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1 High-Performance Phylogeny
Reconstruction Under Maximum
Parsimony

TIFFANI L. WILLIAMS†, DAVID A. BADER‡, BERNARD M.E. MORET§,

and MI YAN†

1.1 INTRODUCTION

The similarity of the molecular matter of the organisms on Earth suggest that they

all share a common ancestor. Thus any set of species is related, and this relation-

ship is called a phylogeny. The links (or evolutionary relationships) among a set of

organisms (or taxa) form a phylogenetic tree, where modern organisms are placed

at the leaves and ancestral organisms occupy internal nodes, with the edges of the

tree denoting evolutionary relationships. Scientists are interested in evolutionary

trees for the usual reasons of scientific curiosity. However, phylogenetic analy-

sis is not just an academic exercise. Phylogenies are the organizing principle for

most biological knowledge. As such, they are a crucial tool in identifying emerg-
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2 HIGH-PERFORMANCE PHYLOGENY UNDER MP

ing diseases, predicting disease outbreaks, and protecting ecosystems from invasive

species [Bader et al., 2001, Cracraft, 2002]. The greatest impact of phylogenetics

will be reconstructing the Tree of Life, the evolutionary history of all-known organ-

isms. The precise number of organisms that exist is not known; estimates range from

10-100 million species. Today only about 1.7 million species are known.

Given the enormous implications of phylogenetic analysis, reconstructing the evo-

lutionary history of a set of taxa is a very difficult problem. For n organisms, there

are (2n− 5)(2n− 3) · · · (5)(3) distinct binary trees—each a possible hypothesis for

the “true” evolutionary history. For example, there are over 13 billion possible trees

for 13 taxa. Since the size of the tree space increases exponentially with the number

of taxa, it is impossible to consider all of the possible trees within a reasonable time

frame. Most phylogenetic methods limit themselves to exhaustive searches on small

datasets and heuristic strategies for larger datasets. Another difficulty lies in access-

ing the accuracy of the reconstructed tree. Short of traveling back into time, there is

no way of determining whether the proposed evolutionary history is 100% correct.

1.1.1 Phylogenetic data

Early evolutionary trees were built by examining the similarities and differences of

form and structure of the the organisms of interest. Such an approach relies on iden-

tifying morphological characters (i.e., presence of wings) and classifying organisms

based on the presence or absence of these features. Species are represented by binary

sequences corresponding to the morphological data. Each bit corresponds to a char-
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AAGACTT
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AGGGCAT
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AGGCAT

�

TAGCCCT
�

TAGCCCA

�

TAGACTT

�

TGGACTT

�

TGAACTT

	

AGCACTT



AGCACAA

�

AGCGCTT

Fig. 1.1 Evolving sequences down a fixed tree.

acter. If a species has a given feature, the corresponding bit is set to one; otherwise,

it is zero. Yet, relying solely on morphological characters can be a major source of

phylogenetic error.

With the advent of molecular data, scientists hope to avoid the problems with mor-

phological criteria of relatedness. Today, most trees are built exclusively from molec-

ular sequences. In sequence data, characters are individual positions (or sites) in the

string, where characters can assume one of four states for nucleotides (A,C,G,T) or

one of 20 states for amino-acids. Sequence evolution is studied under a simplifying

assumption that each site evolves independently. Data evolves through point muta-

tions (i.e., changes in the state of a character), plus insertions (including duplications)

and deletions.

Figure 1.1 shows a simple evolutionary history, from the ancestral sequence at

the root (AAGACTT) to modern sequences at the leaves, with evolutionary events
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occurring on each edge. Note that this history is incomplete, as it does not detail

the events that have taken place along each edge of the tree. Thus, while one might

reasonably conclude that, in order to reach the leftmost leaf, labeled AGGCAT, from

its parent, labeled AGGGCAT, one should infer the deletion of one nucleotide (one

of the three G’s in the parent), a more complex scenario may in fact have unfolded.

If one were to compare the leftmost leaf with the rightmost one, labeled AGCGCTT,

one could account for the difference with two changes: starting with AGGCAT, insert

a C between the two G’s to obtain AGCGCAT, then mutate the penultimate A into a

T. Yet the tree itself indicates that the change occurred in a far more complex manner:

the path between these two leaves in the tree goes through the series of sequences

AGGCAT ↔ AGGGCAT ↔ AAGACTT ↔ TGGACTT ↔ AGCACTT → AGCGCTT

and each arrow in this series indicates at least one evolutionary event.

Obtaining sequence data is relatively easy given that large amounts of sequence

data are easily attainable from databases such as GenBank, along with search tools

(such as BLAST). However, “raw” sequence data must first be refined into a format

suitable for use in a phylogenetic analysis. The refinement process is composed of

the following four steps.

1. Identifying homologous genes (i.e., genes that have evolved from a common

ancestral gene—and most likely fulfill the same function in each organism)

across the organisms of interest.
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2. Retrieving followed by aligning the sequences of these genes across the en-

tire set of organism, in order to identify gaps (corresponding to insertions or

deletions) and matches or mutations.

3. Deciding whether to use all available data at once for a combined analysis or

use each gene separately and reconcile the resulting trees.

4. Applying a phylogenetic method to the aligned sequence data (see Section 1.1.2).

Many packages requiring sequence data are available to reconstruct phylogenetic

trees such as PAUP* [Swofford, 2002], Phylip [Felsenstein, 89], MrBayes [Huelsenbeck and Ronquist, 2001],

and TNT [Goloboff, 1999]. These packages are available either freely or for a mod-

est fee, are in widespread use, and have provided biologists with satisfactory results

on many datasets.

Phylogenetic inference based on gene order data provides an alternative to us-

ing sequence data [Moret et al., 2005, Moret and Warnow, 2005]. Gene order data is

based on the structural arrangement of genes in an organism’s entire genome. Hence,

the gene tree/species tree problem (i.e., the evolution of any given of any given gene

need not be identical to that of the organism) is avoided when using gene order data.

Gene order data is sparsely available in comparison to sequence data. Consequently,

most tree reconstruction efforts have focused on the reconstruction of phylogenetic

trees based on sequence data.
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1.1.2 Phylogenetic methods

There are a plethora of methods—each accounting for some aspect of the evolu-

tionary process— that can be used to infer a phylogenetic tree. The methods can be

divided into two broad categories: distance methods transform the sequence data into

a numerical representation of the data whereas criteria-based methods rely on opti-

mality criteria to score the tree based on the individual contribution of the characters

in the sequence data.

1.1.2.1 Distance methods Nucleotide sequence similarities can be converted to

sequence distances in order to infer a phylogenetic tree. For n sequences, pairwise

distances are calculated to produce a n × n distance matrix. One could compute

the Hamming distance between two sequences as an estimate of their evolution-

ary distance. However, the Hamming distance is an underestimate of the true ge-

netic distance between a pair of sequences. If mutations occur at random, there

will be a certain number of positions with silent mutations–changes that are subse-

quently reversed in the course of evolution, leaving no trace in modern organisms

(see Figure 1.2). Therefore, in distance-based methods, one estimates the number of

substitutions that have actually occurred by applying a specific evolutionary model,

which makes assumptions about the nature of evolutionary changes. For example,

the Jukes-Cantor model simply assumes that when a base changes, it is equally-

likely to change to each of the three alternatives [Jukes, 1969]. Other models, such

as Kimura’s two-parameter model [Kimura, 1980], provide additional parameters to
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S1:G

G → C → G

�

S2:G

Fig. 1.2 Silent mutation. The C mutation is unobserved in S1. There are no mutations from

the root node to S2. The Hamming distance between sequences S1 and S2 is 0, which is an

underestimation of the pattern of evolution (G → C → G → G) from S1 to S2.

compute to compute the probability of change from a given state to another given

state.

Distance-based methods build the search for the “true” tree into the algorithm,

thus returning a unique final topology for a distance matrix associated with a given

set of sequences. Neighbor-Joining (NJ)—the most popular distance-based algo-

rithm [Saitou and Nei, 1987]—begins with each organism in its own subtree. The

algorithm joins the pair with the minimum distance, making a subtree whose root

replaces the two chosen taxa in the matrix. Distances are recalculated based on

this new node, and the joining continues until three nodes remain. These nodes are

joined to form an unrooted binary tree. Appealing features of NJ are its simplicity

and speed—it runs in O(n3) time. Other distance methods include refinements of

NJ such as BioNJ [Gascuel, 1997] and Weighbor [Bruno et al., 2000].

1.1.2.2 Criteria-based methods Criteria-based methods explicitly rank the tree

topologies by defining an objective function to score the trees. Tree scores allow

any two or more trees to be ranked according to the chosen optimality criterion.
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Unlike distance-based approaches, there are many possible solutions for a given set

of sequences. Hence, there is an explicit search for the “optimal” tree. Maximum

parsimony (MP) and maximum likelihood (ML) are two of the major optimization

problems in phylogeny reconstruction, but both are quite difficult to solve (MP is

NP-hard [Foulds and Graham, 1982], and ML harder in practice.) We briefly discuss

each in turn below. MP is discussed more thoroughly in Section 1.2.

Maximum parsimony An intuitive approach for ranking phylogenetic trees is count-

ing the total number of mutations required to explain all of the observed character

sequences. MP attempts to minimize this score following the philosophy of Occam’s

razor—the simplest explanation of the data is preferred. Under MP, a total cost is as-

signed to each tree, and the optimal tree (i.e., the most parsimonious tree) is defined

as the one with the smallest total cost. In this approach, a unit cost is given for each

nucleotide substitution. A central step in the procedure is allocating sequences to the

internal nodes in the tree. For any set of sequence allocations, the total cost of the

tree is the sum of the costs of the various edges, where the cost of joining two internal

nodes, or an internal node and a leaf, is the number of substitutions needed to move

from the sequence at one to the sequence at the other (i.e., the Hamming distance).

Many software packages implement MP heuristics, among them the most popular

are PAUP* [Swofford, 2002], Phylip [Felsenstein, 89], and TNT [Goloboff, 1999].

Likelihood methods Likelihood methods require the specification of an evolution-

ary model. For a given phylogenetic arrangement, the question is: what is the like-
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lihood that evolution under the specified parameters will produce the observed nu-

cleotide sequences? For a given evolutionary hypothesis, the likelihood of the ob-

served change is computed for each position, and then the product of the likelihoods

is expressed as a distance or branch length between the sequences. The parameters

are then varied, and the combination with the highest likelihood is accepted. This

procedure is then repeated for another arrangement, the two topologies compared,

and the one with the highest likelihood selected. The selective process is contin-

ued until an arrangement is found with the combined maximum likelihood of both

an evolutionary hypothesis and a topology. Finding the best tree under maximum

likelihood is the most computationally demanding of the methods discussed here.

Like MP, ML is an optimization problem. ML seeks the tree and associated model

parameter values that maximizes the probability of producing the given set of se-

quences. ML thus depends explicitly on an assumed model of evolution. For exam-

ple, the ML problem under the Jukes-Cantor model needs to estimate one parame-

ter (the substitution probability) for each edge of the tree, while under the General

Markov model 12 parameters must be estimated on each edge. Unlike MP, scoring a

fixed tree, cannot be done in polynomial time for ML [Steel, 1994], whereas it is eas-

ily accomplished in linear time for MP [Fitch, 1971]. Various software packages pro-

vide heuristics for ML, include PAUP* [Swofford, 2002], Phylip [Felsenstein, 89],

fastDNAml [Olsen et al., 1994], and PHYML [Guindon and Gascuel, 2003].

Bayesian methods deserve a special mention among likelihood-based approaches;

they compute the posterior probability that the observed data would have been pro-
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duced by various trees (in contrast to a true maximum likelihood method, which

computes the probability that a fixed tree would produce various kinds of data at its

leaves). Their implementation with Markov chain Monte-Carlo (MCMC) algorithms

often run significantly faster than pure ML methods. Moreover, the moves through

state space can be designed to enhance convergence rates and speed up execution.

MrBayes [Huelsenbeck and Ronquist, 2001] is the most popular software package

for reconstructing trees based on Bayesian analysis.

1.1.3 Large-scale phylogenies

The remainder of this paper considers high-performance approaches to inferring

trees under maximum parsimony. Our reasons for focusing on MP are two-fold.

First, MP remains the major approach by which phylogenies are reconstructed. A

survey of 882 phylogenetic analyses published in 76 journals revealed that 60% of

the phylogenies were constructed using MP heuristics [Sanderson et al., 1993]. Sec-

ondly, ML methods are to slow to infer trees for large datasets(> 1000 sequences).

Although distance methods can handle large datasets, studies show they produce

trees with very high topological error [Moret et al., 2002, Nakhleh et al., 2002, Nakhleh et al., 2001].

1.2 MAXIMUM PARSIMONY

Maximum parsimony is an optimization problem for inferring phylogenetic trees,

where each of the taxa in the input is represented by a string over some alpha-

bet. The input consists of a set S of n strings over a fixed alphabet Σ, where
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Σ = {A, C, G, T} represents the set of four nucleotides. Σ could also represent

the set of twenty amino-acids. The elements of Σ are also called states (or charac-

ters). We assume that the sequence data has been properly prepared; particularly, the

sequences are already aligned so that all sequences are of length k. Positions within

the sequences are sometimes called sites.

Formally, given two sequences a and b of length k, the Hamming distance be-

tween them is defined as H(a, b) = |{i : ai 6= bi}|. Let T be a tree whose nodes are

labeled by sequences of length k over Σ, and let H(e) denote the Hamming distance

of the sequences at each endpoint of e. Then the parsimony length of the tree T is

∑
e∈E(T ) H(e). The MP problem seeks the tree T with the minimum length; this is

the same as seeking the tree with the smallest number of point mutations for the data.

MP is an NP-hard problem [Foulds and Graham, 1982], but the problem of assigning

sequences to internal nodes of a fixed leaf-labeled tree is polynomial [Fitch, 1971].

1.2.1 Scoring a fixed tree

Fitch’s algorithm can be applied to calculate the parsimony score of a fixed tree [Fitch, 1977]

. First, we define the possible states for each of the internal nodes that minimize the

score. Let Sv ⊆ Σ denote the set of state assignments for node v. We assume that T

is binary and the children of v are x and y. If v is a leaf, then Sv is simply the state of

v. If v is an internal node, then it’s state is based on the state of its two children x and

y (i.e., Sx and Sy). If Sx ∩ Sy 6= �, then Sv = Sx ∩ Sy. Otherwise, Sv = Sx ∪ Sy.
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{AGT}*

{T}

{AT}*

{A} {T} {T}

{GA}*

{G} {A}

Fig. 1.3 Fitch’s algorithm applied to single site. Sets denoted by an * increase the parsimony

score by one. Thus, the parsimony score of this tree is 3.

Using a postorder traversal, the above equalities allow us to compute Sv for every

node v in T , from the bottom up (see Figure 1.3). Moreover, the optimal cost (or

maximum parsimony score) of T can be calculated from the bottom-up at the same

time. Every time Su ∪ Sw = �, we increment the parsimony score of the tree by

one. The sum of these values over all the sites is the parsimony score of the tree.

After states have been assigned to all of the internal nodes, we can obtain a la-

beling of them using a preorder traversal. Once again, we can compute the positions

(sites) independently. The root r arbitrarily assign its state to be any element of Sr.

Next we visit the remaining nodes in turn, each time assigning a state to the node

v from its set Sv . When we visit a node v, we will have already set the state of its

parent, p. If the selected state for p is an element of Sv , then we use the same state.

Otherwise we pick a state arbitrarily from Sv.
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Fitch’s algorithm requires O(nk) time to compute the labeling of every node in T

and the optimal length (i.e., maximum parsimony score) of T , where n = |S|, and k

is the sequence length.

1.2.2 Parsimony informative sites

When computing the parsimony score, one only needs to consider informative sites.

Parsimony-informative sites include only those sites where at least two distinct char-

acters are observed two or more times. Consider the sequences for four taxa in Ta-

ble 1.1. The four sequences can be related to one another in three different ways (see

Figure 1.4). Let us now consider one site after the other in terms of the minimum

changes it involves.

Site 1 has not changed and can therefore be ignored. Site 2 must have suffered at

least one change, no matter how we arrange the tree. (This site could, of course, have

undergone more than one change, but this assumption is not maximally parsimonious

and so is not taken into consideration). For site 2, all three trees are equally likely

and so the site is regarded, like site 1, as being uninformative and as such is not

considered any further. Site 3 is informative since it enables use to choose the most

parsimonious tree. Tree I requires one change, whereas trees II and III each requiring

two changes. Finally, site 4 is also informative and identifies tree II as the most

parsimonious tree for this site. Thus, trees I and II are the optimal MP trees.

So for four taxa, only three site patterns are informative: aabb, abab, abba, where

a and b are two different states from Σ. Informative and non-informative sites affect
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Sites

1 2 3 4

S1 G T A G

S2 G T A C

S3 G T G G

S4 G C G C

Table 1.1 DNA sequences used in Figure 1.4.

only parsimony. Distance and likelihood methods, all sites including the constant

site affect the calculation and should be included.

1.2.3 Exact MP search

One approach to solving MP is to evaluate all possible trees to guarantee that the most

parsimonious tree is found. Thus, an algorithm is needed to generate all possible

trees. One procedure for for generating all possible trees is as follows. Consider

the unrooted tree T for three taxa. To create the all trees with four taxa, we add the

fourth taxon to each edge in T . Thus, the algorithm adds the ith taxon in a stepwise

fashion to all possible trees containing the first i − 1 taxa until all n taxa have been

joined.

The above algorithm makes it clear that the number of possible trees grows by a

factor that increase by two with each additional taxon. This relationship is expressed

as B(t) =
∏t

i=3(2i − 5), where B(t) is the number of unrooted trees for t taxa. As

stated earlier, for 13 taxa there are over 13 billion trees to score. Clearly, the exhaus-

tive search method can only be used for only a relatively small number of taxa. An
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Site 1

Site 3

Site 2

Site 4

Tree II Tree IIITree I

T

C T

T

A

G G

A

G

C G

C

T

T C

T

A

G G

A

G

G C

C

T

T C

T

A

A G

G

GG

C C

S1

S4 S3

S2S1

S3 S4

S2S1

S4

S3

S2

G

G G

GG

G G

GG

G

G

G

TT

GGGG

G

AA

TTTT

GGGA

GG

CG GGG

Fig. 1.4 Finding the most parsimonious tree. Using only the informative sites (Sites 3 and

4), the optimal MP score is 3 as shown by Trees I and II. The DNA sequences represented

by S1, S2, S3, and S4 are GTAG, GTAC, GTGG, and GCGC , respectively. These

sequences are shown in Table 1.1.
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alternative exact procedure, the branch-and-bound method [Hendy and Penny, 1982]

operates implicitly by evaluating all possible trees, but cutting off paths of the search

tree when it is determined that they cannot possibly lead to optimal trees. We de-

scribe a high-performance B&B algorithm in section 1.3.

1.2.4 MP heuristics

When data sets become too large to use the exact searching methods, one must resort

to the use of heuristics. The fundamental technique is to take an initial estimate of

the tree and rearrange branches in it, to reach neighboring trees. If a rearrangement

yields a better scoring tree, it becomes the new ”best” tree and it is then submitted

to a new round of rearrangements. The process continues until no better tree can be

found in a full round.

Nearest-neighbor interchange (NNI) is one type of tree rearrangement operation

(see Figure 1.5). The NNI operation effectively swaps two adjacent branches on the

tree. In particular, an interior edge is removed from the tree, and the two branches

connected to it at each end (i.e., a total of five branches are erased). Four subtrees

remain that are disconnected from each other. These subtrees can be hooked together

into a tree in three possible ways. One of the three trees is the original one, so that

each nearest neighbor interchange examines two alternative trees. In an unrooted

bifurcating tree with n taxa, there will be n − 3 interior edges. At each edge, we

can examine two neighboring trees. Thus, 2(n − 3) neighbors can be examined for

a given tree. Other rearrangement operations include subtree pruning and regrafting
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A

D C

BA

C D

BA

D

C

B

Tree IOriginal Tree Tree II

Fig. 1.5 Nearest-neighbor interchange. An interior edge is dissolved and the four subtrees

(A, B, C, D) connected to it are isolated. The subtrees can be reconnected in two different

ways as represented by Trees I and II.

(SPR), which breaks off part a tree and attaches it elsewhere in the tree, and tree-

bisection reconnection (TBR), which breaks a phylogenetic tree into two parts and

then reconnects them at a random edge.

1.3 EXACT MP: PARALLEL BRANCH & BOUND

Although it takes polynomial time to compute the tree cost by Fitch’s method ([Fitch, 1971]),

it is still very time-consuming to compute the exact MP by exhaustive search due to

the enormous size of search space. Hence we use branch-and-bound (B&B) to prune

the search space in phylogeny reconstruction [Bader et al., 2004, Yan and Bader, 2005].

The underlying idea of the B&B algorithm is successive decomposition of the origi-

nal problem into smaller disjoint subproblems and pruning subproblems whose lower

bound is greater than the upper bound until all optimal solutions are found.
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1.3.1 Basic issues in branch and bound approach

Our B&B approach has five aspects that affect the performance of the algorithms:

branching scheme, search strategy, lower bounding function, initial global upper

bound, and the data structure. We will discuss these five aspects respectively in

the following.

1.3.1.1 Branching scheme The branch scheme decides how to decompose a sub-

problem in the search space. Here, each subproblem is associated with a partial tree

and the objective is to find the exact MP score among those trees built from the partial

tree. Our branching scheme employs the same mechanism to generate all possible

unrooted binary trees for a given set of taxa. Consider the unrooted tree for three

taxa. The remaining n−3 taxa are added to the tree in stepwise fashion as described

in Section 1.2.3. Each new position location for taxon i of the partial tree is consid-

ered a subproblem. Thus, a subproblem associated with the original partial tree is

decomposed into a set of disjoint subproblems; each associated with a new partial

tree.

1.3.1.2 Search strategy The search strategy decides which of the currently open

subproblems to be selected for decomposition. The two strategies most commonly

used are depth-first search (DFS) and best-first search (BeFS). DFS is space-saving

strategy and BeFS is more targeted towards a better global upper bound. In the

case when the initial global upper bound obtained by heuristic approaches is exactly

optimal or very close to exact optimal value, there is no significant difference in the
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number of examined subproblems between DFS and BeFS search. Therefore DFS

has more advantage for reasons of space efficiency. Since our experiment shows that

heuristics can provide a very good solution, we employ DFS as our primary B&B

search strategy and adopt BeFS as a secondary strategy to break ties.

1.3.1.3 Lower bounding function of the subproblems Hendy and Penny ([Hendy and Penny, 1982])

use the cost of the associated partial tree as the lower bound of a subproblem. Purdom

et al. used the sum of the single column discrepancy and the cost of the associated

tree as the lower bound [Purdom et al., 2000]. For each column (character), the sin-

gle column discrepancy is the number of states that do not occur among the taxa in

the associated tree but only occur among the remaining taxa. We employ Purdom’s

lower bounding function since it is much tighter than the one described by Hendy

and Penny.

1.3.1.4 Initial global upper bound We do not compute the upper bound for each

subproblem. Instead, before the B&B search, a global upper bound is obtained by a

fast heuristic algorithm. We investigate the performance of both the neighbor-joining

(NJ) and greedy algorithms. From experiments, we found that the tree obtained

from NJ is usually much worse than the one obtained from the greedy algorithm.

The greedy algorithm constructs a tree in a stepwise fashion, at each step, the new

taxon is added into the best position that results in a partial tree with the minimum

score. Since adding taxa in different orders yields different trees, we use the greedy
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algorithm with two different addition orders and use the best score as the initial

global upper bound.

1.3.1.5 Data structure Each subproblem in the search space of the B&B phy-

logeny reconstruction is associated with a partial tree and the lower bound. The

lower bound serves as the priority and priority queues are used to save the open

problems. Since we use DFS search, it is natural to use a priority queue for each

depth. Several types of heaps can be found in literature. For simplicity, a traditional

D-heap [Knuth, 1973] is chosen to represent a priority queue. A D-heap is orga-

nized as an array, using the rule that the first location is the root of the tree, and the

locations 2i and 2i + 1 are the children of location i.

1.3.2 Preprocessing before B&B search

We adopt a series of preprocessing in order to conduct the B&B search efficiently.

1.3.2.1 Binary encoding of original states The basic operation of Fitch’s method

is to compute the intersection or union of state sets. Since most modern computers

can perform efficient bitwise logical operations, we decide to use the binary encoding

of state sets in order to implement intersection and union by bitwise AND and bitwise

OR. We assign a one-to-one map between the bits of code and the character states.

Given a species, if a state is present, then the corresponding bit is set to one otherwise

it is set to zero.
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1.3.2.2 Decide the addition order of the species Our experiments show that the

overall execution time of B&B phylogeny reconstruction can change drastically de-

pending on the order in which the taxa are added. This can be explained in theory.

The lower bounding function we adopt heavily depends on the cost of the associated

partial tree. This can also explain why the addition order decided by max-mini rule

performs best in most cases. Starting with the initial core tree of three taxa, at each

step, for each of the remaining taxa, we find the best inserting position which results

the minimum score. Then, we choose the taxon with maximum minimum-score to

be added at its best position and go onto next step until all taxa are added. This

procedure is called the max mini approach.

1.3.2.3 Reorder sites Fitch made a basic classification of sequence sites (the

columns of the sequence matrix) [Fitch, 1977]. At a given site, the state that appears

more than once is said to be a non-singleton state. A site with at most one non-

singleton states is said to be a parsimony uninformative site since the state changes

at such kind of a site can always be explained by the same number of substitutions

in all topologies. At the lower levels of B&B phylogeny reconstruction, only a few

sites are parsimony informative. However, with the addition of taxa, many sites turn

from parsimony uninformative to parsimony informative. Hence, we may compute at

which level a site turns into parsimony informative, then reorder sites so that at each

level all of the parsimony informative sits are kept in a contiguous segment of mem-

ory. By reordering sites, not only is the computation on parsimony uninformative

sites saved, but also the ratio of cache misses is greatly reduced.
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1.3.3 A fast algorithm to compute tree length

In a B&B search, an enormous number of trees must be evaluated. Given an original

tree, how can we compute the scores of each new tree generated by adding a taxon

in the original one? As described in Section 1.2.1, Fitch’s method involves one

bottom-up pass and one top-down pass of the tree. Each pass computes a set of

states for each internal node by different rules, the states obtained in the first pass are

preliminary states and the states obtained in the second pass are final states. Goloboff

proposed a method to preprocess the original tree in two passes, which takes constant

time to compute the score for each new tree [Goloboff, 1993]. Gladstein described

an incremental algorithm based on preliminary state sets obtained from Fitch’s first

pass [Gladstein, 1997]. In practice, Goloboff’s method works better than Gladstein’s.

We developed an approach that requires preprocessing the original tree in one pass

and for each new tree it takes constant time to compute the score.

Our approach is similar to Fitch’s algorithm. Our first pass is identical to Fitch’s

first pass. However, our second pass uses the rules of Fitch’s first pass—not Fitch’s

second pass rules. We obtain a set of states for each edge, which are the preliminary

states of the root Therefore, when inserting a new taxon in the original tree at an

edge, we only compare the states of the new taxon and the states of that edge. We

obtain the same result as our bottom-up pass does on the new tree. If the result of the

new tree is kept in memory, when we decompose this new tree later, only the top-

down pass is required. Thus, in B&B search, our method saves one pass compared
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to Goloboff’s method. Besides the B&B search, our method can also be applied to

heuristic search based SPR and TBR rearrangement operations.

1.3.4 Parallel implementation on SMPs

To utilize the computation power of parallel computers, we implement the B&B

phylogeny reconstruction on Cache-Coherent Uniform Memory Access (CC-UMA)

SMPs. In the parallel implementation, each processor selects different active nodes,

then processes the computation on it. We use the SPMD asynchronous model in

which each processor works at its own pace and does not have to wait at predeter-

mined points for predetermined data to become available. Since the B&B search

space tends to be highly irregular, any static distribution of search space is bound to

result in significant load imbalance, and the dynamic distribution methods usually

involve very complex protocols to exchange subspace between processors to obtain

load balance. Compared to the distributed data structure, a single shared data struc-

ture is easily maintained on SMPs since there is no load balance problem. We modify

the serial data structure by adding a lock for each heap to get the shared data struc-

ture. Each heap is protected by a lock and the entire heap is locked whenever it is

being modified. Due to the small size of heaps in B&B phylogeny reconstruction,

the D-heap is used for simplicity and efficiency.

To minimize the concurrent access contention, a relaxed DFS search strategy is

adopted. A heap is accessed if all the heaps at higher levels are empty or locked
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by other processors. When a processor detects that all the heaps are unlocked and

empty, this processor can terminate its own execution of the algorithm.

1.3.5 Experimental results

We use the benchmark collection at http://www.lirmm.fr/ ranwez/PHYLO/benchmarks24.html.

Each data set consists of 24 sequences and the length of each DNA sequence is 500.

These tests allow comparison on trees whose internal branch lengths are not all equal,

and over a wide variety of tree shapes and evolutionary rates.

We compared the running time between our serial code and PAUP* using the sub-

command bandb addseq=maxmini on a Sun UltraSparcII workstation. Among the

20 data sets randomly chosen from the benchmark, for 10 data sets our code is 1.2-7

times faster than PAUP*, for 5 data sets our code runs as fast as PAUP*, and for 5

data sets our code is 1.2-2 times slower than PAUP*. The experiments on our par-

allel code was carried out on Sun E4500, a uniform-memory-access (UMA) shared-

memory parallel machine with 14 UltraSparcII 400MHz processors. We conducted

the experiment on 200 data sets randomly chosen from the benchmark, on average

we achieve speedups of 1.92, 2.78, and 4.34, on 2, 4, and 8 processors, respectively.

The above experimental results show that our strategies on the B&B phylogeny re-

construction are efficient.
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1.4 MP HEURISTICS: DISK-COVERING METHODS

Disk-Covering Methods (DCMs) [Huson et al., 1999a, Huson et al., 1999b, Nakhleh et al., 2001,

Roshan et al., 2004, Warnow et al., 2001] are a family of divide-and-conquer meth-

ods designed to “boost” the performance of existing phylogenetic reconstruction

methods [Huson et al., 1999a, Huson et al., 1999b, Nakhleh et al., 2001, Roshan et al., 2004,

Warnow et al., 2001]. All DCMs require four steps.

1. Decompose the dataset into subproblems.

2. Apply a “base” phylogenetic method to each of the subproblems.

3. Merge the subproblems.

4. Refine the resulting tree.

Variants of DCMs come from different decomposition techniques for the initial step;

the last three phases are unaffected. The first DCM [Huson et al., 1999a], also called

DCM1, was designed for use with distance-based methods and has provable the-

oretical guarantees about the sequence length required to reconstruct the true tree

with high probability under Markov models of evolution [Warnow et al., 2001]. The

second DCM [Huson et al., 1999b], also called DCM2, was designed to speed up

heuristic searches for MP trees; we showed that when DCM2 was used with PAUP*-

TBR search, it produced better trees faster on simulated datasets.
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1.4.1 DCM3

We designed the third DCM, or DCM3, from the lessons learned with our first two

DCMs. DCM1 can be viewed, in rough terms, as attempting to produce overlapping

clusters of taxa to minimize the intracluster diameter; it produces good subproblems

(small enough in size), but the structure induced by the decomposition is often poor.

DCM2 computes a fixed structure (a graph separator) to overcome that drawback, but

the resulting subproblems tend to be too large. Moreover, both DCM1 and DCM2

operate solely from the the matrix of estimated pairwise distances, so that they can

produce only one (up to tiebreaking) decomposition. In contrast, DCM3 uses a dy-

namically updated guide tree (in practice, the current estimate of the phylogeny) to

direct the decomposition—so that DCM3 will produce different decompositions for

different guide trees. This feature enables us to focus the search on the best parts

of the search space and is at the heart of the iterative use of the decomposition:

roughly speaking, the iteration in Rec-I-DCM3 consists of successive refinements

of the guide tree. Thanks to the guide tree, DCM3 also produces smaller subprob-

lems than DCM2: the guide tree provides the decomposition structure, but does so

in a manner responsive to the phylogenetic estimation process. Finally, we designed

DCM3 to be much faster than either DCM1 or DCM2 in producing the decompo-

sitions (mostly by not insisting on their optimality), since previous experiments had

shown that dataset decomposition used most of the running time with DCM2.

1.4.1.1 Short subtree graph An essential component of our DCM3 decomposi-

tion algorithm is computing the short subtree graph. Consider a tree T on our set S
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of taxa and an edge weighting w of T , w : E(T ) → <+. (A possible edge weighting

is given by the Hamming distances under the MP labelling of the nodes of T .) We

construct the short subtree graph, which is the union of cliques formed on “short

subtrees” around each edge. Let e be an internal edge (not touching a leaf) in T ;

then removing e and its two endpoints from T breaks T into four subtrees. A short

quartet around e is composed of four leaves, one from each of these four subtrees,

where each leaf is selected to be the closest (according to the edge weights) in its tree

to e. This short quartet need not be unique: several leaves in the same subtree may

lie at the same shortest distance from e. Thus we define the short subtree around e

to be the set X(e) of all leaves that are part of a short quartet around e. Figure 1.6

provides an example of computing a short subtree around an edge e. We will use the

clique on X(e): the graph with X(e) as its vertices and with every pairwise edge

present, weighted according to w; denote this clique by K(e). The short subtree

graph is then the union, over all internal edges e of the guide tree, of the K(e).
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1.4.1.2 DCM3 decomposition Our decomposition algorithm requires finding a

centroid edge in the guide tree T—that is, an edge that, when removed, produces

the most balanced bipartition of the leaves. Our approach is based on the notion of a

centroid edge in T—that is, an edge that, when removed, produces the most balanced

bipartition of the leaves. Let X be the leaves of the short subtree around a centroid

edge e. In our experience, X is always a separator of the short subtree graph, so

we can define the subproblems as Ai = X ∪ Ci, where G − X has m distinct con-

nected components, C1, C2, . . . , Cm. (Should X fail to be a separator in the short

subtree graph, we would then resort to computing all maximal clique separators in

G.) Since we cannot afford to compute the short subtree graph, we cannot directly

verify that X is a separator. However, we can proceed without knowing the short

subtree graph [Roshan et al., 2004]. By using this result, we can compute a decom-

position that is not exactly that induced by the centroid edge, but that retains good

characteristics (i.e., small number of small subproblems).

Finding a centroid edge e through a simple tree traversal requires linear time.

Computing X(e) and then the subproblems A ∪ X(e), B ∪ X(e), C ∪ X(e), and

D∪X(e) also require linear time. Thus, a DCM3 decomposition can be computed in

O(n) time, where A, B, C, and D are the sets of leaves in the four subtrees obtained

by deleting e from T .

1.4.1.3 Comparison of DCM decompositions We designed DCM3 in part to

avoid producing large subsets, as DCM2 is prone to do. Yet, of course, the sub-

problems produced from a very large dataset remain too large for immediate so-
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lution by a base method. Hence we used the approach successfully pioneered by

Tang and Moret with DCM-GRAPPA [Tang and Moret, 2003] and used DCM3 re-

cursively, producing smaller and smaller subproblems until every subproblem was

small enough to be solved directly. Figure 1.7 shows that DCM3 produces subprob-

lems much smaller than those produced by DCM2. (Rec-DCM3 in this series of

tests was set up to recurse until each subproblem was of size at most one eighth of

the original size.)
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Fig. 1.7 Comparison of DCM2, DCM3 and Recursive-DCM3 decompositions. DCM2

decompositions on datasets 5–10 could not be computed due to memory limitations.

1.4.1.4 Subtree construction and assembly Once the dataset is decomposed into

overlapping subsets A1, A2, . . . , Am (for us, m ≤ 4 is typical), subtrees are con-

structed for each subset, Ai, using the chosen “base method,” and then combined

using the Strict Consensus Merger [Huson et al., 1999a, Huson et al., 1999b] to pro-

duce a tree on the combined dataset. The proof that the resulting tree is accurate

(i.e., agrees, with high probability and in the limit, with the unknown underlying

“true tree”) is similar to the argument shown in [Huson et al., 1999a]).
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Our Rec-I-DCM3 algorithm takes as input the set S = {s1, . . . , sn} of n aligned

biomolecular sequences, the chosen base method, and a starting tree T . In our ex-

periments, we have used TNT (with default settings) as our base method, since it

is the hardest to improve (in comparison, the PAUP* implementation of the parsi-

mony ratchet [Bininda-Emonds, 2003] is easier to improve). Our algorithm produces

smaller subproblems by recursively applying the centroid-edge decomposition until

each subproblem is of size at most k. The subtrees are then computed, merged, and

resolved (from the bottom-up, using random resolution) to obtain a binary tree on

the full dataset. These steps are repeated for a specified number of iterations.

1.4.2 Experimental design

The experimental evaluation of algorithms for phylogenetic reconstruction is a dif-

ficult endeavor (see [Moret, 2002, Moret and Warnow, 2002] for details). Because

credible simulations of evolution remain lacking at the scale of 10,000 or more taxa,

we chose to use biological datasets in our study. This choice ensures biological

relevance of our results, but it prevents us from evaluating the accuracy of recon-

structed trees, since the “true” tree is not available. However, other work from our

group [Williams et al., 2004] tells us that we need to achieve excellent approxima-

tion of the parsimony score (tree length) in order to have any chance at reconstructing

the true topology. Thus, we focused our testing on the quality of approximation in

terms of the parsimony score.
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1.4.2.1 Biological Datasets: We present our results on the ten large biological

datasets—because of their large size, all but one are RNA data, ranging from a small-

est set of 1,322 sequences to a largest of 13,921 sequences, all with sequence lengths

between 800 and 1,600. Seven of these ten sets have over 4,500 sequences and thus

are not, in practice, accurately analyzable with existing MP heuristics.

1. A set of 1,322 aligned large subunit ribosomal RNA of all organisms (1,078

sites) [Wuyts et al., 2002].

2. A set of 2,000 aligned Eukaryotes ribosomal RNA sequences (1,326 sites) ob-

tained from the Gutell Lab at the Institute for Cellular and Molecular Biology,

The University of Texas at Austin.

3. A set of 2,594 rbcL DNA sequences (1,428 sites) [Kallerjo et al., 1998].

4. A set of 4,583 aligned 16s ribosomal Actinobacteria RNA sequences (1,263

sites) [Maidak et al., 2000].

5. A set of 6,590 aligned small subunit ribosomal Eukaryotes RNA sequences

(1,661 sites) [Wuyts et al., 2002].

6. A set of 7,180 aligned ribosomal RNA sequences (1,122 sites) from three phy-

logenetic domains obtained from the Gutell Lab at the Institute for Cellular

and Molecular Biology, The University of Texas at Austin.

7. A set of 7,233 aligned 16s ribosomal Firmicutes (bacteria) RNA sequences

(1,352 sites) [Maidak et al., 2000].
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8. A set of 8,506 aligned ribosomal RNA sequences (851 sites) from three phy-

logenetic domains, plus organelles (mitochondria and chloroplast), obtained

from the Gutell Lab at the Institute for Cellular and Molecular Biology, The

University of Texas at Austin.

9. A set of 11,361 aligned small subunit ribosomal Bacteria RNA sequences

(1,360 sites) [Wuyts et al., 2002].

10. A set of 13,921 aligned 16s ribosomal Proteobacteria RNA sequences (1,359

sites) [Maidak et al., 2000].

1.4.2.2 Parameters and measurements: We chose to test performance during the

first 24 hours of computation on each dataset for each method, taking hourly “snap-

shots” along the way in order to evaluate the progress of each method. We asked

the following two questions: (i) how much of an improvement is gained by using

Rec-I-DCM3 versus TNT, if any? and (ii) how long does the best TNT trial (out of

five runs) take to attain the average MP score obtained at 24 hours by Rec-I-DCM3?

To answer these questions, we ran TNT and Rec-I-DCM3(TNT), which uses TNT as

its base method, on our ten biological datasets, using five independent runs, all on

the same platform, with computed variances for all measurements.

1.4.2.3 Implementation and platform: Our DCM implementations are a combi-

nation of LEDA, C++, and Perl scripts. The TNT Linux executable was obtained

from Pablo Goloboff, one of the authors of TNT. We ran our experiments on three

sets of processors, all running Linux: the Phylofarm cluster of 9 dual 500MHz
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Pentium III processors; a part of the 132-processor SCOUT cluster, consisting of 16

dual 733MHz Pentium III processors, and the Phylocluster of 24 dual 1.5GHz

AMD Athlon processors, all at the University of Texas at Austin. For each dataset

all the methods were executed on the same cluster; larger datasets were run on the

faster machines.

1.4.3 Results

We defined the “optimal” MP score on each dataset to be the best score found over

all five runs among all methods in the 24-hour period we allowed; on our datasets,

this optimal score was always obtained by Rec-I-DCM3(TNT). On each dataset and

for each method, we computed the average MP score at hourly intervals and reported

this value as a percentage of deviation from optimality. In our experiments, on every

dataset and at every point in time (within these 24 hours), the best performance was

obtained by Rec-I-DCM3(TNT). Since only error rates less than 0.01% are tolerable,

Rec-I-DCM3’s performance is very impressive; all trees are at least 99.99% correct.

TNT, on the other hand, failed to reach this level of accuracy consistently—especially

on datasets with more than 4,500 sequences.

Figure 1.8(a) shows the performance of Rec-I-DCM3(TNT) and of TNT at 24

hours. As the size of the dataset increases, the relative error in MP scores increases,

but at a much faster rate for TNT than for Rec-I-DCM3(TNT), so that the accuracy

gap between the two increases quite rapidly. Figure 1.8(b) indicates how long it

took TNT, in the best of five runs, to match the average scores obtained by Rec-I-



34 HIGH-PERFORMANCE PHYLOGENY UNDER MP

7 8 9 10 11 12 13 14 15 16
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Dataset#

(A
vg

. s
co

re
 a

t 2
4 

ho
ur

s 
−

 b
es

t s
co

re
)/

(b
es

t s
co

re
) 

* 
10

0 TNT−default
Rec−I−DCM3(TNT)

1 2 3 4 5 6 7 8 9 10
0

24

48

72

96

120

144

168

Dataset#

H
ou

rs
 fo

r 
be

st
 T

N
T

 to
 r

ea
ch

 a
vg

 R
ec

−
I−

D
C

M
3(

T
N

T
) 

sc
or

e

(a) deviation from optimal (b) TNT time to optimal

Fig. 1.8 Part (a) shows the average deviation above optimal after 24 hours by TNT and

Rec-I-DCM3(TNT); Part (b) shows the time taken by the single best TNT trial, extended to

run for up to a week, to match the average Rec-I-DCM3(TNT) score at 24 hours—bars that

reach the top indicate that TNT could not reach a match after a week of computation.

DCM3(TNT) after 24 hours—we stopped the clock after one week of computation

if the TNT run had not achieved a match by then, something that happened on the

seven largest datasets. (The standard deviations of the MP scores at 24 hours for all

the methods on all the datasets were very low, at most 0.035%.)

Figure 1.9 compares the time-dependent behaviors of TNT and Rec-I-DCM3(TNT)
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Fig. 1.9 Average MP scores of TNT and Rec-I-DCM3(TNT) on datasets 1, 2, and 3, given

as the percentage above the optimal score. Note: the vertical range varies across the datasets.
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Fig. 1.10 Average MP scores of TNT and Rec-I-DCM3(TNT) on datasets 4, 5, and 6, given

as the percentage above the optimal score. Note: the vertical range varies across the datasets.
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Fig. 1.11 Average MP scores of TNT and Rec-I-DCM3(TNT) on datasets 8, 9, and 10,

given as the percentage above the optimal score. Note: the vertical range varies across the

datasets.

on our three smallest datasets (1, 2, and 3), while Figure 1.10 shows the same for

three medium datasets (4, 5, and 6). and Figure 1.11 shows the same for our three

largest datasets (8, 9, and 10). (It should be noted that the 24-hour time limit was

perhaps overly limiting for the largest dataset: a quick look at the curves appears

to indicate that even Rec-I-DCM3(TNT) has not yet reached a plateau at that point.)

The improvement achieved by boosting TNT with Rec-I-DCM3 is significant on all

datasets as well as at all time intervals. In particular, note that the boosted version of
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Fig. 1.12 Decrease in error rates with time on all datasets for Rec-I-DCM3(TNT)

TNT shows much stronger decreases in MP scores in the first several hours than the

unboosted version.

Figure 1.12 shows how the error rate (deviation above the optimal MP score)

of Rec-I-DCM3(TNT) decreases with computation time on each of the ten datasets.

While the initial trees computed for the large datasets tend to exhibit large error

(as large as 0.35%), the error drops very rapidly—even more rapidly for the large

datasets than for the smaller ones. Thus, not only do the error rates of Rec-I-

DCM3(TNT) fall more rapidly than those of TNT alone, but they have a positive

second derivative: the larger they are, the faster they fall.

1.5 SUMMARY AND OPEN PROBLEMS

Maximum parsimony is the most popular optimization criterion for analyzing large

datasets. Because of the importance of MP analyses in phylogeny reconstruction,

systematists and algorithm researchers have studied existing methods (specifically

implementations of heuristics in different software packages) to see which performed
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the best. We have provided an overview of two high-performance phylogenetic algo-

rithms, which dramatically outperform traditional techniques. Consequently, larger

analyses can be performed within a reasonable time period. Each performance gain

brings us closer to reconstructing the “Tree of Life”. Yet, much work still remains to

be done! Below, we provide a biased sample of open problems that appear to be the

most promising or important avenues for further exploration.

• Tree accuracy. Bootstrapping is one technique for estimating the support of

the inferred tree [Felsenstein, 2003]. The bootstrap proceeds by resampling

the original data matrix with replacement of the sites. The process is repeated

many times (1,000 times or more) and phylogenies are reconstructed for each

bootstrap replicate. The bootstrap support for any internal edge is the number

of times it was recovered during the bootstrapping procedure. However, it is

not clear how to access the accuracy of large-scale phylogenies on real datasets

as a single analysis may require weeks or months to complete.

• Evolutionary models for DNA sequences. Of course, no simulation can be

accurate enough to replace real data. However, simulated datasets enable eval-

uations of solution quality (because the model, and thus the “true” answer, is

known) and can be generated in arbitrarily large numbers to ensure statistical

significance. Often times, the performance ranking of phylogenetic methods

on simulated data is different from that on real data. Hence, realistic models

for generating simulated data are needed.



38 HIGH-PERFORMANCE PHYLOGENY UNDER MP

• Stopping criteria. Currently, phylogenetic analyses are stopped when one is

tired of waiting for a result. Depending on the user’s current needs, an analysis

can be short (i.e., 24 hours) or it could run for several months. However, there

is little work on determining when a search should terminate.

• Multiple sequence alignment. Although alignment was mentioned briefly in

Section 1.1.1, it is probably the most crucial phase of inferring an accurate

tree. More work is needed to understand the effect sequence alignment has on

inferring the “true” evolutionary tree.
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