
Designing Scalable Synthetic Compact
Applications for Benchmarking High
Productivity Computing Systems
David A. Bader, Georgia Institute of
Technology
Kamesh Madduri, Georgia Institute of
Technology
John R. Gilbert, UC Santa Barbara
Viral Shah, UC Santa Barbara
Jeremy Kepner, MIT Lincoln Laboratory
Theresa Meuse, MIT Lincoln Laboratory
Ashok Krishnamurthy, Ohio State
University

November 2006 B

Abstract

One of the main objectives of the DARPA High Productivity Computing Systems (HPCS) program is to reassess
the way we define and measure performance, programmability, portability, robustness and ultimately
productivity in the High Performance Computing (HPC) domain. This article describes the Scalable Synthetic
Compact Applications (SSCA) benchmark suite, a community product delivered under support of the DARPA
HPCS program. The SSCA benchmark suite consists of six benchmarks. The first three SSCA benchmarks are
specified and described in this article. The last three are to be developed and will relate to simulation. SSCA #1
Bioinformatics Optimal Pattern Matching stresses integer and character operations (no floating point
required) and is compute-limited; SSCA #2 Graph Analysis stresses memory access, uses integer operations, is
compute-intensive, and is hard to parallelize on most modern systems; and SSCA #3 Synthetic Aperture
Radar Application is computationally taxing, seeks a high rate at which answers are generated, and contains a
significant file I/O component. These SSCA benchmarks are envisioned to emerge as complements to current
scalable micro-benchmarks and complex real applications to measure high-end productivity and system
performance. They are also described in sufficient detail to drive novel HPC programming paradigms, as well as
architecture development and testing. The benchmark written and executable specifications are available from
www.highproductivity.org.

1. Introduction

One of the main objectives of the DARPA High Productivity Computing Systems (HPCS) program1 is to
reassess the way we define and measure performance, programmability, portability, robustness and ultimately
productivity in the High Performance Computing (HPC) domain. An initiative in this direction is the formulation
of the Scalable Synthetic Compact Applications (SSCA)2 benchmark suite. Each SSCA benchmark is composed
of multiple related kernels which are chosen to represent workloads within real HPC applications and is used to
evaluate and analyze the ease of use of the system, memory access patterns, communication and I/O
characteristics. The benchmarks are relatively small to permit productivity testing and programming
inreasonable time; and scalable in problem representation and size to allow simulating a run at small scale or
executing on a large system at large scale.

Each benchmark written specification presents detailed background and parameters for an untimed data
generator and a number of timed application kernels. All of the SSCA benchmarks are intended to be scalable
using any of a variety of techniques, a variety of languages, and a variety of machine architectures. Each SSCA
includes a number of untimed validation steps to provide checks an implementor can make to gain confidence in
the correctness of the implementation.

The SSCA benchmark suite consists of six benchmarks. The first three SSCA benchmarks are specified and
described in this article. The last three are to be developed and will relate to simulation.

http://icl.utk.edu/ctwatch/index.html

1. Bioinformatics Optimal Pattern Matching: This benchmark focuses on sequence alignment algorithms
in computational biology. It stresses integer and character operations, and requires no floating point
operations. It is compute-limited, and most of the kernels are embarrassingly parallel. (Section 2)

2. Graph Analysis: SSCA #2 is a graph theory benchmark representative of computations in informatics and
national security. It is characterized by integer operations, a large memory footprint, and irregular memory
access patterns. It is also relatively harder toparallelize compared to the other two SSCAs.
(Section 3)

3. Synthetic Aperture Radar Application: This benchmark is characteristic of the computations,
communication, and taxing data I/O requirements that are found in many types of sensor processing
chains. SSCA #3’s principal performance goal is throughput, or in other words, the rate at which answers
are generated. The benchmark stresses large block data transfers and memory accesses, and small I/O.
(Section 4)

2. SSCA #1: Bioinformatics Optimal Pattern Matching

Figure 1. Sequence alignment algorithms (SSCA#1) are used for protein structure prediction.

The intent of this SSCA is to develop a set of compact application kernels that perform a variety of analysis
techniques used for optimal pattern matching. The chosen application area is from an important optimization
problem in bioinformatics and computational biology, namely, aligning genomic sequences. These references
provide an introduction to the extensive literature on this problem space, some publicly available programs that
address these problems, and the algorithms used in those programs: 3 4 5 6 7 8 9 10 11 12 13 14

2.1 Bioinformatics

A genome consists of a linear sequence composed of the four deoxyribonucleic acid (DNA) nucleotides (bases),
which forms the famous double helix. The DNA sequence contains the information needed to code the proteins
that form the basis for life. Proteins are linear sequences of amino acids, typically 200-400 amino acids in
length. Each different protein twists naturally into a specific, complex 3-dimensional shape. This shape is what
primarily determines the protein’s function.

http://icl.utk.edu/ctwatch/quarterly/figures/8B/article6-figure1.gif

Three adjacent DNA bases form each of 64 different codons, 61 of which code for the 20 different amino acids,
while the three remaining codons indicate a stop to the coding region for the current protein. A particular amino
acid may have from one to six different encodings.

Different organisms typically use similar proteins for similar purposes. A slight change in the amino acid
sequence can cause anything from a slight to a profound change in the shape of the resulting protein. A slight
change in the DNA sequence can cause anything from no change to a profound change in the amino acid
sequence. Profound changes are almost always bad for the organism, but smaller changes may be good, bad, or
neutral. Such changes (mutations) are continually occurring as a result of radiation, chemical agents, copying
errors, etc.

Mutations can change individual bases, or can add or delete sections of DNA. Adding or deleting individual
bases almost always produces a profound change, but adding or deleting a sequence of 3n bases may have only a
slight effect since the subsequent amino acids remain unchanged.

Automated techniques have produced enormous libraries of DNA sequences identified by organism. Laboratory
research has produced enormous libraries of protein sequences identified by organism and function. Today,
much biological research depends on finding and evaluating approximate matches between sequences from these
libraries.

2.2 Sequence Alignment

In this SSCA, we consider the polynomial time problem of pairwise sequence alignment and the potentially NP-
hard problem of multiple sequence alignment. Algorithms that solve these problems are often integer-based and
use a variety of algorithmic techniques and heuristics. Optimal algorithms exist and are practical for pairwise
alignment. However, approximate or heuristic algorithms are required for multiple sequence alignment; there is
no single, obviously best approach to the problem, and the simple algorithms are either NP-hard or
approximations.

In biology, multiple sequence alignments are needed to:

Organize data to reflect sequence homology
Identify conserved sites/regions
Identify variable sites/regions
Uncover changes in gene structure
Identify probes for similar sequences in other organisms
Develop PCR primers
Perform phylogenetic analysis

No one alignment algorithm is suitable for all these applications, but most commonly used alignment programs
use variants of a single basic approach, the dynamic programming algorithm for optimal pairwise sequence
alignment. The kernels below explore several of these variations.

2.3 Data Generation and Kernels

The first kernel performs a local pairwise alignment of two long codon sequences, finding the end-points of
subsequences that are good matches according to the specified criteria. The second kernel identifies actual codon
sequences located by the first kernel, working backward from the given end-points. The third kernel uses the
interesting subsequences found in the second sequence by the second kernel to search the first sequence for a set
of the best complete matches to each interesting subsequence. The fourth kernel goes through each set of
matches found by the third kernel and performs a global pairwise alignment at the nucleotide level for each pair.
The fifth kernel performs multiple sequence alignment on each of the sets of alignments generated by the third
kernel, using the simple, approximate “center star” algorithm.

2.3.1 Scalable Data Generator

This SSCA requires a scalable data generator to create genomic sequences of lengths from hundreds to
potentially billions of nucleotide bases. At least four types of data are commonly used for sequence matching:
DNA, RNA, codons, and amino acids.

Usually the division of DNA/RNA into codons is known, and matching at the codon level is the most
informative and fastest. Matching at the nucleotide level is interesting for some applications, but is much slower.
Matching at the amino acid level is important only if the corresponding DNA/RNA is unknown, and uses almost
exactly the same algorithms as codon-level matching. For this SSCA we have chosen to specify DNA codon-
level pairwise alignment and DNA nucleotide-level multiple sequence alignment.

2.3.2 Kernel 1: Pairwise Local Alignment of Sequences

Waterman14 states: “Surprising relationships have been discovered between sequences that overall have little
similarity. These are dramatic cases when unexpectedly long matching segments have been located between
viral and host DNA. [Smith-Waterman] is a dynamic programming algorithm to find these segments. This is
probably the most useful dynamic programming algorithm for current problems in molecular biology. These
alignments are called local alignments.” For this first kernel, we are given two sequences and wish to find the
subsequences from these two that are most similar to each other as defined by Waterman. There may be several
‘equally similar’ subsequence pairs.

2.3.3 Kernel 2: Sequence extraction

Using the end-point pairs and similarity scores produced by kernel 1, kernel 2 locates actual subsequence pairs
with those scores. If there is more than one match for a particular end-point pair, only the best one should be
reported. This kernel is specified separately from kernel 1, since keeping track of the actual sequences in kernel
1 would require some extra computation and perhaps a great deal of extra space.

2.3.4 Kernel 3: Locating similar sequences

For the second of each pair of subsequences produced by kernel 2, remove any gaps and search the first full
sequence for the 100 best matches to the entire compacted subsequence.

2.3.5 Kernel 4: Aligning pairs of similar sequences

The result of kernel 4 is 100 sets of 100 highly similar subsequences, taken from the first of the two original full
sequences.

For each of these sets, this kernel prepares the way for the kernel 5 multiple-sequence alignment algorithm by
aligning each pair of subsequences and reporting their alignment score. The scoring algorithm does global
matching using a scoring function, which operates at the nucleotide level and does not include any gap-start
penalty. Instead of measuring similarity directly, it measures differences between the strings, so computing
optimal alignments requires minimizing the difference-score rather than maximizing a similarity score.

2.3.6 Kernel 5: Multiple Sequence Alignment

The result of kernel 4 is 100 sets of 100 subsequences, pairwise aligned and scored for similarity at the
nucleotide level. Kernel 5 then arranges each set of subsequences into a multiple alignment that approximates an
alignment, which might be of interest to someone studying relationships between the subsequences within each
set.

A Multiple Sequence Alignment (MSA) is defined as follows. A multiple alignment of strings S[1], . . . , S[k] is
a series of strings S'[1], . . . , S'[k] with spaces (internal gaps), such that the new sequences S'[] are all of the
same length n, and S'[j] is an extension of S[j] by insertion of spaces for 1 ≤ j ≤ k find an optimal multiple
alignment.

For biological purposes an optimal multiple alignment is one which most clearly shows the relationships of the
various sequences. These relationships may be evolutionary and/or structural, and may depend on additional
data such as known kinship relationships or 3-dimensional protein shape correlations. Many different approaches
are possible and this remains an active research area.

Sum-of-Pairs (SP) is one simple theoretical measure of multiple alignment. Given a specific multiple alignment
(including spaces), the global similarity of each pair of sequences is calculated separately. The sum of these
pairwise similarities is the SP measure. The minimum of SP over all possible multiple alignments is the
theoretically optimal SP alignment.

Finding the optimal SP alignment is NP-hard; using dynamic programming it runs in O(k22knk) time, that is,
exponential in the number of sequences. For n = 200 and k = 100, this is prohibitive. A number of different
approximate methods are known, of varying performance, quality, and complexity, such as the Star, Tree, and
various Progressive alignments. Star alignment runs in polynomial time, but the result can be far from optimal.
Tree alignment maps the k sequences to a tree with k leaves, is NP-complete, and requires a tree selection
heuristic.

Progressive alignments (such as ClustalW, PileUp, or T-Coffee) are perhaps the most practical and widely used
methods, and are a hierarchical extension of pairwise alignments. They compare all sequences pairwise, perform
cluster analysis on the pairwise data to generate a hierarchy for alignment (guide tree), and then build the
alignment step by step according to the guide tree. The multiple alignment is built by first aligning the most
similar pair of sequences, then adding another sequence or another pairwise alignment.

Progressive alignments often work well for similar sequences but are problematic for distantly-related
sequences. Probabilistic methods are emerging, such as HMMER,5 that perform Profile Hidden Markov Models
introduced by Gribskov.6 A profile HMM can be trained from unaligned sequences, if a trusted alignment is not
yet known. HMMs have a consistent theory behind gap and insertion scores, and are useful in determining
protein families. Many new MSA heuristics have been published in the last few years, including techniques such
as MACAW, Clustal W, DIAlign, T-Coffee, and POA.

Multiple sequence alignment is a difficult problem; as described the best solutions are either very slow or very
complex. For the purposes of this SSCA we choose the "center star" approximation method, as discussed in[8], a
simple example of a progressive alignment. When used with an alphabet-weighted scoring scheme that satisfies
the triangle inequality, this method produces a sum-of-pairs solution that is within a factor of two of optimal
(and is usually much better).

3. SSCA #2: Graph Analysis

Graph theoretic problems are representative of fundamental computations in traditional and emerging scientific
disciplines like scientific computing and computational biology, as well as applications in national security. This
synthetic benchmark consists of four kernels that require irregular access to a large directed and weighted graph.

Figure 2. Visualizing the SSCA #2 graph using Fiedler coordinates in (a) 2d (b) 3d.

http://icl.utk.edu/ctwatch/quarterly/figures/8B/article6-figure2.gif

SSCA #2 is a graph theoretic problem which is representative of computations in the fields of national security,
scientific computing, and computational biology. The HPC community currently relies excessively on single-
parameter microbenchmarks like LINPACK,15 which look solely at the floating-point performance of the
system, given a problem with high degrees of spatial and temporal locality. Graph theoretic problems tend to
exhibit irregular memory accesses, which leads to difficulty in partitioning data to processors and in poor cache
performance. The growing gap in performance between processor and memory speeds, the memory wall, makes
it challenging for the application programmer to attain high performance on these codes. The onus is now on the
programmer and the system architect to come up with innovative designs.

The intent of this SSCA is to develop a compact application that has multiple analysis techniques (multiple
kernels) accessing a single data structure representing a weighted, directed graph. In addition to a kernel to
construct the graph from the input tuple list, there are three additional computational kernels to operate on the
graph. Each of the kernels requires irregular access to the graphs data structure, and it is possible that no single
data layout will be optimal for all four computational kernels.

Two versions of this SSCA #2 have been specified. The earlier versions (1.0 and 1.1) used a different data
generator and graph algorithm for kernel 4. Here we describe the latest version (2.0) and refer the reader to [16
17 18] for details on the older version 1.1.

SSCA #2 includes a scalable data generator that produces edge tuples containing the start vertex, end vertex, and
weight for each directed edge. The first kernel constructs the graph in a format usable by all subsequent kernels.
No subsequent modifications are permitted to benefit specific kernels. The second kernel extracts edges by
weight from the graph representation and forms a list of the selected edges. The third kernel extracts a series of
subgraphs formed by following paths of a specified length from a start set of initial vertices. Kernel 3’s set of
initial vertices are determined by kernel 2. The fourth kernel computes a centrality metric that identifies vertices
of key importance along shortest paths of the graph.

3.1 Data Generation

The scalable data generator constructs a list of edge tuples containing vertex identifiers, and randomly-selected
positive integers are assigned as weights on the edges of the graph. Each edge is directed from the first vertex of
its tuple to the second. The generated list of tuples must not exhibit any locality that can be exploited by the
computational kernels. For generating the graphs, we use a synthetic graph model that matches the topologies
seen in real-world applications: the Recursive MATrix (R-MAT) scale-free graph generation algorithm.19 For
ease of discussion, the description of this R-MAT generator uses an adjacency matrix data structure; however,
implementations may use any alternate approach that outputs the equivalent list of edge tuples. The R-MAT
model recursively sub-divides the adjacency matrix of the graph into four equal-sized partitions and distributes
edges within these partitions with unequal probabilities. Initially, the adjacency matrix is empty and edges are
added one at a time. Each edge chooses one of the four partitions with probabilities a, b, c, and d, respectively.
At each stage of the recursion, the parameters are varied slightly and renormalized. For simplicity in this SSCA,
multiple edges, self-loops, and isolated vertices, may be ignored in the subsequent kernels. The algorithm also
generates the data tuples with high degrees of locality. Thus, as a final step, vertex numbers must be randomly
permuted, and then edge tuples randomly shuffled.

3.2 Kernel 1: Graph Generation

This kernel constructs the graph from the data generator output tuple list. The graph can be represented in any
manner, but cannot be modified by subsequent kernels. The number of vertices in the graph is not provided and
needs to be determined in this kernel.

3.3 Kernel 2: Classify large sets

The intent of this kernel is to examine all edge weights to determine those vertex pairs with the largest integer
weight. The output of this kernel will be an edge list, S, that will be saved for use in the following kernel.

3.4 Kernel 3: Extracting subgraphs

Starting from vertex pairs in the set S, this kernel produces subgraphs that consist of the vertices and edges along
all paths of length less than subGrEdgeLength, an input parameter. A possible algorithm for graph extraction is
Breadth-First Search.

3.5 Kernel 4: Graph Analysis Algorithm

This kernel identifies the set of vertices in the graph with the highest betweenness centrality score. Betweenness
Centrality is a shortest paths, enumeration-based centrality metric introduced by Freeman.20 This is done using a
betweenness centrality algorithm that computes this metric for every vertex in the graph. Let σst denote the
number of shortest paths between vertices s and t, and σst(v) denote the number of paths passing through v.

Betweenness centrality of a vertex v is defined as . The output

of this kernel is a betweenness centrality score for each vertex in the graph and the set of vertices with the
highest betweenness centrality score.

For kernel 4, we filter out a fraction of edges using a filter described in the written specification. Because of the
high computation cost of kernel 4, an exact implementation considers all vertices as starting points in the
betweenness centrality metric, while an approximate implementation uses a subset of starting vertices (VS).

A straightforward way of computing betweenness vertex would be as follows:

1. Compute the length and number of shortest paths between all pairs (s, t).
2. For each vertex v, calculate the summation of all possible pair-wise dependencies

Recently, Brandes21 proposed a faster algorithm that computes the exact betweenness centrality score for all
vertices in the graph. Brandes noted that it is possible to augment Dijkstra’s single-source shortest paths (SSSP)
algorithm (for weight graphs) and breadth-first search (BFS) for unweighted graphs to compute the
dependencies. Bader and Madduri give the first parallel betweenness centrality algorithm in [22].

3.5.1 Performance Metric: TEPS

In order to compare the performance of SSCA #2 Version 2.x kernel 4 implementations across a variety of
architectures, programming models, and productivity languages and frameworks, as well as normalizing across
both exact and approximate implementations, we adopt a new performance metric, a rate called traversed
edges per second (TEPS).

4. SSCA #3: Synthetic Aperture Radar Application

Synthetic Aperture Radar (SAR) is one of the most common modes in a RADAR system and one of the most
computationally stressing to implement. The goal of a SAR system is usually to create images of the ground
from a moving airborne RADAR platform. The basic physics of a SAR system begins with the RADAR sending
out pulses of radio waves aimed at a region on the ground that it usually perpendicular to the direction of motion
of the platform (see Fig. 3). The pulses are reflected off the ground and detected by the RADAR. Typically the
area of the ground that reflects a single pulse is quite large and an image made from this raw unprocessed data is
very blurry (see Fig. 4). The key concept of a SAR system is that it moves between each pulse, which allows
multiple looks at the same area of the ground from different viewing angles. Combining these different viewing
angles together produces a much sharper image (see Fig. 4). The resulting image is as sharp as one taken from a
much larger RADAR with a “synthetic” aperture the length of the distance traveled by the platform.

There are many variations on the mathematical algorithms used to transform the raw SAR data into a sharpened
image. SSCA #3 focuses on the variation referred to as “spotlight” SAR. Furthermore, SSCA #3 is a simplified

version of this algorithm that focuses on the most computationally intensive steps of SAR processing that are
common to nearly all SAR algorithms.

The overall block diagram for this benchmark is shown in Fig. 5 At the highest level it consists of three stages:

Figure 3. Basic Geometry of SAR System.

Figure 4. Unprocessed and processed SAR image.

http://icl.utk.edu/ctwatch/quarterly/figures/8B/article6-figure3.gif
http://icl.utk.edu/ctwatch/quarterly/figures/8B/article6-figure4.gif

Figure 5. System Mode Block Diagram. SAR System Mode consists of Stage 1 front end processing and Stage 2
back end processing. In addition, there is significant IO to the storage system.

SDG: Scalable Data Generator. Creates raw SAR inputs and writes them to files to be read in by
Stage 1.

Stage 1: Front-End Sensor Processing. Reads in raw SAR inputs, turns them into SAR images, and
writes them out to files.

Stage 2: Back-End Knowledge Formation. Reads in several SAR images, compares them and then
detects and identifies the difference.

Although the details of the above processing stages vary dramatically from RADAR to RADAR the core
computational details are very similar: input from a sensor, followed by processing to form an image, followed
by additional processing to find objects of interest in the image.

4.1 Operating Modes

This particular SAR benchmark has two operating modes (Compute Only and System) that both reflect different
computing challenges. The “Compute Only Mode” represents the processing performed directly from a
dedicating streaming sensor (Fig. 6). In this mode, the SDG is meant to simulate a sensor data buffer that is
filled with a new frame of data at regular intervals, Tinput. In addition, the SAR image created in Stage 1 is sent
directly to Stage 2. In this mode, the primary architectectural challenge is providing enough computing power
and network bandwidth to keep up with the input data rate.

In “System Mode” the SDG represents an archival storage system that is queried for raw SAR data (Fig. 5).
Likewise, Stage 1 stores the SAR images back to this archival system and Stage 2 retrieves pairs of images from
this storage system. Thus, in addition to the processing and bandwidth challenges, the performance of the
storage system must also be managed. Increasingly, such storage systems are the key bottleneck in sensor
processing systems. Currently, the modeling and understanding of parallel storage systems is highly dependent
on details of the hardware. To support the analysis of such hardware, the SAR benchmark has an “IO Only
Mode” that allows for benchmarking and profiling.

http://icl.utk.edu/ctwatch/quarterly/figures/8B/article6-figure5.gif

Figure 6. Compute Only Mode Block Diagram. Simulates a streaming sensor that moves data directly from front
end processing to back end processing.

4.2 Computational Workload

The precise algorithmic details of this particular SAR processing chain are given in its written specification. In
Stage 1, the data is transformed in a series of steps from a n×mc single precision complex valued array to a m ×
nx single precision real valued array. At each step, either the rows or columns can be processed in parallel. This
is sometimes referred to as “fine grain” parallelism. There is also pipeline or task parallelism that exploits the
fact that each step in the pipeline can be performed in parallel, with each step processing a frame of data. Finally,
there is also coarse grain parallelism, which exploits the fact that entirely separate SAR images can be processed
independently. This is equivalent to setting up multiple pipelines.

At each step, the processing is along either the rows or the columns, which defines how much parallelism can be
exploited. In addition, when the direction of parallelism switches from rows to columns or columns to rows, a
transpose (or “cornerturn”) of the matrix must be performed. On a typical parallel computer a cornerturn
requires every processor to talk to every other processor. These cornerturns often are natural boundaries along
which to create different stages in a parallel pipeline. Thus, in Stage 1 there are four steps, which require three
cornerturns. This is typical of most SAR systems.

In stage 2, pairs of images are compared to find the locations of new “targets.” In the case of the SAR
benchmarks, these targets are just nfont × nfont images of rotated capital letters that have been randomly inserted
into the SAR image. The Region Of Interest (ROI) around each target is then correlated with each possible letter
and rotation to identify the precise letter, its rotation and location in the SAR image. The parallelism in this stage
can be along the rows or columns or both, as long as enough overlapping edge data is kept on each processor to
correctly do the correlations over the part of the SAR image for which it is responsible. These edge pixels are
sometimes referred to as overlap, boundary, halo or guard cells. The input bandwidth is a key parameter in
describing the overall performance requirements of the system. The input bandwidth (in samples/second) for
each processing stage is given by

 (1)

A simple approach for estimating the overall required processing rate is to multiply the input bandwidth by the
number of operations per sample required. Looking at Table 1, if we assume n ≈ nx ≈ 8000 and mc ≈ nx ≈ 4000,
the operations (or work) done on each sample can be approximated by

 (2)

Thus, the performance goal is approximately

http://icl.utk.edu/ctwatch/quarterly/figures/8B/article6-figure6.gif

 (3)

Tinput varies from system to system, but can easily be much less than a second, which yields large compute
performance goals. Satisfying these performance goals often requires a parallel computing system.

The file IO requirements in “System Mode” or “IO Only Mode” are just as challenging. In this case the goal is
read and write the files as quickly as possible. During Stage 1 a file system must read in large input files and
write out large image files. Simultaneously, during Stage 2, the image files are selected at random and read in
and then many very small “thumbnail” images around the targets are read out. This diversity of file sizes and the
need for simultaneous read and write is very stressing often requires a parallel file system.

5. Summary of Current Implementations

Table 1 provides a list of current implementations for each of the three SSCA benchmarks. The benchmarks
have been implemented in several languages, with contributions from industry, academia, supercomputing
centers and national labs.

Kepner and Meuse from MIT Lincoln Labs maintain the reference executable implementations inMatlab for the
three SSCAs. Bader and Madduri have developed a parallel implementation of SSCA #2 in C using the POSIX
thread library for commodity symmetric multiprocessors (SMPs). They evaluate the data layout choices and
algorithmic design issues for each kernel, and also present execution time and benchmark validation results.17

Gilbert, Reinhardt and Shah describe a StarP implementation of SSCA #2 in [18]. The various SSCA
implementations have also been compared for productivity studies.

Benchmark Language Bioinformatics (SSCA#1) Graph Theory (SSCA#2) Sensor and IO (SSCA#3)
Written spec 0.5 (GT/LL) 2.0 (GT/LL) 0.8 (LL)
C 0.5k1† (PSC) 2.0 (GT) 0.5 (ISI)

C & MPI 0.5k1† (PSC)
C & MPI & OpenMP
UPC 0.5k1† (UNM/GT/PSC) 1.0* (UNM/GT)
C & Pthreads 0.5k1* (UNM/GT) 2.0* (UNM/GT)
C++ 1.0 (LL/MITRE/CS)
Fortran 2.0† (Sun) 0.5io (LM)

Fortran & OpenMP 2.0† (Sun)
Matlab 0.5 (LL) 2.0 (LL) 0.8 (LL)
MatlabMPI 1.0 (LL) 0.8 (LL)
Matlab & mexGA 0.5* (OSC) 1.0* (OSC) 0.8* (LL)
StarP 2.0* (UCSB) 0.5 (UCSB)
pMatlab 1.0 (LL) 1.0 (LL)
Octave 0.8* (OSC) 1.0* (UW) 0.8 (OSC)
Octave & mexGA 0.8* (OSC) 1.0* (OSC) 0.5* (OSC)
Python
Python & MPI
Java 0.5k1† (PSC) 1.0int† (GT)

Chapel 0.5 (Cray) 1.0int† (Cray)

X10 0.5k1† (UNM/GT/PSC) 1.0* (UNM/GT/IBM)

Fortress
CS: CodeSourcery, LLC
GT: Georgia Institute of Technology
ISI: Univ. of Southern California, Information Sciences Institute
LL: MIT Lincoln Labs
LM: Lockheed Matrin
MITRE: MITRE Corporation
OSC: Ohio Supercomputer Center
PSC: Pittsburgh Supercomputer Center
UCSB: Univ. of California, Santa Barbara
UNM: Univ. of New Mexico
UTK: Univ. of Tennessee
UW: University of Wisconsin

Table 1. Current SSCA benchmark implementation status (* indicates a completed implementation that has not
been released yet, and † indicates work in progress).
1DARPA Information Processing Technology Office. High productivity computing systems project, 2004.
http://www.darpa.mil/ipto/programs/hpcs/
2Kepner, J., Koester, D. P., et al. "HPCS Scalable Synthetic Compact Application (SSCA) Benchmarks," 2004.
http://www.highproductivity.org/SSCABmks.htm
3Altschul, S. F., Gish, W., Miller, W., Myers, E. W., Lipman, D. J. "Basic local alignment search tool," J.
Molecular Biology, 215:403–410, 1990.
4Durbin, R., Eddy, S., Krogh, A., Mitchison, G. Biological Sequence Analysis: Probabilistic Models of Proteins
and Nucleic Acids. Cambridge University Press, Cambridge, UK, 1998.
5Eddy, S. R. "Profile hidden Markov models," Bioinformatics, 25:755–763, 1998.
6Gribskov, M., McLachlan, A. D., Eisenberg, D. "Profile analysis," Methods of Enzymology, 183:146–159,
1990.
7Gupta, S. K., Kececioglu, J. D., Schaffer, A. A. "Improving the practical space and time efficiency of the
shortest-paths approach to sum-of-pairs multiple sequence alignment," Journal of Computational Biology,
2:459–472, 1995.
8Gusfield, D. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, 1997.
9Hillis, D. M., Moritz, C., Mable, B. K. (Eds.) Molecular Systematics. Sinauer Associates, Sunderland, MA,
second edition, 1996.
10Lesk, A. M. Introduction to Bioinformatics. Oxford University Press, 2002.
11Myers, E. W., Miller, W. "Optimal alignments in linear space," Comp. Appl. Biosciences, 4:11–17, 1988.
12Setubal, J., Meidanis, J. (Eds.) Introduction to Computational Molecular Biology. PWS Publishers, 1996.
13Thompson, J. D., Higgins, D. G., Gibson, T. J. "CLUSTALW: improving the senstivity of progressive multiple
sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,"
Nucleic Acids Res., 22:4673–4680, 1994.
14Waterman, M. S. Introduction to Computational Biology: Maps, Sequences and Genomes. Chapman & Hall /
CRC, Boca Raton, FL, 1995.
15Dongarra, J. J., Bunch, J. R., Moler, C. B., Stewart, G. W. LINPACK Users’ Guide SIAM, Philadelphia, PA,
1979.
16Kepner, J., Koester, D. P., et al. HPCS SSCA #2 Graph Analysis Benchmark Specifications v1.0, April 2005.
17Bader, D. A., Madduri, K. "Design and implementation of the HPCS graph analysis benchmark on symmetric
multiprocessors," In Proceedings of the 12th Int’l Conf. on High Performance Computing (HiPC 2005), Goa,
India, December 2005. Springer-Verlag.
18Gilbert, J. R., Reinhardt, S., Shah, V. "High performance graph algorithms from parallel sparse matrices,"
Submitted to PARA06 proceedings, 2006.

19Chakrabarti, D., Zhan, Y., Faloutsos, C. "R-MAT: A recursive model for graph mining," In Proceedings of the
4th SIAM Intl. Conf. on Data Mining (SDM), Orlando, FL, April 2004.
20Freeman, L. C. "A set of measures of centrality based on betweenness," Sociometry, 40(1):35–41, 1977.
21Brandes, U. "A faster algorithm for betweenness centrality," J. Mathematical Sociology, 25(2):163–177, 2001.
22Bader, D. A., Madduri, K. "Parallel algorithms for evaluating centrality indices in real-world networks," In
Proceedings of the 35th Int’l Conf. on Parallel Processing (ICPP), Columbus, OH, August 2006.

URL to article: http://www.ctwatch.org/quarterly/articles/2006/11/designing-scalable-synthetic-compact-
applications-for-benchmarking-high-productivity-computing-systems/

http://icl.utk.edu/ctwatch/quarterly/articles/2006/11/designing-scalable-synthetic-compact-applications-for-benchmarking-high-productivity-computing-systems/index.html

