
Designing Multithreaded Algorithms for Breadth-First Search and
st-connectivity on the Cray MTA-2

David A. Bader Kamesh Madduri
College of Computing

Georgia Institute of Technology, Atlanta GA 30332
{bader,kamesh}@cc.gatech.edu

Abstract

Graph abstractions are extensively used to understand
and solve challenging computational problems in various
scientific and engineering domains. They have particularly
gained prominence in recent years for applications involv-
ing large-scale networks. In this paper, we present fast par-
allel implementations of three fundamental graph theory
problems, Breadth-First Search, st-connectivity and short-
est paths for unweighted graphs, on multithreaded archi-
tectures such as the Cray MTA-2. The architectural fea-
tures of the MTA-2 aid the design of simple, scalable and
high-performance graph algorithms. We test our imple-
mentations on large scale-free and sparse random graph
instances, and report impressive results, both for algorithm
execution time and parallel performance. For instance,
Breadth-First Search on a scale-free graph of 400 million
vertices and 2 billion edges takes less than 5 seconds on
a 40-processor MTA-2 system with an absolute speedup of
close to 30. This is a significant result in parallel comput-
ing, as prior implementations of parallel graph algorithms
report very limited or no speedup on irregular and sparse
graphs, when compared to the best sequential implementa-
tion.

1 Introduction

Graph theoretic and combinatorial problems arise in sev-
eral traditional and emerging scientific disciplines such as
VLSI Design, Optimization, Databases and Computational
Biology. Some examples include phylogeny reconstruction
[36, 37], protein-protein interaction networks [43], place-
ment and layout in VLSI chips [31], data mining [25, 27],
and clustering in semantic webs. Graph abstractions are
also finding increasing relevance in the domain of large-
scale network analysis [14, 30]. Empirical studies show
that many social and economic interactions tend to organize

themselves in complex network structures. These networks
may contain billions of vertices with degrees ranging from
small constants to thousands [8, 21]. The Internet and other
communication networks, transportation and power distri-
bution networks also share this property. The two key char-
acteristics studied in these networks are centrality (which
nodes in the graph are best connected to others, or have
the most influence) and connectivity (how nodes are con-
nected to one another). Popular metrics for analyzing these
networks, like betweenness centrality [22, 10], are com-
puted using fundamental graph algorithms like Breadth-
First Search (BFS) and shortest paths.

In recognition of the importance of graph abstractions
for solving large-scale problems on High Performance
Computing (HPC) systems, several communities have pro-
posed graph theoretic computational challenges. For in-
stance, the recently announced 9th DIMACS Implementa-
tion Challenge [19] is targeted at finding shortest paths in
graphs. The DARPA High Productivity Computer Systems
(HPCS) [17] program has developed a synthetic graph the-
ory benchmark called SSCA#2 [28, 5] which is composed
of four kernels operating on a large-scale, directed multi-
graph. (We describe our implementation of SSCA#2 on
symmetric multiprocessors in [6])

Graph theoretic problems are typically memory inten-
sive, and the memory accesses are fine-grained and highly
irregular. This leads to poor performance on cache-based
systems. On distributed memory clusters, few parallel
graph algorithms outperform their best sequential imple-
mentations due to long memory latencies and high synchro-
nization costs. Parallel shared memory systems are a more
supportive platform. They offer higher memory bandwidth
and lower latency than clusters, as the global shared mem-
ory avoids the overhead of message passing. However, par-
allelism is dependent on the cache performance of the algo-
rithm and scalability is limited in most cases. While it may
be possible to improve the cache performance to a certain
degree for some classes of graphs, there are no known gen-
eral techniques for cache optimization because the memory

 Proceedings of the 2006 International Conference on Parallel Processing (ICPP'06)
0-7695-2636-5/06 $20.00 © 2006

access pattern is largely dependent on the structure of the
graph.

1.1 Preliminaries

The Cray MTA-2 is a high-end shared memory system
offering two unique features that aid considerably in the de-
sign of irregular algorithms: fine-grained parallelism and
zero-overhead synchronization. The MTA-2 has no data
cache; rather than using a memory hierarchy to hide latency,
the MTA-2 processors use hardware multithreading to tol-
erate the latency. The low-overhead synchronization sup-
port complements multithreading and makes performance
primarily a function of parallelism. Since graph algorithms
often have an abundance of parallelism, these architectural
features lead to superior performance and scalability.

The computational model for the MTA-2 is thread-
centric, not processor-centric. A thread is a logical entity
comprised of a sequence of instructions that are issued in
order. An MTA processor has 128 hardware streams and
one instruction pipeline. A stream is a physical resource (a
set of 32 registers, a status word, and space in the instruction
cache) that holds the state of one thread. Each stream can
have upto 8 outstanding memory operations. Threads are
mapped onto streams by the runtime system, and no thread
is bound to a particular processor. System memory size and
the inherent degree of parallelism within the program are
the only limits on the number of threads used by a program.

Synchronization among threads within an executing pro-
gram is easy and efficient because of special hardware sup-
port. Each 64-bit word of memory also has an associated
full/empty bit which can be used to synchronize load and
store operations. A synchronous load or store operation re-
tries until it succeeds or traps. The thread that issued the
load or store remains blocked until the operation completes,
but the processor that issued the operation continues to issue
instructions from non-blocked streams.

BFS [15] is one of the basic paradigms for the design of
efficient graph algorithms. Given a graph G = (V, E) (m
edges and n vertices) and a distinguished source vertex s,
BFS systematically explores the edges of G to discover ev-
ery vertex that is reachable from s. It computes the distance
(smallest number of edges) from s to each reachable vertex.
It also produces a breadth-first tree with root s that con-
tains all the reachable vertices. All vertices at a distance k

(or level k) are first visited, before discovering any vertices
at distance k + 1. The BFS frontier is defined as the set
of vertices in the current level. Breadth-First Search works
on both undirected and directed graphs. A queue-based se-
quential algorithm runs in optimal O(m + n) time.

st-connectivity is a related problem, also applicable to
both directed and undirected graphs. Given two vertices s

and t, the problem is to decide whether or not they are con-

nected, and determine the shortest path between them, if
one exists. It is a basic building block for more complex
graph algorithms, has linear time complexity, and is com-
plete for the class SL of problems solvable by symmetric,
non-deterministic, log-space computations [32].

In this paper, we present fast parallel algorithms for
Breadth-First Search and st-connectivity, for directed and
undirected graphs, on the MTA-2. We extend these al-
gorithms to compute single-source shortest paths, assum-
ing unit-weight edges. The implementations are tested on
four different classes of graphs – random graphs generated
based on the Erdős-Rényi model, scale-free graphs, syn-
thetic sparse random graphs that are hard cases for paral-
lelization, and SSCA#2 benchmark graphs. We also out-
line a parallel implementation of BFS for handling high-
diameter graphs.

1.2 Related Work

Distributed BFS [2, 38, 44] and st-connectivity [9, 23]
are both well-studied problems, with related work on graph
partitioning and load balancing schemes [3, 41] to facilitate
efficient implementations. Other problems and algorithms
of interest include shortest paths variants [20, 13, 40, 39,
34, 16] and external memory algorithms and data structures
[1, 11, 33] for BFS. Several PRAM and BSP [18] algo-
rithms have been proposed to solve this problem. However,
there are very few parallel implementations that achieve sig-
nificant parallel speedup on sparse, irregular graphs when
compared against the best sequential implementations. In
[4], we demonstrated superior performance for list rank-
ing and connected components on the MTA-2 when com-
pared with symmetric multiprocessor implementations, and
attained considerable absolute speedups over the best se-
quential implementations. This work serves as the primary
motivation for our current experimentation on the MTA-2.

2 A Multithreaded Approach to Breadth-
First Search

Unlike prior parallel approaches to BFS, on the MTA-2
we do not consider load balancing or the use of distributed
queues for parallelizing BFS. We employ a simple level-
synchronized parallel algorithm (Alg. 1) that exploits con-
currency at two key steps in BFS:

1. All vertices at a given level in the graph can be pro-
cessed simultaneously, instead of just picking the ver-
tex at the head of the queue (step 7 in Alg. 1)

2. The adjacencies of each vertex can be inspected in par-
allel (step 9 in Alg. 1).

We maintain an array d to indicate the level (or distance)
of each visited vertex, and process the global queue Q ac-

 Proceedings of the 2006 International Conference on Parallel Processing (ICPP'06)
0-7695-2636-5/06 $20.00 © 2006

Input: G(V, E), source vertex s

Output: Array d[1..n] with d[v] holding the length of
the shortest path from s to v ∈ V , assuming
unit-weight edges

1 for all v ∈ V in parallel do
2 d[v]←−1;
3 d[s]← 0;
4 Q← φ;
5 Enqueue s← Q;
6 while Q �= φ do
7 for all u ∈ Q in parallel do
8 Delete u← Q;
9 for each v adjacent to u in parallel do

10 if d[v] = −1 then
11 d[v]← d[u] + 1;
12 Enqueue v ← Q;

Algorithm 1: Level-synchronized Parallel BFS

cordingly. Alg. 1 is however a very high-level representa-
tion, and hides the fact that thread-safe parallel insertions to
the queue and atomic updates of the distance array d are
needed to ensure correctness. Alg. 2 details the MTA-2
code required to achieve this (for the critical steps 7 to 12),
which is simple and very concise. The loops will not be au-
tomatically parallelized as there are dependencies involved.
The compiler can be forced to parallelize them using the
assert parallel directive on both the loops. In this case, the
compiler automatically collapses the inner for loop, and dy-
namically schedules the loop iterations. Thus, the imple-
mentation is independent of the vertex degree distribution.
We do not need to bother about load balancing in case of
graph families with skewed degree distributions, such as
real-world scale-free graphs.

We use the low-overhead synchronization calls int_-
fetch_add, readfe(), and writeef() to atomically
update the value of d, and insert elements to the queue in
parallel. int_fetch_add offers synchronized updates to
data representing shared counters, without using locks. The
readfe operation atomically reads data from a memory
location only after that location’s full/empty bit is set full,
and sets it back to empty. If the bit is not full to start with,
the thread executing the read operation suspends in hard-
ware and is later retried. Similarly, a writeef writes to
a memory location when the full/empty bit is empty and
then sets it to full. A readfe should be matched with a
writeef, or else the program might deadlock.

We observe that the above parallelization scheme will
not work well for high-diameter graphs (for instance, con-
sider a chain of vertices with bounded degree). In case of
high-diameter graph families, the number of vertices at each
BFS level is typically a small number. We do not have suffi-

/* While the Queue is not empty */
#pragma mta assert parallel
#pragma mta block dynamic schedule
for (i = startIndex; i < endIndex; i++)

u = Q[i];
/* Inspect all vertices adjacent to u */
#pragma mta assert parallel
for (j = 0; j < degree[u]; j++)

v = neighbor[u][j];
/* Check if v has been visited yet? */
dist = readfe(&d[v]);
if (dist == -1)

writeef(&d[v], d[u] + 1);
else

writeef(&d[v], dist);
/* Enqueue v */
Q[int fetch add(&count, 1)] = v;

Algorithm 2: MTA-2 parallel C code for steps 7-12 in
Alg. 1

cient parallelism in the level-synchronized approach to satu-
rate the MTA-2 system. For arbitrary sparse graphs, Ullman
and Yannakakis offer high-probability PRAM algorithms
for transitive closure and BFS [42] that take Õ(nε) time
with Õ(mn1−2ε) processors, provided m ≥ n2−3ε. The
key idea here is as follows. Instead of starting the search
from the source vertex s, we expand the frontier up to a
distance d in parallel from a set of randomly chosen distin-
guished vertices (that includes the source vertex s also) in
the graph. We then construct a new graph whose vertices
are the distinguished vertices, and we have edges between
these vertices if they were pair-wise reachable in the pre-
vious step. Now a set of superdistinguished vertices are
selected among them and the graph is explored to a depth
t2. After this step, the resulting graph would be dense and
we can determine the shortest path of the source vertex s to
each of the vertices. Using this information, we can deter-
mine the shortest paths from s to all vertices.

3 st-connectivity and Shortest Paths

We can easily extend the Breadth-First Search algorithm
for solving the st-connectivity problem too. A naı̈ve imple-
mentation would be to start a Breadth-First Search from s,
and stop when t is visited. However, we note that we could
run BFS concurrently both from s and to t, and if we keep
track of the vertices visited and the expanded frontiers on
both sides, we can correctly determine the shortest path be-
tween s and t. The key steps are outlined in Alg. 3 (termed
STCONN-FB), which has both high-level details as well as
MTA-specific synchronization constructs. Both s and t are

 Proceedings of the 2006 International Conference on Parallel Processing (ICPP'06)
0-7695-2636-5/06 $20.00 © 2006

Input: G(V, E), vertex pair (s, t)

Output: The smallest number of edges dist between s

and t, if they are connected

1 for all v ∈ V in parallel do
2 color[v]←WHITE;
3 d[v]← 0;
4 color[s]← RED; color[t]← GREEN ; Q←

φ; done← FALSE; dist←∞;
5 Enqueue s← Q; Enqueue t← Q;
6 while Q �= φ and done = FALSE do
7 for all u ∈ Q in parallel do
8 Delete u← Q;
9 for each v adjacent to u in parallel do

10 color← readfe(&color[v]);
11 if color = WHITE then
12 d[v]← d[u] + 1;
13 Enqueue v ← Q;
14 writeef(&color[v], color[u]);
15 else
16 if color �= color[u] then
17 done← TRUE;
18 tmp← readfe(&dist);
19 if tmp > d[u] + d[v] + 1 then
20 writeef(&dist, d[u] + d[v] + 1);
21 else
22 writeef(&dist, tmp);
23 writeef(&color[v], color);

Algorithm 3: st-connectivity (STCONN-FB): concurrent
BFSes from s and t

added to the queue initially, and newly discovered vertices
are either colored RED (for vertices reachable from s) or
GREEN (for vertices that can reach t). When a back edge is
found in the graph, the algorithm terminates and the short-
est path is evaluated. As in the previous case, we encounter
nested parallelism here and apply the same optimizations.
The pseudo-code is elegant and concise, but must be care-
fully written to avoid the introduction of race conditions and
potential deadlocks (see [7] for an illustration).

We also implement an improved algorithm for st-
connectivity (STCONN-MF, denoting minimum frontier,
detailed in Alg. 4) that is suited for graphs with irregular
degree distributions. In this case, we maintain two differ-
ent queues Qs and Qt and expand the smaller frontier (Q
in Alg. 4 is either Qs or Qt, depending on the values of
extentS and extentT) on each iteration. Thus, STCONN-
MF visits fewer vertices and edges compared to STCONN-
FB. Alg. 3 and 4 are discussed in more detail in an extended
version of this paper [7].

Input: G(V, E), vertex pair (s, t)

Output: The smallest number of edges dist between s

and t, if they are connected

1 for all v ∈ V in parallel do
2 color[v]←WHITE;
3 d[v]← 0;
4 color[s]← GRAY ; color[t]← GRAY ; Qs← φ; Qt

← φ;
5 done← FALSE; dist←−1;
6 Enqueue s← Qs; Enqueue t← Qt; extentS←

1; extentT ← 1;
7 while (Qs �= φ or Qt �= φ) and done = FALSE do
8 Set Q appropriately;
9 for all u ∈ Q in parallel do

10 Delete u← Q;
11 for each v adjacent to u in parallel do
12 color← readfe(&color[v]);
13 if color = WHITE then
14 d[v]← d[u] + 1;
15 Enqueue v ← Q;
16 writeef(&color[v], color[u]);
17 else
18 if color �= color[v] then
19 dist← d[u] + d[v] + 1;
20 done← TRUE;
21 writeef(&color[v], color);

22 extentS← |Qs|; extentT ← |Qt|;

Algorithm 4: st-connectivity (STCONN-MF): alternate
BFSes from s and t

4 Experimental Results

This section summarizes the experimental results of
our BFS and st-connectivity implementations on the Cray
MTA-2. We report results on a 40-processor MTA-2, with
each processor having a clock speed of 220 MHz and 4GB
of RAM. From the programmer’s viewpoint, the MTA-2
is however a global shared memory machine with 160GB
memory.

We test our algorithms on four different classes of graphs
(see Fig. 1):

• Random graphs (RAND1): We construct random
graphs of n vertices and m directed edges. The m

edges are added by randomly choosing a pair of ver-
tices each time.
• Scale-free graphs (SF-RMAT), used to model real-

world large-scale networks: These graphs are gener-
ated using the R-MAT graph model [12]. They have a
significant number of vertices of very high degree, al-
though the majority of vertices are low-degree ones.
The degree distribution plot on a log-log scale is a

 Proceedings of the 2006 International Conference on Parallel Processing (ICPP'06)
0-7695-2636-5/06 $20.00 © 2006

Figure 1. Degree distributions of the four test
graph classes

straight line with a heavy tail, as seen in Fig. 1.
• Synthetic sparse random graphs that are hard cases for

parallelization and load balancing (RAND2): As in
scale-free graphs, a considerable percentage of vertices
are high-degree ones, but the degree distribution is dif-
ferent.

• DARPA SSCA#2 benchmark (SSCA2) graphs: A typi-
cal SSCA#2 graph consists of a large number of highly
interconnected clusters of vertices. The clusters are
sparsely connected, and these inter-cluster edges are
randomly generated. The cluster sizes are uniformly
distributed and the maximum cluster size is a user-
defined parameter. For the graph used in the perfor-
mance studies in Fig. 1, we set the maximum cluster
size to 10.

We generate directed graphs in all four cases. Our al-
gorithms work for both directed and undirected graphs, as
we store all the neighbors of each vertex in the internal rep-
resentation of the graph. In this section, we report parallel
performance results for directed graphs only. With minor
changes to the code, we can apply it to undirected graphs
also.

Fig. 2(a) plots the execution time and speedup attained
by the Breadth-First Search algorithm on a random graph
of 200 million vertices and 1 billion edges. The plot in the
inset shows the scaling when the number of processors is
varied from 1 to 10, and the main plot for 10 to 40 proces-
sors. We define the Speedup on p processors of the MTA-2
as the ratio of the execution time on p processors to that
on one processor. Since the computation on the MTA is
thread-centric, system utilization is also an important met-

ric to study. We observed utilization close to 97% for sin-
gle processor runs. The system utilization was consistently
high (around 80% for 40 processor runs) across all runs. We
achieve a speedup of nearly 10 on 10 processors for random
graphs, 17 on 20 processors, and 28 on 40 processors. This
is a significant result, as random graphs have no locality
and such instances would offer very limited on no speedup
on cache-based SMPs and other shared memory systems. In
case of the 40 processor run, there is a drop in efficiency as
the parallelization overhead is comparable to the BFS exe-
cution time. However, even for the 40 processor runs, the
hot spot due to the BFS queue index does not lead to any
performance degradation.

Fig. 2(b) gives the BFS execution time for a Scale-free
graph of 200 million vertices and 1 billion edges, as the
number of processors is varied from 1 to 40. Our algorithm
is independent of the degree distribution, and so the perfor-
mance for scale-free graphs is identical to random graphs.
Fig. 2(c) plots the multi-processor BFS speedup for SF-
RMAT and RAND2 graph instances of the same size. The
execution time and speedup are nearly identical. Fig. 2(d)
summarizes the BFS performance for SSCA#2 graphs. The
performance on SSCA#2 graphs are comparable to random
graphs of similar sizes.

Fig. 2(e) and 2(f) show the performance of BFS as the
edge density is varied for SSCA#2 and RAND2 graphs re-
spectively. We vary the user-defined MaxClusterSize pa-
rameter in case of SSCA#2 graphs, and show that the im-
plementation performs well for all m values. We observe
similar performance for a RAND2 graph of 2.147 billion
edges, when thenumber of vertices is varied from 16 mil-
lion to 536 million.

Fig. 3 summarizes the performance of the st-connectivity
algorithms. Note that both the st-connectivity algorithms
are based on BFS, and if BFS is implemented efficiently,
we would expect st-connectivity also to perform well.
Fig. 3(a) shows the performance of STCONN-MF on scale-
free graphs as the number of processors is varied from 1 to
10. Note that the execution times are highly dependent on
(s, t) pair we choose. In this particular case, just 45,000
vertices were visited in a graph of 134 million vertices. The
st-connectivity algorithm shows near-linear scaling with the
number of processors. The actual execution time is bounded
by the BFS time, and is dependent on the shortest path
length and the degree distribution of the vertices in the
graph. In Fig. 3(b), we compare the performance of the
two algorithms, concurrent Breadth-First Searches from s

and t (STCONN-FB), and expanding the smaller frontier in
each iteration (STCONN-MF). Both of them scale linearly
with the number of processors for a problem size of 134
million vertices and 805 million edges. STCONN-MF per-
forms slightly better for this graph instance. They were also
found to perform comparably for the other graph families.

 Proceedings of the 2006 International Conference on Parallel Processing (ICPP'06)
0-7695-2636-5/06 $20.00 © 2006

(a) Execution time and speedup for Random (RAND1) graphs: 1-
10 processors (inset), and 10-40 processors

(b) Execution time and speedup for Scale-free (SF-RMAT) graphs:
1-10 processors (inset), and 10-40 processors

(c) Parallel performance comparison: RAND2 and SF-RMAT
graphs

(d) Execution time and speedup for SSCA2 graphs

(e) Execution time variation as a function of average degree for
RAND2 graphs

(f) Execution time variation as a function of average degree for
SSCA2 graphs

Figure 2. Breadth First Search Performance Results

 Proceedings of the 2006 International Conference on Parallel Processing (ICPP'06)
0-7695-2636-5/06 $20.00 © 2006

(a) STCONN-MF execution time and speedup for SF-RMAT
graphs

(b) Comparison of STCONN-MF and STCONN-FB algorithms for
Scale-free (SF-RMAT) graphs

Figure 3. st-connectivity Performance Results

5 Conclusions

We present fast multithreaded algorithms for fundamen-
tal graph theory problems. Our implementations show
strong scaling for irregular and sparse graphs chosen from
four different graph classes, and also achieve high system
utilization. The absolute execution time values are signifi-
cant; Problems involving large graphs of billions of vertices
and edges can be solved in seconds to minutes. With its la-
tency tolerant processors, high bandwidth network, global
shared memory and fine-grained synchronization, the MTA-
2 is the first parallel machine to perform extraordinarily
well on sparse graph problems. It may now be possible to
tackle several key PRAM algorithms [26, 29, 24, 35] that
have eluded practical implementations so far. Another at-
tractive feature of the MTA-2 is the ease of programming.
It is possible to write concise and elegant code, focusing on
exploiting the concurrency in the problem, rather than opti-
mizing for cache locality (or minimizing communication in
distributed memory systems).

Acknowledgements

This work was supported in part by NSF Grants CA-
REER CCF-0611589, ACI-00-93039, NSF DBI-0420513,
ITR ACI-00-81404, ITR EIA-01-21377, Biocomplexity
DEB-01-20709, ITR EF/BIO 03-31654, and DARPA Con-
tract NBCH30390004. We would like to thank Richard
Russell for sponsoring our MTA-2 accounts. We are grate-
ful to John Feo for providing the SSCA#2 graph generator
source. We acknowledge the significant algorithmic inputs
and MTA-2 programming help from Jonathan Berry and

Bruce Hendrickson. Finally, we would like to thank Simon
Kahan, Petr Konecny, John Feo and other members of the
Cray Eldorado team for their valuable advice and several
suggestions on optimizing code for the MTA-2.

References

[1] J. M. Abello and J. S. Vitter, editors. External memory algo-
rithms. American Mathematical Society, Boston, MA, USA,
1999.

[2] B. Awerbuch and R. G. Gallager. A new distributed algo-
rithm to find breadth first search trees. IEEE Trans. Inf.
Theor., 33(3):315–322, 1987.

[3] B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin.
Network decomposition and locality in distributed computa-
tion. In IEEE Symp. on Foundations of Computer Science,
pages 364–369, 1989.

[4] D. Bader, G. Cong, and J. Feo. On the architectural require-
ments for efficient execution of graph algorithms. In Proc.
34th Int’l Conf. on Parallel Processing (ICPP), Oslo, Nor-
way, June 2005.

[5] D. Bader, J. Feo, and et al. HPCS SSCA#2 Graph Analysis
Benchmark Specifications v1.1, Jan. 2006.

[6] D. Bader and K. Madduri. Design and implementation of
the HPCS graph analysis benchmark on symmetric multi-
processors. In Proc. 12th Int’l Conf. on High Performance
Computing, Goa, India, Dec. 2005. Springer-Verlag.

[7] D. Bader and K. Madduri. Designing multithreaded algo-
rithms for Breadth-First Search and st-connectivity on the
Cray MTA-2. Technical report, Georgia Tech, Feb. 2006.

[8] A.-L. Barabasi and R. Albert. Emergence of scaling in ran-
dom networks. Science, 286(5439):509–512, October 1999.

[9] G. Barnes and W. L. Ruzzo. Deterministic algorithms for
undirected s-t connectivity using polynomial time and sub-
linear space. In Proc. 23rd Annual ACM Symp. on Theory of

 Proceedings of the 2006 International Conference on Parallel Processing (ICPP'06)
0-7695-2636-5/06 $20.00 © 2006

Computing, pages 43–53, New York, NY, USA, 1991. ACM
Press.

[10] U. Brandes. A faster algorithm for betweenness centrality.
J. Mathematical Sociology, 25(2):163–177, 2001.

[11] A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian,
and J. Westbrook. On external memory graph traversal.
In Proc. 11th Annual ACM-SIAM Symp. on Discrete Algo-
rithms, pages 859–860, Philadelphia, PA, USA, 2000.

[12] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recur-
sive model for graph mining. In Proc. 4th SIAM Intl. Conf.
on Data Mining, Florida, USA, Apr. 2004.

[13] B. Cherkassky, A. Goldberg, and T. Radzik. Shortest paths
algorithms: theory and experimental evaluation. Mathemat-
ical Programming, 73:129–174, 1996.

[14] T. Coffman, S. Greenblatt, and S. Marcus. Graph-based
technologies for intelligence analysis. Communications of
the ACM, 47(3):45–47, 2004.

[15] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduc-
tion to Algorithms. MIT Press, Inc., Cambridge, MA, 1990.

[16] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A paral-
lelization of Dijkstra’s shortest path algorithm. In Proc. 23rd
Int’l Symp. on Mathematical Foundations of Computer Sci-
ence, pages 722–731, London, UK, 1998. Springer-Verlag.

[17] DARPA Information Processing Technology Office. High
productivity computing systems project, 2004. http://
www.darpa.mil/ipto/programs/hpcs/.

[18] F. Dehne, A. Ferreira, E. Cáceres, S. W. Song, and A. Ron-
cato. Efficient parallel graph algorithms for coarse-grained
multicomputers and BSP. Algorithmica, 33:183–200, 2002.

[19] C. Demetrescu, A. Goldberg, and D. Johnson. 9th DIMACS
implementation challenge – Shortest Paths. http://www.
dis.uniroma1.it/˜challenge9/.

[20] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numer. Math., 1:269–271, 1959.

[21] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-
law relationships of the Internet topology. In Proc. ACM
SIGCOMM, pages 251–262, 1999.

[22] L. C. Freeman. A set of measures of centrality based on
betweenness. Sociometry, 40(1):35–41, 1977.

[23] H. Gazit and G. L. Miller. An improved parallel algorithm
that computes the BFS numbering of a directed graph. Inf.
Process. Lett., 28(2):61–65, 1988.

[24] J. Greiner. A comparison of data-parallel algorithms for con-
nected components. In Proc. 6th Ann. Symp. Parallel Al-
gorithms and Architectures (SPAA-94), pages 16–25, Cape
May, NJ, June 1994.

[25] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based al-
gorithm for mining frequent substructures from graph data.
In Proc. 4th European Conf. on Principles of Data Min-
ing and Knowledge Discovery, pages 13–23, London, UK,
2000.

[26] J. JáJá. An Introduction to Parallel Algorithms. Addison-
Wesley Publishing Company, New York, 1992.

[27] G. Karypis, E. Han, and V. Kumar. Chameleon: Hierarchical
clustering using dynamic modeling. Computer, 32(8):68–
75, 1999.

[28] J. Kepner, D. P. Koester, and et al. HPCS Scalable Synthetic
Compact Application (SSCA) Benchmarks, 2004. http:
//www.highproductivity.org/SSCABmks.htm.

[29] P. Klein and J. Reif. An efficient parallel algorithm for pla-
narity. J. Comp. and System. Sci., 37(2):190–246, 1988.

[30] V. Krebs. Mapping networks of terrorist cells. Connections,
24(3):43–52, 2002.

[31] T. Lengauer. Combinatorial algorithms for integrated cir-
cuit layout. John Wiley & Sons, Inc., New York, NY, USA,
1990.

[32] H. R. Lewis and C. H. Papadimitriou. Symmetric space-
bounded computation (extended abstract). In Proc. 7th Col-
loquium on Automata, Languages and Programming, pages
374–384, London, UK, 1980.

[33] U. Meyer. External memory BFS on undirected graphs with
bounded degree. In Proc. 12th Annual ACM-SIAM Symp. on
Discrete Algorithms, pages 87–88, Philadelphia, PA, USA,
2001.

[34] U. Meyer and P. Sanders. Δ-stepping: a parallelizable short-
est path algorithm. J. Algorithms, 49(1):114–152, 2003.

[35] G. L. Miller and J. H. Reif. Parallel tree contraction and its
application. In Proc. 26th Ann. IEEE Symp. Foundations of
Computer Science, pages 478–489, Portland, OR, Oct. 1985.

[36] B. Moret, D. Bader, and T. Warnow. High-performance al-
gorithm engineering for computational phylogenetics. In
Proc. Int’l Conf. on Computational Science, volume 2073–
2074 of Lecture Notes in Computer Science, San Francisco,
CA, 2001. Springer-Verlag.

[37] B. M. Moret, D. Bader, T. Warnow, S. Wyman, and M. Yan.
GRAPPA: a high-performance computational tool for phy-
logeny reconstruction from gene-order data. In Proc.
Botany, Albuquerque, NM, Aug. 2001.

[38] P. M. Pardalos, M. G. Resende, and K. G. Ramakrishnan,
editors. Parallel Processing of Discrete Optimization Prob-
lems: DIMACS Workshop April 28-29, 1994. American
Mathematical Society, Boston, MA, USA, 1995.

[39] R. Seidel. On the all-pairs-shortest-path problem in
unweighted undirected graphs. J. Comput. Syst. Sci.,
51(3):400–403, 1995.

[40] M. Thorup. Undirected single-source shortest paths with
positive integer weights in linear time. J. ACM, 46(3):362–
394, 1999.

[41] J. L. Träff. An experimental comparison of two distributed
single-source shortest path algorithms. Parallel Comput.,
21(9):1505–1532, 1995.

[42] J. Ullman and M. Yannakakis. High-probability parallel
transitive closure algorithms. In Proc. 2nd Ann. Symp. Paral-
lel Algorithms and Architectures (SPAA-90), pages 200–209,
New York, NY, USA, 1990. ACM Press.

[43] A. Vazquez, A. Flammini, A. Maritan, and A. Vespignani.
Global protein function prediction in protein-protein interac-
tion networks. Nature Biotechnology, 21(6):697–700, June
2003.

[44] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hen-
drickson, and Ü. V. Çatalyürek. A scalable distributed par-
allel breadth-first search algorithm on Bluegene/L. In Proc.
Supercomputing (SC 2005), Seattle, WA, Nov. 2005.

 Proceedings of the 2006 International Conference on Parallel Processing (ICPP'06)
0-7695-2636-5/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

