph data structures, arbi-
trary vertex and edge properties, and different communication media. In this
paper, we describe the implementation of three parallel variants of Dijkstra’s
single-source shortest paths algorithm in the Parallel BGL. We also provide
an experimental evaluation of these implementations using synthetic and real-
world benchmark graphs from the 9th DIMACS Implementation Challenge and
present performance results of solving the single-source shortest path problem
for graphs with over a billion vertices on a modest size cluster.

1. Introduction

Large-scale graph problems arise in many application areas. As with other
large-scale computations, large-scale graph computations can potentially benefit
from the use of high-performance parallel computing systems. Parallel graph al-
gorithms have been well-studied in the literature [29, 36] and selected algorithms
have been implemented for shared memory [16, 19, 26, 37, 22], distributed mem-
ory [10, 35], and highly multithreaded architectures [6, 7]. While such implemen-
tations are important to demonstrate proof of concept for parallel graph algorithms,
they tend to be of limited use in practice because such implementations are not typ-
ically reusable outside of their test environments. As a result, new uses of a given
parallel graph algorithm will almost surely have to be implemented from scratch.

In mainstream software development, software libraries provide a common in-
frastructure that amortizes the costs of implementing widely-used algorithms and
data structures. In computational sciences, software libraries can be extremely
valuable to an entire research community. Libraries provide a language that im-
proves dissemination of research results and simplifies comparison of alternatives.
In addition, a single widely-used (and thus widely-studied) implementation is more
likely to be reliable, correct, and efficient. While there are several high-quality

1991 Mathematics Subject Classification. Primary 68R10, 68W15; Secondary 05C12, 05C85.
This work was supported by a grant from the Lilly Endowment and by NSF grants EIA-

0131354 and EIA-0202048.

c⃝0000 (copyright holder)

1

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

219

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

221

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

219

https://doi.org/10.1090/dimacs/074/09

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

2 NICK EDMONDS, ALEX BREUER, DOUGLAS GREGOR, AND ANDREW LUMSDAINE

sequential graph libraries available, such as LEDA [47], Stanford GraphBase [41],
and JUNG [60] there are relatively few attempts at parallel graph libraries. Of the
parallel graph libraries that have been reported in the literature [4, 14, 34], none
provide the functionality or flexibility needed in a general-purpose library.

In addition to flexibility, performance is an important concern for software li-
braries. Libraries such as BLAS [42] in the scientific computing community exist
specifically to provide high levels of performance to applications using them. How-
ever, tensions may arise between the needs for flexibility in a library and the needs
for performance. Recently, the generic programming paradigm has emerged as an
approach for library development that simultaneously meets the needs of flexibility
and performance.

The sequential Boost Graph Library (BGL) [53], (formerly the Generic Graph
Component Library [44]), is a high-performance generic graph library that is part of
the Boost library collection [11]. The Boost libraries are a collection of open-source,
peer-reviewed C++ libraries that have driven the evolution of library development
in the C++ community [2] and ANSI/ISO C++ standard committee [5]. Following
the principles of generic programming [50, 56] and written in a style similar to the
C++ Standard Template Library (STL) [49, 57], the algorithms provided by the
Parallel BGL are parameterized by the data types on which they operate. Arbitrary
graph data types can be used with BGL algorithms; in particular, independently-
developed third-party graph types can be used without the need to modify the
BGL algorithms themselves. The BGL does provide its own data types, which
are parameterized by the underlying storage types. This parameterization allows
extensive customization of the BGL, from storing user-defined data types with the
vertices and edges of a graph to completely replacing the Parallel BGL graph types
with application-specific data structures, without incurring additional overhead.
Table 1 lists some of the algorithms that are currently implemented in the BGL.

Following our philosophy of software libraries and reuse, we have recently devel-
oped the Parallel Boost Graph Library (Parallel BGL) [30] on top of the sequential
BGL. The Parallel BGL provides data structures and algorithms for parallel compu-
tation on graphs. The Parallel BGL retains much of the interface of the (sequential)
BGL upon which it is built, greatly simplifying the task of porting programs from
the sequential BGL to the Parallel BGL. Because it is built on top of the sequential
BGL, the Parallel BGL also retains the performance and flexibility of the under-
lying BGL. Table 2 lists some of the algorithms that are currently implemented
within the Parallel BGL.

2. The (Parallel) Boost Graph Library

The Parallel BGL is a generic graph library written for high performance and
maximum reusability, and is itself built upon the generic Boost Graph Library. The
core of the BGL—sequential or parallel—is a set of generic graph algorithms, that
are polymorphic with respect to the underlying graph types. BGL graph algorithms
can be applied to any graph data type, even to types that are not included with the
library, provided that type supplies all the functionality required by the algorithm.
Additionally, BGL graph algorithms are often customizable in other ways, through
visitor objects and abstract representations of vertex and edge properties (e.g., edge
weights). The genericity of the BGL is such that it can (for example) operate on

220222220

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

SINGLE-SOURCE SHORTEST PATHS WITH THE PARALLEL BOOST GRAPH LIBRARY 3

Breadth-first search [15] Dijkstra’s shortest paths [15]
Depth-first search [15] Bellman-Ford shortest paths [15]
King ordering [40] Dynamic connected components [21]
Transpose [15] Kruskal’s minimum spanning tree [15]
Topological sort [15] Prim’s minimum spanning tree [15]
Sloan ordering [54] Floyd-Warshall all-pairs shortest paths [15]
Gursoy-Atun layout [33] Kamada-Kawai spring layout [38]
Transitive closure [15] Strongly connected components [15]
Connected components [15] Reverse Cuthill-McKee ordering [17]
Articulation points [3] Smallest last vertex ordering [46]
Push-Relabel max flow [15] Johnson’s all-pairs shortest paths [15]
Sequential vertex coloring [55] Brandes betweenness centrality [12]
Edmonds-Karp max flow [15] Incremental connected components [21]
Biconnected components [3] Fruchterman-Reingold force directed layout [23]
Minimum degree ordering [25]

Table 1. Algorithms currently implemented in the sequential BGL.

Breadth-first search [15] Biconnected components [35]
Dijkstra shortest path [15] Boruvka Minimum spanning tree [15]
Depth-first search [15] Strongly-connected components [15]
Dinic Max-flow [20] Fructerman-Rheingold layout [23]
PageRank [51] ∆-stepping shortest path [48]
Graph coloring [10] Dehne-Götz Minimum spanning tree [19]
Connected components [15] Crauser et al. single-source shortest path [16]

Table 2. Algorithms currently implemented in the Parallel BGL.

a LEDA [47] graph just as efficiently as it can operate on its own graph types,
without requiring the user to perform any data conversion.

The Parallel BGL employs a unique, modular architecture built on the sequen-
tial BGL. Figure 1 illustrates the components in the sequential and Parallel BGL
and their interactions. There are three primary kinds of interfaces in the Parallel
BGL: graphs, which describe the structure of a graph that may either be stored
in (distributed) memory or generated on-the-fly; property maps, which associate
additional information with the vertices and edges of a graph; and process groups,
which facilitate communication among distributed data structures and algorithms.
Two of these interfaces, graphs and property maps, are inherited from—and are
therefore compatible with—the sequential Boost Graph Library. These are illus-
trated by the dark shaded blocks in Figure 1.

The Parallel BGL components (represented by lightly-shaded blocks in Fig-
ure 1) typically wrap their sequential BGL counterparts, building distributed-
memory parallel processing functionality on top of efficient sequential code. Layer-
ing a parallel library on top of a sequential library has many benefits: one need not
reimplement core data structures or algorithms; potential users may have some prior
knowledge of the interfaces that can be transferred from the sequential to the par-
allel library; and improvements to the sequential library will immediately improve
the parallel library. However, the performance of the parallel library then becomes

SINGLE-SOURCE SHORTEST PATHS 221223221

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

4 NICK EDMONDS, ALEX BREUER, DOUGLAS GREGOR, AND ANDREW LUMSDAINE

��	�
�����

����������

�����������
����������

�����
��������

�����������
����������

���������
��
��������

(a) Boost Graph Library

�� ��������
� ���

���� �"��!

�� �����

�� �����

����#����"���
��!" ��"���!

�������� ���!�

� ���!!�� �#�
������"!

���
� ���

���� �"��!

� ����	�"��
�" #�"# �!

� ���
������"!

�� "�$�
����
� ��� "��!

� ��� "%����
������"!

(b) Parallel Boost Graph Library

Figure 1. Architectures of the sequential and parallel Boost
Graph Libraries, illustrating how various abstractions (commu-
nication medium, graph data structures, graph properties) “plug
into” the generic graph algorithms via concepts.

dependent on the sequential library, making it extremely important that the se-
quential library be both efficient and customizable. We have found that generic
libraries such as the (sequential) BGL can be layered in this fashion without per-
formance degradation, and they even allow reuse of algorithm implementations in
the parallel context. The implementation of breadth-first search, Dijkstra’s short-
est paths, and Fruchterman-Reingold force-directed layout in the Parallel BGL, for

222224222

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

SINGLE-SOURCE SHORTEST PATHS WITH THE PARALLEL BOOST GRAPH LIBRARY 5

instance, are merely invocations of the generic implementations of the sequential
BGL using appropriate distributed data structures [31].

Components in the (Parallel) BGL are loosely connected via concepts, which
provide abstraction without unnecessary performance penalties. A concept is es-
sentially an interface description. Generic algorithms are written using concepts,
and any data type that meets the requirements of the concept can be used with
the generic algorithm. Concepts differ from abstract base classes or “interfaces”
in object-oriented languages in several ways, two of which are important in the
context of the BGL. First, concepts are purely compile-time entities, and unlike
virtual functions their use incurs no run-time overhead. Second, concepts permit
retroactive modeling, which means that one can provide the appropriate concept
interface for a data type without changing the data type; this allows external data
structures to be used with generic libraries such as the (Parallel) BGL.

2.1. Generic Algorithms. The generic algorithms in the (Parallel) BGL are
implemented using C++ templates, which provide compile-time polymorphism with
no run-time overhead. Figure 2 contains the complete implementation of the se-
quential breadth-first search algorithm in the BGL. The four template parameters
for this algorithm correspond to the graph type itself (IncidenceGraph), the queue
that will be used to store vertices (Buffer), the visitor that will be notified for vari-
ous events during the breadth-first search (BFSVisitor), and the property map that
will be used to keep track of which vertices have been seen (ColorMap).

The most important feature of breadth first visit() is that it can operate on an
arbitrary graph type, as long as the type meets certain (minimal) requirements. In
particular, to be used as a graph with breadth first visit(), the functions out edges(),
source(), and target() must exist for the given type. These requirements are part of
the Incidence Graph concept, which is documented elsewhere in greater detail [53].
For types that provide the required functionality, but do not have these required
functions, a simple adaptation layer can easily map from the provided functionality
to the required function names. This kind of adaptation is provided in BGL and
allows LEDA graphs (for example) to be used directly with BGL algorithms.

The ColorMap template parameter is also interesting because it separates the
notion of the “color” of a vertex from the storage of the vertex itself. In BGL
terminology, ColorMap is a property map, because it provides a particular property
for each vertex of the graph. When initiating a breadth-first search, all vertices will
be white. When a vertex is seen, it is colored gray. Once all of its outgoing edges
have been visited, it is colored black. This information can be stored either inside
the graph or in an external data structure, such as an array or hash table.

The remaining two template parameters, Buffer and BFSVisitor, allow further
customization of the behavior of the breadth-first search algorithm. We will re-
visit these parameters when we discuss the implementation of (parallel) Dijkstra’s
algorithm in the Parallel BGL in Section 3.

2.2. Graph Data Structures. In addition to generic algorithms, the (Paral-
lel) BGL provides several configurable graph data structures. The sequential BGL
provides an adjacency list representation, a more compact and efficient (but less
versatile) compressed sparse row representation, and an adjacency matrix represen-
tation, any of which can be used for the vast majority of the generic algorithms in

SINGLE-SOURCE SHORTEST PATHS 223225223

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

6 NICK EDMONDS, ALEX BREUER, DOUGLAS GREGOR, AND ANDREW LUMSDAINE

template<class IncidenceGraph, class Buffer , class BFSVisitor, class ColorMap>
void
breadth first visit (const IncidenceGraph& g,

typename graph traits<VertexListGraph>::vertex descriptor s,
Buffer& Q, BFSVisitor vis , ColorMap color)

{
put(color , s, Color:: gray()); vis . discover vertex (s, g);
Q.push(s);
while (! Q.empty()) {

Vertex u = Q.top(); Q.pop(); vis . examine vertex(u, g);
for (tie (ei , ei end) = out edges(u, g); ei != ei end ; ++ei) {

Vertex v = target (∗ei , g); vis . examine edge(∗ei, g);
ColorValue v color = get(color , v);
if (v color == Color::white()) { vis . tree edge (∗ei , g);

put(color , v, Color:: gray()); vis . discover vertex (v, g);
Q.push(v);

} else { vis . non tree edge(∗ei , g);
if (v color == Color::gray()) vis . gray target (∗ei , g);
else vis . black target (∗ei , g);

}
} // end for
put(color , u, Color:: black()); vis . finish vertex (u, g);

} // end while
}

Figure 2. Generic implementation of the (sequential) breadth-
first search algorithm in the BGL. The algorithm resides in the
left column and the associated event points are written in the right
column.

the BGL. In addition, the BGL provides an adaptation layer for various third-party
graph types.

The Parallel BGL provides distributed counterparts to the adjacency list and
compressed sparse row graphs of the BGL. Graphs in the Parallel BGL are dis-
tributed using a row-wise decomposition: each processor stores a disjoint set of
vertices and all edges outgoing from those vertices. Figure 3 (a) shows a small
graph consisting of nine vertices, distributed across three processors (indicated by
the shaded rectangles). Figure 3 (b) illustrates how this graph can be represented
using a distributed adjacency list in the Parallel BGL. Each processor contains sev-
eral vertices. Attached to those vertices is a list of edges. For instance, vertex a
on the leftmost processor has two outgoing edges, (a, b) and (a, d), so b and d are
stored in its list. We note that we use the term “distributed” in a general sense.
The distributed types in Parallel BGL can be used in shared-memory environments,
in which case parallelism can be effected via MPI or threads.

224226224

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

SINGLE-SOURCE SHORTEST PATHS WITH THE PARALLEL BOOST GRAPH LIBRARY 7

� �

�

�

�
	

�
�

�

(a) Distributed graph

�

�

�

�

�

�

�

�

	

� �

� �

�

� �

�

�

� 	

�

�

(b) Distributed adjacency list representation

Figure 3. A distributed directed graph represented as an adja-
cency list across three processors.

The Parallel BGL algorithms can operate on any distributed graph type that
meets the distributed graph requirements, allowing the user to choose the best data
structure for her task. The distributed compressed sparse row graph uses the same
distribution scheme as the distributed adjacency list shown in Figure 3 (b), but
instead of maintaining separate lists for the out-edges of each vertex, the out-edge
lists are packed into a single, contiguous array. The distributed compressed sparse
row graph therefore requires far less memory than the distributed adjacency list and
exhibits better locality, resulting in better performance. However, the distributed
compressed sparse row graph requires significantly more effort to use. For exam-
ple, because insertion into the middle of the edge list is O(|E|), the edges must be
ordered by source vertex before they are inserted. We typically use distributed com-
pressed sparse row for benchmarking (see Section 4.5 for a performance comparison
between these two graph data structures).

3. Implementing Single-Source Shortest Paths

We implemented three single-source shortest paths algorithms in the Parallel
BGL, all of which are roughly based on Dijkstra’s sequential algorithm. Dijkstra’s
algorithm computes shortest paths by incrementally growing a tree of shortest paths
for a weighted graph G = (V, E) from the source vertex s out to the most distant
vertices. The primary data structure used in Dijkstra’s algorithm is a priority
queue of vertices that have been seen but not yet processed and ordered based
on their distance d(u) from the source vertex s. Prior to execution of Dijkstra’s

SINGLE-SOURCE SHORTEST PATHS 225227225

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

8 NICK EDMONDS, ALEX BREUER, DOUGLAS GREGOR, AND ANDREW LUMSDAINE

algorithm, d(u) = ∞ for all u ̸= s, d(s) = 0, and the priority queue contains the
vertex s. At each step in the computation, the algorithm removes the vertex u with
the smallest d(u) from the priority queue, then relaxes each outgoing edge (u, v).
The relax step determines whether there is a better path from s to v via u, i.e.,
if d(u) + w(u, v) < d(v) (where w(u, v) is the non-negative weight of edge (u, v)).
When a better path is found, d(v) is updated with the value of d(u) + w(u, v) and
it is either inserted into the priority queue (if v had not previously been seen) or its
position in the queue is updated. Dijkstra’s algorithm terminates when the priority
queue is empty.

Dijkstra’s algorithm can be readily adapted for distributed memory. The graph
itself is distributed using a row-wise decomposition, with each processor owning
both a subset of the vertices as well as all edges outgoing from those vertices (as in
the adjacency list of Figure 3). Likewise, the priority queue is distributed, with each
processor’s priority queue storing only those vertices owned by that processor. The
processors will only remove vertices from their local priority queue, so each processor
only relaxes the edges outgoing from vertices that it owns. When an edge is relaxed,
the owner of the source vertex sends a message containing the target vertex, its new
distance, and (optionally) the name of the source vertex to the target vertex’s owner.
To ensure that only the vertex u with the smallest d(u) (globally) is selected, the
computation is divided into supersteps: at the beginning of each superstep, the
processors coordinate to determine the global minimum distance µ = min{d(u) :
u is queued}. The processors then select a vertex u with d(u) = µ, and the owner of
vertex u removes it from the local priority queue and relaxes its outgoing edges. All
processors then receive the messages produced by u’s owner as edges are relaxed,
update their local priority queues with new vertices and new distances, and the
superstep completes. Successive supersteps process the remaining vertices in the
shortest paths tree, one vertex per superstep. The algorithm terminates when all
local priority queues are empty.

There are two obvious opportunities for parallelizing the näıvely distributed
Dijkstra’s algorithm. The first opportunity is to relax all of the edges outgoing
from the active vertex u in parallel, effectively parallelizing the inner loop of Dijk-
stra’s algorithm. However, the speedup that we can attain by parallelizing this loop
is limited by the number of outgoing edges from a given vertex. With a row-wise
distribution of the graph data structure, only a single processor has direct access
to the outgoing edges of u. Therefore, parallelizing in this manner requires repli-
cation or distribution of the outgoing edges for the active vertex u, Even within a
shared-memory system, the effect of parallelizing only this inner loop is limited. In
many real-world graphs, the average out-degree is a relatively small constant, so
parallelizing the relaxation of outgoing edges is not likely to yield good scalability
except in the case of extremely dense graphs. For this reason, the current imple-
mentation of Parallel BGL therefore does not include parallel relaxation of edges.
We are studying the inclusion of this parallel edge relaxation in future versions of
the Parallel BGL.

The second opportunity for parallelizing Dijkstra’s algorithm is to remove sev-
eral vertices from the priority queue simultaneously, relaxing their edges in parallel.
At the beginning of each superstep, the distributed-memory formulation of Dijk-
stra’s algorithm determines the global minimum distance, µ, and selects a single
vertex u to relax. Instead, we could allow every vertex u with d(u) = µ to be

226228226

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

SINGLE-SOURCE SHORTEST PATHS WITH THE PARALLEL BOOST GRAPH LIBRARY 9

removed from the priority queue (and its outgoing edges relaxed) within the super-
step. The scalability of the algorithm is then tied to the number of vertices that can
be removed from the distributed priority queue within a single superstep and how
well those vertices are distributed among the processors. Ideally, each superstep
would remove a large number of vertices, evenly distributed among the processors.
Unfortunately, real-world graphs rarely have a large number of vertices with the
same distance from the source vertex, so the degree of parallelism we can extract
from this direct parallelization is limited.

To expose more parallelism in Dijkstra’s algorithm we need to remove more
vertices from the priority queue in each superstep. This is accomplished by allow-
ing the removal of vertices whose distances exceed µ. When removing a vertex u
with d(u) > µ and relaxing its outgoing edges, it is possible that another processor
will find a better route from the source s to u. When a better route is found, u will
need to be re-inserted into the priority queue so that its edges will be relaxed again,
but with a smaller value of d(u). Thus, there is a trade-off between exposing more
parallelism (by removing more vertices in each superstep) and avoiding unneces-
sary work (by limiting how many re-insertions will occur). We have implemented
three variations on Dijkstra’s algorithm that use different strategies to decide which
vertices u with d(u) > µ should be considered.

3.1. Implementation Strategy. Dijkstra’s algorithm can be viewed as a
modified breadth-first search. A breadth-first search is typically implemented using
a first-in first-out (FIFO) queue. Breadth-first search initially places the start vertex
s into the queue. At each step, it extracts a vertex from the head of the queue,
visits its outgoing edges, and places all new target vertices into the tail of the queue.

Dijkstra’s algorithm changes breadth-first search in two ways. First, the FIFO
queue is replaced with the priority queue. Second, when visiting the outgoing
edges for the active vertex, Dijkstra’s algorithm relaxes those edges and updates
the ordering in the priority queue. Within the (sequential) Boost Graph Library,
Dijkstra’s algorithm is implemented as a call to breadth-first search that replaces
the FIFO queue with a relaxed heap and provides a visitor that relaxes edges. A
simplified version of the visitor is shown in Figure 4. It uses two events to update
the queue: tree edge() is invoked when breadth-first search traverses an edge whose
target has not yet been seen, hence the edge is part of the breadth-first spanning
tree, and gray target(), which is invoked when the target of an edge has been seen
but not processed. The visitor functions for both events “relax” edges, although
only the latter needs to update the priority queue directly. Using this visitor,
Dijkstra’s algorithm is implemented as a simple call to breadth first visit():

dijkstra shortest paths
(Graph &g, Vertex source)

{
relaxed heap<Vertex> Q; // Priority queue
dijkstra bfs visitor bfs vis(Q); // Visitor that updates the priority queue
breadth first visit(graph, source, Q, bfs vis);

}
The Parallel BGL contains a distributed-memory parallel breadth-first search im-
plementation, upon which we have built two of the parallel Dijkstra variants. The
eager and Crauser et al. variants use the visitor shown in Figure 4, but they provide

SINGLE-SOURCE SHORTEST PATHS 227229227

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

10 NICK EDMONDS, ALEX BREUER, DOUGLAS GREGOR, AND ANDREW LUMSDAINE

struct dijkstra bfs visitor {
template<typename Edge, typename Graph>
void tree edge(Edge e, Graph& g) {

if (distance(source(e, g)) + weight(e) < distance(target(e, g)))
distance(target(e, g)) = distance(source(e, g)) + weight(e);

}

template<typename Edge, typename Graph>
void gray target(Edge e, Graph& g) {

if (distance(source(e, g)) + weight(e) < distance(target(e, g)))
Q.update(target(e, g), distance(source(e, g)) + weight(e));

}
};

Figure 4. Breadth-first search visitor that relaxes each outgoing
edge and updates the queue appropriately. This visitor is used by
both the sequential and two of the parallel formulations of Dijk-
stra’s algorithm in the (Parallel) BGL.

different distributed priority queue implementations, each using a different heuris-
tic to determine which vertices should be removed in a superstep. Implementing
other distributed priority queue heuristics for Dijkstra’s algorithm is relatively sim-
ple with the Parallel BGL: one need only implement a queue that models the new
heuristics and then call breadth first visit() with an instance of the new queue and
the Dijkstra visitor from Figure 4, as shown above.

3.2. Eager Dijkstra’s Algorithm. The “eager” Dijkstra’s algorithm uses a
simple heuristic to determine which vertices should be removed in a given superstep.
The eager algorithm uses a constant lookahead factor λ, and in each superstep the
processors remove every vertex u such that d(u) ≤ µ + λ, ordered by increasing
values of d(u). Keeping vertices sorted by increasing values of d(u) allows the closest
vertices to be relaxed first which minimizes the total number of edge relaxations.
It also simplifies finding all vertices such that d(u) ≤ µ + λ.

When λ = 0, the eager algorithm is equivalent to the näıve parallelization of Di-
jkstra’s algorithm, and exposes very little parallelism. Larger values of λ can expose
more parallelism, but might result in a work-inefficient algorithm if too many ver-
tices need to be re-inserted into the priority queue. When λ = min{weight(e)|e ∈
E}, we can expose additional parallelism without introducing any re-insertions.
The optimal value for λ depends on the graph density, shape, and weight distribu-
tion, among other factors. We provide an experimental evaluation of the effect of
λ on performance in Section 4.3.

The eager Dijkstra distributed queue from the Parallel BGL is responsible for
implementing both the eager lookahead behavior of the algorithm and for man-
aging synchronization among the processors. In addition to push() and pop(), it
implements empty() and update() operations. Whenever the push() or update() op-
eration is invoked, a message is sent to the owning process. These messages are only
processed at the end of each superstep, which occurs inside the empty() method.
empty() returns false so long as the local queue contains at least one vertex u such

228230228

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

SINGLE-SOURCE SHORTEST PATHS WITH THE PARALLEL BOOST GRAPH LIBRARY 11

that d(u) ≤ µ + λ. When no such vertex exists, the processor synchronizes with
all of the other processors, receiving “push” messages and finally recomputing the
global minimum value, µ. Note that empty() only returns false when all priority
queues on all processors are empty, signaling termination of the algorithm. The de-
sign and implementation process used to arrive at this formulation of a distributed
queue, and its use with the sequential breadth first visit() implementation to effect
a parallel algorithm, is further described in [31].

3.3. Crauser et al.’s Algorithm. The parallel Dijkstra variant due to Crauser
et al. [16] uses more precise heuristics to increase the number of vertices removed
in each superstep without causing any re-insertions. The algorithm uses two sep-
arate criteria, the OUT-criterion and the IN-criterion, which can be combined to
determine which vertices should be removed in a given superstep. Unlike the eager
algorithm, there are no parameters that need to be tuned.

The OUT-criterion computes a threshold L based on the weights of the outgoing
edges in the graph. L is given the value min{d(u)+weight(u, w) : u is queued and (u, w) ∈
E}. Any vertex v with d(v) < L can safely be removed from the queue, because
L bounds the smallest distance value d(v) that can be achieved by relaxing the
outgoing edges of any queued vertex.

The IN-criterion computes a threshold based on the incoming edges. If d(v) −
min{weight(u, v) : (u, v) ∈ E} ≤ µ (where µ is the global minimum) for a queued
vertex v, then v can safely be removed from the queue, because there is no vertex
in the queue with an outgoing edge to v that could be relaxed.

The OUT- and IN-criteria can be used in conjunction, so that each superstep
removes all vertices that meet either criterion. On random graphs with uniform
edge weights, each superstep will remove on average O(n2/3) vertices with high
probability [16].

In the Parallel BGL, we have implemented Crauser et al.’s algorithm by creat-
ing a new distributed priority queue that applies the OUT- and IN-criteria. This
distributed priority queue is very similar to the eager Dijkstra queue. However,
the Crauser et al. priority queue contains three relaxed heaps for each processor,
ordered by d(v), d(u) + weight(u, w) : u is queued and (u, w) ∈ E (for the OUT-
criterion), and d(v) − min{weight(u, v) : (u, v) ∈ E} (for the IN-criterion). The
three relaxed heaps are maintained simultaneously, so that both the IN- and OUT-
criteria can be used together. The implementation of Crauser et al.’s algorithm is
a single call to breadth first visit(), using the new distributed priority queue and the
Dijkstra visitor from Figure 4.

3.4. ∆-stepping. The ∆-stepping [48], algorithm is a label-correcting algo-
rithm that is parameterized by a lookahead parameter ∆, much like the λ lookahead
factor in the Eager Dijkstra algorithm. As with the Eager Dijkstra algorithm, all
vertices whose tentative distances are within ∆ of the current global minimum
distance are processed in parallel.

Unlike the Eager Dijkstra algorithm, however, ∆-stepping uses an approximate
bucket data structure in lieu of a priority queue. The bucket data structure contains
an array of buckets, B, each of which has width ∆. Thus, the ith bucket in B will
store all vertices whose tentative distance falls in the range [i∆, (i+1)∆), i.e., those
vertices that will be processed in parallel in a superstep. By maintaining only an
approximate ordering of elements in its central data structure, ∆-stepping performs

SINGLE-SOURCE SHORTEST PATHS 229231229

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

12 NICK EDMONDS, ALEX BREUER, DOUGLAS GREGOR, AND ANDREW LUMSDAINE

less work ordering its bucket data structure than Eager Dijkstra does ordering its
priority queue.

∆-stepping also reduces the amount of work performed when relaxing the out-
going edges of each vertex in the current bucket by classifying edges into light
edges—those whose weights are ≤ ∆, and whose relaxation could cause re-insertion
of vertices into the current bucket—and heavy edges—those whose weights are > ∆,
and therefore cannot cause re-insertions of vertices into the current bucket. ∆-
stepping repeatedly relaxes only the light edges outgoing from the vertices in the
current bucket, until it has determined that no processor has performed any re-
insertions into the current bucket. At this point, the heavy edges outgoing from
every vertex that was in the current bucket will be relaxed. By delaying the re-
laxation of heavy edges, ∆-stepping ensures that the heavy edges are relaxed only
once, whereas the light edges may need to be relaxed several times.

3.5. Using Dijkstra’s Algorithm. The eager and Crauser et al. implemen-
tations of Dijkstra’s algorithm in the (Parallel) BGL are provided by the function
template dijkstra shortest paths(), which can operate on both distributed and non-
distributed graphs. The algorithm is polymorphic based on the graph type, and can
be invoked for any suitable graph from source vertex source and with the specified
edge weights:

dijkstra shortest paths(graph, source, weight map(edge weights));

The actual implementation of Dijkstra’s algorithm selected at compile time depends
on what kind of graph is provided in the call. For instance, graph could be a non-
distributed adjacency list, in which case the sequential Dijkstra’s algorithm will be
used:

adjacency list<vecS, vecS, directedS> graph; // non−distributed adjacency list
dijkstra shortest paths(graph, source, weight map(edge weights));

// sequential Dijkstra’s

The same sequential Dijkstra’s algorithm can instead be used with a (non-distributed)
compressed sparse row graph, providing more compact storage and potentially im-
proving algorithm performance:

compressed sparse row graph<directedS> graph; // non−distributed CSR graph
dijkstra shortest paths(graph, source, weight map(edge weights));

// sequential Dijkstra’s

On the other hand, if graph were a distributed graph, dijkstra shortest paths()
would instead apply Crauser et al.’s algorithm for distributed-memory parallel
shortest paths. The graph in this case is an instance of adjacency list that uses
a distributedS selector, indicating that the vertices should be distributed across the
processors. The distributedS selector is parameterized by the process group type,
which indicates how parallel communication will be performed. In this case, we
have used the bsp process group implemented over MPI. The fact that the graph
is distributed is encoded within the type of the graph itself, allowing the Parallel
BGL to perform a compile-time dispatch to select a distributed algorithm. The
call to dijkstra shortest paths(), and the majority of the code leading up to the call,
remains unchanged when one moves from the non-distributed graph types of the
(sequential) BGL to the distributed graph types of the Parallel BGL.

230232230

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

SINGLE-SOURCE SHORTEST PATHS WITH THE PARALLEL BOOST GRAPH LIBRARY 13

adjacency list<vecS, distributedS<vecS, mpi::bsp process group>, directedS> graph;
// distributed adjacency list

dijkstra shortest paths(graph, source, weight map(edge weights));
// Crauser et al.’s for distributed memory

To use the eager Dijkstra algorithm in lieu of Crauser et al.’s algorithm for a
distributed graph, the user need only supply a lookahead value λ. Note that in
the following example, the period separating the weight map parameter from the
lookahead parameter is not an error; rather, it is a form of named parameters used
within both Boost Graph Libraries. Here, we illustrate the application of the eager
Dijkstra algorithm to a distributed graph stored in compressed sparse row format:

compressed sparse row graph<directedS, void, void, no property,
distributedS<mpi::bsp process group> > graph; // distributed CSR graph

dijkstra shortest paths(graph, source, weight map(edge weights).lookahead(15));
// Eager Dijkstra’s

The third implementation of Dijkstra’s algorithm in the (Parallel) BGL is pro-
vided by the function template delta stepping shortest paths(), this algorithm has
no analog in the sequential BGL but work on unifying the implementations of
the single-source shortest path algorithms is underway. In the same fashion as
dijkstra shortest paths(), the ∆-stepping algorithm is polymorphic based on graph
type, and can be invoked for any suitable graph from source vertex source and with
the specified edge weights:

delta stepping shortest paths(graph, source, weight map(edge weights));

An optional lookahead value ∆ can also be supplied in a similar fashion to the eager
Dijkstra algorithm:

delta stepping shortest paths(graph, source, weight map(edge weights).lookahead(10));

4. Evaluation

For this paper we evaluated the performance and scalability of our single-source
shortest paths implementations using various synthetic and real-world graphs; the
sequential performance of the BGL has been demonstrated previously [43, 44].
All performance evaluations were performed on the Indiana University Computer
Science Department’s “Odin” research cluster. Odin consists of 128 compute nodes
connected via Infiniband. Each node contains 4GB of dual-channel PC3200 (400
MHz) DDR-DRAM with two 2.0GHz AMD Opteron 270 processors (1MB Cache)
running Red Hat Enterprise Linux WS Release 4. Each node contains a Mellanox
InfiniHost HCA on a 133MHz PCI-X bus running OFED 1.1, connected to a 144
port Voltaire SDR switch. For our tests we left one processor idle on each node. The
Parallel BGL tests were compiled using a pre-release version of Boost 1.34.0 [11]
(containing the sequential BGL) and the latest development version of the Parallel
BGL [30]. All programs were compiled with version 9.0 of the Intel C++ compiler
with optimization flags −O3 −tpp7 −ipo −fno−alias. All MPI tests use version
1.2b3 of Open MPI [24] with the openib module.

We performed our experiments with real-world and synthetic data from the
9th DIMACS Implementation Challenge [1]. We used several different kinds of
synthetic graphs generated using GTgraph [9], each of which exhibits different

SINGLE-SOURCE SHORTEST PATHS 231233231

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

14 NICK EDMONDS, ALEX BREUER, DOUGLAS GREGOR, AND ANDREW LUMSDAINE

Parallel BGL ∆-stepping (1 processor) BGL SQ Ref. Solver
Time (s) 26.9801 9.26762 9.33730

Table 3. Performance of the sequential BGL and reference im-
plementations on the USA road network (average over 50 source
vertices).

graph properties. Additionally, we use real-world graph data for the network of
roads in the United States. The graphs we have used in this evaluation are:

Random: Graphs as produced with the GTgraph random generator, using
random (n,m) graphs. These graphs tend to have very little structure.

RMAT: Graphs as produced by the GTgraph implementation of the RMAT [13]
power-law graph algorithm.

SSCA: Graphs as generated by the GTgraph implementation of the HPCS
SSCA # 2 benchmark [8]. This algorithm begins by producing cliques of
size uniformly distributed between 1 and n (we set n to 8 for weak scaling
tests and 5 for comparison against the USA Roads data) and then adds
inter-clique edges with probability p (we set p to 0.5 for weak scaling tests
and 0.25 for comparison against the USA Roads data). These graphs also
tend to have a large number of multiple edges.

USA Roads: Complete U.S. Road network from the UA 2000 Census TIGER/-
Line data [58]. The graph is very sparse; it has ∼ 24 million vertices and
∼ 58 million edges.

European Roads: Road networks of 17 European countries from the PTV
Europe data [52]. The graph is very sparse; it has ∼ 19 million vertices
and ∼ 23 million edges.

Erdős-Rényi: Random graphs generated using the Parallel BGL random
graph generator.

The Parallel BGL offers a variety of graph distribution options. All graphs use
the default block distribution except where otherwise noted. The block distribution
assigns P/|V | vertices to each of P processors where each block of P/|V | vertices
is contiguous with regard to vertex order.

4.1. Sequential Performance. Although the focus of this paper is the Par-
allel BGL and it’s single-source shortest paths algorithms, a brief discussion of the
performance of the sequential BGL is in order to provide a baseline. Dijkstra’s
single-source shortest path algorithm is implemented using the sequential BGL’s
breadth-first search and a multi-level bucket queue [27] implementing Goldberg’s
caliber heuristic [28].

Table 3 demonstrates that the performance of the sequential BGL is comparable
to the reference solver [1]. Also shown is the performance of the ∆-stepping parallel
algorithm on a single processor. On a single processor the parallel implementation
is noticeably slower due to the additional overhead imposed by the distributed data
structures and communication code needed to support parallel computation. All
single processor numbers beyond this table are the results of running the parallel
algorithm with the required parallel data structures on a single processor.

232234232

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

SINGLE-SOURCE SHORTEST PATHS WITH THE PARALLEL BOOST GRAPH LIBRARY 15

4.2. Strong Scaling. To understand how well the parallel implementations of
Dijkstra’s algorithm in the Parallel BGL scale as more computational resources are
provided, we evaluated the performance of each algorithm on fixed-size graphs. We
generated synthetic graphs that are comparable in size to the USA road network,
with ∼ 24M vertices and ∼ 58M edges. Both the random and RMAT graphs
were created by specifying the number of vertices and edges parameters, with all
other parameters set to defaults. The SSCA graph was generated by specifying the
number of vertices, setting the maximum clique size to five, setting the probability
of inter-clique edges to 0.25 and setting the maximum edge weight to 100. Note
that with the SSCA graph, we were unable to generate graphs as sparse as the
USA road network; to do so would require an unrealistically small maximum clique
size. Thus, the SSCA graph contains about 148M edges. For the Eager Dijkstra
algorithm, we have selected a lookahead value λ = 8 based on experimental evidence
gathered for random graphs (Figure 8).

Figure 5 illustrates the strong scalability of the three single-source shortest path
implementations. The random data appear to scale linearly with all algorithms.
This is the result of a relatively uniform distribution of work due to the uniform
nature of the random graph. The RMAT data also scale very linearly, though they
exhibit less speedup than the random data. We speculate this is likely due to a less
balanced work distribution caused by large variances in the degree of the vertices.
The USA road data begin to scale inversely at 8 processors using the eager Dijkstra
algorithm for reasons that are examined in section 4.3. The poor scalability of the
USA road data using the Crauser et al. algorithm is most likely due to the conser-
vative nature of the algorithm preventing it from removing a sufficient number of
vertices in each superstep. When insufficient numbers of vertices are removed, the
result is more communication rounds which increase runtime. Removing insufficient
numbers of vertices in a superstep can also lead to load imbalances, further decreas-
ing performance. The USA road data scale up to approximately 16 processors with
the ∆-stepping algorithm but beyond that there is insufficient work available due to
the small size of the graph to scale further. The SSCA data scale linearly with the
eager Dijkstra algorithm, though the speedup as not as significant as on the other
synthetic data. With the Crauser et al. algorithm and the ∆-stepping algorithm
the SSCA data begins to scale inversely around 32 processors as the more complex
communication and data-structure overhead of these algorithms begins to dominate
the increasingly smaller amount of work available on each processor. The SSCA
data contain more edges than the other synthetic graph types, but a significant
portion of these edges are duplicates in the sense that they have the same source
and target. The shortest path algorithms still have to consider the duplicate edges;
moreover, the larger number of edges overall leads to a larger memory footprint.
Without duplicate edges, the SSCA graph is only slightly denser than the random
and RMAT graphs, yet it exhibits the same scaling behavior. This illustrates that
the poor scaling of the SSCA graphs is indeed a product of their structure, not
their density.

In order to determine if the performance observed was typical of structured
data sets such as road networks, both variants of parallel Dijkstra’s algorithm were
also run on the European road network data. Figure 7 shows similar scalability
results to the USA road network data. This supports our theory that the structure
of the road network data limits available parallelism.

SINGLE-SOURCE SHORTEST PATHS 233235233

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

16 NICK EDMONDS, ALEX BREUER, DOUGLAS GREGOR, AND ANDREW LUMSDAINE

 1

 10

 100

 1000

 1 10 100

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

of Processors

Random
RMAT

USA Roads
SSCA

(a) Crauser et al.’s Algorithm

 1

 10

 100

 1000

 1 10 100

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

of Processors

Random
RMAT

USA Roads
SSCA

(b) Eager Dijkstra Algorithm

 1

 10

 100

 1000

 1 10 100

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

of Processors

Random
RMAT

USA Roads
SSCA

(c) ∆-stepping Algorithm

Figure 5. Strong scalability for the three single-source shortest
paths algorithms, using fixed-size graphs with ∼ 24M vertices and
∼ 58M edges.

234236234

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

SINGLE-SOURCE SHORTEST PATHS WITH THE PARALLEL BOOST GRAPH LIBRARY 17

 0.1

 1

 10

 100

 1 10 100

S
pe

ed
up

of Processors

Random
RMAT

USA Roads

(a) Crauser et al.’s Algorithm

 0.1

 1

 10

 100

 1 10 100

S
pe

ed
up

of Processors

Random
RMAT

USA Roads

(b) Eager Dijkstra Algorithm

 0.1

 1

 10

 100

 1 10 100

S
pe

ed
up

of Processors

Random
RMAT

USA Roads

(c) ∆-stepping Algorithm

Figure 6. Parallel speedup for the three single-source shortest
paths algorithms, using fixed-size graphs with ∼ 24M vertices and
∼ 58M edges.

SINGLE-SOURCE SHORTEST PATHS 235237235

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

18 NICK EDMONDS, ALEX BREUER, DOUGLAS GREGOR, AND ANDREW LUMSDAINE

 10

 100

 1000

 1 10 100

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

of Processors

Eur Roads
USA Roads

(a) Crauser et al.’s Algorithm

 1

 10

 100

 1000

 1 10 100

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

of Processors

Eur (lookahead=8)
Eur (lookahead=400)

USA (lookahead=8)
USA (lookahead=400)

(b) Eager Dijkstra Algorithm

Figure 7. Strong scalability for two variants of parallel Dijkstra’s
algorithm, using the USA and European road networks

It should be noted that all of these graphs are relatively small compared to the
size of problems the Parallel BGL is capable of solving. The Parallel BGL does
introduce some communication overhead in order to manage the distributed data
structures, therefore for small problem sizes the sequential BGL may be a more
appropriate choice. However for problem sizes too large to fit in core on a single
machine, the Parallel BGL is a fast, efficient, and scalable alternative. For problems
that do fit in core on a single machine the Parallel BGL may still be able to provide
a faster solution using small numbers of processors.

4.3. Eager Dijkstra Lookahead Factor. To determine an appropriate looka-
head value to use in our scalability tests we evaluated a range of options on a random
graph generated using the GTgraph [9] generator. This graph is comparable in size
to the USA road network. We chose a random graph in order to reduce any bias
the particular structures of the other graphs may have had on the lookahead value.
Previous tests using the Parallel BGL [32] have indicated that optimal lookahead

236238236

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

SINGLE-SOURCE SHORTEST PATHS WITH THE PARALLEL BOOST GRAPH LIBRARY 19

 37.5

 38

 38.5

 39

 39.5

 40

 4 6 8 10 12 14 16 18 20

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

Lookahead (% max edge weight)

Eager-Random

(a) Random graph

 12

 14

 16

 18

 20

 22

 24

 26

 28

 0 100 200 300 400 500 600 700 800

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

Lookahead (absolute)

Eager-USA

(b) USA road network

Figure 8. Effect of lookahead value on the performance of the
eager Dijkstra’s algorithm, using fixed-size graphs with ∼ 24M
vertices and ∼ 58M edges.

values for random graphs tend to be around 10% of the maximum edge weight in
the graph so we examined values around 10%.

Figure 8 shows a minimum at a lookahead value of 8, thus this value was chosen
for our scalability results. Examining the strong scalability results in Figure 5
obtained using this lookahead value indicates that the USA road network data
scale very poorly. We speculated that this was likely the result of a poor choice
of lookahead value for this particular graph, so we tried a variety of alternate
lookahead values. Figure 8 shows that the optimal lookahead value for the USA
road network was 400, much larger than our original approximation of 8.

Figure 9 illustrates the performance difference that the choice of a lookahead
value can have on the eager Dijkstra’s algorithm. Optimal lookahead values vary
not only with graph size and structure, but also with graph shape, density, and
edge weight distribution. We theorize that the poor scaling behavior of the USA

SINGLE-SOURCE SHORTEST PATHS 237239237

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

20 NICK EDMONDS, ALEX BREUER, DOUGLAS GREGOR, AND ANDREW LUMSDAINE

 1

 10

 100

 1000

 1 10 100

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

of Processors

Lookahead=8
Lookahead=400

(a) Wall clock time

 0.1

 1

 10

 1 10 100

S
pe

ed
up

of Processors

Lookahead=8
Lookahead=400

(b) Parallel speedup

Figure 9. Results of running the eager Dijkstra’s algorithm with
two different lookahead values on the USA road network

road network was due to sparse regions containing many edges with large weights.
Traversing high-weight edges in these sparse regions may require several algorithm
iterations if the lookahead value is small. Each iteration is relatively expensive due
to the all-to-all communication that needs to occur between each BSP superstep
and thus increasing the number of iterations causes severe performance degradation.
Conversely if the lookahead value is large enough to cause these edges to be explored
in a single iteration, then many iterations may be saved and runtime significantly
reduced.

Figure 9 shows that using an appropriate lookahead value yields much better
scalability on the USA road network. The parallel speedup begins to taper off
around 16 processors because the data set is too small to provide adequate local
work to overcome the communication overhead. Given a larger data set the shortest
paths algorithms in the Parallel BGL should scale well up to hundreds of processors.

238240238

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

SINGLE-SOURCE SHORTEST PATHS WITH THE PARALLEL BOOST GRAPH LIBRARY 21

 1

 10

 100

 1000

 1 10 100

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

of Processors

Unpartitioned
Partitioned

(a) USA road network Eager Dijkstra algorithm

 1

 10

 100

 1000

 1 10 100

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

of Processors

Unpartitioned
Partitioned

(b) USA road network Crauser et al. algorithm

Figure 10. Parallel Dijkstra run times on METIS partitioned
and unpartitioned USA road network

4.4. Graph Partitioning. To evaluate the effects of data distribution on al-
gorithm performance, we applied a data partition to the USA road network. We
computed this partition using the k-way METIS [39] partitioning program, but
memory pressure prevented us from using edge weights or vertex coordinates in our
partitioning. We ran both the Crauser et al. algorithm and Eager Dijkstra algo-
rithm on the partitioned graphs and compared the results to the unpartitioned ver-
sion. Figure 10 provides the comparison between the partitioned and unpartitioned
USA road network. Partitioning did not prove useful, and in some cases was detri-
mental to performance. The most likely cause of this is that the TIGER/Line data
already exhibit good locality properties in their file representation while METIS
was hampered by the inability to consider edge weights or vertex coordinates due
to memory pressure making it unlikely to improve on the existing partitioning and
in some cases choose poorer partitionings.

SINGLE-SOURCE SHORTEST PATHS 239241239

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

22 NICK EDMONDS, ALEX BREUER, DOUGLAS GREGOR, AND ANDREW LUMSDAINE

 1

 10

 100

 1000

 1 10 100

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

of Processors

CSR
AdjList

(a) Crauser et al.’s Algorithm

 1

 10

 100

 1000

 1 10 100

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

of Processors

CSR
AdjList

(b) Eager Dijkstra Algorithm

Figure 11. Effect of graph data type on the performance of two
variants of parallel Dijkstra’s algorithm on the USA road network.

4.5. Graph Data Structures. The Parallel BGL offers several graph data
structures including an adjacency list and compressed sparse row (CSR) graph.
Changing the data structures used by an algorithm can mean the difference between
fitting the algorithm’s working set in core and paging. Additionally, more compact
data structures often gain a performance advantage from cache reuse. Because
more data elements can be kept in cache the likelihood of finding a data element
there is higher. Compact data structures such as CSR also have drawbacks, in this
case O(|E|) cost for edge insertion, which may require the use of more verbose data
structures in some cases.

Figure 11 shows that the CSR graph representation out-performs the adjacency
list representation; this can be attributed to its more compact size and efficient
access methods. The data for the Adjacency List graph type are missing for fewer
processors because of the higher memory footprint of that graph type. This figure
also shows that there is a constant performance overhead for the less-compact

240242240

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

SINGLE-SOURCE SHORTEST PATHS WITH THE PARALLEL BOOST GRAPH LIBRARY 23

Adjacency List which may be explained by cache effects and indirection. These
results demonstrate the importance of choosing appropriate data structures when
implementing an algorithm. Fortunately, the concepts in the Parallel BGL simplify
making these choices by explicitly specifying the requirements that data structures
must model.

4.6. Weak Scaling. To understand how the parallel implementations of Di-
jkstra’s algorithm scale as the problem size scales, we evaluated the performance of
each algorithm on graphs where |V | ∝ |E| ∝ p (where p is the number of proces-
sors). We generated random and RMAT graphs with ∼ 1M vertices and ∼ 10M
edges per processor and SSCA graphs with ∼ 1M vertices per processor and as
close to ∼ 10M edges per processor as possible. Figure 12 illustrates the run times
on the GTgraph graphs. We also wanted to generate weak scaling results for the
largest possible graph we could fit in core. Reading graphs from disk and generat-
ing them using the sequential generator was very expensive so we used the Parallel
BGL Erdős-Rényi generator to generate graphs similar to the GTgraph random
graphs in core. These graphs had ∼ 2.5M vertices and ∼ 12.5M edges per proces-
sor which results in a maximum graph size of ∼ 240M vertices and ∼ 1.2B edges
on 96 processors. Figure 13 shows the run times for the weak scaling tests on these
graphs produced with the Parallel BGL Erdős-Rényi generator. All weak scaling
results use a lookahead value λ = 8.

These experiments show that the runtime increases even though the amount of
data per processor remains constant. This is because the amount of work performed
by the Crauser et al. algorithm is O(|V | log|V |+ |E|) [16]. As we vary |V | linearly
with the number of processors the amount of work increases faster than the number
of processors. This yields more work per processor which gives rise to the sub-linear
scaling exhibited in Figure 12. In fact, the amount of work per processor is equal to
|V |
p × log |V |

p where p is the number of processors. In our weak scaling experiment
|V | ∝ p so the work per processor is proportional to log(|V |). The eager Dijkstra’s
algorithm has a similar log(|V |) factor in the amount of work performed due to
the priority queue operations and thus it is reasonable to presume that it will scale
sub-linearly as well. Some curve-fitting to the weak scaling data showed that a
logarithmic curve does fit the data better than any other function (radical, linear,
etc.). This suggests that our weak scaling performance closely approximates the
shape of the theoretical maximum though the constant factors may differ.

4.7. Very Large Graphs. We also used Parallel BGL Erdős-Rényi generator
to generate larger graphs than those provided in the challenge data sets which
demonstrate the capability of the Parallel BGL to solve very large graph problems.
Figure 14 shows run times for strong scaling tests on graphs with between 228 and
230 vertices and average degree ∼ 4. The largest of these graphs had 230 vertices
and 232 edges.

5. Related Work

The CGMgraph library [14] implements several graph algorithms, including
Euler tour, connected components, spanning tree, and bipartite graph detection.
It uses its own communication layer built on top of MPI and based on the Course
Grained Multicomputer (CGM) [18] model, a variant of the BSP model. From

SINGLE-SOURCE SHORTEST PATHS 241243241

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

24 NICK EDMONDS, ALEX BREUER, DOUGLAS GREGOR, AND ANDREW LUMSDAINE

 1

 10

 100

 1000

 1 10 100

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

of Processors

Random
RMAT
SSCA
Ideal

(a) Crauser et al.’s Algorithm

 0.1

 1

 10

 100

 1000

 1 10 100

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

of Processors

Random
RMAT
SSCA
Ideal

(b) Eager Dijkstra Algorithm

 0.1

 1

 10

 100

 1 10 100

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

of Processors

Random
RMAT
SSCA
Ideal

(c) ∆-stepping Algorithm

Figure 12. Weak scalability for the three parallel single-source
shortest path algorithms , using graphs with an average of ∼ 1M
vertices and ∼ 10M edges per processor.

242244242

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

SINGLE-SOURCE SHORTEST PATHS WITH THE PARALLEL BOOST GRAPH LIBRARY 25

 10

 100

 1000

 1 10 100

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

of Processors

PBGL Erdos-Renyi

(a) Crauser et al.’s Algorithm

 10

 100

 1000

 1 10 100

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

of Processors

PBGL Erdos-Renyi

(b) Eager Dijkstra Algorithm

Figure 13. Weak scalability for two variants of parallel Dijk-
stra’s algorithm, using BGL-generated graphs with an average of
∼ 2.5M vertices and ∼ 12.5M edges per processor.

an architectural standpoint, CGMgraph and the Parallel BGL adopt different pro-
gramming paradigms: the former adheres to Object-Oriented principles whereas
the latter follows the principles of generic programming. We have previously shown
that the Parallel BGL’s implementation of connected components is at least an
order of magnitude faster than CGMgraph’s implementation [31], which we believe
is due to generic programming’s dual focus on genericity and efficiency. However,
CGMgraph does not provide any implementations of parallel shortest paths.

The ParGraph library [34] shares many goals with the Parallel BGL. Both li-
braries are based on the sequential BGL and aim to provide flexible, efficient parallel
graph algorithms. The libraries differ in their approach to parallelism: the Parallel
BGL stresses source-code compatibility with the sequential BGL, eliminating most
explicit communication. ParGraph, on the other hand, represents communication

SINGLE-SOURCE SHORTEST PATHS 243245243

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

26 NICK EDMONDS, ALEX BREUER, DOUGLAS GREGOR, AND ANDREW LUMSDAINE

 10

 100

 1000

 10 100

W
al

l C
lo

ck
 T

im
e

(s
ec

on
ds

)

of Processors

2^28
1.5*(2^28)

2^29
1.5*(2^29)

2^30

(a) ∆-stepping Algorithm

Figure 14. Weak scalability for the Delta-Stepping algorithm,
using BGL-generated graphs with between 228 and 230 vertices and
average degree ∼ 4. Chart labels indicate the number of vertices
in the graph being tested.

explicitly, which may permit additional optimizations. ParGraph does not provide
any implementations of parallel shortest paths.

The Standard Template Adaptive Parallel Library (STAPL) [4] is a generic
parallel library providing data structures and algorithms whose interfaces closely
match those of the C++ Standard Template Library. STAPL and Parallel BGL
both share the explicit goal of parallelizing an existing generic library, but their
approach to parallelization is quite different. STAPL is an adaptive library, that
will determine at run time how best to distribute a data structure or parallelize
an algorithm, whereas the Parallel BGL encodes distribution information (i.e., the
process group) into the data structure types and makes parallelization decisions at
compile time. Run time decisions potentially offer a more convenient interface, but
compile time decisions permit the library to optimize itself to particular features of
the task or communication model (an active library [59]), effectively eliminating the
cost of any abstractions we have introduced. STAPL includes a distributed graph
container with several algorithms, but it is unclear whether any parallel shortest
paths algorithms have been implemented.

Performance results for the ∆-stepping algorithm on large graphs using the
Cray MTA-2 have been presented [45]. The MTA-2 is a large, shared-memory
machine with a massively multithreading architecture. The MTA-2 processors have
hardware support for a large number of threads, and can efficiently switch from one
hardware thread to another when an outstanding memory request is serviced. Thus,
the MTA-2 is able to tolerate latency better than most architectures, particularly
the commodity clusters for with the Parallel BGL was designed. Unfortunately,
the largest MTA-2 ever built contains only 40 processors, limiting the practicality
of graph algorithm implementations on this machine.

244246244

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

SINGLE-SOURCE SHORTEST PATHS WITH THE PARALLEL BOOST GRAPH LIBRARY 27

6. Conclusion

The Parallel Boost Graph Library provides flexible distributed graph data
structures and generic algorithms. Using the facilities of the Parallel BGL, we im-
plemented three parallel, distributed-memory variants of Dijkstra’s algorithm for
single-source shortest paths. By building on the pre-existing distributed-memory
breadth-first search, the sequential implementation of Dijkstra’s algorithm in the
(sequential) BGL, and reusing the Parallel BGL’s data structures, we were able to
implement parallel Dijkstra’s algorithm with a relatively small amount of effort and
evaluate performance with several different graph types. The results showed that
our solutions are computationally efficient and scalable.

Naturally, the scalability of a graph algorithm depends on the structure of the
graph on which it operates. Our generic, flexible library scales well on unstructured
graphs both in terms of parallel speedup as well as problem size. Problem size
scaling is limited by the superlinear complexity of the Crauser and Eager Dijkstra
algorithms. Graphs with grid-like structures do not scale as well as unstructured
graphs.

We expect to extend the work in this paper in a number of ways. In the short
term, we intend to continue to refine the implementations we already have in order
to capture the state of the art in distributed-memory parallel algorithms. In the
longer term, we will extend the Parallel BGL to shared-memory parallel processing
and take advantage of hybrid models for clusters of SMPs. To facilitate rapid
prototyping and development of new sequential and parallel graph algorithms, we
are also refining our Python interfaces to sequential and Paralell BGL. Ultimately,
our goal is to continue to develop the (Parallel) BGL as a robust platform for
parallel graph algorithm and data structure research.

References

[1] 9th DIMACS Implementation Challenge - Shortest Paths. http://www.dis.uniroma1.it/
∼challenge9/, March 2006.

[2] D. Abrahams and A. Gurtovoy. C++ Template Metaprogramming: Concepts, Tools, and
Techniques from Boost and Beyond. Addison-Wesley, 2004.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms. Addison-
Wesley, 1983.

[4] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Amato, and
L. Rauchwerger. STAPL: An adaptive, generic parallel programming library for C++. In
Workshop on Languages and Compilers for Parallel Computing, pages 193–208, August 2001.

[5] M. Austern. (Draft) Technical report on standard library extensions. Technical Report
N1711=04-0151, ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Program-
ming Language C++, 2004.

[6] D. Bader, G. Cong, and J. Feo. A comparison of the performance of list ranking and connected
components algorithms on SMP and MTA shared-memory systems. Technical report, October
2004.

[7] D. Bader and K. Madduri. Designing multithreaded algorithms for breadth-first search and st-
connectivity on the cray MTA-2. In Proceedings of 35th International Conference on Parallel
Processing, pages 523–530, August 2006.

[8] D. A. Bader and K. Madduri. Design and implementation of the HPCS graph analysis bench-
mark on symmetric multiprocessors. Technical report, 2005.

[9] D. A. Bader and K. Madduri. GTgraph: A suite of synthetic graph generators. http://

www-static.cc.gatech.edu/∼kamesh/GTgraph/, February 2006.
[10] E. G. Boman, D. Bozdag̈, U. Catalyurek, A. H. Gebremedhin, and F. Manne. A scalable

parallel graph coloring algorithm for distributed memory computers. In Lecture Notes in
Computer Science, volume 3648, pages 241–251, August 2005.

SINGLE-SOURCE SHORTEST PATHS 245247245

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

28 NICK EDMONDS, ALEX BREUER, DOUGLAS GREGOR, AND ANDREW LUMSDAINE

[11] Boost. Boost C++ Libraries. http://www.boost.org/.
[12] U. Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical Sociology,

25(2):163–177, 2001.
[13] D. Chakrabarti, Y. Zhan, and C. Faloutsos. Rmat: A recursive model for graph mining. In

Proceedings of 4th International Conference on Data Mining, pages 442–446, April 2004.
[14] A. Chan and F. Dehne. CGMgraph/CGMlib: Implementing and testing CGM graph algo-

rithms on PC clusters. In PVM/MPI, pages 117–125, 2003.
[15] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. McGraw-Hill, 1990.
[16] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A parallelization of dijkstra’s shortest

path algorithm. In L. Brim, J. Gruska, and J. Zlatuska, editors, Mathematical Foundations
of Computer Science, volume 1450 of Lecture Notes in Computer Science, pages 722–731.
Springer, 1998.

[17] E. H. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In Proc.
24th National Conference of the ACM, pages 157–172. ACM Press, 1969.

[18] F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel geometric algorithms for coarse
grained multicomputers. In Proceedings of the Ninth Annual Symposium on Computational
Geometry, pages 298–307. ACM Press, 1993.

[19] F. Dehne and S. Götz. Practical parallel algorithms for minimum spanning trees. In Sympo-
sium on Reliable Distributed Systems, pages 366–371, 1998.

[20] E. A. Dinic. Algorithm for solution of a problem of maximum flow in networks with power
estimation. Soviet Mathematics Doklady, 11:1277–1280, 1970.

[21] D. Eppstein, Z. Galil, and G. Italiano. Dynamic graph algorithms. In In CRC Handbook of
Algorithms and Theory of Computation, Chapter 22. CRC Press, page 95, 1997.

[22] L. Fleischer, B. Hendrickson, and A. Pinar. On identifying strongly connected components
in parallel. In Parallel and Distributed Processing (IPDPS), volume 1800 of Lecture Notes in
Computer Science, pages 505–511. Springer, 2000.

[23] T. Fruchterman and E. Reingold. Graph drawing by force-directed placement. Software–
Practice and Experience, 21(11):1129–1164, 1991.

[24] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sahay,
P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham, and T. S.
Woodall. Open MPI: Goals, concept, and design of a next generation MPI implementation.
In Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages 97–104, Budapest,
Hungary, September 2004.

[25] A. George and J. W. H. Liu. The evolution of the minimum degree ordering algorithm.
volume 31, pages 1–19, March 1989.

[26] S. Goddard, S. Kumar, and J. F. Prins. Connected components algorithms for mesh con-
nected parallel computers. In S. N. Bhatt, editor, Parallel Algorithms, volume 30 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pages 43–58. American
Mathematical Society, 1997.

[27] A. Goldberg. Shortest path algorithms: Engineering aspects. In Proceedings of 12th Interna-
tional Symposium, ISAAC, pages 502–512. Springer, 2001.

[28] A. Goldberg. A simple shortest path algorithm with linear average time. Technical report,
STAR Lab., InterTrust Tech., Inc., 2001.

[29] A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduction to Parallel Computing, Second
Edition. Addison-Wesley, 2003.

[30] D. Gregor, N. Edmonds, A. Breuer, P. Gottschling, B. Barrett, and A. Lumsdaine. The
Parallel Boost Graph Library. http://www.osl.iu.edu/research/pbgl, 2005.

[31] D. Gregor and A. Lumsdaine. Lifting sequential graph algorithms for distributed-memory
parallel computation. In Proceedings of the 2005 ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 423–437, October 2005.

[32] D. Gregor and A. Lumsdaine. The Parallel BGL: A generic library for distributed graph com-
putations. In In Proceedings of the Fourth Workshop on Parallel Object-Oriented Scientific
Computing, July 2005.

[33] A. Gürsoy and M. Atun. Neighborhood preserving load balancing: A self-organizing approach.
In Euro-Par Parallel Processing, volume 1900 of Lecture Notes in Computer Science, pages
324–341, 2000.

[34] F. Hielscher and P. Gottschling. ParGraph. http://pargraph.sourceforge.net/, 2004.

246248246

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

SINGLE-SOURCE SHORTEST PATHS WITH THE PARALLEL BOOST GRAPH LIBRARY 29

[35] W. Hohberg. How to find biconnected components in distributed networks. Journal of Parallel
and Distributed Computint, 9(4):374–386, 1990.

[36] J. Jaja. An Introduction to Parallel Algorithms. Addison-Wesley Professional, 1992.
[37] D. B. Johnson and P. T. Metaxas. A parallel algorithm for computing minimum spanning

trees. In ACM Symposium on Parallel Algorithms and Architectures, pages 363–372, 1992.
[38] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs. Information

Processing Letters, 31:7–15, 1989.
[39] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. Journal

of Parallel and Distributed Computing, 48(1):96–129, 1998.
[40] I. King. An automatic reordering scheme for simultaneous equations derived from network

analysis. International Journal for Numerical Methods in Engineering, 2:523–533, 1970.
[41] D. E. Knuth. Stanford GraphBase: A Platform for Combinatorial Computing. ACM Press,

1994.
[42] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic Linear Algebra Sub-

programs for Fortran usage. ACM Transactions on Mathematical Software, 5(3):308–323,
September 1979.

[43] L.-Q. Lee, J. Siek, and A. Lumsdaine. Generic graph algorithms for sparse matrix ordering. In
International Symposium on Computing in Object-Oriented Parallel Environments, volume
1732 of Lecture Notes in Computer Science, pages 120–129, 1999.

[44] L.-Q. Lee, J. Siek, and A. Lumsdaine. The Generic Graph Component Library. In Proceedings
of the 14th ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, pages 339–414, 1999.

[45] K. Madduri, D. Bader, J. W. Berry, and J. R. Crobak. Parallel shortest path algorithms for
solving large-scale instances. 9th DIMACS Implementation Challenge - Shortest Paths, 2006.
An updated version of the paper appears in this book.

[46] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph coloring
algorithms. Journal of the ACM, 30(3):417–427, 1983.

[47] K. Mehlhorn and S. Näher. The LEDA Platform of Combinatorial and Geometric Computing.
Cambridge University Press, 1999.

[48] U. Meyer and P. Sanders. Delta-stepping: A parallel single source shortest path algorithm. In
Proceedings of the 6th Annual European Symposium on Algorithms, pages 393–404. Springer-
Verlag, 1998.

[49] D. R. Musser, G. J. Derge, and A. Saini. STL Tutorial and Reference Guide. Addison-Wesley,
2nd edition, 2001.

[50] D. R. Musser and A. A. Stepanov. Generic programming. In P. P. Gianni, editor, Symbolic
and algebraic computation: ISSAC ’88, Rome, Italy, July 4–8, 1988: Proceedings, volume
358 of Lecture Notes in Computer Science, pages 13–25, Berlin, 1989. Springer Verlag.

[51] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing
order to the Web. Technical report, Stanford Digital Library Technologies Project, November
1998.

[52] PTV Europe. European road graphs. http://i11www.iti.uni-karlsruhe.de/resources/

roadgraphs.php.
[53] J. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph Library: User Guide and Reference

Manual. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.
[54] S. W. Sloan. An algorithm for profile and wavefront reduction of sparse matrices. International

Journal for Numerical Methods in Engineering, 23:239–251, 1986.
[55] T. Steihaug and A. Hossain. Graph coloring and the estimation of sparse jacobian matrices

using row and column partitioning. Technical Report Report 72, Department of Informatics,
University of Bergen, 1992.

[56] A. A. Stepanov. Generic programming. Lecture Notes in Computer Science, 1181:40, 1996.
[57] A. A. Stepanov and M. Lee. The Standard Template Library. Technical Report X3J16/94-

0095, WG21/N0482, ISO Programming Language C++ Project, May 1994.
[58] U.S. Census Bureau. UA census 2000 TIGER/Line files. http://www.census.gov/geo/www/

tiger/tigerua/ua tgr2k.html.
[59] T. L. Veldhuizen. Active Libraries and Universal Languages. PhD thesis, Indiana University

Computer Science, May 2004.
[60] S. White, J. O’Madadhain, D. Fisher, and Y.-B. Boey. Java Universal Network/Graph frame-

work. http://jung.sourceforge.net/, 2004.

SINGLE-SOURCE SHORTEST PATHS 247249247

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

30 NICK EDMONDS, ALEX BREUER, DOUGLAS GREGOR, AND ANDREW LUMSDAINE

Open Systems Laboratory, Indiana University, Bloomington, IN 47405
E-mail address: ngedmond@osl.iu.edu

Open Systems Laboratory, Indiana University, Bloomington, IN 47405
E-mail address: abreuer@osl.iu.edu

Open Systems Laboratory, Indiana University, Bloomington, IN 47405
E-mail address: dgregor@osl.iu.edu

Open Systems Laboratory, Indiana University, Bloomington, IN 47405
E-mail address: lums@osl.iu.edu

248250248

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science

Parallel Shortest Path Algorithms
for Solving Large-Scale Instances

Kamesh Madduri, David A. Bader, Jonathan W. Berry,
and Joseph R. Crobak

Abstract. We present an experimental study of the single source shortest
path problem with non-negative edge weights (NSSP) on large-scale graphs
using the ∆-stepping parallel algorithm. We report performance results on the
Cray MTA-2, a multithreaded parallel computer. The MTA-2 is a high-end
shared memory system offering two unique features that aid the efficient par-
allel implementation of irregular algorithms: the ability to exploit fine-grained
parallelism, and low-overhead synchronization primitives. Our implementation
exhibits remarkable parallel speedup when compared with competitive sequen-
tial algorithms, for low-diameter sparse graphs. For instance, ∆-stepping on a
directed scale-free graph of 100 million vertices and 1 billion edges takes less
than ten seconds on 40 processors of the MTA-2, with a relative speedup of
close to 30. To our knowledge, these are the first performance results of a
shortest path problem on realistic graph instances in the order of billions of
vertices and edges.

1. Introduction

We present an experimental study of the ∆-stepping parallel algorithm [53]
for solving the single source shortest path problem on large-scale graph instances.
In addition to applications in combinatorial optimization problems, shortest path
algorithms are finding increasing relevance in the domain of complex network
analysis. Popular graph theoretic analysis metrics such as betweenness centrality
[10, 29, 36, 43, 45] are based on shortest path algorithms. Our parallel imple-
mentation targets graph families that are representative of real-world, large-scale
networks [8, 13, 26, 54, 55]. Real-world graphs are typically characterized by a
low diameter, heavy-tailed degree distributions modeled by power laws, and self-
similarity. They are often very large, with the number of vertices and edges ranging
from several hundreds of thousands to billions. On current workstations, it is not
possible to do exact in-core computations on these graphs due to the limited phys-
ical memory. In such cases, parallel computing techniques can be applied to obtain

1991 Mathematics Subject Classification. Primary 05C38, 68W10; Secondary 68W40.
Key words and phrases. shortest paths, parallel algorithms, multithreaded architectures.

c⃝0000 (copyright holder)

1

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

249

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

251

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

249

https://doi.org/10.1090/dimacs/074/10

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

2 K. MADDURI, D.A. BADER, J.W. BERRY, AND J.R. CROBAK

exact solutions for memory and compute-intensive graph problems quickly. For in-
stance, recent experimental studies on Breadth-First Search for large-scale graphs
show that a parallel in-core implementation is two orders of magnitude faster than
an optimized external memory implementation [2, 5]. In this paper, we present an
efficient parallel implementation for the single source shortest paths problem that
can handle scale-free instances in the order of billions of edges. In addition, we
conduct an experimental study of performance on several other graph families, and
this work is our submission to the 9th DIMACS Implementation Challenge [20] on
Shortest Paths. Preliminary results from this work are discussed in [47].

Sequential algorithms for the single source shortest path problem with non-
negative edge weights (NSSP) are studied extensively, both theoretically [22, 24,
27, 28, 34, 37, 50, 59, 61] and experimentally [16, 23, 31, 32, 33, 64]. Let m
and n denote the number of edges and vertices in the graph respectively. Nearly
all NSSP algorithms are based on the classical Dijkstra’s [24] algorithm. Using
Fibonacci heaps [27], Dijkstra’s algorithm can be implemented in O(m + n log n)
time. Thorup [61] presents an O(m+n) RAM algorithm for undirected graphs that
differs significantly different from Dijkstra’s approach. Instead of visiting vertices
in the order of increasing distance, it traverses a component tree. Meyer [51] and
Goldberg [33] propose simple algorithms with linear average time for uniformly
distributed edge weights.

Parallel algorithms for solving NSSP are reviewed in detail by Meyer and
Sanders [50, 53]. There are no known PRAM algorithms that run in sub-linear
time and O(m + n log n) work. Parallel priority queues [12, 25] for implement-
ing Dijkstra’s algorithm have been developed, but these linear work algorithms
have a worst-case time bound of Ω(n), as they only perform edge relaxations in
parallel. Several matrix-multiplication based algorithms [30, 38], proposed for the
parallel All-Pairs Shortest Paths (APSP), involve running time and efficiency trade-
offs. Parallel approximate NSSP algorithms [17, 44, 60] based on the randomized
Breadth-First search algorithm of Ullman and Yannakakis [63] run in sub-linear
time. However, it is not known how to use the Ullman-Yannakakis randomized
approach for exact NSSP computations in sub-linear time.

Meyer and Sanders give the ∆-stepping [53] NSSP algorithm that divides Dijk-
stra’s algorithm into a number of phases, each of which can be executed in parallel.
For random graphs with uniformly distributed edge weights, this algorithm runs
in sub-linear time with linear average case work. Several theoretical improvements
[48, 49, 52] are given for ∆-stepping (for instance, finding shortcut edges, adap-
tive bucket-splitting), but it is unlikely that they would be faster than the simple
∆-stepping algorithm in practice, as the improvements involve sophisticated data
structures that are hard to implement efficiently. On a random d-regular graph
instance (219 vertices and d = 3), Meyer and Sanders report a speedup of 9.2 on 16
processors of an Intel Paragon machine, for a distributed memory implementation
of the simple ∆-stepping algorithm. For the same graph family, we are able to solve
problems three orders of magnitude larger with near-linear speedup on the Cray
MTA-2. For instance, we achieve a speedup of 14.82 on 16 processors and 29.75 on
40 processors for a random d-regular graph of size 229 vertices and d set to 3.

The literature contains few experimental studies on parallel NSSP algorithms
[39, 41, 56, 62]. Prior implementation results on distributed memory machines
resorted to graph partitioning [1, 15, 35], and running a sequential NSSP algorithm

250252250

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL SHORTEST PATH ALGORITHMS 3

on the sub-graph. Heuristics are used for load balancing and termination detection
[40, 42]. The implementations perform well for certain graph families and problem
sizes, but in the worst case, there is no speedup.

Implementations of PRAM graph algorithms for arbitrary sparse graphs are
typically memory intensive, and the memory accesses are fine-grained and highly
irregular. This often leads to poor performance on cache-based systems. On dis-
tributed memory clusters, few parallel graph algorithms outperform the best se-
quential implementations due to long memory latencies and high synchronization
costs [3, 4]. Parallel shared memory systems are a more supportive platform. They
offer higher memory bandwidth and lower latency than clusters, and the global
shared memory greatly improves developer productivity. However, parallelism is
dependent on the cache performance of the algorithm [57] and scalability is limited
in most cases.

We present our shortest path implementation results on the Cray MTA-2, a
massively multithreaded parallel machine. The MTA-2 is a high-end shared memory
system offering two unique features that aid considerably in the design of irregular
algorithms: fine-grained parallelism and low-overhead word-level synchronization.
The MTA-2 has no data cache; rather than using a memory hierarchy to reduce
latency, the MTA-2 processors use hardware multithreading to tolerate the latency.
The word-level synchronization support complements multithreading and makes
performance primarily a function of parallelism. Since graph algorithms have an
abundance of parallelism, yet often are not amenable to partitioning, the MTA-2
architectural features lead to superior performance and scalability.

Our recent results highlight the exceptional performance of the MTA-2 for
implementations of key combinatorial optimization and graph theoretic problems
such as list ranking [3], connected components [3, 9], subgraph isomorphism [9],
Breadth-First Search and st-connectivity [5]. We recently studied multithreaded
implementations of Thorup’s algorithm for solving SSSP on undirected graphs and
report preliminary results in [19]. Thorup’s algorithm constructs and traverses the
component hierarchy data structure in order to identify all vertices that can be set-
tled at a given time. This strategy is well suited to a shared-memory environment
since the component hierarchy can be constructed only once, then shared by multi-
ple concurrent SSSP computations. On the MTA-2, ∆-Stepping is faster than this
implementation for a single source, but Thorup’s implementation beats ∆-stepping
for simultaneous SSSP runs on 40 processors. We refer the interested reader to [19]
for more details.

The main contributions of this paper are as follows:

• An experimental study of solving the single-source shortest paths problem
in parallel using the ∆-stepping algorithm. Prior studies have predomi-
nantly focused on running sequential NSSP algorithms on graph families
that can be easily partitioned, whereas we also consider several arbitrary,
sparse graph instances. We also analyze performance using machine-
independent algorithmic operation counts.

• Demonstration of the power of massive multithreading for graph algo-
rithms on highly unstructured instances. We achieve impressive perfor-
mance on low-diameter random and scale-free graphs.

• Solving NSSP for large-scale realistic graph instances in the order of bil-
lions of edges. ∆-stepping on a synthetic directed scale-free graph of 100

251253251

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

4 K. MADDURI, D.A. BADER, J.W. BERRY, AND J.R. CROBAK

million vertices and 1 billion edges takes 9.73 seconds on 40 processors of
the MTA-2, with a relative speedup of approximately 31. These are the
first results that we are aware of, for solving instances of this scale and
also achieving near-linear speedup. Also, the sequential performance of
our implementation is comparable to competitive NSSP implementations.

This paper is organized as follows. Section 2 provides a brief overview of ∆-
stepping. Our parallel implementation of ∆-stepping is discussed in Section 3.
Section 4 and 5 describe our experimental setup, performance results and analysis.
We conclude with a discussion on implementation improvements and future plans
in Section 6. Appendix A describes the MTA-2 architecture.

2. Review of the ∆-stepping Algorithm

2.1. Preliminaries. Let G = (V, E) be a graph with n vertices and m edges.
Let s ∈ V denote the source vertex. Each edge e ∈ E is assigned a non-negative
real weight by the length function l : E → R. Define the weight of a path as
the sum of the weights of its edges. The single source shortest paths problem
with non-negative edge weights (NSSP) computes δ(v), the weight of the shortest
(minimum-weighted) path from s to v. δ(v) = ∞ if v is unreachable from s. We
set δ(s) = 0.

Most shortest path algorithms maintain a tentative distance value for each ver-
tex, which are updated by edge relaxations. Let d(v) denote the tentative distance
of a vertex v. d(v) is initially set to ∞, and is an upper bound on δ(v). Relaxing
an edge ⟨v, w⟩ ∈ E sets d(w) to the minimum of d(w) and d(v) + l(v, w). Based
on the manner in which the tentative distance values are updated, most shortest
path algorithms can be classified into two types: label-setting or label-correcting.
Label-setting algorithms (for instance, Dijkstra’s algorithm) perform relaxations
only from settled (d(v) = δ(v)) vertices, and compute the shortest path from s to
all vertices in exactly m edge relaxations. Based on the values of d(v) and δ(v), at
each iteration of a shortest path algorithm, vertices can be classified into unreached
(d(v) = ∞), queued (d(v) is finite, but v is not settled) or settled. Label-correcting
algorithms (e.g., Bellman-Ford) relax edges from unsettled vertices also, and may
perform more than m relaxations. Also, all vertices remain in a queued state until
the final step of the algorithm. ∆-stepping belongs to the label-correcting type of
shortest path algorithms.

2.2. Algorithmic Details. The ∆-stepping algorithm (see Algorithm 1) is an
“approximate bucket implementation of Dijkstra’s algorithm” [53]. It maintains an
array of buckets B such that B[i] stores the set of vertices {v ∈ V : v is queued
and d(v) ∈ [i∆, (i + 1)∆]}. ∆ is a positive real number that denotes the “bucket
width”.

In each phase of the algorithm (the inner while loop in Algorithm 1, lines 9–14,
when bucket B[i] is not empty), all vertices are removed from the current bucket,
added to the set S, and light edges (l(e) ≤ ∆, e ∈ E) adjacent to these vertices
are relaxed (see Algorithm 2). This may result in new vertices being added to the
current bucket, which are deleted in the next phase. It is also possible that vertices
previously deleted from the current bucket may be reinserted, if their tentative
distance is improved. Heavy edges (l(e) > ∆, e ∈ E) are not relaxed in a phase, as
they result in tentative values outside the current bucket. Once the current bucket

252254252

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL SHORTEST PATH ALGORITHMS 5

Algorithm 1: ∆-stepping algorithm.
Input: G(V, E), source vertex s, length function l : E → R
Output: δ(v), v ∈ V , the weight of the shortest path from s to v

foreach v ∈ V do1

heavy(v) ←− {⟨v, w⟩ ∈ E : l(v, w) > ∆};2

light(v) ←− {⟨v, w⟩ ∈ E : l(v, w) ≤ ∆};3

d(v) ←− ∞;4

relax(s, 0);5

i ←− 0;6

while B is not empty do7

S ←− φ;8

while B[i] ̸= φ do9

Req ←− {(w, d(v) + l(v, w)) : v ∈ B[i] ∧ ⟨v, w⟩ ∈ light(v)};10

S ←− S ∪ B[i];11

B[i] ←− φ;12

foreach (v, x) ∈ Req do13

relax(v, x);14

Req ←− {(w, d(v) + l(v, w)) : v ∈ S ∧ ⟨v, w⟩ ∈ heavy(v)};15

foreach (v, x) ∈ Req do16

relax(v, x);17

i ←− i + 1;18

foreach v ∈ V do19

δ(v) ←− d(v);20

Algorithm 2: The relax routine in the ∆-stepping algorithm.
Input: v, weight request x
Output: Assignment of v to appropriate bucket

if x < d(v) then1

B [⌊d(v)/∆⌋] ← B [⌊d(v)/∆⌋] \{v};2

B [⌊x/∆⌋] ← B [⌊x/∆⌋] ∪ {v};3

d(v) ← x;4

remains empty after relaxations, all heavy edges out of the vertices in S are relaxed
at once (lines 15–17 in Algorithm 1). The algorithm continues until all the buckets
are empty.

Observe that edge relaxations in each phase can be done in parallel, as long as
individual tentative distance values are updated atomically. The number of phases
bounds the parallel running time, and the number of reinsertions (insertions of
vertices previously deleted) and rerelaxations (relaxation of their out-going edges)
costs an overhead over Dijkstra’s algorithm. The performance of the algorithm also
depends on the value of the bucket-width ∆. For ∆ = ∞, the algorithm is similar to
the Bellman-Ford algorithm. It has a high degree of parallelism, but is inefficient
compared to Dijkstra’s algorithm. ∆-stepping tries to find a good compromise

253255253

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

6 K. MADDURI, D.A. BADER, J.W. BERRY, AND J.R. CROBAK

between the number of parallel phases and the number of re-insertions. Theoretical
bounds on the number of phases and re-insertions, and the average case analysis of
the parallel algorithm are presented in [53]. We summarize the salient results.

Let dc denote the maximum shortest path weight, and P∆ denote the set of
paths with weight at most ∆. Define a parameter lmax, an upper bound on the
maximum number of edges in any path in P∆. The following results hold true for
any graph family.

• The number of buckets in B is ⌈dc/∆⌉.
• The total number of reinsertions is bounded by |P∆|, and the total number

of rerelaxations is bounded by |P2∆|.
• The number of phases is bounded by dc

∆ lmax, i.e., no bucket is expanded
more than lmax times.

For graph families with random edge weights and a maximum degree of d, Meyer
and Sanders [53] theoretically show that ∆ = θ(1/d) is a good compromise between
work efficiency and parallelism. The sequential algorithm performs O(dn) expected
work divided between O(dc

∆ · log n
log log n) phases with high probability . In practice, in

case of graph families for which dc is O(log n) or O(1), the parallel implementation
of ∆-stepping yields sufficient parallelism for our parallel system.

3. Parallel Implementation of ∆-stepping

See Appendix A for details of the MTA-2 architecture and parallelization prim-
itives.

The bucket array B is the primary data structure used by the parallel ∆-
stepping algorithm. We implement individual buckets as dynamic arrays that can
be resized when needed and iterated over easily. To support constant time insertions
and deletions, we maintain two auxiliary arrays of size n: a mapping of the vertex
ID to its current bucket, and a mapping from the vertex ID to the position of the
vertex in the current bucket (see Figure 1 for an illustration). All new vertices are
added to the end of the array, and deletions of vertices are done by setting the
corresponding locations in the bucket and the mapping arrays to −1. Note that
once bucket i is finally empty after a light edge relaxation phase, there will be no
more insertions into the bucket in subsequent phases. Thus, the memory can be
reused once we are done relaxing the light edges in the current bucket. Also observe
that all the insertions are done in the relax routine, which is called once in each
phase, and once for relaxing the heavy edges.

We implement a timed pre-processing step to semi-sort the edges based on the
value of ∆. All the light edges adjacent to a vertex are identified in parallel and
stored in contiguous virtual locations, and so we visit only light edges in a phase.
The O(n) work pre-processing step scales well in parallel on the MTA-2.

We also support fast parallel insertions into the request set R. R stores ⟨v, x⟩
pairs, where v ∈ V and x is the requested tentative distance for v. We only add a
vertex v to R if it satisfies the condition x < d(v). We do not store duplicates in
R. We use a sparse set representation similar to one used by Briggs and Torczon
[11] for storing vertices in R. This sparse data structure uses two arrays of size
n: a dense array that contiguously stores the elements of the set, and a sparse
array that indicates whether the vertex is a member of the set. Thus, it is easy to
iterate over the request set, and membership queries and insertions are constant
time. Unlike other Dijkstra-based algorithms, we do not relax edges in one step.

254256254

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL SHORTEST PATH ALGORITHMS 7

0 1 2 u n-1

bn

......

0 1 bp

u

......

Vertex ID to
bucket array

mapping

Vertex ID to
position in

bucket
mapping

Vertex u to
stored in

bucket bn
at position bp

0 1 2 u n-1

bp

......

2

Figure 1. Bucket array and auxiliary data structures.

Instead, we inspect adjacencies (light edges) in each phase, construct a request set
of vertices, and then relax vertices in the relax step.

All vertices in the request set R are relaxed in parallel in the relax routine.
In this step, we first delete a vertex from the old bucket, and then insert it into
the new bucket. Instead of performing individual insertions, we first determine the
expansion factor of each bucket, expand the buckets, and then add all vertices into
their new buckets in one step. Since there are no duplicates in the request set, no
synchronization is involved for updating the tentative distance values.

To saturate the MTA-2 processors with work and to obtain high system uti-
lization, we need to minimize the number of phases and non-empty buckets, and
maximize the request set sizes. Entering and exiting a parallel phase involves a
negligible running time overhead in practice. However, if the number of phases
is O(n), this overhead dominates the actual running time of the implementation.
Also, we enter the relax routine once every phase. There are several implicit barrier
synchronizations in the algorithm that are proportional to the number of phases.
Our implementation reduces the number of barriers. Our source code for the ∆-
stepping implementation, along with the MTA-2 graph generator ports, is freely
available online [46].

4. Experimental Setup

4.1. Platforms. We report parallel performance results on a 40-processor
Cray MTA-2 system with 160 GB uniform shared memory. Each processor has
a clock speed of 220 MHz and support for 128 hardware threads. The ∆-stepping
code is written in C with MTA-2 specific pragmas and directives for parallelization.
We compile it using the MTA-2 C compiler (Cray Programming Environment (PE)
2.0.3) with -O3 and -par flags.

The MTA-2 code also compiles and runs on sequential processors without any
modifications. Our test platform for the sequential performance results is one pro-
cessor of a dual-core 3.2 GHz 64-bit Intel Xeon machine with 6GB memory, 1MB

255257255

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

8 K. MADDURI, D.A. BADER, J.W. BERRY, AND J.R. CROBAK

cache and running RedHat Enterprise Linux 4 (Linux kernel 2.6.9). We compare the
sequential performance of our implementation with the DIMACS reference solver
[21]. Both the codes are compiled with the Intel C compiler (icc) Version 9.0, with
the flags -O3. The source code is freely available online [46].

4.2. Problem Instances. We evaluate sequential and parallel performance
on several graph families. Some of the generators and graph instances are part of
the DIMACS Shortest Path Implementation Challenge benchmark package [20]:

• Random graphs : Random graphs are generated by first constructing a
Hamiltonian cycle, and then adding m−n edges to the graph at random.
The generator may produce parallel edges as well as self-loops. We define
the random graph family Random4-n such that n is varied, m

n = 4, and
the edge weights are chosen from a uniform random distribution.

• Grid graphs: This synthetic generator produces two-dimensional meshes
with grid dimensions x and y. Long-n (x = n

16 , y = 16) and Square-n grid
(x = y =

√
n) families are defined, similar to random graphs.

• Road graphs : Road graph families with transit time (USA-road-t) and
distance (USA-road-d) as the length function.

In addition, we also study the following families:
• Scale-free graphs: We use the R-MAT graph model [14] for real-world

networks to generate scale-free graphs. We define the family ScaleFree4-n
similar to random graphs.

• Log-uniform weight distribution: The above graph generators assume ran-
domly distributed edge weights. We report results for an additional
log-uniform distribution also. The generated integer edge weights are
of the form 2i, where i is chosen from the uniform random distribu-
tion [1, log C] (C denotes the maximum integer edge weight). We de-
fine Random4logUnif-n and ScaleFree4logUnif-n families for this weight
distribution.

4.3. Methodology. For sequential runs, we report the execution time of the
reference DIMACS NSSP solver (an efficient implementation of Goldberg’s algo-
rithm [34], which has expected-case linear case for some inputs) and the baseline
Breadth-First Search (BFS) on every graph family. The BFS running time is a
natural lower bound for NSSP codes and is a good indicator of how optimized
the shortest path implementations are. It is reasonable to directly compare the
execution times of the reference code and our implementation: both use a similar
adjacency array representation for the graph, are written in C, and compiled and
run in identical experimental settings. Note that our implementation is optimized
for the MTA-2 and we make no modifications to the code before running on a
sequential machine. The time taken for semi-sorting and mechanisms to reduce
memory contention on the MTA-2 both constitute overhead on a sequential proces-
sor. Also, our implementation assumes real-weighted edges, and we cannot use fast
bitwise operations. By default, we set the value of ∆ to n

m for all graph instances.
We will show that this choice of ∆ may not be optimal for all graph classes and
weight distributions.

On the MTA-2, we compare our implementation running time with the execu-
tion time of a multithreaded level-synchronized breadth-first search [6], optimized
for low-diameter graphs. The multithreaded BFS scales as well as δ-stepping for

256258256

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL SHORTEST PATH ALGORITHMS 9

the core graph families, and the execution time serves as a lower bound for the
shortest path running time.

On a sequential processor, we execute the BFS and shortest path codes on all
the core graph families, for the recommended problem sizes. However, for parallel
runs, we only report results for sufficiently large graph instances in case of the
synthetic graph families. We parallelize the synthetic core graph generators and
port them to run on the MTA-2.

Our implementations accept both directed and undirected graphs. For all the
synthetic graph instances, we report execution times on directed graphs in this
paper. The road networks are undirected graphs. We also assume the edge weights
to be distributed in [0, 1] in the ∆-stepping implementation. So we have a pre-
processing step to scale the integer edge weights in the core problem families to the
interval [0, 1], dividing the integer weights by the maximum edge weight.

The first run on the MTA-2 is usually slower than subsequent ones (by about
10% for a typical ∆-stepping run). So we report the average running time for 10
successive runs. We run the code from three randomly chosen source vertices and
average the running time. We found that using three sources consistently gave us
execution time results with little variation on both the MTA-2 and the reference
sequential platform. We tabulate the sequential and parallel performance metrics
in Appendix B, and report execution time in seconds. If the execution time is less
than 1 millisecond, we round the time to four decimal digits. If it is less than 100
milliseconds, we round it to three digits. In all other cases, the reported running
time is rounded to two decimal digits.

5. Results and Analysis

5.1. Sequential Performance. First we present the performance results of
our implementation on the reference sequential platform for the core graph families.
The BFS, ∆-stepping, and reference DIMACS implementation execution times on
the recommended core graph instances are given in Appendix B.1. We observe
that the ratio of the ∆-stepping execution time to the Breadth-First Search time
varies between 3 and 10 across different problem instances. Also, the DIMACS
reference code is about 1.5 to 2 times faster than our implementation for large
problem instances in each family. As noted previously, we design an optimized
multithreaded implementation of the shortest path algorithm, and some of the
mechanisms specific to the MTA-2 may be an overhead on the reference sequential
platform. Thus, the sequential execution times quantify the additional work due to
parallelization.

Table 1 summarizes the performance for random graph instances. For the
Random4-n family, n is varied from 211 to 221, the maximum edge weight is set
to n, and the graph density is constant. For the largest instance, ∆-stepping ex-
ecution time is 1.7 times slower than the reference implementation and 5.4 times
the BFS execution time. For the Random4-C family, we normalize the weights to
the maximum integer weight. We do not observe any trend similar to the reference
implementation, where the execution time gradually rises as the maximum weight
increases. This suggests that the ∆-stepping algorithm performance is indepen-
dent of maximum integer edge weight, provided the edge weights follow a uniform
random distribution and ∆ is set appropriately.

257259257

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

10 K. MADDURI, D.A. BADER, J.W. BERRY, AND J.R. CROBAK

Graph Family

Random4-n Long-n Square-n FLA (d) FLA (t)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
BFS
DIMACS Reference
Delta-stepping

Figure 2. Sequential performance of our ∆-stepping implemen-
tation, on the core graph families. All the synthetic graphs are
directed, with 220 vertices and m

n ≈ 4. FLA(d) and FLA(t) are
road networks corresponding to Florida, with 1070376 vertices and
2712768 edges.

The sequential performance of ∆-stepping on Long grid graphs (Table 2) is sim-
ilar to that on Random graphs. However, the reference implementation is slightly
faster on long grids. For square grids and road networks, the ∆-stepping to BFS
ratio is comparatively higher (e.g., BFS to ∆-stepping ratio is 4.71 for the largest
Square-n graph, and 3.74 for the largest Random4-n graph) than the Random and
Long grid families.

Figure 2 and Figure 3 summarize the key observations from the tables in Ap-
pendix B.1. Comparing execution time across graphs of the same size in Figure 2,
we find that the ∆-stepping running time for the Random4-n graph instance is
slightly higher than the rest of the families. The ∆-stepping running time is also
comparable to the execution time of the reference implementation for all graph
families. Figure 3 plots the execution time normalized to the problem size (or the
running time per edge) for Random4-n and Long-n families. Observe that the ∆-
stepping implementation execution time scales with problem size at a faster rate
compared to BFS or the DIMACS reference implementation. This suggests a slight
increase in additional computation as the problem size is scaled up.

5.2. ∆-stepping analysis. To better understand the algorithm performance
across graph families, we study machine-independent algorithm operation counts.
The parallel performance is dependent on the value of ∆, the number of phases,
the size of the request set in each phase.

258260258

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL SHORTEST PATH ALGORITHMS 11

Problem Instance

14 15 16 17 18 19 20 21

Ex
ec

ut
io

n
Ti

m
e

/ N
o.

 o
f e

dg
es

(m

ic
ro

se
co

nd
s

pe
r e

dg
e)

0.0

0.2

0.4

0.6

0.8

1.0
Delta-stepping
BFS
DIMACS Reference

(a) Random4-n family. Problem instance i denotes a directed graph of
2i vertices, m = 4n edges, and maximum weight C = n.

Problem Instance

9 10 11 12 13 14 15 16

Ex
ec

ut
io

n
Ti

m
e

/ N
o.

 o
f e

dg
es

(m

ic
ro

se
co

nd
s

pe
r e

dg
e)

0

2

4

6

8

10
Delta-stepping
BFS
DIMACS Reference

(b) Long-n family. Problem instance i denotes a grid with x = 2i and
y = 16. n = xy and m

n ≈ 4.

Figure 3. ∆-stepping sequential execution time as a function of
problem size.

259261259

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

12 K. MADDURI, D.A. BADER, J.W. BERRY, AND J.R. CROBAK

Size of request sets. Figure 4 and Figure 5 plot the size of the light request
set in each phase, for each core graph family. The choice of ∆ in these experiments
is motivated by the observation of Meyer and Sanders [53] that for graph families
with random edge weights and a maximum degree of d, ∆ = θ(1/d) would be a
good compromise between work efficiency and parallelism. Since d ≈ m/n(≈ 4) for
most of the test graph instances, ∆ is set to 0.25 by default for all runs. We also
evaluate the performance of the algorithm as the value of ∆ is varied (see Figure 5.2
and Figure 5.2). If the request set size is less than 10, it is not plotted.

Consider the random graph family (Figure 4(a)). It executes in 84 phases,
and the request set sizes vary from 0 to 27,000. Observe the recurring pattern of
nearly three bars stacked together in the plot. This indicates that all the light
edges in a bucket are relaxed in roughly three phases, and the bucket then becomes
empty. The size of the relax set is relatively high for several phases, which provides
scope for exploiting multithreaded parallelism. The relax set size plot of a similar
problem instance from the Long grid family (Figure 4(b)) stands in stark contrast
to the random graph plot. It takes about 200,000 phases to execute (compared to
the 84 phases for the random graph), and the maximum request size is only 15.
Both of these values indicate that our implementation performance is significantly
dependent on the graph diameter, and that the parallel performance would be poor
on long grid graphs (e.g. meshes with a very high aspect ratio). On square grids
(Figure 5(a)), ∆-stepping takes fewer phases, and the request set sizes go up to
500. For a road network instance (NE USA-road-d, Figure 5(b)), the algorithm
takes 23,000 phases to execute, and only a few phases (about 30) have request set
counts greater than 1000. As expected, the number of phases are proportional to
the graph diameter in all the cases.

Algorithm operation counts. Figure 6 and Figure 7 plot several key ∆-
stepping operation counts for various graph classes. Along with the core graph
families, we include ScaleFree4-n, RandomlogUnif4-n, and LonglogUnif4-n graph
classes. All synthetic graphs are roughly of the same size. Figure 6(a) plots the
average shortest path weight for various graph classes. Scale-free and Long grid
graphs are on the two extremes, with the graph diameter again being the determin-
ing factor. A log-uniform edge weight distribution also results in low average edge
weight. The number of phases (see Figure 6(b)) is highest for Long grid graphs.
The number of buckets shows a similar trend as the average shortest path weight.
Figure 7(b) plots the total number of insertions for each graph family. The num-
ber of vertices is 220 for all graph families (slightly higher for the road network),
and so ∆-stepping results in roughly 20% overhead in insertions for all the graph
families with random edge weights. Note the number of insertions for graphs with
log-uniform weight distributions. ∆-stepping performs a lot of excess work for these
families, because the value of ∆ is quite high for this particular distribution.

Influence of ∆. We next evaluate the performance of the algorithm as ∆ is
varied (tables in Appendix B.2). Figure 5.2 and Figure 5.2 plot the execution time
of various graph instances on a sequential machine, and one processor of the MTA-
2. ∆ is varied from 0.1 to 10 in each case. We find that the absolute running times
on a 3.2 GHz Xeon processor and the MTA-2 are comparable for random, square
grid and road network instances. However, on long grid graphs (Figure 8(b)), the
MTA-2 execution time is two orders of magnitude greater than the sequential time.
The number of phases and the total number of relaxations vary as ∆ is varied

260262260

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL SHORTEST PATH ALGORITHMS 13

(Tables 5, 6, and 7). On the MTA-2, the running time is not only dependent on
the work done, but also on the number of phases and the average number of relax
requests in a phase. For instance, in the case of long grids (see Figure 8(b), with

Phase number
10 20 30 40 50 60 70 80

N
o.

 o
f

lig
ht

 re
qu

es
ts

0

5000

10000

15000

20000

25000

30000

(a) Random4-n family, n = 220.

Phase number
0 50000 100000 150000 200000

N
o.

 o
f

lig
ht

 r
eq

ue
st

s

0

2

4

6

8

10

12

14

16

(b) Long-n family, n = 220.

Figure 4. ∆-stepping algorithm: Size of the light request set at
the end of each phase, for the core graph families. Request set
sizes less than 10 are not plotted.

261263261

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

14 K. MADDURI, D.A. BADER, J.W. BERRY, AND J.R. CROBAK

Phase number

0 1000 2000 3000 4000 5000 6000 7000 8000

N
o.

 o
f

lig
ht

 r
eq

ue
st

s

0

100

200

300

400

500

(a) Square-n family, n = 220.

Phase number

0 500 1000 1500 2000 2500

N
o.

 o
f

lig
ht

 r
eq

ue
st

s

0

10000

20000

30000

40000

50000

60000

70000

(b) USA-road-d family, Northeast USA (NE). n = 1524452, m =
3897634.

Figure 5. ∆-stepping algorithm: Size of the light request set at
the end of each phase, for the core graph families. Request set
sizes less than 10 are not plotted.

262264262

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL SHORTEST PATH ALGORITHMS 15

Graph Family

Rnd-
rnd

Rnd-
logU

Scale-
free

LGrid-
rnd

LGrid-
logU

SqGrid USAd
NE

USAt
NE

A
ve

ra
ge

 s
ho

rt
es

t p
at

h
w

ei
gh

t

0.01

0.1

1

10

100

1000

10000

100000

(a) Average shortest path weight (1
n ∗

∑
v∈V δ(v)).

Graph Family

Rnd-
rnd

Rnd-
logU

Scale-
free

LGrid-
rnd

LGrid-
logU

SqGrid USAd
NE

USAt
NE

N
o.

 o
f p

ha
se

s

10

100

1000

10000

100000

1000000

(b) No. of phases.

Figure 6. ∆-stepping algorithm performance statistics for various
graph classes. All synthetic graph instances have n set to 220 and
m ≈ 4n. Rnd-rnd: Random graph with random edge weights,
Rnd-logU: Random graph with log-uniform edge weights, Scale-
free: Scale-free graph with random edge weights, LGrid: Long
grid, SqGrid: Square grid, USA NE: 1524452 vertices, 3897634
edges.

263265263

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

16 K. MADDURI, D.A. BADER, J.W. BERRY, AND J.R. CROBAK

Graph Family

Rnd-
rnd

Rnd-
logU

Scale-
free

LGrid-
rnd

LGrid-
logU

SqGrid USAd
NE

USAt
NE

La
st

 n
on

-e
m

pt
y

bu
ck

et

1

10

100

1000

10000

100000

1000000

(a) Last non-empty bucket.

Graph Family

Rnd-
rnd

Rnd-
logU

Scale-
free

LGrid-
rnd

LGrid-
logU

SqGrid USAd
NE

USAt
NE

N
o.

 o
f

Bu
ck

et
in

se
rt

io
ns

0

2000000

4000000

6000000

8000000

10000000

12000000

(b) Number of relax requests.

Figure 7. ∆-stepping algorithm performance statistics for various
graph classes. All synthetic graph instances have n set to 220 and
m ≈ 4n. Rnd-rnd: Random graph with random edge weights,
Rnd-logU: Random graph with log-uniform edge weights, Scale-
free: Scale-free graph with random edge weights, LGrid: Long
grid, SqGrid: Square grid, USA NE: 1524452 vertices, 3897634
edges. Plot (b) uses a linear scale.

264266264

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL SHORTEST PATH ALGORITHMS 17

execution time plotted on a log scale), the running time decreases significantly as
the value of ∆ is decreased, as the number of phases reduce. On a sequential
processor, however, the running time is only dependent on the work done (number
of insertions). If the value of ∆ is greater than the average shortest path weight,
we perform excess work and the running time noticeably increases (observe the
execution time for ∆ = 5, 10 on the random graph and the road network). The
optimal value of ∆ (and the execution time on the MTA-2) is also dependent on the
number of processors. For a particular ∆, it may be possible to saturate a single
processor of the MTA-2 with the right balance of work and phases. The execution
time on a 40-processor run may not be minimal with this value of ∆.

5.3. Parallel Performance. In this section, we discuss the parallel scaling
of ∆-stepping in detail (see tables in Appendix B.3). We ran ∆-stepping and the
level-synchronous parallel BFS on graph instances from the core families, scale-free
graphs, and graphs with log-uniform edge weight distributions. Define the speedup
on p processors of the MTA-2 as the ratio of the execution time on 1 processor
to the execution time on p processors. Since the computation on the MTA-2 is
thread-centric rather than processor-centric, note that the single processor run is
also parallel. In all graph classes except long grids, there is sufficient parallelism to
saturate a single processor of the MTA-2 for reasonably large problem instances.

5.3.1. Unstructured Instances. As expected from the discussion in the previous
section, ∆-stepping performs best for low-diameter random and scale-free graphs
with randomly distributed edge weights (see Figure 10 and Figure 11). We attain
a speedup of approximately 31 on 40 processors for a directed random graph of
nearly a billion edges, and the ratio of the BFS and ∆-stepping execution time is a
constant factor (about 3-5) throughout. The implementation performs equally well
for scale-free graphs, that are more difficult to handle due to the irregular degree
distribution. The execution time on 40 processors of the MTA-2 for the scale-free
graph instance is only 1 second slower than the running time for a random graph and
the speedup is approximately 30 on 40 processors. We have already shown that the
execution time for smaller graph instances on a sequential machine is comparable
to the DIMACS reference implementation, a competitive NSSP algorithm. Thus,
attaining a speedup of 30 for a realistic scale-free graph instance of one billion edges
(Figure 11) is a remarkable result.

Table 8 gives the execution time of ∆-stepping on the Random4-n family, as
the number of vertices is increased from 221 to 228, and the number of processors
is varied from 1 to 40. Observe that the relative speedup increases as the problem
size is increased (for e.g., on 40 processors, the speedup for n = 221 is just 3.96,
whereas it is 31.04 for 228 vertices). This is because there is insufficient parallelism
in a problem instance of size 221 to saturate 40 processors of the MTA-2. As the
problem size increases, the ratio of ∆-stepping execution time to multithreaded
BFS running time decreases. On an average, ∆-stepping is 5 times slower than
BFS for this graph family.

Table 9 gives the execution time for random graphs with a log-uniform weight
distribution. With ∆ set to n

m , we do a lot of additional work. The ∆-stepping to
BFS ratio is typically 40 in this case, about 8 times higher than the corresponding
ratio for random graphs with random edge weights. However, the execution time
scales well with the number of processors for large problem sizes.

265267265

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

18 K. MADDURI, D.A. BADER, J.W. BERRY, AND J.R. CROBAK

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

0

1

2

3

4

5

6

3.2 GHz Xeon MTA-2 1 proc.

Architecture

0.1
0.5
1
5
10

(a) Random4-n family. 220 vertices.

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

3.2 GHz Xeon MTA-2 1 proc.

Architecture

0.1

1

10

100

1000
0.1
0.5
1
5
10

(b) Long-n family. 220 vertices.

Figure 8. A comparison of the execution time on the reference
sequential platform and a single MTA-2 processor, as the bucket-
width ∆ is varied.

266268266

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL SHORTEST PATH ALGORITHMS 19

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

3.2 GHz Xeon MTA-2 1 proc.

Architecture

0.1
0.5
1
5
10

0

2

4

6

8

10

(a) Square-n family. 220 vertices.

0

5

10

15

20

25

30
0.1
0.5
1
5
10

3.2 GHz Xeon MTA-2 1 proc.

Architecture

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

(b) USA-road-d family, Florida (FLA). 1070376 vertices, 2712798
edges.

Figure 9. A comparison of the execution time on the reference
sequential platform and a single MTA-2 processor, as the bucket-
width ∆ is varied.

267269267

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

20 K. MADDURI, D.A. BADER, J.W. BERRY, AND J.R. CROBAK

No. of processors

12 4 8 16 32 40

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

0

100

200

300

400

Re
la

tiv
e

Sp
ee

du
p

0

10

20

30

40
Delta-stepping (DS)
BFS
DS Speedup

(a) Execution time and Relative Speedup (linear scale).

No. of processors
1 2 4 8 16 32 40

D
el

ta
-s

te
pp

in
g

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

10

20

30
40
50

100

200

300
400

(b) Execution time vs. No. of processors (log-log scale).

Figure 10. ∆-stepping execution time and relative speedup on
the MTA-2 for a Random4-n graph instance (directed graph, n=228

vertices and m = 4n edges, random edge weights).

Table 10 summarizes the execution time for the Random4-C family. The max-
imum edge weight is varied from 40 to 415 while keeping m and n constant. We do
not notice any trend in the execution time in this case, as we normalize the edge

268270268

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL SHORTEST PATH ALGORITHMS 21

No. of processors

12 4 8 16 32 40

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

0

100

200

300

400

Re
la

tiv
e

Sp
ee

du
p

0

10

20

30

40
Delta-stepping (DS)
BFS
DS Speedup

(a) Execution time and Relative Speedup (linear scale).

No. of processors
1 2 4 8 16 32 40

D
el

ta
-s

te
pp

in
g

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

10

20

30
40
50

100

200

300
400

(b) Execution time vs. No. of processors (log-log scale).

Figure 11. ∆-stepping execution time and relative speedup on
the MTA-2 for a ScaleFree4-n graph instance (directed graph,
n=228 vertices and m = 4n edges, random edge weights).

weights to fall in the interval [0, 1]. Similarly, there is no noticeable trend in case
of the Long-C family (Table 12).

269271269

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

22 K. MADDURI, D.A. BADER, J.W. BERRY, AND J.R. CROBAK

5.3.2. Long and Square Mesh Instances. Tables 11 and 13 give the execution
times for ∆-stepping on the long and square grid graphs respectively, as the problem
size and number of processors are varied. For Long-n graphs with ∆ set to n

m , there
is insufficient parallelism to fully utilize even a single processor of the MTA-2. The
execution time of the level-synchronous BFS also does not scale with the number
of processors. In fact, as we see in Figure 12(a), the running time goes up in case
of multiprocessor runs, as the parallelization overhead becomes significant. Also,
note that the execution time on a single processor of the MTA-2 is two orders of
magnitude slower than the reference sequential processor (Figure 8(b)). In case of
square grid graphs (Figure 12(b)), there is sufficient parallelism to utilize up to 4
processors for a graph instance of 224 vertices. For all other instances, the running
time does not scale for multiprocessor runs. The ratio of the running time to BFS is
about 5 in this case, and the ∆-stepping MTA-2 single processor time is comparable
to the sequential reference platform running time for smaller instances.

5.3.3. Road networks. Table 14, Table 15 and Figure 13 summarize the running
times on the USA and PTV Europe [58] road networks. The execution time and
parallel performance is highly dependent on the value of ∆, as the normalized
edge weights do not have a uniform random distribution. The behavior is best
exemplified by the Europe network instance with transit time as the length function.
For this graph, the maximum edge weight is 44.8458 million and the mean is 16.78
million, whereas the median weight is only 166. For ∆ = 0.4 ≈ n

m , the algorithm
performance tends to the worst case behavior. Now, consider the performance for
∆ values of 10−4 and 10−3. The total number of relax requests for ∆ = 10−4 is
nearly 31 million (73% more than the optimal 18 million requests), whereas for
∆ = 10−3, the number of relax requests is 137 million (627% more than optimal).
Although we do significantly more work for ∆ = 10−3, the running time of a single
MTA-2 processor is about 60 seconds, nearly 14 seconds faster than the ∆ = 10−4

case. This is due to the MTA-2 parallelization overhead proportional to the number
of parallel phases: for ∆ = 10−3, the number of parallel phases is 10000, and for
∆ = 10−4 it is close to 20000. We set the ∆ value to the median normalized edge
weight in the experiments on the full road networks. There is no significant parallel
speedup, as the average relax request size per phase is low and there is insufficient
parallelism in each phase to saturate multiple processors of the MTA-2.

6. Conclusions

In this paper, we experimentally evaluate the parallel ∆-stepping NSSP algo-
rithm for the 9th DIMACS Shortest Paths Challenge. We study the algorithm
performance for core challenge graph instances on the Cray MTA-2, and observe
that our implementation execution time scales impressively with number of pro-
cessors for low-diameter sparse graphs. We also analyze the performance using
platform-independent ∆-stepping algorithm operation counts such as the number
of phases, and the request set sizes, to explain performance across graph families.
For grids and road networks, we observe that the average request set size is much
smaller than corresponding low-diameter graph instances of the same size. Also,
the parallelization overhead is significant for these instances, as there are a higher
number of parallel phases.

We also show the dependence of the bucket-width ∆ on the parallel performance
of the algorithm. For high diameter graphs, there is a trade-off between the number

270272270

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL SHORTEST PATH ALGORITHMS 23

No. of processors

1 4 16 40

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

0

500

1000

1500

2000 Delta-stepping
BFS

(a) Execution time for a Long-n graph instance (directed graph, n=221

vertices and m ≈ 4n edges, random edge weights).

No. of processors

1 4 16 40

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

0

20

40

60

Delta-stepping
BFS

(b) Execution time for a Square-n graph instance (directed graph,
n=224 vertices and m ≈ 4n edges, random edge weights).

Figure 12. ∆-stepping and BFS execution times on the MTA-2
for two mesh graph instances.

271273271

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

24 K. MADDURI, D.A. BADER, J.W. BERRY, AND J.R. CROBAK

No. of processors

1 4 16 40

D
el

ta
-s

te
pp

in
g

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

50

100

150

200

250
USA-d
USA-t
Europe-d
Europe-t

Figure 13. MTA-2 Parallel performance results for the ∆-
stepping algorithm on the full US and Europe road networks.

of phases and the amount of work done (proportional to the number of bucket
insertions). The execution time is dependent on the value of ∆ as well as the
number of processors. In case of road networks, where the weight distribution is
not uniformly random, we have to carefully choose a value of ∆ to avoid doing
excessive work.

Our parallel performance studies have been restricted to the Cray MTA-2 in this
paper. In future, we will extend this study to include optimized implementations of
∆-stepping on symmetric multiprocessors and multicore processors. Demonstrating
scalable and efficient parallel performance for SSSP on arbitrary high-diameter
graphs and road networks still remains an open challenge.

Acknowledgments

This work was supported in part by NSF Grants CAREER CCF-0611589, ACI-
00-93039, NSF DBI-0420513, ITR ACI-00-81404, ITR EIA-01-21377, Biocomplex-
ity DEB-01-20709, ITR EF/BIO 03-31654, and DARPA Contract NBCH30390004.
Sandia is a multipurpose laboratory operated by Sandia Corporation, a Lockheed-
Martin Company, for the United States Department of Energy under contract DE-
AC04-94AL85000. We acknowledge the algorithmic inputs from Bruce Hendrickson
of Sandia National Laboratories. We would also like to thank John Feo of Cray for
helping us optimize the MTA-2 implementation.

Appendix A. The Cray MTA-2

This section is excerpted from [7].

272274272

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL SHORTEST PATH ALGORITHMS 25

A.1. Architecture. The Cray MTA-2 [18] is a novel multithreaded architec-
ture with no data cache, and hardware support for synchronization. The computa-
tional model for the MTA-2 is thread-centric, not processor-centric. A thread is a
logical entity comprised of a sequence of instructions that are issued in order. An
MTA-2 processor consists of 128 hardware streams and one instruction pipeline. A
stream is a physical resource (a set of 32 registers, a status word, and space in the
instruction cache) that hold the state of one thread. An instruction is three-wide: a
memory operation, a fused multiply-add, and a floating point add or control opera-
tion. Each stream can have up to 8 outstanding memory operations. Threads from
the same or different programs are mapped to the streams by the runtime system.
A processor switches among its streams every cycle, executing instructions from
non-blocked streams. As long as one stream has a ready instruction, the proces-
sor remains fully utilized. No thread is bound to any particular processor. System
memory size and the inherent degree of parallelism within the program are the only
limits on the number of threads used by a program. The interconnection network
is a partially connected 3-D torus capable of delivering one word per processor per
cycle. The system has 4 GBytes of memory per processor. Logical memory ad-
dresses are hashed across physical memory to avoid stride-induced hot spots. Each
memory word is 68 bits: 64 data bits and 4 tag bits. One tag bit (the full-empty
bit) is used to implement synchronous load and store operations. A thread that
issues a synchronous load or store remains blocked until the operation completes;
but the processor that issued the operation continues to issue instructions from
non-blocked streams.

The MTA-2 is closer to a theoretical PRAM machine than a shared memory
symmetric multiprocessor system. Since the MTA-2 uses parallelism to tolerate
latency, algorithms must often be parallelized at very fine levels to expose sufficient
parallelism. However, it is not necessary that all parallelism in the program be
expressed such that the system can exploit it; the goal is simply to saturate the
processors. The programs that make the most effective use of the MTA-2 are those
which express the parallelism of the problem in a way that allows the compiler to
best exploit it.

A.2. Expressing Parallelism on the MTA-2. The MTA-2 compiler auto-
matically parallelizes inductive loops of three types: parallel loops, linear recur-
rences and reductions. A loop is inductive if it is controlled by a variable that
is incremented by a loop-invariant stride during each iteration, and the loop-exit
test compares this variable with a loop-invariant expression. An inductive loop has
only one exit test and can only be entered from the top. If each iteration of an
inductive loop can be executed completely independently of the others, then the
loop is termed parallel. To attain the best performance, we need to write code (and
thus design algorithms) such that most of the loops are implicitly parallelized.

There are several compiler directives that can be used to parallelize various
sections of a program. The three major types of parallelization schemes available
are

• single-processor (fray) parallelism: The code is parallelized in such a way
that just the 128 streams on the processor are utilized.

• multi-processor (crew) parallelism: This has higher overhead than single-
processor parallelism. However, the number of streams available is much

273275273

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

26 K. MADDURI, D.A. BADER, J.W. BERRY, AND J.R. CROBAK

larger, bounded by the size of the whole machine rather than the size of
a single processor. Iterations can be statically or dynamically scheduled.

• future parallelism: The future construct (detailed below) is used in this
form of parallelism. This does not require that all processor resources used
during the loop be available at the beginning of the loop. The runtime
growth manager increases the number of physical processors as needed.
Iterations are always dynamically scheduled.

A future is a powerful construct to express user-specified explicit parallelism.
It packages a sequence of code that can be executed by a newly created thread
running concurrently with other threads in the program. Futures include efficient
mechanisms for delaying the execution of code that depends on the computation
within the future, until the future completes. The thread that spawns the future
can pass information to the thread that executes the future via parameters. Futures
are best used to implement task-level parallelism and the parallelism in recursive
computations.

A.3. Synchronization support on the MTA-2. Synchronization is a ma-
jor limiting factor to scalability in the case of practical shared memory implementa-
tions. The software mechanisms commonly available on conventional architectures
for achieving synchronization are often inefficient. However, the MTA-2 provides
hardware support for fine-grained synchronization through the full-empty bit as-
sociated with every memory word. The compiler provides a number of generic
routines that operate atomically on scalar variables. We list a few useful constructs
that appear in the algorithm pseudo-codes in subsequent sections.

• The int fetch add routine (int fetch add(&v, i)) atomically adds in-
teger i to the value at address v, stores the sum at v, and returns the
original value at v (setting the full-empty bit to full). If v is an empty
sync or future variable, the operation blocks until v becomes full.

• readfe(&v) returns the value of variable v when v is full and sets v empty.
This allows threads waiting for v to become empty to resume execution.
If v is empty, the read blocks until v becomes full.

• writeef(&v, i) writes the value i to v when v is empty, and sets v back
to full. The thread waits until v is set empty.

• purge(&v) sets the state of the full-empty bit of v to empty.

274276274

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL SHORTEST PATH ALGORITHMS 27

Appendix B. Tables

B.1. Sequential performance of ∆-stepping implementation on the
reference platform.

Table 1. Sequential performance (execution time in seconds, and
normalized performance with reference to the baseline BFS) of our
implementation for the core random graph families.

(a) Random4-n core family. Problem instance denotes the log
of the number of vertices. A directed random graph of n ver-
tices, m = 4n edges, and maximum weight C = n.

Problem Instance 11 12 13 14 15 16
BFS .0001 .0003 .0006 .001 .004 .02

∆-stepping .0007 .002 .004 .01 .03 .09
Normalized to BFS 7.00 6.67 6.67 10.00 7.50 4.50

DIMACS Reference .0003 .0008 .002 .008 .02 .06
Normalized to BFS 3.00 2.67 3.33 8.00 5.00 3.00

Problem Instance 17 18 19 20 21
BFS .05 .14 .32 .69 1.45

∆-stepping .23 .52 1.12 2.54 5.42
Normalized to BFS 4.60 3.71 3.50 3.68 3.74

DIMACS Reference .13 .30 0.65 1.39 3.19
Normalized to BFS 2.60 2.14 2.03 2.01 2.20

(b) Random4-C core family. Problem instance denotes the log of the
maximum edge weight. n = 220 vertices and m = 4n edges.

Problem Instance 0 1 2 3 4 5 6 7
BFS 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

∆-stepping 2.31 2.55 2.53 2.55 2.54 2.54 2.54 2.54
Normalized to BFS 3.35 3.70 3.67 3.70 3.68 3.67 3.67 3.67

DIMACS Reference 0.87 0.89 0.92 1.21 1.26 1.31 1.38 1.36
Normalized to BFS 1.26 1.29 1.33 1.75 1.83 1.90 2.00 1.97

Problem Instance 8 9 10 11 12 13 14 15
BFS 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

∆-stepping 2.55 2.54 2.54 2.55 2.54 2.54 2.54 2.54
Normalized to BFS 3.70 3.68 3.68 3.70 3.68 3.68 3.68 3.68

DIMACS Reference 1.37 1.37 1.38 1.37 1.37 1.38 1.37 1.38
Normalized to BFS 1.98 1.98 2.00 1.98 1.98 2.00 1.98 2.00

275277275

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

28 K. MADDURI, D.A. BADER, J.W. BERRY, AND J.R. CROBAK

Table 2. Sequential performance (execution time in seconds, and
normalized performance with reference to the baseline BFS) of our
implementation for the core long grid graph families.

(a) Long-n core family. Problem instance i denotes a grid with
x = 2i and y = 16. n = xy and m

n ≈ 4.
Problem Instance 6 7 8 9 10 11

BFS .0001 .0002 .0003 .0007 .001 .004

∆-stepping .0005 .001 .002 .005 .01 .03
Normalized to BFS 5.00 5.00 6.67 7.14 10.00 7.50

DIMACS Reference .0002 .0003 .0007 .002 .006 0.01
Normalized to BFS 2.00 1.50 2.33 2.86 6.00 2.50

Problem Instance 12 13 14 15 16
BFS .02 .04 .09 .19 .41

∆-stepping .07 .17 .35 .76 1.54
Normalized to BFS 3.50 4.25 3.89 4.00 3.76

DIMACS Reference .03 0.06 .13 .27 .60
Normalized to BFS 1.50 1.50 1.44 1.42 1.46

(b) Long-C core family. Problem instance denotes the log of the maxi-
mum edge weight. The grid dimensions are set to x = 216 and y = 16.

Problem Instance 0 1 2 3 4 5 6 7
BFS 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

∆-stepping 0.68 0.75 0.78 0.88 1.02 1.07 1.09 1.09
Normalized to BFS 2.75 3.00 3.12 3.52 4.08 4.28 4.36 4.36

DIMACS Reference 0.50 0.54 0.57 0.59 0.57 0.58 0.60 0.60
Normalized to BFS 2.00 2.16 2.28 2.36 2.28 2.32 2.40 2.40

Problem Instance 8 9 10 11 12 13 14 15
BFS 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

∆-stepping 1.08 1.09 1.09 1.09 1.08 1.09 1.08 1.09
Normalized to BFS 4.32 4.36 4.36 4.36 4.32 4.36 4.32 4.36

DIMACS Reference 0.59 0.60 0.61 0.59 0.61 0.60 0.60 0.60
Normalized to BFS 2.36 2.40 2.44 2.36 2.44 2.40 2.40 2.40

276278276

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL SHORTEST PATH ALGORITHMS 29

Table 3. Sequential performance (execution time in seconds, and
normalized performance with reference to the baseline BFS) of our
implementation for the core square grid graph families.

(a) Square-n core family. Problem instance denotes the log of
the grid x dimension. x = y and m

n ≈ 4.
Problem Instance 11 12 13 14 15 16

BFS .0001 .0003 .0007 .001 .003 .01

∆-stepping .0008 .002 .004 .008 .03 .07
Normalized to BFS 8.00 6.67 5.71 8.00 10.00 7.00

DIMACS Reference .0003 .0007 .002 .006 .01 .03
Normalized to BFS 3.00 2.33 2.86 6.00 3.33 3.00

Problem Instance 17 18 19 20 21
BFS .04 .08 .20 .42 .93

∆-stepping .20 .36 .81 2.05 4.38
Normalized to BFS 5.00 4.00 4.05 4.88 4.71

DIMACS Reference .06 0.14 .36 .84 2.01
Normalized to BFS 1.50 1.75 1.80 2.00 2.16

(b) Square-C core family. Problem instance denotes the log of the edge
weight. The grid dimensions are set to x = y = 210, and n = xy.

Problem Instance 0 1 2 3 4 5 6 7
BFS 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42

∆-stepping 1.99 2.06 2.03 2.09 2.05 2.07 2.06 2.01
Normalized to BFS 4.74 4.90 4.83 4.89 4.88 4.93 4.90 4.79

DIMACS Reference 0.56 0.68 0.71 0.79 0.78 0.76 0.81 0.80
Normalized to BFS 1.33 1.62 1.69 1.88 1.86 1.81 1.93 1.90

Problem Instance 8 9 10 11 12 13 14 15
BFS 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42

∆-stepping 2.04 2.09 2.05 2.06 2.01 2.08 2.09 2.08
Normalized to BFS 4.86 4.98 4.88 4.90 4.78 4.95 4.98 4.95

DIMACS Reference 0.82 0.80 0.83 0.79 0.77 0.79 0.78 0.77
Normalized to BFS 1.95 1.90 1.98 1.88 1.83 1.88 1.86 1.83

277279277

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

30 K. MADDURI, D.A. BADER, J.W. BERRY, AND J.R. CROBAK

Table 4. Sequential performance (execution time in seconds, and
normalized performance with reference to the baseline BFS) of our
implementation for the core road networks.

(a) Core graphs from the USA road network, with the transit time
as the length function.

Problem Instance CTR W E LKS CAL NE
BFS 4.16 1.49 .65 .39 .26 .17

∆-stepping 25.24 9.87 4.97 2.52 1.95 1.43
Normalized to BFS 6.07 6.63 7.65 6.46 7.50 8.41

DIMACS Reference 9.06 3.12 1.65 1.14 .72 .58
Normalized to BFS 2.18 2.09 2.54 2.92 2.77 3.41

Problem Instance NW FLA COL BAY NY
BFS .16 .13 .04 0.03 .02

∆-stepping .89 .97 .30 .21 .15
Normalized to BFS 5.56 7.46 7.5 7.00 7.50

DIMACS Reference .45 .36 .13 .09 .07
Normalized to BFS 2.81 2.77 3.25 3.00 3.50

(b) Core graphs from the USA road network, with the distance
as the length function.

Problem Instance CTR W E LKS CAL NE
BFS 4.32 1.89 1.05 .80 .54 .34

∆-stepping 21.63 10.34 7.02 3.52 3.67 1.06
Normalized to BFS 5.01 5.47 6.69 4.40 6.80 3.11

DIMACS Reference 15.52 4.91 3.12 2.24 1.41 0.86
Normalized to BFS 3.59 2.60 2.97 2.80 2.61 2.53

Problem Instance NW FLA COL BAY NY
BFS .31 .28 .05 .03 .02

∆-stepping 1.26 1.17 0.15 0.11 0.08
Normalized to BFS 4.06 4.18 3.00 3.67 4.00

DIMACS Reference 0.71 0.55 0.13 0.08 0.07
Normalized to BFS 2.29 1.96 2.60 2.67 3.50

278280278

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL SHORTEST PATH ALGORITHMS 31

B.2. Algorithm performance as a function of ∆.

Table 5. Performance of the ∆-stepping algorithm as a function
of the bucket width ∆ for random and scale-free networks. K
denotes 103, M denotes 106 and B denotes 109.

(a) Random4-n graph instance (n = C = 228, m = 4n).
∆ 0.1 0.5 1 5 10
No. of phases 328 122 89 58 50
Last non-empty bucket 93 19 9 1 0
Average distance 4.94 4.94 4.94 4.94 4.94
Avg. no. of light relax
requests per phase

161K 1.84M 4.43M 8.28M 20.00M

Avg. no. of heavy relax
requests per bucket

3.12M 5.46M 0 0 0

Total number of relax-
ations

343.20M 328.70M 394.30M 480.30M 1.00B

Execution Time (40 pro-
cessors MTA-2, seconds)

14.03 11.64 13.57 16.15 27.14

(b) ScaleFree4-n graph instance (n = C = 225, m = 4n).
∆ 0.1 0.5 1 5 10
No. of phases 312 117 83 51 39
Last non-empty bucket 131 26 13 2 1
Average distance 1.68 1.68 1.68 1.68 1.68
Avg. no. of light relax
requests per phase

22.40K 267.00K 667.00K 2.40M 3.15M

Avg. no. of heavy relax
requests per bucket

278.00K 455.80K 0 0 0

Total number of relax-
ations

43.78M 43.63M 55.40M 122.68M 122.76M

Execution Time (40 pro-
cessors MTA-2, seconds)

4.23 2.55 2.79 5.48 6.38

(c) RandomLogUnif4-n instance (n = C = 220, m = 4n).
∆ 0.001 0.05 0.1 0.5 1
No. of phases 460 115 93 77 71
Last non-empty bucket 134 17 8 4 2
Average distance 0.04 0.04 0.04 0.04 0.04
Avg. no. of light relax
requests per phase

1.50K 50.80K 84.80K 132.00K 150.01K

Avg. no. of heavy relax
requests per bucket

6.50K 3.47K 3.97K 2.18K 1.42K

Total number of relax-
ations

1.59M 5.91M 7.92M 10.17M 10.74M

Execution Time (40 pro-
cessors MTA-2, seconds)

2.15 1.18 0.96 0.80 0.75

279281279

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

32 K. MADDURI, D.A. BADER, J.W. BERRY, AND J.R. CROBAK

Table 6. Performance of the ∆-stepping algorithm as a function
of the bucket width ∆ for mesh networks. K denotes 103, M de-
notes 106 and B denotes 109.

(a) Long grid instance (n = C = 220).
∆ 0.1 0.5 1 5 10
No. of phases 295.27K 151.43K 124.76K 97.38K 92.70K
Last non-empty bucket 216.38K 43.28K 21.64K 4.33K 2.16K
Average distance 10805 10805 10805 10805 10805
Avg. no. of light relax
requests per phase

0.65 5.49 11.29 22.99 37.22

Avg. no. of heavy relax
requests per bucket

5.21 9.65 0 0 0

Total number of relax-
ations

1.32M 1.25M 1.40M 2.23M 3.45M

Execution Time (40 pro-
cessors MTA-2, seconds)

858.75 465.14 443.05 369.57 274.23

(b) Square grid instance (n = C = 220).
∆ 0.1 0.5 1 5 10
No. of phases 12795 5489 4188 2769 2504
Last non-empty bucket 4691 938 469 93 46
Average distance 251.86 251.86 251.86 251.86 251.86
Avg. no. of light relax
requests per phase

15.51 155.11 340.50 785.18 1248.72

Avg. no. of heavy relax
requests per bucket

242.22 437.44 0 0 0

Total number of relax-
ations

1.33M 1.26M 1.43M 2.17M 3.13M

Execution Time (40 pro-
cessors MTA-2, seconds)

48.77 20.04 13.92 9.17 8.32

280282280

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL SHORTEST PATH ALGORITHMS 33

Table 7. Performance of the ∆-stepping algorithm as a function
of the bucket width ∆ for road networks. K denotes 103, M denotes
106 and B denotes 109.

(a) Central USA road instance (distance).
∆ 0.1 0.5 1 5
No. of phases 3129 2017 1669 1300
Last non-empty bucket 105 21 10 2
Average distance 3.93 3.93 3.93 3.93
Avg. no. of light relax
requests per phase

6.34K 26.04K 57.89K 82.60K

Avg. no. of heavy relax
requests per bucket

320.60 1.27 0 0

Total number of relax-
ations

19.87M 52.50M 96.60M 107.00M

Execution Time (40 pro-
cessors MTA-2, seconds)

7.83 5.84 5.62 8.88

(b) NE USA road instance (transit time).
∆ 0.1 0.5 1 5
No. of phases 437 3542 3126 2220
Last non-empty bucket 315 63 31 6
Average distance 14.06 14.06 14.06 14.06
Avg. no. of light relax
requests per phase

369.90 783.80 1.38K 8.66K

Avg. no. of heavy relax
requests per bucket

168.40 1.85 0 0

Total number of relax-
ations

1.76M 2.78M 4.31M 19.21M

Execution Time (40 pro-
cessors MTA-2, seconds)

12.92 9.25 8.39 6.84

281283281

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

34 K. MADDURI, D.A. BADER, J.W. BERRY, AND J.R. CROBAK

B.3. Parallel Performance on the Cray MTA-2.

Table 8. MTA-2 performance (execution time in seconds, nor-
malized performance with reference to the baseline BFS, relative
speedup) of our implementation on Random4-n graphs. Problem
instance denotes log of the number of vertices. p denotes the num-
ber of processors. m = 4n edges, and maximum weight C = n.

p Problem Instance 21 22 23 24 25 26 27 28
1 BFS (sec) 0.62 1.24 3.39 4.91 9.70 18.90 37.30 73.94

∆-stepping (sec) 3.21 6.34 12.05 23.61 46.63 93.77 187.84 371.27
Ratio to BFS 5.18 5.11 3.55 4.81 4.81 4.96 5.04 5.02

2 BFS (sec) 0.31 0.61 1.19 2.34 4.65 9.29 18.66 37.06
∆-stepping (sec) 1.92 3.44 6.57 12.72 24.88 48.40 96.15 187.99
Ratio to BFS 6.25 5.66 5.52 5.43 5.35 5.21 5.15 5.07
Relative Speedup 1.67 1.84 1.83 1.86 1.87 1.94 1.95 1.99

4 BFS (sec) 0.16 0.31 0.61 1.19 2.37 4.71 9.38 19.59
∆-stepping (sec) 1.23 2.07 3.77 7.07 13.63 25.40 50.08 96.89
Ratio to BFS 7.69 6.68 6.18 5.94 5.75 5.39 5.34 4.95
Relative Speedup 2.61 3.06 3.20 3.34 3.42 3.69 3.75 3.83

8 BFS (sec) 0.09 0.16 0.31 0.60 1.18 2.35 4.73 9.37
∆-stepping (sec) 0.96 1.40 2.39 4.28 8.04 13.81 27.29 49.18
Ratio to BFS 10.67 8.48 7.74 7.13 6.81 6.88 5.77 5.25
Relative Speedup 3.34 4.53 5.04 5.52 5.80 6.79 6.88 7.55

16 BFS (sec) 0.06 0.10 0.17 0.32 0.62 1.20 2.39 4.73
∆-stepping (sec) 0.84 1.24 1.84 3.06 5.45 8.34 15.91 25.47
Ratio to BFS 7.55 12.40 10.60 9.22 8.83 6.95 6.66 5.38
Relative Speedup 3.82 5.11 6.55 7.71 8.55 11.24 11.81 14.58

32 BFS (sec) 0.05 0.07 0.11 0.19 0.36 0.69 1.36 2.68
∆-stepping (sec) 0.78 1.047 1.52 2.42 4.12 5.70 10.31 13.90
Ratio to BFS 15.60 15.00 13.81 12.74 11.44 15.83 7.58 5.19
Relative Speedup 4.12 6.04 7.93 9.76 11.32 16.45 18.22 26.71

40 BFS (sec) 0.04 0.06 0.10 0.17 0.32 0.61 1.20 2.37
∆-stepping (sec) 0.81 1.05 1.53 2.35 3.98 5.15 9.51 11.96
Ratio to BFS 18.41 16.41 15.30 13.82 12.44 8.44 7.92 5.04
Relative Speedup 3.96 6.04 7.88 10.05 11.72 11.11 19.75 31.04

282284282

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL SHORTEST PATH ALGORITHMS 35

Table 9. MTA-2 performance (execution time in seconds, nor-
malized performance with reference to the baseline BFS, relative
speedup) of our implementation for RandomLogUnif4-n graphs.
Problem instance denotes the log of the number of vertices. p
denotes the number of processors. m = 4n edges and maximum
weight C = n.

p Problem Instance 21 22 23 24 25 26 27
1 BFS (sec) 0.62 1.24 3.39 4.91 9.70 18.90 37.30

∆-stepping (sec) 20.43 41.72 85.10 173.96 378.80 878.86 1687.59
Ratio to BFS 32.95 33.64 25.10 35.43 39.05 46.50 45.24

4 BFS (sec) 0.16 0.31 0.61 1.19 2.37 4.71 9.38
∆-stepping (sec) 6.03 11.17 22.90 45.38 97.63 224.46 426.02
Ratio to BFS 37.69 36.03 37.54 38.13 41.19 47.65 45.52
Relative Speedup 3.38 3.73 3.72 3.83 3.88 3.91 3.96

16 BFS (sec) 0.06 0.10 0.17 0.32 0.62 1.20 2.39
∆-stepping (sec) 2.47 3.94 7.43 13.96 26.50 60.82 113.12
Ratio to BFS 41.17 39.40 43.70 43.62 42.74 50.68 47.33
Relative Speedup 8.27 10.59 11.45 12.46 14.29 14.45 14.92

40 BFS (sec) 0.04 0.06 0.10 0.17 0.32 0.61 1.20
∆-stepping (sec) 1.99 2.61 4.27 7.23 12.86 29.58 51.89
Ratio to BFS 49.17 43.50 42.70 42.53 40.19 48.49 43.24
Relative Speedup 10.27 15.98 19.93 24.06 29.46 29.71 32.52

283285283

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

36 K. MADDURI, D.A. BADER, J.W. BERRY, AND J.R. CROBAK

Table 10. MTA-2 performance (execution time in seconds, nor-
malized performance with reference to the baseline BFS, relative
speedup) of our implementation on Random4-C graphs. Problem
instance denotes the log of the maximum edge weight. p denotes
the number of processors. n = 226 vertices, m = 4n edges.

p Problem Instance 0 3 6 9 12 15
1 BFS (sec) 19.07 19.07 19.07 19.07 19.07 19.07

∆-stepping (sec) 93.66 93.74 94.34 93.22 95.76 94.11
Ratio to BFS 4.91 4.91 4.89 4.89 5.01 4.83

2 BFS (sec) 9.38 9.38 9.38 9.38 9.38 9.38
∆-stepping (sec) 48.24 48.15 48.78 48.5 49.25 48.63
Ratio to BFS 5.14 5.13 5.20 5.17 5.25 5.18
Relative Speedup 1.94 1.95 1.91 1.92 1.94 1.93

4 BFS (sec) 4.73 4.73 4.73 4.73 4.73 4.73
∆-stepping (sec) 25.81 25.43 25.47 25.81 25.39 25.35
Ratio to BFS 5.46 5.38 5.38 5.46 5.37 5.36
Relative Speedup 3.63 3.69 3.66 3.61 3.77 3.71

8 BFS (sec) 2.36 2.36 2.36 2.36 2.36 2.36
∆-stepping (sec) 14.06 13.67 13.86 13.85 14.07 13.85
Ratio to BFS 5.96 5.79 5.87 5.87 5.96 5.87
Relative Speedup 6.66 6.86 6.73 6.73 6.80 6.79

16 BFS (sec) 1.21 1.21 1.21 1.21 1.21 1.21
∆-stepping (sec) 8.37 8.38 8.4 8.37 8.42 8.38
Ratio to BFS 6.92 6.92 6.94 6.92 6.96 6.92
Relative Speedup 11.19 11.19 11.11 11.14 11.37 11.23

32 BFS (sec) 0.69 0.69 0.69 0.69 0.69 0.69
∆-stepping (sec) 5.66 5.65 5.66 5.68 5.66 5.67
Ratio to BFS 8.20 8.19 8.20 8.23 8.20 8.21
Relative Speedup 11.42 11.45 11.38 11.32 11.67 11.45

40 BFS (sec) 0.61 0.61 0.61 0.61 0.61 0.61
∆-stepping (sec) 5.23 5.27 5.22 5.23 5.21 5.26
Ratio to BFS 8.52 8.58 8.50 8.52 8.48 8.57
Relative Speedup 17.91 17.79 17.88 17.82 18.38 17.89

284286284

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL SHORTEST PATH ALGORITHMS 37

Table 11. MTA-2 performance (execution time in seconds, nor-
malized performance with reference to the baseline BFS) of our
implementation on Long-n graphs. Problem instance denotes the
log of the rectangular grid x dimension. p denotes the number of
processors, y = 16, n = xy, m ≈ 4n edges, and maximum weight
C = n.

p Problem Instance 10 11 12 13
1 BFS (sec) 0.54 1.22 1.54 4.19

∆-stepping (sec) 3.99 8.57 13.77 32.11
Ratio to BFS 7.39 7.02 8.94 7.66

4 BFS (sec) 0.74 1.43 2.12 4.52
∆-stepping (sec) 5.36 11.20 17.92 42.06
Ratio to BFS 7.24 7.83 8.45 9.30

16 BFS (sec) 1.04 1.85 3.09 6.72
∆-stepping (sec) 7.10 15.07 23.50 56.08
Ratio to BFS 6.83 8.14 7.60 8.34

40 BFS (sec) 1.31 2.43 4.00 8.29
∆-stepping (sec) 12.53 23.64 40.02 90.59
Ratio to BFS 9.56 9.73 10.00 10.97

p Problem Instance 14 15 16 17
1 BFS (sec) 7.60 14.30 34.90 55.62

∆-stepping (sec) 57.16 123.73 243.53 404.91
Ratio to BFS 7.52 8.65 6.97 7.28

4 BFS (sec) 9.27 19.80 39.48 71.49
∆-stepping (sec) 73.93 158.72 306.69 567.63
Ratio to BFS 7.97 8.01 7.77 7.94

16 BFS (sec) 13.56 25.44 57.71 107.00
∆-stepping (sec) 97.99 212.51 503.33 967.70
Ratio to BFS 7.23 8.35 8.72 9.04

40 BFS (sec) 18.14 32.33 72.99 132.36
∆-stepping (sec) 171.13 330.72 812.02 1534.05
Ratio to BFS 9.43 10.23 11.12 11.59

285287285

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

38 K. MADDURI, D.A. BADER, J.W. BERRY, AND J.R. CROBAK

Table 12. MTA-2 performance (execution time in seconds, nor-
malized performance with reference to the baseline BFS) of our
implementation on Long-C graphs. Problem instance denotes the
log of the maximum edge weight. p denotes the number of proces-
sors. The grid dimensions are given by x = 214 and y = 16.

p Problem Instance 0 3 6 9 12 15
1 BFS (sec) 7.60 7.60 7.60 7.60 7.60 7.60

∆-stepping (sec) 57.24 56.88 57.13 57.89 58.11 56.97
Ratio to BFS 7.53 7.48 7.52 7.62 7.65 7.50

4 BFS (sec) 9.27 9.27 9.27 9.27 9.27 9.27
∆-stepping (sec) 74.02 73.88 73.92 74.68 75.17 75.49
Ratio to BFS 7.98 7.97 7.97 8.06 8.10 8.14

16 BFS (sec) 13.56 13.56 13.56 13.56 13.56 13.56
∆-stepping (sec) 96.76 97.11 97.45 98.82 98.30 98.61
Ratio to BFS 7.14 7.16 7.19 7.24 7.25 7.27

40 BFS (sec) 18.14 18.14 18.14 18.14 18.14 18.14
∆-stepping (sec) 172.00 171.34 173.43 172.84 172.49 173.19
Ratio to BFS 9.48 9.44 9.56 9.53 9.51 9.55

Table 13. MTA-2 performance (execution time in seconds, nor-
malized performance with reference to the baseline BFS) of our
implementation on Square-n graphs. Problem instance denotes
the log of the number of the grid dimension x. p denotes the num-
ber of processors. x = y, n = xy, m ≈ 4n edges, and maximum
weight C = n.

p Problem Instance 6 7 8 9 10 11 12
1 BFS (sec) 0.05 0.12 0.24 0.57 1.32 3.22 8.55

∆-stepping (sec) 0.20 0.52 1.28 2.80 7.84 20.56 68.33
Ratio to BFS 4.00 4.33 5.33 4.91 5.94 6.38 7.99

4 BFS (sec) 0.09 0.16 0.33 0.72 1.51 3.19 6.59
∆-stepping (sec) 0.23 0.60 1.41 2.84 6.85 14.29 38.62
Ratio to BFS 2.55 3.75 4.27 3.94 4.54 4.48 5.86

16 BFS (sec) 0.11 0.22 0.41 0.95 1.99 3.93 7.68
∆-stepping (sec) 0.28 0.73 1.64 3.3 7.83 14.93 35.51
Ratio to BFS 2.54 3.32 4.00 3.47 3.93 3.80 4.62

40 BFS (sec) 0.12 0.23 0.44 1.00 2.05 4.01 7.90
∆-stepping (sec) 0.35 0.84 1.91 3.59 8.35 15.29 35.46
Ratio to BFS 2.92 3.65 4.34 3.59 4.07 3.81 4.49

286288286

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL SHORTEST PATH ALGORITHMS 39

Table 14. MTA-2 performance (execution time in seconds) of the
baseline BFS, and our shortest path implementation on the USA
core road networks with distance (road-d) and transit times (road-
t) as the length function.

p Instance CTR W E LKS CAL NE
1 BFS time (sec) 7.69 5.19 3.95 3.38 2.39 2.01

road-d time (sec) 49.89 32.91 23.46 15.08 13.09 14.33
road-t time (sec) 37.06 24.01 15.12 14.51 11.32 6.66

4 BFS time (sec) 6.48 4.95 4.09 3.6 2.53 2.14
road-d time (sec) 48.58 30.12 23.29 15.59 13.92 14.21
road-t time (sec) 34.38 23.75 15.73 15.36 12.03 7.18

16 BFS time (sec) 7.26 5.85 4.94 4.32 3.02 2.53
road-d time (sec) 52.83 36.74 26.91 18.94 15.96 15.03
road-t time (sec) 39.95 27.86 18.53 18.21 14.25 8.54

40 BFS time (sec) 7.50 6.56 5.47 4.43 3.37 2.92
road-d time (sec) 55.19 39.84 33.32 21.66 18.15 16.23
road-t time (sec) 42.94 30.24 21.15 20.09 16.29 9.96

p Instance NW FLA COL BAY NY
1 BFS time (sec) 1.52 1.98 1.51 0.72 0.67

road-d time (sec) 13.80 12.76 6.52 3.16 2.70
road-t time (sec) 7.06 9.22 5.03 2.34 1.69

4 BFS time (sec) 1.57 2.15 1.76 0.83 0.76
road-d time (sec) 13.41 12.28 7.90 3.70 3.39
road-t time (sec) 8.07 10.45 5.95 2.73 1.91

16 BFS time (sec) 1.86 2.56 2.13 1.01 0.94
road-d time (sec) 14.06 15.28 8.81 4.62 4.08
road-t time (sec) 9.64 12.41 7.14 3.25 2.31

40 BFS time (sec) 2.18 2.95 2.19 1.05 0.95
road-d time (sec) 15.11 16.44 9.93 5.31 5.06
road-t time (sec) 12.05 14.54 9.09 3.95 2.82

Table 15. MTA-2 performance (execution time in seconds) of our
implementation on the full USA and Europe road graphs.

p Instance USA-d USA-t Europe-d Europe-t
1 BFS (sec) 10.04 9.93 7.04 7.05

∆-stepping (sec) 182.84 142.19 177.84 79.40
4 BFS (sec) 8.23 7.96 5.18 5.20

∆-stepping (sec) 164.29 127.81 135.49 63.04
16 BFS (sec) 10.21 10.14 5.89 6.01

∆-stepping (sec) 167.83 137.52 137.67 64.36
40 BFS (sec) 10.39 10.69 6.06 5.94

∆-stepping (sec) 173.11 150.63 143.13 67.16

287289287

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

40 K. MADDURI, D.A. BADER, J.W. BERRY, AND J.R. CROBAK

References

1. P. Adamson and E. Tick, Greedy partitioned algorithms for the shortest path problem, Int’l
Journal of Parallel Programming 20 (1991), no. 4, 271–298.

2. D. Ajwani, R. Dementiev, and U. Meyer, A computational study of external-memory BFS
algorithms, Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006)
(Miami, FL), ACM Press, January 2006, pp. 601–610.

3. D.A. Bader, G. Cong, and J. Feo, On the architectural requirements for efficient execution of
graph algorithms, Proc. 34th Int’l Conf. on Parallel Processing (ICPP 2005) (Oslo, Norway),
IEEE Computer Society, June 2005, pp. 547–556.

4. D.A. Bader, A.K. Illendula, B. M.E. Moret, and N. Weisse-Bernstein, Using PRAM algo-
rithms on a uniform-memory-access shared-memory architecture, Proc. 5th Int’l Workshop
on Algorithm Engineering (WAE 2001) (Århus, Denmark) (G.S. Brodal, D. Frigioni, and
A. Marchetti-Spaccamela, eds.), Lecture Notes in Computer Science, vol. 2141, Springer-
Verlag, 2001, pp. 129–144.

5. D.A. Bader and K. Madduri, Designing multithreaded algorithms for breadth-first search and
st-connectivity on the Cray MTA-2, Proc. 35th Int’l Conf. on Parallel Processing (ICPP 2006)
(Columbus, OH), IEEE Computer Society, August 2006, pp. 523–530.

6. , Parallel algorithms for evaluating centrality indices in real-world networks, Proc.
35th Int’l Conf. on Parallel Processing (ICPP 2006) (Columbus, OH), IEEE Computer Society,
August 2006, pp. 539–550.

7. D.A. Bader, K. Madduri, G. Cong, and J. Feo, Design of multithreaded algorithms for com-
binatorial problems, Handbook of Parallel Computing: Models, Algorithms, and Applications
(S. Rajasekaran and J. Reif, eds.), CRC Press, 2007.

8. A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286 (1999),
no. 5439, 509–512.

9. J.W. Berry, B. Hendrickson, S. Kahan, and P. Konecny, Software and algorithms for graph
queries on multithreaded architectures, Proc. Workshop on Multithreaded Architectures and
Applications (MTAAP 2007) (Long Beach, CA), IEEE Computer Society, March 2007, pp. 1–
14.

10. U. Brandes, A faster algorithm for betweenness centrality, Journal of Mathematical Sociology
25 (2001), no. 2, 163–177.

11. P. Briggs and L. Torczon, An efficient representation for sparse sets, ACM Letters on Pro-
gramming Languages and Systems 2 (1993), no. 1-4, 59–69.

12. G.S. Brodal, J.L. Träff, and C.D. Zaroliagis, A parallel priority queue with constant time
operations, Journal of Parallel and Distributed Computing 49 (1998), no. 1, 4–21.

13. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and
J. Wiener, Graph structure in the web, Computer Networks 33 (2000), no. 1-6, 309–320.

14. D. Chakrabarti, Y. Zhan, and C. Faloutsos, R-MAT: A recursive model for graph mining,
Proc. 4th SIAM Intl. Conf. on Data Mining (SDM 2004) (Orlando, FL), SIAM, April 2004,
pp. 1–5.

15. K.M. Chandy and J. Misra, Distributed computation on graphs: Shortest path algorithms,
Communications of the ACM 25 (1982), no. 11, 833–837.

16. B.V. Cherkassky, A.V. Goldberg, and T. Radzik, Shortest paths algorithms: theory and ex-
perimental evaluation, Mathematical Programming 73 (1996), 129–174.

17. E. Cohen, Using selective path-doubling for parallel shortest-path computation, Journal of
Algorithms 22 (1997), no. 1, 30–56.

18. Cray, Inc., The MTA-2 multithreaded architecture, http://www.cray.com/products/systems/
mta/, 2006.

19. J.R. Crobak, J.W. Berry, K. Madduri, and D.A. Bader, Advanced shortest path algorithms
on a massively-multithreaded architecture, Proc. Workshop on Multithreaded Architectures
and Applications (MTAAP 2007) (Long Beach, CA), IEEE Computer Society, March 2007,
pp. 1–8.

20. C. Demetrescu, A. Goldberg, and D. Johnson, 9th DIMACS implementation challenge –
Shortest Paths, http://www.dis.uniroma1.it/~challenge9/, 2006.

21. , 9th DIMACS implementation challenge – Shortest Paths: Reference benchmark pack-
age, http://www.dis.uniroma1.it/~challenge9/download.shtml, 2006.

288290288

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

PARALLEL SHORTEST PATH ALGORITHMS 41

22. R.B. Dial, Algorithm 360: Shortest path forest with topological ordering, Communications of
the ACM 12 (1969), 632–633.

23. R.B. Dial, F. Glover, D. Karney, and D. Klingman, A computational analysis of alternative
algorithms and labeling techniques for finding shortest path trees, Networks 9 (1979), 215–248.

24. E.W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik 1
(1959), 269–271.

25. J.R. Driscoll, H.N. Gabow, R. Shrairman, and R.E. Tarjan, Relaxed heaps: An alternative
to fibonacci heaps with applications to parallel computation, Communications of the ACM 31
(1988), no. 11, 1343–1354.

26. M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law relationships of the Internet
topology, Proc. ACM SIGCOMM 1999 (Cambridge, MA), ACM, August 1999, pp. 251–262.

27. M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved network opti-
mization algorithms, Journal of the ACM 34 (1987), 596–615.

28. M.L. Fredman and D.E. Willard, Trans-dichotomous algorithms for minimum spanning trees
and shortest paths, Journal of Computer and System Sciences 48 (1994), 533–551.

29. L.C. Freeman, A set of measures of centrality based on betweenness, Sociometry 40 (1977),
no. 1, 35–41.

30. A.M. Frieze and L. Rudolph, A parallel algorithm for all-pairs shortest paths in a random
graph, Proc. 22nd Allerton Conf. on Communication, Control and Computing (Monticello,
IL), 1984, pp. 663–670.

31. G. Gallo and P. Pallottino, Shortest path algorithms, Annals of Operations Research 13 (1988),
3–79.

32. F. Glover, R. Glover, and D. Klingman, Computational study of an improved shortest path
algorithm, Networks 14 (1984), 23–37.

33. A.V. Goldberg, Shortest path algorithms: Engineering aspects, Proc. 12th Int’l Symposium on
Algorithms and Computation (ISAAC 2001) (London, UK), Springer-Verlag, 2001, pp. 502–
513.

34. , A simple shortest path algorithm with linear average time, 9th Annual European
Symposium on Algorithms (ESA 2001) (Aachen, Germany), Lecture Notes in Computer Sci-
ence, vol. 2161, Springer, 2001, pp. 230–241.

35. D. Gregor and A. Lumsdaine, Lifting sequential graph algorithms for distributed-memory
parallel computation, Proc. 20th ACM SIGPLAN Conf. on Object Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2005) (New York, NY), ACM Press, 2005,
pp. 423–437.

36. R. Guimerà, S. Mossa, A. Turtschi, and L.A.N. Amaral, The worldwide air transportation
network: Anomalous centrality, community structure, and cities’ global roles, Proceedings of
the National Academy of Sciences USA 102 (2005), no. 22, 7794–7799.

37. T. Hagerup, Improved shortest paths on the word RAM, 27th Colloquium on Automata, Lan-
guages and Programming (ICALP 2000) (Geneva, Switzerland), Lecture Notes in Computer
Science, vol. 1853, Springer-Verlag, 2000, pp. 61–72.

38. Y. Han, V. Pan, and J. Reif, Efficient parallel algorithms for computing the all pair shortest
paths in directed graphs, Algorithmica 17 (1997), no. 4, 399–415.

39. M.R. Hribar and V.E. Taylor, Performance study of parallel shortest path algorithms: Char-
acteristics of good decomposition, Proc. 13th Annual Conf. of Intel Supercomputers Users
Group (Albuquerque, NM), 1997, pp. 1–27.

40. M.R. Hribar, V.E. Taylor, and D.E. Boyce, Parallel shortest path algorithms: Identifying
the factors that affect performance, Report CPDC-TR-9803-015, Northwestern University,
Evanston, IL, 1998.

41. , Reducing the idle time of parallel shortest path algorithms, Report CPDC-TR-9803-
016, Northwestern University, Evanston, IL, 1998.

42. , Termination detection for parallel shortest path algorithms, Journal of Parallel and
Distributed Computing 55 (1998), 153–165.

43. H. Jeong, S.P. Mason, A.-L. Barabási, and Z.N. Oltvai, Lethality and centrality in protein
networks, Nature 411 (2001), 41–42.

44. P.N. Klein and S. Subramanian, A randomized parallel algorithm for single-source shortest
paths, Journal of Algorithms 25 (1997), no. 2, 205–220.

45. F. Liljeros, C.R. Edling, L.A.N. Amaral, H.E. Stanley, and Y. Åberg, The web of human
sexual contacts, Nature 411 (2001), 907–908.

289291289

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

42 K. MADDURI, D.A. BADER, J.W. BERRY, AND J.R. CROBAK

46. K. Madduri, 9th DIMACS implementation challenge: Shortest Paths. ∆-stepping C/MTA-2
code, http://www.cc.gatech.edu/~kamesh/research/DIMACS-ch9, 2006.

47. K. Madduri, D.A. Bader, J. Berry, and J.R. Crobak, An experimental study of a parallel
shortest path algorithm for solving large-scale graph instances, Proc. The 9th Workshop on
Algorithm Engineering and Experiments (ALENEX 2007) (New Orleans, LA), SIAM, January
2007, pp. 23–35.

48. U. Meyer, Heaps are better than buckets: parallel shortest paths on unbalanced graphs,
Proc. 7th International Euro-Par Conference (Euro-Par 2001) (Manchester, United Kingdom),
Springer-Verlag, 2000, pp. 343–351.

49. , Buckets strike back: Improved parallel shortest-paths, Proc. 16th Int’l Parallel and
Distributed Processing Symp. (IPDPS 2002) (Fort Lauderdale, FL), IEEE Computer Society,
April 2002, pp. 1–8.

50. , Design and analysis of sequential and parallel single-source shortest-paths algorithms,
Ph.D. thesis, Universität Saarlandes, Saarbrücken, Germany, October 2002.

51. , Average-case complexity of single-source shortest-paths algorithms: lower and upper
bounds, Journal of Algorithms 48 (2003), no. 1, 91–134.

52. U. Meyer and P. Sanders, Parallel shortest path for arbitrary graphs, Proc. 6th International
Euro-Par Conference (Euro-Par 2000) (Munich, Germany), Lecture Notes in Computer Sci-
ence, vol. 1900, Springer-Verlag, 2000, pp. 461–470.

53. , ∆-stepping: a parallelizable shortest path algorithm, J. Algs. 49 (2003), no. 1, 114–
152.

54. M.E.J. Newman, Scientific collaboration networks: II. shortest paths, weighted networks and
centrality, Phys. Rev. E 64 (2001), 016132.

55. , The structure and function of complex networks, SIAM Review 45 (2003), no. 2,
167–256.

56. M. Papaefthymiou and J. Rodrigue, Implementing parallel shortest-paths algorithms, DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science 30 (1997), 59–68.

57. J. Park, M. Penner, and V.K. Prasanna, Optimizing graph algorithms for improved cache
performance, Proc. Int’l Parallel and Distributed Processing Symposium (IPDPS 2002) (Fort
Lauderdale, FL), IEEE Computer Society, April 2002.

58. PTV Europe, European road graphs, http://i11www.iti.uni-karlsruhe.de/resources/

roadgraphs/index.php, 2006.
59. R. Raman, Recent results on single-source shortest paths problem, SIGACT News 28 (1997),

61–72.
60. H. Shi and T.H. Spencer, Time-work tradeoffs of the single-source shortest paths problem,

Journal of Algorithms 30 (1999), no. 1, 19–32.
61. M. Thorup, Undirected single-source shortest paths with positive integer weights in linear

time, Journal of the ACM 46 (1999), no. 3, 362–394.
62. J. L. Träff, An experimental comparison of two distributed single-source shortest path algo-

rithms, Parallel Computing 21 (1995), no. 9, 1505–1532.
63. J. Ullman and M. Yannakakis, High-probability parallel transitive closure algorithms, Proc.

2nd Annual Symposium on Parallel Algorithms and Architectures (SPAA 1990) (Crete,
Greece), ACM, July 1990, pp. 200–209.

64. F.B. Zhan and C.E. Noon, Shortest path algorithms: an evaluation using real road networks,
Transportation Science 32 (1998), 65–73.

College of Computing, Georgia Institute of Technology
Current address: Computational Research Division, Lawrence Berkeley National Laboratory
E-mail address: kamesh@gatech.edu

College of Computing, Georgia Institute of Technology
E-mail address: bader@cc.gatech.edu

Computer Science Research Institute, Sandia National Laboratories
E-mail address: jberry@sandia.gov

Computer Science Department, Rutgers University
E-mail address: crobakj@cs.rutgers.edu

290292290

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science

Breadth first search on massive graphs

Deepak Ajwani, Ulrich Meyer, and Vitaly Osipov

Abstract. We consider the problem of breadth first search (BFS) traversal
on massive sparse undirected graphs in external memory. Engineering the al-
gorithm of Munagala and Ranade [28] (MR BFS) and the randomized and
deterministic variants of the o(n) I/O algorithm of Mehlhorn and Meyer [26]
(MM BFS) coupled with a heuristic, we discuss the effect of various imple-
mentation design choices on the actual running time of the BFS traversal.
Demonstrating the viability of our BFS implementations on various synthetic
and real world benchmarks, we show that BFS level decompositions for large
graphs (around a billion edges) can be computed on a cheap machine in a few
hours.

1. Introduction

Breadth first search (BFS) is a fundamental graph traversal strategy. It can
also be viewed as computing single source shortest paths on unweighted graphs.
It decomposes the input graph G = (V, E) of n nodes and m edges into at most
n levels where level i comprises all nodes that can be reached from a designated
source s via a path of i edges, but cannot be reached using less than i edges.

Typical real-world applications of BFS on large graphs (and some of its gen-
eralizations like shortest paths or A∗) include crawling and analyzing the WWW
[29, 30], route planning using small navigation devices with flash memory cards
[21], state space exploration [19], etc. Since most of the large real world graphs are
sparse, we mainly concentrate on the problem of computing a BFS level decompo-
sition for massive sparse undirected graphs.

While modern processor speeds are measured in GHz, average hard disk laten-
cies are in the range of a few milliseconds [22]. Hence, the cost of accessing a data
element from the hard-disk (an I/O) is around a million times more than the cost
of an instruction. Therefore, it comes as no surprise that the I/Os dominate the
runtimes of even basic graph traversal strategies like BFS on large graphs, mak-
ing their standard implementations non-viable. Since the traditional RAM model,

This work was partially supported by the DFG grants SA 933/1-3, ME 2088/1-3, ME 3250/1-
1 and by MADALGO - Center for Massive Data Algorithmics, a Center of the Danish National
Research Foundation.

c⃝2007 American Mathematical Society

1

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

291

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

293

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 74, 2009

c⃝2009 American Mathematical Society

291

https://doi.org/10.1090/dimacs/074/11

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

2 DEEPAK AJWANI, ULRICH MEYER, AND VITALY OSIPOV

which assumes an unbounded amount of memory with unit cost access to any lo-
cation, does not capture the I/Os into the performance metric, we need to look at
alternative models of computation.

1.1. Computation models. We consider the commonly accepted external
memory model of Aggarwal and Vitter [2] and the cache-oblivious model [20]. They
both assume a two level memory hierarchy with faster internal memory having a
capacity to store M vertices/edges. In an I/O operation, one block of data, which
can have B vertices/edges is transferred between disk and internal memory. The
measure of performance of an algorithm is the number of I/Os it performs. The
number of I/Os needed to read N contiguous items from disk is scan(N) = Θ(N/B).
The number of I/Os required to sort N items is sort(N) = Θ((N/B) logM/B(N/B)).
For all realistic values of N , B, and M , scan(N) < sort(N) ≪ N . The difference
between the two models is that the values of B and M are not known to the
algorithm in the cache-oblivious model, allowing the algorithms designed under
this model to be simultaneously efficient on all levels of the memory hierarchy.

1.2. Algorithms. BFS is well-understood in the RAM model. There exists
a simple linear time algorithm [15] (hereafter refered as IM BFS) for the BFS
traversal in a graph. IM BFS keeps a set of appropriate candidate nodes for the
next vertex to be visited in a FIFO queue Q. Furthermore, in order to find out the
unvisited neighbors of a node from its adjacency list, it marks the nodes as either
visited or unvisited.

Unfortunately, as the storage requirements of the graph starts approaching the
size of the internal memory, the running time of this algorithm deviates significantly
from the predicted O(n+m) asymptotic performance of the RAM model. Figure 1
displays the results of our experiments with the commonly used BFS routine of
the LEDA [27] graph package on random graph G(n, m) with m = 4n. These
experiments were done on a machine with Intel Xeon 2.0 GHz processor, 1 GB
RAM and 2 GB swap space on a Seagate Baracuda hard-disk [32]. On random
graphs with 3.6 million nodes (and 14.4 million edges), it takes around 10 hours
as compared to just 10 seconds for graphs with 1.8 million nodes (and 7.2 million
edges). On massive graphs (with a billion or more edges), IM BFS is simply non-
viable as it requires many months for the requisite graph traversal. As discussed
before, the main cause for such a poor performance of this algorithm on massive
graphs is the number of I/Os it incurs. Remembering visited nodes needs Θ(m)
I/Os in the worst case and the unstructured indexed access to adjacency lists may
result in Θ(n) I/Os.

The algorithm by Munagala and Ranade [28] (refered as MR BFS) ignores the
second problem but addresses the first by exploiting the fact that the neighbors of
a node in BFS level t− 1 are all in BFS levels t− 2, t− 1 or t. Let L(t) denote the
set of nodes in BFS level t, and let A(t) be the multi-set of neighbors of nodes in
L(t−1). Given L(t−1) and L(t−2), MR BFS builds L(t) (depicted in Figure 2) as
follows: Firstly, A(t) is created by |L(t − 1)| random accesses to get the adjacency
lists of all nodes in L(t − 1). Thereafter, duplicates are removed from A(t) to get
a sorted set A′(t). This is done by sorting A(t) according to node indices, followed
by a scan and compaction phase. The set L(t) := A′(t)/{L(t − 1) ∪ L(t − 2)} is
computed by scanning “in parallel” the sorted sets of A′(t), L(t−1), and L(t−2) to

292294292

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

BREADTH FIRST SEARCH ON MASSIVE GRAPHS 3

216

215

214

212

210

28

26

24

22

1
 2 2.5 3 3.5

T
im

e
(in

 s
ec

)

n (in millions)

Time taken by LEDA BFS

Figure 1. Time (in seconds) required by BFS from the LEDA
graph package on random graphs with m = 4n edges

s a

c e

f

b d

L(t-1)L(t-)2 L(t)

a

d

e

d

e

a
ñ
d

b

e

a
ñ
d

a
b
d
e

N(b)

N(c)

N(L(t-1)) - dupl. - L(t-1) - L(t-2)

Figure 2. A phase in the BFS algorithm of Munagala and Ranade

filter out the nodes already present in L(t−1) or L(t−2). The resulting worst-case
I/O-bound is O (

∑
t L(t) +

∑
t sort(A(t))) = O (n + sort(n + m)).

Mehlhorn and Meyer suggested another approach [26] (MM BFS) which in-
volves a preprocessing phase to restructure the adjacency lists of the graph repre-
sentation. It groups the vertices of the input graph into disjoint clusters of small
diameter and stores the adjacency lists of the nodes in a cluster contiguously on the
disk. Thereafter, an appropriately modified version of MR BFS is run. MM BFS
exploits the fact that whenever the first node of a cluster is visited then the re-
maining nodes of this cluster will be reached soon after. By spending only one
random access (and possibly, some sequential accesses depending on cluster size) in
order to load the whole cluster and then keeping the cluster data in some efficiently

293295293

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

4 DEEPAK AJWANI, ULRICH MEYER, AND VITALY OSIPOV

0

1

2

3

4

5

6
7

0 1 0 2 3 2 4 2 0 7 5 7 6 7 0

0 1 2 3 4 7 5 6

Figure 3. The bi-directed tree (shaded circles and solid lines) and
the closed linked list of its edges (dashed lines) on the left. The
order of the vertices and their partitioning before and after the
duplicates removal on the right

accessible data structure (pool) until it is all used up, on sparse graphs the total
amount of I/O can be reduced by a factor of up to

√
B. The neighboring nodes of a

BFS level can be computed simply by scanning the pool and not the whole graph.
Though some edges may be scanned more often in the pool, unstructured I/O in
order to fetch adjacency lists is considerably reduced, thereby saving the total num-
ber of I/Os. The preprocessing of MM BFS comes in two variants: randomized and
deterministic (refered as MM BFS R and MM BFS D, respectively).

In the randomized variant, the input graph is partitioned by choosing master
nodes independently and uniformly at random with a probability µ. If we have

no apriori information about the structure of the graph, µ = min{1,
√

(n+m)·log n
n·B }

minimizes the total expected number of I/Os. The partitioning is generated “in
parallel”: in each round, each master node tries to capture all unvisited neighbors
of its current sub-graph into its partition, with ties being resolved arbitrarily. At
the beginning of a round, the nodes lying on the boundaries of the current par-
titions carry the label of its corresponding master node. A scan through the set
of adjacency lists collects the neighbors of all the boundary nodes together with
the corresponding labels. These are then sorted, duplicates target nodes removed
(with labels being resolved arbitrarily) and added to the labelled partition. Note
that the diameter of such a cluster is bounded by max{1,

√
n·B·log n

n+m } w.h.p and

thus we need O(
√

n·B·log n
n+m) rounds w.h.p. to partition the whole graph.

The deterministic variant first builds a spanning tree Ts for the connected
component of G that contains the source node. Each undirected edge is then
replaced by two oppositely directed edges. Note that a bi-directed tree always has
at least one Euler tour. In order to construct the Euler tour around this bi-directed
tree, each node chooses a cyclic order [16] of its neighbors. As depicted in Figure 3,
the successor of an incoming edge is defined to be the outgoing edge to the next
node in the cyclic order. The tour is then broken at the source node and the
elements of the resulting list are then stored in consecutive order using an external
memory list-ranking algorithm (e.g. [13, 31]). Thereafter, we chop the Euler tour

294296294

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

BREADTH FIRST SEARCH ON MASSIVE GRAPHS 5

into chunks of max{1,
√

n·B
n+m} nodes and remove the duplicates with a couple of

sorting steps. The adjacency lists are then re-ordered based on the position of
their corresponding nodes in the chopped duplicate-free Euler tour. Note that the
diameter of the clusters obtained by the deterministic preprocessing can not exceed
max{1,

√
n·B
n+m}.

The randomized variant incurs an expected number of O(
√

n · (n + m) · log(n)/B+
sort(n + m)) I/Os, while the deterministic variant incurs O(

√
n · (n + m)/B +

sort(n + m) + ST (n, m)) I/Os, where ST (n, m) is the number of I/Os required for
computing a spanning tree of a graph with n nodes and m edges. Arge et al. [4]
show an upper bound of O((1+log log (B · n/m)) · sort(n+m)) I/Os for computing
such a spanning tree.

Brodal et al. [9] gave a cache-oblivious algorithm for BFS achieving the same
worst case I/O bounds as MM BFS D. Their preprocessing is similar to that in
MM BFS D, except that it produces a hierarchical clustering using the cache-
oblivious algorithms for sorting, spanning tree, Euler tour and list ranking. The
BFS phase uses a data-structure that maintains a hierarchy of pools and provides
the set of neighbors of the nodes in a BFS level efficiently.

The other known external-memory algorithms for BFS are restricted to special
graphs classes like trees [12], grid graphs [5], planar graphs [25], outer-planar
graphs [23], and graphs of bounded tree width [24].

1.3. Related Work. Ajwani et al. [3] showed that the usage of the two ex-
ternal memory algorithms MR BFS and MM BFS R along with disk parallelism
and pipelining can alleviate the I/O bottleneck of BFS on many large sparse graph
classes, thereby making the BFS viable for these graphs. Even with just a sin-
gle disk, they computed a BFS level decomposition of small diameter large graphs
(around 256 million nodes and a billion edges) in a few hours and moderate and
large diameter graphs in a few days, which otherwise would have taken a few months
with IM BFS. As for their relative comparison, MR BFS performs better than
MM BFS R on small-diameter random graphs saving a few hours. However, the
better asymptotic worst-case I/O complexity of MM BFS helps it to outperform
MR BFS for large diameter sparse graphs (computing in a few days versus a few
months), where MR BFS incurs close to its worst case of Ω(n) I/Os.

Independently, Christiani [14] gave a prototypical implementation of MR BFS,
MM BFS R as well as MM BFS D and reached similar conclusions regarding the
comparative performance between MR BFS and MM BFS R. Though their imple-
mentation of MR BFS and MM BFS R is competetive and on some graph classes
even better than [3], their experiments were mainly carried out on smaller graphs
(up to 50 million nodes). Since their main goal was to design cache-oblivious BFS,
they used cache-oblivious algorithms for sorting, minimum spanning tree and list
ranking even for the cache-aware algorithm MM BFS D. As we discuss later, these
algorithms slow down the deterministic preprocessing in practice, even though they
have the same asymptotic I/O complexity as their external memory counterparts.

295297295

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

6 DEEPAK AJWANI, ULRICH MEYER, AND VITALY OSIPOV

1.4. Our Contribution. Our contributions in this paper are the following:

• We improve upon the MR BFS and MM BFS R implementation described
in [3] by reducing the computational overhead associated with each BFS
level, thereby improving the results for large diameter graphs.

• We discuss the various choices made for a fast MM BFS D implementa-
tion. This involved experimenting with various available external memory
connected component and minimum spanning tree algorithms. Our par-
tial re-implementation of the list ranking algorithm of [31] adapting it to
the STXXL framework outperforms the other list ranking algorithms for
the sizes of our interest. As for the Euler tour in the deterministic pre-
processing, we compute the cyclic order of edges around the nodes using
the STXXL sorting.

• We conduct a comparative study of MM BFS D with other external mem-
ory BFS algorithms and show that for most graph classes, MM BFS D
outperforms MM BFS R. Also, we compare our BFS implementations
with Christiani’s implementations [14], which have some cache-oblivious
subroutines. This gives us some idea of the loss factor that we will have
to face for the performance of cache-oblivious BFS.

• We propose a heuristic for maintaining the pool in the BFS phase of
MM BFS. This heuristic improves the runtime of MM BFS in practice,
while preserving the worst case I/O bounds of MM BFS.

• Putting everything together, we show that the BFS traversal can also
be done on moderate and large diameter graphs in a few hours, which
would have taken the implementations of [3] and [14] several days and
IM BFS several months. Also, on low diameter graphs, the time taken by
our improved MR BFS is around one-third of that in [3]. Towards the
end, we summarize our results (Table 13) by giving the state of the art
implementations of external memory BFS on different graph classes.

2. Improvements over the previous implementations of MR BFS and
MM BFS R

The computation of each level of MR BFS involves sorting and scanning of
neighbors of the nodes in the previous level. Even if there are very few ele-
ments to be sorted, there is a certain overhead associated with initializing the
external sorters. In particular, while the STXXL stream sorter (with the flag
STXXL SMALL INPUT PSORT OPT) does not incur an I/O for sorting less than
B elements, it still requires to allocate some memory and does some computation
for initialization. This overhead accumulates over all levels and for large diameter
graphs, it dominates the running time. This problem is also inherited by the BFS
phase of MM BFS. Since in the pipelined implementation of [3], we do not know
in advance the exact number of elements to be sorted, we can’t switch between
the external and the internal sorter so easily. In order to get around this problem,
we first buffer the first B elements and initialize the external sorter only when the
buffer is full. Otherwise, we sort it internally.

In addition to this, we make the graph representation for MR BFS more com-
pact. Except the source and the destination node pair, no other information is
stored with the edges.

296298296

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

BREADTH FIRST SEARCH ON MASSIVE GRAPHS 7

Table 1. Timing in minutes for sorting n elements using either
CO SORT or STXXL SORT

n CO SORT STXXL SORT
256 × 106 21 8
512 × 106 46 13
1024 × 106 96 25

3. Deterministic preprocessing

As discussed in Section 1.2, the key components of the deterministic prepro-
cessing of MM BFS include sorting, minimum spanning tree and list ranking the
Euler tour. In this section, we discuss the various design choices for each of these
components.

3.1. External memory sorting. Implementations of many different algo-
rithms for sorting large data sets in memory hierarchies are available, e.g. the cache-
oblivious sorting algorithm (CO SORT) given in [10] and its external memory coun-
terpart provided by different external memory libraries like STXXL (STXXL SORT)
[18], and TPIE [6]. While CO SORT provides tight asymptotic guarantees on all
levels of memory hierarchy, it is a factor three to four slower than STXXL SORT
in practice for data-sizes that do not fit in the main memory. Our results shown
in Table 1 are in conformity with that of Brodal et el. [10], where it is shown that
the external memory sorting algorithm in the library TPIE [6] is better than their
carefully implemented cache-oblivious sorting algorithm, when run on disk. We
therefore use STXXL SORT for our implementations.

3.2. External memory spanning forest. The problem of computing a min-
imum spanning tree (MST) of an undirected graph with nonnegative edge weights
can be solved in O(sort(m)) expected I/O steps [1]. We use the implementation by
Dementiev et al. (EM MST) [17], which is based on contracting spanning forest
edges. In each iteration it chooses a random node u and an edge e = (u, v), where
v has the smallest index among the edges incident to u. The algorithm replaces all
edges (v, w) by (u, w), outputs e as one of the spanning forest edges and contracts e
by “merging” u and v. When the number of nodes is reduced to O(M) the spanning
forest is computed by the semi-external adaptation of Kruskal’s algorithm. Though
the expected O(sort(m)⌈log(n/M)⌉) I/O complexity of this algorithm is inferior to
the algorithm by Abello et al. [1], it uses at least a factor of four less I/Os [17] on
most inputs on a “well-behaved” machine.

The deterministic preprocessing of Christiani [14] uses the cache-oblivious MST
(CO MST) algorithm [1]. Table 2 shows the total time required by Christiani’s
deterministic preprocessing [14] using CO MST and the one in which CO MST is
replaced by EM MST.

3.3. External memory list ranking and Euler tour. List ranking in ex-
ternal memory can be solved in O(sort(n)) I/Os [13]. We found the algorithm by
Sibeyn [31] promising as it has low constant factors in its I/O complexity. The
algorithm splits the input list into sublists of size O(M) and goes through the data
in a wavelike manner. For all elements of the current sublist, it follows the links
running through the elements of the same sublist and updates the information on

297299297

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

8 DEEPAK AJWANI, ULRICH MEYER, AND VITALY OSIPOV

Table 2. Timing in hours required by deterministic preprocessing
of Christiani’s implementation using either CO MST or EM MST.

Graph class CO MST EM MST
Random graph;
n = 228, m = 230 107 35
Line graph with contiguous
disk layout (Simple Line); n = 228 38 16
Line graph with random
disk layout (Random Line); n = 228 47 22

their final element and the number of links to it. For all elements with links running
outside the current sublist, the required information is requested from the sublists
containing the elements to which they are linked. Bucketing and lazy processing of
the requests and the answers to the sublists, i.e., storing them in one common stack
and processing them only when the wave through the data hits the corresponding
sublist, make the implementation [31] superior to algorithms based on independent
set removal by a factor of about four. Unfortunately, Sibeyn’s implementation re-
lies on the operating system for I/Os and does not guarantee that the top blocks of
all the stacks remain in the internal memory, which is a necessary assumption for
the asymptotic analysis of the algorithm. Besides, its reliance on internal arrays
and swap space puts a restriction on the size of the lists it can rank. The deeper
integration of the algorithm in the STXXL framework, using the STXXL stacks
and vectors in particular, makes it possible to obtain a scalable solution, which
could handle graph instances of the size we require while keeping the theoretical
worst case bounds.

The cache-oblivious implementation [14] uses the algorithm based on indepen-
dent set removal [13] for list ranking. While it takes around 14.3 hours for ranking
229 element random list using 3 GB RAM, our adaptation of Sibeyn’s algorithm
takes less than 40 minutes in the same setting.

Recall that in order to construct the Euler tour around the bi-directional min-
imum spanning tree, each node chooses a cyclic order of its neighbors. For every
edge (u, v), its successor is defined to be the edge (v, w) (u may be the same as w)
such that in the cyclic order of neighors of v, u is followed by w. In one scan of
the edges of the bi-directional tree, each edge is linked to its successor. The linear
ordering induced by the successor function constitutes the Euler tour. The position
of an edge in this tour is computed using our adaptation of Sibeyn’s list ranking
algorithm in the STXXL framework. The Euler tour is then subdivided into chunks
of size max{1,

√
n·B
n+m}, duplicates eliminated using STXXL SORT and then used

for partitioning the graph.

3.4. Remark on the shape of the spanning tree. The shape of the com-
puted spanning tree can have a significant impact on the clustering and the disk
layout of the adjacency list after the deterministic preprocessing, and consequently
on the BFS phase. For instance, in the case of the square grid graphs, a spanning
tree containing a list with elements in a snake-like row major order produces long
and narrow clusters, while a “random” spanning tree is likely to result in clusters
with low diameters. Such a “random” spanning tree can be attained by assigning

298300298

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

BREADTH FIRST SEARCH ON MASSIVE GRAPHS 9

Table 3. Time taken (in hours) by the BFS phase of MM BFS D
with long and random clustering

Graph class n m Long clusters Random clusters
Grid(214 × 214) 228 229 51 28

random weights to the edges of the graph and then computing a minimum span-
ning tree or by randomly permuting the indices of the nodes. The nodes in the long
and narrow clusters tend to stay longer in the pool and therefore, their adjacency
lists are scanned more often. This causes the pool to grow external and results in
larger I/O volume. On the other hand, low diameter clusters are evicted from the
pool sooner and are scanned less often reducing the I/O volume of the BFS phase.
Consequently as Table 3 shows, the BFS phase of MM BFS D takes only 28 hours
with clusters produced by “random” spanning tree, while it takes 51 hours with
long and narrow clusters.

4. A heuristic for maintaining the pool

As noted in Section 1.2, the asymptotic improvement and the performance gain
in MM BFS over MR BFS is obtained by decomposing the graph into low diameter
clusters and maintaining an efficiently accessible pool of adjacency lists that will
be required in the next few levels. Whenever the first node of a cluster is visited
during the BFS, the remaining nodes of this cluster will be reached soon after and
hence, this cluster is loaded into the pool. For computing the neighbors of the
nodes in the current level, we just need to scan the pool and not the entire graph.
Efficient management of this pool is thus, crucial for the performance of MM BFS.
In this section, we propose a heuristic for efficient management of the pool, while
keeping the worst case I/O bounds of MM BFS.

For many large diameter graphs, the pool fits into the internal memory most of
the time. However, even if the number of edges in the pool is not so large, scanning
all the edges in the pool for each level can be computationally quite expensive.
Hence, we keep a portion of the pool that fits in the internal memory as a multi-
map hash table. Given a node as a key, it returns all the nodes adjacent to the
current node. Thus, to get the neighbors of a set of nodes we just query the hash
function for those nodes and delete them from the hash table. For loading the
cluster, we just insert all the adjacency lists of the cluster in the hash table, unless
the hash table has already O(M) elements.

Recall that after the deterministic preprocessing, the elements are stored on the
disk in the order in which they appear on the Euler tour around a spanning tree of
the input graph. The Euler tour is then chopped into clusters with max{1,

√
n·B
n+m}

elements (before the duplicate removal) ensuring that the maximum distance be-
tween any two nodes in the cluster is at most max{1,

√
n·B
n+m} − 1. However, the

fact that the contiguous elements on the disk are also closer in terms of BFS lev-
els is not restricted to intra-cluster adjacency lists. The adjacency lists that come
alongside the requisite cluster will also be required soon and by caching these other
adjacency lists, we can save some I/Os in the future. This caching is particularly
beneficial when the pool fits in the internal memory. Note that we still load the

299301299

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

10 DEEPAK AJWANI, ULRICH MEYER, AND VITALY OSIPOV

B

B B
External adjacency lists :
STXXL vector

Pool cache :
STXXL vector-cache

External Pool : stxxl vector
Internal Pool :
multimap

Figure 4. Schema depicting the implementation of our heuristic

max{1,
√

n·B
n+m} node clusters in the pool, but keep the remaining elements of the

block in the pool-cache. For line graphs, this means that we load O(
√

B) nodes in
the internal pool, while keeping the remaining O(B) adjacency lists which we get
in the same block, in the pool-cache, thereby reducing the I/O complexity for the
BFS traversal on line graphs to the computation of a spanning tree.

We represent the adjacency lists of nodes in the graph as a STXXL vector.
STXXL already provides a fully associative vector-cache with every vector. Before
doing an I/O for loading a block of elements from the vector, it first checks if the
block is already there in the vector-cache. If so, it avoids the I/O loading the
elements from the cache instead. Increasing the vector-cache size of the adjacency
list vector with a layout computed by the deterministic preprocessing and choosing
the replacement policy to be LRU provides us with an implementation of the pool-
cache. Figure 4 depicts the implementation of our heuristic.

5. Experiments

Configuration. We have implemented the algorithms in C++ using the g++
4.02 compiler (optimization level -O3) on the GNU/Linux distribution with a 2.6
kernel and the external memory library STXXL version 0.77. Our experimental
platform has two 2.0 GHz Opteron processors, 3 GB of RAM, 1 MB cache and 250
GB Seagate Baracuda hard-disks [32]. These hard-disks have 8 MB buffer cache.
The average seek time for read and write is 8.0 and 9.0 msec, respectively, while the
sustained data transfer rate for outer zone (maximum) is 65 MByte/s. This means
that for graphs with 228 nodes, n random read and write I/Os will take around
600 and 675 hours, respectively. In order to compare better with the results of [3],
we restrict the available memory to 1 GB for our experiments and use only one
processor and one disk.

First, we show the comparison between improved MM BFS R and MR BFS
with the corresponding implementations in [3]. Then we compare our implementa-
tion of MM BFS D (without our heuristic) with Christiani’s implementation based
on cache-oblivious routines. Finally, we look at the relative performance of im-
proved versions of MR BFS, MM BFS R and MM BFS D. We summarize this sec-
tion by highlighting the best algorithms for each graph class and its run-time. Note
that some of the results shown in this section have been interpolated using the
symmetry in the graph structure.

300302300

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

BREADTH FIRST SEARCH ON MASSIVE GRAPHS 11

Table 4. Timing in hours taken for BFS by the two MM BFS R implementations

Graph class n m MM BFS R of [3] Improved
Phase 1 Phase 2 Phase 1 Phase 2

Random 228 230 5.1 4.5 5.2 3.8
MM worst ∼ 4.3 · 107 ∼ 4.3 · 107 6.7 26 5.2 18
MR worst 228 230 5.1 45 4.3 40

Grid (214 × 214) 228 229 7.3 47 4.4 26
Simple Line 228 228 − 1 85 191 55 2.9

Random Line 228 228 − 1 81 203 64 25
Webgraph ∼ 1.4 · 108 ∼ 1.2 · 109 6.2 3.2 5.8 2.8

Graph classes. We consider the same graph classes as in [3] - Random, Grid,
MR worst graph, MM worst graph, line graphs with different layouts and the web-
graph. They cover a broad spectrum of different performances of external memory
BFS algorithms.
Random graph: On a n node graph, we randomly select m edges with replacement
(i.e., m times selecting a source and target node such that source ̸= target) and
remove duplicate edges to obtain random graphs.
MR worst graph: This graph consists of B levels, each having n

B nodes, except the
level 0 which contains only the source node. The edges are randomly distributed
between consecutive levels, such that these B levels approximate the BFS levels.
The initial layout of the nodes on the disk is random. This graph causes MR BFS
to incur its worst case of Ω(n) I/Os.
Grid graph (x × y): It consists of a x × y grid, with edges joining the neighouring
nodes in the grid.
MM BFS worst graph: This graph causes MM BFS R to incur its worst case of
Θ(n ·

√
log n

B + sort(n)) I/Os (m = O(n) for this graph).
Line graphs : A line graph consists of n nodes and n− 1 edges such that there exist
two nodes u and v, with the path from u to v consisting of all the n− 1 edges. We
took two different initial layouts:

• Simple, in which all blocks consists of B consecutively lined nodes
• Random, in which the arrangement of nodes on disk is given by a random

permutation.
Web graph: As an instance of a real world graph, we consider an actual crawl of
a part of the world wide web in 2001 [33], where an edge represents a hyperlink
between two sites. This graph has around 130 million nodes and 1.4 billion edges.
It has a core which consists of most of its nodes and behaves like random graph.

Comparing MM BFS R. Table 4 shows the improvement that we achieved
in MM BFS R. As Table 5 shows, these improvements are achieved by reducing
the computation time per level in the BFS phase. On I/O bound random graphs,
the improvement is just around 15%, while on computation bound line graphs with
random disk layout, we improve the running time of the BFS phase from around
200 hours to 25 hours. Our implementation of the randomized preprocessing in
the case of simple line graphs additionally benefits from the way clusters are laid
out on the disk as this layout reflects the order in which the nodes are visited by
the BFS. This reduces the total running time for the BFS phase of MM BFS R on

301303301

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

12 DEEPAK AJWANI, ULRICH MEYER, AND VITALY OSIPOV

Table 5. I/O wait time and the total time in hours for the BFS
phase of the two MM BFS R implementations on moderate to large
diameter graphs

Graph class n m MM BFS R of [3] Improved
I/O wait Total I/O wait Total

MM worst ∼ 4.3 · 107 ∼ 4.3 · 107 13 26 16 18
Grid (214 × 214) 228 229 46 47 24 26

Simple Line 228 228 − 1 0.5 191 0.05 2.9
Random Line 228 228 − 1 21 203 21 25

Table 6. Timing in hours taken for BFS by the two MR BFS implementations

Graph class n m MR BFS of [3] Improved
I/O wait Total I/O wait Total

Random 228 230 2.4 3.4 1.2 1.4
Webgraph ∼ 135 × 106 ∼ 1.18 × 109 3.7 4.0 2.5 2.6
MM worst ∼ 42.6 × 106 ∼ 42.6 × 106 25 25 13 13
Simple line 228 228 − 1 0.6 10.2 0.06 0.4

Table 7. Timing in hours for computing the deterministic pre-
processing of MM BFS by the two implementations of MM BFS D

Graph class n m Christiani’s Our
implementation implementation

Random graph 228 230 107 5.2
Random Line 228 228 − 1 47 3.2

Table 8. Timing in hours for the BFS phase of MM BFS by the
two implementations of MM BFS D (without heuristic)

Graph class n m Christiani’s Our
implementation implementation

Random graph 228 230 16 3.4
Random Line 228 228 − 1 0.5 2.8

simple line graphs from around 190 hours to 2.9 hours. The effects of caching are
also seen in the I/O bound BFS phase on the grid (214 × 214) graphs, where the
I/O wait time decreases from 46 hours to 24 hours.

Comparing MR BFS. Improvements in MR BFS are shown in the Table 6.
On random graphs where MR BFS performs better than the other algorithms, we
improve the runtime from 3.4 hours to 1.4 hours. Similarly for the web-crawl based
graph, the running time reduces from 4.0 hours to 2.6 hours. The other graph class
where MR BFS outperforms MM BFS R is the MM worst graph and here again,
we improve the performance from around 25 hours to 13 hours.

302304302

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

BREADTH FIRST SEARCH ON MASSIVE GRAPHS 13

Table 9. Timing in hours taken by our implementations of dif-
ferent external memory BFS algorithms.

Graph class MR BFS MM BFS R MM BFS D
Random graph 1.4 8.9 8.7
Random Line 4756 89 3.6

Table 10. I/O volume (in GB) required in the preprocessing
phase by the two variants of MM BFS

Graph class n m Randomized Deterministic
Random graph 228 230 500 630
Random Line 228 228 − 1 10500 480

Table 11. Preprocessing time (in hours) required by the two vari-
ants of MM BFS, with the heuristic

Graph class n m Randomized Deterministic
Random graph 228 230 5.2 5.2
Random Line 228 228 − 1 64 3.2

Penalty for cache-obliviousness. We compared the performance of our im-
plementation of MM BFS D (without the heuristic) with Christiani’s implementa-
tion [14] based on cache-oblivious subroutines. Table 7 and 8 show the results of
the comparison on the two extreme graph classes - random graphs and line graphs
with random layout on disk - for the preprocessing and the BFS phase respectively.
We observed that on both graph classes, the preprocessing time required by our
implementation is significantly less than the one by Christiani. While pipelining
helps the BFS phase of our implementation on random graphs, it becomes a liability
on line graphs as it brings extra computation cost per level.

We suspect that these performance losses are inherent in cache-oblivious al-
gorithms to a certain extent and will be carried over to the cache-oblivious BFS
implementation.

Comparing MM BFS D with other external memory BFS algorithm
implementations. Table 9 shows the performance of our implementations of dif-
ferent external memory BFS algorithms with the heuristic for maintaining the pool.
While MR BFS performs better than the other two on random graphs saving a few
hours, our implementation of MM BFS D with the heuristic outperforms MR BFS
and MM BFS R on line graphs with random layout on disk saving a few months and
a few days, respectively. Random line graphs are an example of a tough input for
external memory BFS as they not only have a large number of BFS levels, but also
their layout on the disk makes the random accesses to adjacency lists very costly.
Also, on moderate diameter grid graphs, MM BFS D, which takes 21 hours, out-
performs MM BFS R and MR BFS. It is interesting to note that Christiani [14]
reached a different conclusion regarding the relative performance of MM BFS D
and MM BFS R. As noted before, this is because of the cache-oblivious routines
used in his implementation.

303305303

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

14 DEEPAK AJWANI, ULRICH MEYER, AND VITALY OSIPOV

Table 12. Time taken (in hours) by the two phases of MM BFS D
with our heuristic

Graph class n m MM BFS D
Phase1 Phase2

Random 228 230 5.2 3.4
Webgraph ∼ 1.4 · 108 ∼ 1.2 · 109 3.3 2.4

Grid (221 × 27) 228 ∼ 229 3.6 0.4
Grid (227 × 2) 228 ∼ 228 + 227 3.2 0.6
Simple Line 228 228 − 1 2.6 0.4

Random Line 228 228 − 1 3.2 0.5

On large diameter sparse graphs such as line graphs, the randomized prepro-
cessing scans the graph Ω(

√
B) times, and thus incurring an expected number of

O(
√

n · (n + m) · log(n)/B) I/Os. On the other hand, the I/O complexity of the
deterministic preprocessing is O((1 + log log (B · n/m)) · sort(n + m)), dominated
by the spanning tree computation. Note that the Euler tour computation followed
by list ranking only requires O(sort(m)) I/Os. This asymptotic difference shows
in the I/O volume of the two preprocessing variants (Table 10), thereby explaining
the better performance of the deterministic preprocessing over the randomized one
(Table 11). On low diameter random graphs, the diameter of the clusters is small
and consequently, the randomized variant scans the graph fewer times leading to
less I/O volume. As compared to MM BFS R, MM BFS D provides dual advan-
tages: First, the preprocessing itself is faster and second, for most graph classes, the
partitioning is also more robust, thus leading to better worst-case runtimes in the
BFS phase. The later is because the clusters generated by the deterministic pre-
processing are of diameter at most max{1,

√
n·B
n+m}, while the ones by randomized

preprocessing can have a larger diameter (O(
√

n·B·log n
n+m)) causing adjacency lists

to be scanned more often. Also, MM BFS D benefits much more from our caching
heuristic than MM BFS R as the deterministic preprocessing gathers neighboring
clusters of the graph on contigous locations in the disk.

Results with heuristic. Table 12 shows the results of MM BFS D with our
heuristic on different graph classes. On moderate diameter grid graphs as well as
large diameter random line graphs, MM BFS D with our heuristic provides the
fastest implementation of BFS in the external memory.

Summary. Table 13 gives the current state of the art implementations of
external memory BFS on different graph classes.

Our improved MR BFS implementation outperforms the other external mem-
ory BFS implementations on low diameter graphs or when the nodes of a graph are
arranged on the disk in the order required for BFS traversal. For random graphs
with 256 million nodes and a billion edges, our improved MR BFS performs BFS
in just 1.4 hours. Similarly, improved MR BFS takes only 2.6 hours on webgraphs
(whose runtime is dominated by the short diameter core) and 0.4 hours on line
graph with contigous layout on disk. On moderate diameter square grid graphs,
the total time for BFS is brought down from 54.3 hours for MM BFS R implemen-
tation in [3] to 21 hours for our implementation of MM BFS D with heuristics, an

304306304

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

BREADTH FIRST SEARCH ON MASSIVE GRAPHS 15

Table 13. The best total running time (in hours) for BFS tra-
versal on different graphs with the best external memory BFS im-
plementations; Entries like > 25x denote that this algorithm takes
more than 25 times the time taken by the best algorithm for this
input instance

Graph class n m MR BFS MM BFS R MM BFS D
Random 228 230 1.4 7× 6×

Webgraph ∼ 1.4 · 108 ∼ 1.2 · 109 2.6 3.5× 2×
Grid (214 × 214) 228 229 2.5× 1.25× 21
Grid (221 × 27) 228 ∼ 229 >100× >10× 4.0
Grid (227 × 2) 228 ∼ 228 + 227 >500× >25× 3.8
Simple Line 228 228 − 1 0.4 7× 7×

Random Line 228 228 − 1 >1300× >75× 3.6
Max ∼ 1/2 year ∼ 1 week 1 day

improvement of more than 60%. For large diameter graphs like random line graphs,
MM BFS D along with our heuristic computes the BFS in just about 3.6 hours,
which would have taken the MM BFS R implementation in [3] around 12 days and
MR BFS and IM BFS a few months, an improvement by a factor of more than 75
and 1300, respectively.

6. Discussion

We implemented the deterministic variant of MM BFS and showed its com-
parative analysis with other external memory BFS algorithms. Together with the
improved implementations of MR BFS and MM BFS R and our heuristic for main-
taining the pool, it provides viable BFS traversal on different classes of massive
sparse graphs. In particular, we obtain an improvement factor between 75 and
1300 for line graphs with random disk layout over the previous external memory
implementations of BFS.

Acknowledgements

We are grateful to Rolf Fagerberg and Frederik Juul Christiani for providing
us their code. Also thanks are due to Dominik Schultes and Roman Dementiev for
their help in using the external MST implementation and STXXL, respectively. The
authors also acknowledge the usage of the computing resources of the University of
Karlsruhe.

References

[1] J. Abello, A. Buchsbaum, and J. Westbrook. A functional approach to external graph algo-
rithms. Algorithmica 32(3), pages 437–458, 2002.

[2] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems.
Communications of the ACM, 31(9), pages 1116–1127, 1988.

[3] D. Ajwani, R. Dementiev, and U. Meyer. A computational study of external-memory BFS
algorithms. SODA, pages 601–610, 2006.

[4] L. Arge, G. Brodal, and L. Toma. On external-memory MST, SSSP and multi-way planar
graph separation. SWAT, volume 1851 of LNCS, pages 433–447. Springer, 2000.

[5] L. Arge, L. Toma, and J. S. Vitter. I/O-efficient algorithms for problems on grid-based terrains.
ALENEX, 2000.

305307305

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

16 DEEPAK AJWANI, ULRICH MEYER, AND VITALY OSIPOV

[6] L. Arge et.al. http://www.cs.duke.edu/TPIE/.
[7] D. K. Blandford, G. E. Blelloch, and I. A. Kash. Compact representations of separable graphs.

SODA, pages 679–688, 2003.
[8] D. K. Blandford, G. E. Blelloch, and I. A. Kash. An experimental analysis of a compact graph

representation. ALENEX, 2004.
[9] G. Brodal, R. Fagerberg, U. Meyer, and N. Zeh. Cache-oblivious data structures and algo-

rithms for undirected breadth-first search and shortest paths. SWAT, volume 3111 of LNCS,
pages 480–492. Springer, 2004.

[10] G. Brodal, R. Fagerberg, and K. Vinther. Engineering a cache-oblivious sorting algorithm.
ALENEX, pages 4–17. SIAM, 2004.

[11] G. S. Brodal and R. Fagerberg. Cache oblivious distribution sweeping. ICALP, pages 426–438,
2002.

[12] A. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J. Westbrook. On external
memory graph traversal. SODA, pages 859–860. ACM-SIAM, 2000.

[13] Y. J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamasia, D. E. Vengroff, and J. S. Vitter.
External memory graph algorithms. SODA, pages 139–149. ACM-SIAM, 1995.

[14] Frederik Juul Christiani. Cache-oblivious graph algorithms, 2005. Master’s thesis, Depart-
ment of Mathematics and Computer Science, University of Southern Denmark.

[15] T. H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. McGraw-Hill,
1990.

[16] S. Baase. Introduction to parallel connectivity, list ranking, and euler tour techniques. In J.
H. Reif, editor, Synthesis of Parallel Algorithms, chapter 2, pages 61-114. Morgan Kaufmann,
1993.

[17] R. Dementiev, P. Sanders, D. Schultes, and J. Sibeyn. Engineering an external memory
minimum spanning tree algorithm. TCS, pages 195–208. Kluwer, 2004.

[18] R. Dementiev, L. Kettner, P. Sanders. STXXL: Standard Template Library for XXL Data
Sets. ESA, volume 3669 of LNCS, pages 640–651. Springer, 2005.

[19] S. Edelkamp, S.. Jabbar, and S. Schrödl. External A∗. KI, volume 3238 of LNAI, pages
226–240. Springer, 2004.

[20] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms.
FOCS, pages 285–297. IEEE Computer Society Press, 1999.

[21] A. Goldberg and R. Werneck. Computing point-to-point shortest paths from external memory.
ALENEX. SIAM, 2005.

[22] P.C. Guide. Disk Latency. http://www.pcguide.com/ref/hdd/perf/perf/spec/

posLatency-c.html.
[23] A. Maheshwari and N. Zeh. External memory algorithms for outerplanar graphs. ISAAC,

volume 1741 of LNCS, pages 307–316. Springer, 1999.
[24] A. Maheshwari and N. Zeh. I/O-efficient algorithms for graphs of bounded treewidth. SODA,

pages 89–90. ACM-SIAM, 2001.
[25] A. Maheshwari and N. Zeh. I/O-optimal algorithms for planar graphs using separators.

SODA, pages 372–381. ACM-SIAM, 2002.
[26] K. Mehlhorn and U. Meyer. External-memory breadth-first search with sublinear I/O. ESA,

volume 2461 of LNCS, pages 723–735. Springer, 2002.
[27] K. Mehlhorn and S. Naher. The LEDA Platform of Combinatorial and Geometric Computing.

Cambridge University Press, 1999.
[28] K. Munagala and A. Ranade. I/O-complexity of graph algorithms. SODA, pages 687–694.

ACM-SIAM, 1999.
[29] M. Najork and J. Wiener. Breadth-first search crawling yields high-quality pages. WWW,

pages 114–118, 2001.
[30] V. Shkapenyuk and T. Suel. Design and implementation of a high-performance distributed

web crawler. ICDE. IEEE, 2002.
[31] J. F. Sibeyn. From parallel to external list ranking, 1997. Technical report, Max Planck

Institut für Informatik, Saarbrücken, Germany.
[32] Seagate Technology. http://www.seagate.com/cda/products/discsales/marketing/

detail/0,1081,628,00.html.
[33] The stanford webbase project. http://www-diglib.stanford.edu/∼testbed/doc2/WebBase/.

306308306

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

BREADTH FIRST SEARCH ON MASSIVE GRAPHS 17

Deepak Ajwani, Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123
Saarbrücken, Germany

E-mail address: ajwani@mpi-inf.mpg.de

Ulrich Meyer, Johann Wolfgang Goethe-Universität Frankfurt, 304, Robert-Mayer-
Str. 11-15, 60325 Frankfurt/Main, Germany

E-mail address: umeyer@ae.cs.uni-frankfurt.de

Vitaly Osipov, Universität Karlsruhe (TH), Am Fasanengarten 5, 76131 Karlsruhe,
Germany

E-mail address: osipov@ira.uka.de

307309307

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Engineering Label-Constrained
Shortest-Path Algorithms

Chris Barrett, Keith Bisset, Martin Holzer,
Goran Konjevod, Madhav Marathe, and Dorothea Wagner

Dept. of Computer Science and Virginia Bioinformatics Institute, Virginia Tech
{cbarrett, kbisset, mmarathe}@vbi.vt.edu

Fakultät für Informatik, Universität Karlsruhe (TH)
{mholzer, wagner}@ira.uka.de

Dept. of Computer Science and Engineering, Arizona State University
goran@asu.edu

Abstract. We consider a generalization of the shortest-path problem:
given an alphabet Σ, a graph G whose edges are weighted and Σ-labeled,
and a regular language L ⊆ Σ∗, the L-constrained shortest-path problem
consists of finding a shortest path p in G such that the concatenated
labels along p form a word of L. This definition allows to model, e. g.,
many traffic-planning problems. We present extensions of well-known
speed-up techniques for the standard shortest-path problem, and con-
duct an extensive experimental study of their performance with various
networks and language constraints. Our results show that depending on
the network type, both goal-directed and bidirectional search speed up
the search considerably, while combinations of these do not.

1 Introduction

Consider a multimodal road network, with roads differentiated by categories
(highways, local streets etc.) and find in that network a shortest path from a
given start to a destination point that uses highway at most once (thus avoiding
on- and off-ramps). Another example is the k-similar-path problem, where we
want to compute two shortest paths between the same pair of vertices such that
the second path reuses at most k edges of the first (this can be useful to avoid
traffic jams in vehicle routing).

To formalize such problems, we augment the network edges with appropriate la-
bels and model the given restriction as a formal language. The labels of the edges
on a shortest path concatenated must then form an element of the language. A de-
tailed theoretical study of this (formal-) language-constrained shortest-path prob-
lem (LCSP) was undertaken in [4], where also a generalization of Dijkstra’s
algorithm to solve this problem is given, and in [3] an implementation of this al-
gorithm was tested for the special case of linear regular languages (LinLCSP).

Building on this earlier work, we now consider the LCSP with arbitrary reg-
ular expressions (RegLCSP): we propose a concrete implementation of an al-
gorithm solving this extended problem, and present adaptations of speed-up

R. Fleischer and J. Xu (Eds.): AAIM 2008, LNCS 5034, pp. 27–37, 2008.
c⃝ Springer-Verlag Berlin Heidelberg 2008

309309

https://doi.org/10.1090/dimacs/074/12

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

28 C. Barrett et al.

techniques designed for the standard, or unimodal, shortest-path problem to our
setting. In a systematic experimental study on realistic transportation networks
we investigate the applicability of goal-directed search, Sedgewick-Vitter heuris-
tic, and bidirectional search as well as combinations of these. We also explore
the scalability of our implementation by applying them to instances of increas-
ing size as well as involving languages of varying complexity (both linear and
general regular expressions).

Our experiments show that goal-directed search and the Sedgewick-Vitter
heuristic yield substantial speed-up for RegLCSP on all European and some
US road networks, while bidirectional search performs well especially on railway
networks. Unlike in the unimodal case, combinations of bidirectional search with
one of the other techniques do not perform any better than each variant applied
separately. Experiments with k-similar paths confirm growing speed-up factors
with increasing NFA sizes.

1.1 Related Work

Research on generalizations of the standard shortest-path problem has tradition-
ally focused on the extension of Dijkstra’s algorithm [5] to time-dependent cost
functions (cf. [8]), while comparatively little work has been done on constraints
restricting the set of feasible paths. There are reports on studies of multimodal,
or intermodal, shortest paths in transportation science literature, however, gen-
erally of limited applicability. Regular languages as a model for constrained-
shortest-path problems were first suggested in [9], and applications to database
queries described in [13,7]. Our initial motivation for studying LCSP problems
comes from the TRANSIMS project [1,2]. A theoretical study on algorithmic
and complexity-related issues can be found in [4].

In [3], an algorithm for the RegLCSP problem with time-dependent edge
weights obeying the FIFO property is described, where an implicit representation
(cf. Section 3.1) is used; experimental results are presented only for LinLCSP.
Also for time-dependent RegLCSP, [11] gives an implicit algorithm, running in
linear time for FIFO weight functions. This algorithm is extended in [12] to allow
for turn penalties; some experimental results are reported in both these papers.
The present work deals with RegLCSP, where the focus is on an extensive exper-
imental evaluation of speed-up techniques with diverse classes of larger networks.

2 Foundation

In this section we formally define the regular-language-constrained shortest-path
problem, and describe two out of many algorithmic problems, multimodal plans
and k-similar paths, that can be tackled using our problem formulation.

2.1 Problem Statement

The regular-language-constrained shortest-path problem (RegLCSP) is
defined as follows. Given a finite alphabet Σ, a graph—also referred to by

310

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Engineering Label-Constrained Shortest-Path Algorithms 29

network—G = (V, E, c, ℓ) with cost function c : E → R+ and label function
ℓ : E → Σ, and a regular language L ⊆ Σ∗. For a query (s, d) ∈ V × V find
a shortest s-d-path p = (e1, e2, . . . , ek) in G such that ℓ(p) ∈ L, where ℓ(p) is
the concatenation ℓ(e1) · ℓ(e2) · · · ℓ(ek) of the labels of p’s edges. The cost—or
length—of p is the sum of costs of p’s edges. By Kleene’s theorem, a regular lan-
guage can be represented through a nondeterministic finite automaton (NFA),
allowing for a concise description.

2.2 Applications

We describe two applications of the RegLCSP problem, which are also re-
spected in our experiments (other examples include turn complexity, counting
constraints, and trip chaining; cf. [3] for an overview).

Multimodal Plans. Consider a traveler who wants to take a bus from a start
s to a destination point d and suppose transfers are undesirable, while walks
from s to a bus stop and from a bus stop to d be allowed. To solve such a task,
add to the given road network a vertex for every bus stop and an edge between
each consecutive pair of stops. Label the edges according to the modes of travel
allowed (e. g., c for car travel; w for walking on sidewalks and pedestrian bridges;
b for bus transit). Now the traveler’s restriction can be modeled as w∗b∗w∗, if
we make sure that the network contains a zero-length w-edge for each change of
bus.

k-Similar Paths. We want to consecutively route two (or more) vehicles from s
to d such that the second uses at most k of the edges passed by the first one.
This can be useful, e. g., to plan for a travel group different transfers between
two fixed points. Note that the second path thus found may, depending on the
network and the choice of k, be of greater length. To do this, find a shortest s-d-
path p in the given network, label p’s edges by t (for taken), the remaining ones
by f (for free), and solve the s-d-query again for the expression f∗(t ∪ f∗)kf∗.

3 Algorithms

We now show how RegLCSP can be solved through a product network con-
structed from given network and NFA, and present some adaptations of unimodal
speed-up techniques to our multimodal algorithm.

3.1 Product Network

Consider the direct product of a weighted, Σ-labeled network G = (V, E,
c, ℓG) and an NFA A = (Q, Σ, δ, q0, F) with set Q of vertices/states, alpha-
bet Σ, transition function δ, start vertex q0, and set F of final vertices; let T be
the set of state transitions t = (q1, q2) with δ(q1) = q2 and labels ℓA(t) ∈ Σ. The
product network P = G×A is defined to have vertex set {(v, q) | v ∈ V, q ∈ Q}

311

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

30 C. Barrett et al.

and edge set {(e, t) | e ∈ E, t ∈ T, ℓG(e) = ℓA(t)}. The cost of an edge (e, t) ∈ P
corresponds to c(e).

Theorem 1. Finding an L-constrained shortest path for some L ⊆ Σ∗ and
(s, d) ∈ V × V is equivalent to finding a shortest path in the product network
P = G × A from vertex (s, q0) to (d, f) for some f ∈ F .

For the proof, one need only observe that there is a one-to-one correspondence
between paths in P starting at (s, q0) and ending at some vertex (d, f) and s-d-
paths in G whose labeling belongs to L (for details please refer to [4]). Theorem 1
immediately yields the RegLCSP Algorithm, which performs an s-d-shortest-
path search in P .

Implementation. Obviously, a direct implementation of this algorithm would re-
quire Θ(|G|·|A|) space. We therefore propose a more practical way without having
to compute an explicit representation of P : the algorithm considers pairs (v, q) ∈
P but to iterate over (v, q)’s outgoing edges, simultaneously accesses the adjacency
lists of v and q. To do this efficiently, we store the outgoing edges of both G and A
bundled by their labels and keep pointers to the first edge of each bundle. Now we
need only iterate over all labels l ∈ Σ and consider each combination of vertices v′

reachable from v via an edge labeled l and q′ reachable from q via an edge labeled
l. This implicit representation reduces storage space to Θ(|G| + |A|), while time
complexity does not increase by more than a constant factor.

3.2 Speed-Up Techniques

In order to improve the above-described RegLCSP Algorithm, we adopt several
approaches designed to speed up unimodal Dijkstra’s algorithm: the key idea is
to apply the genuine technique to the product network.

Goal-Directed Search (go). For given source and destination vertices s and d,
goal-directed search, or A∗ search, modifies the edge costs so that during the
search, edges pointing roughly towards d are preferred to those pointing away
from it. The effect is that potentially fewer vertices (and edges) have to be
touched before d is found. With networks featuring distance metric, this mod-
ification, c̄, can typically be achieved through Euclidean distances dist(v, w)
between vertices v and w:

c̄(v, w) = c(v, w) − dist(v, d) + dist(w, d)

(in this case, c accounts for curves, bridges, etc., so that dist provides a lower
bound). When using travel, or time, metric, letting dist′(·, d) = dist(·, d)/vmax

with vmax = max{v,w}∈E dist(v, w)
/

c(v, w) yields a feasible lower bound.

Sedgewick-Vitter Heuristic (sv). If we do not insist on exact shortest paths, a
canonical extension of go is to bias the search to d even further: the Sedgewick-
Vitter heuristic [10] uses as modified cost function c̄(v, w)= c(v, w)−α·dist(v, d)+
α · dist(w, d) for some α ≥ 1, influencing the trade-off between gain in running
time and path length increase. For previous work exploring this technique, cf. [6].

312

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Engineering Label-Constrained Shortest-Path Algorithms 31

Bidirectional Search (bi). To reduce the search space, we run two simultaneous
searches, forward and backward, starting from s and d, respectively; the expected
improvement is a halving of the number of touched vertices1. A shortest s-d-path
has been found when a vertex u is about to be scanned that has already been
settled (i. e., its distance from the search’s origin has become permanent) by the
search in the other direction (note that the shortest path such found need not
pass by u).

Combinations (bi+). We provide two variants for the combination of bi with
either go or sv: (1) the cost function used for the backward search corresponds
to that for the forward search; or (2) the cost function for both searches is the
average of modified cost functions with respect to s and d, respectively:

c̄(v, w) = c(v, w) + 1/2 · (−dist(v, d) + dist(w, d) − dist(w, s) + dist(v, s)) .

4 Experimental Study

The empiric part of this work systematically investigates our implementation of
the RegLCSP Algorithm and the speed-up techniques described in the previous
section. It can be seen as both a continuation and extension of [3] in that the re-
striction to linear expressions is waived and besides goal-directed search and the
Sedgewick-Vitter heuristic, bidirectional search and combinations of techniques
are employed. Our main focus is on the suitability of each technique for sev-
eral networks and NFAs and the speed-ups attainable. Moreover, two different
problems that can be tackled by RegLCSP (cf. Section 2.2) are considered.

4.1 Setup

Our experiments are conducted using realistic networks, representing various
US and European road as well as European railway networks2 (cf. Table 1).
The road networks are weighted with actual distances (not necessarily Euclidean
lengths) and labeled with values reflecting road category (from 1 to 4 for US and
from 1 to 15 for EU networks, ranking from fast highways to local/rural streets).
The railway network represents trains and other means of public transportation,
where vertices mark railway stations/bus stops and edges denote non-stop con-
nections between two embarking points, weighted with average travel times and
labeled from 0 to 9 for rapid Intercity Express trains to slower local buses. One
important difference between the US and the European road data collections is
that the former come undirected, while the latter are directed.

We apply several specific language constraints of varying complexity, listed in
Table 2: for the US networks, we distinguish between enforced use of highway
1 The forward search will explore roughly r2 vertices to find an r-edge shortest path,

while the searches are likely to meet when each has explored roughly (r/2)2 vertices.
2 The US networks are taken from the TIGER/LINE collection, available at
http://www.dis.uniroma1.it/~challenge9/data/tiger/. The European road and
railway data were provided courtesy of PTV AG, Karlsruhe, and HaCon, Hannover.

313

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

32 C. Barrett et al.

Table 1. Network sizes. Left: US road networks; right: European road and railway
networks. For each network, a short key, its type (road/rail), and the numbers n and
m of vertices and edges, respectively, are indicated.

key network type n m
AZ Arizona road 545111 665827
DC Distr/Col road 9559 14909
GA Georgia road 738879 869890

key network type n m
LUX Luxembourg road 30087 70240
CHE Switzerland road 586025 1344496
DEU Germany rail 6900 24223

Table 2. Left: language constraints used with different networks (from top to bottom:
US road, European road and railway). For each NFA, a short key, regular expression
recognized by the NFA, informal description, and the numbers n and m of vertices and
edges, respectively, are indicated. Right: complex NFA representing for a decomposition
of the alphabet Σ = Σ1 ∪ Σ2 the unrestricted expression, Σ∗.

(interstate or national), regional transfer (all categories but interstates), and use
of local/rural streets only; for the European networks, we employ two different
NFAs imposing no restriction at all (besides the ‘canonical’, S, also an ‘artificially
made-complex’ one, C) as well as such restricting to local streets and avoiding
high-speed trains (the latter usually being a little more expensive), respectively.

To measure the performance of each speed-up technique T , we compute the
ratio tvpl/tvT of touched vertices (product vertices added to the priority queue),
where tvpl and tvT stand for the number of touched vertices with plain Dijkstra
(i. e., pure RegLCSP Algorithm) and with T , respectively. This definition of
speed-up both is machine independent and proved to reflect actual running times
quite precisely. Our code was compiled with the GCC (version 3.4) and executed
on several 2- or 4-core AMD Opteron machines with between 8 and 32 GB of
main memory. Unless otherwise noted, each series consists of 1000 queries.

4.2 Multimodal Routing

The term multimodal here is used in an extended sense since depending on the
network type, it may refer either to multiple road categories or train classes. For
comparability reasons, we explore the exact algorithms and the Sedgewick-Vitter
heuristic separately.

314

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Engineering Label-Constrained Shortest-Path Algorithms 33

Exact Algorithms. Assessment of our results is done in two steps, where we
first provide a synopsis of the overall outcome and then detail on a few networks
under the aspect of path lengths.

Synopsis. Figure 1 shows for each combination of network, NFA, and algorithm
the average speed-up in terms of touched vertices in the product graph; the
algorithms are distinguished along the x-axis (using the abbreviations introduced
in Section 3.2, where pl stands for plain Dijkstra) and the NFAs are marked by
their short keys (cf. Table 2). As a general result, it can be stated that both
variants of the bidirectional/goal-directed combination (lumped together under
bi+) always seem to be dominated by bi: there are just tiny differences in the
number of vertices touched by bi and either one of the bigo variants (or even
bisv). This is astounding insofar as in the unimodal case such combinations
usually outperform both go and bi. Moreover, NFA size (mostly the number of
vertices) has a direct impact on the number of touched vertices: the NFAs H
and C incur considerably higher numbers of touched vertices than the others do.

One striking difference between the various US networks is that for the AZ and
GA graphs, go search does not yield any improvement over pl at all, however, a
speed-up factor of up to 2 (i. e., a reduction of 50 % of touched vertices) can be
achieved for DC. Similar improvement of a factor of 2 is reached with European
road networks, while go accelerates the DEU railway graph only marginally. On
the other hand, bi gives good speed-up of around 2 for the railway network;
little improvement in general for the US networks; and no speed-up, or even a
slow-down (especially with NFA L), for the European road networks.

Overall, the performance of each algorithm is strongly dependent on the net-
work properties, such as density or the metric used. It is also noteworthy that
some NFAs are so much restrictive that a larger number of queries cannot be
answered: e. g., with L, no feasible path is found for 34 and 53 % of the queries
in the LUX and CHE networks, respectively.

Dijkstra Rank. To get a finer picture, we now consider, exemplarily for the LUX
network, the speed-up values categorized by the lengths of the belonging shortest
paths found, also called Dijkstra rank. Figure 2 shows in the form of standard
box plots the average speed-up with the algorithms go and bi and NFA C. The
best factors are obtained when the Dijkstra rank lies somewhere in the middle
of the complete range: a certain minimal distance between start and destination
seems to be required for the speed-up technique to kick in; with higher ranks
(both vertices are located near opposite borders of the network), however, the
pl search is naturally bounded already, so that the speed-up factors decrease
again.

Sedgewick-Vitter. Performance of the sv heuristic can be measured in terms
of both reduction in the number of touched vertices and path length increase:
the bigger the choice of α, i. e., the greater the distortion towards the target,
the smaller gets the search space; however, with increasing α, accuracy of the
found paths drops. For the LUX network, we observed that an α of 1.2 reduces
the number of touched vertices by well over 20 % on average while the path

315

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

34 C. Barrett et al.

Fig. 1. Average speed-up in terms of touched vertices with each of the algorithms
plain (pl), goal-directed (go), bidirectional (bi), and bidirectional/goal-directed com-
binations (bi+), applied to different networks (from top to bottom and left to right:
AZ, DC; GA, LUX; CHE, DEU); the NFAs used are indicated by the characters on
the lines (cf. Table 2).

316

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Engineering Label-Constrained Shortest-Path Algorithms 35

210 211 212 213 214 215 216 217 ∞

2

4

6

8

210 211 212 213 214 215 216 217 ∞

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 2. Speed-up with go (left) and bi (right) applied to the LUX network and C NFA,
categorized by Dijkstra rank. The x-axis denotes the (approximate) length of a path
(∞ comprises infeasible queries); in each plot, the curve joins the mean values.

0.0 0.2 0.4 0.6 0.8 1.0

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

1.
30

1.
35

0.2 0.4 0.6 0.8 1.0

1.
00

0
1.

00
5

1.
01

0
1.

01
5

1.
02

0
1.

02
5

1.
03

0

Fig. 3. Reduction in the number of touched vertices and path length increase with sv,
applied to the LUX (left) and DEU (right) networks and the NFA S with α-parameters
of 2 and 50, respectively. The x-axis denotes the share of touched vertices with sv in
the number of vertices touched by go, while the y-axis denotes the path length increase.
The horizontal and vertical lines mark the respective mean values.

lengths remain exact for all but a few queries. When raising α to 2, we save just
over 80 % of touched vertices on average, but path lengths increase by around 4 %
(cf. Figure 3). The picture for the DEU network looks similar, although much
higher factors of α are needed to cause some effect: a reasonable choice seems to
be 50 (the number of touched vertices diminishes to roughly a third with path
quality almost unaffected).

4.3 k-Similar Paths

Besides exploring yet another practical application, the k-similar-path problem,
as defined in Section 2.2, allows to construct NFAs of virtually arbitrary sizes
in a natural way: the NFA restricting the second path found to k ≥ 0 edges
shared with the first one consists of k + 1 vertices and 2k + 1 edges. Figure 4
shows for the DC network and increasing values of k both the number of vertices
touched and speed-ups achieved with each algorithm. As can be predicted from
theory, the curves joining the numbers of touched vertices exhibit to be almost

317

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

36 C. Barrett et al.

P
P

P

P

P

P

P

0 10 20 30 40 50

0
50

00
0

10
00

00
15

00
00

20
00

00

G G
G

G

G

G

G

B B

B

B

B

B

B

B B

B

B

B

B

B

G
G

G

G

G

G

G

0 10 20 30 40 50

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

2.
1

B B B B B
B

B

B B B B B
B

B

Fig. 4. k-similar-path computation: number of touched vertices (left) and speed-up
(right) with the DC network and the algorithms pl, go, and bi for different choices of
k (denoted along the x-axis)

linear (in fact, they appear slightly sublinear). With increasing NFA sizes (and
hence bigger product networks), speed-ups also rise: with bi search, only a small
growth is noticeable while with the go variant, the increase ranges between 1.75
(with k = 1) and 2 (with k = 50).

5 Conclusion

We have shown how to solve the regular-language-constrained shortest-path
problem using product networks composed of a graph and an NFA, and proposed
techniques to speed up point-to-point queries. In a practical implementation, all
variants were empirically tested with a variety of real-world networks and con-
straints. Goal-directed and bidirectional search are found to give good speed-ups
also for the multimodal setting. However, their performance greatly depends on
the network properties. The Sedgewick-Vitter heuristic can, especially for rail-
way graphs, take high α-parameters, while the paths found remain near-optimal.
Surprisingly, combinations with bidirectional search do not perform better than
the individual techniques. Investigating the application of k-shortest-path prob-
lems, it could be shown that the speed-up attainable increases with the size of
the NFA.

In our opinion, the most interesting questions for future research include:
adaptation and implementation of further speed-up techniques and heuristics;
comparison between implicit and explicit product network representations; and
integration of time-dependent cost functions.

Acknowledgments

The author Martin Holzer wants to give special thanks to Valentin Mihaylov
for his assistance with parts of the implementation and execution of the exper-
iments.

318

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Engineering Label-Constrained Shortest-Path Algorithms 37

References

1. Barrett, C., Birkbigler, K., Smith, L., Loose, V., Beckman, R., Davis, J., Roberts,
D., Williams, M.: An operational description of TRANSIMS. Technical report, Los
Alamos National Laboratory (1995)

2. Barrett, C.L., Bisset, K., Holzer, M., Konjevod, G., Marathe, M.V., Wagner,
D.: Engineering the label-constrained shortest-path algorithm. Technical report,
NDSSL, Virginia Tech. (2007)

3. Barrett, C.L., Bisset, K., Jacob, R., Konjevod, G., Marathe, M.V.: Classical and
contemporary shortest path problems in road networks: Implementation and ex-
perimental analysis of the TRANSIMS router. In: Möhring, R.H., Raman, R. (eds.)
ESA 2002. LNCS, vol. 2461, pp. 126–138. Springer, Heidelberg (2002)

4. Barrett, C.L., Jacob, R., Marathe, M.V.: Formal-language-constrained path prob-
lems. SIAM J. Comput. 30(3), 809–837 (2000)

5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

6. Jacob, R., Marathe, M.V., Nagel, K.: A computational study of routing algo-
rithms for realistic transportation networks. ACM Journal of Experimental Al-
gorithms 4(6) (1999)

7. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases.
SIAM J. Comput. 24(6), 1235–1258 (1995)

8. Orda, A., Rom, R.: Shortest-path and minimum-delay algorithms in networks with
time-dependent edge-length. J. ACM 37(3), 607–625 (1990)

9. Romeuf, J.-F.: Shortest path under rational constraint. Information Processing
Letters 28, 245–248 (1988)

10. Sedgewick, R., Vitter, J.S.: Shortest paths in euclidean graphs. Algorithmica 1(1),
31–48 (1986)

11. Sherali, H.D., Jeenanunta, C., Hobeika, A.G.: Time-dependent, label-constrained
shortest path problems with applications. Transportation Science 37(3), 278–293
(2003)

12. Sherali, H.D., Jeenanunta, C., Hobeika, A.G.: The approach-dependent, time-
dependent, label-constrained shortest path problems. Networks 48(2), 57–67 (2006)

13. Yannakakis, M.: Graph-theoretic methods in database theory. In: PODS, pp. 230–
242 (1990)

319

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

Titles in This Series

74 Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson, Editors, The
Shortest Path Problem: Ninth DIMACS Implementation Challenge

73 Paul H. Siegel, Emina Soljanin, Adriaan J. van Wijngaarden, and Bane Vasić,
Editors, Advances in Information Recording

72 Regina Y. Liu, Robert Serfling, and Diane Souvaine, Editors, Data Depth: Robust
Multivariate Analysis, Computational Geometry and Applications

71 Zhilan Feng, Ulf Dieckmann, and Simon Levin, Editors, Disease Evolution: Models,
Concepts, and Data Analyses

70 James Abello and Graham Cormode, Editors, Discrete Methods in Epidemiology

69 Siemion Fajtlowicz, Patrick W. Fowler, Pierre Hansen, Melvin F. Janowitz,
and Fred S. Roberts, Editors, Graphs and Discovery

68 A. Ashikhmin and A. Barg, Editors, Algebraic Coding Theory and Information Theory

67 Ravi Janardan, Michiel Smid, and Debasish Dutta, Editors, Geometric and
Algorithmic Aspects of Computer-Aided Design and Manufacturing

66 Piyush Gupta, Gerhard Kramer, and Adriaan J. van Wijngaarden, Editors,
Advances in Network Information Theory

65 Santosh S. Vempala, The Random Projection Method

64 Melvyn B. Nathanson, Editor, Unusual Applications of Number Theory

63 J. Nešetřil and P. Winkler, Editors, Graphs, Morphisms and Statistical Physics

62 Gerard J. Foschini and Sergio Verdú, Editors, Multiantenna Channels: Capacity,
Coding and Signal Processing

61 M. F. Janowitz, F.-J. Lapointe, F. R. McMorris, B. Mirkin, and F. S. Roberts,
Editors, Bioconsensus

60 Saugata Basu and Laureano Gonzalez-Vega, Editors, Algorithmic and Quantitative
Real Algebraic Geometry

59 Michael H. Goldwasser, David S. Johnson, and Catherine C. McGeoch, Editors,
Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS
Implementation Challenges

58 Simon Thomas, Editor, Set Theory: The Hajnal Conference

57 Eugene C. Freuder and Richard J. Wallace, Editors, Constraint Programming and
Large Scale Discrete Optimization

56 Alexander Barg and Simon Litsyn, Editors, Codes and Association Schemes

55 Ding-Zhu Du, Panos M. Pardalos, and Jie Wang, Editors, Discrete Mathematical
Problems with Medical Applications

54 Erik Winfree and David K. Gifford, Editors, DNA Based Computers V

53 Nathaniel Dean, D. Frank Hsu, and R. Ravi, Editors, Robust Communication
Networks: Interconnection and Survivability

52 Sanguthevar Rajasekaran, Panos Pardalos, and D. Frank Hsu, Editors, Mobile
Networks and Computing

51 Pierre Hansen, Patrick Fowler, and Maolin Zheng, Editors, Discrete Mathematical
Chemistry

50 James M. Abello and Jeffrey Scott Vitter, Editors, External Memory Algorithms

49 Ronald L. Graham, Jan Kratochv́ıl, Jaroslav Nešetřil, and Fred S. Roberts,
Editors, Contemporary Trends in Discrete Mathematics

48 Harvey Rubin and David Harlan Wood, Editors, DNA Based Computers III

47 Martin Farach-Colton, Fred S. Roberts, Martin Vingron, and Michael
Waterman, Editors, Mathematical Support for Molecular Biology

46 Peng-Jun Wan, Ding-Zhu Du, and Panos M. Pardalos, Editors, Multichannel
Optical Networks: Theory and Practice

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

TITLES IN THIS SERIES

45 Marios Mavronicolas, Michael Merritt, and Nir Shavit, Editors, Networks in
Distributed Computing

44 Laura F. Landweber and Eric B. Baum, Editors, DNA Based Computers II

43 Panos Pardalos, Sanguthevar Rajasekaran, and José Rolim, Editors,
Randomization Methods in Algorithm Design

42 Ding-Zhu Du and Frank K. Hwang, Editors, Advances in Switching Networks

41 David Aldous and James Propp, Editors, Microsurveys in Discrete Probability

40 Panos M. Pardalos and Dingzhu Du, Editors, Network Design: Connectivity and
Facilities Location

39 Paul W. Beame and Samuel R Buss, Editors, Proof Complexity and Feasible
Arithmetics

38 Rebecca N. Wright and Peter G. Neumann, Editors, Network Threats

37 Boris Mirkin, F. R. McMorris, Fred S. Roberts, and Andrey Rzhetsky, Editors,
Mathematical Hierarchies and Biology

36 Joseph G. Rosenstein, Deborah S. Franzblau, and Fred S. Roberts, Editors,
Discrete Mathematics in the Schools

35 Dingzhu Du, Jun Gu, and Panos M. Pardalos, Editors, Satisfiability Problem:
Theory and Applications

34 Nathaniel Dean, Editor, African Americans in Mathematics

33 Ravi B. Boppana and James F. Lynch, Editors, Logic and Random Structures

32 Jean-Charles Grégoire, Gerard J. Holzmann, and Doron A. Peled, Editors, The
Spin Verification System

31 Neil Immerman and Phokion G. Kolaitis, Editors, Descriptive Complexity and
Finite Models

30 Sandeep N. Bhatt, Editor, Parallel Algorithms: Third DIMACS Implementation
Challenge

29 Doron A. Peled, Vaughan R. Pratt, and Gerard J. Holzmann, Editors, Partial
Order Methods in Verification

28 Larry Finkelstein and William M. Kantor, Editors, Groups and Computation II

27 Richard J. Lipton and Eric B. Baum, Editors, DNA Based Computers

26 David S. Johnson and Michael A. Trick, Editors, Cliques, Coloring, and
Satisfiability: Second DIMACS Implementation Challenge

25 Gilbert Baumslag, David Epstein, Robert Gilman, Hamish Short, and Charles
Sims, Editors, Geometric and Computational Perspectives on Infinite Groups

24 Louis J. Billera, Curtis Greene, Rodica Simion, and Richard P. Stanley, Editors,
Formal Power Series and Algebraic Combinatorics/Séries Formelles et Combinatoire
Algébrique, 1994

23 Panos M. Pardalos, David I. Shalloway, and Guoliang Xue, Editors, Global
Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding

22 Panos M. Pardalos, Mauricio G. C. Resende, and K. G. Ramakrishnan, Editors,
Parallel Processing of Discrete Optimization Problems

21 D. Frank Hsu, Arnold L. Rosenberg, and Dominique Sotteau, Editors,
Interconnection Networks and Mapping and Scheduling Parallel Computations

20 William Cook, László Lovász, and Paul Seymour, Editors, Combinatorial
Optimization

19 Ingemar J. Cox, Pierre Hansen, and Bela Julesz, Editors, Partitioning Data Sets

For a complete list of titles in this series, visit the
AMS Bookstore at www.ams.org/bookstore/.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

DIMACS/74 www.ams.org
AMS on the Web

Shortest path problems are among the most fundamental combina-
torial optimization problems with many applications, both direct
and as subroutines. They arise naturally in a remarkable number of
real-world settings. A limited list includes transportation planning,
network optimization, packet routing, image segmentation, speech
recognition, document formatting, robotics, compilers, traffic infor-
mation systems, and dataflow analysis. Shortest path algorithms
have been studied since the 1950’s and still remain an active area
of research.

This volume reports on the research carried out by participants
during the Ninth DIMACS Implementation Challenge, which led
to several improvements of the state of the art in shortest path algo-
rithms. The infrastructure developed during the Challenge facilitated
further research in the area, leading to substantial follow-up work
as well as to better and more uniform experimental standards. The
results of the Challenge included new cutting-edge techniques for
emerging applications such as GPS navigation systems, providing
experimental evidence of the most effective algorithms in several
real-world settings.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

	Cover
	Title page
	Contents
	Foreword
	Introduction
	Bibliography
	Real-world applications of shortest path algorithms
	An experimental evaluation of point-to-point shortest path calculation on road networks with precalculated edge-flags
	Fast point-to-point shortest path computations with arc-flags
	High-performance multi-level routing
	Reach for A*: shortest path algorithms with preprocessing
	Highway hierarchies star
	Ultrafast shortest-path queries via transit nodes
	Robust, almost constant time shortest-path queries in road networks
	Single-source shortest paths with the parallel boost graph library
	Parallel shortest path algorithms for solving large-scale instances
	Breadth first search on massive graphs
	Engineering label-constrained shortest-path algorithms
	Back Cover

