
adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 1
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

Computational Grand Challenges
in Assembling the Tree of Life:
Problems and Solutions

DAVID A. BADER

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332
USA

USMAN ROSHAN

Computer Science Department
New Jersey Institute of Technology
Newark, NJ 07102
USA

ALEXANDROS STAMATAKIS

Institute of Computer Science
Foundation for Research and Technology-Hellas
Heraklion, Crete
GR-711 10 Greece

Abstract
The computation of ever larger as well as more accurate phylogenetic (evolu-
tionary) trees with the ultimate goal to compute the tree of life represents one
of the grand challenges in High Performance Computing (HPC) Bioinformat-
ics. Unfortunately, the size of trees which can be computed in reasonable time
based on elaborate evolutionary models is limited by the severe computational
cost inherent to these methods. There exist two orthogonal research directions
to overcome this challenging computational burden: First, the development of
novel, faster, and more accurate heuristic algorithms and second, the applica-
tion of high performance computing techniques. The goal of this chapter is to
provide a comprehensive introduction to the field of computational evolutionary

ADVANCES IN COMPUTERS, VOL. 68 127 Copyright © 2006 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(06)68004-2 All rights reserved.

http://dx.doi.org/10.1016/S0065-2458(06)68004-2

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 2
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

128 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

biology to an audience with computing background, interested in participating
in research and/or commercial applications of this field. Moreover, we will cover
leading-edge technical and algorithmic developments in the field and discuss
open problems and potential solutions.

1. Phylogenetic Tree Reconstruction . 128
1.1. Biological Significance and Background . 128
1.2. Strategy . 131
1.3. Parallel Framework . 134
1.4. Impact of Parallelization . 136

2. Boosting Phylogenetic Reconstruction Methods Using Recursive-Iterative-DCM3 . 137
2.1. DCM3 Decomposition . 138
2.2. Recursive-Iterative-DCM3 (Rec-I-DCM3) . 140
2.3. Performance of Rec-I-DCM3 for Solving ML 142

3. New Technical Challenges for ML-Based Phylogeny Reconstruction 149
3.1. Introduction to Maximum Likelihood . 150
3.2. State-of-the-Art Programs . 156
3.3. Technical Details: Memory Organization and Data Structures 159
3.4. Parallelization Techniques . 165
3.5. Conclusion . 170
Acknowledgements . 171
References . 171

1. Phylogenetic Tree Reconstruction

In this section, we provide an example of B&B applied to reconstructing an evo-
lutionary history (phylogenetic tree). Specifically, we focus on the shared-memory
parallelization of the maximum parsimony (MP) problem using B&B based on work
by Bader and Yan [1–4].

1.1 Biological Significance and Background

All biological disciplines agree that species share a common history. The ge-
nealogical history of life is called phylogeny or an evolutionary tree. Reconstructing
phylogenies is a fundamental problem in biological, medical, and pharmaceutical
research and one of the key tools in understanding evolution. Problems related to
phylogeny reconstruction are widely studied. Most have been proven or are believed
to be NP-hard problems that can take years to solve on realistic datasets [5,6]. Many
biologists throughout the world compute phylogenies involving weeks or years of

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 3
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 129

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

computation without necessarily finding global optima. Certainly more such com-
putational analyses will be needed for larger datasets. The enormous computational
demands in terms of time and storage for solving phylogenetic problems can only be
met through high-performance computing (in this example, large-scale B&B tech-
niques).

A phylogeny (phylogenetic tree) is usually a rooted or unrooted bifurcating tree
with leaves labeled with species, or more precisely with taxonomic units (called taxa)
that distinguish species [7]. Locating the root of the evolutionary tree is scientifically
difficult so a reconstruction method only recovers the topology of the unrooted tree.
Reconstruction of a phylogenetic tree is a statistical inference of a true phylogenetic
tree, which is unknown. There are many methods to reconstruct phylogenetic trees
from molecular data [8]. Common methods are classified into two major groups:
criteria-based and direct methods. Criteria-based approaches assign a score to each
phylogenetic tree according to some criteria (e.g., parsimony, likelihood). Sometimes
computing the score requires auxiliary computation (e.g. computing hypothetical an-
cestors for a leaf-labeled tree topology). These methods then search the space of trees
(by enumeration or adaptation) using the evaluation method to select the best one. Di-
rect methods build the search for the tree into the algorithm, thus returning a unique
final topology automatically.

We represent species with binary sequences corresponding to morphological (e.g.
observable) data. Each bit corresponds to a feature, call a character. If a species
has a given feature, the corresponding bit is one; otherwise, it is zero. Species can
also be described by molecular sequence (nucleotide, DNA, amino acid, protein).
Regardless of the type of sequence data, one can use the same parsimony phylogeny
reconstruction methods. The evolution of sequences is studied under a simplifying
assumption that each site evolves independently.

The Maximum Parsimony (MP) objective selects the tree with the smallest total
evolutionary change. The edit distance between two species as the minimum number
of evolutionary events through which one species evolves into the other. Given a tree
in which each node is labeled by a species, the cost of this tree (tree length) is the
sum of the costs of its edges. The cost of an edge is the edit distance between the
species at the edge endpoints. The length of a tree T with all leaves labeled by taxa
is the minimum cost over all possible labelings of the internal nodes.

Distance-based direct methods [9–11] require a distance matrix D where ele-
ment dij is an estimated evolutionary distance between species i and species j .
The distance-based Neighbor-Joining (NJ) method quickly computes an approxi-
mation to the shortest tree. This can generate a good early incumbent for B&B. The
neighbor-joining (NJ) algorithm by Saitou and Nei [12], adjusted by Studier and
Keppler [13], runs in O(n3) time, where n is the number of species (leaves). Experi-
mental work shows that the trees it constructs are reasonably close to “true” evolution

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 4
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

130 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

of synthetic examples, as long as the rate of evolution is neither too low nor too high.
The NJ algorithm begins with each species in its own subtree. Using the distance
matrix, NJ repeatedly picks two subtrees and merge them. Implicitly the two trees
become children of a new node that contains an artificial taxon that mimics the dis-
tances to the subtrees. The algorithm uses this new taxon as a representative for the
new tree. Thus in each iteration, the number of subtrees decrements by one till there
are only two left. This creates a binary topology. A distance matrix is additive if there
exists a tree for which the inter-species tree distances match the matrix distances ex-
actly. NJ can recover the tree for additive matrices, but in practice distance matrices
are rarely additive. Experimental results show that on reasonable-length sequences
parsimony-based methods are almost always more accurate (on synthetic data with
known evolution) than neighbor-joining and some other competitors, even under ad-
verse conditions [14]. In practice MP works well, and its results are often hard to
beat.

In this section we focus on reconstructing phylogeny using maximum parsimony
(minimum evolution). A brute-force approach for maximum parsimony examines
all possible tree topologies to return one that shows the smallest amount of total
evolutionary change. The number of unrooted binary trees on n leaves (representing
the species or taxa) is (2n − 5)!! = (2n − 5) · (2n − 7) · · · 3. For instance, this
means that there are about 13 billion different trees for an input of n = 13 species.
Hence it is very time-consuming to examine all trees to obtain the optimal tree. Most
researchers focus on heuristic algorithms that examine a much smaller set of most
promising topologies and choose the best one examined. One advantage of B&B is
that it provides instance-specific lower bounds, showing how close a solution is to
optimal [15].

The phylogeny reconstruction problem with maximum parsimony (MP) is defined
as follows. The input is a set of c characters and a set of taxa represented as length-
c sequences of values (one for each character). For example, the input could come
from an aligned set of DNA sequences (corresponding elements matched in order,
with gaps). The output is an unrooted binary tree with the given taxa at leaves and
assignments to the length-c internal sequences such the resulting tree has minimum
total cost (evolutionary change). The characters need not be binary, but each usually
has a bounded number of states. Parsimony criteria (restrictions on the changes be-
tween adjacent nodes) are often classified into Fitch, Wagner, Dollo, and Generalized
(Sankoff) Parsimony [7]. In this example, we use the simplest criteria, Fitch parsi-
mony [16], which imposes no constraints on permissible character state changes. The
optimization techniques we discuss are similar across all of these types of parsimony.

Given a topology with leaf labels, we can compute the optimal internal labels
for that topology in linear time per character. Consider a single character. In a leaf-
to-root sweep, we compute for each internal node v a set of labels optimal for the

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 5
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 131

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

subtree rooted at v (called the Farris Interval). Specifically, this is the intersection
of its children’s sets (connect children though v) or, if this intersection is empty,
the union of its children’s sets (agree with one child). At the root, we choose an
optimal label and pass it down. Children agree with their parent if possible. Because
we assume each site evolves independently, we can set all characters simultaneously.
Thus for m character and n sequences, this takes O(nm) time. Since most computers
can perform efficient bitwise logical operations, we use the binary encoding of a
state in order to implement intersection and union efficiently using bitwise AND and
bitwise OR. Even so, this operation dominates the parsimony B&B computation.

The following sections outline the parallel B&B strategy for MP that is used in the
GRAPPA (Genome Rearrangement Analysis through Parsimony and other Phyloge-
netic Algorithms) toolkit [2]. Note that the maximum parsimony problem is actually
a minimization problem.

1.2 Strategy

We now define the branch, bound, and candidate functions for phylogeny recon-
struction B&B. Each node in the B&B tree is associated with either a partial tree or
a complete tree. A tree containing all n taxa is a complete tree. A tree on the first
k (k < n) taxa is a partial tree. A complete tree is a candidate solution. Tree T is
consistent with tree T ′ iff T can be reduced into T ′; i.e., T ′ can be obtained from
T by removing all the taxa in T that are not in T ′. The subproblem for a node with
partial tree T is to find the most parsimonious complete tree consistent with T .

We partition the frontier into levels, such that level k, for 3 � k � n, represents
the candidates (i.e., partial trees when k < n) containing the first k taxa from the
input. The root node that contains the first three taxa (hence, indexed by level 3)
since there is only one possible tree topology with three leaves. The branch function
finds the immediate successors of a node associated with a partial tree Tk at level k

by inserting the (k + 1)st taxon at any of the 2k − 3 possible places. A new node
(with this taxon attached) can join in the middle of any of the 2k − 4 edges not
adjacent to the root or anywhere on the path through the root. For example, in Fig. 1,
the root on three taxa is labeled (A), its three children at level four are labeled (B),
(C), and (D), and a few trees at level five (labeled (1) through (5)) are shown. The
search space explored by this approach depends on the addition order of taxa, which
also influences the efficiency of the B&B algorithm. This issue is important, but not
further addressed in this chapter.

We use depth-first search (DFS) as our primary B&B search strategy, and a heuris-
tic best-first search (BeFS) to break ties between nodes at the same depth.

Next we discuss the bound function for maximum parsimony. A node v associated
with tree Tk represents the subproblem to find the most parsimonious tree in the

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 6
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

132 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

FIG. 1. Maximum Parsimony B&B search space.

search space that is consistent with Tk . Assume Tk is a tree with leaves labeled by
S1, . . . , Sk . Our goal is to find a tight lower bound of the subproblem. However, one
must balance the quality of the lower bound against the time required to compute it
in order to gain the best performance of the overall B&B algorithm.

Hendy and Penny [15] describe two practical B&B algorithms for phylogeny re-
construction from sequence data that use the cost of the associated partial tree as the
lower bound of this subproblem. This traditional approach is straightforward, and ob-
viously, it satisfies the necessary properties of the bound function. However, it is not
tight and does not prune the search space efficiently. Purdom et al. [17] use single-
character discrepancies of the partial tree as the bound function. For each character
one computes a difference set, the set of character states that do not occur among the
taxa in the partial tree and hence only occur among the remaining taxa. The single-
character discrepancy is the sum over all characters of the number of the elements

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 7
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 133

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

in these difference sets. The lower bound is therefore the sum of the single-character
discrepancy plus the cost of the partial tree. This method usually produces much bet-
ter bounds than Hendy and Penny’s method, and experiments show that it usually
fathoms more of the search space [17]. Another advantage of Purdom’s approach is
that given an addition order of taxa, there is only one single-character discrepancy
calculation per level. The time needed to compute the bound function is negligible.

Next we discuss the candidate function and incumbent xI . In phylogeny recon-
struction, it is expensive to compute a meaningful feasible solution for each partial
tree, so instead we compute the upper bound of the input using a direct method such
as neighbor-joining [12,13] before starting the B&B search. We call this value the
global upper bound, f (xI), the incumbent’s objective function. In our implementa-
tion, the first incumbent is the best returned by any of several heuristic methods.

The greedy algorithm [18], an alternative incumbent heuristic, proceeds as fol-
lows. Begin with a three-taxa core tree and iteratively add one taxon at a time. For
an iteration with an k-leaf tree, try each of the n − k remaining taxon in each of the
2k − 2 possible places. Select the lowest-cost (k + 1)-leaf tree so formed.

Adding taxa in a different order yields different trees. Swofford and Begle [20]
describe various ways of producing the provisional MP tree considering the order of
taxon addition. In the as is method, the initial core tree is produced by the first three
taxa given in the data set and the following taxon addition is done according to the
taxon order in the data set. In the random method, pseudo-random numbers are used
to determine the order of taxon addition.

Any program, regardless of the algorithms, requires implementation on a suitable
data structure. As mentioned previously, we use DFS as the primary search strategy
and BeFS as the secondary search strategy. For phylogeny reconstruction with n taxa,
the depth of the subproblems ranges from 3 to n. So we use an array to keep the open
subproblems sorted by DFS depth. The array element at location i contains a priority
queue (PQ) of the subproblems with depth i, and each item of the PQ contains an
external pointer to stored subproblem information.

CAP This is nice, but it seems like a lot of information on to reach the conclusion
that this does not matter. I have pulled some pieces out into the discussion.

There are many ways to organize a PQ (see [19] for an overview). From an al-
gorithmic point of view, a B&B algorithm consists of carrying out a series of basic
operations on a set of nodes with different or equal priorities: deletemin (select and
delete the highest priority element), insert (insert a new element with a predefined
priority), and delete greater (delete elements with higher priority higher than a given
value). In the literature, PQs are usually represented by heaps, in which each item
always has a higher priority than its children. There exists a great variety of algo-
rithms that manage a heap: D-heap [?], Leftist-heap [?], Skew-heap [?], Binomial
queue [?], Pairing heap [?]. The oldest and most popular heap is the D-heap as used

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 8
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

134 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

in heap sort. In a D-heap, the tree is embedded in an array, using the rule that the first
location holds the root of the tree, and the locations 2i and 2i + 1 are the children
of location i. Serial experimental results [?,?] show that the D-heap in a B&B does
not yield an efficient PQ implementation and that a skew-heap is one of the most
efficient serial algorithms for heap implementation. The skew-heap is self-adjusting
version of the Leftist-heap, and the operations on the skew-heap use a heuristic to
keep tree balanced.

Several PQs which are not a heap structure have also been proposed, for example,
the Splay-tree [?,?] and the funnels [?] (table and tree). The funnels use the fact that
in a given combinatorial optimization problem, priorities lie in a small given interval
[1, . . . , S].

The priority queues (PQs) support best-first-search tie breaking and allow efficient
deletion of all dominated subproblems whenever we find a new incumbent. There are
many ways to organize a PQ (see [19] for an overview). In the phylogeny reconstruc-
tion problem, most of the time is spent evaluating the tree length of a partial tree. The
choice of PQ data structures does not make a significant difference. So for simplicity,
we use a D-heap for our priority queues. A heap is a tree where each node has higher
priority than any of its children. In a D-heap, the tree is embedded in an array. The
first location holds the root of the tree, and locations 2i and 2i + 1 are the children
of location i.

1.3 Parallel Framework

Our parallel maximum parsimony B&B algorithm uses shared-memory. The
processors can concurrently evaluate open nodes, frequently with linear speedup.
CAP—this is an issue for all parallel systems, moved forward to general B&B sec-
tion.

Second, a shared-memory platform makes available a large, shared memory that
can hold shared data structures, such as the arrays of priority queues representing
the frontier. For example, one of the largest SMP systems to date, the IBM pSeries
690, uses 32 Power4+ 1.9 GHz microprocessors and one terabyte of global memory
in its largest configuration. Thus, the data structures representing the search space
and incumbent can be shared (concurrently accessed by the processors) with little
overhead, and the sheer amount of main memory allows for a tremendous num-
ber of active frontier nodes to be saved for later exploration, rather than sequential
approaches that often store only a small number of frontier nodes due to space limi-
tations and throw away other nodes that do not seem promising at the time (but may
contain the optimal tree). As described in Section 1.2, for each level of the search
tree (illustrated in Fig. 1), we use a priority queue represented by binary heaps

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 9
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 135

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

FIG. 2. The array of priority queues, one for each level in the Maximum Parsimony B&B search space.

to maintain the active nodes in a heuristic order. The processors concurrently ac-
cess these heaps. To ensure each subproblem is processed by exactly one processor
and to ensure that the heaps are always in a consistent state, at most one processor
can access any part of a heap at once. Each heap Hi (at level i) is protected by a
lock Locki . Each processor locks the entire heap Hi whenever it makes an operation
on Hi .

We use a heap Hi for each level i to save the active frontier nodes at that level (see
Fig. 2). Each heap Hi is protected by a lock Locki . Each processor locks the entire
heap Hi whenever it makes an operation on Hi .

In the sequential B&B algorithm, we use DFS strictly so Hi is used only if the
heaps at higher level (higher on the tree, lower level number) are all empty. In the
parallel version, to allow multiple processors shared access to the search space,
a processor uses Hi if all the heaps at higher levels are empty or locked by other
processors.

The shared-memory B&B framework has a simple termination detection. A proces-
sor can terminate its execution when it detects that all the heaps are unlocked and
empty: there are no more active nodes except for those being decomposed by other

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 10
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

136 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

processors. This is correct, but it could be inefficient, since still-active processors
could produce more parallel work for the prematurely-halted processors. If the ma-
chine supports it, instead of terminating, a processor can declare itself idle (e.g. by
setting a unique bit) and go to sleep. An active processor can then wake it up if there’s
sufficient new work in the system. The last active processor terminate all sleeping
processors and then terminates itself.

1.4 Impact of Parallelization

There are a variety of software packages to reconstruct sequence-based phylogeny.
The most popular phylogeny software suites that contain parsimony methods are
PAUP* by Swofford [20], PHYLIP by Felsenstein [21], and TNT and NONA by
Goloboff [22,23]. We have developed a freely-available shared-memory code for
computing MP, that is part of our software suite, GRAPPA (Genome Rearrangement
Analysis through Parsimony and other Phylogenetic Algorithms) [2]. GRAPPA was
designed to re-implement, extend, and especially speed up the breakpoint analysis
(BPAnalysis) method of Sankoff and Blanchette [24]. Breakpoint analysis is another
form of parsimony-based phylogeny where species are represented by ordered sets of
genes and distances is measured relative to differences in orderings. It is also solved
by branch and bound. One feature of our MP software is that it does not constrain
the character states of the input and can use real molecular data and also characters
reduced from gene-order data such as Maximum Parsimony on Binary Encodings
(MPBE) [25].

The University of New Mexico operates Los Lobos, the NSF/Alliance 512-
processor Linux supercluster. This platform is a cluster of 256 IBM Netfinity 4500R
nodes, each with dual 733 MHz Intel Xeon Pentium processors and 1 GB RAM,
interconnected by Myrinet switches. We ran GRAPPA on Los Lobos and obtained a
512-fold speed-up (linear speedup with respect to the number of processors): a com-
plete breakpoint analysis (with the more demanding inversion distance used in lieu
of breakpoint distance) for the 13 genomes in the Campanulaceae data set ran in less
than 1.5 hours in an October 2000 run, for a million-fold speedup over the origi-
nal implementation [26,1]. Our latest version features significantly improved bounds
and new distance correction methods and, on the same dataset, exhibits a speedup
factor of over one billion. In each of these cases a factor of 512 speed up came from
parallelization. The remaining speed up came from algorithmic improvements and
improved implementation.

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 11
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 137

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

2. Boosting Phylogenetic Reconstruction Methods Using
Recursive-Iterative-DCM3

Reconstructing the Tree of Life, i.e., the evolutionary tree of all species on Earth,
poses a highly challenging computational problem. Various software packages such
as TNT [27–29], PAUP* [30], and RAxML [31] contain sophisticated search pro-
cedures for solving MP (Maximum Parsimony) and ML (Maximum Likelihood)
on very large datasets. (Section 3 of this chapter describes aspects of the RAxML
method in more detail.) The family of Disk Covering Methods (DCMs) [32–35] was
introduced to boost the performance of a given base method without making changes
to the method itself, i.e. use the same search procedures in the base method, except
deploy them in a divide and conquer context. DCMs decompose the input set of
species (i.e. alignment) into smaller subproblems, compute subtrees on each sub-
problem using a given base method, merge the subtrees to yield a tree on the full
dataset, and refine the resulting supertree to make it binary if necessary. Figure 2
shows the four steps of the DCM2 method which was developed for boosting MP
and ML heuristics. Figure 3 illustrates the operation of the Strict Consensus Merger
supertree method (SCM) which is used for merging the subtrees computed by the
base method. SCM is a fast consensus based method that has shown to be more ac-
curate and faster than the Matrix Representation using Parsimony (MRP) method
for supertree reconstruction on DCM subproblems [36]. DCMs have previously
been shown to significantly improve upon NJ, the most widely used distance-based

FIG. 3. The Strict Consensus Merger is a consensus-based supertree method that is fast and accurate
enough on DCM decompositions. As the figure shows, two subtrees are merged by first computing the
set of common taxa and restricting both the input trees to this set. The strict consensus tree, i.e. set of
common bipartitions, is computed on the restricted subtrees, and the remaining bipartitions on the two
input trees are then attached to the consensus.

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 12
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

138 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

method for phylogeny reconstruction. See [37–40] for various studies showing DCM
improvements over NJ.

Rec-I-DCM3 is the latest in the family of Disk Covering Methods (DCMs) and
was designed to improve the performance of MP and ML heuristics. Rec-I-DCM3
is an iterative technique which uses the DCM3 decomposition [34] for escaping lo-
cal minima. Previously it was shown that Rec-I-DCM3 improves upon heuristics
for solving MP [34,35]. In this study we show that Rec-I-DCM3 combined with
RAxML-III finds highly optimal ML trees, particularly on large datasets. Within the
current Section we will refer to RAxML-III as RAxML (as opposed to Section 3
where RAxML refers to RAxML-VI).

We first discuss an essential component of Rec-I-DCM3 which is the DCM3 de-
composition. We then describe Rec-I-DCM3 in detail and examine its performance
in conjunction with RAxML as the base method.

2.1 DCM3 Decomposition

DCM3 is the latest decomposition technique in the family of DCMs. DCM3 was
designed as improvement over the previous DCM2 decomposition. As shown pre-
viously DCM2 is too slow on large datasets and more importantly, does not always
produces subsets that are small enough to give a substantial speedup [35]. The DCM3
decomposition is similar in many ways to the DCM2 technique; the main difference
between the two techniques is that DCM2’s decomposition is based upon a distance
matrix computed on the dataset, while DCM3’s decomposition is obtained on the
basis of a “guide tree” for the dataset.

We assume we have a tree T on our set S of taxa, and an edge weighting w of T

(i.e., w : E(T) → �+). Based upon this edge-weighted tree, we obtain a decompo-
sition of the leaf set using the following steps. Before describing the decomposition
we define the short subtree of an edge.

Short subtrees of edges. Let A,B,C, and D be the four subtrees around e and let
a, b, c, and d be the set of leaves closest to e in each of the four subtrees A,B,C,
and D respectively (where the distance between nodes u and v is measured as∑

e∈Puv
w(e)). The set of nodes in a ∪ b ∪ c ∪ d is the “short subtree” around the

edge e. We will say that i and j are in a short subtree of T if there is some edge
so that i and j are in the short subtree around e. The graph formed by taking the
union of all the cliques on short subtrees is the short subtree graph and is shown to
be triangulated [35].

We begin the decomposition by first constructing the short subtree graph, which
is the union of cliques formed on “short subtrees” around each edge. Since the short
subtree graph G is triangulated, we can find maximal clique separators in polynomial
time (these are just cliques in the graph, as proven in [41]), and hence we can find

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 13
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 139

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

DCM3 decomposition
• Input

– Set S = {s1, . . . , sn} of n aligned biomolecular sequences
– An edge-weighted phylogenetic guide tree T leaf-labeled by S.

• Output Ai, . . . , Ak with
⋃

i Ai = S, and set X ⊂ S such that Ai ∩Aj = X for
all i, j .

• Algorithm
– Compute the short subtree graph G = (V ,E) where V = S and E =

{(i, j): i, j ∈ short subtree of T }.
– Find a clique separator X in G which minimizes maxi |Ai ∪ X| where

A1, . . . , Ak are the connected components of G after removing X

FIG. 4. Algorithmic description of the DCM3 decomposition.

(also in polynomial time) a clique separator X that minimizes maxi |X ∪ Ci |, where
G − X is the union of k components C1, C2, . . . , Ck . This is the same decomposi-
tion technique used in the DCM2 decomposition, but there the graph is constructed
differently, and so the decomposition is different. Figure 4 describes the full DCM3
decomposition algorithm and Fig. 5 shows a toy example of the DCM3 decomposi-
tion on a eight taxon phylogeny. We now analyze the running time to compute the
DCM3 decomposition.

Theorem 1. Computing a DCM3 decomposition takes O(n3) time in the worst case,
where n is the number of sequences in the input.

Proof. In the worst case, the input tree can be ultrametric which causes each short
subtree to be of size O(n). Thus, for each internal edge (O(n) time) we create a clique
for each short subtree (O(n2) worst case time); the total time taken is O(n3). The
optimal separator and the associated connected components are found by computing
a depth-first search (O(n2) worst case time) for each of the O(n) clique separators;
total time taken is O(n3). Thus, the worst case time is O(n3). �

Although finding the optimal separator takes O(n3) time, in practice it takes much
longer than computing the short subtree. Rather than explicitly seeking a clique sep-
arator X in G which minimizes the size of the largest subproblem, we apply a simple
heuristic to get a decomposition, which in practice turns out to be a good decompo-
sition. We explain this heuristic below.

Approximate centroid-edge decomposition. It has been observed on several real
datasets that the optimal separator is usually the one associated with the short sub-

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 14
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

140 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

FIG. 5. DCM3 decomposition shown on an eight taxon phylogeny.

tree of the centroid edge [35], i.e., the edge such that when removed produces
subtrees of equal size (in number of leaves). This observation allows us to bypass
the computation time associated with dealing with short subtrees. We can compute
an approximated centroid edge decomposition by finding the centroid edge e and
setting the separator to be the closest leaves in each of the subtrees around e. The re-
maining leaves in each of the subtrees around e (unioned with the separator) would
then form the DCM3 subproblems (see Fig. 6). This takes linear time if we use a
depth-first search. In the rest of this chapter we will use the approximate centroid
edge decomposition when we refer to a DCM3 decomposition.

2.2 Recursive-Iterative-DCM3 (Rec-I-DCM3)
Recursive-Iterative-DCM3 is the state of the art in DCMs for solving NP-hard op-

timization problems for phylogeny reconstruction. It is an iterative procedures which
applies an existing base method to both DCM3 subsets and the complete dataset.
Rec-I-DCM3 can also be viewed as an iterated local search technique [42] which
uses a DCM3 decomposition to escape local minima. Figure 7 provides a full de-
scription of the Rec-I-DCM3 algorithm.

The Recursive-DCM3 routine performs the work of dividing the dataset into
smaller subsets, solving the subproblems (using the base method), and then merg-

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 15
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 141

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

FIG. 6. The faster approximate DCM3 centroid decomposition can be done in O(n) time. Both, finding
the centroid edge and computing the subsets, can be done in O(n) using a depth first search (n is the
number of leaves).

Recursive-Iterative-DCM3
• Input

– Input alignment S, #iterations n, base heuristic b, global search method g,
starting tree T , maximum subproblem size m

• Output Phylogenetic tree leaf-labeled by S.
• Algorithm For each iteration do

– Set T ′ = Recursive-DCM3(S,m, b, T).
– Apply the global search method g starting from T ′ until we reach a local

optimum. This step can be skipped; however, it usually leads to more optimal
trees even with a superficial search.

– Let T ′′ be the resulting local optimum from the previous step. Set T = T ′′.

FIG. 7. Algorithm for Recursive-Iterative-DCM3.

ing the subtrees into the full tree. Recursive-DCM3 is a simple modification of the
original DCM3. It is obtained by recursively applying the DCM3 decomposition to
DCM3 subsets in order to yield smaller subproblems. The sizes of individual sub-
problems vary significantly and the inference time per subproblem is not known a
priori and difficult to estimate. This can affect performance if the subproblems are
solved in parallel [43]. The global search method further improves the accuracy of
the Recursive-DCM3 tree and can also find optimal global configurations that were
not found by Recursive-DCM3, which only operates on smaller—local—subsets.
However, previous studies [34,35] and results presented in this one show that even a
superficial search can yield good results.

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 16
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

142 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

2.3 Performance of Rec-I-DCM3 for Solving ML
Rec-I-DCM3 has previously shown to boost TNT (currently the fastest software

package for solving MP) with the default settings of TNT. In this chapter we set out
to determine if Rec-I-DCM3 can improve upon the standard hill-climbing algorithms
of RAxML (as implemented in RAxML-III). We study the performance of RAxML
and Rec-I-DCM3(RAxML) on several real datasets described below.

2.3.1 Real Datasets
We collected 20 real datasets of different sizes, sequence lengths, and evolutionary

rates from various researchers. All the alignments were prepared by the authors of
the datasets. It is important to use a reliable alignment when computing phylogenies.
Therefore, we minimize the use of machine alignments, i.e., those created solely
by a computer program with no human intervention. Below we list the size of each
alignment along with its sequence length and source.

1. 101 RNA, 1858 bp [44], obtained from Alexandros Stamatakis.
2. 150 RNA, 1269 bp [44], obtained from Alexandros Stamatakis.
3. 150 ssu rRNA, 3188 bp [45], obtained from Alexandros Stamatakis.
4. 193 ssu rRNA [46], obtained from Alexandros Stamatakis.
5. 200 ssu rRNA, 3270 bp [45], obtained from Alexandros Stamatakis.
6. 218 ssu rRNA, 4182 bp [47], obtained from Alexandros Stamatakis.
7. 250 ssu rRNA [45], obtained from Alexandros Stamatakis.
8. 439 Eukaryotic rDNA, 2461 bp [48], obtained from Pablo Goloboff.
9. 476 Metazoan DNA, 1008 bp, created by Doug Ernisse but unpublished, ob-

tained from Pablo Goloboff with omitted taxon names.
10. 500 rbcL DNA, 1398 bp [49].
11. 567 three-gene (rbcL, atpB, and 18s) DNA, 2153 bp [50].
12. 854 rbcL DNA, 937 bp, created by H. Ochoterena but unpublished, obtained

from Pablo Goloboff with omitted taxon names.
13. 921 Avian Cytochrome b DNA, 713 bp [51].
14. 1000 ssu rRNA, 5547 bp [45], obtained from Alexandros Stamatakis.
15. 1663 ssu rRNA, 1577 bp [45], obtained from Alexandros Stamatakis.
16. 2025 ssu rRNA, 1517 bp [45], obtained from Alexandros Stamatakis.
17. 2415 mammalian DNA, created by Olaf Bininda-Emonds but unpublished,

obtained from Alexandros Stamatakis.
18. 6722 three-domain (Eukarayote, Archea, and Fungi) rRNA, 1122 bp, created

and obtained by Robin Gutell.
19. 7769 three-domain (Eukaryote, Archea, and Fungi) + two organelle (mi-

tochondria and chloroplast) rRNA, 851 bp, created and obtained by Robin
Gutell.

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 17
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 143

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

20. 8780 ssu rRNA, 1217 bp [45], obtained from Alexandros Stamatakis.

2.3.2 Parameters for RAxML and Rec-I-DCM3

2.3.2.1 RAxML. We use default settings of RAxML on each dataset. By de-
fault RAxML performs a standard hill-climbing search for ML trees but begins with
an estimate of the MP tree (constructed using heuristics implemented in Phylip [52]).
We use the HKY85 model [53] throughout the study whenever we run RAxML (even
as the base and global methods for Rec-I-DCM3). For more details on RAxML
we refer the reader to Section 3 of this chapter where RAxML is thoroughly de-
scribed.

2.3.2.2 Rec-I-DCM3. We use RAxML with its default settings for the base
method. However, when applying RAxML on a DCM3 subproblem, we use the
guide-tree restricted to the subproblem taxa as the starting tree for the search (as op-
posed to the default randomized greedy MP tree). This way the RAxML search on
the subset can take advantage of the structure stored in the guide-tree through pre-
vious Rec-I-DCM3 iterations. We use the fast RAxML search for the global search
phase of Rec-I-DCM3. This terminates much quicker than the standard (and more
through) hill-climbing search (which is also the default one). We can expect better
performance in terms of ML scores if the standard RAxML search was used as the
Rec-I-DCM3 global search; however, that would increase the overall running time.
The initial guide-tree for Rec-I-DCM3 is the same starting tree used by RAxML
and the Rec-I-DCM3 search was performed for the same amount of time as the un-
boosted RAxML. The maximum subproblem size of Rec-I-DCM3 was selected as
follows:

– 50% for datasets below 1000 sequences;

– 25% for datasets between 1000 and 5000 sequences (including 1000);

– 12.5% for datasets above 5000 sequences (including 5000).

These subproblem sizes may not yield optimal results for Rec-I-DCM3(RAxML).
We selected these based upon performance of Rec-I-DCM3(TNT) [34,35] for boost-
ing MP heuristics.

2.3.3 Experimental Design

On each dataset we ran 5 trials of RAxML since each run starts from a randomized
greedy MP tree (see [35] and Section 3 for a description of this heuristic). We ran
5 trials of Rec-I-DCM3(RAxML) and report the average best score found by each

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 18
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

144 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

method on each dataset. We also report the difference in likelihood scores both in
absolute numbers and percentages.

2.3.4 Results

Table I summarizes the results on all the real datasets. The − log likelihood im-
provement is the average RAxML score subtracted from the Rec-I-DCM3(RAxML)
score. This is also shown as a percentage by dividing the improvement by the
RAxML average score.

Rec-I-DCM3(RAxML) improves RAxML on 15 of the 20 datasets studied here.
On datasets below and including 500 taxa Rec-I-DCM3(RAxML) improves upon

TABLE I
THE DIFFERENCE BETWEEN THE REC-I-DCM3(RAXML) AND RAXML − log LIKELIHOOD SCORE

AND ALSO PRESENTATION OF IT AS A PERCENTAGE OF THE RAXML − log LIKELIHOOD SCORE

Dataset size Improvement as % − LH Improvement Max p-distance

101 −0.004 −2.7 0.45
150 (SC) 0.007 3.2 0.43
150 (ARB) 0 0.3 0.54
193 0.06 38.6 0.78
200 −0.006 −6.5 0.54
218 0.014 21 0.42
250 0.014 19 0.55
439 0 0.1 0.65
476 −0.004 −4 0.89
500 0.011 11 0.18
567 0.006 13.9 0.33
854 0.03 42 0.32
921 0.06 109.6 0.39

1000 0.031 123 0.55
1663 −0.004 −11.7 0.48
2025 −0.002 −6 0.56
2415 0.004 23 0.48
6722 1.251 6877 1
7769 2.338 13290 1
8780 0.03 270 0.55

The negative percentages show where RAxML performed better than Rec-I-DCM(RAxML). These per-
centages are small (at least −0.006%) and show that Rec-I-DCM3(RAxML) performs almost as well as
the unboosted RAxML when it fails to provide a better score. We also list the maximum p-distance of each
dataset to indicate its divergence. On most of the divergent datasets Rec-I-DCM3(RAxML) improves over
RAxML by a larger percentage as opposed to the more conserved ones.

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 19
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 145

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

RAxML in 7 out of 10 datasets. The maximum improvement is 0.06% which is
on the most divergent dataset of 193 taxa. On datasets above 500 taxa Rec-I-
DCM3(RAxML) improves RAxML in 8 out of 10 datasets with the improvement
generally more pronounced. On 6 datasets the improvement is above 0.02% and
above 1% on the 6722 and 7769 taxon datasets—these two datasets are also highly
divergent (as indicated by their maximum pairwise p-distances) and can be con-
sidered as very challenging to solve. Interestingly, Rec-I-DCM3(RAxML) does not
improve RAxML on the 1663 and 2025 taxon datasets despite their large sizes and
moderate maximum p-distances. As indicated by the small percentage values (see
Table I) Rec-I-DCM3(RAxML) is almost as good as RAxML on these datasets. It is
possible there are certain characteristics of these datasets that make them unsuitable
for boosting or for divide-and-conquer methods. We intend to explore this in more
detail in subsequent studies.

Figures 8 through 11 show the performance of Rec-I-DCM3(RAxML) and
RAxML as a function of time on all the datasets. Each data point in the curve is
the average of five runs. Variances are omitted from the figures for the purpose of
visual clarity and are in general small. The first time point shown on each graph is
the time when the Rec-I-DCM3(RAxML) outputs its first tree, i.e., the tree at the
end of the first iteration. This tree is always much better in score than the initial
guide-tree. Of the 15 datasets where Rec-I-DCM3(RAxML) has a better score than
RAxML at the end of the searches, Rec-I-DCM3(RAxML) improves RAxML at
every time point on 11 of them. On the remaining 4 RAxML is doing better initially;
however, at the end of the search Rec-I-DCM3(RAxML) comes out with a better
score.

2.3.5 Conclusions
Our results indicate that Rec-I-DCM3 can improve RAxML on a wide sample

of DNA and RNA datasets. The improvement is larger and more frequent on large
datasets as opposed to smaller ones. This is consistent with Rec-I-DCM3 results for
boosting MP heuristics [35].

The results presented here are using the algorithms of RAxML-III. It remains to
be see how the performance of Rec-I-DCM3(RAxML) will be affected if different
(and better) ML hill-climbing algorithms are used (such as those implemented in
RAxML-VI). We recommend the user to experiment with different subset sizes (such
as one-half, one-quarter, and one-eighth the full dataset size) and both, a standard
(and thorough) hill-climbing as well as a superficial one for the global search phase
of Rec-I-DCM3. Preliminary results (not shown here) show similar improvements
of RAxML-VI using Rec-I-DCM3(RAxML-VI) on some of the datasets used in this
study.

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 20
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

146 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

FIG. 8. Rec-I-DCM3(RAxML) improves RAxML on the 150 (dataset 2), 193, and 218 taxon datasets
shown here.

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 21
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 147

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

FIG. 9. As the dataset sizes get larger Rec-I-DCM3(RAxML) improves RAxML on more datasets.
Here we see improvements on the 250, 500, 567, and 854 taxon datasets.

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 22
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

148 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

FIG. 10. Rec-I-DCM3(RAxML) improves RAxML on all the datasets shown here except for the 1663
and 2025 taxon ones. There we see that Rec-I-DCM3(RAxML) improves RAxML in the earlier part of
the search but not towards the very end. It is possible these datasets possess certain properties which make
it hard for booster methods like Rec-I-DCM3. On the 6722 taxon dataset we see a very large improvement
of with Rec-I-DCM3(RAxML) (of over 1%—see Table I).

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 23
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 149

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

FIG. 11. Rec-I-DCM3(RAxML) improves RAxML on the two largest datasets. On the 7769 taxon
dataset the improvement in score is 2.34% which is the largest over all the datasets examined here.

3. New Technical Challenges for ML-Based Phylogeny
Reconstruction

The current Section intends to cover the relatively new phenomenon of technical
problems which arise for the inference of large phylogenies—containing more than
1000 organisms—with the popular Maximum Likelihood (ML) method [54].

The tremendous accumulation of sequence data over recent years coupled with the
significant progress in search (optimization) algorithms for ML and the increasing
use of parallel computers allow for inference of huge phylogenies within less than
24 hours. Therefore, large-scale phylogenetic analyses with ML are becoming more
common recently [55].

The computation of the ML tree has recently been demonstrated to be NP-
complete [56]. The problem of finding the optimal ML tree is particularly difficult
due to the immense amount of alternative tree topologies which have to be evaluated
and the high computational cost—in terms of floating point operations—of each
tree evaluation per se. To date, the main focus of researchers has been on improv-
ing the search algorithms (RAxML [57], PHYML [58], GAML [59], IQPNNI [46],
MetaPIGA [60], Treefinder [61]) and on accelerating the likelihood function via al-
gorithmic means by detecting and re-using previously computed values [62,63].

Due to the algorithmic progress which has been achieved there exists a noticeable
number of programs which are now able to infer a sufficiently accurate 1000-taxon
tree within less than 24 hours on a single PC processor.

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 24
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

150 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

However, due to the increasing size of the data and the complexity of the more
elaborate models of nucleotide substitution, a new category of technical problems
arises. Those problems mainly concern cache efficiency, memory shortage, memory
organization, efficient implementation of the likelihood function (including manual
loop unrolling and re-ordering of instructions), as well as the use of efficient data-
structures.

The main focus of this section is to describe those problems and to present some
recent technical solutions. Initially, Section 3.1 briefly summarizes the basic math-
ematics of ML in order to provide a basic understanding of the compute-intensive
likelihood function. The following Section 3.2 covers some of the most recent and
most efficient state-of-the-art ML phylogeny programs and shows that performance
of most programs is currently limited by memory efficiency and consumption. In
Section 3.3 the data-structures, memory organization, and implementation details of
RAxML are described. RAxML has inherited an excellent technical implementation
from fastDNAml which has unfortunately never been properly documented. Finally,
Section 3.4 covers applications of HPC techniques and architectures to ML-based
phylogenetic inference.

3.1 Introduction to Maximum Likelihood

This section does not provide a detailed introduction to ML for phylogenetic trees.
The goal is to offer a notion of the complexity and amount of arithmetic operations
required to compute the ML score for one single tree topology. The seminal paper
by Felsenstein [54] which introduces the application of ML to phylogenetic trees
and the comprehensive and readable chapter by Swofford et al. [64] provide detailed
descriptions of the mathematical as well as computational background.

To calculate the likelihood of a given tree topology with fixed branch lengths a
probabilistic model of nucleotide substitution Pij (t) is required which allows for
computing the probability P that a nucleotide i mutates to another nucleotide j

within time t (branch length). The model for DNA data must therefore provide sub-
stitution transitions:

A|C|G|T -> A|C|G|T

In order to significantly reduce the mathematical complexity of the overall method
the model of nucleotide substitution must be time-reversible [54], i.e. the evolu-
tionary process has to be identic if followed forward or backward in time. Es-
sentially, this means that the maximum number of possible transition types in the
General Time Reversible model of nucleotide substitution (GTR [65,66]) is re-
duced to 6 due to required symmetries. The less general time-reversible models

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 25
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 151

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

of nucleotide substitution such as the Jukes–Cantor (JC69 [67]) or Hasegawa–
Kishino–Yano (HKY85 [68]) model can be derived from GTR by further restriction
of possible transition types. It is important to note, that there exists a trade-off
between speed and quality among substitution models. The simple JC69 model
which only has one single transition type requires significantly less floating point
operations to compute Pij (t) than GTR which is the most complex and accurate
one.

Thus, model selection has a significant impact on inference times, and therefore—
whenever possible—the simpler model should be used for large datasets, e.g. HKY85
instead of GTR. The applicability of a less complex model to a specific alignment
can be determined by application of likelihood ratio tests. Thus, if the likelihood
obtained for a fixed tree topology with HKY85 is not significantly worse than the
GTR-based likelihood value, HKY85 should be used. Programs such as Model-
test [69] can be applied to determine the appropriate model of evolution for a specific
dataset.

Another very important and rarely discussed modeling issue concerns the way
rate heterogeneity among sites (alignment columns) is accommodated in nucleotide
substitution models (see discussion on page 153). There exist two competing models
which differ significantly in terms of amount of floating point operations and memory
consumption.

Given the model of nucleotide substitution and a tree topology with branch lengths
where the data (the individual sequences of the multiple alignment) is located at the
tips, one can proceed with the computation of the likelihood score for that tree. In
order to compute the likelihood a virtual root (vr) has to be placed into an arbitrary
branch of the tree in order to calculate/update the individual entries of each likeli-
hood vector (also often called partial likelihood) with length m (alignment length)
in the tree bottom-up, i.e. starting at the tips and moving towards vr. If the model of
nucleotide substitution is time-reversible the likelihood of the tree is identic irrespec-
tively of where vr is placed. After having updated all likelihood vectors the vectors
to the right and left of vr can be used to compute the overall likelihood of the tree.

Note that, the number n (where n is the number of taxa) and length of likelihood
vectors m (where m is the number of distinct patterns/columns in the alignment)
dominate the memory consumption of typical ML implementations which is thus
O(n ∗ m). Section 3.3 describes how the likelihood vector structures can efficiently
be implemented to consume only �(n ∗ m) memory.

The process of rooting the tree at vr and updating the likelihood vectors is outlined
in Fig. 12 for a 4-taxon tree.

To understand how the individual likelihood vectors are updated consider a sub-
tree rooted at node p with immediate descendants r and q and likelihood vectors
l_p, and l_q, l_r respectively. When the likelihood vectors l_q and l_r have

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 26
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

152 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

FIG. 12. Computation of the likelihood vectors of 4-taxon tree.

FIG. 13. Updating the likelihood vector of node p at position i.

been computed the entries of l_p can be calculated—in an extremely simplified
manner—as outlined by the pseudo-code below and in Fig. 13:

for(i = 0; i < m; i++)
l_p[i] = f(g(l_q[i], b_pq), g(l_r[i], b_pr));

where f() is a simple function, i.e. requires just a few FLOPs, to combine the values
of g(l_q[i], b_pq) and g(l_r[i], b_pr). The g() function however is
more complex and computationally intensive since it calculates Pij (t). The parame-
ter t corresponds to the branch lengths b_pq and b_pr respectively. Note, that the
for-loop can easily be parallelized on a fine-grained level since entries l_p[i]
and l_p[i + 1] can be computed independently (see Section 3.4).

Up to this point it has been described how to compute the likelihood of a tree given
some arbitrary branch lengths. In order to obtain the maximum likelihood value for a
given tree topology the length of all branches in the tree has to be optimized. Since
the likelihood of the tree is not altered by distinct rootings of the tree the virtual root
can be subsequently placed into all branches of the tree. Each branch can then be
individually optimized to improve the likelihood value of the entire tree. In general—
depending on the implementation—this process is continued until no further branch

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 27
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 153

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

length alteration yields an improved likelihood score. Branch length optimization
can be regarded as maximization of a one-parameter function lh(t) where lh is the
phylogenetic likelihood function and t the branch length.

Some of the most commonly used optimization methods are the Newton–Raphson
method in fastDNAml [70] or Brent’s rule in PHYML [58].

Typically, the two basic operations: computation of the likelihood value and op-
timization of the branch lengths, require ≈ 90% of the complete execution time of
every ML program. For example 92.72% of total execution time for a typical dataset
with 150 sequences in PHYML and 92.89% for the same dataset in RAxML-VI.
Thus, an acceleration of these functions at a technical level by optimization of the
source code and the memory access behavior, or at an algorithmic level by re-use of
previously computed values is very important.

A technically extremely efficient implementation of the likelihood function has
been coded in fastDNAml. The Subtree Equality Vector (SEV) method [63] repre-
sents an algorithmic optimization of the likelihood function which exploits alignment
pattern equalities to avoid a substantial amount of re-computations of the expensive
g() function. An analogous approach to accelerate the likelihood function has been
proposed in [62].

As already mentioned another important issue within the HPC context is the math-
ematical accommodation of rate variation (also called rate heterogeneity) among
sites in nucleotide substitution methods, since sites (alignment columns) usually do
not evolve at the same speed. It has been demonstrated, e.g. in [71], that ML infer-
ence under the assumption of rate homogeneity can lead to erroneous results if rates
vary among sites.

Rate heterogeneity among sites can easily be accommodated by incorporating an
additional per-site (per-alignment-column) rate vector r[] of length m into func-
tion g().

The pseudocode for updating the likelihood vectors with rate categories is indi-
cated below:

for(i = 0; i < m; i++)
l_p[i] = f(g(l_q[i], b_pq, r[i]),

g(l_r[i], b_pr, r[i]));

Often, such an assignment of individual rates to sites corresponds to some func-
tional classification of sites and can be performed based on an a priori analysis of
the data. G. Olsen has developed a program called DNArates [72] which performs
an ML estimate of the individual per site substitution rates for a given input tree.
A similar technique is used in RAxML and the model is called e.g. GTR + CAT to
distinguish it from GTR + � (see below), when the GTR model of nucleotide sub-
stitution is used. However, the use of individual per-site rate categories might lead

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 28
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

154 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

to over-fitting the data. This effect can be alleviated by using rate categories instead
of individual per-site rates, e.g. for an alignment with a length of 1000 base pairs
only c = 25 or c = 50 distinct rate categories are used. To this end an integer vector
category[] of length m is used which assigns an individual rate category cat
to each alignment column, where 1 � cat � c. The vector rate[] of length c

contains the rates. This model will henceforth be called CAT model of rate hetero-
geneity. The abstract structure of a typical for-loop to compute the likelihood under
CAT is outlined below:

for(i = 0; i < m; i++)
{
cat = category[i];
r = rate[cat];
l_p[i] = f(g(l_q[i], b_pq, r), g(l_r[i], b_pr, r));
}

However, little has been published on how to optimize per-site evolutionary rates
and how to reasonably categorize per-site evolutionary rates. A notable exception,
dealing with per-site rate optimization, is a relatively recent paper by Meyer et
al. [73]. The current version of RAxML is one of the few ML programs which im-
plements the CAT model.

A computationally more intensive and thus less desirable form of dealing with
heterogeneous rates, due to the fact that significantly more memory and floating
point operations are required (typically factor 4), consists in using either discrete or
continuous stochastic models for the rate distribution at each site. In this case every
site has a certain probability of evolving at any rate contained in a given probability
distribution. Thus, for a discretized distribution with a number ρ of discrete rates,
ρ distinct likelihood vector entries have to be computed per site i. In the continuous
case likelihoods must be integrated over the entire probability distribution.

The most commonly used distributions are the continuous [74] and discrete [71]
� distributions. Typically, a discrete � distribution with ρ = 4 points/rates
is used since this represents an acceptable trade-off between inference time,
memory consumption, and accuracy. Given the four individual rates from the
discrete � distribution r_0,...,r_3 now four individual likelihood entries
l_p[i].g_0,...,l_p[i].g_3 per site i have to be updated as indicated be-
low:

for(i = 0; i < m; i++)
{
l_p[i].g_0 = f(g(l_q[i], b_pq, r_0),

g(l_r[i], b_pr, r_0));

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 29
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 155

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

l_p[i].g_1 = f(g(l_q[i], b_pq, r_1),
g(l_r[i], b_pr, r_1));

l_p[i].g_2 = f(g(l_q[i], b_pq, r_2),
g(l_r[i], b_pr, r_2));

l_p[i].g_3 = f(g(l_q[i], b_pq, r_3),
g(l_r[i], b_pr, r_3));

}

Usually, Biologists have to account for rate heterogeneity in their analyses due to
the properties of real world data and in order to obtain publishable results.

From an HPC point of view it is evident that the CAT model should be preferred
over the � model due to the significantly lower memory consumption and amount
of floating point operations which result in faster inference times. However, little is
known about the correlation between the CAT and the � model, despite the fact that
they are intended to model the same phenomenon. A recent experimental study [75]
with RAxML on 19 real-world DNA data alignments comprising 73 up to 1663
taxa indicate that CAT is on average over 5 times faster than � and—surprisingly
enough—also yields trees with even slightly better final � likelihood values (factor
1.000014 for 50 rate categories, and factor 1.000037 for 25 rate categories). Simi-
lar experimental results have been obtained by Derrick Zwickl on different datasets.
Citing from [76], p. 62: “In practice, performing inferences using the GTR + CAT
model in RAxML has proven to be an excellent method for obtaining topologies that
score well under the GTR + � model.”

The large speedup of CAT over � which exceeds factor 4 is due to increased cache
efficiency, since CAT only uses approximately one quarter of the memory and the
floating point operations required for �. In fact, the utilization of � lead to an av-
erage increase of L2 cache misses by factor 7.46 and factor 7.41 for the L3 cache
respectively. Thus, given the computational advantages of CAT over �, more effort
needs to be invested into the design of a more solid mathematical framework for
CAT. The current implementation and categorization algorithm in RAxML has been
derived from empirical observations [75]. In addition, final likelihood values ob-
tained under the CAT approximation are numerically instable at present such that the
likelihood of final trees needs to be re-computed under � in order to compare alter-
native trees based on their likelihood values. The recently released RAxML manual
(www.ics.forth.gr/~stamatak (software frame)) describes this in more detail.

In order to underline the efficiency of the GTR+CAT approximation over GTR+�

Fig. 14 depicts the GTR + � Log Likelihood development over time (seconds) on
the same starting tree. This alignment of 8864 Bacteria is currently analyzed with
RAxML in cooperation with the Pace Lab at the University of Colorado at Boulder.

www.ics.forth.gr/~stamatak

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 30
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

156 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

FIG. 14. RAxML Gamma log likelihood development over time for inferences under GTR+CAT and
GTR + � on an alignment of 8864 bacteria.

3.2 State-of-the-Art Programs

The current Section lists and discusses some of the most popular and widely used
sequential and parallel ML programs for phylogenetic inference.

3.2.1 Hill-Climbing Algorithms

In 2003 Guidon and Gascuel published an interesting paper about their very fast
program PHYML [58]. The respective performance analysis includes larger simu-
lated datasets of 100 sequences and two well-studied real data sets containing 218
and 500 sequences. Their experiments show that PHYML is extremely fast on real
and simulated data.

However, the current hill-climbing and simulated annealing algorithms of RAxML
clearly outperform PHYML on real world data, both in terms of execution time and
final tree quality [57]. The requirement to improve accuracy on real data [57] and to
replace NNI moves (Nearest Neighbor Interchange) by more exhaustive SPR moves
(Subtree Pruning Re-grafting, also called subtree rearrangements) has been recog-
nized by the authors of PHYML. In fact, a very promising refinement/extension of

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 31
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 157

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

the lazy subtree rearrangement technique from RAxML [57] has very recently been
integrated into PHYML [77].

Irrespective of these differences between RAxML and PHYML, the results
in [58] show that well-established sequential programs like PAUP* [78], TREE-
PUZZLE [79], and fastDNAml [70] are prohibitively slow on datasets containing
more than 200 sequences, at least in sequential execution mode.

More recently, Vinh et al. [46] published a program called IQPNNI which yields
better trees than PHYML on real world data but is significantly slower. In comparison
to RAxML, IQPNNI is both slower and less accurate [80].

3.2.2 Simulated Annealing Approaches
The first application of simulated annealing techniques to ML tree searches was

proposed by Salter et al. [81] (the technique has previously been applied to MP phy-
logenetic tree searches by D. Barker [82]). However, the respective program SSA
has not become very popular due to the limited availability of nucleotide substitu-
tion models and the focus on the molecular clock model of evolution. Moreover, the
program is relatively hard to use and comparatively slow in respect to recent hill-
climbing implementations. Despite the fact that Salter et al. where the first to apply
simulated annealing to ML-based phylogenetic tree searches there do not exist any
published biological results using SSA. However, the recent implementation of a
simulated annealing search algorithm in RAxML [80] yielded promising results.

3.2.3 Parallel Phylogeny Programs
Despite the fact that parallel implementations of ML programs are technically

very solid in terms of performance and parallelization techniques, they significantly
lag behind algorithmic development. This means, that programs are parallelized that
mostly do not represent the state-of-the-art algorithms any more. Therefore, they are
likely to be out-competed by the most recent sequential algorithms in terms of final
tree quality and—more importantly—accumulated CPU time.

For example, the largest tree computed with parallel fastDNAml [83] which is
based on the fastDNAml algorithm from 1994 contained 150 taxa. Note, that there
also exists a distributed implementation of this code [84].

The same argument holds for a technically very interesting JAVA-based distrib-
uted ML program: DPRml [85]. Despite the recent implementation of state-of-the-art
search algorithms in DPRml, significant performance penalties are caused by us-
ing JAVA both in terms of memory efficiency and speed of numerical calculations.
Those language-dependent limitations will become more intense when trees com-
prising over 417 taxa (currently largest tree with DPRml, Thomas Keane, personal
communication) are computed with DPRml.

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 32
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

158 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

The technically challenging parallel implementation of TrExML [86,87] (original
sequential algorithm published in the year 2000) has been used to compute a tree
containing 56 taxa. However, TrExML is probably not suited for computation of
very large trees since the main feature of the algorithm consists in a more exhaustive
exploitation of search space for medium-sized alignments. Due to this exhaustive
search strategy the execution time increases more steeply with the number of taxa
than in other programs.

The largest tree computed with the parallel version of TREE-PUZZLE [88] con-
tained 257 taxa due to limitations caused by the data structures used (Heiko Schmidt,
personal communication). However, TREE-PUZZLE provides mainly advantages
concerning quality-assessment for medium-sized trees. IQPNNI has also recently
been parallelized with MPI and shows good speedup values [89].

M.J. Brauer et al. [59] have implemented a parallel genetic tree-search algo-
rithm (parallel GAML) which has been used to compute trees of up to approxi-
mately 3000 taxa with the main limitation for the computation of larger trees be-
ing memory consumption (Derrick Zwickl, personal communication). However, the
new tree search mechanism implemented in the successor of GAML, which is now
called GARLI [76] (Genetic Algorithm for Rapid Likelihood Inference, available
at http://www.bio.utexas.edu/grad/zwickl/web/garli.html) is equally powerful as the
RAxML algorithm (especially on datasets �1000 taxa) but requires higher inference
times [76]. However, GARLI is one of the few state-of-the-art programs, that incor-
porates an outstanding technical implementation and optimization of the likelihood
functions.

There also exists a parallel version of Rec-I-DCM3 [34] for ML which is based
on RAxML (see Section 2.2 of this chapter). The current implementation faces some
scalability limitations due to load imbalance caused by significant differences in the
subproblem sizes. In addition, the parallelization of RAxML for global tree optimiza-
tions also faces some intrinsic difficulties (see [90] and page 168 in Section 3.4.3).

Finally, there exist the previous parallel and distributed implementations of the
RAxML hill-climbing algorithm [91,92].

3.2.4 Conclusion

The above overview of recent algorithmic and technical developments, and the
maximum tree sizes calculated so far, underlines the initial statement that a part of
the computational problems in phylogenetics tends to become technical. This view
is shared in the recent paper by Hordijk and Gascuel on the new search technique
implemented in PHYML [77]. In order to enable large-scale inference of huge trees
a greater part of research efforts should focus on the technical implementation of the
likelihood functions, the allocation and use of likelihood vectors, cache efficiency,

http://www.bio.utexas.edu/grad/zwickl/web/garli.html

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 33
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 159

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

as well as exploitation of hardware such as Symmetrical Multi-Processing (SMPs),
Graphics Processing Units (GPUs), and Multi-Core Processors. Thus, the rest of the
current section will mainly focus on these rarely documented and discussed technical
issues and indicate some potential directions of future research.

3.3 Technical Details: Memory Organization and Data
Structures

As already mentioned, the implementation of the likelihood functions in fastD-
NAml represents perhaps the most efficient implementation currently available, both
in terms of memory organization and loop optimization. The current version of
RAxML has been derived from the fastDNAml source code and extended this ef-
ficient implementation.

The current Section reviews some of the—so far undocumented—technical im-
plementation details which will be useful for future ML implementations.

3.3.1 Memory Organization and Efficiency

As outlined in Section 3.1 the amount of memory space required is dominated by
the length and number of likelihood vectors. Thus, the memory requirements are of
order O(n ∗ m) where n is the number of sequences and m the alignment length. An
unrooted phylogenetic tree for an alignment of dimensions n ∗ m has n tips or leaves
and n−2 inner nodes, such that 2n−2 vectors of length m would be required to com-
pute the likelihood bottom-up at a given virtual root vr . Note that, the computation of
the vectors at the tips of the tree (leaf-vectors) is significantly less expensive than the
computation of inner vectors. In addition, the values of the leaf-vectors are topology-
independent, i.e. it suffices to compute them once during the initialization of the
program. Unlike most other ML implementations however, in fastDNAml a distinct
approach has been chosen: The program trades memory for additional computations,
i.e. only 3 (!) likelihood vectors are used to store tip-values. This means that tip
likelihood vectors will have to be continuously re-computed on-demand during the
entire inference process. On the other hand the memory consumption is reduced
to (n + 1) ∗ m in contrast to (2n − 2) ∗ m. This represents a memory footprint
reduction by almost factor 2. This leads to improved cache-efficiency and the capa-
bility to handle larger alignments. Experiments with RAxML using the alternative
implementation with n precomputed leaf-vectors on a 1000-taxon alignment have
demonstrated that the re-computation of leaf-vector values is in fact more efficient,
even with respect to execution times. Due to the growing chasm between CPU and
RAM performance and the constantly growing alignment sizes, the above method
should be used. The importance and impact of cache efficiency is also underlined

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 34
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

160 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

by the significant superlinear speedups achieved by the OpenMP implementation of
RAxML (see [93] and Fig. 19).

The idea of trading memory for computation with respect to tip vectors has
been further developed in the current release of RAxML-VI for High Perfor-
mance Computing (RAxML-VI-HPC). This new version does not use or com-
pute any leaf-vectors at all. Instead it uses one global leaf-likelihood vector
globalLeafVector[] of length 15 which contains the pre-computed likeli-
hood vectors for all 15 possible nucleotide sequence states. Note that, the number
of 15 states comes from some intermediate states which are allowed, e.g. apart from
A,C,G,T,- the letter R stands for A or G and Y for C or T etc. When a tip with
a nucleotide sequence sequence[i] where i=1,...,m and alignment length
m is encountered, the respective leaf-likelihood vector at position i of the align-
ment is obtained by referencing globalLeafVector[] via the sequence entry
sequence[i], i.e. likelivector = globalTip[sequence[i]]. Note
that sequence[] is a simple array of type char which contains the sequences of
the alignment. The introduction of this optimization yielded performance improve-
ments of approximately 5–10%. Finally, note that GARLI uses a similar, though
more sophisticated implementation of leaf-likelihood vector computations (Derrick
Zwickl, personal communication).

With respect to the internal likelihood vectors there also exist two different ap-
proaches. In programs such as PHYML or IQPNNI not one but three likelihood
vectors are allocated to each internal node, i.e. one vector for each direction of the
unrooted tree. Thus, PHYML also maintains an unrooted view of the tree with re-
spect to the likelihood vector organization.

If the likelihood needs to be calculated at an arbitrary branch of the tree the re-
quired likelihood vectors to the left and right of the virtual root will be immediately
available. On the other hand, a very large amount of those vectors will have to be
re-computed after a change of the tree topology or branch lengths (see Fig. 15 for an
example).

In RAxML and fastDNAml only one inner likelihood vector per internal node,
is allocated. This vector is relocated to the one of the three outgoing branches
noderec *next (see data structure below) of the inner node which points towards
the current virtual root. If the likelihood vector xarray *x is already located at
the correct branch it must not be recomputed. The infrastructure to move likelihood
vectors is implemented by a cyclic list of 3 data structures of type node (one per
outgoing branch struct noderec *back) to the likelihood vector data struc-
ture. At all times, two of those pointers point to NULL whereas one points to the
actual address of the likelihood vector (see Fig. 16).

typedef struct noderec {
double z; /* branch length value */

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 35
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 161

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

FIG. 15. Likelihood vector update in PHYML.

struct noderec *next;
/* pointer to next structure in cyclic list*/
struct noderec *back; /* pointer to neighboring node*/
xarray *x; /* pointer to likelihood vector*/
} node;

With respect to the position of the likelihood vectors in the cyclic list of
struct noderec a tree using this scheme is always rooted. In addition, at each
movement of the virtual root, in order to e.g. optimize a branch, a certain amount
of vectors must be recomputed. The same holds for changes in tree topology. How-
ever, as for the tip vectors, there is a trade-off between additional computations and
reduced memory consumption for inner likelihood vectors as well. Moreover, the
order by which topological changes are applied to improve the likelihood, can be
arranged intelligently, such that only few likelihood vectors need to be updated after
each topological change. Currently, there exists no comparative study between those
two approaches to memory organization and likelihood calculation. Nonetheless, it

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 36
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

162 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

FIG. 16. Likelihood vector organization in RAxML.

would be very useful to compare memory consumption, cache efficiency, and amount
of floating point operations for these alternatives under the same search algorithm.

It appears however, that the latter approach is more adequate for inference of
extremely large trees with ML. Experiments with an alignment of approximately
25,000 protobacteria show that RAxML already requires 1.5 GB of main memory
using the GTR + CAT approximation. A very long multi-gene alignment of 2182
mammalian sequences with a length of more than 50,000 base pairs already required
2.5 GB under GTR + CAT and 9 GB under GTR + �. To the best of the authors
knowledge this alignment represents the largest data matrix which has been ana-
lyzed under ML to date. Given that the alternative memory organization requires at
least 3 times more memory it is less adequate for inference of huge trees.

One might argue, that the application of a divide-and-conquer approach can solve
memory problems since it will only have to handle significantly smaller subtrees and
sub-alignments. Due to the algorithmic complexity of the problem however, every
divide-and-conquer approach to date also performs global optimizations on the com-
plete tree.

The extent of the memory consumption problem becomes even more evident when
one considers, that the length m of the 25,000 protobacteria alignment is only 1463
base pairs, i.e. it is relatively short with respect to the large number of sequences.
Typically, for a publishable biological analysis of such large datasets a significantly
greater alignment length would be required [40]. In the final analysis it can be stated
that memory organization and consumption are issues of increasing importance in
the quest to reconstruct the tree of life which should contain at least 100,000 or
1,000,000 organisms based on the rather more conservative estimates.

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 37
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 163

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

The increasing concern about memory consumption is also reflected by the re-
cent changes introduced in the new release of MrBayes [94] (version 3.1.1). Despite
the fact that MrBayes performs Bayesian inference of phylogenetic trees the under-
lying technical problems are the same since the likelihood value of alternative tree
topologies needs to be computed and thus likelihood computations consume a very
large part of execution time. Therefore, to reduce memory consumption of MrBayes,
double-precision arithmetics have been replaced by single-precision operations.

3.3.2 Loop Optimization and Model Implementation
Another aspect of increasing importance in HPC ML program design consists in

highly optimized implementations of the likelihood functions. They consume over
90% of total execution time in typical ML implementations, e.g. 92.72% in PHYML
and 92.89% in RAxML for a typical dataset of 150 sequences.

Despite the obvious advantages of a generic programming style as used e.g. in
PHYML or IQPNNI, each model of sequence evolution such as HKY85 or GTR
should be implemented in separate functions. Depending on the selected model
RAxML uses function pointers to highly optimized individual functions for each
model. This allows for better exploitation of symmetries and simplifications on a per-
model basis. As already mentioned the compute-intensive part of the computations
is performed by 4–5 for-loops (depending on the implementation) over the length
of the alignment m. For example the manual optimization and complete unrolling
of inner loops for the recently implemented protein substitution models in RAxML
yielded more than 50% of performance improvement. This increase in performance
could not be achieved by the use of highly sophisticated Intel or PGI compilers
alone. In addition, instructions within the for-loops have been re-ordered to better
suit pipeline architectures.

Another important technical issue concerns the optimization technique used for
branch lengths, which consumes 42.63% of total execution time in RAxML and
58.74% in PHYML. Despite the additional cost required to compute the first and
second derivative of the likelihood function, the Newton–Raphson method (RAxML,
fastDNAml) should be preferred over Brent’s method (PHYML) since Newton–
Raphson converges significantly faster. Due to this observation Brent has recently
been replaced by Newton–Raphson in the new version of IQPNNI [89] (version 3.0).
In addition, the latest version of IQPNNI also incorporates the BFGS method [95]
for multi-dimensional optimization of model parameters (Bui Quang Minh, personal
communication). BFGS is very efficient for parameter-rich models such as GTR+�

or complex protein models, in comparison to the more common approach of optimiz-
ing parameters one-by-one. By deploying BFGS the parameter optimization process
for the 6 rate parameters of the GTR model in IQPNNI could be accelerated by fac-
tor 3–4 in comparison to Brent (Bui Quang Minh, personal communication). Those

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 38
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

164 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

FIG. 17. Number of likelihood scalings.

mathematical improvements lead to a total performance improvement of factor 1.2
up to 1.8 in IQPNNI over the previous version of the program.

A useful discussion of numerical problems and solutions for the inference of large
trees can be found in [96]. Another important numerical design decision which con-
cerns the memory-time trade-off is the choice between single (e.g. MrBayes), double
(e.g. RAxML, PHYML), and long double (IQPNNI) precision arithmetics for calcu-
lating the likelihood. This choice is important since it has an effect on the number
of times very small likelihood values have to be scaled (scaling events). Typically,
the larger the tree, the more scaling events are anticipated. This trend is outlined
in Fig. 17 where the x-axis indicates the number of sequences in the dataset and
the y-axis the number of scaling events in RAxML for the evaluation and parameter-
optimization of one single tree topology. When single precision is used those compu-
tationally relatively expensive operations have to be performed more frequently. On
the other hand double and long double require more memory space. Thus, the choice
of double precision appears to represent a reasonable trade-off. A porting of RAxML
from double to float for the purposes of the GPGPU implementation [97] (see
Section 3.4) did not yield better results in terms of execution times.

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 39
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 165

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

3.4 Parallelization Techniques

Typically, in ML programs there exist three distinct sources of parallelism which
are depicted in Fig. 18:

1. Fine-grained loop-level parallelism at the for-loops of the likelihood function
which can be efficiently exploited with OpenMP on 2-way or 4-way SMPs.

2. Coarse-grained parallelism at the level of tree alterations and evaluations
which can be exploited using MPI and a master–worker scheme.

3. Job-level parallelism where multiple phylogenetic analyses on the same dataset
with distinct starting trees or multiple bootstrap analyses are performed simul-
taneously on a cluster.

3.4.1 Job-Level Parallelism

Since implementing job-level parallelism does not represent a very challenging
task this issue is omitted. It should be stated however, that this is probably the best
way to exploit a parallel computer for real-world biological analyses (including mul-
tiple bootstrapping) of large datasets in most practical cases. In order to conduct a
biologically “publishable” study, multiple inferences with distinct starting trees and
a relatively large number of bootstrap runs should be executed. The typical RAxML

FIG. 18. The three nested sources of parallelism in ML programs.

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 40
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

166 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

execution times under elaborate models of nucleotide substitution for trees of 1000–
2000 taxa range from 12 to 24 hours on an Opteron CPU. Note that, the dedicated
High Performance Computing Version of RAxML-VI (released March 2006) only
requires about 40–60 hours in sequential execution mode on 7000–8000 taxon align-
ments under the reasonably accurate and fast GTR+CAT approximation. In order to
provide a useful tool for Biologists this version has also been parallelized with MPI
to enable parallel multiple inferences on the original alignment as well as parallel
multiple non-parametric bootstraps.

3.4.2 Shared-Memory Parallelism

The exploitation of fine-grained loop-level parallelism is straightforward, since
ML programs spend most of their time in the for-loops for calculating the likelihood
(see Section 3.1). In addition, those loops do not exhibit any dependencies between
iteration i → i + 1 such that they can easily be parallelized with OpenMP. As
indicated in the pseudo-code below, it suffices to insert a simple OpenMP directive:

#pragma omp parallel for private(...)
for(i = 0; i < m; i++)
l_p[i] = f(g(l_q[i], b_pq), g(l_r[i], b_pr));

There are several advantages to this approach: The implementation is easy, such
that little programming effort (approximately one week) is required to parallelize an
ML program with OpenMP. The memory space of the likelihood vectors is equally
distributed among processors, such that higher cache efficiency is achieved than in
the sequential case, due to the smaller memory footprint. This has partially lead
to significantly superlinear speedups with the OpenMP version of RAxML [93] on
large/long alignments. Figure 19 indicates the speedup values of the OpenMP version
of RAxML on a simulated alignment of 300 organisms with a length of m = 5000
base pairs for the Xeon, Itanium, and Opteron architectures.

Moreover, modern supercomputer architectures can be exploited in a more ef-
ficient manner by a hybrid MPI/OpenMP approach. Finally, it is a very gen-
eral concept that can easily be applied to other ML phylogeny programs. An
unpublished OpenMP parallelization of PHYML by M. Ott and A. Stamatakis
yielded comparable—though not superlinear—results. GARLI (Derrick Zwickl, per-
sonal communication) and IQPNNI [98] are also currently being parallelized with
OpenMP. However, the scalability of this approach is usually limited to 2-way or
4-way SMPs and relatively long alignments due to the granularity of this source of
parallelism. However, this type of parallelism represents a good solution for analyses
of long multi-gene alignments which are becoming more popular recently. Figure 20
indicates the parallel performance improvement on 1 versus 8 CPUs on one node of

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 41
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 167

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

FIG. 19. Speedup of the OpenMP version of RAxML on Xeon, Itanium, and Opteron architectures
for a relatively long alignment of 5000 nucleotides.

the CIPRES project (www.phylo.org) cluster located at the San Diego Supercomput-
ing Center for the previously mentioned multi-gene alignment of mammals during
the first three iterations of the search algorithm (speedup: 6.74).

Apart from SMPs another interesting hardware platform to exploit loop-level par-
allelism are GPUs (Graphics Processing Units). Recently, General Purpose compu-
tations on GPUs (GPGPU) are becoming more popular due to the availability of
improved programming interfaces such a the BrookGPU [99] compiler and run-
time implementation. Since GPUs are essentially vector processors the intrinsic
fine-grained parallelism of ML programs can be exploited in a very similar way
as on SMPs. RAxML has recently been parallelized on a GPU [97] and achieves a
highly improved price/performance and power-consumption/performance ratio than
on CPUs. Note that, in [97] only one of the main for-loops of the program which
accounts for approximately 50% of overall execution time has been ported to the
GPU. Despite the incomplete porting and the fact that a mid-class GPU (NVIDIA
FX 5700LE, price: $75, power consumption: 24 W) and high-end CPU (Pentium 4
3.2 GHz, price: $200, power consumption: �130 W) have been used, a an overall
speedup of 1.2 on the GPU has been measured. However, there still exists a rela-
tively large number of technical problems, such as unavailability of double precision
arithmetics (RAxML had to be ported to float) and insufficient memory capacity

www.phylo.org

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 42
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

168 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

FIG. 20. Run time improvement for the first three iterations of the search algorithm of the OpenMP
version of RAxML-VI-HPC on 1 and 8 CPUs on a 51,089 bp long multi-gene alignment of 2182 mam-
mals.

for very large trees (usually up to 512 MB). A natural extension of this work consists
in the usage of clusters of GPUs.

3.4.3 Coarse-Grained Parallelism

The coarse-grained parallelization of ML phylogeny programs is less straight-
forward: The parallel efficiency which can be attained depends strongly on the
structure of the individual search algorithms. In addition the rate at which improved
topologies are encountered has a major impact on parallel efficiency since the tree
structure must be continuously updated at all processes. This can result in significant
communication overheads.

For example RAxML frequently detects improved topologies during the initial
optimization phase of the tree. One iteration of the search algorithm consists in ap-
plying a sequence of 2n distinct LSR moves (Lazy Subtree Rearrangements, see [57]
for details) to the currently best topology tbest. If the likelihood of tbest is improved by
the ith LSR, i = 1, . . . , 2n, the changed topology is kept, i.e. tbest := ti . Thus, one

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 43
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 169

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

FIG. 21. Typical asymptotic likelihood improvement over time for RAxML on a 150-taxon alignment.

iteration of the sequential algorithm (one iteration of LSRs) generates a sequence of
k � n distinct topologies with improved likelihood values ti1 → ti2 → · · · → tik .
The likelihood optimization process typically exhibits an asymptotic convergence
behavior over time with a steep increase of the likelihood values during the initial
optimization phase and an shallow improvement during the final optimization phase
(see Fig. 21).

Due to the small execution time of a single LSR even on huge trees, the algorithm
can only be parallelized by independently assigning one or more LSR jobs at a time
to each worker processes in a master-worker scheme. The main problem consists in
breaking up the sequential dependency ti1 → ti2 → · · · → tik of improvements.
Since this is very difficult a reasonable approach is to introduce a certain amount of
non-determinism. This means that workers will receive topology updates for their
local copy of tbest detected by other workers with some delay and in a different order.
If during the initial optimization phase of RAxML k is relatively large with respect
to n, e.g. k ≈ n this has a negative impact on the parallel efficiency since a large num-
ber of update messages has to be communicated and is delayed. For example, on an
alignment with 7769 organisms every second LSR move yielded a topology with an
improved likelihood value during the first iteration of the search algorithm. Thus,
the mechanism of exchanging topological alterations between workers represents a
potential performance bottleneck. The standard string representation of trees (with

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 44
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

170 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

parentheses, taxon-names and branch lengths) as used in parallel fastDNAml [83]
and an older parallel version of RAxML [92] is becoming inefficient. This is due
to the feasibility to compute significantly larger trees caused by recent algorithmic
advances. In addition, the starting trees for these large analyses which are usually
computed using Neighbor Joining or “quick & dirty” Maximum Parsimony heuris-
tics are worse (in terms of relative difference between the likelihood score of the
starting tree and the final tree topology) than on smaller trees. As a consequence im-
proved topologies are detected more frequently during the initial optimization phase
with a negative impact on speedup values. Thus, topological changes should be com-
municated by specifying the actual change only, e.g. remove subtree number i from
branch x and insert it into branch y. This can still lead to inconsistencies among the
local copies of tbest at individual workers but appears to be the only feasible solution
for parallelizing the initial optimization phase.

Nonetheless, the final optimization phase which is significantly longer with respect
to the total run time of the program is less problematic to parallelize since improved
topologies are encountered less frequently. It is important to note, that the above
problems mainly concern the parallelization of RAxML but will generally become
more prominent as tree sizes grow.

A recent parallelization of IQPNNI [89] with near-optimal relative speedup values
demonstrates that these problems are algorithm-dependent. However, as most other
programs IQPNNI is currently constrained to tree sizes of approximately 2000 taxa
due to memory shortage. The comments about novel solutions which have to be
deployed for communicating and updating topologies still hold.

An issue which will surely become important for future HPC ML program devel-
opment is the distribution of memory among processes: Currently, most implemen-
tations hold the entire tree data structure in memory locally at each worker. Given
the constant increase of computable tree sizes, and the relatively low main memory
per node (1 GB) of current MPP architectures, such as the IBM BlueGene, it will
become difficult to hold the complete tree in memory for trees comprising more than
20,000–100,000 taxa.

3.5 Conclusion

Due to the significant progress, which has been achieved by the introduction of
novel search algorithms for ML-based phylogenetic inference, analyses of huge phy-
logenies comprising several hundreds or even thousands of taxa have now become
feasible. However, the performance of ML phylogeny programs is increasingly lim-
ited by rarely documented and published technical implementation issues. Thus, an
at least partial paradigm shift towards technical issues is required in order to advance

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 45
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 171

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

the field and to enable inference of larger trees with the ultimate, though still distant,
goal to compute the tree-of-life.

As an example for the necessity of a paradigm shift one can consider the recent
improvements to RAxML: The significant (unpublished) speedups for sequential
RAxML-VI over sequential RAxML-V, of 1.66 on 1000 taxa over 30 on 4000 taxa
up to 67 on 25,000 taxa, have been attained by very simple technical optimizations of
the code.1 The potential for these optimizations has only been realized by the author
who has been working on the RAxML-code for almost 4 years after the respective
paradigm shift.

To this end, the current Section covered some of those rarely documented but
increasingly important technical issues and summarizes how MPP, SMP, hybrid su-
percomputer, and GPU architectures can be used to infer huge trees.

ACKNOWLEDGEMENTS

Bader’s research discussed in this chapter has been supported in part by NSF
Grants CAREER ACI-00-93039, CCF-0611589, DBI-0420513, ITR ACI-00-81404,
ITR EIA-01-21377, Biocomplexity DEB-01-20709, and ITR EF/BIO 03-31654; and
DARPA Contract NBCH30390004.

REFERENCES

[1] Bader D., Moret B., Vawter L., “Industrial applications of high-performance computing
for phylogeny reconstruction”, in: Siegel H. (Ed.), Proc. SPIE Commercial Applications
for High-Performance Computing, Denver, CO, vol. 4528, SPIE, Bellingham, WA, 2001,
pp. 159–168.

[2] Moret B., Wyman S., Bader D., Warnow T., Yan M., “A new implementation and de-
tailed study of breakpoint analysis”, in: Proc. 6th Pacific Symp. Biocomputing, PSB 2001,
Hawaii, 2001, pp. 583–594.

[3] Yan M., “High performance algorithms for phylogeny reconstruction with maximum par-
simony”, PhD thesis, Electrical and Computer Engineering Department, University of
New Mexico, Albuquerque, NM, 2004.

[4] Yan M., Bader D.A., “Fast character optimization in parsimony phylogeny reconstruc-
tion”, Technical report, Electrical and Computer Engineering Department, The Univer-
sity of New Mexico, Albuquerque, NM, 2003.

[5] Caprara A., “Formulations and hardness of multiple sorting by reversals”, in: 3rd Ann.
Internat. Conf. Computational Molecular Biology, RECOMB99, Lyon, France, ACM,
New York, 1999.

1 Performance results and datasets used for RAxML-VI are available on-line at www.ics.foth.gr/
~stamatak (material frame).

www.ics.foth.gr/~stamatak
www.ics.foth.gr/~stamatak

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 46
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

172 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

[6] Pe’er I., Shamir R., “The median problems for breakpoints are NP-complete”, Technical
Report 71, Electronic Colloquium on Computational Complexity, 1998.

[7] Swofford D., Olsen G., Waddell P., Hillis D., “Phylogenetic inference”, in: Hillis A.,
Moritz C., Mable B. (Eds.), Molecular Systematics, Sinauer Associates, Sunderland, MA,
1996, pp. 407–514.

[8] Nei M., Kumar S., Molecular Evolution and Phylogenetics, Oxford Univ. Press, Oxford,
UK, 2000.

[9] Faith D., “Distance method and the approximation of most-parsimonious trees”, System-
atic Zoology 34 (1985) 312–325.

[10] Farris J., “Estimating phylogenetic trees from distance matrices”, Amer. Naturalist 106
(1972) 645–668.

[11] Li W.H., “Simple method for constructing phylogenetic trees from distance matrices”,
Proc. Natl. Acad. Sci. USA 78 (1981) 1085–1089.

[12] Saitou N., Nei M., “The neighbor-joining method: A new method for reconstruction of
phylogenetic trees”, Mol. Biol. Evol. 4 (1987) 406–425.

[13] Studier J., Keppler K., “A note on the neighbor-joining method of Saitou and Nei”, Mol.
Biol. Evol. 5 (1988) 729–731.

[14] Rice K., Warnow T., “Parsimony is hard to beat”, in: Computing and Combinatorics,
1997, pp. 124–133.

[15] Hendy M., Penny D., “Branch and bound algorithms to determine minimal evolutionary
trees”, Math. Biosci. 59 (1982) 277–290.

[16] Fitch W., “Toward defining the course of evolution: Minimal change for a specific tree
topology”, Systematic Zoology 20 (1971) 406–416.

[17] Purdom Jr., Bradford P., Tamura K., Kumar S., “Single column discrepancy and dynamic
max-mini optimization for quickly finding the most parsimonious evolutionary trees”,
Bioinformatics 2 (16) (2000) 140–151.

[18] Eck R., Dayhoff M., Atlas of Protein Sequence and Structure, National Biomedical Re-
search Foundation, Silver Spring, MD, 1966.

[19] Benaïchouche M., Cung V., Dowaji S., Cun B., Mautor T., Roucairol C., “Building a
parallel branch and bound library”, in: Ferreira A., Pardalos P. (Eds.), Solving Combi-
natorial Optimization Problem in Parallel: Methods and Techniques, Springer-Verlag,
Berlin, 1996, pp. 201–231.

[20] Swofford D., Begle D., PAUP: Phylogenetic Analysis Using Parsimony, Sinauer Asso-
ciates, Sunderland, MA, 1993.

[21] Felsenstein J., “PHYLIP—phylogeny inference package (version 3.2)”, Cladistics 5
(1989) 164–166.

[22] Goloboff P., “Analyzing large data sets in reasonable times: Solutions for composite op-
tima”, Cladistics 15 (1999) 415–428.

[23] Nixon K., “The parsimony ratchet, a new method for rapid parsimony analysis”, Cladis-
tics 15 (1999) 407–414.

[24] Sankoff D., Blanchette M., “Multiple genome rearrangement and breakpoint phylogeny”,
J. Comput. Biol. 5 (1998) 555–570.

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 47
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 173

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

[25] Cosner M., Jansen R., Moret B., Raubeson L., Wang L.S., Warnow T., Wyman S.,
“An empirical comparison of phylogenetic methods on chloroplast gene order data in
Campanulaceae”, in: Sankoff D., Nadeau J. (Eds.), Comparative Genomics: Empirical
and Analytical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution
of Gene Families, Kluwer Academic, Dordrecht, Netherlands, 2000, pp. 99–121.

[26] Bader D., Moret B., “GRAPPA runs in record time”, HPCwire 9 (47) (2000).
[27] Giribet G., “A review of tnt: Tree analysis using new technology: Version 1.0,

beta test v. 0.2”. Program and documentation available at http://www.zmuc.dk/
public/phylogeny/tnt/;
Goloboff P.A., Farris J.S., Nixon K., “Instituto Miguel Lillo, San Miguel de Tucuman,
Argentina”, Syst. Biol. (2005) 176–178.

[28] Meier R., Ali F., “The newest kid on the parsimony block: Tnt (tree analysis using new
technology”, Syst. Entomol. 30 (2005) 179–182.

[29] Goloboff P., “Analyzing large data sets in reasonable times: solution for composite op-
tima”, Cladistics 15 (1999) 415–428.

[30] Swofford D.L., PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods),
Version 4.0, Sinauer Associates, Underland, MA, 1996.

[31] Stamatakis A., Ludwig T., Meier H., “Raxml-iii: A fast program for maximum
likelihood-based inference of large phylogenetic trees”, Bioinformatics 21 (4) (2005)
456–463.

[32] Huson D., Nettles S., Warnow T., “Disk-covering, a fast-converging method for phyloge-
netic tree reconstruction”, J. Comput. Biol. 6 (1999) 369–386.

[33] Huson D., Vawter L., Warnow T., “Solving large scale phylogenetic problems using
DCM2”, in: Proc. 7th Internat. Conf. on Intelligent Systems for Molecular Biology,
ISMB’99, AAAI Press, Menlo Park, CA, 1999, pp. 118–129.

[34] Roshan U., Moret B.M.E., Warnow T., Williams T.L., “Rec-i-dcm3: a fast algorithmic
technique for reconstructing large phylogenetic trees”, in: Proc. of CSB04, Stanford, CA,
2004.

[35] Roshan U., “Algorithmic techniques for improving the speed and accuracy of phyloge-
netic methods”, PhD thesis, The University of Texas at Austin, 2004.

[36] Roshan U., Moret B.M.E., Williams T.L., Warnow T., “Performance of supertree meth-
ods on various dataset decompositions”, in: Bininda-Emonds O.R.P. (Ed.), Phylogenetic
Supertrees: Combining Information to Reveal the Tree of Life, in: Dress A. (Ed.), Compu-
tational Biology, vol. 3, Kluwer Academic, Dordrecht/Norwell, MA, 2004, pp. 301–328.

[37] Nakhleh L., Roshan U., St. John K., Sun J., Warnow T., “Designing fast converging
phylogenetic methods”, in: Proc. 9th Internat. Conf. on Intelligent Systems for Molecular
Biology, ISMB’01, in: Bioinformatics, vol. 17, Oxford Univ. Press, Oxford, UK, 2001,
pp. S190–S198.

[38] Nakhleh L., Moret B., Roshan U., John K.S., Warnow T., “The accuracy of fast phyloge-
netic methods for large datasets”, in: Proc. 7th Pacific Symp. Biocomputing, PSB’2002,
World Scientific Publ., Singapore, 2002, pp. 211–222.

[39] Nakhleh L., Roshan U., St. John K., Sun J., Warnow T., “The performance of phyloge-
netic methods on trees of bounded diameter”, in: Proc. of WABI’01, in: Lecture Notes in
Comput. Sci., vol. 2149, Springer-Verlag, Berlin, 2001, pp. 214–226.

http://www.{}zmuc.dk/{}public/phylogeny/tnt/
http://www.{}zmuc.dk/{}public/phylogeny/tnt/

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 48
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

174 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

[40] Moret B., Roshan U., Warnow T., “Sequence length requirements for phylogenetic meth-
ods”, in: Proc. of WABI’02, 2002, pp. 343–356.

[41] Golumbic M., Algorithmic Graph Theory and Perfect Graphs, Academic Press, San
Diego, CA, 1980.

[42] Hoos H.H., Stutzle T., Stochastic Local Search: Foundations and Applications, Morgan
Kaufmann, San Francisco, CA, 2004.

[43] Du Z., Stamatakis A., Lin F., Roshan U., Nakhleh L., “Parallel divide-and-conquer phy-
logeny reconstruction by maximum likelihood”. Accepted to the 2005 International
Conference on High Performance Computing and Communications, pending publication
in proceedings.

[44] Stewart C., Hart D., Berry D., Olsen G., Wernert E., Fischer W., “Parallel implemen-
tation and performance of fastdnaml—a program for maximum likelihood phylogenetic
inference”, in: Proceedings of the 14th IEEE/ACM Supercomputing Conference, SC2001,
2001.

[45] Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A.,
Lai T., Steppi S., Jobb G., Fvrster W., Brettske I., Gerber S., Ginhart A.W., Gross O.,
Grumann S., Hermann S., Jost R., Kvnig A., Liss T., Lubmann R., May M., Nonhoff B.,
Reichel B., Strehlow R., Stamatakis A., Stuckman N., Vilbig A., Lenke M., Ludwig T.,
Bode A., Schleifer K.H., “Arb: a software environment for sequence data”, Nucl. Acids
Res. 32 (4) (2004) 1363–1371.

[46] Vinh L., Haeseler A., “Iqpnni: Moving fast through tree space and stopping in time”,
Mol. Biol. Evol. 21 (2004) 1565–1571.

[47] Maidak B., Cole J., Lilburn T. , Parker C.T. Jr, Saxman P., Farris R., Garrity G., Olsen
G., Schmidt T., Tiedje J., “The RDP-II (Ribosomal Database Project)”, Nucl. Acids
Res. 29 (1) (2001) 173–174.

[48] Lipscomb D., Farris J., Kallersjo M., Tehler A., “Support, ribosomal sequences and the
phylogeny of the eukaryotes”, Cladistics 14 (1998) 303–338.

[49] Rice K., Donoghue M., Olmstead R., “Analyzing large datasets: rbcL 500 revisited”, Syst.
Biol. 46 (3) (1997) 554–563.

[50] Soltis D.E., Soltis P.S., Chase M.W., Mort M.E., Albach D.C., Zanis M., Savolainen
V., Hahn W.H., Hoot S.B., Fay M.F., Axtell M., Swensen S.M., Prince L.M., Kress W.J.,
Nixon K.C., Farris J.S., “Angiosperm phylogeny inferred from 18s rDNA, rbcL, and atpB
sequences”, Botanical J. Linnean Soc. 133 (2000) 381–461.

[51] Johnson K.P., “Taxon sampling and the phylogenetic position of passeriformes: Evidence
from 916 avian cytochrome b sequences”, Syst. Biol. 50 (1) (2001) 128–136.

[52] Felsenstein J., “Phylip (phylogeny inference package) version 3.6”. Distributed by the
author, Department of Genome Sciences, University of Washington, Seattle, 2004.

[53] Swofford D.L., Olsen G.J., “Phylogeny reconstruction”, in: Hillis D., Moritz C., Marble
B.K. (Eds.), Molecular Systematics, second ed., Sinauer Associates, Sunderland, MA,
1996, pp. 407–514.

[54] Felsenstein J., “Evolutionary trees from DNA sequences: A maximum likelihood ap-
proach”, J. Mol. Evol. 17 (1981) 368–376.

[55] Ley R., Backhed F., Turnbaugh P., Lozupone C., Knight R., Gordon J., “Obesity alters
gut microbial ecology”, Proc. Natl. Acad. Sci. USA 102 (31) (2005) 11070–11075.

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 49
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 175

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

[56] Chor B., Tuller T., “Maximum likelihood of evolutionary trees is hard”, in: Proc. of
RECOMB05, 2005.

[57] Stamatakis A., Ludwig T., Meier H., “Raxml-iii: A fast program for maximum
likelihood-based inference of large phylogenetic trees”, Bioinformatics 21 (4) (2005)
456–463.

[58] Guindon S., Gascuel O., “A simple, fast, and accurate algorithm to estimate large phylo-
genies by maximum likelihood”, Syst. Biol. 52 (5) (2003) 696–704.

[59] Brauer M., Holder M., Dries L., Zwickl D., Lewis P., Hillis D., “Genetic algorithms and
parallel processing in maximum-likelihood phylogeny inference”, Mol. Biol. Evol. 19
(2002) 1717–1726.

[60] Lemmon A., Milinkovitch M., “The metapopulation genetic algorithm: An efficient so-
lution for the problem of large phylogeny estimation”, Proc. Natl. Acad. Sci. 99 (2001)
10516–10521.

[61] Jobb G., Haeseler A., Strimmer K., “Treefinder: A powerful graphical analysis environ-
ment for molecular phylogenetics”, BMC Evol. Biol. 4 (2004).

[62] Kosakovsky-Pond S., Muse S., “Column sorting: Rapid calculation of the phylogenetic
likelihood function”, Syst. Biol. 53 (5) (2004) 685–692.

[63] Stamatakis A., Ludwig T., Meier H., Wolf M. “Accelerating parallel maximum
likelihood-based phylogenetic tree calculations using subtree equality vectors”, in: Proc.
of 15th IEEE/ACM Supercomputing Conference, SC2002, 2002.

[64] Swofford D., Olsen G., “Phylogeny reconstruction”, in: Hillis D., Moritz C. (Eds.), Mole-
cular Systematics, Sinauer Associates, Sunderland, MA, 1990, pp. 411–501.

[65] Lanave C., Preparata G., Saccone C., Serio G., “A new method for calculating evolution-
ary substitution rates”, J. Mol. Evol. 20 (1984) 86–93.

[66] Rodriguez F., Oliver J., Marin A., Medina J., “The general stochastic model of nucleotide
substitution”, J. Theor. Biol. 142 (1990) 485–501.

[67] Jukes T., Cantor C. III, Evolution of Protein Molecules, Academic Press, New York,
1969, pp. 21–132.

[68] Hasegawa M., Kishino H., Yano T., “Dating of the human-ape splitting by a molecular
clock of mitochondrial DNA”, J. Mol. Evol. 22 (1985) 160–174.

[69] Posada D., Crandall K., “Modeltest: testing the model of DNA substitution”, Bioinfor-
matics 14 (9) (1998) 817–818.

[70] Olsen G., Matsuda H., Hagstrom R., Overbeek R., “fastdnaml: A tool for construction
of phylogenetic trees of DNA sequences using maximum likelihood”, Comput. Appl.
Biosci. 20 (1994) 41–48.

[71] Yang Z., “Among-site rate variation and its impact on phylogenetic analyses”, Trends
Ecol. Evol. 11 (1996) 367–372.

[72] Olsen G., Pracht S., Overbeek R., “Dnarates distribution”, http://geta.life.uiuc.edu/~gary/
programs/DNArates.html, unpublished, 1998.

[73] Meyer S., v. Haeseler A., “Identifying site-specific substitution rates”, Mol. Biol. Evol. 20
(2003) 182–189.

[74] Yang Z., “Maximum likelihood phylogenetic estimation from DNA sequences with vari-
able rates over sites”, J. Mol. Evol. 39 (1994) 306–314.

http://{}geta.{}life.{}uiuc.edu/{}~gary/{}programs/DNArates.html
http://{}geta.{}life.{}uiuc.edu/{}~gary/{}programs/DNArates.html

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 50
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

176 D.A. BADER ET AL.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

[75] Stamatakis A., “Phylogenetic models of rate heterogeneity: A high performance comput-
ing perspective”, in: Proc. of IPDPS2006, Rhodos, Greece, 2006.

[76] Zwickl D., “Genetic algorithm approaches for the phylogenetic analysis of large biolog-
ical sequence datasets under the maximum likelihood criterion”, PhD thesis, University
of Texas at Austin, 2006.

[77] Hordijk W., Gascuel O., “Improving the efficiency of spr moves in phylogenetic tree
search methods based on maximum likelihood”, Bioinformatics (2005).

[78] Swofford D., PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods), Ver-
sion 4.0, Sinauer Associates, Underland, MA, 1996.

[79] Strimmer K., Haeseler A., “Quartet puzzling: A maximum-likelihood method for recon-
structing tree topologies”, Mol. Biol. Evol. 13 (1996) 964–969.

[80] Stamatakis A. “An efficient program for phylogenetic inference using simulated anneal-
ing”, in: Proc. of IPDPS2005, Denver, CO, 2005.

[81] Salter L., Pearl D., “A stochastic search strategy for estimation of maximum likelihood
phylogenetic trees”, Syst. Biol. 50 (1) (2001) 7–17.

[82] Barker D., “Lvb: Parsimony and simulated annealing in the search for phylogenetic
trees”, Bioinformatics 20 (2004) 274–275.

[83] Stewart C., Hart D., Berry D., Olsen G., Wernert E., Fischer W., “Parallel implemen-
tation and performance of fastdnaml—a program for maximum likelihood phylogenetic
inference”, in: Proc. of SC2001, 2001.

[84] Hart D., Grover D., Liggett M., Repasky R., Shields C., Simms S., Sweeny A., Wang P.,
“Distributed parallel computing using windows desktop system”, in: Proc. of CLADE,
2003.

[85] Keane T., Naughton T., Travers S., McInerney J., McCormack G., “Dprml: Distributed
phylogeny reconstruction by maximum likelihood”, Bioinformatics 21 (7) (2005) 969–
974.

[86] Wolf M., Easteal S., Kahn M., McKay B., Jermiin L., “Trexml: A maximum likelihood
program for extensive tree-space exploration”, Bioinformatics 16 (4) (2000) 383–394.

[87] Zhou B., Till M., Zomaya A., Jermiin L., “Parallel implementation of maximum likeli-
hood methods for phylogenetic analysis”, in: Proc. of IPDPS2004, 2004.

[88] Schmidt H., Strimmer K., Vingron M., Haeseler A., “Tree-puzzle: maximum likelihood
phylogenetic analysis using quartets and parallel computing”, Bioinformatics 18 (2002)
502–504.

[89] Minh B., Vinh L., Haeseler A., Schmidt H., “piqpnni—parallel reconstruction of large
maximum likelihood phylogenies”, Bioinformatics (2005).

[90] Du Z., Stamatakis A., Lin F., Roshan U., Nakhleh L., “Parallel divide-and-conquer phy-
logeny reconstruction by maximum likelihood”, in: Proc. of HPCC-05, 2005, pp. 776–
785.

[91] Stamatakis A., Lindermeier M., Ott M., Ludwig T., Meier H., “Draxml@home: A distrib-
uted program for computation of large phylogenetic trees”, Future Generation Comput.
Syst. 51 (5) (2005) 725–730.

[92] Stamatakis A., Ludwig T., Meier H., “Parallel inference of a 10.000-taxon phylogeny
with maximum likelihood”, in: Proc. of Euro-Par2004, 2004, pp. 997–1004.

adcom68 v.2006/08/08 Prn:11/08/2006; 11:15 F:adcom68004.tex; VTEX/Nadia p. 51
aid: 68004 pii: S0065-2458(06)68004-2 docsubty: REV

COMPUTATIONAL GRAND CHALLENGES 177

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

[93] Stamatakis A., Ott M., Ludwig T., “Raxml-omp: An efficient program for phylogenetic
inference on SMPs”, in: Proc. of PaCT05, 2005, pp. 288–302.

[94] Huelsenbeck J., Ronquist F., “Mrbayes: Bayesian inference of phylogenetic trees”, Bioin-
formatics 17 (2001) 754–755.

[95] Press W., Teukolsky S., Vetterling W., Flannery B., Numerical Recipes in C: The Art of
Scientific Computing, Cambridge Univ. Press, New York, 1992.

[96] Yang Z., “Maximum likelihood estimation on large phylogenies and analysis of adaptive
evolution in human influenza virus a”, J. Mol. Evol. 51 (2000) 423–432.

[97] Charalambous M., Trancoso P., Stamatakis A., “Initial experiences porting a bioinfor-
matics application to a graphics processor”, in: Proceedings of the 10th Panhellenic
Conference on Informatics, PCI 2005, 2005, pp. 415–425.

[98] Minh B., Schmidt H., Haeseler A., “Large maximum likelihood trees”, Technical report,
John von Neumann Institute for Computing, Jülich, Germany, 2006.

[99] Buck I., Foley T., Horn D., Sugerman J., Hanrahan P., Houston M., Fatahalian K.,
“Brookgpu website”, http://graphics.stanford.edu/projects/brookgpu/index.html, 2005.

http://graphics.stanford.edu/projects/brookgpu/index.html

	Computational Grand Challenges in Assembling the Tree of Life: Problems and Solutions
	Phylogenetic Tree Reconstruction
	Biological Significance and Background
	Strategy
	Parallel Framework
	Impact of Parallelization

	Boosting Phylogenetic Reconstruction Methods Using Recursive-Iterative-DCM3
	DCM3 Decomposition
	Recursive-Iterative-DCM3 (Rec-I-DCM3)
	Performance of Rec-I-DCM3 for Solving ML
	Real Datasets
	Parameters for RAxML and Rec-I-DCM3
	RAxML.
	Rec-I-DCM3.

	Experimental Design
	Results
	Conclusions

	New Technical Challenges for ML-Based Phylogeny Reconstruction
	Introduction to Maximum Likelihood
	State-of-the-Art Programs
	Hill-Climbing Algorithms
	Simulated Annealing Approaches
	Parallel Phylogeny Programs
	Conclusion

	Technical Details: Memory Organization and Data Structures
	Memory Organization and Efficiency
	Loop Optimization and Model Implementation

	Parallelization Techniques
	Job-Level Parallelism
	Shared-Memory Parallelism
	Coarse-Grained Parallelism

	Conclusion

	Acknowledgements
	References

